v -' ‘ v v .I ‘7' "' Ir _ , I - .0 . *yc . . _ , -' ‘1 I. a} eu3' 11'1" ' " 3: '. -Itv" . '- I “S7 o . .. e."%.1 I, f I . A. I..-“ , v ‘A‘ . ' . . 0 . “ - . O. .o L a ~- "VV‘ “' ~ I . I -.. I. 0.. l‘.~. " . n ' | J _ '_. . 1 ' '. ~ J . Y '- ‘ . I I y I “ \w'd I . o. O ‘ I g I. ‘ - -O; . .n. 1 . ' l k ' ._ I; .a .' J- . _ . 3. .- _ - . ' o . s... c ' I. . .F 2' :9 . ‘ . J ._ - . I I I . . . . ‘ .3.- ’ I ._ .. l. ‘ F.- ' '-“ .4 ' E ’ .op-- . ...J ... ‘ ~ g . P ‘ ‘ I .‘ I 'I .1 o- ‘ I ‘ ~ ’ . ‘ K . . H' C . - .3 L - _.‘- w . m.u.r~ O I - , - o~n¢~. . _‘_ .1 g» . , , _ . .. m; ' 'F? \J ‘0 I 3:: ‘ I I .5u — ‘ . A ‘ . )-'_9.‘Q I . 0". .fl" .3? . k‘md‘ 0 O ’ .u’u -‘ 1" . _ M, 7' II 'I a...” - ; Id} I . . q ‘l 1' . I." " 'I. I. ‘ b- .. z . d'.u.lll 0"I , _ . . It '4'"-""* ,. ‘;_, '*' I‘IIV ..- fl. ’ . . «d- -. “:3. .- a _- .. . _ . an '7?" -1 "_ .4. a —M a}: 0. +4- - _‘ s - 6- ' QI . . C -- . _ , .u- — I .5. o I A ' q._ “ ‘0’. . . II .. J - ' t - _ _ ‘ ’ 4“: £. o .0— , T ‘.”_ H ,-.-. " e éyscf'a fie/w; 36/, 2 $7672 , .e ’-/76’ L 2 fi/Va' Ave/I 453% __J_. __L_ ;Zl_. Slab : (11 7/5 4 3 5/8 4 3/b) (ht-3 3/h) (150) — 639 lbs./ft. Future wearing surface - 2O lbs./sq.ft. - So Beams - 120 Diaphragms (Est. 5 lbs./ft.) - a ll 5, sue lbs./ft. D- L. hon. = w12 It should be noted that the span was not taken as 50' but some 13" less. This is due to the fact that the beams are designed from the center to center of bearing. r"he center of bearing being considered at the point where the beans fit over the anchor bolts. Live Load Moment: (See Articles 31, 32 and M3.) The live load moment assumes the loadin_ to be so placed as to obtain the maximum possible moment. This may be accomplished by so placing the loads l \O I that the equivalent of one complete axle load comes upon the beam. 2‘: 32A. /¢.0' 81: 33/ _ /.¢’ _ 42.6 ’ //. 9' l 46.92’ 8 EM =0 8: 32" é’ggf‘rfl” = are by: z = fine/.2 =/za.é¢e O The distribution factor is found by application of Article #3, and in this case is found to be .Mjl, assuming a traffic lane of 10' in width. The total live load moment is then found to be 4.1. M u/7. 8x ash/1.4a” =VCCZ¥rlédb {44 The impact allowance of the live load is found by application of the formula given in Article 37: .Z a 4+20 = M 611‘20 (6)670) “130) =.29G? Afi“~$bao"fagyn44 Impact Moment: 1.4/11. x1 = /7ZJ.r..8/.9 “38144) 64 Total moment: 75‘A/ 460.4% =33”me 25¢ The section modulus, Z, is equal to the total moment divided by the allow- able stress in the steel. (Section F of Standard Specifications.) Section Modulus: 1Q906ND “HJ34¢922JL Agégpéi’ - 10 - Referring again to the table of standard sections it is found that the beam assumed provides a section modulus of 327.9 in.3 The next smaller size has a modulus of onl' 299 in.3 so that the assumed beam is the necessary size for the bendir? requirements. In beams of this length bending moment rafizer than shear is the controlling factor. The shear, however, is checked as a precautionary measure. The maximum shear is found to occur at an infinitesimal distance from the support. The dead loads are the same as for the bending moment. 4 . w! _ 3426.43.93 2 ' .e = 20. My»; Live Load Shear: For live shear, the loads are placed on fize beam in the position shown below. léé #40,. 4A xbéu: ' .SXear 4&393’ " ' ,e . /. l4é. e .£.=:/Ei£iélé. Impact: The same impact allowance is made for shear as for bending. I= .2/9: /8.86 =¢