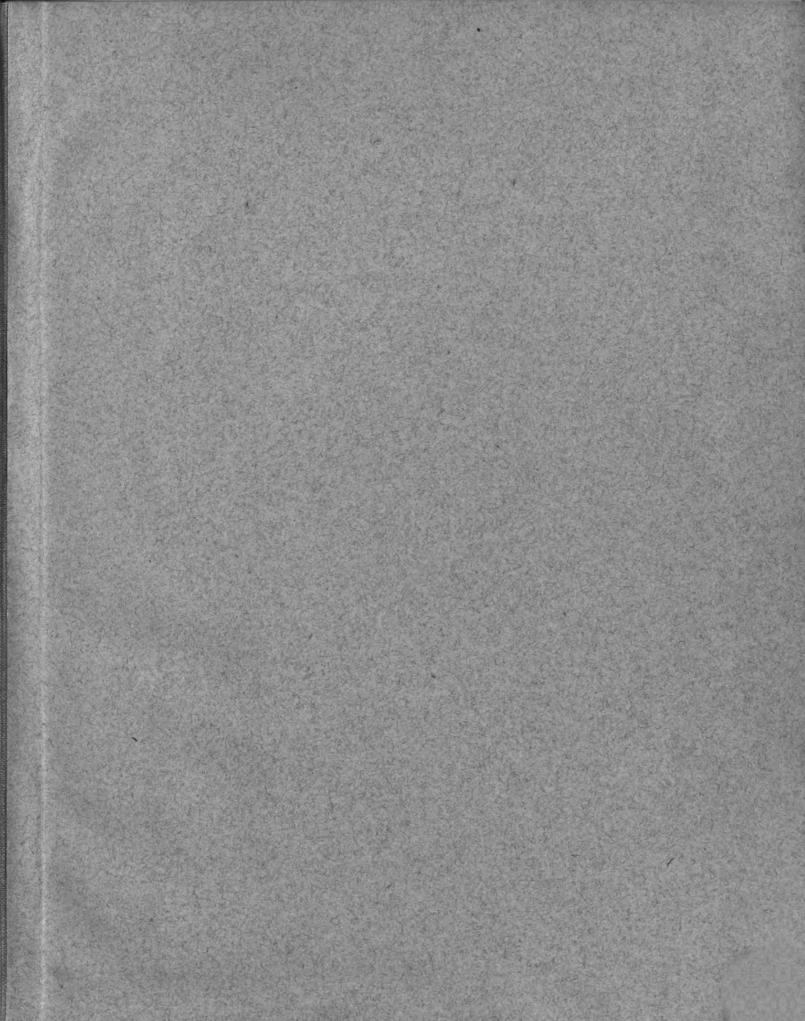


THE EFFECT OF FOLIAGE SPRAYS

ON WATER LOSS OF PLANTS


Thesis for the Degree of M. S.

Frank Baker Cross

1927

THESIS

Spraying

THE EFFECT OF FOLIAGE SPRAYS ON WATER LOSS OF PLANTS

Thesis

Submitted to the Faculty of the Michigan State
College of Agriculture and Applied Science
in partial fulfillment of the requirements for the degree of
Master of Science

Frank Baker Cross
1927

approved and 21, 1927.

Tm== =

Table of Contents.

Page
Introduction1
Review of Literature 1
Object of Investigation 3
Methods and Materials 3
Experiment 1-Jerusalem Cherry Plants 6
Experiment 11-Cineraria Plants21
Experiment 111-Jerusalem Cherry Plants25
Experiment lV-Crabapple Trees30
Experiment V-Seedling Apple Trees34
Examination of Stomata39
Summary41
Acknowledgement42
Citation of Literature43
Photomicrographs of Stomata45
Photographs of Jerusalem Cherry Trees49
Photographs of Apple Trees52

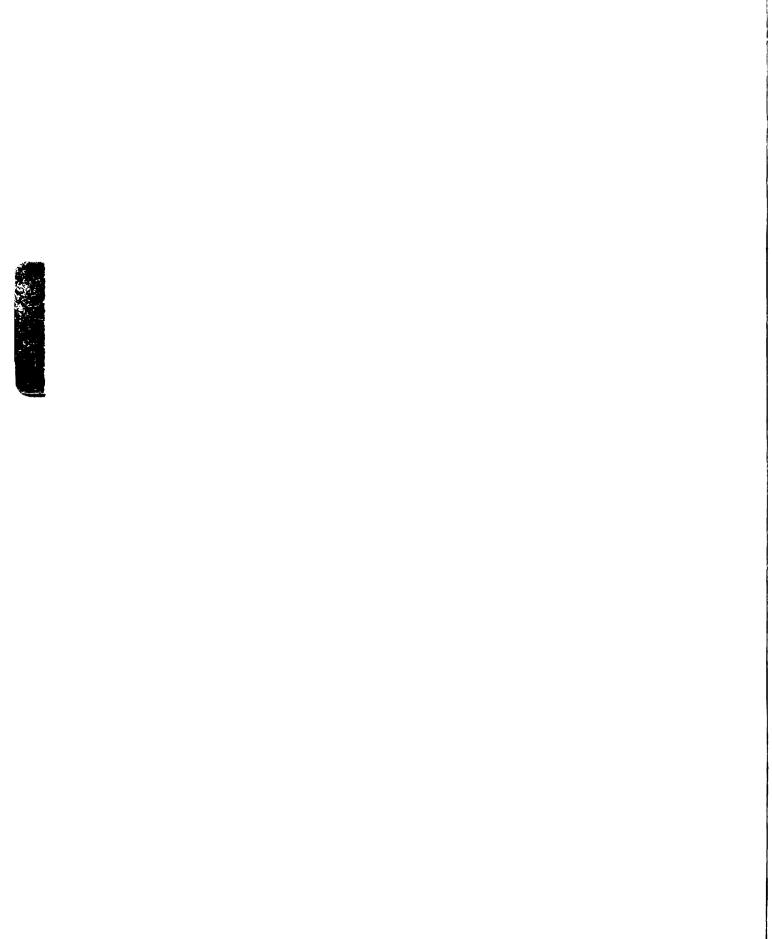
INTRODUCTION

Insects and diseases, some of which are very persistent and destructive, are prevalent wherever plants are grown for either ornamental or economic reasons. The practice of spraying plants with various materials for the control of injurious pests, though of comparatively recent origin and development, is now almost universal.

The kinds and amounts and the best time to make spray applications have been studied by plant pathologists, entomologists, and horticulturists. Little attention, however, has been paid to the effects of the spray materials on the plants themselves, though it has been observed that certain sprays applied under particular conditions may lead to increased or decreased size and color of leaves, extending or shortening the rest period, premature abscission of leaves, russeting of fruits, and other responses. There may be still other less evident effects which are of a physiological nature.

REVIEW OF LITERATURE

As early as 1893 Rumm (1) observed that abscissed shoots of grapes sprayed with Bordeaux mixture remained fresh longer than unsprayed. This he interpreted as meaning that there is a falling off in the rate of water loss from sprayed shoots as compared with the unsprayed


shoots. During the same year the theory that "lessened transpiration" follows spraying was advanced by Müller-Thurgan (2) and by Bayer (3).

Experimental work by Frank and Kruger (4), however, led them to conclude that spraying with Bordeaux mixture caused plants to use more water than is consumed by unsprayed plants. Later Zucker (5) confirmed their results. Schander (6) reports less use of water as a result of spraying with the same material, and Ewarts (7) work seems to support the conclusions of Rumm and Schander.

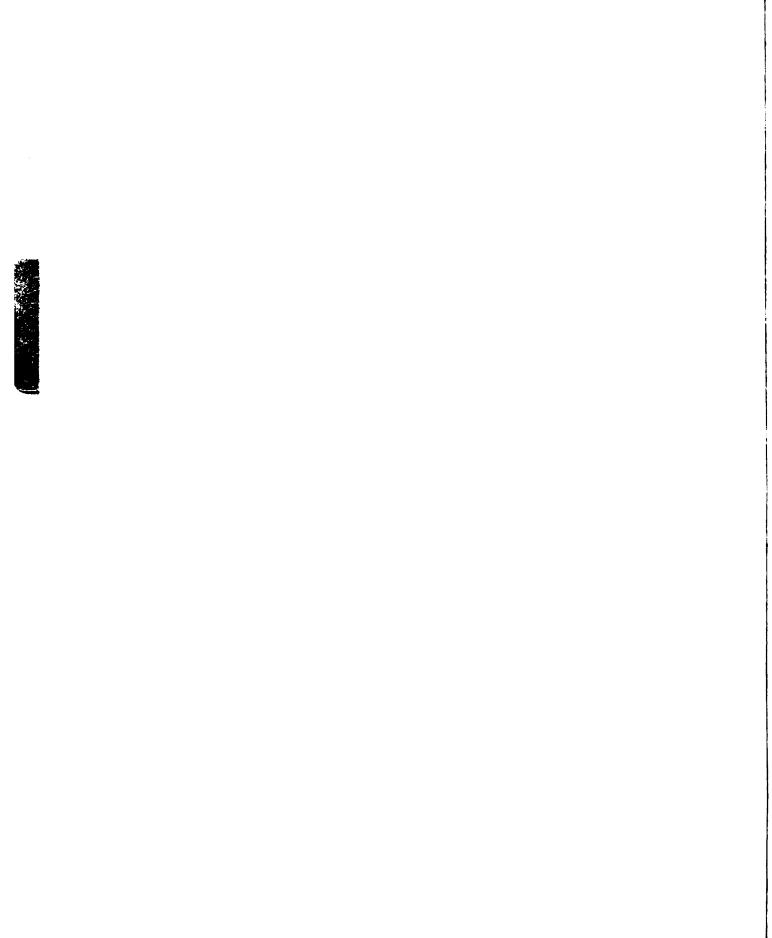
In a carefully planned experiment Duggar and Cooley (8) collected rather conclusive evidence which tended to show that a surface film of Bordeaux mixture increases the amount of water used by plants.

Martin (9), and later Shreve and Martin (10), published data showing that spraying abscissed leaves and also the foliage of potted plants with Bordeaux mixture had the immediate effect of causing an increased water loss. Duggar and Bonns (11) confirmed these data.

Wells (12) found that the use of Bordeaux mixture as a spray on cherries increased the rate of water loss from the leaves. He ascribed the reduction in size of the fruit, which sometimes follows the use of Bordeaux mixture as a spray on cherry trees, to this increased water loss.

Numerous references may be found to the use of oil sprays on plants, but all of them are concerned with the concentration required for controlling insects without injuring the trees. Nothing is available on the effect of oil sprays on rate of water loss from plants.

OBJECT OF INVESTIGATION


Though experimental data are available to show that certain spray materials increase the rate of water loss from the leaves of plants, there is no clear evidence that any spray materials have the opposite effect.

Knowledge of how to reduce water loss by means of sprays might conceivably he of considerable interest.

The purpose of this investigation was to determine whether rate of water loss can be reduced by the application of foliage sprays and, if so, what material or class of materials has this effect. A preliminary investigation started by Bayer (15), but never completed, suggested that whole milk apparently decreases the rate of water loss from the leaves of some plants. This finding furnished the starting point for the present investigation.

METHODS AND MATERIALS

The general plan of the investigation was to conduct a series of spraying tests with whole milk and with its various component parts or groups of compounds

in such a way as to determine their influence on rate of water loss. All told five tests were completed. Whole milk was used first because a previous investigation indicated that it decreased the rate of water loss. Subsequent spray treatments were developed from the knowledge gained by the use of this material and its component parts. The first test was concerned with the use of whole milk; later tests were then made useing fatty or oily substances which were cheaper than butter fat. In the later tests an emulsifying agent was required for the proper mixing of oil with water to make the sprays desired. For the most part soap was employed for this purpose, although Bordeaux mixture also was used. Two types of emulsion may be prepared; in one oil is the dispersed phase and in the other water is the dispersed phase. The former is the one utilized for this experimental work.

The tests were all conducted inside a greenhouse. None of the plants used were in an active growing condition. Medium to large sized Jerusalem cherry plants were used for the first and the third experiments. Cineraria plants, from which the blossoms had been removed, were used for the third. Well branched Hyslop crabapple trees, averaging about three feet in height, were used for the fourth experiment, and for the fifth, one year old seedling apple brees.

The Hyslop crabapple trees were put in eight-inch pots; all other plants were in six-inch pots. These had been made impervious to water by painting the inside of each with melted "parowax" and the outside with two coats of "Duco". The plants were transferred to these prepared pots at the beginning of each experiment. The ball of earth enclosing the roots of the plant was not broken when the transfer was made.

To avoid loss of water from the soil, the top of the pot was sealed with parawax. This was accomplished by painting the top of the soil and the rim of the pot with melted parawax and allowing it to harden. A small circular piece of oil cloth over a slight mound of sand around the base of each plant, or a strip of adhesive tape around its base, were used to prevent the hot parawax from coming into direct contact with the stems.

eighths of an inch in diameter and eight inches in length was inserted in the soil near the base of each plant.

This was for the purpose of renewing the water supply from time to time. The upper end of the glass tube was closed with a cork stopper. Thus from the unit consisting of plant, soil and pot, water could escape only through the leaves and the stems of the plant itself and transpiration losses could be determined periodically by weighing.

	,
	; ·
** / *	
	!
	:
	· •

care was taken to have as nearly as possible an optimum soil moisture content at the time of sealing the plant. As soon as the plant was sealed in, the unit was weighed. Weights were taken once each day or once in two days, depending on the rate of loss of water from the plant. In most cases it was found best to weigh every day.

After the plants had been sealed in the pots, a period of two or three days was allowed for readjustment before recording any weights. Records were then made of the water losses from individual plants. At each weighing sufficient water was added to bring the unit up to the original weight.

EXPERIMENT 1.

Transpiration Experiments with Jerusalem Cherry
Plants Sprayed with Whole Milk or with its Various
Constituents.

Fifty-one Jerusalem cherry plants were sealed in pots on January 12, 1926. Pots were numbered, from one to fifty-one inclusive. Each unit (plant, pot and soil) was then weighed daily between 8:00 and 10:00 A.M. and the loss of weight replaced by the addition of water through the glass tube.

Additions of water to each unit were recorded January 24, 25, 26, 27, 28, 29. On the basis of the

total amount of water used for this period the plants were divided into ten groups or series consisting of five plants to each series. The selection of plants for each group was made so that the total loss for each group for the period was approximately the same, thus securing an equal distribution of plants with high and with low losses within each group. Table 1 shows the transpiration records of these plants during this preliminary test period.

TABLE 1

Individual plant losses of water on the basis of which groups having lost the same amount of water were made

groups l	naving lost the sa	ame amount of water	were made
Group	Plant number	Loss (in grams) 6 daily weighings	Total
	33	145	
•	30	175	
A	47 25	180 2 7 0	
	6 6	360	1130
	16	145	
	35	175	
В	37	218	
	13	245	
	3	350	1130
	19	145	
	32	180	
C	4 0 11	215 260	
	43	335	1135
***************************************	40		
	4 8 3 4	150 170	
D	31	220	
	8	265	
, 	20	330	1130
•	27	150	
	2	180	
E	1	215	
	50 14	26 0 325	1130
	4.2	020	1100
	44	160	
F	23 4	190	
£	17	22 0 2 80	
	28	280	1130
	41	165	
	18	240	
G	3 8	215	
	10	25 0	
	51	260	1130

Table 1 con't

14010 1	0011 0	Loss (in grams)	
Group	Plant number	6 daily weighings	Total
	42	170	
	29	190	
H	30	230	
-	49	25 0	
	26	295	1135
	A 0	300	
	46	180	
_	22	200	
I	15	205	
	24	24 5	
	12	3 05	1135
	21	170	
	7	200	
J	5	200	
	45	260	
	9	305	1135
		~~~	2100

On January 31 the plants of each group in Table 1 were thoroughly sprayed with one of the materials shown in Table 11. Both upper and lower surfaces of the leaves were covered.

## TABLE 11

Sprays Applied to Different Groups of Jerusalem Cherry Plants in Experiment 1.

Group A.-Whole milk (3.4 per cent butter fat.)

Group B.-Milk from which butter fat has been removed.

Group C. A solution made by removing fat and casein from whole milk.

Group D.-A solution made by removing fat, casein, and albumen from whole milk.

Group E.-Cream testing 20 per cent butter fat.

Group F .- Cream testing 38 per cent butter fat.

Group G.-Check.

Group H.-Calcium caseinate in solution and suspension.

Group I.-A solution made by diluting 38 per cent cream with water to give a test of 3.5 per cent fat (same butter fat content as whole milk used in A).

Group J.-A solution made by diluting 38 per cent cream with solution used for spraying C.

After spraying with the materials listed in Table 11, the plants were allowed to dry and then were brought up to their original weights by the addition of water to the soil. Regular daily weighings and additions of water to make up for the loss of weight were made thereafter. This record is shown in Table 111. During the whole of the experiment the plants were subjected to uniform light, temperature, and humidity conditions on a green-house bench.

TABLE 111.

Daily losses of water from individual plants after spraying

TABLE 111 con't

Plant:	•	Wt.Feb.1: in grams:	Water added: in grams:	_	
43 44 45 46	3540 3480 3665 3425	3485 3467 3630 3400	55 13 35 25	3603 3470 3643 3411	37 10 22 14
47 48 49 50 51 52	3540 3760 3310 3450 3335 3280	3512 3747 3281 3433 3300	27 13 29 17 35	3520 3750 3290 3232 3309	20 10 20 18 27

No.	:Feb.3	in grams	_		_	:added
	<u>:</u>			:grams	<u>:</u>	:grams
ı	3430	30	3430	30	3422	38
2	3690	30	3694	26	3682	<b>3</b> 8
3	3454	71	3469	56	3466	80
4	<b>36</b> 98	22	3703	17	3695	25
5	3484	36	3494	26	3480	40
6	3640	55	3650	45	3635	60
7	3600	<b>2</b> 5	3595	20	3595	30
8	3577	43	3583	35	3570	50
9	3330	40	<b>3</b> 335	35	3325	45
10	3280	50	3300	30	3266	64
11	3460	45	3455	40	3445	50
12	3637	43	3648	32	3635	45
13	3691	39	3600	30	3588	42
14	3791	<b>3</b> 9	3800	30	3782	48
15	3355	40	3370	25	3351	44
16	3314	31	3325	20	3310	35
17	3607	23	3610	20	3599	31
18	3441	39	3455	25	3428	52
19	3424	26	3430	20	3415	<b>3</b> 5
20	3399	51	3400	50	3390	60
21	3514	26	3520	20	3500	32
22	3746	34	3655	25	3739	41
23	<b>3</b> 3 <b>63</b>	17	3367	13	3359	21
24	3741	<b>3</b> 9	3753	27	3743	37
25	3553	47	3570	30	3554	46
26	3630	50	3640	40	3620	60
27	3542	18	3548	12	3541	19
28	3620	30	3625	25	3622	28
29	3798	32	3800	30	3794	36
30	3773	42	3782	<b>3</b> 3	3777	38

Table 111 con't

Plant:		ams:Water added				
No.:	Feb.3	in grams:	:in grams:		in gram	
<u> </u>		:	:	grams:	<del></del>	:grams
31	3585	<b>3</b> 5	<b>3</b> 58 <b>7</b>	33	3585	35
32	3349	31	<b>3</b> 35 <b>7</b>	23	<b>334</b> 5	35
33	3550	<b>25</b>	<b>3</b> 555	30	35 <b>47</b>	28
34	<b>3</b> 311	29	3316	24	3305	<b>3</b> 5
35	3063	37	3076	24	3065	<b>3</b> 5
<b>36</b>						
37	3430	<b>4</b> 0	3436	34	3425	<b>4</b> 5
<b>3</b> 8	3240	40	3253	27	3240	40
39	3312	28	3324	96	<b>3</b> 309	31
40	3354	36	335 <b>8</b>	32	<b>3</b> 351	39
41	3363	<b>3</b> 2	3370	25	<b>3</b> 35 <b>5</b>	<b>4</b> 0
42	3260	30	<b>3</b> 32 <b>7</b>	23	3257	33
43	3485	55	3498	42	3470	70
44	3460	20	3470	10	3458	27
45	3625	40	<b>3</b> 530	29	3615	50
46	3390	35	3405	20	<b>3</b> 38 <b>8</b>	37
47	3504	36	3509	31	3505	35
48	3728	32	3736	24	3732	28
49	3260	50	3282	28	3262	48
50	3421	29	3436	14	3418	32
51	3293	42	3299	36	3280	55 55
			*			

Plan	t:Feb.7	:Water:	Feb.8:	Wate	r:Feb.9	:Water	:: Eeb.1	:Kater	
No.	:Wt.	:added:	Wt. :	added	l:Wt.	:added	l:Wt.	:added	
					s:grams				
I	3425	35	3410	50	3430	30	3696	30	
2	3490	<b>3</b> 0	3691	29	<b>3</b> 690	30	3440	25	
3	3430	95	3426	99	3470	55	<b>370</b> 0	8 <b>5</b>	
4	3695	25	3696	24	3695	25	3500	20	
5	3483	37	3486	34	<b>349</b> 0	<b>3</b> 0	3645	20	
6	<b>363</b> 3	62	3630	<b>6</b> 5	3650	45	3600	<b>5</b> 0	
7	3600	25	<b>3</b> 597	28	3600	25	3575	25	
8	3570	50	3570	50	<b>3</b> 586	<b>3</b> 5	<b>3</b> 335	<b>4</b> 5	
9	<b>3</b> 323	47	3320	50	3330	40	3280	35	
10	3268	62	3263	67	3290	40	3455	<b>5</b> 0	
11	3445	50	3437	58	3460	<b>3</b> 5	3640	<b>&amp;</b> O	
12	3640	40	3630	50	3650	30	3590	40	
13	3585	<b>4</b> 5	<b>30</b> 85	45	3595	<b>3</b> 5	3790	40	
14	3 <b>7</b> 85	<b>4</b> 5	<b>37</b> 87	<b>4</b> 3	3800	30	3360	40	
15	3352	43	<b>3</b> 362	43	3365	30	3315	35	
16	3312	<b>3</b> 3	3310	<b>3</b> 5	3320	25	3605	30	

TABLE 111 con't

Plan					r:Feb.9.			
No.					d:Wt.			:added
	grams	:grams	grams:	gram	s:grams	grams	s:grams	:grams
17	3598	32	3605	25	3605	25	3440	25
18	3435	43	3436	45	3450	30		40
19	3420	30	3420	30	3425	25	3405	25
20	3380	70	3385	65	3400	50	3515	45
21	3510	30	3515	25	3510	30	3745	25
22	3740	40	3745	35	3750	30	3365	35
23	<b>3</b> 360	20	3357	13	3365	15	3750	15
24	3730	50	3547	<b>3</b> 3	3750	30	3565	30
25	3550	50	3545	55	3565	35	3630	<b>35</b>
26	3615	65	3632	<b>5</b> 8	3640	40	<b>3</b> 550	50
27	<b>353</b> 5	<b>2</b> 5	3550	10	3540	20	3620	10
28	3610	40	3620	. 30	3625	25	3795	30
29	3784	<b>4</b> 6	<b>37</b> 90	40	3800	<b>3</b> 0	3775	35
30	<b>37</b> 65	50	3768	47	3785	30	<b>3</b> 590	40
31	3576	44	3595	25	<b>3</b> 585	<b>3</b> 5	3350	<b>3</b> 0
32	3345	35	3350	30	3355	25	3550	30
33	3542	33	<b>3</b> 550	25	3660	25	3310	<b>2</b> 5
34	3305	<b>3</b> 5	3310	30	2215	25	3065	30
35	3055	45	<b>3</b> 0 <b>63</b>	37	3070	30	3065	<b>3</b> 5
36								
37	3415	55	3422	48	<b>34</b> 35	<b>3</b> 5	<b>34</b> 30	40
<b>3</b> 8	3232	<b>4</b> 8	2238	42	3255	25	3240	40
39	3305	<b>3</b> 5	3308	32	3320	20	<b>3</b> 310	30
<b>4</b> 0	<b>3</b> 343	47	3352	38	3 <b>3</b> 86	25	<b>3</b> 350	40
41	<b>3</b> 355	40	<b>3</b> 357	38	3375	20	3360	35
<b>4</b> 2	3257	33	3276	14	3255	35	3265	35
43	3475	56	3475	65	3505	<b>3</b> 5	3275	65
44	3455	25	3469	11	3470	10	3450	30
45	3616	49	3625	40	3640	25	3615	50
46	<b>3</b> 385	40	3395	30	3405	20	3385	47
47	3495	47	3505	35	3520	20	3500	40
48	3725	35	3732	28	3740	20	<b>37</b> 25	<b>35</b>
<b>4</b> 9	3260	50	3264	46	3285	25	3260	50
50	3412	38	3425	25	3430	20		40
51	3275	60	3276	59	<b>3</b> 305	30	3275	60

TABLE 111 con't

Plant No.	:Feb. ll : wt. in grams:		:Feb. 12 : wt. in grams:	Water add <b>e</b> d
	: :	grams	:	grams
1	3425	35	3485	25
<b>2</b> 3	3690	30	3700	20
3	3435	90	3670	<b>5</b> 5
4	3700	20	<b>37</b> 00	20
5	<b>3485</b>	<b>3</b> 5	<b>3500</b>	20
6 7	3645	<b>5</b> 5	<b>3665</b>	<b>30</b>
	3605	20	3600	<b>25</b>
8	3575	<b>45</b>	360 <b>0</b>	20
9	<b>3330</b>	<b>4</b> 0	<b>334</b> 0	20
10	<b>3280</b>	50	<b>3290</b>	<b>4</b> 0
11	<b>3450</b>	<b>4</b> 5	<b>3465</b>	<b>3</b> 0 <b>3</b> 0
12	<b>3650</b>	40	3650 3600	
13 14	<b>3</b> 5 90	<b>4</b> 0 <b>3</b> 6	<b>36</b> 00	<b>3</b> 0
	<b>3490</b>		3800 33.75	30 20
15 16	<b>3</b> 360	<b>3</b> 6 25	<b>3375</b>	15
17	<b>3</b> 320 <b>361</b> 0	20	<b>3</b> 330 3605	25
18	3440	40	<b>34</b> 55	25 25
19	<b>34</b> 25	<b>2</b> 5	3430	20 20
20	3400	50	<b>340</b> 5	<b>4</b> 5
21	35 <b>1</b> 5	20	3515	<b>2</b> 5
22	37 <b>4</b> 6	<b>3</b> 5	<b>375</b> 0	<b>3</b> 0
23	<b>3</b> 365	15	<b>3</b> 365	15
24	<b>374</b> 0	40	<b>346</b> 0	20
25	3555	46	3570	<b>3</b> 0
26 26	<b>3</b> 6 <b>30</b>	50	3636	<b>4</b> 5
27	3540	20	355 <b>0</b> .	10
28	<b>3</b> 620	30	3630	20
29	<b>37</b> 95	<b>3</b> 6	3805	25
30	3775	40	3790	25
31	<b>3</b> 595	25	<b>35</b> 95	25
32	<b>334</b> 5	<b>3</b> 5	3370	10
33	3660	25	<b>3</b> 555	20
34	3310	30	<b>3</b> 320	20
35	3070	30	3075	25
36	••••			~~
37	<b>34</b> 25	<b>4</b> 5	3445	25
38	3240	40	3250	20
39	<b>3</b> 305	35	3340	20
40	<b>3</b> 360	30	3365	25
41	<b>3</b> 360	35	3375	20
42	3260	30	3275	15
43	3485	55	3500	40
44	3460	20	3470	10
45	3625	40	3640	25
46	3400	25	3405	20
47	3500	40	3520	20
48	3735	25	3740	20
<b>4</b> 9	3275	35	3285	25
50	3420	30	3430	20

The total loss of water for each plant and for each group during a period of twelve days after spraying is shown in Table 1V.

Table 1V.

Individual and group losses after spraying

Group	Plant No.	Loss of water (grams) twelve days	Total loss of water (grams) for each group
A	33 39 47 25 6	263 277 351 347 548	1786
В	16 35 37 13 3	228 341 425 396 786	2236
С	19 32 40 11 43	274 309 375 471 584	2013
D	48 34 31 8 20	270 306 342 456 597	1953
E	27 2 1 50 14	163 280 344 283 <b>4</b> 00	1470

Table 1V con't

Group	Plant No.	Loss of water (grams) twelve days	Total loss of water (grams) for each group
F	44 23 4 17 28	186 160 206 263 300	1115
G	41 18 38 10 51	328 394 372 525 489	2108
Н	42 29 30 49 26	271 357 398 406 535	1967
I	46 22 15 24 12	306 346 353 347 398	1750
J	21 7 5 45 9	270 259 328 405 422	1684

A comparison of the total loss of water from each group shows that there was a wide variation after sprays were applied. Since, after a preliminary: transpiration test, these plants were grouped in series, each one of which had lost approximately the same amount of water

- (only five grams difference in six days), we may conclude that in:
- Group A. Whole milk reduced transpiration 5.2 per cent.
- Group B. Milk, with fat removed, increased transpiration 6 per cent.
- Group C. The solution made by removing fat and casein from milk reduced transpiration 4 per cent.
- Group D. The solution made by removing fat, casein, and albumen from milk reduced transpiration 7.3 per cent.
- Group E. Twenty per cent cream reduced transpiration 30.1 per cent.
- Group F. Thirty-eight per cent cream reduced transpiration 42.3 per cent.
- Group H. Solution and suspension of casein (calcium caseinate) reduced transpiration 6.6 per cent.
- Group I. Cream diluted with distilled water to test 3.5

  per cent butter fat reduced transpiration 16.9

  per cent.
- Group J. Cream diluted with a solution derived from milk

  (milk less fat less casein) reduced transpiration

  20.1 per cent.

However, gains or loss up to five or ten per cent may have been due to variability of plants, slight errors in weighing, and other causes. Thus probably no significance is to be attached to the relatively slight differences found

in comparing Groups B, C, D, and H with the check group.

On the other hand, where variations run as high as 15 per cent and higher, the spray treatment must have had some real influence. A difference as high as 42 per cent must be regarded as bearing special significance. Reductions in the rate of water loss amounting to 15 per cent and over resulted whenever butterfat was a constituent of the spray material applied. Thus Groups A, E, F, I, and J show significant differences. They also show a certain relationship between the concentration of the butterfat causing greater reductions.

Ten days after the application of sprays the leaves of Groups E and F (20 per cent cream and 38 per cent cream) began to turn yellow; during the next six days many leaves dropped from the plants. Plants of the other groups showed some loss of color and foliage later. This was more prevalent among the groups to which butterfat sprays were applied. On March 1 (one month after the application of sprays) a careful estimate of leaf loss was made.

Results were as follows:

	Per cent of leaf loss
Group A	20
Group B	10
Group C	10
Group D	10
Group E	95

Group	F	Per	cent 99	of	leaf	loss
Group	G.		10			
Group	H		10			
Group	I		30			
Group	J		20			

Photographs of representative plants six weeks after spraying are shown in Figures 9, 10, 11, 12, 13, 14, pages 49, 50, and 51.

Having secured such a strong indication that the butterfat or "oily" properties of the foregoing sprays were responsible for the reduction of water losses, further experiments were planned to secure additional data and to test different concentrations of vegetable and mineral oils.

#### EXPERILENT 11

Transpiration Experiments with Cineraria Plants Sprayed with Whole Milk. "Wesson" Oil Emulsion, and "Sunoco".

Cineraria plants from which the blossoms had been removed were used in the second experiment. The method of procedure previously outlined was followed. The plants were divided into four groups, to which treatments were applied as shown in Table V.

#### Table V.

## Sprays used on Cineraria plants

- Group A. Check (foliage sprayed with distilled water).
- Group B. Foliage sprayed with whole milk (3.5 per cent butterfat).
- Group C. Foliage sprayed with an emulsion of "Wesson" oil (vegetable oil) 3.5 per cent.
- Group D. Foliage sprayed with "Sunoco" (mineral oil) diluted to make 3.5 per cent oil.

Each group consisted of six plants. Sprays were applied April 25, and units (plants, pots, etc.) brought up to the original weights by additions of the required amount of water the same day. Weights were then taken and water added April 26, 28, 30; May 3, 5, 7, The amount of water required to bring a unit up to its original weight was recorded at each weighing. After the completion of the spraying test the leaf area of each plant was secured with a planimeter.

Table VI gives individual plant losses, leaf areas, and average daily loss per square centimeter of the plants used in this experiment.

Table V11 repeats the average daily loss per square centimeter and gives the mean daily loss for each group of plants to which different sprays were applied.

Table V1.

Average daily loss of water from Cineraria plants after spraying

<b>Spraying</b>					
Grams of water in twelve days	lost Leaf area in sq.centimeters	Av.daily loss in grams per sq.cm.			
195 197 357 107 269 301 410 185 345 387 276 694 195 235 367 322 249 392 299	310.96 365.80 380.67 103.87 503.22 444.51 552.90 263.22 312.90 309.03 296.12 654.19 310.96 326.45 625.16 524.51 569.67 483.22 282.58				
519 248 266 232 403	503.86 405.16 380.64 549.99 455.48	.08583 .05101 .05823 .03333			
	Grams of water in twelve days  195 197 357 107 269 301 410 185 345 387 276 694 195 235 367 322 249 392 299 519 248 266 232	Grams of water lost leaf area in sq.centimeters  195 310.96 197 365.80 357 380.67 107 103.87 269 503.22 301 444.51 410 552.90 185 263.22 345 312.90 387 309.03 276 296.12 694 654.19 195 310.96 235 326.45 367 625.16 322 524.51 249 569.67 392 483.22 299 282.58 519 503.86 248 405.16 266 380.64 232 549.99			

Table V11

Total and mean daily group losses from Cineraria plants
after spraying

aiter spraying					
		Plant No.	Av.daily loss (grams)per sq. centimeter	Total daily loss per group	Mean daily loss per plant
Group	A	17 20 18 40 52 42	.09187 .07767 .07739 .06760 .07327 .08583	<b>.47</b> 36 <b>3</b>	.078930025
Group	В	2 49 11 12 31 6	.05225 .03333 .05642 .06179 .04892 .08019	•33290	.055480039
Group	С	5 10 15 28 41 24	.04487 .04454 .05857 .04494 .08817 .08840	•36949	.061580054
			verage daily lograms) cu.cm.	88	
Group	D	9 43 29 33 35 45	.08584 .05101 .05998 .05115 .03642 .95834	•34263	.057100041

In this experiment three sprays reduced the rate of water loss. "Wesson" oil emulsion reduced it 22 per cent.

"Sunoco" 27.6 per cent, and whole milk 29.7 per cent.

Foliage injury was not serious. A slight loss of color was observed in leaves of plants in Groups B, 6, and D.

#### EXPERIMENT 111

Transpiration Experiments with Jerusalem Cherry Plants Sprayed with Linseed, Cottonseed, Corn, and Mineral Oils, Bordeaux Mixture, and Soap.

Having found in Experiment 11 that fatty or oily compounds other than butter fat caused a reduction in the rate of water loss when applied as sprays to the foliage of plants, a rather extensive test of different materials was made in Experiment 111 to determine their efficiency in this respect. Jerusalem cherry plants were prepared and divided into groups as in the previous experiments. Emulsions, with linseed, cottonseed, castor, corn, or mineral oil supplying the oil content and with soap as the emulsifying agent, were sprayed at a concentration of two per cent on the foliage of these plants. An additional two per cent mineral oil spray made by substituting Bordeaux mixture for sofa used on another group of plants. Three checks on the above materials were used; one group was sprayed with soap of the same concentration as found in the oil emulsions, a second group was sprayed with Bordeaux mixture of the same formula as used in making the mineral oil spray, and a third was sprayed with distilled water. These sprays are shown in Table VIII.

Table VIII .- Sprays applied to Jerusalem cherry plants

Group A. Linseed oil emulsion spray.

Group B. Cottonseed oil emulsion spray.

Group C. Bordeaux mixture 4-4-50.

Group D. Castor oil emulsion spray.

Group E. Corn oil emulsion spray.

# Table Vlll con't

Group F. Mineral oil emulsion spray.

Group G. Soap (same dilution as used in emulsion).

Group H. Bordeaux mixture mineral oil.emulsion spray.

Group I. Check. (Sprayed with distilled water).

The plants were sprayed June 5, and brought up to standard (original) weight June 6, and June 7.

Water losses were recorded June 8, 9, 10, 12, 14, 15, 16, 17, 18, 19. Individual plant losses and group losses for this period are shown in Table IX.

Table IX.
Water loss of Jerusalem cherry plants after spraying

110001	700	D OT GOTO	satem cherry br	ands arder	abraying
		Plant no	Individual plant losses (grams)	Group loss (grams)	Mean loss (grams)
Group	E	11 36 38 23 15	692 738 592 607 563	• 3292	658-18,9
Group	F.	4 49 41 3 19	552 608 543 560 452	2715	543-15.3
Group	I	6 37 8 50 2	877 872 661 648 545	3603	721-39.8
Group	A	61 18 14 34 39	765 751 645 459 763	3383	676-34.1

Table IX con't

		Plant	No.	Individual plant losses (grams)	Group loss (grams)	Mean loss (grams)
Group	В	7 17 42 52 32		360 754 782 680 626	3193	638-45.3
Group	C	33 31 44 40 10		836 306 633 571 721	<b>3</b> 56 <b>7</b>	713.30.2
Group	I	43 12 26 30 29		897 718 637 604 639	<b>3</b> 395	679-38.8
Group	G	9 24 25 13 45		652 875 641 627 804	3599	720-30.5
Group	H	1 28 48 47 35		648 874 713 606 529	3370	654 <b>-</b> 35 <b>.7</b>

The reductions in the amount of water used after the application of emulsion sprays are shown in Table X.

Table X

Reduction in water losses by leaves of the Jerusalem cherry after spraying

		Percentage reduction compared to check
Group A. Linseed oil e	mulsion spray	6.24
Group B. Cotton oil em	ulsion spray	11.51
Group C. Bordeaux mixt	ure 4-4-50	1.10
Group D. Castor oil em	ulsion spray	5.82
Group E. Corn oil emul	sion spray	8.74
Group F. Mineral oil e	mulsion spray	24.69
Group G. Soap (same diemulsion)	lution as used in	0.00
Group H. Bordeaux mixt emulsion spra		9,29

The figures in Table X show material reduction in water losses as a result of covering the foliage of the plants with oil sprays. They also show that a low concentration of oil is effective, and that five different oils will produce the same general result.

A spray consisting of mineral oil emulsified with soap was much more effective than any of the others. The other sprayscontaining oil caused reduction in water losses, the specific reduction for each differing to some extent. The checks did not differ materially in rate of water losses. Computations for Table X were made by comparing the average rate of water loss from each group to the

the average rate of loss from the group sprayed with distilled water. The plants used in this experiment were kept under observation for a month after the completion of the test and at no time did they show any evidence of foliage injury except a slight loss of green color after the application of oil sprays.

#### EXPERIMENT IV

Transpiration experiments with Hyslop crabapple trees sprayed with corn, cottonseed, and mineral oils.

A group of Hyslop Crabapple trees, such as are illustrated in Figures 15 and 16, were used in this experiment. They were growing in eight-inch pots that had been waterproofed as previously described and had already formed their terminal buds for the season. Consequently there was little if any change in the leaf area of any individual plant during the course of the experiment. The experiment was begun June 20-22. After a preliminary transpiration test of about two weeks the plants were grouped according to water losses and on July 4 the different groups were treated to spray applications as listed in Table XI. The concentration of oil for each emulsion spray was one per cent.

Table XI

## Sprays applied to Hyslop Crabapple trees

Group A. Bordeaux mixture mineral oil emulsion.spray.

Group B. Corn oil emulsion spray.

Group C. Mineral oil emulsion spray.

Group D. Check. (Distilled water spray).

Group E. Cottonseed oil emulsion spray.

Records of transpiration losses were made July 6, 7, 8, 9, 10, 12, 13, 14, 15 and 16.

leaves from tip to base of each shoot were removed from the trees, and their surface area measured by use of a planimeter. All leaves (those left on trees and those removed) were then measured at points of greatest width and greatest length of leaf blade, to obtain a factor with the aid of which the area of leaves not removed from the tree could be accurately calculated. The total leaf area of each tree was obtained by adding the calculated area of the leaves left on the tree to the measured area of the leaves removed. Data on transpiration losses are presented in Table XII.

Table XII

Leaf area and water losses from Hyslop Crabapple trees sprayed with one per cent oil emulsion

		Plant No.	Grams lost per sq.cm. per day	Total grams lost dailymby each group	Mean daily loss of each plant
Group	A	19 25 14 5 26	.09572 .07374 .14448 .10069 .09897	•51360	•10272 <b>‡0</b> 068
Group	В	10 3 1 6	.08335 .08609 .09422 .12509 .12137	•51012	.10202 <b>±</b> .0053
Group	C	21 9 8 12 13	.07232 .07288 .07891 .08311 .08745	•39467	.07893 [±] .0017
Group	D	11 20 7 24 2	.12363 .11791 .11758 .08443 .14826	•59181	•11836 <b>*</b> •0061
Group	E	22 23 15 16 17	.05764 .06536 .08263 .07023 .06094	•36379	.06736 [±] .0026

check shows that a Bordeaux mixture-mineral oil emulsion spray reduced the transpiration loss 13 per cent; a corn oil emulsion spray reduced the transpiration loss 14 per cent; a mineral oil emulsion spray reduced it 33 per cent; and a cottonseed emulsion spray reduced it 43 per cent; and a cottonseed emulsion spray reduced it 43 per cent. Thus a rather marked reduction of water loss was secured by the application of oil sprays. The specific reduction for each oil used was variable, cottonseed being the most effective. A mineral oil emulsion with soap was more effective than the same oil emulsified with Bordeaux mixture.

The leaves of some of the trees developed typical "spray burn" injury a few days after they had been sprayed. However, this injury appeared just after the greenhouse had been fumigated with a proprietary nicotine compound. The fact that most of the injured foliage was on plants adjacent to the source of the gas indicated that the gas was the cause of the injury. A slight amount of injury, evidenced by a drying out of the margins of leaves, developed at a later date on the groups sprayed with mineral oil (E) and with cottonseed oil (C). The appearance of this injury was preceded by two days of hot weather. A slight loss of green color was also observed in the leaves of the plants in these two groups.

## Experiment V.

Transpiration Experiments with Seedling Apple Trees Sprayed with Mineral Oil, Bordeaux Mixture, and "Volck".

Seedling apple trees one year of age were started in six-inch pots during the winter. They were forced into rapid growth by copious watering during the spring and early summer, then watered sparingly until terminal buds were formed; after this, with adhering ball of earth undisturbed, they were transferred to waterproofed pots and sealed in as previously described. Sealing in was completed July 18. Sixty prepared plants were divided into five groups, and sprays, as indicated in Table XIII, were applied July 27. Each emulsion was diluted with water to give an oil concentration of eight-tenths of one per cent.

Table XIII .- Sprays applied to apple seedlings.

Group A. Bordeaux mixture-mineral oil emulsion.

Group B. Bordeaux mixture 5-5-50.

Group C. Check (distilled water spray).

Group D. "Volck" oil emulsion.

Group E. Mineral oil emulsion.

Records were taken July 29, 30, 31; August 1, 2, 3, 4, 5, 6, 7, 8. The leaves were then stripped from the trees, and leaf areas determined by using a plantmeter. Table XIV gives detailed data for each plant used in this experiment.

Group losses are shown in Table XV.

Table XIV

Leaf areas and rates of water losses of seedling apple trees

Plant No.	Leaf area sq. cm.	Loss of water in eleven days (gms)	Gms.loss per sq. cm. in one day
1	229.03	403	•15996
2	280.64	745	.24133
3	361.28	558	.19414
4	574.83	119	.17728
5	286.54	520	.16503
6	358.06	751	.19067
7	472.25	1074	•20675
8	329.67	663	<b>.</b> 18625
9	413.54	492	.17410
10	341.93	6 <b>73</b>	.17893
11	281.28	522	<b>.</b> 15996
12	370.32	<b>7</b> 70	<b>.2413</b> 3
13	314.83	632	.19414
14	516.12	059	.17728
15	463.22	<b>7</b> 80 `	•16503
16	290.32	495	<b>.15</b> 500
17	331.61	<b>7</b> 39	<b>.</b> 20259
18	414.83	864	•18934
19	542.57	432	.12264
20	292.90	578	.17939
21	330.96	69 <del>4</del>	•19063
22	452.90	978	.19631
23	230.96	461	.18109
24	502,57	837	.18901
25	434.83	740	.15471
26	417.41	792	117231
27	430.32	1032	.21802
28	410.32	863	.19120
29	481.29	854	.16131
30	663.86	1003	•13644
31	456.06	910	•18060
32	370.32	794	•19491
33	409.67	853 766	.18929
34	363.22	766 575	.19172
35 36	266.45	535 3840	.13227
36 37	651.61	1249	.17425
<b>37</b>	387.74	928	.21758
<b>3</b> 8	425.16	968 606	•20698 20427
<b>39</b>	269.67	606 367	.20427
40	288.40	367	.11062
41	531.61	1141	.19512
<b>4</b> 2	250.96	593	.21481

Table XIV con't

Plant No.	Leaf area	Loss of water in eleven days (gms)	Gms.loss per sq. cm.in one day
43	369.03	939	.23132
	· ·		
44	575.48	396	.14786
<b>4</b> 5	610.32	834	.12423
<b>4</b> 6	407.09	394	.19964
47	591.61	1211	•18690
<b>4</b> 8	296.77	653	.20003
49	448.38	90 <b>0</b>	.18247
50	542,57	899	<b>.15</b> 063
51	452,90	836	.16781
52	335.48	854	.23142
53	254.83	738	.26327
5 <b>4</b>	532.90	020	.17400
55	420.64	702	.15710
56	398.70	<b>73</b> 8	.16824
57	369.67	<b>69</b> 8	.17165
58	<b>3</b> 92. <b>9</b> 0	892	.20639
59	310.96	<b>69</b> 9	.20435
60	249.67	413	15938
61	189.03	470	.22603
62	422.57	884	.19018

Table XV

Individual daily water losses and mean daily losses from apple seedlings

			appro bookin	0-		
		Plant No.	Grams of water lost per sq. cm. per day		loss for (grams)	Mean daily loss of each plant (grams)
Group	A	1 6 11 18 21 26 31 36 41 46 51 55	.15996 .19067 .16871 .15500 .19063 .17231 .18060 .17425 .19512 .19964 .16781 .16827	2.12	229 <b>7</b>	.17691 <b>4.</b> 002
Group	В	2 7 12 17 22 27 32 37 42 47 52	.24133 .20675 .18902 .20259 .19631 .21802 .19491 .21758 .21481 .18609 .23142 .17165	2,4'	7048	.20587 <b>±.</b> 004
Group	С	3 8 13 18 23 28 33 38 43 48 53 58	.19414 .18265 .17989 .18934 .18109 .19120 .18929 .20698 .23132 .20003 .26327 .20639	2.4:	1559	.2013 ⁺ .004

Table XV con't

	Plant No.	Grams of water lost per sq. cm. per day	Total loss for group (grams)	Mean daily loss of each plant (grams)
Group I	4 9 14 19 24 29 34 39 44 49 54	.16593 .17893 .15327 .17939 .15471 .13644 .13272 .11062 .12423 .15062 .17400 .20435	2.11554	•17629 [±] •004
Group E	5 10 15 20 25 30 35 40 45 50 55 60	.16503 .17893 .15327 .17939 .15471 .13644 .13272 .11062 .12423 .15062 .15171	1.78805	•149 [‡] •003

Substantial reductions in losses of water followed the application of oil sprays. A mineral oil spray emulsified with Bordeaux mixture reduced the transpiration rate 11 per cent, and the same oil emulsified with soap reduced it 26 per cent; "Volck" reduced it 12 per cent. The plants in Group B, to which Bordeaux mixture was applied, showed a slight increase in amount of water used as compared with the check. No foliage injury or loss of color developed.

Reviewing the data for the five experiments we find that in general, regardless of the kind of plant, organic and mineral oil sprays have a tendency to lessen water loss. There is much difference between the various oils used; sprays made up from mineral oil and from cottonseed oil give the greatest reductions. Their influence is more or less proportional to the concentration of the sprays, a concentration of approximately one per cent causing the greatest reduction without injuring the foliage.

#### Examination of Stomata

The data that have been offered show that there is a reduction in water losses from plants following the use of oil sprays. They do not furnish any information as to how such reductions in water loss are brought about. With this object in mind a brief study was made

of the daily periodic opening and closing of the stomata of the leaves of the apple seedlings used in Experiment V. Following Lloyd's (16) procedure samples of epidermis were taken from the under sides of leaves from sprayed and from unsprayed trees. These samples were secured by stripping off with tweezers a portion of the epidermis, which was immediately plunged into absolute alcohol. By this procedure it is possible to preserve epidermal sections without any change in the opening of the stomata. These sections were stained, mounted and photographed. A study of many stained sections indicated that an oil spray caused a delay in the opening and also in the closing of the stomata of the leaves. This may have had some effect on the amount of water lost because evaporation would be less during the evening when the stomata in leaves of unsprayed plants were partly open, than it would be during the pre-moon period when those in leaves of sprayed plants were fully open. Further studies are necessary to varify this point. Figures 1, 2, 3, 4, 5, 6, 7, and 8 give some indication of the nature of the evidence on which these statements are based.

#### SUMMARY

- 1. Oil sprays applied to the foliage of apple, cineraria, and Jerusalem Cherry plants caused a reduction in the rate of water loss. Sprays containing high concentrations of oil caused greater reductions in rate of water loss than sprays containing low concentrations of oil.
- 2. Some oils gave greater reductions than others.

  Sprays made up from mineral oils and from cottonseed oil gave the greatest reductions.
- 3. Injury to foliage was not apparent when sprays of low oil concentration were used; it was serious when sprays of high oil concentration were used. Injury was evidenced by the drying and browning of the margins of leaves. Another form of possible injury was evidenced by a lighter color of the leaves on sprayed plants. This was apparent in Experiments 1, 2, 3, and 4, but did not develop in Experiment 5.
- 4. Oil sprays containing one per cent or less of oil caused marked reductions in the rate of water loss and at the same time produced no visible evidences of injury to the foliage.

# Acknowledgement.

The work described herein was started at the suggestion of Professor V.R.Gardner, of the Department of Horticulture, Michigan State College. The writer wishes to express to him, and to Doctor John W.Crist and Professor W.C.Dutton of the same Department, his thanks for the helpful suggestions and kindly criticism offered during this investigation.

### Citation of Literature

- 1. Rumm, C. Ueber die Wirkung der Kupferpraparate bei Bekampfung der sogenannten Blattfallkrankheit der Weinrebe. Ber. d.deut. bot. Ges.11: 79-93. 1893.
- 2. Müller-Thurgau, H. Jahresb. der schweizischen Versuchsstation und Schule f. Obst-, Wein-und Gartenbau in Wadensweil. 1892-93: 58-59.
- 3. Bayer, L. Beitrag sur pflanzenphysiologischen Bedeutung des Kupfers in der Bordeauzbruhe. Inaug-Dissert. Konigsberg, 1902.
- 4. Frank, A.B., and Kruger, Fr. Ueber den direkten Einfluss der Kupfervitriolkalkbruhe auf die Kartofelpflanze. Arb. d. deut. landw. Ges. 1894; 1-46.
- 5. Zucker, A. Beitrag zur direkton Beeinflussung der Pflanzen durch die Kupfervitriol-Kalkebruhe. Inaug-Dissert. Stuttgart. 1896.
- Schnader, R. Ueber die physiologische Wirkung der Kupfervitriolkalkbruhe. Landw. Jahrb. 33: 517-584. 1904.
- 7. Ewert, R. Der wechselseitige Einfluss des Lichtes und der Kupferkalkbruhen auf den Stoffwechsel der pjlanzen. Landw. Jahrb. 34: 233-311. 1905.
- 8. Duggar, B.M., and Cooley, J.S. Effect of Surface Films and Dusts on the Rate of Transpiration. Ann. Mo. Bot.Gard.1: 1-22: 351-356. 1914.
- 9. Martin, W.H. Influence of Bordeaux Mixture on the Rate of Transpiration from Abscissed Leaved and from Potted Plants. Jour. Agr. Res. VII 529-584. 1916.
- 10. Shive, J.W., and Martin, W.H. The Effect of Surface Films of Bordeaux on the Foliage Transpiring Power in Tomato Plants. Plant World 20: 67-97. 1917.
- 11. Duggar, B.M., and Bonns, W.W. The Effect of Bordeaux Mixture on the Rate of Transpiration. Ann. Mo. Bot. Gard. 5: 153-176. 1918.
- 12. Wells, H.M. Unpublished Thesis in Michigan State College Library.
- 13. Smith, J.B., N.J. Agr. Exp. Sta. Rpt. 1904, page 646.

- 14. Ackerman, A.J. Preliminary Report on Control of San Jose Scale with Lubricating Oil Emulsion. U.S.D.A. Circular 263, 1923.
- 15. Boyer, C.A. Data collected while registered as Graduate Student at Michigan State College. Unpublished.
- 16. Lloyd, Francis E. The Physiology of Stomata. Carn. Inst. Pub. No.82, 1908.



Figure I. Section of Epidermis From the Lower Side of an Apple Leaf Sprayed Two Weeks Previously with an .8 Per Cent Oil Emulsion, Showing Opening of Stomata at 6 A.M. Compare with Figure II.




Figure II. Section of Epidermis from the Lower Side of an Apple Leaf Which Had Not Been Sprayed, Showing Opening of Stomata at 6 A. M. Compare with Figure I.

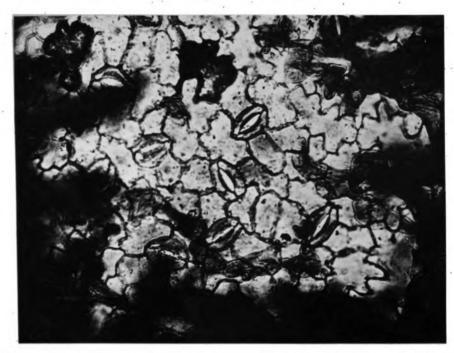



Figure III. Section of Epidermis From the Lower Side of an Apple Leaf Sprayed Two Weeks Previously with an .8 Per Cent Oil Emulsion, Showing Opening of Stomata at 12 M. Compare with Figure IV.

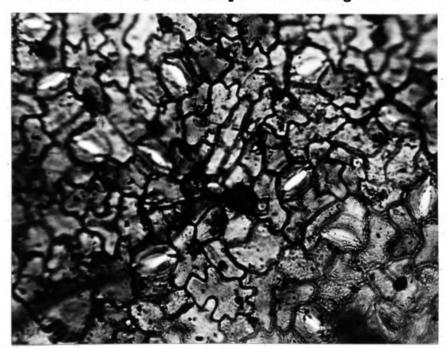



Figure IV. Section of Epidermis From the Lower Side of an Apple Leaf Which Had Not Been Sprayed, Showing Opening of Stomata at 12 M. Compare with Figure III.



Figure V. Section of Epidermis From the Lower Side of an Apple Leaf Sprayed Two Weeks Previously with an .8 Per Cent Oil Emulsion, Showing Opening of Stomata at 2 P.M. Compare with Figure VI.




Figure VI. Section of Epidermis From the Lower Side of an Apple Leaf Which Had Not Been Sprayed, Showing Opening of Stomata at 2 P.M. Compare with Figure V.



Figure VII. Section of Epidermis From the Lower Side of an Apple Leaf Sprayed Two Weeks Previously with an .8 Per Cent Oil Emulsion, Showing Opening of Stomata at 8 P.M. Compare with Figure VIII.

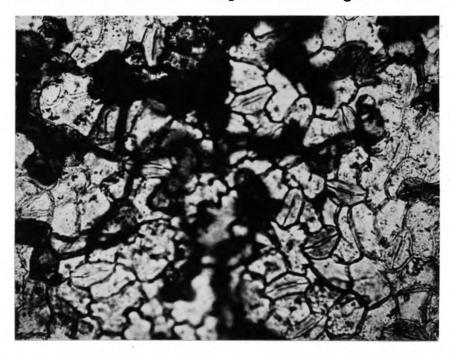



Figure VIII. Section of Epidermis From the Lower Side of an Apple Leaf Which Had Not Been Sprayed, Showing Opening of Stomata at 8 P.M. Compare with Figure VII.



Figure IX. Jerusalem Cherry Plant One Month After Applying a 20% Cream Spray.



Figure X. Jerusalem Cherry Plant One Month After Applying a 38% Cream Spray.



Figure XI. Jerusalem Cherry Plant One Month After Applying a 3.5% Butter Fat Spray Made by Diluting 38% Cream with Water.



Figure XII. Jerusalem Cherry Plant One Month After Applying Whole Milk Spray (3.5% Butter Fat).



Figure XIII. Jerusalem Cherry Plant One Month After Applying
a Spray Consisting of a Solution Made by Extracting Fat and Casein From Whole Milk.



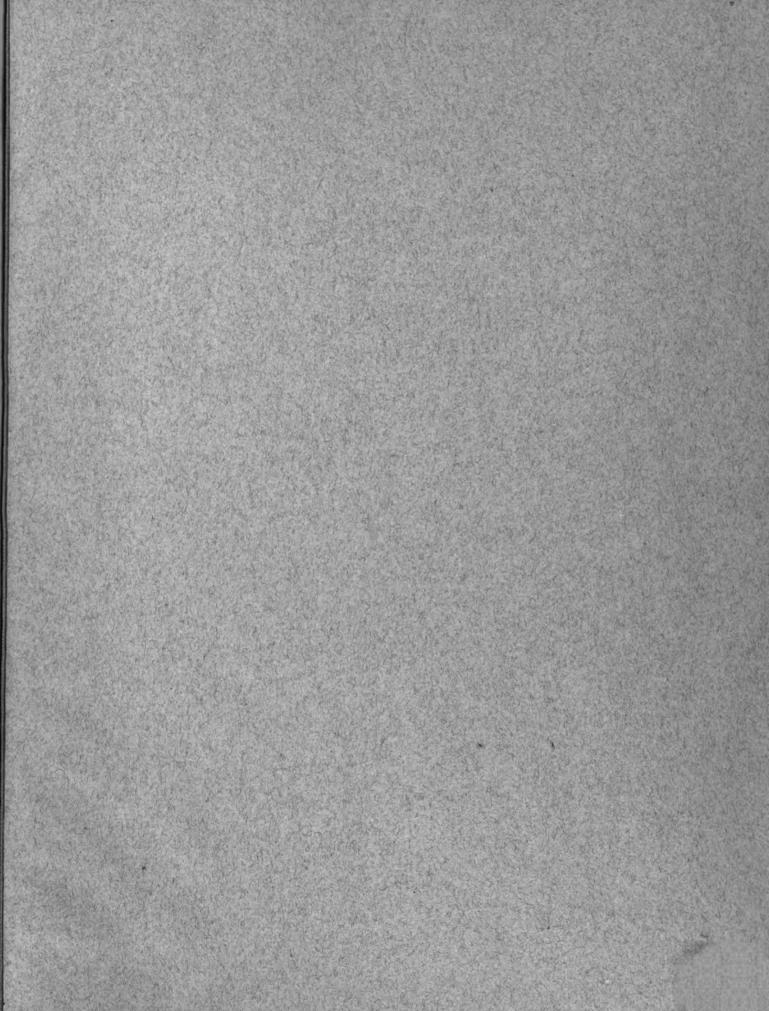

Figure XIV. Check. No Spray Applied.



Figure XV. Apple Tree Used in Experiment IV.



Figure XVI. Apple Tree Used in Experiment IV.




APT 27'38ROOM USE ONLY

Oct 29*38

Nov 28'38

Jul 25*40



