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INTRODUCTION

A student is first introduced to co:mlex varisble when
he studies elementary algebra. At that time he feels that the word
"imaginary" expressed very well the usefulness of such numbers.
This feeling is ususzlly retained until he takes a course in the
functions of a comylex variable, znd even after a first course he
seldom appreciate the epolications of the theory to other brenches
of mathematics and to physics. It is the purvose of this paper
to point out some of these apslications. We hope thot it will add
interest to the study of comnlex functions anéd that it will induce
more students of mathematics, physics, and engineering to malze such
a study.

No attennt has been made to give an extensive treetment
of the anvlications; it has been our purvose, instesd, to give
enough esonlications in the different fields to sugzsst others. In
some of the oroblems discussed the only method of solution is that
of comvlex varicble., While in other vroblems the solution is ar-
rived at more rezdily by this metihod. e pronose to so errange
the m: terial that it will be readily available to the tecacher for
oresentation to a clas<, or to the student who feels that ti:e
snent on such a subject would be w:sted as far asg usefulnes- is
concerned.

“e will diccuss oroblems arising in algebra where the theory
of poles is ¢n»lied; protlems from st: tistics zre Gisemssed where

Zuler's formula and the vprincivle of inversi-n are used; we will show

how to evaluate certain definite integrzls by the use of the theory



of residues; we will give a nroof of the existence of a solution
of a lineer differential equation, using some of the vpronerties
of comwlex series; the existence of a relationship between trig-
onometric functions end expon<ntizl functions will be shown and
illustrations &s to how this relationship is used will be given;
and for the use of the teacher of elementary algebra, we will show
how certain geometrical theories can be proved in a simple menner
by introducing complex numbers.

We will also discuss problems from the physical field.
Thus, we will avoly Leplsce's equation and conformal representa-
tion to problems in hydrodynsmics; Exler's formula and the principle
of inversion to electrical problems, Lanlace's equation and the
theory of inversion to nroblems arising in the theory of the potential,
the nrinciple of inversion to problems in the theory of hect flow,
ané Euler's formula to the theory of light.

7e also will show how Zuler's formula and conformal
representation are used by cartograprers and map makers in mapping

the earth on a plene.



EYDRCDY "AMICS

Tue first orotle.. we s .all discuss ig t et of a two-ai-

ensional, non-rotitionsl motion thet often ennears in the theory of
hyérodynemics. Tre straisht forwerd solution of tiiis »nrobtlem recuires
that we find a solution of Liplice's equation that will also satisfy

e boundery conditions.* Vhen we have done this we deteri:ine the

nressure oy meeans of the equation

(1) N R ;’-;z-f- C,

pressure,

&
f: velocity - /(32}9— 2, %)‘/
w
f

force vot¢ntial,
cross section area

and U(X,J) is a solution of Laslace's equation.
Tais srocess ma;” be tedious or even »Hrectically imnossible.
Another nmetl:od, w..ich, wiiile it is not direct, is nmich more fruitful,

<

is to tcke a narticular clasc of solutions of Linlace's eguation and
see to what cliss of nrovlems they nay te a-plied.
Tf we consider tie vlane of notion as tle co:vlex plene, tien
tae conclex enalytic function,
wz wixy)+vieg,
vhich satisfies Lanlace's eyuation is such that if we nlot from the

z-olane to the w-nlane with

w o= b(-f".V/

* R. A. Foustoun, Mathematical P:ysics




we will have a coaformel map.* Eence, since tie velocity potential is
sernendicular to the strean line, if ve consider the real part of tle
function w to be the v:locity votential, the iraginary oart will give
the stream finction. On the other hand, if we consider the imaginery
part of w to be the wclocity potential, the real part will be the stream
function.

As an examwle, let us consider the analytic function

(2) Wz goeh (X+Y).

Since
Urcvs crdh(x+ey)
= MXML‘J-;‘MJC acnAly
= Mx&d:rf.[wx‘ﬂ"":!:
we have
) U = lpshx oo )
3 ,
vV - ,40;4()r/d%;“47 )
and
2 2
U 4
(W) — 2z Y W /,
G X X
2 2

Plotting (%) and (5) on the u,v-plane we have a fanily of ellinses and

a family of hyperbolas so arranged that the ellipses and hyperbolas

* For a discussion of conformal mans see section X of this vpever.
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are perpendicular.

Yow it is kxnown that if a 1licuid is in motion tke lirnes
of force are pernendicular tn the stream lines. Consicdering the
Tifare we sec that the vertices of the familry of hymerboles all
lie along the u-axis between the points (-1,0) and (1,0). Fence
we see thet if the h —merbolas are t:lzen as the stream lines the
figure represents trhe flow of a liquid through & slit and thre
lines of force set ud by such a s;stem are ellinticzl. On the

other hand we might consider the family of ellipses s revresent-

S

ing the stream lines. 4gain considering the figsure we see that
the ellipses aporoach the straicht line segment from (-1,0) to
(1,0). 1In this case we have the motion of a ligquid rotating about
a thin plate and we sec that as ve get away from the plate the
stream lines are elliptical and tre lines of force hymerbolic.
It is readily seen thet by taking'j,>o we have the rotion about
an elliotic cyrlinder.

Another problem in this field of an entirely cifferent

tipe is of interest in that we emnloy the seme f-nction
W= Qeroh =,

It is known that when a liquid seeps through a vorous
soil, the commonent of the velocity, in eny cdirection, is nro-
vortional to tire neg: tive -recsuire gradient in trhat sane firection.
Thus, if

P = pressure gradient,

= a constant of provortionality,



0’2
U= -lf'fifl
(€)
vV = _K.é-fc

If we insert these velues in the continuity equation,

duw OV
— 4+ — =0,
20X 04
ve find that,
o'  *r
2 -
$0) VFT ox" o™ @

Now suppose we consider the problem of the seeprge flow
under a grevity cam resting on ¢ reterial thet permits seepnige.*
Tere vwe seex & fuanction, P, w-ich satisfies Lanlace's eq:iztion
and &#lso certain boundary conditions which depernd on t-e nature of
the surfece of the ground. Thet is, trhe vressure must be uniform
on the surface of the ground uvstream from the heel of the can,
and zero on the surface of the ground down stream from the toe of
the dem.

If we now choose our coordinate system with the origin
2t tre midnoint of the brse of the dam (Fig.r),

(3) Foy(uv)

7r J

Plu,v) =

* Yarren “e:sver, Conforncl Reorecentotion, with Aoolications to

Provlems of Anplied 'athenatics. Acerican ‘‘athematical “‘onthly,

October 1972, p. Lo5.



vihere j(u, v) is deteraines by

W=wuriV = & Coah(X+iy),
Une mgy now ezsily find the distribution of wolift pnres:ure across
the tese of the cem. In Tact, the vase of tie (e ls She readresent-
ation, in the (w,v) plene, of tie line

w= o,
08 4y& ™,

of tre (:,y) plane. EHence on thie bise of tl.e (om the eguations
U= @A clrahx sy,
. .
v = a M x AW\J)

reauce to

(9) A = a.mj,
vV = o0,
80 that

(10) Pl 0 =

-/

«
o o

SRS

e totel wolift oressure per wnit lengta of Gar is fowud to be

a
(11) P = ,g__/w-lé‘.ﬂ(« = @dJ
<A

waicn is Lhie oressure nat woulw Le nroduced 1f Lihe entire bpase
of tne ceom were subjected to a head of water ju«t one-helf tne
head alove ine w&., or if the wress.re decrersed linesrly from
the static head P. at the lrec.d of trne .am to & vilue zero at the

toe.






LIGHT

Cne of tie 10st iuteresting niyeicel ohenonenon tliet we

e

excounter in caily life is thiat of ligat. “an's ilesas of ithe na-
ture of lisnt have c.ansec from time to tine throuh the centuaries
out litile wis aone in ¢ scientific wer to determine .ust viiat
light wes wntil the tiie of Sir Isa ¢ Tewton. TTewton nerformed
exnerinments elons triis line ana arrivea at tiie conclusion theot
light wis in the nature of tullets hurtling taroush swace at en
exceeGingly nifh velocity. At tie ccme time a rivel school, headed
by FEuysens, arose on tue coutinent, wirich helw thet light wes energy
transuitied ¢s a vave. Tolsy vy sicists have incorsoreticc both
iteas along with mod-rn Quantaa miysics into &1 enceedingly com-
plicaled tiieor . TFor our nuranose we will follow Huyiens and con-
sider lisht in the neture of a weve motiom.

Tiiis motion is conceived to be of ti. transverse tyne,
as a vweter weve, consisting of crests and tro.si s. Tiie distance
from one crest to tiie next succeel. .z crest 1s called the wave
length end is ceesipneted Wy A 3 the tine taizen for one counlete
wive to ness a given -oint is called tle neriod and dcuoted by C
the velocity, of the wave, is cqual to %%- s the anlitude, which is
the helght of the crest alove the noruwel, is designated by b
the i tensity of ligiht is equal to‘ég.

It is nos<ible to show exneriientally that if two weves
of equal lengths ana ecual anlitudes are traveling in the same
direction throush a medium, such that tiie crest of one fzalls on
tne crest of the other, the resultant weve has tlie same length and

en a-mlituce of 2 b . If, however, the crest of one fells on the

10
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trourn of the other, the res.ltent a »litude is miro. Ta the

latter cae t ¢ wives are sald to wectruaclivels incerfere.

To oroduce interference Letiveen 1light vieves it 1s nec-

essar; to taxge lignt frow the swie source, sdlit it into two »arts,

L

leaxd the wewts over ciflersnt waths znd rewnite then ot sriall

0]

ansle. If thie cifference in »satiis is an old nuler of half wave
lencstiis the weves will interiere cnn Cariness will resualt.

A weve,wnose avulitide 1s one,mry be exarvesced netl:ematic-
ally b tle function

i Z =),

The »roblem we are cousidering here is tast of interfer-
ence procucea by & mediws whose sides eare ~erfectl; Hlone end near-
allel.* Let B be such a :eciwn ¢nt congider a plane wave front,
of eunlitude one,incidcent woon it in the direction AP. Tuis will

f£ive rise to a reflected vave P,R,, tné e refrected weve i the

¢irection P,C,. Tiis refrected wave will give rice to a roflected

~ . -

weve in tlhie airection u,l?z and e trarsittel wave in the cirection
C,T'. Tae reflecteda wave, C'Ek, cives rise to a reilected wave
in the direction Equ and a refracted wave in the direction P R,,
end so on; the originel incident —wave gives rise to & series of

reflected waves ané a series of transmitted waves of renidly de-

]

creasing inteneityy. Viet we are after is an expression for the

intensities of ilie resultent reflected and trensuiitted waves.

— . A \,
* R. A. Zoustoun, A Trecevise on Lij:t, P. 1-72
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Let & be the angle of incidence, & the angle of refrac-
tion, € the thickness of the plete. Let@/‘:"be armlitudes of ste-
ceeding reflected wa.ves,(.',(."be amlituie of succeeding trznsmitted

wvaves, and /% the index of refriction.

A 7.

2.

Fig. 3

Draw P, ¥ verpendicular to the surfices and P, X nerpendicular to P, R,.

Then the first and seconé rcflected wrves nasc tre plane

P, they are in different ohases, for tiey were in the s=ze phase

&t P, and have traveled different onticel distarces in coning from

P:‘ Let tleir relative nhase difference be denoted by d; then 4

denotes trhe vhese difference tetween any two succescive weves,
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e have
e _
and
RH=TRE e HPR
= 2NE L@
(13) = 2€Gnb_uin @
ele
=20 g
Eence
d= -2—;7-7((‘7,°c,+('*c,'3-77ﬁ)
(1L) = 5_7:(31*_4_..2(%_——9
A loa 6

517_7_'2(‘4 &ra O,

If the incident wave is denot=d by
. RMr
gvV\'-E‘(I"-'é')

we can renresent the resultant wave by the function

Ren[E (e-2)- ]

in which the amolitude, R, and the pliase, d: are to be determined.
The first reflected wave is reoresented by

-4
/Z.ﬁov\fc—'(f-‘é)/



1L

the second by
/('cc’-c-l«\/fz—.f-r/f'--é)-o(j)
the third by
aee son [E(e-3)-24],

anG so on. The resultant is the sun of these weves. Fence

RM/ (t'l)‘ﬁl /’-‘”‘*m(t'v)wzccim{ (f-X)c(j
+ CC'&M{——('(- £)-2d [+

+ 2" c'xm{ Tie- -!—)-an-:)alj+

To evaluate R ond d we must swa this series. To do this as the
series stands we would have to &only the nrincinles of Fourier;
if, however, we int oduce coaxrlex terms by the uce of Tuler's
formala we will have a series of complexterms which con be easgily
sun.ed. Using the exoznsion for £oa(a-4), ve have
Ren AT (t-£) tood - Raei(e-8) Lo s
= R - 117‘(1. -&)
'*/?L'cm-ﬂ-(t-l)ataf /zecm——(f- L) sind

(1
) +' CC,«—« (tw!)cm_g.(-/: cc m‘”(r— X),dm.za’
-+ ”.};"3 .o ﬂ ---------- X ')d
+ N AT (‘t“-“)doc((ﬂ Vo) - 1’ ccm——(t- X) o (n-

t- T
2T/, X
Formally eq.ating tie coefficients of dwm ”('c--v!}end ad.*f-‘(t )

ve getl
an-2
(16) Rt f= A+hce(aod+ 2" watd+ n' b ot + A" coands-=),
16
,2“'1.
R tind = /z'cc’(,a‘—'-\ol+/r'fa—1~zd+/:’i.’.so(+---~+/z A nol+--1),



15

The series of (15) and (16) are pover series in A'with the coef-
ficient of eaci tera lecs then one and hence &re convercent. Now
by the use of Zuler's for.ule

o traur X

ve can comoine toese eqgua t1ons into the followins form

‘ol ,%.3(d zn-z
Re‘T: nrnee/(eGae ™t |, RN

(17) e
= m+r2ec 7::;7§;ZX .

T:is cen be written in the form

2 e rlec’e (|- c'“‘}
¢ =+ gt id)r 18- CL
(1-2e¥)(1-ne Y
P -4
nee!(Coadttmdd - 2")
(18) =+

/—2/1"'6011-0(4-/(”

2
‘e -/?'/ te’acol —
aee { - 7 +¢/’ 2,0l v i )
- N+ =21 mo(-*/ll 1= B “coadkt

But if two couwlex numvers ere ecuel their amlitudes ars ecual.

Zence

2 L, .
Rz‘ e /?'t‘d'(doq.o(-/l’z) e’ sl ”
1-220%de V[ T | 1- 2R et

This mey ve simnlifiec to

R =

(19)

"

(//z"/+6’/t,4m§l‘

If T is the amdlitude of the resultont trensitted weve, ve hwcve

by tne mrincinle ol cuergy

RYT%=



Hence 2
2 (-~Y
(20) T - ’_2/'12md*4,‘/

Y'e are interested in the maximua and minimrm values of

2 2 .
R and T . Ve hove

®%= o

vien

Ther«fore

or
AMeeadd=naA

vnere M is a positive inteser. Thus when ti:e nath difierence is

an integral nuwiber of wave lengtihs we hove no rellected lizht.

Also
2
7(’2 _ 4
2e - 1- )2
(22) ('4 ) + g2
82
is a meximom when
-2 UL
SL-A'\ -I 2 /.
Taerefore
8
2_2(_: 277'(“}8“ :62"*/}—5

or
; )_A..
2 etz @nrl)
where N is a vositive interser. Tius R is a2 wmoxiimuwn waen the oatn
aiffevence 1s aun oiw numoer of hall wave lenstixs. Tre uinirmum

value of R is zero anc the mexirmam velue is
gt
(+2Y*
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o

2, .. 2. .
7ien R is a mialme:, T hes a naxirnm velve ecuel to one,

. 2, . 2. s
2nG ween R is nmeximwa, T nas a ninimun velve ecual to

-4t 2

1+




IITI ELLCTRICITY

The evolications of the counvlex veorieble to
vrovlems in electriclty ere Civiced iato two nuvis. In electri-
cal notentisl theory we co.sider nroble.s of the sre t:-oe es
those Cilscusred wnGer nydrod miizics. For exe. le, % e irzusior-

mation
W= droh X,

woich Les veen discussed before iu this naper, night De interore-
teC as resresenting tne electrostatic f{ield cdue to a source in
tiie shane of an ellintic clinder, or tihe electrostatic field due
to a charsed nlate from wiiicn a strin :as been removed.

The use of co..lex verialle in the orotlem of 211 electirical
circult nee veea exdleinec vy T. C. Try of the Pe¢ll Teleoione Lab-
oratories in the follow ug monner.*

UTrom the olysical stedooint it (clectrical circuit
theory) is naturelly & siudy in rcel quentities, since tie ohycsical
forces enu curre.nts are tie.selves real, end Lat.e.otical mell.ods
originelly used in conunection with it cealt sl oot exclusively
with real variebles. .uring the prese:t coentur.s, novev.r, a vro-
gres-ive trensition ras tazen nlace, until now tie use of comnlex

Gurcatities is by €11 ouds the usual ining, end real nwicers are

rather rare.

* T, C, Fry, Differentiel Eguations as a Fo mrection for “lectrical

Circ.it Tueory, american latne.cticcl Uontlly, 1:23, P. LAIg.

13
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Weeee To reiuce to methematical terms, trhen, the problen
of elementary circuit trheory is that of solving the sryetem of dif-

ferentizl ecuations:

Fo (Rygit Fa(Plyat =" st Ef (P yn = £ ()
k) (F)f]l*'f;;(f’)]ﬁ ----- * G (4:’/ ~ "'fz(:*)
Far (RJ1# Gia (Rgat === === +nl(P)ga=Fo (Vs

Where trhe F's are linear differenticl ovmerators with constaent coef-
ficients, the f's are simple hermonic functions or sums of

such fiunctions, and the boundaryr conditions require that the system
shell be eitrer at rest or in a stezdy state at the time zero.

" I need scarcely remerk thet the stucy of such systems
is & recognized o rt of first courses in differential equations.
The sucrecstion that the founcations for circuit theory be laid in
such courses is, therefore, not & very revolutionery one; it re-
cuires at most a slight cheange of emohasis to eccomnlish it. Per-
hans this will becorme even clearer s we mention the four facts
upon which the use of com»lex quzntities rests, none of which is
vnusuzl or non-mathematical in ch: racter.

"I e sum of any solution of (23) due to a set f; ,
and eny solution due to a set gj » is a solution due to a set fJ+g3

"TT This is en inverse to I. Of course, t-ere is no
exact converse to tie Hriunciple of supernosition, for even if we

know a solution of (23) due to {f+ g, we cannot orcinarily senarate
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the part which is due to JCJ' from that due t°jj~ The-e is one im-
oortant exceptional cese however.

"If the functions f; are real while the functions Jj cre
pure inaginaries, then the real purt of the salution is due tof
and the imaginary purt of the s»slution is due to‘jj .

"III. The derivctives of an exnonential function are
proportional to the function itself.

"TV. Zuler's equation

©F= Cpa Xt b,

"Hence if (23) can be easily solved when F(¥)is an expon-
ential, and if it is true that vhenF(?¥/is a commlex we can sep-
arate out the real solution from the imaginary solution, it fol-
lows at once that we can obt:in the solution due to the simnle
harmonic function, c‘oo(d“t‘-rf)’by first finding the solution due to

the comlex exponential, e‘(“’d , and then discarding the imagi-

nary part.

"This is the entire argument in favor of the use of com-
plex imaginary numbers in electricel circuit theory. It is hard
to imag ne eny explanation b:sed on vectorial ideas, which would
zpproach 1t elther in conciseness, simplicity, or generality."

As an exammle of this method of solution, considsr the differen-

tial equation *

* Page, Introduction to Mathematical Physics.
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2
« e .
(2u) a/;f—(/—tif-dz;{*;f%a: $(t)+ ¢ c(t)

where a,, a,, a4 are real constants, and b(t), c(t) real functions

of the real wvariable t.

If we assume a solution of (24) to be
(25) W= XY+ <502,

we have, after substituting (25) in (2U),
2 2
:,/t{ + f'd,g;;f, fd,f:ff + /d,,:—fi R LRI E AL LR

Equating the rcal and imaginsry parts of this equation we get

(26) &,

x X _
d/ élfi *+ A, A +4J/(-— é/f)’
(27)
2
a, i/:zf- dl-f/—’j+ d_,J = ‘—'(7'7/

which are of the s:me form os (27).

Yow since we know that the imoressed electromotive force
(EMF) is a harmonic finction we mey consider it to be the rcal part
of the function

£, (ERn wt +cain ) = £ e‘.""r,
where B, 18 not necessarily real. We may now write

4= Ll (£ neat)

The impressed E ¥ F is then

(28) &= MM{/{.@‘?‘""*"’ = £ e (wtrd),
Wow if we denote the current by I, the resistaace by R, and
the indugtance of the circuit in henries by L , we mey write
the equation for Ohm's law in the following form

(29) 4 %,«. I+ E’-/.fd?" = .é;e"‘ft

Comparing this with (24) we see that if we consider

I=2X, A=A, R=a,, and-é-z a, then (29) and (24) are

- 1



identicel.

To solve equation (29) let us assume a trial solution
I=1Ze'“% (1 not neescsarct, teat),
Substituting this value in (24) we find it is a solution if

I, [ p+ it ‘chy-‘ £,

£, = l/l’?l-f-(w‘(—w—’c)z .I’e‘.{

£ e

J % oi -2 )7

I,

/
where  Za.. J = wh=e
7

Therefore E and I represent vectors rotating in the
x,y-plane with an angular velocity <o, the latter lagging behind
the former by an angle J . The actusl electromotive force and
current at any instant are reopresented by the projections of these

vectors on the x-axis.

If we put
= ' - L 12 (S
Z = R+ (w4 wc): /ﬂff(pi-a-;? 2 e‘}
A - / e-cJ

/

]
&r (o) T Ja (ol =)
it follows that

£ = ZI,

L = £,



IV EZAT FLOW

Many problems arise in the field of engineering
to which the theories of heat flow cin be applied. For examnle,
it is of very practical importance to know the conductivity of a
boiler vlate, or a bearing packing. It is of theoretical interest
to know that the length of time that the earth has sustained 1life
mey be determined by considering the conductivity of the earth's
crust.

For the purpose of this discussion let us supvose that
all space on the »ositive side of the y,z-plane is filled with a
homogeneous solid of diffusivity X' . Let the temperature on the
¥, 2-plane be given as a harmonic function of the time, that is,
the temperature at ell onoints of the y,z-plane is the same but
this temperature has a periodic variation. For example, if

T= temperature, and t= time, then
T=@2%uamtr bt "2am’e,

vhere a and b may be comnlex but n, m, m’ are real. Also let us
suppose that this function 1s the same for all vzlues of y and z.
It is required to find the temperature throughout the solid when
the periodic state is fixed.

Clearly T is independent of y and z. One of the condi-
tions T must satisfy is

2

(30) -a—a—z-:r-azt—;-. \
That is, the change of the tcmperature with respect to the time
is pro-ortional to the velocity of the change of the temperature

with respect to the distance from the y,z-plane and the constant

of proportionality is equal to the diffusivity of the solid.®

* R . A. Houstoun, Introduction to lathematical Phrvsics.

3




ok

That is to say, T must also satisfy the conditions

T =& e mT, whea x=0, (m= M) >

(31) T # 00, wHhen x= 00.
To solve equation (30) let us assume a trial solution
- (32) 7= et
Wien this is substituted in (30) we have
Atfﬁx-': Z/G,c.n‘fﬁ,f

or

(33) A=K B2

It is obvious from (33) that A cannot be real and negative. There-

fore let us assume A is imaginary and
ﬂk - E 3 " J .
Substitinting this value in (32) we have as a solution

24t 7z
(3W) T= € -‘f-"* x X
Now we know that

(+)%= 24

and
g 2 ‘
(/-(} = =-4¢,
Yence
ﬁ = .)’sz: (’+")1
and
/__" = —;“'I_I__("‘).

Substituting these values in (34) we have
0t .
T=¢e¢ "t’fi%' (1£ )X

£fL a2 (it*pL X
e

Now the conditlion for x - 00 demands that the sign of the

exponent be negative. We have, therefore

\ B X AL L gl X . ¥z
(35) - c_’g'—’r[ﬂe e /EE—_Z pe [,:x)/J

where A and B are constants.



Substituting x =0 in this equation we find
. Clee
T= #e% set?

But to satisfy boundary conditions, when x=o0 we must have

T=Q dem mT.
Therefore

'(J%- X S de-JE &
e’ )%- 3 be «« ),;‘_/
rnust take the form
. 4
Q M”"’; "),

with
= m.
Hence

B .
T= ae E%(Mt-/:%—x)

is the solution to the problem.



V. POTZNTIAL T--CRY

' In discussing potential theory, we ezre interested, not
only in the development by comnlex variable, but also in comvering
this development with thet in vhich couiolex variable is not used.*

In two dimersional nroblems, the equation to be satisfied

by the potential is
t
v, IV_,
ox* " 2y~

from which we get

wR
(3€) V= Flx+ <)) +Fredy),
If Vis to be rezl, then F must be the function obtained from F

by changing { to-¢ . Tow let

j‘(x*-c"j) zUrV, u and v both real,
Then
FY+iy) = u=2Y
end
V T 2.
If we let
T =-2y,
we heve

T+ (V= -2v+aiu
(37) = cadturiv)
= .‘.’1"}(,\’%("7): 0/1-}"]})

vhere Aﬂ(x*{i) is a coumletelr generzl function of the single

* For an =xamnle of the develooment without commlex varizble see

lac!illan, T eory of the‘Potential.

*# Jeans, Electricity and l'agnetism. P. 261

*6
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conplex varieble (X+¢4) ,

Trus the most general function of the votential which is
wholly real can be derived from the most general arbitrary function
of the single com:lex variable (X*¢<4%) by taking the potential to

be the imsginury part of this function.

Yow, if
Q(X+ly)= T+ iV
end
Z = X+dy,
(38) i

W= ry
end if we let the element in the Z-plane be
(39) PP AZ,
and the corresponding element in the w-plane

(50)  QQ'=dlur = FE Az,
we can get any element GQ ‘from PP Y by multiplying PP / vy &% "(“’

that is, by
5% O or @'xriy),
If we express f{;—‘-’ as

(41) dd;’: @(x+dy) = P12 6+ (4 6) Lo
we can find the element dw by multiplying dz by ° or / o /and

turning it through the angle & .
ow let us examine € , we have

Clera 9+4'M5):2?“’: @(A+<G)

- 27, 9V
(L2) P 4 X
) S 1’4
= Y |
oY aJ J

oV Q_‘Z'z&
(13) P/ajﬂa, [C, aj)/.
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Thus we sec that if V is the potential, the modulus, (°

measures the intensity R. And since
R=9v7rec
we have a simvle means of finding &, the surface density at any

point of the surface.



VI ALGEBRA

Let us now turn to the realm of mathematics. It was
here that the ideas of imaginary numbers and hence com»hlex vari-
able firet arose. We first recognize the need of imaginary num-

bers when solving quadratic equations of the tyve

2
X +X+/=0,
Since the use of complex numbers in the solution of

eQuations is familiar to anyone having had a course in college
algebra, we will, instead, in this section, show how the funda-
mental theorem of algebra can be easily oroved by the use of some
ideas from functions of a complex variable.®*

Theorem: An equation of degreen with comnlex coefficients
F(Z)=z2"%a,z"%-----+a,=0,
has a complex (real or imaginary) root.

For, from our knowledge of singular points we know that f(& has
no singular ooint in the finite plane and has a pole at infinity.

Putting
(4h) F 3 -2/—;
it follows that
5y 0= F(3)
has a pole at
x'=0.
It can be shown that if
2= X,
is a vole of order K of the analytic function F(%, then }7’;) is

analytic in the neighborhood of Z, and has a zero point of order

* E. J. Townsend, Functions of a Complex Variable, P. 291

29



X at Z4, end conversely.
o A, c e e s v e - .
Tence "’"(29 ig analytic in the nei-*borhood of the oricin.
Conseyuvently, since
1 .o ;
FE) " o)

is #nalytic in the neishteorhood of the orlgln,;(—z) is analytic in

the neighborlood of Fzoo . But, s is cecily vwroved, everr cunclirtic

function, not = constent, must have zt lezst one sinsulor moint

~

-

either in the finite resion or &% infinidyr. -Sincej%i) cennot heve a
giniler noint ot infinity, there mu~t Te ¢t lenst one moint in the
finite rogion, ser 24, ot wiich the fw_Lzlction;;?';") hees & singuler
noint, Th's vnoint connot Te so escential sinsulsr woint, far in thet

ra

cese Z,would not be a rirular noint of A#(F). Hence Z, rust te a pole of

/
$(%) and conseguentlr a zcero noint of the given funtion FAZ). This

ect-Dlisnes tie treorm.*

* For a nroof with~ut the ure of the theories of a comdlex voriedle

iy

see Dicitson, First Cnu-ee in the Thicory of Tecuntions, 0. 1F5,
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Certain integrels
that are difficult to evaluate by ordinary means can be evaluated
by the use of the theory of residues.®*

Coneider for exemmle,
LT
——__‘-‘—
o
To evaluate this, let

_ X
Z= e |
: _ A=
(L46) A6 = =’
‘® -e /
e‘re 2+ =
M@ hd .z - -z .
Hence
277
(47) J ald = / 715-’ _ Az = —‘2-/.___—-—————‘4(”tz
o 2t né c L(avy+d) ‘Y mryz !
where the path, C, is determined by the substitution
z=c‘®

As © varies from o to2/7, z describes the unit circle about the

origin. The integrand has poles at
& =-22/3,

but the only one to fall within C is
2 =-2+17,

Hence if we expand # (#) about
Z 2 ~2+3,

by considering ,
! _ _
(48) Thoxel - (Z+2-V3)(Z+2+13)

and then expanding the factor
/

Z+2+ 13
about the point by Taylor's series and multiplying each temm

* E. J. Townsend, Functions of a Complex Varisble. P. 28L
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/
by£+2_f3— ,weget

___—I—-——- = -r + ------- .
(u9) ey = (27"2 j

Since the theory requires only the coefficient of the term with
the exponent (-1) this is all of the expansion we need.

The residue at

R= -2+ 17
/
152,-5 « Therefore we have
WM Ao 4 _ 2m/5
e T TS
(]

as the value of the integral.
As a second examnle let us consider a function with

infinite limits, for examvple
© ok
2 KA J
oo X 3H1)
Substituting
x==
we see that the function
/
@*+1)°
has a pole at
z= ‘-o

Expending £(2) in powers of(i' <) we have

- -8 —— .
(51) F(=) = f(z <) /s(z )} Jelz- ¢) .
The residue at & =<¢ 1is
2L
T 6

Hence we have
377

00 olx <, ‘= 2L
ORI B 7
~ 00



VIII. DIFF=RTITILL ECUATIONS

To digcuss comletely the nian;” uses o°f the functions of
a coumlex virictle in the theory of cdifferential equations is im-
nosrible in this paper. Ve will illustrate the use of sorze of the
tlcory b givi-g a nroof of =n existence tieoren of linesr differ-
ential equations.* To sinplify the proof we will consider an
equation of the first order.

Theorem, Given & linear differenticl ecuation of the

LAY

first order

(4) %"‘1: F(xy)

vhere x end y arc cormlex ond f(xlj) is onelytic in =orme firite
region
D: [ x-Xléa
l4-1.1¢b,

for 211 x, ¥ in the rezion, it followe ithet trere exicts a solution

of (A) poscing throvugh the point (X, ge).

Tor, cince f(X,j)is anzlytic in D it follows that 5(&3)11&9 an unner
bound, !, in D. **

Expanding f(xzj)about the noints x,, y,we heve

F(ry)= J(X.jo)v‘:&(In:/o)(»z.)+f,(z.,3.)(3-3.)

S Fex (X, §0) (x-x.)‘-/-:f,J (Xo, o) (X-X)(y-Yo) + Fyy (X0 ) (§-40)°
(53) 2!

4= - - - -~

* “oulton, Differential Xcuztions

** B, J. Towvnsend, Fuictions of =z Commlex V:riable, P. 39.
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Define tre function FIX

(54) F(ij) = -9 ~ x-Xe J
(- ) 57

vhere
ala,
b'<b.
Txpending
M M I' P de
/- J-Je _L{o
b a’
M 930 19-g0) -3¢)
i =z /‘7[/*7*(7)7‘---+(§_7_/+--])
bl
and
_ X’Xa L.
i = e e ()

These s€§ies converge in a region
D' lx-xlia
/J' 70/( b
since they are geometric nrogres sions with the ratio les< than one.

Then f:\. — < [I+ i A _,,,,(3 .7) ][,.;f"’ (Eg)“,]
@ L) g, e, ()% (£2)(£2) o (55)-]

. . ’ . . . . - .
is convergent in D since it is the »nroduct of convergent powver

ceries.
Text we will chow thrt the series (55) douinates the

series (53)*

* Tor a discussion of do.vinant functions see F. S. Woods, Advanced

Celcalus, p. 57.



That is, we will show that
M 3155, )],
M

—Z; % ’J"X(onjo)ll

- - - - - - -

am 2 /ax"f("" °)/
ni g

M 3 %}(x.,y)[l
n!

g

- - -
- e - =~

. am-o-h
AN ’ax"aa"ﬂx":")l
mpn” .
a’' b (m+n)l

- e e e - e . . = — — e

I.et us consider first the two serier ._
(50) F(X)= !(x Y+ Flh)(X-Xo)# -~ - -
X- X.
(57)  FX == M1+ 220 (9t x,)

—.__-—-

By Cauchy's integral tneorem we h:ve

/ £(t)elt
FO): 27 ) Fmx

Suhstituting ‘0
¢
#qg-ﬂe,
(t XO)/ -
g/z‘ = /ZC“@/&

we find that

| £(x,)[ € ‘?7”_ -/ﬁl"--:fm: M.

35
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In a slmllar way
/,f f(f)o(t} L s 2,
lf(X)l e S

;(r)a(f L T ama’s o5, .
) 77 T At a
f(n(“'o)l ,zm IJ (- %) =<7 a

This shows that (57) dominates (56). To show that a similar reason-

ing holds for two veriables, let

__L_‘ *(",7.)&(1
£(29) = 777 M
j‘ a__ .) /

2 FRUATAE | L 2 ymra's'=M
[#(x, 4/ ‘(3%77) /f . (€-xe)(T-3) S meas ’

) ATA M
| 228 o S]] Bl ¢ ®

1

3;()(0,30)! (z z/fj LRYATAT | ¢ ﬁgﬂ
|

(t-x,)(T- Yo

|

|

I |
‘ |
| 1
| |
| |
| |
' |
* |

- — — — —— =

2"f (x., %o $ETolTolt |, M
, /: .27Tz , jf @- )r.,)"‘*’(T-j)/é e
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I '\f(xo:30)/ (‘2”‘ / 5 (t-xo)(r'jo)““ b hy

y ) oA Tol'T M
mﬁ\}(x% ) ! l (8T lml LI
} Ix Iy / ,377’4) fj - X.) T-j.) a'™b

Now assume a solution of (53) in the form
(59)  Y-Yo= M (X-Xe) # e (X-Xo) 4 -~ do (X-Xe)"--- - -
Substituting (52) in (53), we get

A+ 24g (X=X, ) #-- -+ Ndw (x-2) "
= Cop + G0 (X=Xp)

(60) +cOlL"( (X‘X.)'f'a(z(x-X.) t-°" +°"\(X'xo) ""']
+ & [x- Xo) + €, (X- Xo)[&, (X-X0) +d:(X')‘.) e
vhere CM = md?j ;(Xuﬂo)
(m+n)l

Equating coefficients, we find thet

A, = Coo,
QAdg 2 CgtCoyth, = Cpp + 6, c“)
3¢ = caldz."c‘:.*clld + cozd

-——-— -

Hence it is possible toevaluate all the &’s in terms of the C's,
and hence we have a solution to (6U4) if we can prove the series
(59) convergent in some region.

To do this consider
(61) i(:Y_ - F(X
A Fey),
with
J(Xo) = jo

By use of the ssme method as above we can solve this equation in

a series, to get X )
(62) Y=Yo = A (X-K)t Ay (X-Xo) 4 =~ - - + A (X=Xs) "t == =~
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The velues of the A's here are of the same form as in (59). Further-
more, they are all positive. Hence, since the series (55) dominates

series (53) it follows that the A's dominate the A% . That is
A 3ldl, Ay 2lael ----- B 21wl -~ - -

However, we can solve (bl) directly without the use of series,

since

LM,

- - Yo _ XX

AX (1- ;1:})(/ a’)

and
M oAx
-Ho - —e—eeee— °

oly (1- L) - - X2
Therefore 2 x-%

y- &4 _martep (- 57
Since

x:aol J;-' Jo/
we have

C= Yo,
Hence .

=Je, / .!_'___Xo-
“j-jo"%—;—)+/‘14¢éf(/’ a'}‘ 9.
If
Y=g = X,

then

z X-Xo| _
_‘2‘-%—,—+ Ma' (1= ) =%

o _ XX
yi “'y-z/“labﬂj(’ a’)‘ %

end

Y = b E[Eramasley (15 E5)
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Now x is complex and therefore the series for the expansion of
(53) is convergent in a circular region having X, @5 a center and
a radius equal to the distance from x, to the nesrest singular voint.

There are singular points at

(63) XK,
and a -

(64) Hild%%héj(h-xfy:a
Solving (64) for (x-X,) , we have

() - i

_ XA
a'o = e “'M ’
(X" Xo) - a'-—dle -24!"\.

Eence the radius of the circle of convergence is finite and dif-
ferent from zero. Since series (o) and (64) must be the same,
series (62) must be convergent. Furthermore, since series (62)
dominates (59), it follows that (59) must be convergeant in some
region.

We therefore have the existence of a solution of (53).



IX. PLAIE GRO'TTRY

It is often desirable to have a rather simple
appli'cation of complex numbers to bring home to a group of college
{freshmen the idea that complex numters have other uses than for
solving algebraic equations of certain tyves. The apolicztions
thet have so far been discussed are in the most part beyond the
range of a freshman group and have little meaning to them. With
this in mind, Lloyd L. Smail of Lehigh University has worked
some theorems of plane geometry which he has proved with the aid )
of cormlex variable.* To do this he used only two theorems of
complex varieble which are eazsily oroved to an element~ry group.

These are: '
1. The distance between two points 77{2,] and E/zzj is

givenby TARR= [Z-Z).

2. The point of division of a line segment Jjoining

points 7‘,’{2,} and 73{2‘] which divides the segment into the ratio
BP :

(65) PR T A
2= ZtA% .
I+

For the special points where PI is the bisector and P”

is trisector, we have

4 _
(66) ? - 2 (z-l +22)J ’l-//

14
P = ‘:,L(E,-I-.ZE‘,)J A=2.

* L. L. Smail, Some Geometric:l Apnlications of Complex Numbers,

American Mathematical Monthly, 1929, P. 50k,

Ln
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One of the theorems that he proves is the following:

I. The mid-point of the hypotenuse of a right triangle is equi-

distant from the vertices.

For, consider the righkt triangle with vertices at

ot], afaj, Bls.
N

[4¢f

e [3’- (a.+é<')]

o Afaf>
Then the point C which 1s the mid-point of the hypotenuse is

given by C{# (4+bz7j, Yow
0C = £ @arbi)-0l= L/arsd/ = $Va%e?

AE= |a+bi] = a2,

Hence
0('::2!-/78: L= ZH.

By similar methods Professor Small proves eight other

theorems.



X. STATISTICS

One of the fields where one would least expect to
find & use for complex vuariable is the field of statistics. Fow-
ever, in some of the developments of statistics, a knowledge of
complex variable is very useful. Consider, for example, Laplace's
development of Bernouillis! theorem.*

Let us consider the probability expansion

(rrg)”

where

# = orobability a thing will not hanoen,

(® = probability this same thing will ha-ven, and .z is a
positive integer.

We have
(67 (Pg) = 7% (07 P 73 s Gl v

4 AN (7-2) - A= (xl)]
where (X/ = X/ .

The problem is to obtain & simole expression for the general term,
vhich we will designate by\‘[x .

5 et Qg s (g # ol B -

= (PP)= o)g +(1)7 Pl P o

O e Ll e
+ P

® From notes taiten from Lectures by Professor Carver of the
University of !ichigan, by Professor Crowe of Michigan State

College.
Lo
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and let ) /z we /z-/ 02‘2)“)‘
8 pertpef 8 (U
6 ) 2-xH, (/z-zxf»z)ul ( ) 22Xy (/z~2x)u9<
(69) L4 i
'”"Gv/ (ﬂ-ZlaO&Jl A Wl
+ 6; re +----tFL < .

4
Solving for the term containing (;) , We get

X, - ) ¢
(x)f/z (/ux)wz[( s pe®)- ;"’“_o.__-__
A~XH (/g-:nz)wz’
() e

(70) ( /Zvl- Nl (n=-2X=R) wd
X+/ c — -
N _/zaJL'
-pFe

Intersrsting both members of tiic gbove ecuation with resvect to ,

we have

. o
ﬂ - ﬂ' - -, 3 wt -aoe 0/0"' 00
(71)f4 nr) A& AR 21}“"(}@ + e )
w = e
)z (x/} Vallt fﬂ, |

To show that the other erms are zero consider any tern as
R, X x-/ 2
(g v
.Z’
2

w)A
(72) = ﬂf (&0 2+ ¢ e 28)Aw

(.A«u?&?_ :cmz j'f

/X _I) f n- If/
hence , ) e
B Y
-Ir
2
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¥e now have the generel term expressed as a definite

We now wish to evcluste this integral. It is easily

integral.
seen that
w.
-(/z—zz)w -(/:-zx)wt*/liqg?e +/:e ¢
(73) ( ;e / € '
Therefore

7 . we ~wl
. T reanwirnbog(9es pe?)
(f)/";ol:;r’—-/ﬂc “iFeH Aeo.

, 4
Expancing ,.fo C/e“’i«/e wyin terns of X, vwe get

z

(74) /ﬁ(jé’fﬁé'y FOAFCG Tt -,
G = Cy = 16258 (1-649),
o s = 52 (-1217)
¢ = 4’/7// ¢ = é?ﬂ/f//- 30/0//-/26/9;5‘2
¢, = -8 4p56- p) e

Hence we have

QN

/Z"X x_

(75) (f} 2 P

l‘eking the substitution ,
Lw

He = =5

/ % K PR “ s,
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(75) becomes - 2 ot
' R-K (X="2p) - __Z— I

74

ol IEA %72Y 77w

-

z .3
/ (X-T1p) L€~ _[Z_. ¢ (w¢)+ ai!(““)
= o

or,

"X 7, _._151_ Cy (@)
(76) (f)/ -?77'/ (x-71p) ¢ /} ;123 *__.]d/w

72 (r=sip) E= _AZ_

= ,,7 &(&)
(77) , 7 ) g2
17 4 X - LS
’ 31:'?3'7' ;7 TP T ) Ao

Since tre series in brackets in (76) converges to the value
wl ~wé
/z,bj(fé’ *pC /)
the integr-ztion terformed in (77) is valid and the resultant

series converges.

Letting
2
57 (x-np) o é - Lo dad
WX}":/{/ ? A,

we have, on differentiating, Senged*
‘ T o, xe 7.4
O1x)= 55 [eXPOT TET (w)A W,
~77
T (x- P LA
8 0" = [T TP, TR (w0,
7 ' L '

!
\
] {
/ [}
/ '
! ) !
!
'
-

3 7 g9t
CVW(X) - ;7/_7_/60-/7»)40 —ff“ w Ao,
-7

~_~ -

A F ST T T
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Comparirg (77) and (78) we see that

(3) Cy )
(ﬂ)//‘x A ‘p(x)+3/23 & )+ ;,/Zy@ (X +

This is analogous to lacLaurin's exmension.

Using Euler's formula
8"": G X+ &Adm X
@(X)tckes the form, - . ot
l . , _ 2 ‘J
CV(X){?-,}L{; fmw/wwﬂ,dm(x /z/b)zaje L.

77 , 77 _ s W ‘
=57/ ¢ L Gepocdirs 557 || € SR lrpocl
4 Yer

The integral
7 ,,&w*’ .

fc' Zoaim (xrp) WD

-7
may be shown to be zero.
2

00,1t X" Y7 o~ 7a*
[ & o drats = 2 [ e paopte= o €
°

-0

Using

with

o’ %, b=y

we have
/r,bza.)"
47;-/6 < m(x-ﬂ/:)wa/a: 7 e 2 Cod (X-1p) wel W
oo_ /Zﬂf/x)‘ p ﬁzaj
= 77' c < (X‘/?/b}wo/a3~/7- é m(,\f—/r/b)wo/a)

Ty

ALTRD T P
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It can be shown that when ff/z is large, the remainder

is small.

We find the value of the general term to be

X~

9 (£)g Pl s T

vhere

- 7

sp)e)” o G

Jy’

3/ 2% 2y

As an example of the use of this formula let us supvose

that of 100,000 men of a certain age,

800 die within the year.

It is of importance to insurance comnanies to know the orobability

that scy 1000 men of the same age will die in another year.

In this nroblem

= . ood
/: . 5992,
ST = JIp000,
X = Jo70.
Subsgtituting in (7)
kg /
(x)/ T V7938 - Va7

= ,0003%

t 2
- .CL”). )78 ;/y//)ao)"

/3872
* 45 (7936)% Vo7



XI. CARTOGRAPHY

The nroblem of mavdving is the problem of find-
ing a one to one (1,1) correspondence between the surface to be
meoned and the surface upon wrich the man is to be made. For the
most part we are interested in mapning the earth on a plane. Yow
ve know that it is imnossible to epvly o sphere to a plane; that
is, & sohere c:nnot be mapved on a vlane in such 2 way tlat cor-
resnonding arcs will have ecual lengths on the sniere and the
plane. Therefore, when a man of the earth is mzde there is
necegsarily some distortion.

The maps with which we ere most familiar are conformzl
maps. These have the ‘istinction that infinitesmal arees cor-
respond and that the angle_between tvo arcs on the earth is equal
to the angle between corresponding arcs on the map. The most
common »rojections which have this oronerty are Lambert's conformal
conic »nrojectisn in which the earth 1s considered zn ellipsoid of
revolution and 'f‘ercator's nrojection in which the earth is con-
sidered a svhere.

If we have a surface,
Fl«v)=2,
on which the linear element is
(80) A s Viala+ Uclv®

in which V' is a function of v alone and T a function of &« alone,

the element can be exovressed in the form

A3 = m*(dur o)

4
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where Y is a function of 4w and v, To see this write 6(3 in the

form
. 2 dar Lt
(1) A -VV( -
By changing the peramneters so th:ct
. [«
6 = flp_v ,
. [ A
1= [
the linear element becomes

Lii= OV (Ao YY)

When the linear element is in this form, the surface is szid to be

(32)

exores=ed in terms of en isotrermal orthogonel system of parameters,
end the net of u, v curves is said to form an isothermal corjugzte
net.

After the surface has been expressed in this manner in
terms of isothermal orthogonal coordinates, the general conformal
reoresentation of the surface uvon a plane can be determined.

This genercl representation is given by the equation
X*l'j= Flu+div)
where F(U+({V) is an anzlytic function. The element of length

A8 = m? (dlusalv?)

is represented in the plane by
Astz Ax*tag?
If we let the curve C be reprecented by the curve C, in the plane

and if @ represents the angle which the curve C makes with the

curve

V= lonat,



we will have

As, = D1k

- red v
Sl s A

ol
&49 = Z’SZ. =
(&%) As " Jdtrar®
- Ly i
’ T Vvt
Hence
‘o , | daride
C = o+ AdnE = Ty *
* 2le_ Aatrloly
€ T Lu-ldv
Therefore
2i(6-5,). daur sty A~ ¢y
e T oty lyyp iy’
or

(81) 811'(9'91/: p&fc'ﬂ/t" oé/-/ﬂ%

————

dxf{ﬂﬁ %-e'a/b’.

Since
XrY = Flu+v)
so will

x-—{i = f(a-l'V) .

50

If we differentiate with respect to the comlex variable ,l*{sr

ve have

A # 4’”,? = (oleer o) £ (4 ),

or é&*‘, E

/ 4 -—
(z5) f (Ur =
In the sauie manner aéy- .

(86) f'(“"'v) S e iav

Substituting (g5) and (86) in equation (2z4) we obtain

2l(o-8) FUAu-iv)
T Flurey)

If B and B, are anotuer pair of corresponding curves starting

wm——r-f’m



from the same voint and if their angles ere denoted by @ and

@, we will find by the method used above that
:‘:(‘p-m) fl(a-‘oyj

6 - f/(uft'v‘) ’
Hence ,
2"(&-&,} 2(((9‘4)
e =€ ,
or
€~€, = 0‘@)
and

6-0: 8-,
This shows that the angles between curves on the surface is pre-

served in the renresentztion on the plane and the mep is conf~mmal.
. Tow if we consid'r the earth to be a sohere its ejuations

are '
Xz demd lray,
(27) y- At Ay,
2= ru,
vhere v is the longitude and u the latitude. Kere the element of

length is

As®= c*raly*sclz?

Ay = Cral vl — diititvely,
a{y I U dim v Sl + A 2o vy,
dz: -—M“d‘(c
Expressing ds® in terms of u and v, we get
’ 2
As 2= (rale ey w‘w‘v)éét |
r (AU R+ AN U Crat V) A
b AP ale

with

"

The transformation (82) takes the form

= .&_— = (g T S
A= Jomgs [esewct = SfT0 2
V=v

(€2)



If we solve the first equation of (88) for u in terms of
W and then find the values of X, y, z in terms of Wand ¥ by sub-
stituting the values of u, v in (87), we can subctitute these
valves in equations (84), (85), (26), and show that the transforma-

tion :ctuwally does give a conformal map.*

R L
-

B I

* For a discussion of this trensformation treating the earth an an
ellipisoid of revolution zné of the errors introduced by the trans-
formation, see the phavhlet by 0. S. Adams, General Theory of the

Lambert Zonformal Conic Projection, U. S. Toast and Geodetic Sur-

vey, Sveciel Publication YNo. 53- 1918 ,
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