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INTRODUCTION

A student is first introduced to complex variable when

he studies elementary algebra. At that time he feels that the word

"imaginary" expressed very well the usefulness of such numbers.

This feeling is usually retained until he takes a course in the

functions of a complex variable, and even after a first c urseiue

seldom appreciate the applications of the theory to other branches

of mathematics and to physics. It is the purpose of this paper

to point out some of these apilications. We hope that it will add

interest to the study of complex functions and that it will induce

more students of mathematics, physics, and engineering to make such

a study.

No attempt has been made to give an extensive treatment

of the applications; it has been our purpose, instead, to give

enough applications in the different fields to suggest others. In

some of the problems discussed the only method of solution is that

of complex variable. While in other problems the solution is ar-

rived at more readily by this method. We propose to so arrange

the material that it will be readily available to the teacher for

presentation to a class, or to the student who feels that tixe

spent on such a subject would be w sted as far as usefulness is

concerned.

fie will discuss oroblems arisin in algebra Where the theonr

of poles is applied; problems from st tistics are discussed where

Euler's formula and the principle of inversion are used; We will show

how to evaluate certain definite integrals by the use of the theory



of residues; we will give a proof of the existence of a solution

of a linear differential equation, using some of the properties

of complex series; the existence of a relationship between trig-

onometric functions and exponential functions will be shown and

illustrations as to how this relationship is used will be given;

and for the use of the teacher of elementary algebra, we will show

how certain geometrical theories can be proved in a simple manner

by introducing complex numbers.

We will also discuss problems from the physical field.

Thus, we will apply Laplace's equation and conformal representa—

tion to problems in hydrodynamics; Euler's formula and the principle

of inversion to electrical problems, Laplace's equation and the

theory of inversion to problems arising in the theory of the potential,

the principle of inversion to problems in the theory of heat flow,

and Euler's formula to the theory of light.

We also will show how Euler's formula and conformal

representation are used by cartographers and map makers in mapping

the earth on a.plane.

 



HYDRODYTANICS

The first problem we shall discuss is tiat of a two-di-

O Q

Imansional, non-rotat-on:l motion that often appears in the theory of

hydrodynamics. The straight forward solution of this problem requires

that we find a solution of Laplace's eQuation that will also satisfy

“n

he boundary conditions.* when we have done this we determine the

pressure by means of the equation

(1) fl 3 - w- jjz-I- 3/

6? pressure,

f velocity : /(%2+(%3Qf2

w force potential,

[0.: cross section area

and W(X,j) is a. solution of Lailace's equation.

This orocess .ay be tedious or even practically imoossible.

Another method, wLich, while it is not direct, is much more fruitful,

is to take a particular class of solutions of Lcolace's equation and

see to what class of problems they may be a plied.

If we consider the plane of motion as the co ilex plane, then

the com lex analytic function,

0

w : ulx,‘5)+ 4 V0. ,

which satisfies Laplace's equation is such that if we plot from the

z—plane to the w-plane with

uf : L4 #- 5“

 

* R. A. Eoustoun, Kathematical Physics
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:

we will have a conformal map.* Hence, since the velocity potential is

oeroendicular to the stream line, if we consider the real part of the

function w to be the velocity potential, the imaginary part will give

the stream function. On the other hand, if we consider the imaginary

part of w to be the Velocity potential, the real part will be the stream

function.

As an example, let us consider the analytic function

(2) uf: WMHJ).

Since

(Av-(V: M(X+¢j)

: MxMaJ+MxM?

= Mxm3+ (Mi/4943:

 

we have

() u: go‘s/ml,
3 ,

v/ :',Aué¢4()f/duénq7 3

and

a2 v2

(M) “5+ ,- ,‘X—l,

.2

(5) “2 ”KM—L
4

ma “M‘J ”

Plotting (#3 and (5) on the u,v—plane we have a family of ellipses and

a family of hyperbolas so arranged that the ellipses and hyperbolas

 

* For a discussion of conformal maps see section X of this paper.



 

 
 

 

 

 
 

  

  
Fig. l



are perpendicular.

Now it is known that if a liQuid is in motion the lines

of force are peroendicular to the stream lines. Considering the

figure we see that the vertices of the family of hyperbolas all

lie along the upaxis between.the points (—1.0) and(l,O). hence

we see that if the hfnerbolas are t ken as the stream lines the

figure represents the flow of a liquid through a slit and the

lines of force set up by uch a system are elliptical. On the

other hand we might consider the family of ellipses as represent-

’\

ing the stream lines. again considering the figure we see that

the ellipses approach the straight line segment from (-l,Ol to

(1,0). In this case we have the motion of a liquid rotating about

a thin plate and we see hat as we get away from the plate the

stream lines are elliptical and the lines of force hyperbolic.

It is readily seen that by taking fj)0 we have the motion about

an elliptic cylinder.

Another problem in this field of an entirely different

type is of interest in that we employ the same function

u]: 4W},

It is known that when a liquid seeps through a porous

soil, the component of the velocity, in any direction, is pro-

portional to the negztive cressure gradient in that san direction.

Thus, if

(P : pressure gradient,

J52: a constant of proportionality,



(6)

If we insert these values in the continuity eQ‘*tion,

2:5 2.”-

 

+ a,

Z»! 3;;

We find that,

251° 9%
2 ‘____. .-

(7) _ VJ“ 3,2“ 33" 0’

Now suppose we consider the problem of the seepage flow

under a gravity dam resting on a material that permits seepage.*

Tere we seek a function, P, which satisfies Laplace's equation

and also certain boun‘ary conditions wnich depend on the nature of

the surface of the ground. That is, the pressure must be uniform

on the surface of the ground upstream from the heel of the dam,

and zero on the surface of the ground down stream.from the toe of

If we nmw choose our coordinate system with the origin

at the midpoint of the bsse of the dam (Fig.2),

(8) 03(ulv) : £g(uly)

77, I

 

 

* Warren fle:ver, Conformal Rgpresentation, with Applications to
  

Problems g§_Applied tathenatics. American Yathematical Vonthly,
 

October 1932, p. M65.



where .304, V) is determined by

W: (Ag-[V : a W(X+‘:j).

One may now easily find the distribution of unlift pressure across

the base of the L8H. In fact, the base of the L8“ is the reoresent—

ation, in the (u,v) plane, of the line

u.= 65

osjé 77’,

of the (x,y) plane. Hence on the base of the dam the eqaations

u = a (JO/414.943,

y' : 62.4%;VAJZ—Aifln3)

reduce to

(9) 04:: 62¢QMA:I,

Vro,

so t‘.t

(10) 0°( k, 0) =

D'
3

0
3

-I

4&4

s
i
t
s

N
:

The total uolift or ssure per unit length of dag is found to be

1° " I 4 612‘- a - _. _

(11) 7°- 95,— m a — (ta,

.4

which is the oressure that would be oroduced if the entire base

of the den were subjected to a.head of water just one—half the

head aLove the ham, or if the oressure decreased linearly from

the static head P. at the head of the ;am.to a Vhlue zero at the

toe.
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LIGHT

One of the most interesting nhysicel ohenomenon that we

.encounter in daily life is that of light. “en's idees of the na—

tire of ligh' have changed from time to tine through the centuries

but little was done in a scientific wzy to determine just what

light was until the time of air Isa c Kenton. fewton perfonned

noerimcnts along this line and arr'ved at the conclusion that

light WLS in the nature of bullets hurtling through soace at an

exceedingly high velocitV. At the same time a rival school, headed

by Euyfiens, arose on the continent, which hela that light was energy

transmitted as a wave. Togey physicists have incoroorated both

ideas along with modern Quantum olysics into an exceedingly com-

plicated theor . For our ouroose we will follow Huygens and con—

sider light in the nature of a wave motion.

This motion is conceived to be of tie transverse'tyne,

as a water wove, consisting of crests and troughs. The distance

from one crest to the next succeeiing crest is called the wave

length and is designated.Ly'fi.; the time taken for one comnlete

wave to ease a given woint is called the oeriod and denoted by'7r;

the velocity, of the wave, is equal t0:%? ; the a ulitude, which is

the height of the crest above the normal, is designated by,b ;

- . 3

the i tensity of light is equal to.6 .

It is nos ible to show exnerimentally that if two waves

of equal lengths and equal an litndes are traveling in the same

direction through a medium, such that the crest of one falls on

the crest of the other, the resultant wave has the same length and

an anolituee of va . If, however, the crest of one falls on the

10



11

.

trough of the other, the resultant a alitdde is zero. In the

latter caie tfie w;ves are setid to nest weivelg interfere.

To or duce interference between light weves it is nec- '

essary to take light from the same source, solit it into two oarts,

lead the carts over different maths and reunite them at a small

angle. If tne cifierence in w)fth is an odd nunter of half wave

lengths the waves will inte:fere and dar_:nes will result.

A “e.ve *fliose amulitnde is one,m{y be exoressed Jet-metic-

ally b‘ the function

Mat—-7Jzt-é)

The orotlem we are considering here is that of interfer—

ence produced by a.medium whose sides are oerfectly olane end oar-

allel.* Let B be such a medium and consider a plane wave front,

ude one,incident upon it in the direction AP. This will6
+

of amili

give rise to a reilected wave P, R , and e.refrected wave in the

direction PIC’. Tliis refracted wave will give rise to a reflected

save in the direction 0,733 and a tans:.ittec wave in the direction

C T The reilected Have, 0,3k: give s rise to a reilec ted \MQY
II'

in the direction EzQz and a refracted wave in the direction 2232,

end so on; the original iticid.ent wave gives rise to a series of

reflected waves slid a series of transmitted waves of reoidly de-

creasing intensity. What we are alter is an expression for the

intensities of the resultant reflected and ti:nsmitted waves.
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Letm be the angle of incidence, 9 the angle of refrac-

o . l . .

tion, e the thickness of the plate. Let/Cfl be amplitudes of see.

I

ceeding; reflected m.ves,d,c’ be amplitude of succeeding; transmitted

waves, and /" the index of refraction.

t
o

t
o

h

 

 

”I C, ca.

7; 7;.

Fig. 3

Draw P, N perpendicular to the surfaces and P‘H perpendicular to ”31°

Tmien the first and second reflected mves pass- tl'e plane

Pg}: they are in different phases, for the}; were in the Smile phase

at P, and have traveled different Optical distances in coming; from

Pl. Let their relative phase difference be denoted by d; then d

denotes the phase difference between any two successive Waves.
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We have

e'

(12) ficlz—JQQ/

and

73H= 73730~2H737f§

: .ZIVC; £JR_¢7

(13) : sea/«64144449

sulfa

; ‘2 (at an 6 .

Hence

0’: 61(f‘863r‘cng-75‘H)

(1‘4) ._ .2 £135... '53—'59

"’ 71(aoa ‘2‘“ ‘3'“

If the incident wave is denoted by

34;“ $7M- 15—)

we can represent the resultant wave by the function

a 217 X _

RM[?('¢-v) ”Q

in which the amplitude, R, and the phase, d: are to be determined.

The first reflected wave is represented by

' 2
/?'£44x-i;r(f“'1%&
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the second by

I . 1277' ._J; _

fl’CC %/?(t V) ad)

the third by

n’lc’LA[£g(t-%)'ZJ],

and so on. rl‘he resultant is the sum of these waves. Hence

I 2” a 0 2”

fl M[?(t'é)‘ {/3 fl 3AM igrt- %)+A’cc{?tcm{’f‘(f-%)-dj

+x1‘cc’1m[’J(t-l)-2dj+m~

Mnag—-<t-%)-a~-Iuj+~~

To evaluate R and Jwe must sun this series. To do this as the

series stands we would have to aohly the principles of Fourier;

if, however, we int odice com lex terms by the use of Euler's

formula we will have a series of complexterms which can be easily

sunged. Using the ex1c‘nsion for .B‘Lxla- b) , We have

RLAE—“(r--£)m/- 794.4%.—”(r-é)»;

+/I’(c:3:fl’(t-£)g¢a( 9/166
MW.:{f‘fjmd

(1 5) +flicczdmflzrr(fiz)m‘2x_flw(;1”(f_%)/dfi:zy

+....... ..
..........

4’” CCMg(T‘-E)Coa((fl
'UJ)- flccm——(t-3)M(h041

'f"" ’ .

mp
17 1

F0 all; eq.Lat ng tr-e coefficients (3sz(ti/end, (14.5.5:“Elt‘ v)

We get

2i “J3 ”1“”,(6 (Md-f4 mZd-ffl’maal-I-HH4-fl m ”obi-“)l

(16)
2h-Z

1 a ,7 . I 0

WAAJ: fl’cflflakd +A’J4~Zd+/Z,AA~3¢(+-"'+/l ,AmnoH-“X
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. I“

The series of (15) and (lo) are power seriees in/flwith the coef-

ficient of each term less then one and hence are c1nvergent. Now

by the use of Euler's foraula

K - '

e X: m,” 4’4”"

we can combine tiese equations into the followina form

J 9' zn-.z

ae‘fi maze/(e02‘ was” ~61-.-)
(17) e“

: ,4:+,e1:c7:;F3EZK '

inis canoe written in the form

dd 2"€7
./ xzflccc (l-fl’c

71763 2 4+

(l-fl’c‘vO-flflc"?

xz’c't’(coqa(+ (Mal-A1?

/— 2/:"mA4-A’7

 

(18)  =/z+

2 .

”ICC ’{doqol-d’) .fl’fCMd

“ /?+ I- /2’‘md—r/Z’T +‘ l- 3/!"aqal'f'A

 

But if two complex numbers are equal their aiolitudes are egual.

Hence

 

4 .

7(2_ a,“ d’c’d’t’Con-A’zj A’cc’A—«X y

z -.z/:'Mali-AV” "' 7-WA’.(+/t’

This may be sin1lifiea to

add

7? — 1-2/2’ coed-r)!”

(19) yflz’dé‘zzé

 

H

 

(I'V'Z'z/‘f'ijmzfié

If T is the amnlitude of the resultant transwitted w ve, We have

by the nrinciple of energy

7?’+T¢=I.



Hence

(20) T
 

2_ ("Ag/2

:- 2A’2m4 +4”

We are interested in the maximum and minimum values of

 

2 z

R and T . We have

2

fi’ = 0

when

,4JA€£¥::¢7 0

Therefore

X

or

2fl¢md= mt

where N is a positive integer. Thus when the path difference is

an integral number of wave lengths we have no reflected light.

 

 

Also

2

fl: _ 4/!

(22) " we)“ 2
.1 + 971

La
.Z

i s a. maximum when

SLLCZ§§L2 I.

Therefore

anafi )7

551' yr” # = 62M”?

01‘

2 at (44% = (WM/)3L

Where N 18 a oOSitive interger. Thus R 18 a maximum wnen the oatn

J"

difference is an 0;; number oi half wave lengths. Th minimum

value of R is zero and the maximum value is

t

472

("47‘

 



17

..y— 2 o I o L - o

anen R 18 a mlnlnun,T gas a maxlnum valve eQual to one,

- - 2 . . 3. . .
an' w;en R is mwx:mum.T mas a ulnlnum valve eQu( to

a 2

[-21

a

 

1+4



III ELECTRICITY

the comwlex variable to

In electri—
.4-

‘ uS.

The apolications of

problems in electricity are divided into two on.

notentiel theory we cogsider oroble s of the srme tyo as

For exam tie t edsfor—

cal

those discussed under hydrodgnzmics.

nation

(Al’z (Lfifia‘iZ;

‘his DEDCT, might be interpre-which has been discussed before in t

ted as reoresenting the electrostatic field due to a source in

or the electrostatic field due1e sheoe of an elliotic cylinder,

‘eu plate from which a stria has been removed.

the oroblem of an electrical

-.

t.
A

in?"
Cilks; L

\J

to a

co )lex variable inThe use of

exilcined the ?cll Televhone Lab-

q

circuit he? *
1

Deer

nwnner.‘

since the ohysical

oratories in the follow ng

"From the physical stahddoint it (electrical Circuit

theory) is naturally a study in real quantities,

and mathematical methods

lgost exclusivelyC
}

forces and currents are thetselves reel,

originally used in connection with it dealt

ext Cunturg, howef r, a Dro—Luring the preswith real variables.

taken place, until now the use of comjlex.818

and real numbers are

gresvive transition 1

quantities is by all odds the usual thing,

rather rare.

3 n ation for Electrical’
J
J

 

“'30.“ , f" *1. .1h4. ._

uiiierenticl solutiois* T. C. Fry,

Circiit Theory. American Biathezicticcl fionthly, 1-}2'), P. hag.

18
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"---- To reduce to mathematical terms, then, the problem

of elementary circuit theory is that of solving the system of dif-

ferential eQuations:

mm + 5MP)?" "* ’7” ””3"
+ 5,. (4°) a = 95%?)

:61?)

ll

‘511’757*“
427“Ttk* .

.....

(23)

I

l

l

l

l

I

I

l

I

_
—
-
-
_
-
—
—
~

.
0
.
.
.
.
-
.

l

I

1

51,(pjjl+51(fljzf""""+5A(P),74:fa (u!

Where the F's are linear differential operators with constant coef—

ficients, the f's are simple harmonic functions or sums of

such functions, and the boundary conditions require that the system

shell be either at rest or in a steady state at the time zero.

“ I need scarcely remark that the stuny of such systems

is a recognized o'rt of first courses in differential equations.

The suggestion that the founcations for circuit theory be laid in

sudh courses is, therefore, not a.very revolutionary one; it re-

quires at most a slight change of emphasis to accomplish it. Per—

hans this will become even clearer as we mention the four facts

upon which the use of comwlex quantities rests, none of which is

unusual or non-mathematical in chzracter.

"I The sum of any solution of (23) due to a set ff ,

and any solution due to a set gJ , is a solution due to a set fJ+gJ

"II This is an inverse to I. Of course, there is no

exact converse to tie irinciple of superoosition, for even if we

know a solution of(23) ins to ff+ gj we cannot ordinarily separate
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the part which is due to 3:!" from that due tojj. There is one im—

portant exceptional case however.

" If the functions fj are real while the functions 1] .rre

pure ianaginaries, then the real part of the solution is due toé’

and the imaginary part of the solution is due to jJ .

“III. The derivatives of an exnonential function are

proportkmal to the function itself.

"IV. Euler's equation

Co‘uz: 62k1,(f‘£;4*;vz4

“Hence if(23) can be easily solved Wheanfiflis an expon—

ential, and if it is true that whenffi’jis a complex we can sep-

arate out the real solution frmm the imaginary solution, it fol—

lows at once that we can obtain the solution due to the simole

harmonic function, doow‘fl €))by first finding the solution due to

the comlex exponential, edfl’g , and then discarding the imagi-

nary part.

"This is the entire argument in favor of the use of com.

plex imaginary numbers in electrical circuit theory. It is hard

to imagine any explanation bread on vectorial ideas, which would

approach it either in conciseness, simplicity, or generality.“

As an example of this method of solution, consider the differen—

tial equation . 1'

 

 

* Page, Introduction to Mathematical Pmrsics.
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é!“ a!“ __ .

(2h) 5‘22“?" 422;; 44, é/t/+tc(z')

where a,, a1, 8‘, are real constants, and b(t), c(t) real functions

of the real variable t.

If we assume a solution of (21+) to be

(25) M = X/t/f {7/27,

we have, after substituting (25) in (21+).

4/51 613' 611 . 6/

dt‘ ’dt‘fdlzt? *‘4’7;

Equating the real and imaginary parts of this equation we get

 

(26) a, + ('4, +4317“ ('43:; : é/r/H'c'fd.

2

,r 54/?

a :2]; *4 21”” 1: 5/“I t .4!

(27)

~———-—--~ —’ ( J

4/ '1‘: 1‘ 42 b; + 4, 7 _.. C I

which are of the sz=me form as (27).

Now since we know that the impressed electromotive force

(EL-CF) is a harmonic function we may consider it to be the real part

of the function

€(th+zLaakthE 58““;

where Ea is not necessarily real. We may now write

15' = [0,65% (é’agafj‘
0

be impressed E M I is then

(28) £‘= MMY/é’eawt’w = [.324 (MHW.

Now if we denote the current by I, the resistance by R, and

the inductance of the circuit in henries by L , we may write

the equation for Ohm's law in the following form

(29) 4 gi— 7PI+ 24/194? = [.8

Comparing this with (214) we see that if we consider

('0: t-

1:1, A —- a ”—4“ and 21-: 6tJ then (29‘, and (2h) are
I’ -



identical.

To solve equation (29) let us assume a trial solution

LT== J;,c"at' (J; nzq‘nzaaaad/uéér/1444).

Substituting this value in (2“) we find it is a solution if

10/7f+4'(w1~5’2) _— [0/

 

[a -‘-' I/fiz-r-(wA—dijz .I‘e‘tf

.6“, (VJ

Pita 71f

 

 r0.

/

where ZZQA¢J' = “ll-'Z;E

fl

Therefore E and I represent vectors rotating in the

x,y-plane with an angular velocity427, the latter lagging behind

the former by an angle d’. The actual electromotive force and

current at any instant are represented by the projections of these

vectors on the x—axis.

If we put

2 : fi+"(w£_ _/_.)= IfE2+(Q/~_fij‘fe"f

(426 J

 

..(OF

I

/ I

fi*"("”"a'12) M2+(wL-'jgz

it follows that

£7:= £:_Z;

I -‘- X75

H: 



IV HEAT FLOW

Many problems arise in the field of engineering

to which the theories of heat flow can be applied. For example,

it is of very practical importance to know the conductivity of a

boiler plate, or a bearing peaking. It is of theoretical interest

to know that the length of time that the earth has sustained life

may be determined by considering the conductivity of the earth's

crust.

For the purpose of this discussion let us suppose that :7

all space on the oositive side of the y,z-p1ane is filled with.a

homogeneous solid of diffusivitylf . Let the temperature on the

y,z-p1ane be given as a harmonic function of the time, that is,

the temperature at all ooints of the y,z-plane is the same but

this temperature has a periodic variation. For example, if

T: temperature, and t==time, then

T: 4t% mt-r- 61""mm’2‘,

where a and b may be comalex'but n, m, m"are real. Also let um

suppose that this function is the same fer all values of y and 2.

It is required to find the temperature throughout the solid when

the periodic state is fixed.

Clearky T is independent of y and 2. One of the condi-

tions T must satisfy is

37’ 3’7“
0 "'__' - —————. o ,_(3.) at .. at} _\

That is, the change of the temperature with respect to the time

is prooortional to the velocity of the change of the temperature

with respect to the distance from the y,z-plane and the constant

of preportionality is equal to the; diffusivity of the solid.*

 

*‘R . A. Houstoun, Introduction 32 Mathematical thsics.
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That is to se , T must also satisfy the conditions

Tr-axzy'amt, web/«1:0, (m: M) )

(31) 7': 00,,W2': 00.

To solve equation (30) let us assume a trial solution

.(32) T: edfrfif’

When this is substituted in (30) we have

‘t’p’: Eflzc‘fl’ef

or

(33) a =Kfi€

It is obvious from (33) that A cannot be real and negative. There-

fore let us assumed is imaginary and

0K 2 i ‘0 J 0

Substituting this value in (32) we have as a solution

:tl'd't‘ £1

(31*) T: e '1'): I ’1"

Now we know that

(H 02: .2 z:

and

. 2 '

(/~(/ : -Z(,

Hence

I .

V? = 7;: Ni"),

and

p z E, (l‘ ().

Substituting these values in (31+) we have

T : an": (1% (/1: c);

wex i am i a I)

Now the condition for x = 00 demands that the sign of the

exponent be negative. We have, therefore

‘ _ J: ' +¢'/II"- 2 X _ ' - 1.

where A and B are constants.



substituting x::o in this equation we find

[It - (It

But to satisfy boundary conditions, when x::o we must have

'T': 62,4Jn.kn't.

Therefore

'H- x Jar-1xF7€(( g38€(( [2:]

must take the form

a ”“6 t—g X);

with

[:M.

Hence

- in ,

T: as gfaMJMt-gx)

is the solution to the problem.



V. POTFITTUJJ 'IVY'IORY

, In discussing potential theory, we are interested, not

only in the develOpment by complex variable, but also in comparing

this development with that in which co;.1)lex variable is not used."I

In two dimensional problems, the equation to be satisfied

by the potential is

1- l

31‘ 33‘ ’

from which we get

 

**

(36) '7' = {(2-1 {7) +F0v/J).

If Vis to be real, then F must be the function obtained fromf

by changing Z to - 4' . Now let

f(x+l:j) '-'- (4+5 V, u and v both real,

Then

rung) = u-I'K

and

'V' : 24!.

If we let

17 =-2K

we have

7+ (V = —2V+2¢'u

(37) 3 dam”)

: +3"j-(X+/j): (PAH/j),

where JOY-NJ) is a cor;r_31e’cel;..r general function of the single

 

* For an example of the development without complex variable see

Ifaclfillan, T4 e051 2i: the Potential.

** Jeans, Electricity and lfagnetism. P. 261

36
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complex variable (1* {j} .

Thus the most general function of the potential which is

wholly real can be derived from the most general arbitrary function

of the single comlex variable (KHZ!) by taking the potential to

be the imaginary part of this function.

Now, if

0mg): 774/17-

and

Z 2- X+<' ,

(38) J
W : 17+ ('7‘

and if we let the element in the Z-plene be

(39) ’4‘": 421
and the corresponding element in the w-plane

I of

(1‘0) 44:4”: 5-2-42,

we can get any element QQ ’from PP ’ by multiplying PP ’ by 4%];

that is, by

at”) 02 MW).
01442

If we express J; as

(In) if: (NM-{1) = Hm“ I'M 6’) 4w“

we can find the element dw by multiplying dz by (O or lag/and

 

turning it through the angle 9 .

7:10?! let us examine (a , we have

(Wm 49 + (Mafiff’: 49’tu

(142) ax ax

: 2125117
o, a: 1

av .37 .. 2372 21:23gm - {emu/o
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Thus we see that if'Vr is the potential, the modulus,(f

measures the intensity R. And since

R= 9770“

we have a simple means of finding 0‘, the surface density at any

point of the surface.



VI ALGEBRA

Let us now turn to the realm of mathematics. It was

here that the ideas of imaginary numbers and hence complex vari-

able first arose. We first reCOgnize the need of imaginary num—

bers when solving quadratic equations of the type

2

X +1 */= 0..

Since the use of complex numbers in the solution of

eQuations is familiar to anyone having had a course in college

algebra, we will, instead, in this section, show how the funda-

mental theorem of algebra can be easily proved by the use of some

ideas from functions of a complex variable.‘

Theorem: E. eguation 9_f_'_ daggeem complex coefficients

f0?) = z”+'a,z"’$ ----- +42, = 0 ,

has a complex (real 9}; imaginary) root.

 

For, from our knowledge of singular points we know that 2‘“) has

no singular point in the finite plane and has a pole at infinity.

Putting

(M4) 2 = 21-,-

it follows that

(15) 4912') = H?)

has a pole at

z’: 0.

It can be shown that if

2 = 20

is a pole of order K of the analytic function J-(z), then gig) is

analytic in the neighborhood of Z, and has a zero point of order

 

* E. J. Townsend, Functions 2.2 Complex Variable, P. 291
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J
J

0

Hence??? is analytic in the neir'I-uborhood of the origin.

Consequent y, since

I - .1... ‘

fog») ‘ cmz’) . . _

is z—*-nalytic in the neighborhood of the origin,?—(/}-) is analyticin 4

the ne‘ghborhood of 1:00 . But, as is easily proved, every analytic

function. not 7. constant, :zzust hat-'e at least one sitv'ulrr point

eitlmr in the finite region 0':- at infinity. Sinceféa cannot have a

Sinf”-)‘-l£“l‘ noint at infinity, there mus-t be at least one point in the

finite rr~-_.,_rfion, say Z a , at which the functionjyl—i) has a singular

point. This ..Ol‘;'it cannot £36 {.23 esr'.e1'1tial singular point, for in that

5

case 20 would not be a. r-gu ar point offa’). Hence 2,, must be a. pole of

.1. . .
j‘!) ans. consequently a zero point of the {given funtionf/Z). This

estrblishes the theorm.*

 

* For a proof vrith'iut the use of the theories of a com'vlex variable

see Dickson, First Course in the Emory o 773118tl0319 r). 5g
 
 

 



VII .TEYE EVELVATIC‘FT O'f‘ BETTY-YET? I‘ETE‘T’TALSAll.

Certain integrals

that are difficult to evaluate by ordinary means can be evaluated

by the use of the theory of residues.‘

Consider for example,

277 deM

f 2+m6 .

0

To evaluate this, let

   

 

_ (79

Z - 8 ,

r _ 61:?
(140) 63(6 - (z- I

_ elfif 6- (9- 2+?

Hence

:7

(147) J J? : f 71;!" ——-p(£‘ .: .3. 6(2‘

2*009 x. .l <' z
a 024(24-91‘2) t Z +‘Yi4'l

where the path. C, is determined by the substitution

Z: 8/9

As 9 varies from a to 277', z describes the unit circle about the

origin. The integrand has poles at

it 2-2 1 V3)

but the only one to fall within C is

2 = - 2+ VF.

Hence if we expand 7‘13) about

2 —- ~2+ V37

by considering I

I - __._.—--

(M8) 237;? _ (2+2- V3)(Z+2+V37

 

 

and then expanding the factor

1

3921-5

about the point by Taylor's series and multiplying each term

 

 

¢ E. J. Townsend, Functions 9; g Comolex Variable. P. 2814
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l

by 2+2~VZT ,weget

 

___L.._— -/‘ + ------- .
(’49) gaff/{fl - +5(2+Z )

Since the theory requires only the coefficient of the term with

the exponent (-1) this is all of the expansion we need.

The residue at

i: -.2+IT?‘

l

1325 . Therefore we have

277' 0(9 277/3
______.,.——_-_- ( "(—— ‘ v”

(50) j 2-1-on 4 277 2/37 3
0

as the value of the integral.

As a second example let us consider a function with

infinite limits, for example

‘0 all ,

3 J

co(X +I)

Substituting

x = if

we see that the function

I

(z‘W’

has a pole at

Z: (.0

Expanding 3H2) in powers ofO‘c' U we have

1 - ---"' - -—-——-3‘ - - - -- ~
(5 ) 5'7”!) in;’6)"“(zt)2 Mlz- ¢'+) '

The residue at 2‘: 4 is

he:

" Ié '

Hence we have

377’
00M ii. I: ---,

(52) jmz'w '27! i

-00



VIII. DIFFZQEYTIAL EQUATIOHS

To discuss comoletely the many uses of the functions of

a comolex variable in the theory of differential equations is im—

noseible in this paper. We will illustrate the use of some of the

theory by giving a proof of an existence theorem of linear differ-

ential munitions."I To simplify the proof we will consider an

equation of the first order.

Theorem. Given §_linear differential equation 9f_the
 

K
n
u
n
m
r

first order

(A) g: 530,3)

r
a
h
-

siere a and y_ are corrole}: and {(53) _'1__«.;_ analvtic in some finite

region

D: [X‘Xoléa

lam/$5,

for al g” y'in the region. ithollovs that there exists a solution
  

a: (A) missing through the noint (x.,j.),

For, since fix, is analytic in L‘- it follorrs that ffxyhas an unper

bound, K, in D. **

Expanding fayabout the points x yowe have
of

H293) = m. 3.) + :5, (21.4.) (1-1.) +230.» gag-3o)

) + ’u (1.. 11.) (H41“’33 “IJ‘JU‘U‘S'BJ * ’13"°J')(3‘3Jz
(53 + .2 .1 _

.f_-—-—-—--—--

 

* Voulton, Differential Ecuations
 

** E. J. Townsend, Functions f §_Comnle§;Vzriable, P. 39.
 



3h

Define the function F(X; y

 

(5”) Fftj} = ___#_'_j__i“ x-x. “ J

lgs-N’ ‘7)

     

where (I‘

a’m,

b'< b.

Expanding

I
M M 1-1 , Mid

/‘ 3.3‘ /"*--———«-o

b’ 4”

. ¢ n

M ~ M[’+Lg'a+ (flj+-—-+(.L3j+~]

/- 3.3“ - 6’ 6’ bl )

and b, 2 X'A’ h

’ -- 4.15.? X‘XO --.. (“L—3 4<o-

/-£.:£¢' /+ 4”¢{”Z7)* + 4’ ‘

These sgiies converge in a r gion

DI: LPN/(6L

Ig-m 5

since they are geometric progressions with the ratio less than one.

= meter—(~71
s _ - O _ a

= M, ev(a7+(~;¢%s)+(e¥-N
is convergent in D Since it is the proeuct of convergent power

 

M
Then — _ ' 4.

(55) ("-33.1)("%7)

series.

Text we will show thrt the series (55) douinates the

series (53)f

Y"

* For a discussion of doninant functions see F. S. woods, Advanced

Calcalus, p. 57.



That is, we will show that

 

 

   

 

M %1f(xolj°) ’)

~23 % [£(X9130)ll

M
7% ”30.4.”,

33.x} ’5’;~7‘“~3:{/

H! ’

ah

‘41..) b:d(x..3.)l

b' )4:

. aha-sh I

(x0) 0

m “a aman‘ 31

d’mb' {Wu-M)!

Let us consider first the two series _

<5o) 1m: f(X,)+f’/X.)(z-x
,)+--

  

‘ - _ __

(57) F (X): 1-1. - ll”. a’ + d"

- 7

 

By Cauchy's integral theorem we have

:HX ) ._ I {(04%

a r 277.! c 25-10 .

Sudstituting '6

c

(#1,) : x: e ,

[(t'Xo)/ A ’ .

d: Z/ze‘fl/gl

W 6 find that

lf‘hJ/é 5%, %-277/2: M.

35

x-x. (1—1.): _ - ,_ +_ (£32) * J
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I ' 1n a simi ar 'ff(r)o(:)é __l__._/_l 274’: 1:7,

|f(X,)I=”rt/fa x.)

{(t)df 4 +1. = :K '
) x 277“ In a

szlwxdl‘27”lj—-———'—(1" ‘0) a

This shows that (57) dominates (56). To show that a similar reason-

ing holds for two variables, let

 

__L_‘ *(t’je)i(:

(58) f(x,,3,)-2m C (t-x.) "

J71 3) - J... {(tv.17;

mf. -————(T_,)

 

H.Wu: .L 4,«6’77§l'12’=/‘1,

If (Xej.)/(.277! [1:f (1'40” T‘J') $97744 b

)J J .51

I 21:15:19.7:kmfi’f/LLZHxEIaLSIS 4’ ’

z .eztvmf 4 21-,
Ia§(x..&Io:)’ (2777).;)MJ (7:x,)(r—3.) b

I

I

I

l

I

I

I

 

 

I

I

I I

I I

' I
I I
I I

l I

I I

Dmfuzflv) f(§T)_—_-d’__7a(t A %M

IT)I: 277% I i}; (1‘1o)m(7’fl°)/ ’



 

‘Z
ff! 17111.0

“ /( A

n
““""“

In,

[a f(x..3.)/=(2
7’n,) Hf (cant-34"" b

 

9‘] "

)4(Zb(t
/q

am+'\;(xog°
I 2/ f(tT

91/ s ,m bl"

la QXTQJ"
/: (.27!)

IJ’T‘J‘(1" Xe)T’jo)“

a

Now assume a solution of (53) in the form

(59) 3—3.: ak,(x~x.)+o<.(x-X.)‘+----+fi,, (II-Io)" ' ‘

Substituting (59) in (53), we get

AI+2*‘(X
.X.)f '1' K‘K(X’x.)n

.{!

= C” +- 6“, (x-x0)

 

(60)
+6.! L4C (X‘XO)+44(X

'X.)‘.f“‘
+dn(X-X,)

"f-r]

”‘onX0)+61: (X-x0109 (XI.) +4301.)+.
.]+-- .

aha-Oh

Where C“m :3X"‘93"fifhuj.
)

(huh)!

Equating coefficients, we find that

0M = Coo,

‘ clo+cmdfl: clef-(0160012

3‘: " caldz+coz*cu"‘ +c0142"

A
:

h
9
~ l

Hence it is possible tosvaluate all the ok’: in terms of the C's,

and hence we have a solution to (6k) if we can prove the series

(59) convergent in some region.

To do this consider

<61) 34: ..
dz " FOUL

with

j (X.) = 3,

By use of the same method as above we can solve this equation in

a series, to get
2

n

(62) 3-3.mix-inset).--
”MW-..
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The values of the Ads here are of the same form as in (59). Further-

more. they are all positive. Hence, since the series (55) dominates

series (53) it follows that the Ads dominate the A3 . That is

saw, figs/«.4 ..... figs/M

However, we can solve (61) directly without the use of series,

 

since

3(1-/L— ,
‘ - . “25.1.:

d; (I- 2171')“ a’)

and

Md)!
-3, _. ________,—— .

ago-17)- I7-

Therefore z 1‘);

.‘1" (37%,): ~N4’/&L.T(I- 4’)+ 6'

Since

1:“)! '3sz)

we have

0': :10.

Hence

~Xo

3.. j,- Vig‘)+ma’.47(I-I—r"= .

If

3-3» = 37,

then 13? 1—0’

a]          

     
y— :b’Y—Z/‘M'b'jifl

and

I :: 5’: W‘+2Mn’bilaj(l- €755;—
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Now I is complex and therefore the series for the expansion of

(53) is convergent in a circular region having xa.as a center and

a radius equal to the distance from x0 to the nearest singular point.

There are singular points at

(63) x—X. _ /

and ‘2’ -} I

1“ I I _ X‘Xo ..

(61*) b +245M«4f(/ “wj-a

Solving (61+) for (X- X.) , we have

J&:f(/l- X~X:)=_gATROV

"i—IX—E: eia’M

(1" X0): a--”a C

Hence the radius of the circle of convergence is finite and dif-

I

447%

ferent from zero. Since series (62) and (6h) must be the same,

series (b2) must be convergent. Furthermore, since series (62)

dominates (59), it follows that (59) must be convergent in some

region.

We therefore have the existence of a solution of (53).



IX . PIu'aN'E G720? TTQY

It is often desirable to have a rather simple

application of complex numbers to bring home to a group of college

freehmen the idea that complex numbers have other uses than for'

solving algebraic equations of certain types. The apolications

that have so far been discussed are in the most part beyond the

range of a freshman group and have little meaning to them. With

this in mind, Lloyd L. Smail of Lehigh University has worked

some theorems of plane geometry which he has proved with the aid ;

of complex variabled' To do this he used only two theorems of

complex variable which are easily proved to an elementary group.

These are:

l. The distance between two points 7,319,} and 7.;{22} is

given by 7373 3 [El-E2, .

2. lbs point of division of a line segment joining

points EVA} and 672‘} which divides the segment into the ratio

221?“ 2 4:0»

(65) 7’3 ' ’

Z = Ml— .

If'A

For the special points where P, is the bisector and P”

is trisector, we have

I_ _L _

(66) P " 2 (Eli-23)) A-//

I/

P : 3L(£,+234,)J )zz.

 

* L. L. Small, Some Geometric-:11 Applications 31; Complex Numbers,

American Mathematical Monthly, 1929, P, 5014,

13.0



Lil

One of the theorems that he proves is the following:

I. The mid-point 2;: the hypotenuse 9;; _a_ right triangle is s 111..
 

distant from the vertices.

For, consider the right triangle with vertices at

0M, fife}. 3164.

N
M

 

  

c 3’441‘6‘7}

  
0 5/6?

Then the point C which is the mid-point of the hypotenuse is

given by Ci} {44'6”}. Now

0C = [2L(a+b¢')~0/= ZL/a+6¢'/=%W§

A78=Ia+bil= W. -

Hence

0c=j~/76’= BC= 6/7.

By similar methods Professor Small proves eight other

theorems .



X. STATISTICS

One of the fields where one would least eXpect to

find a use for complex variable is the field of statistics. How-

ever, in some of the developments of statistics, a.know1edge of

complex variable is very useful. Consider, for example, Laplace's

deveIOpment of Bernouillis' theorem.*

Let us consider the probability expansion

(mg/f

where

34 = probability a thingwill not happen,

00:: probability this same thing will hanpen, and /z is a

positive integer.

We have

(67) (flog/if; {77/ 7*fl’7’w (1/7/92--m”

where (f/ : fl (#5,)(fl‘22' . . .[fl- (XL/217 .

x!

The problem is to obtain a simple expression for the general term,

which we will designate by‘jx .

[(-22

5:(o°+;/§- (fif’ifiM%+(.z/,9f*"”

(68) +::./)iflfmy!+63%;¢*(X+1M;l+/+-"'

 

* From notes taken from Lectures by Professor Carver of the

university of Midhigan, by Professor Crows of Hichigan State

College.



L*3

and let . fl JL‘J‘ fr fl" Mae)!“

3: (isWe7: (was
MM; 52’- (:onW"“’"“"

(59)
(w/zuxlflleuz-21-1-Jil' +:/¢e-/N"

+ 1+}
"U '

Solving for the term containing (1) , we get

(”ff/1‘;€~(fl-wm’[(f€w+d°€'w)‘nffl lit-1‘-” _ ’

1(1); ft34/onplepz—zn-Jjwz'

(70) /Z i/ZvP/fla /‘z+/ (/2-21—2) 40"

1H; 6 —- - - — - *

/z _/za)c'

... f e

Tn+9“l"ctl‘l" botn me:were of the above equation with respect to

we have

<7an:11(17,0fine I:""“W‘eeWe”?1’1”“

To show that the other terms are zero consider any term as

(7JJ“”"1/f65w
1?

we!
(72) 2/7}? (mzw-uwz ) a)

gem___-Z_&7~ (176.042

.2
F7

h qu/fl)f/Z-:floH/ H

0/"7rd;Lemmy8#8“):le

’
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We now have the general term expressed as a definite

We now wish to evaluate this integral. It is easilyintegral.

seen that

4.01:)

-(Jz-szw‘ a; -(/r-2wa""’*/l/’j§?€we

(73) e (f: +fe”/2 e .

Therefore

(xJ/‘f‘" 9%]c“”‘“’“’"*“"7Wiifswiza

, .4

Expanding "(i7 94803798 “yin terms of X; we get

1::mw
C = 0, Q = as flff/I-é/fl

4 mm”, 6.; -‘- ' ”Vise/III-Wfl.

9: Vflff’ c6 .-.- éV/Z/bf/l- iof/s/za/QZ

arm/{4w -~

Hence we have

(75) (if); #-

Uaking the substitution

dd.)

77 . 2
3' 2(x~/z,e/ca¢—2fl/°X““ 5/4).
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(75) becomes
$01

X/ / =2}? e 4’
-77

z. . 3

I 7/- (x-fl/aj 1.9/— 1/23? (I (at) 5'75“”):

" C ‘2 1,23 + / .77

_ .457 . (S 3' 9' :a(&)

or,

21-177 - aw (fl—L420

(76) (Qt/ffGYfl/e
(Ir/Wang //+ 3123 1“mfg/a)

”cf (PA/140‘” ‘fig—Q‘J

3,277

< > ’77 if may"77 c (-27 zJ'- .8

+5337;- 6” ” ‘ -= wad/w";
' Z7

Since the series in brackets in (76) converges to the value

wz' ~49!

ext/Q7978 +f€ j)

the integration performed in (77) is valid and the resultant

series converges.

Letting

t

)7, (,p/zltwa- 221‘.”

WIFE}; (3 ’2 4/40.

~77

we have, on differentiating, .q 40‘

I 77 ~ I“ i

(00'): *— 5” ”Na” ,2 («Jib/a),

-77 1

,7 - l- 4&1!) .

(My: 8” Wm 2 (£00309;

(78) ' ~77

I

l I

I

' I
X ' I l

' l
' l I

I

l

I. 77 - ,_ file—9‘60: ' n

m"(z)=2'7"7‘/c"”’”"” 4 (4") ”m

_
.
—
.
.
_
“
-
I
-
"
‘

'
5

.
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‘
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Comparing (77) and (78) we see that

('y (6’)

(/x-g)//ZX 1:0(X)+3/23 (fl(309+;Z7y4) (19"

This is analogous to MacLaurin's expansion-

Using Euler's formula

8": (24. 14- («444413

(WXJtakes the form, fl, X a?" g

070%,,—" W/[JQ(X‘/’/ya7+tldw'“ (xzz/waje ,2 fla)

_/r 1“

0
“
l
e

‘
l

2

fl-

—

:2;7/C ”2 Zd(X-/I/b
jwa/a)+7;

7’76 My
fl/jwa/a)

”Z7

The integral

7 ”£40: ,1

16‘ z/AM» (x-fl/DJMJ‘J

'5’

may be shown to be zero.

Using
bz

W? ""9.

f0;~41";WWW—
2/84Lenard": 228y:

, ~00

With

: a?) é:(X—fl/Z

we have

flzmpza)‘

‘2z7;/:fl62 ”‘2ic;M2(X“/§Q)4JaéflzfiI <3 ‘ZCQH1(1“A%94061&3

77—0

oo_ -fiz3249 W524)

:377:: C? Z43?Q (1"/€;V6J0Aa7‘rz;11£9262}Q(QX—/7Q)d)0/UJ
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It can be shown that whendfifvz is large, the remainder

i 8 small .

We find the value of the general term to be 1

W; -&’—’£‘2 1/ 7w; Lie?
(79) (Ir/yi/ J/L— 8 ‘20 + g/ZadjfZ—e 20“77.- - - -

 

where

4/77.
As an example of the use of this formula let us suppose

that of 100,000 men of a certain age, 800 die within the year.

It is of importance to insurance companies to know the orobability

that say 1000 men of the same age will die in another year.

In this problem

f: .0fléf

/: .?Z&

/Z = Mama,

,2: 1M-

Substituting in (77) t

(we a

~x , I 33;; yam/(m2
(XXX/0 -m€ . + 6.3.(7936).r2;7
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XI. CARTOGRAPHY

The problem of mapping is the problem of find-

ing a one to one (1.1) correspondence between the surface to be

mapped and the surface upon which the man is to be made. For the

most part we are interested in mapping the earth on a plane. Now

we know that it is imoossible to apply a sphere to a plane; that

is, a Sphere cannot be mapped on a plane in such e.way that cor-

responding arcs will have equal lengths on the sphere and the

plane. Therefore, when a map of the earth is made there is

necessarily some distortion.

The maps with which we are most familiar are conformal

maps. These have the listinction that infinitesmal areas cor—

respond and that the angle between two arcs on the earth is equal

to the angle between corresponding arcs on the map. The most

common projections which have this prOperty are Lambert's conformal

conic projection in which the earth is considered an ellipsoid of

revolution and Mercator's projection in which the earth is con—

sidered a sphere.

If we have a surface,

F(6(,VJ=&,

on which the linear element is

(80) d: '3 Vala‘f- 7/1/2

in whichV' is a function of I" alone and U'a function of u. alone,

the element can be expressed in the form

d3 z-.-.- M2014 171-402))

us



n9

2

where E! is a function of u and v. To see this write d3 in the

form

,1, z_ 4/4; 0/1.!"

(01) 4/3 -2717 --.0_ +7-7— ’

By changing the parameters so that

.31:

fry- ’

dr

J’s—l

9 '
l

(32)

 

the linear element becomes

p542: F‘VY/e‘M/‘IJ

When the linear element is in this form, the surface is said to be

expressed in terms of an isothermal orthogonal system of parameters,

and the net of u, v curves is said to form an isothermal conjugate

net.

After the surface has been expressed in this manner in

terms of isothermal orthogonal coordinates, the general conformal

representation of the surface upon a plane can be determined.

This general representation is given by the equation

1+1}: f(u+¢'v)

where fflui V) is an analytic function. The element of length

”(3%.- m2<azu=+m=l

is represented in the plane by

d: ‘= 47! 96/72?

If we let the curve C be represented by the curve C, in the plane

and if 9 represents the angle which the curve C makes with the

cume

-v= Wit,



we will hare

  

 

 

Hence .

4 . ééh’L“{V; .a§¢+¢afv

C2 ='(2%Q67+'5«4**¢7 : %e#7‘ fighr-l

or ,

2/Q_ £ZEEZL_K'

62 ' ¢a£2-cé/V'

Therefore

Adm-63) dzu-zQ/V’ ééh/éfi

‘3 " fl-M' aerfléfl’

or

(an) 8'2‘7‘9'W: “44*"4/5 ”“29

Since

X74111: )((Z(+4IV)

so will

1'13! : {(a—{W s

50

If we differentiate with respect to the complex variable ,Kil;7

we have i I

544 4'45 3 04+ (1959-)! (“7“,"),

or , . 61;'+l'

(85) f (”NV/'7 @4420,

In the same manner éAQW-‘l

(8b) f’(”("’v) : fl—zZ/V .

Substituting (85)" and (86) in equation (314) we obtain

I I '

1€{9'3/_ 11.5.3.5.) .
— f/(“+"’/J

If B and B, are another pair of correSponding curves starting

A
L
L
?

‘
1
‘
?
W
F
‘
T
'
“
-
"
.
"



from the same point and if their angles are denoted by<17 and

(D, we will find by the method used above that

«"74" 4") W
C f/(a+¢.V) .

Hence- .

2‘l(€_§’) 62((tp—fll)

’- l

01‘

€‘g; = w- 0')

and

awe—e. I
This shows that the angles between curves on the surface is pre-

served in the representation on the plane and the map is conformal.

' Ion if we consid r the earth to be a sphere its eguations

are

X: Mamz

(37) J:/d.43-ued.u'-lg

53: Ma,

where v is the longitude and u.the latitude. Here the element of

length is

_ 3.. 2

d5 - .99: fééz-xdzje

with

Mawm’a—MaAA WIV,

Mawvala-I- Aaluocml/‘(VJ

: —-,d»;zé(cxéc.

in terms of u.and q we get

dz

. . n
Expressing as

I 1

413 2:: (Qfinazétdbangb(gaata,4»«‘vdcza: .

4- (M344 M‘vq-Aak‘u 444214de

+ ai~§z&(¢aéx£:

The transformation (82) takes the form

, .9;

a Jet—f wa= 47%)

V

<88)

V



If we solve the first equation of (88) for u.in terms of

Hand then find the values of x, y, z in terms of H and be sub—

stituting the values of u, v in (87), we can substitute these

values in equations (8h), (85), (86), and show that the transforma-

tion actually does give a conformal map.*

 

* For a discussion of this transformation treating the earth an an

ellipisoid of revolution and of the errors introduced by the trans—

formation, see the phamphlet by O. S. Adams, General Theory 921 the

Lambert Conformal Conic Projection, U. 5. Coast and Geodetic Sur-

vey, Special Publication :70. 53— 1918 r
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