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PREFACE

This thesis is intended to discuss and illustrate the
extent of application of Foster'!s reactance theorem in the
design of electric wave filters, and to investigate an abb-
reviated method for determining the analytic form of the
reactance function for a given non-dissipative two-terminal
network which is discussed in volumes I and II of the book
" Communication Networks " by Mr. Ernst A. Guillemin.

The writer illustrates in this thesis that while this
abbreviated method applies well to many networks, it fails
to apply in its present form to many others. Therefore,
the writer has set a rigid procedure for the application of

the above method to any two-terminal network.

The writer wishes to extend his thanks and express his
appreciation to Dr. Joseph A. Strelzoff for his instructions
and suggestions during this year of advanced study which
made the development of this thesis possible.



INTRODUCTION

Filters in general are designed as non-dissipative
structures. The presence of resistance in the actual phy-
sical filters only modifies the behavior predicted on a
non-dissipative basis a little, hence the theory and design
of such four terminal networks is based upon the behavior
of structures with negligible or no ohmic resistance and
therefore, this discussion will take up only purely reactive

networks.



CHAPTER I

FOSTER'S REACTANCE THEOREM

1.1 A Statement of the Theorem

The most general driving-point impedance ( two-termi-
nal impedance ) Z (W), obtainable by means of a finite res-
istanceless network is a pure reactance which is an odd ra-
tional function of the frequency and which 1s completely
determined, except for a constant factor H, by assigning
the resonant and anti-resonant frequencies, subject to the
condition that they alternate and include both zero and
infinity. Any such impedance may be physically constructed
either by combining, in parallel, resonant circuits having
impedances of the form [ iLp £ ( iCp f‘l , or by combining,

in series, anti-resonant circuits having impedances of the
-
form [1Cp £ ( ilp )] .

1.2 Discussion

For a network driven from the first mesh, the general

form of the driving-point impedance function is

(W w ) (0T e (ia) gy

Zy (@) = JuH Wh(ute oy ) (Wt wh) eee s (We Wi y)



which can also be written as
Zy (W) T ——— (2)

in which D (w) is the determinent of the network and By (w)
is its minor after eliminating the first row and the first

column.

The zeros of the driving-point impedance which locate
the resonant frequencies are determined by the roots of
D (w) = 0, and the poles which locate the anti-resonant

frequencies are determined by the roots of B, (w) = 0.

For any possible combination of inductors and capaci-
tors to be realized physically in the form of a driving-
point impedance, it is necessary that the slope of the imp-

edance function versus frequency be everywhere positive i.e.,

a z,, (w)
Jdw

Y0 fOr < w0« W< o0 (3)

which requires that the poles and zeros alternate as expre-

ssed by



1.3 Example

The following example will illustrate the reactance

theoren.

Let us find the impedance function Z,,(w) of Fig. 1-1

and determine the equivalent network according to Foster's

theorem.
Lx 0l h
TN
)
C
Z,(w) — Ly .40 ¢ 1€
I, é T'ous
oth I, )
l-; *lh ATC_J
1M
Fig. 1-1
The mesh equations for Fig. 1-1 are
Ezx jwL I, - JuL,I, £ 0
1.
0 = -JuL, I # L, AL / —_—] I, - 1
JU ] ju( 3) CiC 3 ] 3%_0_‘ 3
%ﬁf?e,}
1 1l
0= o0 - S I3
JuC, Jw(cucz )
(Ci#Cy )




The driving-point impedance for Fig. 1-1 can now be

written
JuL, -jwl, o
-Jwl, Juwlgé _1__ - _1__
jb’c“ jNC.
0 - 1 y y
D (w) Juw(C, JHL.‘, 1
z“ (N) = = JNCb
By (w) JwLg A__ 1 -1
JuCa JwC,
- 1 Jsz/ 1
JwC, JwCy
where Lo = L/ L,
Ca= _C(C and
AR TY
Cp= C
C,/Co
Expanding the two determinents we have
u"(L,L‘-L.L,)-ng_'l-/L.e-_Lt; & R
Z,,(w) = jul, Ca ' Cb Cp) (CiCp C?

L

Substituting the values from Fig. 1-1 and simplifying

glives

Z,(w) =]

w 1 |- W(4,25 x 15;?114 (2 xl'g“L
60 |w® J(4.125 x10') £ (L.67x 109




The roots of the numerator are

7 /
wzz (4.25 x10 ) fv (4.25 xl(;' )z - 4(2 xlf;b)

2

6 U
= 5.4%x10 and 3.71 x10

The roots of the denominator are

7 /
(4.125x10 ) év (4.125 x10 )1 - 4(1.67x10“)
2

£

6 7
4.54%x10 and 3.67x10

and the final form of the driving-point impedance for
Fig. 1-1 is

Z“(N) = jN 1

2 6 2 7
(wW=-5.4%x10 )(w- 3,71 x10 )
60

(w'-4.54 x 10°) (w'-3.67x 10")

This shows that the resonant frequencles as character-

ized by the zeros of the system occur at

f"-"- 0 f3= 369 cps fs= 969 cps

while the anti-resonant frequencies as characterized by the

poles of the system occur at

£ = 339 ¢cps f =961 cps £ = o0
2 4 6



The reactance function having these properties is ill-

ustrated in Fig. 1-2
Z(w) ¢

]
1
|
[}
r

.

3
£
A
“

- e @ e W O - e - - -

|
|
|
|
‘
Fig. 1-2

Now let us determine the equivalent network that will
have the same driving-point impedance.

The driving-point impedance for this example was found
to have the following form

z,,(w)=3wH (u‘-w‘,) (w- w‘,) (5)

(%= wiy) (W=t

el £ 308 [@hA0)- ()] 4w} wpe wtel)

(W= W) (w'-tg)

2 6
T 1l |1 A W (41.24 - 42.5)10 £(20 - _1_g.67)1c;3
€0 (W= 4.54 x10%) (w*- 3.67 x10")

By partial fraction expansion this becomes

Z,W) =juwl |1 ¢ A £ Ar
é0 [ W o 4.54x10 Wt~ 3.67x 10’



Equating the last two equations and solving for A and
A, gives

-e

Ay = -8.6%10° Ay = -3.9 X10°

and finally

5 5
Z“("‘) = Jw-é—é- 1 - 8.6 X10 - 3.9 x10

(3
W 454 X 106 w."--3 .67 X107

The last equation shows that Foster'!s network is com-
posed of three branches in series, the first is an inductor

whose reactance is

1
JNBB

the second is a parallel branch of L and C whose reactance is

“Jw 1 . 3.9 X10°

T
60 W _-3,67x107

and the third again is an L C parallel branch whose reacta-

nce 1is

5
-Ju_l.- 8.6 x10

60 W' -4.54 x10°

The form of Foster'!s equivalent network as determined

by the partial fraction expansion is shewn in Fig. 1-3



Lo L
Cz C-lo
n Z“ (N) >
Fig. 1-3

The individual elements are determined from the follow-

ing formulas which can be easily derived

L, = H

= | IwYyy kK = 0,2,4
Ck [——f_""u o7 | w= o Iy hyy
Ly = 1

wg Ck

The following conclusions may be drawn from the above
example, for proofs, the reader is referred to the refer-
ences listed under bibliography :

a. From inspection of Fig. 1-1, it is seen to be con-
structed of six elements while the equivalent net-
work, Fig. 1-3, involved five elements. Similar
examples will show that the networks obtained by
Foster's method always contain the least number of
elements by means of which any driving-point imped-

ance can be realized.
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b. It is seen from equation (5) that the degree of the
determinental equation is five, which is equal to
the number of elements in the equivalent network
of Fig. 1-3.

¢c. The least number of elements by means of which any
two-terminal, linear, reactive network may be rea-
lized, and therefore the degree of the determinen-
tal equation of this equivalent network camnnot
exceed 2n where n is the number of meshes in the
network.

d. The least number of elements by means of which a
given driving-point impedance may be realized equals
one more than the sum of its internal zeros and poles.

In the light of what paragraph (d) above suggests, it

is interesting to point out the following :

1. In chapter two, article eleven, page 66 of his book
"Networks Lines and Fields", Prentice-Hall, Inc.,
1949, Mr. John D. Ryder states :

"In general, a network may have a total of resonant
and anti-resonant points not exceeding its number
of meshes plus one".

2. In section three, paragraph 21, page 201 of the
Radio Engineers! Handbock, first edition, ninth
impression, McGraw-Hill Book Company, Inc., 1943,
Mr. Frederick Emmons Terman makes the following

statement :
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"The sum of the number of poles and number of zeros
is one less than the number of independent meshes
of the network".
We notice immediately that the above two statements are
not in line with each other, and in addition, neither of them
agrees with condition (d) above. That the statements (1)

and (2) above are incorrect may be seen from the following

illustration.
AN T —
— — 4
Z(w) ? T Z(w) #
(a) (b)

2 (w) ¢

o e me we e e e e - o

(e)
Fig. 1-4

Without resorting to mathematical analysis it can be
seen that the network (a) above can be realized by network

(b) according to the reactance theorem and that both have
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a reactance function as illustrated by (c), Fig. 1-4. While
the network (a) is made of four meshes, we find from (c) that
the reactance function has a total of eight zeros and poles
or six internal zeros and poles, neither of which corresponds
to either of the statements in (1) or (2) while condition

(d) holds as stated.

1.4 An Abbreviated Process for Determining the Analytic Form

of the Reactance Function for a Given Non-dissipative Two-

terminal Network.

The determination of the equivalent network by Foster's
method in the above example was relatively simple. Had the
netvork 1n§olved five or more meshes the above method would
have been rather lengthy and laborious.

Recalling that the least number of elements by means of
which any given driving-point impedence function may be real-
ized is equal to the degree of the determinental equation of
the equivalent network, it seems that if we can find a simple
method by means of which we can determine the degree of the
determinental equation of any driving-point impedance, then
we can determine Foster's equivalent network without much
effort.

In section four, chapter five of his book "Communication
Networks", volume two, Mr. Ernst A. Guillemin gives such an

illustration in which Mr. Guillemin refers to a method outlined
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in section seven, chapter five of volume one for the deter-
mination of the degree of the determinental equation of any
netwvork. Mr. Guillemin then explains that the roots of the
determinental equation are equal to the number of the internal
zeros and poles plus one, and this number, he explains in sec-
tion five, chapter five, volume two, is equal to the least
number of elements by means of which any given driving-point
reactance function may be realized. Finally, in section
four, chapter five, volume two, Mr. Guillemin states that
this method of setting up the reactance function is applic-
able to any case.

To show whether or not this method is applicable to any
case, the example given in section seven, chapter five of
volume one 1s repeated here for illustration.

Consider the network shewn in Fig. 1-5

Fig. 1-5
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We begin by following the contour of mesh number one. If
it contains an inductance and a capacitance besides resistance
we weight it two. If it contains only inductance or only
capacitance besides resistance, we weight it one. If it con-
tains only resistance, we weight it zero. If the contour
contains several inductances or capacitances besldes resistance
the weight 1s also two except that in this case only one
inductance and one capacitance need be checked off in order
to give the mesh that weight.

In the same way we continue with the other meshes, bearing
in mind that a coil or condenser that has already been check-
ed off for a previous mesh does not count. Also, the prese-
nce of resistance is not essential unless the mesh contains
only capacitance. Having thus weighted all meshes, the total
number of modes ( the degree of the determinental equation )
equals the sum of all the weights.

The total weights for Fig. 1-5 add up to nine as shewn

below :

Mesh # Weight

o W

7
Total weights

\OIN H K O +H M N
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It would seem for an instant that we can apply this
method indiscriminately to any two terminal network in order
to obtain Foster's equivalent network. The following two
examples will show that thls 1s not the case.

Let us analyze Fig. 1-6

L2
L. 2
Z(w) ' 3L
S R T
I 2 ]’ 3
Fig. 1-6

It is readily seen that the total weights for the above
network add up to four.

The mesh equations for the above network are

E= JwiyI; - Jwl I, 0
0= -JwL.I, £ |§w@sL) £ 1 - 3w,/ 1]
e R rion ] I, [ ¥ 7wg, 1,
0= o -[jers 1 |1 Lo/La) £ 1 ] I
-J 2 —_j wCZ] 2 £ [1@( 2/ 3) _—J w02 3

The driving-point impedance can be written as follows



J WL, -J Wiy (o)
chz chz
0 -(Jwlyf 1) 5w (Lpfly)f 1
Zy @) =
w(Ll,/L)F 1 -(JwL /£ _1
~(JwL. £ 1 JW (L AL)E 1
Gutgf 20 ottt Lo

Expanding the two determinents and taking into account

all the initial conditions assigned to the network we have

- u" 2L.L
D (w) =W LjL,Ly -w 103

hence the determinental equation is of the fourth degree,
which corresponds also to the total weights of the network,

and therefore may deduce that the least number of elements by
means of which the network in Fig. 1-6 may be realized is eqyal
to four. If we attempt a partial fraction expansion of leﬁd)
however, we obtain the following

Z,,(w) = jJ 0L 1 4 A
11 1§ Ry ;
C,L

where L = LjLy £ LyL3 / LpLs
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The above form of the driving-point reactance function
shows that Foster's equivalent network is composed of two
branches in series, the first is an inductor, the second is an
inductor and a capacitor in parallel making a total of only
three elements and hence there is a discrepency.

As another example consider Fig. 1-7

[l
"

In the above network the total weights add up to seven,
but upon expanding the driving-point impedance function by
partial fractions we will find that the equivalent network
according to Foster is composed of only six elements.

Many other examples will show that while it is true that
the number of modes (the degree of the determinental equation)
of the equivalent network obtained by Foster's method is equal
to the number of elements in that equivalent network, it is not
always correct to assume that the least number of elements by
means of which any two terminal network may be realized is equal

to the degree of the determinental equation of the original
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network. Yet the method outlined earlier for determining
the degree of the determinental equation could be applied to
find the least number of elements by means of which any given
two-terminal network may be realized according to Foster, if
we follow this line of reasoning.

For a network having at least one independent inductor
and one independent capacitor in each of its meshes, the total
number of weights in that network is equal to the degree of
the determinental equation and hence to the least number of
elements in the equivalent network, and this number 1s equal
to 2n, where n is the number of independent meshes. This
condition is rather too narrow. In order to apply the method
outlined earlier to any network, we should follow these steps:

1. Disregard any mesh that contains only inductors or
only capacitors around its contour except the mesh
from which the nefwork is driven.

2. Number the remaining meshes each of which (except
the first) should have at least one capacitor and
one inductor (not necessarily independent) around
its contour.

3. Count the total number of weights of the numbered
meshes. If this number is even, then the elements
are made of equal number of inductors and capacitors.
If this number is odd, then the number of inductors
should equal to one more or one less than the num-

ber of capacitors. Any discrepency is discarded.
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1.5 Forms of the Possible Driving-Point Reactance Function
According to Foster

The four different forms that the driving-point impedance
can assume are given below :
a. If the network offers zero impedance at both zero and
infinite frequencies, the total number of weights is
an even number composed of equal number of inductors

and capacitors as shewn in Fig. 1-8

AN, LT Z(w) ' |
— | {
2 l —
Z (w) '”ﬂ ('R :hm o
| |
| !
(a) (b)
Fig. 1-8

The mathematical expression for this function is

* (3
Z W) = -jwE __(“ -%) (6)
(- o) (W' -wh)

b. Should the network offer infinite impedance both at
zero and infinite frequencies, the total number of
weights is again even with the number of inductors
equal to the number of capacitors. This 1s shewn

in Fig. 1-9
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Z(w)
‘ y 3 | '
AL )
] |
Z(N) - ! ' » W
| ) ‘“/“J (We jws
|
. :
:
(a) (v)
Fig. 1-9

The mathematical expression for this condition is

expressed by

2 @)= JwB (W-er ) (w-e3)(@P-wr)  (7)
(0= Wy ) (W -w5)

¢c. If a network offers zero impedance at zero frequency
and infinite impedance at infinite frequency, we
obtain the following

Z (W)
4

Z..

Wy /Wy

Z(w)

Y ; I

£
v

(a) (b)
Fig. 1-10
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This condition is expressed by

Z @)= Jwg (W-w3)(w-ws) (8)

(- @) (W -wl)

d. When the network offers infinite impedance at zero
frequency and zero impedance at infinite frequency,

the fourth possibility obtained is shewn below

Z(w)
~ )
— ! .
| |
1 |
Z (w) i ;"'t w3 |r“l0 > w
| |
) I
| |
(a) (b)
Fig. 1-11
which is expressed by
2 2
Z W) = -juE _ (W-wi)(w-w;) 9)

T
WHw - wy ) (W' wg)

Before closing this discussion, it should be noted that
the reactance functions discussed above may be realized phy-
sically in other fundamental forms than those given, but these
other forms will not be presented here since this 1is outside

the scope of this treatise.
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CHAPTER II

ELECTRIC FILTERS

2.1 Fundamental Behavior of Filters

Electric wave filters are four terminal networks which
discriminate between currents of different frequencies, tran-
smitting those currents which lie within a certain range of
frequencies and attenuating all others.

For our purposes here let us study the fundamental be-

havior of filters by presenting some examples.

Example 1

Fi.lter z Zr

Considering the terminating impedances Zg and Z. of
Fig. 2-1 to be resistive, let us analyze the behavior of the
filter when it takes the form of a shunt capacitor as shewn

in Fig. 2-2(a).

TN
c + L
(a) ()



23

If ZS= 0 and E is not changed by the current through the
generator, it can be easily seen that the capacitor will have
no effect on the voltage across Zr' If Zg # 0 and E is non-
sinusoidal, we find that the same fraction of each harmonic
of generated voltage appears across the load resistor Z, if
the capacitor is not in the circuit. When the capacitor 1is
in the circuit, we see that the voltage across Z, is the same
as 1t was with the capacitor removed only for zero frequency
while for all other frequencies the voltage across Zr is red-
uced, and as the harmonic order increases, it is increasingly
effective in suppressing the reaction on the load of the gen-
erated voltage. Hence, this capacitor has less effect on
lower freqyencies than on higher frequency harmonics and ap-
pears to pass the lower frequency effects of the generator
more effectively.

Now let us replace the shunt capacitor by the series
inductor appearing in Fig. 2-2(b). Here we find that at
zero frequency the inductor offers no impedence and therefore
does not affect the load action of a d-c component of the
generated voltage, whereas at infinite frequency the series
inductor offers infinite impedance and acts as an open circuit
seperating the generator from the load as did the shunt
circuit capacitor.

Thus, at zero and infinite frequencies the series ind-

uctor and shunt capacitor behave the same, both appear to pass
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the lower effects of the generator more effectively and there-

fore both are referred to as low-pass filters.

Example 2

____{P____
¢ L

(a) (b)
Fig. 2-3

By the same reasoning applied in examble 1, we can see
that a series capacitor and a shunt inductor as in Fig. 2-3
will have opposite effects to the shunt capacitor and series
inductor.

At zero frequency the series capacitor offers infinite
impedance, thus preventing any d-c component of generated
voltage from appearing across the load while at infinite fre-
quency it has no effect.

The shunt inductor acts as a short c¢ircuilt at zero freg-
uency, preventing any effect on the load while at infinite
frequency it acts as an open circuit and has no effect on the

load. Therefore both are referred to as high-pass filters.

Example 3

The four terminal network in Fig. 2-4(a) acts as a short

circuit at the frequency of resonance and therefore when placed
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between the generator and the load in Fig. 2-1 will connect
the generator directly to.the load at that frequency while

at zero and infinite frequencles the filter offers infinite
impedance and the generator will be isolated from the load,

or the circuit will be open.
—aﬂ\._“_.

L C C{J_:;L

(2) (b)
Fig. 2-3

At the frequency of resonance we also find that the net-
work in Fig. 2-4(b) offers infinite impedance, thus connecting
the generator directly to the load while at zero and infinite
frequencies the inductor and the capacitor respectively short
circuit the generator and therefore both networks are called

band-pass filters.

Example 4

[T
Ly

C L

o
—

(a) (b)
Fig. 2-5
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Finally consider the network in Fig. 2-5(a). Applying
this four terminal network to Fig. 2-1, we will see that the
generator will be disconnected from the load at the resonant
frequency, and at both zero and infinite frequencies the gen-
erator will be connected directly to the load.

If the network in Fig. 2-5(b) was used instead, the gen-
erator will be shorted at the resonant frequency but will be
across the load at zero and infinite frequencies and hence

both networks of Fig. 2-5 are known as band-elemination filters..

2.2 Constant-K Filters

Most filters are designed as symmetrical T or symmetrical
1T networks. Since T and 1f networks can be made equivalent,
it 1s immeterial which i1s used in this discussion.

Consider the following symmetrical T network

- an
ZC/Z Z./z

This network is evidently a low-pass filter because it
is constructed on a low-pass arrangement of inductors and

capacitors.
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From the discussion in the beginning of this chapter we
recall that at zero frequency, the impedance of the series
inductor was zero while the impedance of the shunt capacitor
was infinite. Since in addition we find that at infinite
frequency the series inductor offered infinite impedance but
the shunt capacitor offered zero impedance, in other words,
due to the fact that Zl had zeros when 22 had poles and vice
versa, it follows from Foster's reactance theorem that the
series inductor and the shunt capacitor are potentially re-
ciprocal, and by proper choice of L and C, they can be made
reciprocal with respect to any constant, say k2 (where k is

a real positive constant), hence the name "constant-k filters".

2.3 Determination of the Transmission and Attenuation Regions

Fig. 2-7 consists of a symmetrical T network connected

between a generator and a load whose impedance Zr =2

(o]

=JZO
E Z, % Zy

Fig‘ 2‘7

The loop equations for the above network are
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E = g gi # 22 ; I, - 2, I (1)
0=-2,1 /gg;/zz/zoglz (2)

Upon solving the above equations for I1 a nd 12, and

defining El = é‘ we obtain

I
2 21 £ 2,42, %
1= 27 = e (3)
2 Z,

|

from which we get

¥
L=z (e-1) -3 (4)
Substituting the value of Z, from equation (4) into the

equation for the characteristic impedance of the T network

/ 2
2. [/ Zy 2, 4%
°T Yy TR (5)
glves
¥ 2 L §
Z, (e -1) -2 e=0 (6)

Equation (6) can be simplified to

2% h
e - Zé'/ 122 e (7)

Z3
a nd after arranging terms we get

-Y
o £ e= 1 4% (8)
2 22,
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or cosh¥=1 4 %4 (10)
RZo
where ¥ =xt+ty[3 (10)

and therefore
cosh ¥ = coshexcosfB £ J sinhex sin g3 (11)

¥ is the propagation constant,e<the attenuation constant and
B the phase constant.

Since Z; and Z, are pure reactances, their ratio is real
and therefore equation (11) can be real only if the reactive

term is equal to zero
sinhe sinp = 0 (12)

and this relation is true if either sinheor s:lnp is equal
to zero.
For sinhe = 0

&= 0 and coshx= 1
this condition gives
cosg=1/42Z1 (13)
RZy
and therefore
1 <§ 14% ;< 1
RZ2

or

-1 cosh<1 (14)
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Since in this region the attenuation is zero, it must be a
transmission region.

For sinf3= 0

=7 and cosf3= -1
When cos = £ 1 A= 0
and coshet = é 14 _g_g_ ; >1 (15)
Z2
For cosf3= -1 A= 1¢
and 21%_2_1__3< -1 (16)
2Zy

The regions expressed by equations (15) and (16) are attenua-

tion regions. Therefore transmission regions exist for
~-1< cosh¥< 1

and outside this region attenuation exist.
The frequencies at which the network changes from a trans-
mission to an attenuation region and vice versa are called cut-

off frequencles. These frequenciles occur such that

cosh¥= /1
Therefore 1 4 E_l__ = -1
22,
gives 2] = -1 (as one cutoff condition) (17)
L2y
and 142 =41

RZo
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gives Z) =0 (as the second cutoff condition)
47 (18)
Hence the transmission region is defined by

124 <o (19)
17,

The transmission region can be expressed in a different
form which will be useful in the following analysis.
From the relation

251nh2§=coshx-1

N

substitution in equation (9) yields

sinh¥= " / 21 (20)
2 4Z,
Z
Let /41 =Fx (21)
' V 423 .

where Xk may be complex.
For the ratio / Z, to be real, the expansion

475
sinh L = cosh®%sinB- j sinh%cos £
r4 2 7z 2 z

requires that the imaginary part vanish. This may be so if
either sinh 3‘{ or cos—g- is equal to zero.
For s:lnh‘-’-;-‘-

<=0 and cosh‘_"z-= 1
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hence sin_g= Xy (22)
For cos.{.:.= 0
p=t™ and sin.’.;-=’fl
.
and cosh 5= | % | (23)

The transmission range can now be expressed

-1£x, <1 (24)
and the attenuation range by

Ix.|z1 (25)

In this last derivation, negative &« was discarded because

such values are impossible in a passive structure.

2.4 Design Procedure

We have already defined the constant-K filter to be a
filter whose component impedances are reciprocal to a real
positive constant. Let us write this statement in the form

of an equation
21 Zo = R2 (26)
1 €2 =

If the characteristic ‘impedance of the T network of Fig.2-1
is resistive and i1f the network is terminated with this char-
acteristic impedance Zo’ it can be easily shewn that the input
impedance will be equal to Zo, and since the T network is

purely reactive we can secure maximum power transfer. The
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nominal value of the characteristic impedance is R, defined
by equation (26).

From equations (21) and (26) we obtain the following
relation

X " gjﬁ (27)

and for reactive networks, it is seen that X, is a real funec-
tion of frequency similar to Zl’

The usual practice in the design of constant-K filters
is to choose the value of the characteristic impedance R
equal to the resistance the filter is to work into and out
of. Next we need to design Z; only, for when this is det-
ermined, Z,; can be evaluated by reciprocation. Z; is det-
ermined from equations (27) and (24). Equation (27) deter-

mines the cutoff frequencies which correspond to
z) = # 23R (28)

The point Xk = 0 corresponds to Zy =0, 1.e., to a zero for
the reactance Z;, therefore Zq must have as many zeros as the
filter 1s to have transmission regions. Since a reactance
function has either a zero or a pole at the origin and at
infinity, that 1is, since Zl cannot have a finite non-zero
value at either of the extremities of the frequency range, it
follows that a pass-band starting at the origin or terminat-
ing at infinity requires that Z; have a zero at the origin or
at infinity respectively.
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These regions are called external, to distinguish them
from internal regions for which both boundaries 1lie at finite
non-zero frequencies. Thus Z1 must have one zero for each
internal pass-band and a zero at the origin or at infinity for
an external pass-band according to whether the latter is loc-
ated at the origin or at infinity respectively. This deter-
mines the structure of Z,.

Any reactance function is determined by specifying the
locations of its internal poles and zeros plus one additional
information which may be the value of the reactance at one
other frequency. That is, the number of determining factors
is equal to the number of internal zeros, plus the number of
internal poles, plus one. This number equals the least num-
ber of elements by means of which the reactance function may
be realized according to Foster's reactance theorem, and from
the above discussion we see that this number coincides with
the number of cutoff frequencies or boundaries between trans-

mission and attenuatuon regions.

2.5 FExamples on the Design of Constant-K Filters

a. Low-pass Filters

In article 2.2 we saw that a symmetrical T network con-
structed on a low-pass arrangement of inductors and capacitors

may be used as a low-pass filter, Fig. 2-8(a).
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S = 4z
—_—n TN \v*c2
e~ FPass !
&~ Attn.
y 4 fe!l S
i — f
(a) (v)
Fig. 2-8

The equation expressing the transmission region
-1gh < (18)
424
is demonstrated by Fig. 2-8(b).

The cutoff frequency 1s the point of intersection of Zl
and -422 since at that point Z; = -422. Hence a transmiss-
ion range starts at the frequency at which Z, = 0 and ends
at the frequency at which Z1 = -422, or the transmission
range extends from £ = 0 to f = fc and the frequeqcies above
fc lie in an attenuation range.

It is seen however from Fig. 2-8(b) that the network (a)
does not discriminate sharply between frequencies above and
below f,, the response changes gradually. In the ideal case
it 1s desired that the transition between the transmission
and attenuation regions be abrupt. In practice, this ideal

condition can be approached, for a sharper frequency discri-
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mination can be obtalned by cascading two or more identical
sections and connecting them between the generator and the
load. This form of network is called a ladder-type filter.
Still another approach to the ideal case may be had by making
use of the m-derived type of filters the analysis of which
will be given in article 2-6.

In Fig. 2-8(a) we have

Z, Z, = K? (29)

JwC C
vwhere R = /g was defined as the nominal value of the charac-
c

or Zy Z, = JWL. 1 __ =L = R? (30)

teristic impedance.

The characteristic impedance of a T network is

. / »
Z =./ 712, (1 £ 21
o 7/ A%z | 4'223
/ 2

or Z. =,/ L (1 -WILC (31)
° VvV ¢ 2 4 ;
Making use of the relation Zj= -4Z; we obtain
£, 1 (32)
T Vic
_
therefore Zo =4/ L 2 1- (; fg (33)
VBT
or z =Ry 1- X2 (34)
o V
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where X = % (35)
c
Equation (34) shows that for frequencies below cutoff,
the characteristic impedance 1s a pure resistance varying
from R= L for low frequencies to zero for f = f,, and for
frequencges above cutoff the characteristic impedance is a

pure imaginary. The variations of the characteristic imped-
ance with frequency are illustrated in Fig. 2-9.

Applying equations (22) and (23) to the network treated

here, we obtain the following conditions
Xz B

' (o0srsr,) (36)

w
'

-1
= 2 sin f
£.) /

-1

R
T

-1
2 h f
°o% (F) &L £ £ 00
/Y (f.41<e0) (37)

®
"

""' y
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The above two conditions are demonstrated in Fig. 2-10
x 8

1 4 P 8 /

|
1
&) ! =

I

I
= > §

Fig. 2-10
b, Hizh-Pass Filters
-'—1f'—‘_*}__‘ +

(a) (b)
‘Fig. 2-11

Fig. 2-11(a) is a high-pass filter because it is const-
ructed on a high-pass arrangement of inductors and capacitors.
This condition is illustrated by Fig. 2-11(b).

The characteristic impedance for this network is

Zo=R [1-1 (38)
x?
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and the variations of this equation with frequency are illus-
trated in Fig. 2-12 below
Zo

Fig. 2-12

The variations of the attenuation and phase character-

istics are

® = 2 cosh™t fg
(f ) (0<£<f,) (39)

(£,41f <o) (40)

B = -2 sin-l(g_)

These conditions are illustrated in Fig. 2-13
«

o |
|

l«' f
f
-w‘p

Figo 2-13
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c. Band-Pass Filters

'\"bZz
i
— | || =T — M I\ z
Z 4 ! !
'/2 /2 AN
= Attp. '« Pass ~Attn.
= o
(a) (b)
Fig. 2-14
In the above network
7 = 3 ngb.lrcl-;_; (41)
NCl
and
Z, = juls (42)
2 1L, C,
therefore

ZyZ, = R?

T
- g (w6 _ (43)
C1 1- w*Ly Cp
If the anti-resonant frequency of the shunt arm is made

to correspond to the resonant frequency of the series arm, then

2
WweLy C; =Wely Cp (44)

or

-
[
Q
)
1

= Ly Cp (45)
and hence

(46)

[N
()
N
V)
(]
ll:"l
o
]
|t"
N =
]
o o)
M
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At the cutoff frequencies
Zy = -4Z3
multiplying both sides of the above equation by Z1 gives

Z1° = 42125 = -4RP
or
zy = £ 23R
so that
Zy at lowver cutoff frequency = -Z; at upper cutoff frequency
The variations of the characteristic impedance with fre-
quency are shewn in Fig. 2-15 and given by equation (47)

Zo = RV(wz-u)(w*-w}) (47)
W (W2 -y
:RC&‘:
]
P RE= A - A Tmag.
£, '
z l I feq
- | 1
] |
I
6\‘£nna3-
Fig. 2-15

The attenuation and phase characteristics are

t k3
X = 2 cosh™t _W-We
W (Wq-wy) (fop &£ &29) (48)

p=1r
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1 2 2
& = 2 cosh™ _We - &
W (We-0dy) (0<f<f,) (49)
B=-1
and
X =0
Wi wg
- -1 — ——9
The above variations are illustrated in Fig. 2-16
< 0
' i :;/
o | !
! L
+T ! / B
l~ 1
fe,' g d
- e
B |
! !
d. Band-Elimination Filters

This filter is obtained by interchanging the series and

shunt arms of Fig. 2-14(a), as illustrated in Fig. 2-17

zvi Zp | —
[:H L

Z,

1’ -

(a)

(b)

Fig . 2-17
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At the cutoff frequencies

z

1 T 42
and

z, = £ 1B

Equation (51) and Fig. 2-18 give the variations of the

characteristic impedance with frequency

Zo = RV(wr_wp) (@ -wi) (51)
(wet ~w?®)

Inaag-

+ Gy
R&al:
R | |

|

.

Real

k,
I
[

MIM“;'
]

|
|
i
|
t
| 'fct
|
|
)
]
]

The attenuation and phase characteristics are given below

o = N £ = fo (52)
B =-17

f f<f
of = 2 cosp~l W(wWi-wi) (fo <£<f¢p) (53)

<
wE-w
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A=
B = 2 sin~1 wW(Wa-wi) (fep L £< ) (54)
) Wo=-w*
X =0
= 2 gin-1 w(u,.-w,) } (o (f(fcl) (55)
[3 ) “o"-wt
B =1
« = 2 cosh~l w (w;-w.)} (f°1<f< fo) (56)
we ~w®
«< (3

+1T1

2.6 The m-Derived T Section

We recall from the previous article that the constant-K
filters do not discriminate sharply between frequencies above
and below cutoff, and that the characteristic impedance is
not constant over the pass-band so that a satisfying impedance
match is not possible.

Where impedance matching is not important, the attenuation
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near cutoff may be built up by cascading several constant-K
sections and in this case, if every section had the same
characteristic impedance, the sections remain matched at all
frequencies. The propagation constant will assume the value
n ¥, wvhere n is the number of sections in cascade. The char-
actersstic impedance however still does not improve.

A more economical way than cascading several constant-K
sections to improve the attenuation near cutoff is by use of
the so-called m-derived filter which will now be discussed.

Referring to the constant-K low-pass filter shewn in
Fig. 2-8(a), let us derive from this one an improved filter
that will have the same allocation of attenuation and trans-
mission regions, and that will have the same characteristic
impedance.

Let us indicate the series and shunt arms of the derived
filter by Z] and Z} respectively.

Since the derived filter in question is a low-pass filter,
the serieg arm must remain to be an inductor, either a frac-
tion of, equal to, or a multiple of Z1 of the constant-K

filter and hence let us assume
]

m to be determined. In order that the characteristic imped-
ances of the derived and prototype sections be equal, the

following must be true
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@) £ mzy7y = 2)° £ 72, (58)
4 4
from which
z, =224 1mf 7 (59)
m 4m

Equation (59) shows that the shunt arm of the derived

network is made of an inductor and a capacitor in series hav-

ing impedances equal to 1-m2 Z; and Eg respectively.

m
The m-derived low-pass filter and the reactance curve

demonstrating its performance are shewn below

+ \ ’
\ Z
7 g i p
\ ’
- \\'“zz

(2) (b)
Fig. 2-20

The shunt arm in Fig. 2-20(a) is seen to be a series
resonant circuit with resonance above cutoff. At this fre-
quency the shunt arm appears as a short circuit and the atten-
uation becomes infinite and by making the frequency at the
point of infinite attenuation (foe) close to the cutoff fre-

quency (fc), the attenuation near cutoff can be made high.
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Since Z, in the constént-K filter is opposite in sign
to Z,, the same relation should remain in the two series im-
pedances of the shunt arm of the m-derived filter. This
can be true if ;;QE in equation (59) is positive, therefore
(1-m2) and m mustAge positive, thus giving the limits on the
value of m

0&m<1 (60)

We have seen in Fig. 2-20 that the frequency of reson-
ance occurs above cutoff, this follows from the requirement
that below fc the shunt arm appears capacitive. Therefore

at the resonant frequencu
| Z2f- |1;m?_ Zy | (61)
m 4m

and for the low-pass filter we get

1 = 1-m?® 2Wf_L (62)
2T o, mC m
hence
£ 1 (63)
T V(@-m?) LC

Since the cutoff frequency for the low-pass filter is

£,= 1 ___ (64)
¢ 1w yTIc

the frequency of infinite attenuation will be
fe

foo< ———= (65)
(1-mR)




48

from which
m = \///l - (%9)2 (66)

From equation (66) m may be found for any specified foo .
The variation of attenuation over the stop band for a
low-pass m-derived filter may be found from the relation
cosh¥= 14 &
22, (9)
Following the same procedure applied in the derivation
of the constant-K filter we find that in an attenuation region

cosf} = ’f 1
When cosf = £, f=o0
and
cosha= 1 £ E];_
22,
-1 - wnk
2[ 1 - wL ,1-m?
WwmC jm )
=1 - w? m? LC

2[1- &LC(l_Z_ﬁ)]

Applying the relations (61), (66), and (64) to the above

we get



49

2
2 m?
coshx=z 1 - fe 5 (67)
1- £ aa?)
fe
When cosf3= -1, B =1
and 223 m2
£ 2
coshex = ¢ -1 (68)
i. (l 2
1 - f 2 -n )
c
and when <« Z 0, coshx= 1
and
- A
cosf=1/ "1
Z2 2£% m2
2
- fe
=1 - (69)
2
1- £ (1-n?)
£
c

The above conditions are demonstrated in Fig. 2-21

for m= 0.6

« B

I ¢

;Q ';“

Fig. 2-21
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Fig. 2-21 shows thatinfinite attenuation is achieved at
f o0 but that the attenuation above foe falls to low values.
If high attenuation is desired over the whole attenuation
band 1t is necessary to use the above section in series with
a prototype section to provide high attenuation at frequen-
cies much higher than cutoff. Such a combination of net-
works is known as a composite filter.

A condition that was imposed on the m-derived filter
was that 1ts characteristic impedance be equal to that of

the prototype. The proof 1is as follows

ZOm - VZoczsc

mZ) 1-m? 2. £ 22
\/(mzlxl-mzzl/z_z)“;ﬁ/‘z"(m 1 j:)
2 Zm )2 D2y 7192 7, 4 22
2 m m

p———

2
\/zlz2 £ Z_}f . 2 Zoy (70)

Applying the transformation relations developed above
to the other three prototype networks lead to m-derived net-
works. Since the procedure is the same, these networks will
not be derived here and the reader is referred to the refer-
ences listed in the bibliography for immediate reference.

We recall that the characteristic impedance of the con-
stant-K filter was not constant over the pass band, the same

can also be said for the m-derived filter since Z,, = Z,¢ .
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To iImprove the response of the characteristic impedance,i.e.,
to make it nearly constant over the transmission range, half
sections of the m-derived filters are used. The character-
istic impedance for one end of this network can be made to
have the same value as that of the constant-K filter and the
characteristic impedance of the other end will have nearly

the desired properties.

2.7 Termination with m-Derived Half Sections

Here we will'be concerned with the design of an L section
(half section) such that it changes its characteristics with
frequency in such a way that the filter will be approximately

matched to its load at all frequencies over the transmission

range.
mz, me,
a 3 c e > 9
f-mt t-m
m'z] e
Zap— «—Z4 Zeg — « Zgp,
1Z4 2Z;
.m “m
b d f h
Fig. 2-22

Referring to the inverted L sections of an m-derived

T section in Fig. 2-22 and solving for 24y, we get
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VZaboc Zabsc

Zgd

2m 1 2

1-w? gl £ 2%2 4 B2y
2m m 2

[1 4 (m?) & ] 212,
425 144

429

La? g /4 222)° 24
m

ml) 2
[1 f R B 2o (71)

and hence Z,y is found to be a function of Zo.‘.r modified by

a value which varies with m. For the low-pass filter equa-

tion (71) bvecomes

£2
Z,p = R [1- (1-mR) }_2‘] (72)
C
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Fig. 2-23 shows that by using the value m=0.6 for the
L section, a nearly constant value of Z,, equal R is obtained
for most of the pass band.

The image impedance at the terminals c¢,d in Fig. 2-22

is found as follows

V choc chsc

\/(mZ]_ . 1_m2 Zl £ 2zz)mzl

Zeg

ﬁlz2 (1 £ A ): Zoy (73)

Similarly we find that Z.p = Zoy and Zgy, = Zg,.  There-
fore a generator of internal impedance R may be connected to
terminals a,b and a load of value R to terminals g,h and bet-
ween the c,d and e,f terminals a constant-K and an m-derived
T sections designed for a value R may be inserted and obtain
a satisfactory match over the largest range of the transmiss-
ion band and also obtain maximum power transfer. The char-
acteristic impedance will be nearly constant and equal to the
value R except near cutoff. These half sections are referred
to as End or Terminating half-sections.

The preceding illustrates the advantages of the m-derived
sectlions especially when cascaded with a prototype section.

High attenuation at other frequencies in the attenuation band
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may still be obtained by cascading as many m-derived sections
as regquired.

A further improvement however can be achieved by deri-
vation of another m-section from the first m-section just
as the latter was derived from the prototype. These sect-
ions are called "double m-derived" or "mm-derived" sections.
The procedure is similar to that used in deriving the m-der-
ived from the prototype section and therefore will not be

repeated here since this is not the purpose of this discussion.

2.8 Example

The following example will illustrate the advantages of
cascading a prototype section and an m-derived section ter-
minated with half sections, the whole network being a compo-
site low-pass filter.

Design a composite low-pass filter with a 2000 ohms res-
istance termination. A cutoff frequency of 3000 cycles and
very high attenuation at 3840, 5000, and eo cycles are required.

First we proceed with the design of the prototype. The
cutoff frequency for a constant-K filter is that at which

Z1 = =42, and for a low-pass filter this becomes

Wel = _4
we C
.2
or o fc LC =1 (74)

but RZ ,L
C
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and hence L = R<C

substituting this value of L in equation (74) gives for the

value of the shunt capacitor

Therefore for the prototype section

L

R_= __2000 = 0.213 henry
£

=2
L, ArK 3000

and C: 1 = 1 = 0.053 mfd
w f.R @ X 3000 X 2000

This section is shewn in Fig. 2-24

L/2 L/2
T N

Q;:C

Fig. 2-24
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The m-derived section providing high attenuation at
3840 cycles will have a value of m given by the equation

8
"

(@)

- (38

1- 0.64 =

:

Therefore this section may be used for the terminating half
sections, for we saw earlier that terminating half sections
using the value m= 0.6 provide a nearly constant value of
image impedance equal to R over about 85 per cent of the pass

band. The component values for the half sections are then

mL = 0.6 X0,213 = 0.0639 henry
2 2
1-m% = 1-0.36 X 0-213 = 0.114 henry
2m 1.2
and mC = 06.6X0.053 = 0.0159 mfd
2 2
These end sections are shewn below
ml./z mL/,
We g
2
t-m
2m Zm L
me m¢
T® : T

Figo 2-25
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To achlieve high attenuation at 5000 cycles the m'-der-

ived section requires an m'! having the value

‘/1- (3000)7-
5000

dl-0.36 = 008

The component values for the m'-derived section are

m'

m'L = 0.8X0.213 = 0.0852 henry
2 2
1-m'2L = 1= 0.36 0.213 = 6.0426 henry
Zm? 3.2
and m'C = 0.8X0.053 = 0.0424 mfd

The composite filter thus derived is shewn below

."_‘.L‘ L [ U mbl
z | 7 'y mb | o=

___m\_|_nm__rm+rm__mu_rm_

N[?_

= en g oty
am 4m’ > an

mC | mC - L mC
2 7T T 2

ey = G e - e e - - - E—— —
e s e W Ee e = G- e G G- = e

Fig . 2-26
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Of course the series arms between any two sections in Fig.
2-26 may be combined to form one physical inductor.
The attenuation of each section and of the whole compo-

site network of Fig.2-26 are shewn below

2]

x (nepers)
=

In the above curves:
dash-dot curve = response of constant-K mid-section

dashed curve = response of m-derived mid-section

dotted curve = response of m-derived terminations

solid curve response of composite filter.
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2.9 Conclusion

In the examples given in a rticle 2-5 the application
of Foster'!s reactance theorem in the design of the reacta-
nce arms of the constant-K filter networks was illustrated.
In designing the series arm for example, Z1 must have as
many zeros as the filter 1s to have transmission regions,
or one zero for each internal pass band and a zero at the
origin or at infinity for an external pass band as the case
may be. Thus a series arm of any form may be reduced by
means of Foster'!s reactance theorem to an equivalent network
containing the least number of elements as discussed in
Chapter I. With Z; determined, Z2 is 1ts reciprocal with
respect to R? .

The procedure in the design of the reactance arms of
the m-derived filter follows the same as that of the constant-
K filter in so far as the application of the reactance theo-
rem is concerned. However, the shunt arm in the m-derived
section is not the reciprocal of the series arm, it is rather
derived from it as discussed earlier.

Therefore, the arms of a constant-K and an m-derived
filter do contain the least number of elements according to
Foster, for they were designed as two-terminal networks.

We should wonder at this point whether or not a compo-
site filter may still be reduced to contain less number of

elements. We have seen earlier that each section in the
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composite network contains least number of elements, and
that we can use either the constant-K or the m-derived sec-
tion to give us the required pass and stop bands, the cutoff
point and the characteristic impedance. The reason for cas-
cading these sections however was to build up the attenuation
in the stop band at the cutoff and higher frequencies, for
each m-derived section can be designed to boost the attenua-
tion at some frequency above cutoff, and hence the composite
network in the example of article 2-8 does contain the least
number of elements designed for a cutoff frequency of 3000
cycles and to have high attenuation at 3840, 5000, and cycles,
and we know that that network can be reduced to a single
section, a prototype for example, and still have the same
allocation of attenuation and transmission regions, cutoff
frequency and characteristic impedance, but of course they
will not be as high as desired at frequencies above cutoff
in the stop band as offered by the composite network, neither
will the characteristic impedance be nearly constant over
the transmission range. Therefore, to achieve these impro-
vements we cascade a prototype with as many m-derived sect-
ions as required, each of which contains least number of
elements.

Now to try and apply Foster's and Cauer's theorems in-
order to further reduce the number of elements in either the

constant-K or the m-derived sections is not possible because
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these theorems are first limited to the treatment of net-
works involving only two kinds of elements namely R,C; R,L;
and L,C networks and second, the question regarding the
equivalence of networks with respect to more than one pair
of terminals is completely outside the scope of the above

theorems.,
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