ANATISAZ (AVIS) Spucles in MCHicaid

Thosiz for the Bocrea of Mi. S, WGHIGAN gTAT⿷ UNVHEGTY
Devid B. Grockof
1964

JHESIS

ABSTRACT
THE MATLOPHHAGA (INSECTA) INFESITING SEVERAL ANATIDAE (AVES) SPECIES IN MICHIGAN
by David B. Grockett

A collection was made of Mallophaga infesting several species of Anatidae in Michigan. Flfty-two ducks of six species (Anas platyrivynchos, A. rubripes, A. carolinensis, A. Aiscors, Aix sponsa and Lophodytes cucullatus) yielded 217 lice of four species (Anaticola crassicormis (Scopoli, 1763), Anatoecus dentatus (Scopoli, 1763), Anatoecus icterodes (Nitzsch, 1818) and Trinoton querquedulae (Iinnaeus, 1758)).

A now Mallophaga collecting techmique was used. The method consisted of ethyl acetate vapors contained in a polyethylene bag in which the duck was placed. After three to five minutes exposure to the vapors, the bird was removed and the Mallophaga brushed from its feathers.

Written descriptions and wholemanimal illustrations for each species of Mallophaga, and a brief description of each genus represented, are included. There is a discussion of the reasons why the author is considering placing Anatoecus dentatus (Scopoli, 1763) as a synorym of Anatoecus ictorodes (Nitzsch, 1818).

Statistical analysis of the data gave a k coefficient of 1.05, indicating a relatively high degree of aggregation of lice on dacks. The mean namber of lice per duck was 4.2; the variance was 20.7. There was an indication that female Mallards and Wood Ducks had a lower

Irequency of Mallophaga infestation than did males of these species, but the Chi-square value was 2.7 (uncorrected) and a probability of 0.08, and a Chi-square of 1.6 (with Yates' correction for continuity) and a probability of 0.22.

THE MALLOPHAGA (INSECTA) INFESTING SEVERAL ANATIDAE (AVES) SPECIES IN

 MICHIGANBy

David B. Grockett

4 THESIS

> Subrifted to
> Michigan State University
> in partial fulfillment of the requirements for the degree of

MASTER OP SCIENGE

Department of Entamology

1964

ACKNOWLEDGEMENIS

It is with much appreciation that I acknowledge the guidance, assistance and encouragement given me by the members of my graduate cammittee, Doctors Roger A. Hoopingarner, Gordon E. Guyer, George J. Wallace and Roland L. Fischer. The patience and constant guidance provided by Dr. Fischer, my major professor, is especially acknowledged.

Dr. Theresa Glay very kindly determined my Mallophaga specimens by comparison with specimens in the British Museum (Natural History) collections. I am also indebted to Miss Glay for her answers to my many questions on the details of Mallophagan taxonamy, morphology and biology.

I wish also to thank Dr. C. T. Black and his staff at Rose Lake Wildife Experiment Station for their help and the use of the station facilities during the field collection aspects of this study. Dr. William E. Miller gave me considerable help and many suggestions concerning the statistical analyses I have used in this work.

Finally, and certainily not least, I thank no wife, Somie, for her constant encouragement and deep understanding during this study, which was concurrent with our courtahip.

TABLE OF CONTENTS

Acknowledgements 11
Ifst of tables iv
List of figures ∇
Introduction 1
Methods and materials 3
General morphology 5
The head 5
Preantennal region 5
Postantennal region 6
Chaetotaxy 7
The abdamen 9
The taxa 10
Suborder Amblycera 10
Gemus Trinoton Nitzsch, 1818 10
Trinoton guerquedulae (Iinnaeus, 1758) 11
Suborder Ischnocera 14
Cenus Anaticola Clay, 1936 14
Anaticola crassicommis (Scopoli, 1763) 15
Gemus Anatoecus Cummings, 1916 19
Anatoecus dentatus (Scopoli, 1763) 19
Anatoecus icterodes (Nitzsch, 1818) 25
Host-parasite analysis 28
Conclusions 33
Iiterature cited 34

LIST OF TABLES

Table 1. Comparative ranges of penis lengths of several species of Anaticola. 18
Table 2. Abundance of uninfested male and female Mallards and Wood Dacks. 31

IIST OF FIGURES

Figure 1. Frequency distribution of the mumber of
Mallophaga on ducks. 29
Flgure 2. Anaticola crassicormis (Scopoli, 1763). 36
Figure 3. Comparison of antennal secalal dimorphismin Anaticola crassicomis (Scopoli). 37
Figure 4. Anatoecus dentatus (Scopoli, 1763). 38
Figure 5. Anatoecus icterodes (Nitzsch, 1818). 39
Figure 6. Comparison of distal portions of malegenitalia. (A). Anatoecus dentatusand (B). Anatoecus icterodes. 40
Figure 7. Thinoton querquedulae (Iinnaeus, 1758). 41

INTRODUCTION

During Ootober, 1962, a collection of Mallophaga fran various wild waterforl was made at Rose Lake Wildlife Experiment Station, Michigan Department of Conservation, near East Lansing, Michigan. Fifty-two ducks of six species were examined. a total of 217 Mallophaga representing four species in three genera were collected. The species of ducks were: Mallard, Anas platyryynchos Iinnaeus; Black Duck, Anas rubpipes Brewster; Creen-winged Teal, Anas carolinensis Cmalin; Bluewinged Teal, Anas discors Linnaeus; Mood Duck, Nix sponsa (Iinnaeus); and Hooded Merganser, Lophodytes cucullatus (Limasus). The species of Mallophaga represented included: Anaticola crassicormis (Scopoli, 1763), Anatoecus dentatus (Scopoli, 1763), Anatoecus icterodes (Netzsch, 1818), and Trinoton guerquedulae (innnaeus, 1758).

The collection was sent to Dr . Theresa Clay for determination, because adequate determined material is unavailable in the United States. Glay and Hopkins, over the past fifteen years, have established neotypes for many species in cases where the original types and paratypes were known to have been lost or destrojed (mostly during World War II). The majurity of these neotypes are now in the British Museum (Natural History) in London.

In March, 1964, I was able to visit the British Museum for five deys. Dr. Glay discussed with me same of the specimens in my collections and answered many questions which provided a background for the taronamic interpretations contained in this study. My interpretations of the collection under study here are not necessarily those of Miss

Clay. For eccample, I suggest placing two species in synonviuy. Miss Clas prefers to consider them as two species, sensu lato, or as two species-groups.

Several general coments apply to the host records following the description of each species of Mallophaga. Both Malcomson (1960) and Fmerson (1962) gave host records, but they were not clear in their papers about the geographic locality of the record. There are no indications whether the Mallophaga were collected in North America, or were collected outside of North America fram hosts which have been known to occur in North America. 817 of Peters' (1928) records were from Chio. Further, Malcamson gave no literature citations to the sources of the records he gave. Emerson, who follows Keler's (1946) classification of Anatoecus in which nearly every population from a Hifferent species of duck is a separate subspecies, listed host records for each subspecies of Mallophaga. These have been Iumped together at the species-level in this study, because I believe subspecific separam tion in the gemus Anatoecus is unjustifled at this time.

The statistical aspects of this study are introduced only to give indications of certain trends manifested by the data -- not to prove anything conclusively. Maxy more data and specimens will be required before definite taxonamic and statistical conclusions can be drawn.

Revisions of most duck-infesting Mallophagan genera are needed to clarify the synowymy of these groups before study of their biology and population dynsmics is attempted. Very inadequate -- in many cases useless -ariginal descriptions are the rule rather than the exception in the duck-infesting groups of Mallophaga.

MIEYHODS AND MATERIALS

A new collecting method was used in this study. The method consisted of etingl acetate vapors contained in a polyethylens bag in which the bird was placed. The vapors were introduced into the bag via ethryl acetate saturated cotton balls. After three to flve mimutes exposure to the vapors, the bird was removed to a white enamel laboratory pan where the feathers were brushed with a stiff-bristeled artist's ofl brush. Mallophaga dislodged by the brushing were then recovered fram the pan and stored in 95% ethyl alcohol, each bird's ectoparasites in a separate vial.

011 specimens were mounted on microscope slides. Adult lice are usually heavily chitimzed and darkly pigmented, and often require considerable clearing. Inmature Mallophaga are lightly chitinized and almost transparent, and therefore need no clearing. The immatures were mounted directly from 95\% etryl alcohol into Diaphane.

Adult specimens were taken fran 95% through 70% to 50% to 35% ethyl alcohols with ten minutes at each step. They were then transferred to a cold 10% sodium hydroxide (NaOH) solution for 24 hours, or until sufficiently cleared. Particles of dirt and feathers adhering to the specimen were then removed. The specimens were then taken back to 95\% ethyl alcohol by successive 15 mimate stages in 35% ethryl alcohol, 50\% glacial acetic acid alcohol, 50\% and 70\% ethol alcohols.

After an additional rinse in 95% ethyl alcohol, each specimen was mounted in Diaphane on standard glass microscope slides. Twelve millimeter round glass cover slips were used, except in cases of large
specimens when 22 mm . round glass cover slips were more satisfactory. The slides were then dried in $95-105^{\circ}$ F. heat in an electric laboratory oven for one week.

A plesiotype was established for each species of Mallophaga in the collection. The specimen was microprojected onto tracing paper, and the major features were outlinod in pencil. After corrections were made, the tracing was transferred to amooth surface white Strathmore drawing paper on a light table. To obtain symmetry in the dorsal and ventral views, the tracing was reversed and the other view then transferred to the drawing paper. Detail drawings (figures 3 and 6) were done with the use of a camera lucida attachment on the microscope. Details were then added in pencil, and the drawing was completed and rendered with India ink. Inking errors were covered with Pelican Craphic thite ink. Each drawing was photographically reproduced and reduced to six inches overall length: approximately a one-half reproduction reduction ratio.

The use of a phase contrast microscope, at 100 and 400 magnifications, facilitated observation of setae and other minute structures. Mandibles and their adjacent major supporting structures are show from the dorsal aspect only. 017 whole-animal drawings otherwise depict the dorsum on the left half and the venter on the right.

Of the two Mallophagan suborders, Amblycera and Ischnocera, the latter is the more advanced and complex in morphological modifications. The descriptive terminology applied to the Amblycera is similar to that used throughout the remainder of the class Insecta. Ischnoceran terminology, however, contains terms exclusive to this suborder of lice, or only infrequently used in other orders. Therefore, only those terms applied to the Ischnocera have been dealt with in detail. Any terms not mentioned here are either used in their general entomological meaming, or are applicable only to insigniflicant details. Much of the following discussion is based on Clay (1951).

The Head

Preantennal Region

A sclerotized band, the marginal carina, forms the subfrontal rim of the preantemal region in primitive forms. This carina may be modifled by inflection of the medial anterior margin, leaving a translucid anterior margin, or hyaine margin. Lateral and anterior carinal interruptions are further modifications. A lateral intermuption creates, posteriorly, a postmarginal carina extending from the interruption caudad to the preantermal nodus, and a premarginal carina anterioriy extending forward to the anteramedial interruption.

The dorsel preantemal suture transverses the head predorsally. This suture may be absent, or may be discontimous and represented only by two lateral sutures. In more modifled forsms, the suture arises at the distal end of either the interrupted marginal carina or the postmarginal carina.

The sclerotized predorsum, anteriorly interrupting the marginal carina and delineated posteriorly by the dorsal preantennal suture, is the dorsal anterior plate. This plate has a ventral component, the ventral anterior plate, which may be fused throughout its length, or only at its prooimal end, to the dorsal plate. Both plates may be variously modifled in shape and thickness.

Continuous with the marginal carina and the mandibular framework is a thickening, the ventral carina, to which the pulvimus, a membranous lobe is attached. Primitively, the ventral carina forms a complete semicircle forward of the mandibular framework. Although various modifications of the ventral carina may be found in the order Ischnocera, the most cammon is a medial interruption by the ventral preantennal suture which extends forward from the distal ends of the ventral carina to, or nearly to, the complete marginal carina. The ventral carina may be thickened or flattened laterad, and may be contimed forward as the ventral preantennal suture if the latter is also thickened. The ventral carina may be fused to the anterior, sametimes infracted, ends of the premarginal carina if the marginal carina is incamplete.

Postantennal Region

An endocarina, the temporal carina, extends from the occipital margin of the head across the temple, becaming contimous with either the preantemal nodus, a heavily sclerotized internal thickening just anterior of the antemal fossa, or the supraorbital margin. The temporal carina may be absent, or it may merge with the inner surface of the dorsal sclerotization and thus be visible only near the occipital margin.

Fnclosing the temples is a thickened rim, the marginal temporal carina, which may be irregularly thickened. A thickening ahead of the eje is the preocular nodus; behind the eye, a postocular nodus; and on the occipital margin, the occipital nodus.

The postantemal suture either extends across the temples or appears as a lateral suture.

Extending orad from the occipital margin, or near it, to the mandibular framework is the occipital carina. The posterior tentorial pits are always associated with this carina.

Chaetotary

111 or any of the head setae may be greatily elongated or reduced to stout spines, or reduced to microchaetae so that they are often difficult to find. Same species may have additional setae on the dorsum of the head so arranged that it is no longer possible to identiIy the primitive ones to which names have been given. Abnormally, any of the setae may be duplicated in a specimen, often only on one side of the head.

Pive pairs of setae on the head are always present and quite constant in position throughout the suborder Ischnocera. These flive consist of the preconal seta (pc.s.), which arises ventrally just antenior to the coms. Also ventrally, the mandibular seta (md.s.) is on or near the outer surface of the mandibular framework. In same cases this seta has been lateroverted, and actually arises on the ventral margin of the comus. The preantemal seta (pa.s.) arises usually from the anterodorsal margin of the antennal fossa. Dorsocaudad of the preantemal nodus is the postnodal seta (pn.s.). Where there is a postantennal dorssal suture this seta lies in or near the suture. On
the dorsum of the eye lens is the ocular seta (0.s.).
Three anterior setae (a.s.1-3) may be marginal or submarginal on the dorsum or venter. Where the dorsal preantemal suture interrupts the marginal carina, the flrst anterior seta is often (but not always) associated with the point of interruption, either marginally or submarginally on the dorsum or more rarely on the venter. Wen the dorsal suture does not interrupt the marginal carina, the first anterior seta is near the point where the carinal interruption usually occurs.

In the primitive head, the ventral submarginal setae (v.sm.s.1-2) are a pair of setae arising on, or below, the venter of the marginal carina. In the specialized head the outer of this pair ($\mathrm{v}, \mathrm{sm}, \mathrm{s} .1$) usually lies on the marginal carina and the inner (v.sm.s.2) just laterad of the ventral anterior plate. This latter seta may be minute and difficult to see.

The positions of the anterior ventral setae (a.v.s.l-3) seem to depend on the head shape. In the modified head, the first anteriar ventral seta (a.v.s.l) is the outer, or marginal, seta of the anterior setae, and is associated with the anterior setae. Posterolaterad of the ventral submarginal setae (v.sm.s.1-2) are the second and third anterior ventral setae (a.v.s.2-3). These three setae (a.v.s.1-3) often form a characteristic group associated with, and laterad of, the ventral carina, when the latter is modified. In some cases the outer two (a.v.s.1-2) are close together and arise Just anterior to the preconal seta. In other instances, all anterior ventral setae mas be grouped much nearer the front of the head, or a.v.s.1-2 may arise near the coms and a.v.s. 3 near the anterior margin of the head.

A single seta, the dorsal submarginal seta (d.sm.s.), is located
dorsomedially either on the marginal carina or just ventrad of it.
Ventrad of the dorsal submarginal seta, the anterior dorsal seta (a.d.s.) is comonly associated with the dorsal preantennal suture when this is present. With modifled heads, this seta often arises either in the suture or on its posterior margin; or it may arise postsuturally or be highly variable in relation to the suture.

Although always present, the marginal temporal setae (m.t.s.I-x) are quite variable in muber, position and size. They may arise dorsally, ventrally or marginally. The first temporal seta is usually ventrocaudad of the eye, although it may arise on the venter of the lens, or even considerably postocularly. The remaining temporal setae usually are a small ventral seta (m.t.s.2), two dorsal macrochaetae and two smaller setae on the occipital margin.

Dorsamediad of the occipital margin is the single post-temporal seta (pt.s.).

The Abdomen

In the male geritalia of same species, an effractor is present. This is a structure on the endameral plate and anterior to the parameres.

The order Mallophaga is generally separated into two major suborders: Amblycera and Ischnocera. A third suborder, Ruynchophthirina, has one monotypic family, Haematanyzidae, the species of which infest only manmals.

The suborder Amblycera may be characterized largely as follows: Mesometanotum distinct; antennae concealed and clavate; labial palpi present; mandibles horizontal; and crop simple. The gems Trinoton is the only member of this suborder represented in this study, and is in the family Menoponidae.

In contrast, the suborder Ischnocera may be characterized as follows: Mesometanotum fused into a pterothorax; antennae exposed and not clavate; labial palpi absent; mandibles vertical; and crop an esophageal diverticulum. The other two genera, Anaticola and Anatoecus, remesented in this study are members of the family Philopteridae and belong to this suborder.

Suborder Amblycera
Family Menoporidae
Gems Trinoton Nitzsch, 1818
Trinoton Nitzsch, 1818. Germar's Mag. Ent. 3: 300.
Type species: (by monotypy) Iiotheum (Irinoton) conspurcatum Nitzsch, 1818.

Trinotum Burmeister, 1838. Handb. Ent. 2: 440.
Fmendation (i.e., namen novem) for Trinoton Nitzsch, 1818.

Trinotion Perry, 1876. Proc. Iit. Phil. Soc. Iiverpool 30: 1x00x. (Misprint).

Eringella Fichler, 1941. Stettin. Fnt. Ztg. 102: 126.
Type species: Trinoton femoratum Plaget.

Distinguished by large size ($4-6 \mathrm{~mm}$. length); triangular head; distinctly lobate and posteriorly raised temporal margin. Mesothorax large.

Trinoton querquedulas (Iinnseus, 1758)
(Figure 7)
Pediculus quercuedulae Iimaeus, 1758. Syst. Natr., ed. 10: 612.

Namen novm for Redi's Pollino del' arzavola o farquetola.

Ricims lari Degeer, 1778. Men. Hist. Ins. 7: 77, pl. 4, fig. 12 (?).

Thinoton pyemaeum Kolenati, 1846. Melet. Ent. 5: 138,
pl. 19, flg. 5 (3).

Head: Very broadly triangular, two-thirds as long as broad. Temples greatly expanded laterally.

Chaetotary: Two transverse rows of small setae on venter of anterior margin, a cluster of postocular hairs on anterior margin of tamporal marginal carina. Six setae laterad on temporal marginal carina: anterior and third setae moderately long; second, flfth and sixth extremely long; and fourth long. Two long setas on anterior edge of occipital margin between temporal carina and medial line. Gular area outlined by
double or triple rows of short stout setae.
Thorax: Prothorax subtriangular with base anteriorly; lateral margins very broadly produced over base of foreleg, with three stout setae on anterolateral margin, and seven long setae on posterolateral margin. Two small peg-like setae arranged side by side on prothorax dorsum. Posterior dorsal margin of prothorax with one short and four long setae. Prothorax venter with heavily sclerotized and pigmented V-shaped sternite. Posterior margin of "V" with ten moderately long setae; mmerous stout short setae in area anterior to this margin. Mesothoracic margin rounded anterolaterally, nearly transverse postericriy. Metathorax trice length of mesothorax, and broader.

Legs: Anterior margin of hind tibia with dense row of twenty nearly equally long setae; posterior margin with double row of short setae. Anterior margin of hind femur with ten long setae; posterior margin with nine long to moderately long setae; and venter of femora with brush of mmerous flne, short setae.

Abdamen: Oblong; greatest width at segment IV; segments III-VIII with remiculus near lateral dorsal margin. Segments III, IV, IX and X with brushes of mmerous fine, short setae on ventral surfaces. Other abdominal chaetotaxy as in Figure 7.

HOST RECORDS
Malcamson (1960) listed Anas platyriynahos Iinn., A. rubripes Brewster, ㅅ. stropera Iim., Maroca americana (Cmelin), Aythya affinis (Eyton), Margus merganser Iim. and M. serrator Iim. as hosts. Peters (1928) gives as hosts: Chen caerulescens (Lim.), Anas platychynchos, 1. streppara, A. acuta Iinn., Mareca pepelope (Iinn.), M. americana, Spatula clypeata (Iimn), Aythra affinis, Melanitta deglandi (Bonaparte),

Marrus merganser, M. serrator and, probably in error, Podiceps aumitus (Iim.). Emerson (1962) Iists the following hosts: Anas platyrivnchos, A. acuta, A. crecca Iinn., Mareca penalope, Avthya ferina (inn.), Oidemia nilgra (Linn.) and Mergus serrator.

Material collected in this study included: six adults of undetermined seax and mine immatures fram six male and two female Anas platyrhynchos; two adults of undetermined sex fram an Anas rubripes of un determined sex; one adult of undetermined sex fram a male Anas carolinensis; one adult of undetermined sex and two immatures from two female Anas discors. Other material, Trinoton sp., comprised one adult female and rine immatures from two male and three female Aix sponsa. DESCRIPIIVE ANALYSIS

According to Clay and Hopkins (1960), the querquedulae group can be separated into two subgroups on the basis of chaetotaxy; querquedulae being found on Anas and related genera, and anserimum (J. C. Fabricius, 1805) on Anser and related genera. The primary characters distinguishing Trinoton querquedulae fram T. anserimm are the fewer hairs in the brushes on the third femora and fourth stermites and on the genital region of the male querquedulae. A less significant distinction between the females is the possession in T. anserimm of a thickening, indistinct in outline, in the dorsal wall of the gerital chamber which projects below the vulva (Clay and Hopkins, 1960). This thickening may be obscured in specimens treated with sodium hydroxide.

The plesiotype selected for Figure 7 (slide mumber DBC-44: 1) was collected from Anas carolinensis. No specimens from the type host, Anas arecca, were available for illustration. Of the possible hosts in the gemis Anas (A. discors, A. rubripes, and A. platyrionahos) fram which
specimens were available, A. carolinensis was chosen as the plesiotype host for two reasons. First, A. carolinensis is superficially closer to the type host (ㅅ. crecca) than is ㅅ. rubripes or ㅅ. platyrryynchos, both in terms of size and presumed phylogenetic position (Delacour and Mayr, 1945). Second, the range of Anas carolinensis is closer to that of A. crecca than to that of A. discors (A.O.U., 1957). The effect of any subspecific variations between Mallophaga of two different host species would be reduced by the above manner of plesiotype selection.

Suborder Ischnocera
Family Philopteridae
Gems Anaticola Clay, 1936
Anaticola Clay, 1936. Proc. Zool. Soc. Lond. 1935: 617. Type species: Esthiopterum crassicorne (Scopoli).

Species elongated and of medium size (3-5 mm. length). Head characterized by clypeus narrowly rounded anteriorly; anterior plate sexually dimorphic, in females senilunate, with tivo pustulated setae on dorsum anterior to oral fossa. Antenna five-jointed: normal in female; basal segment enlarged and third segment produced laterad apically in male. Prothorax small, sides slightly convex. Pterothorax longer and slightly wider than prothorax. Abdonen elongated, first segment small. Spiracles present on segments II-VII.

Clay and Hopkins (1954) sumarized the intrageneric characteristics of toronamic value as follows: All the specimens of Anaticola fram the Anseriformes examined are very similar, having male geritalia differing only in proportions of the various structures, and in the chaetotaxy of the gemital region of the female.

Anaticola crassicormis (Scopoli, 1763)

> (Figures 2-3)

Pediculus crassicarms Scopoli, 1763. Entomologia Carmiolica : 383.

Host: (Anas Boschas) = Anas p. platyshynchos Iinn.
Pediculus anatis Schrank, 1781. Enum. Ins. Austr. Indig. : 503.
Host: (Anas Boschas, varietas fera) = Anas p. platyrhynchos Iinnaeus.
Pediculus anatis J. C. Fabricius, 1794. Ent. Syst. Suppl.
: 57.
Host: (Anas Boschas) = Anas p. platyrhynchos Linn. Philopterus squalidus IEtzsch, 1818. Germar's Mag. Ent. 3: 292.

Nomen novim for Pediculus anatis Fabricius.
Head: Sexually dimorphic; narrowly ovate; well sclerotized; length about one-and-one-half times width; greatest width inmediately postocularly. Marginal carina strongly sclerotized laterally, incompletely interrupted by preantennal suture. Dorsal preantennal suture a lateral slit in the male, a transverse suture with posteromedial prolongation in female. Dorsal anterior plate well chitinized, semilunate in female, concave-concave in male. Pulvimus a simple lobe with groove medially. Postantennal region with temples slightily expanded; marginal termporal carina heavily sclerotized; temporal carina extending forward toward mandibular articulations from occipital margin. Gular plate distinct, well-sclerotized and roundly sagittate. Antenna five-segnented, sexually dimorphic (as shown in Figure 3); female normal, male with basal
segment greatly elongated and third segment laterally produced apically. Chaetotary: Dorsum of preantennal region with three marginal setae, the posterior one long. Anterior dorsal setae in wide pustule of posteromedial prolongation of dorsal preantennal suture in female. Preantennal seta small. Venter of preantennal region with three anterior and two posterior setae. Postantennal region with a dorsal temporal seta; three marginal temporal setae with third extremely long; and ocular seta on dorsum of eye lens.

Thorax: Prothorax small, sclerotized lightly dorsally and heavily laterally. Posterior and lateral margins of prothorax heavily sclerotized. Pterothorax longer than broad, sclerotized heavily laterad and Iightly mediad; dorsal posterior margin with six long setae. Pterostermum with one small seta anteriorly and one posteriorly. Abdamen: Elongated, widest at segment IV. Pleura strongly sclerotized; spiracles on segments II-VII. Sternum I in both sexes small, laterally compressed and continuous with pterostermm.

HOST RECORDS
Malcamson (1960) listed Branta bernicla (Iinn.), Anas platyrhynchos Iinn., A. rubripes Brewster, Mareca americana (Gmelin), Bucephala albeola (Iinn.), Clangula hyemalis (Iim.), Oxyura jamaicensis (Omelin), Mergus merganser Iinn. and M. serrator Iinn. as hosts. Peters (1928) gives as hosts: Anas platyphynchos, A. rubripes, A. strepera Iinn., A. discors Iinn., Mareca penelope (Iinn.), M. americana, Spatula clypeata Iim., Aythye affimis (Eyton), Mergus merganser and M. serrator. He Ilsted this Mallophagan species as Esthiopterm crassicorne (Scopoli). Fmerson (1962) lists the following hosts: Anas platyrhynahos, A. strepera, A. acuta Linn., A. crecca Iinn., Mareca penelope, Spatula
clypeata, Aix sponsa (iim.), Aythya ferina (iinn.), A. afflnis, Bucephala islandica (Gmelin), Clangula hyemalis, Samateria mollissima (Iinn.), S. spectabilis (Iinn.), Melanitta fusca (Iinn.), M. degland (Bonaparte), M. perspicillata (Iinn.), Oidemia 프gra (Iinn.) and Mergus serrator.

Material collected in this study consisted of: 13 males, 18 females and 25 immatures fram 8 male and 4 female Anas platyriynchos; 5 females and 2 immatures fram one male, and one of undetermined sex, Anas rubripes; one inmature fram a female Anas carolinensis; and two females and two immatures from two female Anas discors. Other material, Anaticola sp., comprised 37 males, 31 females and 14 immatures fram 11 male and 8 female Aix sponsa.

DESCRIPTIVE ANALYSIS

Species of the genus Anaticola are very similar. Anaticola crassicormis is distinguished from A. mergiserrati (DeGeer, 1778) (which should perhaps be considered as a subspecies of A. crassicorms) only by the narrower marginal carinae of the head and the shorter penis (Clay and Hopkins, 1954). (See table 1 for comparison of penis lengths of several species of Anaticola.) Anaticola crassicornis is separable from A. anseris (Linn.) by the characters of the anterior region of the head and the shorter penis (Clay and Hopkins, 1951). A. crassicomis also tends to have a greater number of setae on the genital region of the male and on the vulva of the female than anseris, according to Clay and Hopkins (1954).

Table 1. Camparative ranges of penis lengths of several species of Anaticola. (Data fram Clay and Hopkins, 1951 and 1954).

Range of penis lengths, in m.

Species
(mumber of specimens in brackets)
A. crassicornis
0.13-0.16
A. mergiserrati
$0.20-0.23$
A. anseris
0.27

Gemes Anatoecus Cummings, 1916

Anatoecus Cumaings, 1916. Proc. Zool. Soc. Lond. 1916: 653. Type species: "Anatoecus icterodes Nitzsch."

Distinguished on the head by the characteristic alation of the clypeus; the presence of two small peg-like setae dorsally, one each side of posterior apex of dorsal anterior plate; and the rather short antennae. The dorsal chaetotaxy of the head is a generic character. Abdamen characterized by the lateral tergite forms, which in segment I meet each other in the medial line, and leave an uncovered median field in subsequent sections except the last. In male genitalia, parameres are fused distally with the pseudopenis. Forms of endomeral plate, pseudopenis, sac, vesicula seminalis and extremely short ductus are good generic characters.

The members of this gemus are remarkably uniform, and the species presumably all closely related.

Anatoecus dentatus (Scopoli, 1763)

(Figures 3, 6A)

Pediculus dentatus Scopoli, 1763. "Entomologia Carniolica"
: 383.
Host: Anas presumably (p. platyrhynchos Iinn.).

MALE

Head: Subtriangriar; nearly as wide as long. Glypeus produced, semiorbicular. Marginal carins interrupted anteromediad and laterad. Prem marginal carina anteriorly infracted, extending posteramediad, fusing

with ventral carina opposite lateral interruption of marginal carina. Postmarginal carina forms preantennal nodus posterodorsally and fuses with ventral carina to form mandibular framework posteroventrally. Hyaline margin complete from near anterior and of postmarginal carina. Dorsal preantennal suture extends from anterior end of postmarginal carina generally posteromedially joining longitudinal mediodorsal suture opposite anterior margin of antemal fossa. Anterior plate with two components; anterior dorsal plate orbicular to hexagonal except at confluence with ventral plate. Sclerotisation on each laterodorsal margin of dorsal plate extends dorsoposteromedially, fusing into heavily sclerotized retmrse process rounded apically. Ventral anterior plate margin flattened anterioriy, laterally slichtly concave, and rounded and slightly thickened posteriorly. Anterior half ventral carina subparallel, distally fused with infracted end of premarginal carina; posterior half ventral carina extends posterolaterally toward come. Pulvinus attached percurrently laterad. Labrum, in posterior margin of pulvims, bowed forward mediad. Temporal carina extends forward from occipital margin, fuses with internal surface of dorsum posterior of preantennal nodus. Anterna five-jointed; second segment twice, and apical segment onemand-one-half times, length of third or fourth segments.

Thorax: Prothorax obcordate. Pterothorax subconical, dorsum channelled madially, posterior margin arcuate.

Abdomen: Obtusely ovate. First and last segnents with pigmented sclarotisation reaching the median dorsally. Dorsum first segment chamalled medially. Anterior half firat segmant fasciate on dorsum. Other segments heavily pigmented laterad; reniculate dorsally, hepaticoform

ventrally; posterior segments laterally less pigmented and more variable in form.

Chaetotary: Not diagnostic on specific level.

PFMCNLS

Females and imatures have not been assigned to described males. See Descriptive Analysis.

HOST RECORDS
Malcomson (1960) Iisted Branta bernicla (Iim.), Anas rubripes Brewster, A. strepera Iinn., A. carolinensis Gmelin, A. discors Linn., Ax sponsa (Linn.), Aythya americana (Ayton), A. marila (Ifin.), A. affinis (Eyton), Bucephala albeola (Iim.), Samateria spectabilis (Iim.), Iophodytes cucullatus (Iinn.) and Mergus merganser Iinn. as hosts. Peters (1928) gave as hosts: Anas rubripes, A. platyrhychos Iim., A. acuta Iim., Aythya marila, A. affinis, Clangula hyemalis (Iim.), Ongura jamaicensis (Gmolin), Iophodytes cucullatus, Mergus serrator Ifm., and (probably in error) Erolia melanotos (Vieillot). Emerson (1962) listed the following hosts: Branta leuconsis (Bechstein), Dendrocypna autumalis (Iimn.), Anas platyriynchos, Spatula clypeata (inmo), Aythys affinis, A. fuligula (imm.), Clangula hyemalis, Polysticta stallari (Pallas), Somateria mollissima (Iinn.), Melanitta fuscs (INm.) and Mergus merganser.

Of the material examined in this study, two males were collected Irom one female Anas platyrhynchos; one male fram a male A. rubripes; and a male from a male Aix sponsa.

DESMRIPTIVE ANALISTS
Synomy in the gemes Anatoecus is particulariy difficult becemse the species grouped in the gemus are very closely related. After
attempting to umravel the synonymy of this group, Clay and Hopkins (1951) stated: "... pending redescription of the mmerous species that have been deecribed fram ducks we are unable to suggest which names are synonyms of Anatoecus dentatus (Scopoli)." And they mention further (Gay and Hopkins, 1960), "as it is impossible to tell from the earlier descriptions to which group a name refers, it is necessary to fix the names arbitrarily for the two types." The two types referred to are A. dentatus and A. icterodes. Because these two taxa pose special problems within the gemis, and because they are the only representatives of the gemus in this study, they shall be dealt with in same detail here.

At the present time, I am not convinced that A. dentatus and A. icterodes are truif separate and distinct species. I am considering placing Anatoecus dentatus, sensu lato, as a synonym of Anatoecus icterodes (Nitssch, 1818). The reasons I would consider icterodes as the senior synonym will be discussed later.

Cumpings (1916) established Philopterus icterodes Nitzsch as the type species of Anatoecus, but did not mention dentatus Scopoli. He did, however, recognise two distinct forms of male genitalia in the gems: those possessing an "effractor", and those without. Figure 6 illustrates the terminal portions of the two male genitalia types. According to Clay and Hopkins (1960), in a discussion of the morphology and chaetotery of A. icterodes, Mmost of [these] characters are also found in the dentatus group and camot be used to distinguish the two species; these are apparentily separable only on the characters of the male gomitalia." With the exception of the genitalia, all male specimens of Anatoecus dentatus and A. icterodes in this study were found to be
essentially similar in all observable charactaristics; the observed variations between specimens of dentatus or icterodes wece equal to, or greater than, the observed variations between the two tacr.

Glay and Hopkins (1951) designated Anatoecus dentatus as the name for specimens in which the male possesses an effractor. There is no statement, apparentiy, in the literature as to what function the effractor serves, or that it is even a "reproductively isolating" factor. It may be pointed out here that the effractor is not a part of the extrudable portion of the male copolatony apparatas. Therefore, it seems highly unlikely that the effractor, or lack of an effractor, is a playsical barrier to successful copulation. If "reproductive isolation" is used as the criterion for the separation of species, the mere presence or absence of an effractor is a rather weak morphological justiflication for the separation of the two tara in question hare.

Fnerson (1962) and Clay and Hopkins (1951, 1952, 1960) mention that all examined ducks normally have two species of Anatoecus -- one species with the males possessing an effractor, and the other without. No data in the present study refute or substentiate their statements, but no other gemis of duck-infesting lice regularly has more than one species represented on any host cuck. Only in rather rare instances do two closely related animal species of the same gemus occupy contimously the same macrohabitat; and when this syntopy does occur, one or both species usually manifests some difference from the other species in terms of morphology, habitat preference, food requirements, life cycle, etc. It is parhaps presumptuous to assume, without proof, that Anatoecus dentatus and 1 . icterodes do comprise an example of syntopy. It seens likely that Anatoecus is represented nommaly on any indifidual host by
only one species, as is the case with other duck-infesting genara.
When, and if, Anatoecus dentatus is placed in synonymy with A. icterodes, the latter mast be considered the senior synonym. In 1763, Scopoli used the name Pediculus dentatus in reference to what, solely on the basis of the description of the animal's appearance, could be either an Anatoecus or a trinoton. His designation of the length of dentatus (given as roughly the equivalent of $4 \frac{7}{2} \mathrm{~mm}$), however, limits the description to that of a Trinoton.

Denny, in 1842, (Anoplura Britamica: 102) placed Pediculus dentatus Scopoli, 1763, in synonymy with Docophorus icterodes Ilitzsch, 1818, and appended a question mark. Demmy apparently overlooked the importance of the length designation, and gave the length of icterodes as about 2 mm . Giebel, in 1874, (Insecta Fpisoa : 115) removed the question mark, thus completing the error in synomumy.

Although dentatus Scopoli, 1763, may be a nomen dubium for Trinoton, it is certainly not an available name for Anatoecus. Clay and Hopkins (1951) erected a neotype for Anatoecus dentatus (Scopoli, 1763). They, 21s0, had overlooked the importance of the length designation. When thair exror was brought to their attention, they stated (Clay and Hopkins, 1958) their intention of asking the International Commission on Zoological Nomenclature to validate their neotype. Regardless of the decision of the Commission, Anatoecus dentatus (Scopoli, 1763) represents a misidentification according to Article 49 of the Intermational Code of Zoological Nomenclature.

If dentatus and icterodes are the same species, Articie 23 (e)(ii) of the Code would have to be followed. This Article is the so-called Les of Priority which states: A species-group taxson fonsed by the unfon
of two or more species-group taxa takes the oldest valid name anong those of its components, (italics added). A misidentification, such as dentatus Scopoli, 1763 is when placed in Anatoecus, constitutes an insalid name. This error should not be contimued, if an opportunity arises (such as placing dentatus in syonymy with icterodes) to remove the error. Therefore, when, and if, Anatoecus dentatus (Scopoil, 1763) and Anatoecus icterodes (Nitzsch, 1818) are determined to be the same species, Anatoecus icterodes (sitzsch, 1818) would be the senior synonym and A. dentatus (Scopoli, 1763) the junior annonym.

As stated in the descriptions, females of Anatoecus dentatus and A. icterodes have not been assigned to their respective males. Females of these species have been collected. Ten are represented in this study. (Represented also are ten male Anatoecus dentatus and A. ictorodee, three adelts of undetermined sex, and one immature).

$$
\frac{\text { Anatoscus } \frac{\text { ictarodes }}{\text { (Fisitssch, 1818) }}}{\text { (Figures 5, 6B) }}
$$

Docophorus icterodes Nitzsch, 1818. Germar's Mag. Ent. 3: 290. Nomen novum for "Degeer vii. t. 4. f. 14."

Host: Mergus serrator Linnaeus.
Nirmus fuligulae Demw, 1852. Iist Brit. Animals in Brit. Mas.,
II, Anoplura : 13.
Hamen novin for Docophozus ictarodes Mitzsch, 1818.
Pediculus mang Cuerin, 1818 (nac J. C. Fabricius, 1781).
Bonatarre's Encycl. Method. 24 : 128, pl. 254, fig. 2.
Namen norvm for De Coer's pl. 4, fig. Ih.
Host: Margus serrator Linnaeus.

MALE

Bead: Subtriangular; nearly as wide as long. Clypeus produced, semiorbicular. Marginal carina intormupted anteramediad and laterad. Premarginal carina anteriorly infracted, oxtending posteramediad, fusing with ventral carina opposite lateral interruption of marginal carina. Postmarginal carina forms preantemal nodus posterodorsaily and fuses with ventral carina to form mandibular framework posteroventrally. Hyaline margin complete from near antemior end of postmarginal carina. Dorsal preantennal suture extehds from anterior end of postmarginal carina generally posteranedially joining longitudinal mediodorsal sutwe opposite anterior margin of antennal fossa. Anterior plate with two components; antorior dorsal plate orbicular to heacagonal except at confluence with ventral plate. Sclerotization on each laterodorsal margin of dorsal plate extends dorsoposteramedially, fusing into heavily sclerotized retrorse process rounded apically. Ventral anterior plate margin flattened anteriorly, laterally slightly concave, and rounded and slightily thiakened posteriorly. Anterior half ventral carina subparallel, distinctiy fused with infracted end of premarginal carina; posterior half ventral carina extends posterolatorally toward coms. pulvims attached percurrentiy laterad. Labrum, in posterior margin of pulvinus, bowed forward mediad. Temporal carina eactends forward fram occipital margin, fuses with internal surface of dorsum posterior of preantennal nodus. Antenna flive-jointed; second segment twice, and apical segment one-and-one-hale times, length of third or fourth segments. Thorax: Prothorax oboordate. Pterothorax subcomical, dorsum channelled medially, postorior margin arcuato.

Abdemen: Obtusely ovate. First and last segments with pignented
sclerotization reaching the median dorsally. Dorsum first segment channolled medially. Anterior half first segnent fasciate on dorsum. Other segments heavily pigmented laterad; remiculate dorsally, hepaticaform ventrally; posterior segnents laterally less pignented and more variable in form.

Ghatotaxy: Not diagnostic on the species level.
feriate
Females and immatures not assigned to described males. See Descriptive Analysis below.

HOST RECCRDS
Malcomson (1960) Iisted only Mergus serrator Iinn as host. Peters (1928) did not list Anatoecus icterodes. Enerson (1962) listed the following hosts: Anser albifrons (Scopoli), A. anser, Ghen hyperborea (Pallas), Anas platrinynchos Iim., Spatula clypeata (Iim.), Aythya americana (Eyton), A. femina (Lim.), A. affinis (Eyton), A. fuligula (Iim.), Gangula hyemalis (Iinno), Samateria mollissima (Iinno), Mergus merganser Iim. and M. serrator.

Material examined in this study included flve males fram one female and two male nas platychymahos, and one male from a male Nix sponsa. DESCRIPTIVE ANALISIS

For caments on Anatoecus icterodes, see the Descriptive Analysis for Anatoecus dentatus on page 21. To summarize those caments here, I am considering placing A. dentatus, sensu lato, as a synonvm of \mathbf{A}. icterodes (Nitzsch, 1818). Except for the lack of an offractor in the male genitalia, Anatoocus icterodes is apparentiy the morphological equivalent of Anatoecus dontatus. Figure 6B illustrates the terminal portion of the male cemitalia of Anatoecus icterodes.

HOST-PARASITE ANLITSIS

An attempt was made in the collection of Mallophaga to treat all ducks in the same manner and to search for lice from each bird with equal effort. It is assumed that not all lice from any given host were collected. No study was made of the effficiency of the collecting method used.

Excmination of 52 ducks of six species yielded a totol of 217 Mallophaga. One duck had 21 lice; and ten ducks had no lice. Figure 1 shows the frequency distributions of liallophaga on ducks. All ducks, regardless of species or sex, are treated statistically here (except where otherwise noted) as one sample because of the relatively small sample size. The mean mamber of lice per duck was 4.2; the standard deviation was 4.5; and the variance was 20.7. If the distribution of lice on ducks were due solely to chance, the variance and the mean should be about the same. The variance, in this case, is 4.96 times larger than the mean -- a difference sigmifying aggregation. ApparentIJ, same ducks are particularly favored by nature with more lice than others, or conversely, same ducks are especially favored with fewer or no lice.

Such aggregated distributions are often characterized statistically by the negative binomial distribution. This collection of lice is assumed to be negative bincrial in form: Almost all insect populations are of this form. Aggregative tendencies in populations may be measured by a coafflcient termed Mk". Waters (1959) and Hilss (1958) have sump marized the derivation and uses of k as a measure of aggregation in
insects. The mament method of camputing k was used in this study, and gave a k value for these data of 1.05. As k approaches 0 , the aggregam tive tendency is increasing. As it approaches infinity (in practice anything over 15 or 20), the aggregative tendency disappears and a random distribution is approached. ak coefficient of 1.05 is indicam tive of considerable aggregation.

Casual observation of the data suggested that perhaps female Wood Ducks and Mallards had a lower frequency of Mallophaga infestation than did males of these species. Table 2 shows the percentages of uninfested ducks. Data for Mallards and Wood Ducks were combined to increase the sample size. Other host species were excluded fram this analysis because their small sample sizes and uneven distributions of sexes were considered inadequate for statistical purposes.

The Chi-square test for significance was used, both with and without Yates' correction for contimity. This correction is used when the total frequency, N, is greater than 40 and when the class with the lowest observed frequency is 10 or less. In this case, N equalled 41 and the class with the lowest observed frequency was 2. Therefore, Chisquares were computed both with and without correction. The uncorrected value was 2.7, with a probability of 0.08 that this value is due solely to chance. With Yates' correction for contimuity, the Chi-square value was 1.6, with a probability of 0.22 that this value is due solely to chance. The true Chi-square value lies sanewhere between the corrected and uncorrected values computed. The corrected value underestimates the true value more severely than the uncorrected value overestimates it, due to the nature of Iates' correction for contimity. Noither value meets the 0.05 sigrificance level standard, but there is at least an

Table 2. Abundance of uninfested male and female Mallards and Wood Ducks. Numbers in brackets are the actual numbers of ducks involved: infested on left, uninfested on right.

Percentage of uninfested ducks
Species
Males
Females
Mallard
11 (8-1) 25 (6-2)
Wood Duck
8 (11-1) 33 ($8-4$)
indication that fewer female than male Mallards and Wood Ducks are infested with one or more Mallophaga.

CONGLUSIONS

The now Mallophaga collecting technique described beiefly here proved applicable to the mass-collecting of lice from dead or living birds in the field.

Generic revisions of Anaticola and Anatoecus, and redescriptions of their respectives species, are needed. The original species desariptions in these genera are, for the most part, useless.

Pending study of additional material, I am considering placing Anatoecus dentatus (Scopoii, 1763) as a synonym of Anatoecus icterodes (shtasch, 1818). Demonstration of an effractorial cline, overwhelming statistical data that these two taxa represent samples drawn from the same population, or proof of successful reproduction between the two tack would provide the required evidence for placing these two taxa in synonymy. Data in this study were insufficient to establish conspecificity in this case.

Preliminary statistical evidence indicates that the species of Mallophaga studied here are quite aggregative in their distribution on ducks, and that apparently fewer female Mallards and Wood Ducks are infested with Mallophaga than are males of these species.

LITERATURE CITEW

American Ormithologists' Umion. 1957. Check-list of North American birds. 5th ed. American Omithologists' Union. Ithaca, N.Y. 691 pp.

Biss, C. I. 1958. The analysis of insect counts as negative binamial distributions. Proc. Tenth Intern. Congr. Entamol. 2: 10151032.

Clay, T. C. 1951. An introduction to a classiflication of the avian Ischnocera (Mallophaga): Part I. Trans. Roy. Ent. Soc. Iond. 102: 174-194.

Clay, T. C., and G. H. E. Hopkins. 1950. The early literature on Mallophaga. Part I, 1758-1762. Bul. Brit. Nus. (Nat. Filist.). Entanol. 1: 223-272. 1951. The early Iiterature on Mallophaga. Part II, 17631775. Bul. Brit. Nus. (Nat. Hist.). Entamol. 2: 1-37. 1954. The early literature on Mallophaga. Part III, 17761786. Bul. Brit. Ius. (Nat. Hist.). Entamol. 3: 223-266. 1958. Pediculus dentatus Scopoli, 1763. Entamologist 91: 268-269.
1960. The early Iiterature on Mallophaga. Part IV, 17871818. Bul. Brit. Nis. (Nat. Fist.). Entamo1. 9: 1-61.

Cumaings, B. F. 1916. Studies on the Anoplura and Mallophaga, being a report upon a collection fran the memmals and birds in the Society's Cardons. Part II. Proc. Zool. Soc. Lond. 1916: 643-693.

Delacour, J., and E. Mayr. 1945. The family Anatidae. Wilson Bul. 57: 3-35.

Emerson, K. C. 1962. A tentative list of Mallophaga for North american birds (North of Meoxico). Dugwey Proving Ground. Dugway, Utah. 217 pp.

Hopkins, G. H. E., and T. Clay. 1952. A check list of the genera and species of Mallophaga. Brit. Mus. (Nat. Hist.). London. 362 pp.

Koler, S. 1946. Mallophagen-Synopsis. VIII. Gemus Anatoecus. T1jdschr. Ent. 87: 74-76.

Malconson, R. O. 1960. Mallophaga from birds of North America. Wilson BuI. 72: 182-197.

Peters, H. S. 1928. Mallophaga fran Chio birds. Chio J. Sci. 28: 215-228.

Waters, W. E. 1959. A quantitative measure of aggregation in insects. J. Econ. Entamol. 52: 1180-1184.

Figure 2. Anaticola crassicormis (Scopoli, 1763). Plesiotype, slide number DBC-23: 1, adult male, fram female Mallard (Anas platyrhychos linnaeus).

Figure 3. Comparison of antennal sexual dimorphism in Anaticola crassicornis (Scopoli, 1763). A). Male. B). Female.

Figure 4. Anatoecus dentatus (Scopoli, 1763). Plesiotype, slide mumber DBC-19: 1, adult male, fram female Mallard (Anas platyrhynchos Iinnaeus).

Figure 5. Anatoecus icterodes (Nitzsch, 1818). Plesiotype, slide number DBC-10: 4, adult male, fram male Mallard (Anas platyrhynchos Iinnaeus).

Figure 6. Comparison of distal portion of male genitalia of
A). Anatoecus dentatus (Scopoli, 1763), and B). Anatoecus icterodes (Nitzsch, 1818).

Figure 7. Trinoton querquedulae (Linnaeus, 1758). Plesiotype, slide number $\mathrm{DBC}-44$: 1 , adult male, from male Green-winged Teal (Anas carolinensis Gmelin).
atact jubt

