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ABSTRACT

FLOW OF POLYVINYLPYRROLIDONE SOLUTIONS THROUGH PACKED BEDS

By

Ramadas U. Acharya

The semi-theoretical Ergun equation is well established for flow of
Newtonian fluids through packed beds. This definitive study provides a
basis for analysis of effects of non-Newtonian fluid flow through packed
beds and is based on data for aqueous solutions of Polyvinylpyrrolidone
(PVP), which are viscous non-Newtonian fluids. A number of equations
describing flow phenomena in packed beds are derivable for purely viscous
non-Newtonian fluids; all of which reduce to the Blake-Kozeny form in the

case of Newtonian fluids.

Meter's four parameter model was assumed to characterize the rheolo-
gical behaviour of aqueous PVP solutions. The Meter's model analog of the
Ergun equation was employed to correlate the pressure drop-flow rate data.
Both numerical and analytical techniques were employed in this analysis.
Packed bed pressure drop versus flow rate data were obtained for aqueous
PVP solutions of concentration 0.5, 1.0, 3.0 and 4.0 percent by weight.

It was concluded that the modified Ergun equation may be used to describe
results for the 0.5 and 1.0 percent by weight PVP solutions. However,
wide deviations between the experimental friction factor and those from
the Ergun equation were observed for 3.0 and 4.0 percent solutions. It

is speculated that this departure from the modified Ergun equation is a
result of surface and viscoelastic effects. Modification in the capillary
model may be needed to account for such effects. A comparative study
between constant flow rate and constant pressure drop experiments is sug-

gested in order to further resolve this matter.
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INTRODUCTION

A study of non-Newtonian fluid flow through porous media has wide
applications in engineering science. Packed bed equations are very
useful in individual problems such as industrial filtration of polymer
solutions and slurries, movement of aqueous solutions through sand in
secondary oil recovery, and design of packed bed reactors and towers.
Furthermore, models proposed in the literature to describe non-Newtonian
fluid behaviour have been tested in most cases only in relatively simple
flow geometry. A test of these models for highly complex geometry of
packed beds, for example, enhances the reliability and confidence in

their application.

The most definitive study of flow of Newtonian fluids through
porous medium appears to be that of Ergun [1]. Ergun's study provides a
basis for similar analysis of non-Newtonian fluid flow. Good discus-
sions of this analysis and extension of Ergun equation to viscous non-
Newtonian fluids are provided by Bird et al.[2], Gaitonde et al.[3],
Marshall et al.[4], Christopher et al.(5], Sadowski et al.[6], and Park
et al.[7]. Different types of generalized methods to study this problem
have been proposed. Aside from dimensional analysis, the main approach
to this problem may be categorized as (1) generalized Darcy's law
approach, (2) the capillary model combined with a particular rheological
equation, or (3) the use of Newtonian equations containing an apparent

viscosity evaluated at some appropriate average bed shear rate. So far,
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the second approach has been most preferred. Bird, Sadowski, Marshall,
Gaitonde, and Park are a few among those who used this approach selecting
Ellis, Power law, Hershel Bulkley, Spriggs and Meter's rheological equa-

tions for a variety of polymer solutions.

The capillary model equation for flow in packed bed is a simplifi-
cation since the actual flow involves fluids passing through irregular
interstices between the particles. Deviations might be expected for non-
Newtonian fluid flow through packed beds, due to frequent acceleration
and deceleration. A literature survey indicated some evidence of visco-
elastic effects and surface adsorption phenomena. Sadowski pointed this
out and claimed to have observed viscoelastic and surface adsorption
effects for aqueous polymer solutions. Marshall and Metzner also
observed similar deviations and argued that the viscoelastic effect is
the single cause of deviations. On the contrary, Christopher, Middleman,
and Gaitonde, in similar studies of polymeric fluvids, observed no such
deviations, hence reported absence of viscoelastic effects. Christopher
correlated Sadowski's data successfully with capillary model equation
combined with Power law and surmised that Sadowski's conclusion is an

artifact of his modification of Blake-Kozeny equation.

More recently Park et al. reported occurrence of viscoelastic
effects for dilute polymeric solutions. In particular for PVP solu-
tions departure from Ergun equation occurred at effective Reynolds
number greater than one. It was noted that the deviations were larger
for most dilute solution in contrast to the other polymeric solutions.
The deviations decreased with an increase in concentration. Thus it was
decided to investigate PVP solutions further and extend the data to

higher Reynolds numbers.
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The following assumptions were made in developing the capillary
model equations for packed beds in this analysis:

(1) The fluid is incompressible.

(2) The porous medium is isotropic and of regular geometry.

(3) 1Inertial terms from the equation of motion are deleted.

(4) The fluid is homogeneous.



PACKED BED THEORY AND EQUATIONS

Analyses of non-Newtonian fluid flow through packed bed generally
fall into three categories: (1) generalized scaleup, (2) the capillary
model combined with a particular rheological equation, and (3) the use
of Newtonian equation containing an apparent viscosity evaluated at some
average bed shear rate. Approach (1) is an extension of Darcy's law and
does not require a rheological model. Darcy's law simply states that for
a given bed and Newtonian fluid, flow rate is proportional to the pres-
sure drop. As discussed by Park et al.(7], the inherent complexities
involved in the solution are quite cumbersome. The use of Newtonian
equations containing an apparent viscosity evaluated at some appropriate
average bed shear rate is not generally an acceptable solution, although
it may turn out to be reliable for a particular solution. The second
method as the choice made by the earlier workers, is both reasonable and
supported by extensive experimental measurements. It is chosen as the

basis for analyzing measurements of this study.

In the second method, the packed bed is regarded as a bundle of
capillary tubes of complex cross sections and shape. The theory is then
developed by applying the results of hydrodynamic analysis of straight
tube to the collection of crooked capillaries. The tortuous shape of
the capillaries is accommodated by making an appropriate correction to
the length by a factor 25/12, as in the Newtonian case. Of course, it

becomes necessary to make a suitable choice of rheological equation.
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Apparently the choice is between a constitutive equation which describes
viscoelastic or normal stress effects and equations describing purely
viscous flow behaviour. An appropriate choice would be that one which
fits the experimental viscometric data for all ranges of shear rate; at

least in the range of average bed shear rate.

It has been shown that Meter's[8] model given below may be used to

predict the non-Newtonian properties of the PVP solutions.

no-nm
M= Mt T e 1)
=]
m
where 1 = viscosity,

ﬂo,nm = viscosities at shear rates approaching zero and infinity,

T
m

shear rate when viscosity drops down to 1/2, and

a = constant exponent.
Park[9] investigated this model for PVP solutions and determined the
parameters ﬂw, nO’ Tm and o. Table 6 contains the parameters for

the relevant solutions. Equation (1) can be rewritten as:

|l a-1 a-1 n
R PR
m
The equations derived in Appendix A based on the hydrodynamic
analysis of the capillary model of the packed bed for Meter's model may
be summarized as follows. The average velocity Vz through the avail-

able cross section for flow of the capillary is

a-1
rz

2Rh W

vy = —= | T, (3)
{ z .nOTw3 3
T‘o
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where Tw = 2RhAP/2L, shear stress at the wall of the capillary,

AP = pressure drop, and L = length of the bed.

The effective viscosity neff is:

*\a-1 -1 *\a-1
neff “o o+l Tm ﬂo Tm «+3  a+l Tm
20-2

2 , . * *a-l
=) (S 2, o (% .o
Mo T a+l 7 3o+1\T -
m m

*
where Tw = 12 DPAP / 25 6M(l-€)L, is a measure of wall shear stress in

the bed. The effective viscosity so defined is useful only when
2  * 2 2, * 2
(ﬂw/ﬂo) (Tw/Tm) <1l. When (nm/no) (Tw/Tm) > 1, superficial velocity

Vo based on the column diameter, expressed as a product of average velo-

* T a-1
1+ (=2
eZRh 3 - T

city and porosity e,

T
w
= [>4 = m
Vo T = (v *3J| Tez M _(T_\o-1 dTrz (3
NAT 0 o rz
0O'w 1 +— T
nO m
e3p;AP
T = (6)
eff 150 M.2(1-e)2v0
and
150(1-e)MT]eff
£ = N
D G
poO

This result is good when the void fraction is less than 0.5 and is valid
only in the region given by DPGO/(I-e)MT]eff < 10, where Gy = pYpe
For highly turbulent flow in packed beds the friction factor is a func-

tion of roughness only, and remains fairly constant and is,

f = 1.75 (8)
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Hence the modified Ergun equation as in Appendix A is:

D 3
e AP f7pl e | _ 150 1.75 (9)
. 2 L l-¢ D GO
ho M p

(1'8)Mneff

If we define

£ = p AP BE Jéi
expt 2 L l-¢
G, M
0 g
and
D G,
£ calec = 150 /| —E—— 4+ 1.75
(1-e)MN ¢ e

it can be seen that in the low flow regions the logarithmic plot of

fexpt vs. (NRe)eff

will be a straight line with a slope of -1.

Equation (5) is numerically solved to obtain effective viscosity.
Appendix A contains the details and the techniques involved in the
analysis. Hence in principle one can modify the capillary tube approach
to account for departure from Newtonian flow. In this study the Meter's

model equation for flow through a tube packed with spherical particles

was applied.



EXPERIMENTAL PROCEDURE

The schematic diagram (Figure 1) depicts the experimental set up.
The equipment consisted of two glass columns of inner diameter 1 inch
and 1/2 inch and spherical glass beads of average diameter 0.1621, 0.0597
and 0.0432 centimeters. Segments of glass columns are assembled together
with aluminum flanges. Two stainless steel screens at either end con-
tained the glass beads in the column. Extensive care is needed while
packing to avoid any possible air entrapment. On either end, at least
6 inches of extra packing above the test section were provided to avoid
end effects and foreign particles influencing the flow pattern in the
test section. Two pre-calibrated rotameters for low and high flow rates
respectively were used. "U" tube mercury manometers served to measure
the pressure drop. The packed glass column and the tank containing the
solution were immersed in constant temperature water jacket and bath
respectively. Extreme care was taken to maintain the temperature at
21 + 0.5°C in the baths. Water was recirculated for the entire period

in the bath and the jacket.

The average molecular weight of PVP (k-90) used was 360000.
Aqueous solutions of PVP of 0.5, 1.0, 3.0, 4.0 percent by weight were

prepared in distilled water and filtered to avoid gel.

The solution was forced to flow through the bed by a constant
nitrogen pressure in the tank. Prior to recording any data the solution

was allowed to flow for some time until the refractive index of the
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solution matched with that of the sample. Constant flow rate and pres-
sure drop were the indicators of steady state flow. Pressure drop and

flow rate were measured simultaneously under steady state conditioms.

The bed porosity was calculated from the packed bed data for dis-
tilled water by employing Ergﬁn equation and known particle diameter
before each run of solution. Only data for which (NRe)eff less than
10 have been used for such bed calibrations. Experimental data were

obtained for water in the same range as that of the solutions.



RESULTS AND DISCUSSION

Results of the experiments are summarized in Figures 2 through 6 as

a set of plots depicting the £ and fca vs. (N for each

expt 1c Re)eff

aqueous solution. Effective viscosity vs. wall shear rate plots (Figure
7 and Figure 8) are presented to make further comparison and to gauge the

usefulness of Ergun equation to predict viscosity of non-Newtonian

fluids.

The Newtonian data presented in Figure 6 serves to calibrate the
bed and technique. Figures 2 and 3 show the general agreement of 0.5
and 1.0 percent solutions and water with Ergun equation. This agreement
i8 an indication of accuracy and consistency of sets of data. This was
felt especially important in view of Park's[9] contrasting conclusions.
Having observed greater deviations for 0.5 and 1.0 percent solutions, he
concluded that the viscoelastic effects are significant above (NRe)eff
equal to 1. The check between the Newtonian fluid and PVP solutions
confirm no such viscoelastic effects. These results are consistent with

those reported by Gaitonde et al. and Christopher et al. even though the

flow regions are of considerably higher Reynolds number.

The data for 3.0 and 4.0 percent solutions when plotted (Figure &4
and Figure 5) fall well above the theoretical curve. 1In fact, the data
fall on a line somewhat parallel to the theoretical curve. The ratio of

the experimental values of friction factor and those given by the Ergun

12
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equation is as high as 4 for 3.0 percent solution and 6.5 for 4.0 percent

solution. Sadowski, Marshall and Metzner also observed major departures
from purely viscous fluid flow similar to those reported in Figures 4 and
5 for polymeric solutions. Sadowski, in his analysis of natrasol solu-
tions, contended that the cause of such deviations are viscoelastic and
surface adsorption phenomena. However, Christopher et al. correlated
Sadowski's original data successfully with power law model equation in
place of Ellis model equation used by the latter. Marshal and Metzner
argued that the deviation in their case is only due to viscoelastic

effect and ruled out surface adsorption.

The characteristic parameters for a fluid, Ellis and Deborah num-
bers only indicate the threshold value of the friction factor beyond
which deviations appear. As compared to the prior investigations, the
present study differs in the fact that the range of Reynolds number is
very high. Marshall and Metzner showed that above Deborah numbers 0.1
to 1.0 the deviations might appear. The utility of such a number in
this range of Reynolds number is not meaningful since either Ellis or

Deborah number would be well above 1.

A qualitative discussion is presented below in an attempt to explain

the deviations.

The theoretical analysis is based on the solution of viscometric
flow problem (i.e., flow in a long straight circular tube). In such a
flow no time dependent elastic effects are included or expected. 1In a
porous medium the fluid moves through a tortuous path and it encounters
constantly changing cross sections. The complexities in the bed subjects
an elemental volume of a solution to continual acceleration and decelera-

tion as it flows through the interstices. If the fluid relaxation time
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T]/Tm is small with respect to the time required to go through a con-
traction or expansion VO/Dp’ the fluid will accommodate and no elastic
effects would be observed. For example, Newtonian fluids accommodate
quickly. On the other hand, if the relaxation time is large with
respect to the time to go through a contraction or expansion, the fluid
will not accommodate. As a result, the elastic effects cause deviation

from the theoretical analysis.

Secondly, the surface effects arise as polymer molecules get
adsorbed on a solid surface at multiple points of attachment. The
remainder of the molecules extend more or less freely into the solvent
and serve as additional points of attachment for an eventual gel forma-
tion. In a flow system, at the points of contact between the bed
particles, a network of molecules may be formed. At the same time the
flowing fluid constantly tends to remove adsorbed molecules from the
surface. The cumulative effect is to decrease the bed permeability and
a rise in pressure drop would be observed. The experimental friction

factor values would be greater than the model predicted values.

Thus the viscoelastic and surface effects are the causes of devia-
tions observed for 3.0 and 4.0 percent PVP solutions. From Figures 4
and 5 it appears as though the adsorption builds up as the flow rate
increases (indicated by the increase in the observed friction factor) to a
certain extent and tends to remain constant (indicated by the portion of
the curve which is fairly parallel to the theoretical line). It is
possible that this phenomena is due to constant flow rates. Although
Marshall and Metzner ruled out adsorption, the implication to be drawn
here is that neither one of the effects should be discarded from use in

analysis. Two of the reasons sighted in discarding adsorption are that
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the flows through the capillary tubes of comparable size revealed no
such problems (Ueber 1964), and solution concentrations employed were
chosen partly on considerations of optical clarity. The capillaries
formed in the bed probably do not compare in the surface adsorption
property with the straight capillary tubes of the same size, and the
absence of adsorption on the straight capillary tubes for PVP solutions
needs to be verified. The optical clarity of the solutions does not

have much weight on surface adsorption.

It is hardly possible to distinguish quantitatively the two effects
separately. A test for this would be a comparison of constant flow rate
experiments with the constant pressure drop experiments. In the con-
stant pressure drop experiments, the formation of gel or adsorption
decrease the flow rate. This decrease in flow rate further increases
adsorption. In the absence of this phenomena the experiments are
identical.

No attempt has been made to conduct constant pressure drop experi-
ments and to correlate the surface effects quantitatively to Ergun equa-
tion. Present theoretical analysis does not include such effects and
hence the equation fails to explain the data for 3.0 and 4.0 percent
golutions. A thorough analysis supported by constant pressure drop and

flow rate experiments is needed to accommodate the effects.



CONCLUSIONS

Results of the present investigation may be summarized as follows:

Modified Ergun equation may be used for 0.5 and 1.0 percent PVP

golutions. No evidence of viscoelastic effects were observed.

For higher concentrations, i.e., 3.0 and 4.0 percent solutions, sur-
face and viscoelastic effects were very significant. Large devia-
tions between experimental values of friction factor and those from

modified Ergun equation were observed.

Capillary model equation for packed bed needs further modification
to account for viscoelastic and surface effects. A comparison
between constant pressure drop and constant flow rate experiments is

desired to account quantitatively the deviations.

A thorough investigation at low Reynolds number (below 0.5) may also
be made for 3.0 and 4.0 percent solutions to determine the adsorp-

tion effects (viscoelastic effects are negligible in that range).

23
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APPENDIX A

PACKED BED THEORY AND EQUATIONS

1. Rheological equation for PVP solutions:

Polymers and polymer solutions exhibit the same general behaviour
with regard to the non-Newtonian viscosity as a function of shear stress
T. In the limit of very small shear stress the viscosity approaches a
lower limiting viscosity nO' With increasing shear stress the vis-
cogity T decreases, and if the shear stress can be increased suffi-
ciently, the viscosity becomes constant at an upper limit nm. Hence
nO and nw are measurable characteristic quantities of the fluid.
Another measurable quantity is Tm’ the shear stress when T drops
down to 1/2('T]0 + nm). Meter related these properties and suggested a
model:

T T

M= Tty (a-1)

T
1+'T l
m
where o = exponent (a constant). o indicates the abruptness of the
transition from T, to T_. ﬂO/T R 'l]w/Tm are two characteristic
times of the fluid. If nm is much smaller than “o’ Equation (A-1)

can be rewritten as

1 N J
T- [1 + X I— m M) (A-2)

J=0

25
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Park [9] studied extensively the rheological behavior of PVP solutions
and determined the parameters conforming to Meter's model. The parame-

ters are listed in Table 1.
2. Packed bed equations:

It will be shown that the packed bed equations for non-Newtonian
fluids reduces to the Newtonian form of Blake - Kozney and Ergun equa-
tions. The following assumptions are made in the derivation of the

relevent equations.

1. The fluid is incompressible.

2. The porous medium is isotropic and of regular geometry.
3. Inertial terms from the equation of motion are deleted.
4. Fluid is homogeneous.

5. Temperature is constant.

Congider the flow of non-Newtonian fluid through a circular tube of

radius R. t T

2
wo |

Making a momentum balance over the shell of a thickness dr and length

L ; the following differential equation is obtained.

L1y = &« (A-3)
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where Trz = shear stress, r = radius of the shell, and AP = pressure

drop. Integrating,

(a-4)

The constant C must be zero if the momentum flux is not to be infinite

at r=0. Hence

_ LP -
T, = 2o T (A-5)
At the wall,
- RP - -
(Trz)r=R Iw 2L (A-6)
T, = Tw(r/R) (A-7)

It is assumed that (1) the fluid is in steady state laminar flow,
(2) the fluid is time independent, and (3) there is no slip between the
fluid and the tube wall. The volumetric flow rate through the cylindri-

cal shell of thickness dr and length L is

dQ = VvV 21 rdr (A-8)

where Vz = velocity at radius r.

o
[
=
(=2
o =~
<
N
N
~
o
L

[}
3
Oec
<
N

[~ 9
~

2]
~

(a-9)

Integrating by parts,
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Q =-v6f r° dv, (A-10)
From equation (A-7)
, R2T2
rz _ R
r = s dr = — dT
2 T rz
T w
w

Tw RzTiz dv
Q = -nm (——— dT
0 T 2 dr rz
w
(A-11)
q Tw av
(Vz) B 2 - R3 ) Tiz( d:) dTrz
R T 6
w
where (V;) = average velocity. From Meter's equation,
rz a-1
v, Tez b T
T ﬂo-n = Trz ] T o-1 (a-12)
N+ —— 1 + = [X2
© T \a-1 ﬂo T
1+(—L‘z) n
T
m
Hence
T 2\ @ 1
T 1+ (=E
R |‘w 3 Tm 1
(Vz) = =3 4 T, N, [T\ e-1 1., (A-13)
T 0 rz
w 1l + T-]_ -r)
0 m

If “o > nm, the denominator can be expressed in terms of powers of

(“m/“o)(Trz/Tm)' Equation (A-13) can be integrated analytically.
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Analytical Technique:

R T 3 Trz)a-l Ny Trz)a-l J
(Vz) = —3 I Trz 1+ T - ,n—- T d Trz (A-14)
Tw 0 m = 0 m

Integrating term by term,

4 .

<V ) = _.R_ T_w_. 1 + L &)0"1- Hﬁ _Tla-l ._4... + .—2—(& -1

z 31 4 a+3 \T NA\T o+3  o+l\T
T m OV'm m

w
(A-15)

n, 2 (Tw 202 2 4 (Tw)a-l
+T]_0)T— o+l T o+l \T_ Fotots
m m

Imagine that the packed bed is a bundle of tubes of very complicated
cross section with hydraulic radius Rh. The average velocity in the

available cross section for flow in a single tube is:

ORI Y PR %) )y S B g
z hﬂo a+3\T MA\T ot3  a+l\T
m O\'m m

2 20 -2
(nw T, 9 o [T\l
+T]0 T cv+1+3a+1T tot-
m m

The hydraulic radius may be expressed in terms of the void fraction '"¢"

(A-16)

and the wetted surface "a'" per unit volume of the bed in the following

way.

_ cross section available for flow
Rh wetted perimeter

- volume available for flow
Rh total wetted surface

volume of voids

( volume of bed ) _ £
wetted surface) -
volume of bed

o
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where "a" 1is related to specific surface a, (the total particle

surface/the volume of the particle) by

a = av(l-e)

The quantity a, defined in terms of the mean particle diameter Dp is

a = 6/D
v P
a - 6(l-¢
D
P
(A-17)
%
B T 80

Mehta and Hawley [8] modified hydraulic radius for Newtonian fluid flow

through packed bed as

_ Uwetted surface of spheres + wetted surface of wall
Rh volume of bed

€
6(1-e) L 4
D D

P c

€

Dy
[i + 6(1_¢)] 6(1-¢)

€D 4p
= —P P
6(1-e)u  vhere M 6D_(1-¢) +1
For packed beds the superficial velocity V is given by

0

Vo = (Vz) €

substituting for R, Tw in (A-16),
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2¢D 12 o X L(ZRhAP)a-l ) T]_w(ZRhAP)a-l
6(L-e)M| 2147, +3\ 2LT_ Mo\ 2LT_

4 2 /ZRhAP)a—l +(T\_£2 (ZRhAP)Za-Z

+
o+3  a+l \ 2LT Mo 2LT

2R AP
2, 4(“h Jheosonnn

VO = €

(A-18)

o+l = 3o+l\2LT
m

A second assumption implicitly made in the foregoing development is that
the path of the fluid going through in the bed is of length L; that is
the same as the length of the bed. Actually, of course, the liquid tra-
verses a very tortuous path, the length of which may be half again as
long as the length L. For Newtonian fluids experimental measurements
indicated the length be changed to‘25/12}L. It is quite logical to
assume the same value for non-Newtonian fluids. Insertion of this value
into Equation (A-18) gives

3.2

p *\a-1 T \a-1 -1
v. = “ D ° 1+ ‘*/51)0-_%_»1\’0' _‘+_+.2_(£7.)a
0 150 M2(1-e)2m0 a+3\‘1‘m Mo\ T, a+3 T a+l\T_

* (A-19)

*
_’_?225120_2_2_4_ 4 510-1 '
Mol \ T a+l = 3o+1\T

*
where T, = 12 Dp € AP/25 6M(l-¢)L. Equation (A-19) is Meter's model

analog of Blake-Kozeny equation for Newtonian fluids; 1i.e.,

€3D2AP
P

A" =

0 (A-20)

150 ML(1-e)7n_

where
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* * *

1 1 . 4 (Iwyy-l nw ijy-l 4 2 Iw) -1
= — +‘——— - — —+ —
neff ﬂo a+3 T nO‘Tm a+3 a+1<Ti

* *
20- *\a-
. L)”_w °2_2_+_5__3z) o
ﬂo T o+l = 3a+1\T
m m

Howe ver Equation (A-19, (A-21) are applicable when

1 \2/T\2
Jo ) Tw
(nO) (Tm) =1

Numerical technique discussed later in this section solves this problem

and has no bounds as above.

For highly turbulent flow, friction factor is only a function of
roughness. For the flow of fluid through a bed of spheres, the pressure

drop AP 1is given by
6P = F/A (A-22)

where F 1is the force exerted on the solid surface and A 1s the cross
sectional area. The friction factor £, a dimensionless quantity, is
also called a drag coefficient. It is approximately a constant at

higher Reynolds numbers.

Consider the fluid flowing through a cylindrical tube as before.

The fluid will exert a force F on the solid surface which is equal to:
F = A'"K (€

where A' 1is the surface area of the column or the wetted surface, K
is the kinetic energy per unit volume, and f 1s the friction factor;

therefore,

1 L2
K-2~<Vz) ,
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and A' = 2nR L

F = (2mR L)( % o <v;>2) £ (A-23)

substituting for R in terms of hydraulic radius,

2RhAP

2LG o LV )

f =

Experimental data for Newtonian fluids indicated that:

6 f = 3.5

Hence

1.75 p(1-e)v§

AR (a-24)
L 3
€D
P
Combining Equation (A-20 and Equation (A-24),
150 N . MV (1-¢)2  1.75 p(1-¢)V?M
AP eff ‘0 0
T 23 + 3 (A-25)
D e €D
P P

which is Ergun equation for non-Newtonian fluids. Rewriting in terms of

GO’ mass flow rate, and in the dimensionless groups:

D 3
AP p _p & _ 150 M(1-e) +1.75 (A-26)
MG 2 L 1- D G0
0 L2
Negs
and effective Reynolds number is:
D G0
(N_ ) = - . (A-27)
Re’eff (1 e)meff
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Numerical Technique:

The Ergun equation so derived is only applicable when
2, * 2
M M (T /1) < 1
A numerical integration of Equation (A-13) does not impose any such
bounds on Ergun equation.

With proper substitution for R, Tw in Equation (A-13) gives

* Trz a-1
2eDr Tw 5 1+ T_m
Ve T 6M(l-¢) T*3 J‘ Trz N.(T \a-1 dTrz (A-28)
v 1+ —|=2
nO Tﬁ
From Equation (A-20) and (A-28)
e39§AP
Ll = - (A-29)
eff 150 M (1-e)?[ ¢V ) €]
D Go
(NRe)eff B M(l-e)'neff (A-30)

With these two definitions Ergun equation is versatile and is applicable

at all ranges.

The method involves application of Simpson's three point integra-
tion formula. The salient feature of the computer program is the Sub-
routine Sizsimp which divides the intervals 'n' number of times and
applies Simpson's rule over each interval. This is repeated until

10

Abs. (<2l - v ) <107,



APPENDIX B

FLOW RATE-PRESSURE DROP DATA FROM EXPERIMENTS
AND
COMPUTER PROGRAM
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BED AND FLUID PRAPERTIES
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calc

expt

NRe,eff

r
AP,Psia

0 cm?gec

cc
min

0’

AP,
mm Hg
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