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ABSTRACT

FLOW OF POLYVINYLPYRROLIDONE SOLUTIONS THROUGH PACKED BEDS

By

Ramadas U. Acharya

The semi-theoretical Ergun equation is well established for flow of

Newtonian fluids through packed beds. This definitive study provides a

basis for analysis of effects of non-Newtonian fluid flow through packed

beds and is based on data for aqueous solutions of Polyvinylpyrrolidone

(PVPL'which are viscous non-Newtonian fluids. A number of equations

describing flow phenomena in packed beds are derivable for purely viscous

non-Newtonian fluids; all of which reduce to the Blake-Kozeny form in the

case of Newtonian fluids.

Meter's four parameter model was assumed to characterize the rheolo-

gical behaviour of aqueous PVP solutions. The Meter's model analog of the

Ergun equation was employed to correlate the pressure drop-flow rate data.

Both numerical and analytical techniques were employed in this analysis.

Packed bed pressure drop versus flow rate data were obtained for aqueous

PVP solutions of concentration 0.5, 1.0, 3.0 and 4.0 percent by weight.

It was concluded that the modified Ergun equation may be used to describe

results for the 0.5 and 1.0 percent by weight PVP solutions. However,

wide deviations between the experimental friction factor and those from

the Ergun equation were observed for 3.0 and 4.0 percent solutions. It

is speculated that this departure from the modified Ergun equation is a

result of surface and viscoelastic effects. Modification in the capillary

model may be needed to account for such effects. A comparative study

between constant flow rate and constant pressure drop experiments is sug-

gested in order to further resolve this matter.
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INTRODUCTION

A study of non-Newtonian fluid flow through porous media has wide

applications in engineering science. Packed bed equations are very

useful in individual problems such as industrial filtration of polymer

solutions and slurries, movement of aqueous solutions through sand in

secondary oil recovery, and design of packed bed reactors and towers.

Furthermore, models pr0posed in the literature to describe non-Newtonian

fluid behaviour have been tested in most cases only in relatively simple

flow geometry. A test of these models for highly complex geometry of

packed beds, for example, enhances the reliability and confidence in

their application.

The most definitive study of flow of Newtonian fluids through

porous medium appears to be that of Ergun [1]. Ergun's study provides a

basis for similar analysis of non-Newtonian fluid flow. Good discus-

sions of this analysis and extension of Ergun equation to viscous non-

Newtonian fluids are provided by Bird g£_al.[2], Gaitonde g£_al,[3],‘

Marshall g£_al.[4], Christopher g£_§1.[5], Sadowski g£_gl.[6], and Park

'g£_§l.[7]. Different types of generalized methods to study this problem

have been proposed. Aside from dimensional analysis, the main approach

to this problem may be categorized as (1) generalized Darcy's law

approach, (2) the capillary model combined with a particular rheological

equation, or (3) the use of Newtonian equations containing an apparent

viscosity evaluated at some appropriate average bed shear rate. So far,
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the second approach has been most preferred. Bird, Sadowski, Marshall,

Gaitonde, and Park are a few among those who used this approach selecting

Ellis, Power law, Hershel Bulkley, Spriggs and Meter's rheological equa-

tions for a variety of polymer solutions.

The capillary model equation for flow in packed bed is a simplifi-

cation since the actual flow involves fluids passing through irregular

interstices between the particles. Deviations might be expected for non-

Newtonian fluid flow through packed beds, due to frequent acceleration

and deceleration. A literature survey indicated some evidence of visco-

elastic effects and surface adsorption phenomena. Sadowski pointed this

out and claimed to have observed viscoelastic and surface adsorption

effects for aqueous polymer solutions. Marshall and Metzner also

observed similar deviations and argued that the viscoelastic effect is

the single cause of deviations. On the contrary, Christopher, Middleman,

and Gaitonde, in similar studies of polymeric fluids, observed no such

deviations, hence reported absence of viscoelastic effects. ChristOpher

correlated Sadowski's data successfully with capillary model equation

combined with Power law and surmised that Sadowski's conclusion is an

artifact of his modification of Blake-Kozeny equation.

More recently Park g£_al. reported occurrence of viscoelastic

effects for dilute polymeric solutions. In particular for PVP solu-

tions departure from Ergun equation occurred at effective Reynolds

number greater than one. It was noted that the deviations were larger

for most dilute solution in contrast to the other polymeric solutions.

The deviations decreased with an increase in concentration. Thus it was

decided to investigate PVP solutions further and extend the data to

higher Reynolds numbers.
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The following assumptions were made in developing the capillary

model equations for packed beds in this analysis:

(1) The fluid is incompressible.

(2) The porous medium is isotropic and of regular geometry.

(3) Inertial terms from the equation of motion are deleted.

(4) The fluid is homogeneous.



PACKED BED THEORY AND EQUATIONS

Analyses of non-Newtonian fluid flow through packed bed generally

fall into three categories: (1) generalized scaleup, (2) the capillary

model combined with a particular rheological equation, and (3) the use

of Newtonian equation containing an apparent viscosity evaluated at some

average bed shear rate. Approach (1) is an extension of Darcy's law and

does not require a rheological model. Darcy's law simply states that for

a given bed and Newtonian fluid, flow rate is proportional to the pres-

sure drop. As discussed by Park g£_gl.[7], the inherent complexities

involved in the solution are quite cumbersome. The use of Newtonian

equations containing an apparent viscosity evaluated at some appropriate

average bed shear rate is not generally an acceptable solution, although

it may turn out to be reliable for a particular solution. The second

method as the choice made by the earlier workers, is both reasonable and

supported by extensive experimental measurements. It is chosen as the

basis for analyzing measurements of this study.

In the second method, the packed bed is regarded as a bundle of

capillary tubes of complex cross sections and shape. The theory is then

developed by applying the results of hydrodynamic analysis of straight

tube to the collection of crooked capillaries. The tortuous shape of

the capillaries is accommodated by making an appropriate correction to

the length by a factor 25/12, as in the Newtonian case. Of course, it

becomes necessary to make a suitable choice of rheological equation.
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Apparently the choice is between a constitutive equation which describes

viscoelastic or normal stress effects and equations describing purely

viscous flow behaviour. An appropriate choice would be that one which

fits the experimental viscometric data for all ranges of shear rate; at

least in the range of average bed shear rate.

It has been shown that Meter's[8] model given below may be used to

predict the non-Newtonian properties of the PVP solutions.

 

no - nan

n = 7100+ T (H (1)

1* HT'm

where n = viscosity,

no,nm = viscosities at shear rates approaching zero and infinity,

Tm shear rate when viscosity drops down to 1/2, and

o = constant exponent.

Park[9] investigated this model for PVP solutions and determined the

parameters n”, no, Tm and a. Table 6 contains the parameters for

the relevant solutions. Equation (1) can be rewritten as:

0-1 a--l T]:

all :0 Izlm

The equations derived in Appendix A based on the hydrodynamic

Tlo
“.fi—= 1+

 

analysis of the capillary model of the packed bed for Meter's model may

be summarized as follows. The average velocity Vz through the avail-

able cross section for flow of the capillary is

[In] o-l

T 1 +- -—-

2Rh w Tm

(V2) = 3 O Trz T] T a-l dTrz (3)

TIOTw 1 + -21 -£2'

“0 {an
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where Tw = 2RhAP/2L, shear stress at the wall of the capillary,

AP = pressure drop, and L = length of the bed.

The effective viscosity “eff is:

* 1 * 1 * 1

1 = .1. 1+_Z_EE_)Q- _T_‘2(Es °” _L+_2_(Iv_z)“‘}
neff “0 0+1 TIn T10 TIn 0+3 0+1 Tm

* a . .-T] 2 1? 2 f* 0 l

+, .2 .Ja .+ 4‘ .4! + _ + - - -

1] 0 T 0+1 30+l '1‘

m m

*

where Tw = 12 DPAP / 25 6M(1-e)L, is a measure of wall shear stress in

 

 

the bed. The effective viscosity so defined is useful only when

2 * 2 2 * 2
(Um/110) (Tw/Tm) < l . When (nab/110) (Tw/Tm) Z l, superficial velocity

V0 based on the column diameter, expressed as a product of average velo-

city and porosity e,

 

 

 

 

= c =
‘ 1“

V0 "(V2 *3 I Trz T] T 0-1 dTrz (5)
TI T 0 co rz

0 w 1 + — T

“0 m

63D:AP

n = (6)

eff 150 M?(1-.)2v0

and

150(l-e)MT]eff

f =
(7)

D G

p 0

This result is good when the void fraction is less than 0.5 and is valid

only in the region given by DPGO/(l-e)Mneff <'10, where Co = pVb.

For highly turbulent flow in packed beds the friction factor is a func-

tion of roughness only, and remains fairly constant and is,

f = 1.75 (a)
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Hence the modified Ergun equation as in Appendix A is:

 

 

  

 

"D - 3.

e.__AP .2 :2_ ... 15° +1.75 (9)
, 2 I, l-s D G

CO M 4p 0

(l'e)me£f

If we define

f = 2.93. 32. iii.

expt 2 I. l-e
G M
O .

and

DPGO

f calc = 150 / 1 + 1.75

(1-6)Mneff

it can be seen that in the low flow regions the logarithmic plot of

vs will be a straight line with a slope of -l.
fexpt ' (NRe)eff

Equation (5) is numerically solved to obtain effective viscosity.

Appendix A contains the details and the techniques involved in the

analysis. Hence in principle one can modify the capillary tube approach

to account for departure from Newtonian flow. In this study the Meter's

model equation for flow through a tube packed with spherical particles

was applied.



EXPERIMENTAL PROCEDURE

The schematic diagram (Figure 1) depicts the experimental set up.

The equipment consisted of two glass columns of inner diameter 1 inch

and 1/2 inch and spherical glass beads of average diameter 0.1621, 0.0597

and 0.0432 centimeters. Segments of glass columns are assembled together

with aluminum.flanges. Two stainless steel screens at either end con-

tained the glass beads in the column. Extensive care is needed while

packing to avoid any possible air entrapment. On either end, at least

6 inches of extra packing above the test section were provided to avoid

end effects and foreign particles influencing the flow pattern in the

test section. Two pre-calibrated rotameters for low and high flow rates

respectively were used. "U" tube mercury manometers served to measure

the pressure drop. The packed glass column and the tank containing the

solution were immersed in constant temperature water jacket and bath

respectively. Extreme care was taken to maintain the temperature at

21 : 0.5°C in the baths. Water was recirculated for the entire period

in the bath and the jacket.

The average molecular weight of PVP (k-90) used was 360000.

Aqueous solutions of PVP of 0.5, 1.0, 3.0, 4.0 percent by weight were

prepared in distilled water and filtered to avoid gel.

The solution was forced to flow through the bed by a constant

nitrogen pressure in the tank. Prior to recording any data the solution

was allowed to flow for some time until the refractive index of the
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solution matched with that of the sample. Constant flow rate and pres-

sure drop were the indicators of steady state flow. Pressure drop and

flow rate were measured simultaneously under steady state conditions.

The bed porosity was calculated from the packed bed data for dis-

tilled water by employing Ergun equation and known particle diameter

before each run of solution. Only data for which (N less than

Re)eff

10 have been used for such bed calibrations. Experimental data were

obtained for water in the same range as that of the solutions.



RESULTS AND DISCUSSION

Results of the experiments are summarized in Figures 2 through 6 as

a set of plots depicting the f and fca for eachexpt vs. (N
1c Re)eff

aqueous solution. Effective viscosity vs. wall shear rate plots (Figure

7 and Figure 8) are presented to make further comparison and to gauge the

usefulness of Ergun equation to predict viscosity of non-Newtonian

fluids.

The Newtonian data presented in Figure 6 serves to calibrate the

bed and technique. Figures 2 and 3 show the general agreement of 0.5

and 1.0 percent solutions and water with Ergun equation. This agreement

is an indication of accuracy and consistency of sets of data. This was

felt especially important in view of Park's[9] contrasting conclusions.

Having observed greater deviations for 0.5 and 1.0 percent solutions, he

concluded that the viscoelastic effects are significant above (NRe)eff

equal to 1. The check between the Newtonian fluid and PVP solutions

confirm no such viscoelastic effects. These results are consistent with

those reported by Gaitonde et a1. and Christopher et a1. even though the

flow regions are of considerably higher Reynolds number.

The data for 3.0 and 4.0 percent solutions when plotted (Figure 4

and Figure 5) fall well above the theoretical curve. In fact, the data

fall on a line somewhat parallel to the theoretical curve. The ratio of

the experimental values of friction factor and those given by the Ergun

12
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equation is as high as 4 for 3.0 percent solution and 6.5 for 4.0 percent

solution. Sadowski, Marshall and Metzner also observed major departures

from purely viscous fluid flow similar to those reported in Figures 4 and

5 for polymeric solutions. Sadowski, in his analysis of natrasol solu-

tions, contended that the cause of such deviations are viscoelastic and

surface adsorption phenomena. However, Christopher g£_al, correlated

Sadowski's original data successfully with power law model equation in

place of Ellis model equation used by the latter. Marshal and Metzner

argued that the deviation in their case is only due to viscoelastic

effect and ruled out surface adsorption.

The characteristic parameters for a fluid, Ellis and Deborah num-

bers only indicate the threshold value of the friction factor beyond

which deviations appear. As compared to the prior investigations, the

present study differs in the fact that the range of Reynolds number is

very high. Marshall and Metzner showed that above Deborah numbers 0.1

to 1.0 the deviations might appear. The utility of such a number in

this range of Reynolds number is not meaningful since either Ellis or

Deborah number would be well above 1.

A qualitative discussion is presented below in an attempt to explain

the deviations.

The theoretical analysis is based on the solution of viscometric

flow problem (i.e., flow in a long straight circular tube). In such a

flow no time dependent elastic effects are included or expected. In a

porous medium the fluid moves through a tortuous path and it encounters

constantly changing cross sections. The complexities in the bed subjects

an elemental volume of a solution to continual acceleration and decelera-

tion as it flows through the interstices. If the fluid relaxation time
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Tl/Tm is small with respect to the time required to go through a con-

traction or expansion VO/Dp, the fluid will accommodate and no elastic

effects would be observed. For example, Newtonian fluids accommodatv

quickly. 0n the other hand, if the relaxation time is large with

respect to the time to go through a contraction or expansion, the fluid

will not accommodate. As a result, the elastic effects cause deviation

from the theoretical analysis.

Secondly, the surface effects arise as polymer molecules get

adsorbed on a solid surface at multiple points of attachment. The

remainder of the molecules extend more or less freely into the solvent

and serve as additional points of attachment for an eventual gel forma-

tion. In a flow system, at the points of contact between the bed

particles, a network of molecules may be formed. At the same time the

flowing fluid constantly tends to remove adsorbed molecules from the

surface. The cumulative effect is to decrease the bed permeability and

a rise in pressure drop would be observed. The experimental friction

factor values would be greater than the model predicted values.

Thus the viscoelastic and surface effects are the causes of devia-

tions observed for 3.0 and 4.0 percent PVP solutions. From Figures 4

and 5 it appears as though the adsorption builds up as the flow rate

increases (indicated by the increase in the observed friction factor) to a

certain extent and tends to remain constant (indicated by the portion of

the curve which is fairly parallel to the theoretical line). It is

possible that this phenomena is due to constant flow rates. Although

Marshall and Metzner ruled out adsorption, the implication to be drawn

here is that neither one of the effects should be discarded from use in

analysis. Two of the reasons sighted in discarding adsorption are that
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the flows through the capillary tubes of comparable size revealed no

such problems (Ueber 1964), and solution concentrations employed were

chosen partly on considerations of optical clarity. The capillaries

formed in the bed probably do not compare in the surface adsorption

property with the straight capillary tubes of the same size, and the

absence of adsorption on the straight capillary tubes for PVP solutions

needs to be verified. The optical clarity of the solutions does not

have much weight on surface adsorption.

It is hardly possible to distinguish quantitatively the two effects

separately. A test for this would be a comparison of constant flow rate

experiments with the constant pressure drop experiments. In the con-

stant pressure drop experiments, the formation of gel or adsorption

decrease the flow rate. This decrease in flow rate further increases

adsorption. In the absence of this phenomena the experiments are

identical.

No attempt has been made to conduct constant pressure drop experi-

ments and to correlate the surface effects quantitatively to Ergun equa-

tion. Present theoretical analysis does not include such effects and

hence the equation fails to explain the data for 3.0 and 4.0 percent

solutions. A thorough analysis supported by constant pressure drop and

flow rate experiments is needed to accommodate the effects.



CONCLUSIONS

Results of the present investigation may be summarized as follows:

Modified Ergun equation may be used for 0.5 and 1.0 percent PVP

solutions. No evidence of viscoelastic effects were observed.

For higher concentrations, i.e., 3.0 and 4.0 percent solutions, sur-

face and viscoelastic effects were very significant. Large devia-

tions between experimental values of friction factor and those from

modified Ergun equation were observed.

Capillary model equation for packed bed needs further modification

to account for viscoelastic and surface effects. A comparison

between constant pressure drop and constant flow rate experiments is

desired to account quantitatively the deviations.

A thorough investigation at low Reynolds number (below 0.5) may also

be made for 3.0 and 4.0 percent solutions to determine the adsorp-

tion effects (viscoelastic effects are negligible in that range).
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APPENDIX A

PACKED BED THEORY AND EQUATIONS

l. Rheological equation for PVP solutions:

Polymers and polymer solutions exhibit the same general behaviour

with regard to the non-Newtonian viscosity as a function of shear stress

T. In the limit of very small shear stress the viscosity approaches a

lower limiting viscosity no. With increasing shear stress the vis-

cosity n decreases, and if the shear stress can be increased suffi-

ciently, the viscosity becomes constant at an upper limit nu. Hence

no and nm are measurable characteristic quantities of the fluid.

Another measurable quantity is Tm, the shear stress when n drops

down to 1/2('nO + Hm). Meter related these properties and suggested a

model:

T -

n = no, +-—-'—‘:—n§—3 (A-I)

145;,

where 0 = exponent (a constant). 0 indicates the abruptness of the

transition from 'no to Um. nO/ng Tlco/Tm are two characteristic

times of the fluid. If nm is much smaller than no, Equation (A-l)

can be rewritten as

0-1 °° 0-1 J

.. 12qu Mg m 
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Park [9] studied extensively the rheological behavior of PVP solutions

and determined the parameters conforming to Meter's model. The parame-

ters are listed in Table l.

2. Packed bed equations:

It will be shown that the packed bed equations for non-Newtonian

fluids reduces to the Newtonian form of Blake - Kozney and Ergun equa-

tions. The following assumptions are made in the derivation of the

relevent equations.

1. The fluid is incompressible.

2. The porous medium is isotropic and of regular geometry.

3. Inertial terms from the equation of motion are deleted.

4. Fluid is homogeneous.

5. Temperature is constant.

Consider the flow of non-Newtonian fluid through a circular tube of

radius R. I ‘Y
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Making a momentum balance over the shell of a thickness dr and length

L ; the following differential equation is obtained.
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where Trz = shear stress, r = radius of the shell, and AP = pressure

drop. Integrating,

T = ég'r +'§
rrz 2L (A-4)

The constant C must be zero if the momentum flux is not to be infinite

at r=0. Hence

_ a -
Trz - 2L r (A 5)

At the wall,

RAP '

(T ) = T = --' (A-6)

rz r=R w 2L

Trz = Tw(r/R) (A-7)

It is assumed that (l) the fluid is in steady state laminar flow,

(2) the fluid is time independent, and (3) there is no slip between the

fluid and the tube wall. The volumetric flow rate through the cylindri-

cal shell of thickness dr and length L is

dQ = Vz 2W r dr - (A-8)

where Vz = velocity at radius r.

R

Q = n J) Vz 2r dr

0

org 2

= n J VZ d(r ) (A-9)

0

Integrating by parts,
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Q =~n J r2 dvz (A-lO)

 

2 2

R T

2 rz _ R

2 T rz

T w

w

Making these substitutions into equation (A-lO),

 

  

 

 

j?w R2T:z de

Q = -" ( )d'r
0 T 2 dr rz

W

(A-ll)

T

w dV

02> = s = -—%r Ms)“-
nR T d

w

where (V?) = average velocity. From Meter‘s equation,

rz 0-1

dvz Trz 1-+ Tm

'- dr = ‘nOJU = Trz n T 0-1 (A-12)

n + °° 1+—°'3- 33
00 T 0-1 “0 Tm

14—5—1)
T

m

Hence

T 2 0 1

T 1+ r

R ['w 3 T111 1

<vz> _ 3 J Trz “a (T 0-1 dTrz (A- 3)
T 0 rz

w 1 + T— 71,—)

0 m_

If no.é> nm, the denominator can be expressed in terms of powers of

(nu/n0)(Trz/Tm)' Equation (A-13) can be integrated analytically.
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Analytical Technique:

R Tw 3 Trz)0-1 Tim Trz 0-1 J

4V2) = "'3' I Trz 1 + T— - :fi— "1:— d Trz (A-14)

0 m 0 n1
J:

Integrating term by term,

T 4 0--1 nm -1 T 0-1

(V) . ..13__w_ 1+__ _)_ ... 0.9.4.1..(1
z 3 4 0+3 T 0+3 0+1 T

T “0 m m

w

(A-15)

11m 2(TW 2"“2 2 4 (Tw)0-1

+ 11—0 T" 311+E‘fi 7r" +'+'+'
m m

Imagine that the packed bed is a bundle of tubes of very complicated

cross section with hydraulic radius Rh. The average velocity in the

available cross section for flow in a single tube is:

2RhTw 0-1 11000-1 4 2 Tw -1

<Vz> = «no 1+a'a(':":') fie) 33+;I(F)
‘m

20_2 (A-16)
2

+ (fig) (a) 0+1 + 30+1\T4:.) + ' + '

The hydraulic radius may be expressed in terms of the void fraction "e"

 

 

and the wetted surface "a" per unit volume of the bed in the following

way 0

= cross section available for flow

Rh wetted perimeter

= volume available for flow

Rh total wetted surface

volume of voids)

( volume of bed _ e

wetted surface) -

( volume of bed

m
l
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where "a" is related to specific surface aV (the total particle

surface/the volume of the particle) by

a = av(l—e)

The quantity av defined in terms of the mean particle diameter DP is

a = 6/D

V P

(A-17)

L

Rh 6(l-e)

Mehta and Hawley [8] modified hydraulic radius for Newtonian fluid flow

through packed bed as

= wetted surface of spheres +~wetted surface of wall

Rh volume of bed

..‘il’z.
[l + 6(l-c)] 6(l-e)

6D 4D

= .—__;E__ .____IL__
6(1-e)M where M 6Dc(1-e) + 1

For packed beds the superficial velocity V is given by

0

VO = (V2) 6

substituting for R, Tw in (A-16),
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v = e 23312 12 AP 1+ iCRh—j—PTd 12(2RhAPY-l

o 6(1-e)M| 21.4110 0+3 211m no 2mm

_&_.+__Z__2RhAP 0-1 +.fl2 2 2RhAP 20-2 (A-18)

0+3 0+4. 2LT n 2LT
m 0 m

 

-2-+ (ZRhAP)+-+-+--

0+1 30+1 2LTm

A second assumption implicitly made in the foregoing development is that

the path of the fluid going through in the bed is of length L; that is

the same as the length of the bed. Actually, of course, the liquid tra-

verses a very tortuous path, the length of which may be half again as

long as the length L. For Newtonian fluids experimental measurements

indicated the length be changed to‘25/12/L. It is quite logical to

assume the same value for non-Newtonian fluids. Insertion of this value

into Equation (A-18) gives

3 2 Ti:

6 D AP T:)0-1)0-1-l

V0 = 2 1 + +31" +3++1117:-
150 M2 (1- 6:) L110 0’ a c”

(A-19)
*

+'-"_l-_002-:—EZa-22+4 :I‘E-l +--

+110 0+1 30+1T

*

where Tw = 12 Dp e AP/25 6M(1-e)L. Equation (A-l9) is Meter's model

 

analog of Blake-Kozeny equation for Newtonian fluids; i.e.,

€3D2AP

P
v =

(A—ZO)

O 150 MZL(1-e)2'neff

 

where
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T* 1 T* 1 ( * 1
1' = .1; 1.+.JE_(JEYI -‘nm _E)a _&_.+ 2 E!) -

'ne f f T10 0+3 Tm 110( Tm 0+3 0+1 Tm

(A-2l)

n 2 T? 20-2 T? 0-1

1. .:fl .1: .JL_., 4 .11 + .....

“o T 0+1 30+1 T

m m

However Equation (A-19, (A-21) are applicable when

n 2 T* 2
.JE .11

(n0) (Tm) S 1

Numerical technique discussed later in this section solves this problem

and has no bounds as above.

For highly turbulent flow, friction factor is only a function of

roughness. For the flow of fluid through a bed of spheres, the pressure

drop AP is given by

AP = F/A (A-22)

where F is the force exerted on the solid surface and A is the cross

sectional area. The friction factor f, a dimensionless quantity, is

also called a drag coefficient. It is approximately a constant at

higher Reynolds numbers.

Consider the fluid flowing through a cylindrical tube as before.

The fluid will exert a force F on the solid surface which is equal to:

F = A' K f

where A' is the surface area of the column or the wetted surface, K

is the kinetic energy per unit volume, and f is the friction factor;

therefore,

1 .2
K — 2 . (v2) .
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and A' 2nR L

'
1
1

II (21111 L)( % p 022) f (11-23)

substituting for R in terms of hydraulic radius,

ZRhAP

214-:- o (v; 2)

 

Experimental data for Newtonian fluids indicated that:

6 f = 3.5

Hence

1.75 p(1-€)V3
 

  

9.2
(A-24)

L 3
e D

P

Combining Equation (A-20 and Equation (A-24),

150 n sz (14;)2 1.75 p(1-e)V2M
AP eff O 0

T = 2 3 + 3 “'25)
D e e D

P P

which is Ergun equation for non-Newtonian fluids. Rewriting in terms of

 

GO’ mass flow rate, and in the dimensionless groups:

AP D 63 Mgl-ez
—-1 i ——- = 150 +1.75 (A-26)
MG 2 I. 1- D Go

0 _JL__

“eff

and effective Reynolds number is:

DPGO

(N ) = _ . (A-27)
Re eff (1 e)Mneff
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Numerical Technique:

The Ergun equation so derived is only applicable when

(“a/“0)2 (T:/ T1192 5 1

A numerical integration of Equation (A-13) does not impose any such

bounds on Ergun equation.

With proper substitution for R, Tw

 

 

* — 1 rz 0-1 q

26Dr Tw 3 +- Tm

Vz = 6M(1-e) T*3 J, Trz n T '0-1

w w rz

MT)0 u1 .

From Equation (A-20) and (A-28)

 

 

€3D2AP

TI = P -

eff 150 M2(l-e)2[ (v2) 8]

D c
_ p 0

(NRe)eff ‘ M(1-e)'fleff

 

in Equation (A-13) gives

dT z (A-28)

(A-29)

(A-30)

With these two definitions Ergun equation is versatile and is applicable

at all ranges.

The method involves application of Simpson's three point integra-

tion formula. The salient feature of the computer program is the Sub-

routine Sizsimp which divides the intervals

applies Simpson's rule over each interval.

. -10

n number of times and

This is repeated until
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