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ABSTRACT

ON THE STABILITY/SENSITIVITY OF RECOVERING VELOCITY
FIELDS FROM BOUNDARY MEASUREMENTS

By

Hai Zhang

The thesis investigates the stability/sensitivity of the inverse problem of recovering

velocity fields in a bounded domain from the boundary measurements. The problem

has important applications in geophysics where people are interested in finding the inner

structure (the velocity field in the elastic wave models) of earth from measurements on

the surface. Two types of measurements are considered. One is the boundary dynamic

Dirichlet-to-Neumann map (DDtN) for the wave equation. The other is the restricted

Hamiltonian flow induced by the corresponding velocity field at a sufficiently large time

and with domain the cosphere bundle of the boundary, or its equivalent form the scattering

relation. Relations between these two type of data are explored. Three main results

on the stability/sensitivity of the associated inverse problems are obtained: (1). The

sensitivity of recovering scattering relations from their associated DDtN maps. (2). The

sensitivity of recovering velocity fields from their induced boundary DDtN maps. (3). The

stability of recovering velocity fields from their induced Hamiltonian flows. In addition,

a stability estimate for the X-ray transform in the presence of caustics is established.

The X-ray transform is introduced by linearizing the operator which maps a velocity field

to its corresponding Hamiltonian flow. Micro-local analysis are used to study the X-ray

transform and conditions on the background velocity field are found to ensure the stability

of the inverse transform. The main results suggest that the DDtN map is very insensitive



to small perturbations of the velocity field, namely, small perturbations of velocity field can

result changes to the DDtN map at the same level of large perturbations. This differs from

existing Hölder type stability results for the inverse problem in the case when the velocity

fields are simple. It gives hint that the methodology of velocity field inversion by DDtN

map is inefficient in some sense. On the other hands, the main results recommend the

methodology of inversion by Hamiltonian flow (or its equivalence the scattering relation),

where the associated inverse problem has Lipschitz type stability.
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Chapter 1

Introduction

1.1 The main inverse problem

The work in the thesis mainly comes from [9], where the sensitivity of the inverse problem

of recovering velocity fields from boundary DDtN maps is investigated. The result on the

stability of recovering velocity fields from Hamiltonian flows are obtained as a byproduct.

For this reason, we refer the inverse problem of recovering velocity fields from boundary

DDtN maps as our main problem, which we formulate now. Let Ω be a bounded strictly

convex smooth domain in Rd, d ≥ 2, with boundary Γ. Let c(x) be a velocity field in

Ω which characterizes the wave speed in the medium and let T be a sufficiently large

positive number. Consider the following wave equation system:

1

c2(x)
utt −∆u = 0, (x, t) ∈ Rd × (0, T ) (1.1)

u(0, x) = ut(0, x) = 0, x ∈ Ω, (1.2)

u(x, t) = f(x, t), (x, t) ∈ Γ× (0, T ). (1.3)

For each f ∈ H1
0 ([0, T ]×Γ), it is known that (see for instance [31]) there exists an unique

solution u ∈ C1(0, T ;L2(Ω))
∩
C(0, T ;H1(Ω)), and furthermore ∂u

∂ν ∈ L2([0, T ] × Γ),
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where ν is the unit outward normal to the boundary. The DDtN map Λc is defined by

Λc(f) :=
∂u

∂ν
|[0,T ]×Γ.

The inverse problem is to recover the velocity function c from the DDtN map Λc.

The uniqueness of the inverse problem is solved by the boundary control method first

introduced by Belishev in [10]. The method can also be used to solve the uniqueness for

more general problems, for instance, the anisotropic medium case. We refer to [11], [13],

[12], [30] and the references therein for more discussions.

We are interested in the sensitivity of the above inverse problem. Namely, we want to

investigate how sensitive or stable is it to recover the velocity field from the DDtN map

and characterize how small changes in the DDtN map affect the recovered velocity field.

The inverse problem of recovering velocity field is closely related to the inverse kine-

matic problem in geophysics, which we shall briefly review in chapter and we refer to

[43] for more discussions. It also can be viewed as a special case of the inverse problem of

recovering a Riemannian metric on a Riemannian manifold. Indeed, it corresponds to the

case when the metrics are restricted to the class of those which are conformal to the Eu-

clidean one. The inverse problem of recovering a Riemannian metric has been extensively

studied in the literature. The uniqueness is proved by Belishev and Kurylev in [13] by

using the boundary control method. However, it is still unclear that if their approach can

give a stability estimate since it uses in an essential way an unique continuation property

of the wave equation.

The first stability result on the determination of the metric from the DDtN map was
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given by Stefanov and Uhlmann in [46], where they proved conditional stability of Hölder

type for metrics close enough to the Euclidean one in Ck for k ≫ 1 in three dimensions.

Later, they extended the stability result to generic simple metrics, [49]. Here we recall

the definition of simple manifold.

Definition 1.1.1. A compact Riemannian manifold (M, g) with boundary ∂M is called

simple if ∂M is strictly convex with respect to g, and for any x ∈ M , the exponential map

expx : exp−1
x (M) → M is a diffeomorphism.

An important feature of their approach is to first derive a stability estimate of re-

covering the boundary distance function from the DDtN map and then apply existing

results from the boundary rigidity problem in geometry. Their approach was extended by

Montalto in [33] to study the more general problem of determine a metric, a co-vector and

a potential simultaneously from the DDtN map, and a similar Hölder type conditional

stability result was obtained. The stability of the inverse problem of determining the

conformal factor to a fixed simple metric was studied by Bellassoued and Ferreira in [14].

They proved the Hölder type conditional stability result for the case when the conformal

factors are close to one. We comment that the result in [14] holds for all simple metrics.

For other stability results on the related problems, we refer to the references in [33].

We emphasize that all of the above stability results deal with the case when the metrics

are simple. To our best knowledge, no stability result is available for the general case when

the metrics are not simple.

The thesis is devoted to the study of the general case when the metrics induced by the

velocity fields are not simple. To avoid technical complications due to the boundary, we
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restrict our study to situations when the velocity fields are equal to one near the boundary.

From this point of view, our results can be regarded as interior estimates. We refer to

[49], [51] and the references therein for useful boundary estimates. In contrast to existing

results mentioned above, where Hölder type stability estimate are suggested for the case

when the velocity fields are simple, our result shows that the inverse problem of recovering

velocity fields from their induced DDtN maps is insensitivity to small perturbations of

the data. In fact, we showed that for a quite general velocity field, which we call “fold-

regular” (see definition 6.2.3, 6.2.4, 8.0.1), if another velocity field is sufficiently close to

it and satisfies a certain orthogonality condition, then the two must be equal if the two

corresponding DDtN maps are sufficiently close. On the other hand, we showed that the

inverse problem of recovering velocity fields from their induced Hamiltonian flows at a

sufficiently large time is well-posed, in the sense that a local Lipschitz stability estimate

for the inverse problem can be established.

1.2 Overview of the approach of solving the main

problem

We now briefly review the approach we used to solve the main problem introduced in the

previous section. We first derive a sensitivity result of recovering the scattering relation

from the DDtN map. Our result shows that two scattering relations must be identical if the

two corresponding DDtN maps are sufficiently close in some suitable norm. Equivalently,

any arbitrarily small change in the scattering relation can imply a certain change in the

DDtN map. To our best knowledge, this is the first sensitivity result for the problem in the
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non-simple metric case. Moreover, our result is fundamentally different from those in the

literature where Lipschitz, Hölder or logarithmic estimates are derived , see for examples

[8], [2], [46], [47], [48], [49], [33] and [28]. This is the reason the term “sensitivity” is used

instead of “stability” whenever it is more proper. We remark that when the geometry

induced by the velocity field is simple, the scattering relation is equivalent to the boundary

distance function. In that case, a Hölder type interior stability estimate for recovering the

boundary distance function from DDtN map has been established in [49]. Compared to

the Hölder type result, our result is much stronger. Our approach is based on Gaussian

beam solutions to the wave equation, which are capable of dealing with caustics, major

obstacles to the construction of classic geometric-optics solutions. We refer to [37] and

[30] for more discussions on Gaussian beams and its applications.

We observe that for any velocity filed c, the induced Hamiltonian flow Ht
c when re-

stricted to the unit cosphere bundle S∗Rd determines the scattering relation Sc. We

linearize the operator which maps c to Ht
c|S∗Rd and obtain a geodesic X-ray transform

operator Ic with matrix-valued weight. Note that the scattering relation (or Hamiltonian

flow) is the natural object to study when the metric is not simple. It is related to the

lens rigidity problem in geometry. We refer to [53] for more discussions on the topic.

The boundary distance function (global or local) has received extensive attention in the

literature for the problem where the metrics are “simple” or “regular”, see for instance

[48], [53]. However, it is unlikely to work for the case of general non-simple metrics. In

the thesis, we attempt to overcome the difficulty by analyzing the scattering relation (or

Hamiltonian flow).

We study the inverse problem of recovering a vector-valued function f from its weight-
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ed geodesic transform Icf . For a fixed interior point x, we use a carefully selected set

of geodesics whose conormal bundle can cover the cotangent space T ∗
xRd to recover the

singularity of f at x. We allow fold caustics along these geodesics, but require that these

caustics contribute to a smoother term in the transform than x itself. It is still an open

problem to show that such a set of geodesics exists generically for a general velocity field

with caustics. But we draw evidence from the classification result on caustics and regu-

larity theory of Fourier Integral Operators (FIOs) to show that it is the case under some

natural assumptions in the dimensions equal to or greater than three. We call the interior

point which has the above set of geodesics “fold-regular”. A local stability estimate is

derived near fold-regular points.

We define a velocity field to be fold-regular if every interior point is fold-regular with

respect to the Hamiltonian flow induced by it. As a consequence of the above local

stability result, we obtain a Lipschitz stability result, up to a finite dimensional space, for

the X-ray transform in a fold-regular background velocity field, or the linearized inverse

problem of recovering velocity fields from their induced Hamiltonian flows at a fold-

regular background velocity field. By standard arguments of linearization, it yields a

similar stability estimate for the nonlinear inverse problem. We remark that it is still

an open problem to show whether the finite dimensional space is empty or not. This is

closely related to the injectivity of the X-ray transform Icf .

Finally, We combine the stability result on the X-ray transform and the sensitivity

result on recovering scattering relations from DDtN maps to deduce a sensitivity result

for the inverse problem of recovering velocity fields from their induced DDtN maps.
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1.3 Outline of the thesis

The thesis is organized as follows. In the first two chapters, chapter 2 and 3, we present

some background material for the problem we contributed in the thesis. The results

shown therein are standard and well-known in the field. In chapter 2, we give a brief

introduction to the inverse kinematic problems of seismic (or travel time tomography in

seismic). It serves as a major motivation for our investigation of the stability of recovering

velocity field from Hamiltonian flow, which can be viewed as a generalization of the travel

time tomography to the more general case when the velocity fields are not simple (see

chapter 7). In chapter 3, we introduce the X-ray transform for scalar functions in the case

when the background metric is simple. It prepares necessary preliminaries for the more

general results in chapter 6, which works for the case when the background metric is not

simple. Starting from chapter 4, we investigate the main problem in the thesis. This is

where new ideas and results are developed. We first give some preliminaries in chapter

4, fixing notations and conventions. We then derive a sensitivity result for recovering

scattering relations from their corresponding DDtN maps in chapter 5. In chapter 6, we

show the equivalence of the scattering relation and the Hamiltonian flow. We linearize

the Hamiltonian flow with respect to the velocity field. This leads to a X-ray transform.

We study properties of the X-ray transform and establish some stability estimate for the

transform. In chapter 7, we apply the stability estimate to the nonlinear inverse problem of

recovering velocity fields from their induced Hamiltonian flows, a Lipschitz type stability

result is obtained. Finally, in chapter 8, we combining the results from chapter 5 and 6

to study the sensitivity of recovering velocity fields from their induced DDtN maps.
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Chapter 2

The inverse kinematic problem of

seismic

2.1 Introduction

In geophysics, a basic problem is to study the earth’s inner structure by making obser-

vations of various wave fields on the surface. In the elastic model, one assumes that the

earth is an elastic body and the inner structure of earth is characterized by the velocity

field of the elastic waves. Geophysicists are interested in finding the velocity field by mea-

suring the travel time of seismic waves between points on the surface of the earth. The

problem is referred to the inverse kinematic problem of seismic or travel time tomograph

in seismic. The first result on the problem was obtained by G.Herglotz, E.Wiechert and

K.Zeoppritz in 1905. They modeled the earth by a ball with spherically symmetric metric

and studied the following mathematical problem: Let M = {x ∈ R3 : |x| ≤ R}. Assume

that the metric of M is given by

dτ2 = n2(r)dx2 (2.1)
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where n(r) is a positive function on [0, R]. The mathematical problem then becomes to

determine the function n(r) from the induced boundary distance function.

They solved the problem and constructed solution to the inverse problem under the

following “non-trapping” assumption

(rn′(r))′ > 0.

The general problem is to recover a metric of the following form

dτ2 = n2(x1, x2, x3)dx
2 (2.2)

from the boundary distance function induced by it. Linearization of the problem leads

to a linear integral geometry problem. Both the linear and the nonlinear problem in two

dimensions were solved by Mukhometov [20, 21] under assumptions which can be inter-

preted as the “simple metric” assumption. In addition Romanov studied the linearized

problem near a spherically symmetric metric in 1967 [41].

Generalizations of the above two-dimensional case to multinational case were studied

by Mukhometov [22, 23], Anikonov and Romanov [4], Bernstein and Gerver [15], Romanov

[42], Pestov and Sharafutdinov [34].

We remark that all the results above require that the velocity fields are “simple”, in

the sense that the metrics induced by them are simple. In the general case when the

velocity fields are not simple, the inverse problem of travel time tomography is no longer

well-posed. In fact, in that case, the geodesics may have conjugate points (or caustics)
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and hence are not necessarily length minimizing. Therefore, linearization of the travel

time tomography problem may not be well-defined. For the general case without “simple

metric” assumption, we need more data than the travel time in order to “regularize”

the problem. This leads to the lens rigidity problem where additional information about

directions of geodesics (the scattering relation) are used to recover the associated metric

(or the velocity field in our case). We shall briefly introduce the lens rigidity problem in

Section 2.3 and its connection with our result in chapter 6.

2.2 Mukhometov’s solution in 2D

In this section, we present Mukhometov’s solution to the inverse kinematic problem in the

two dimensional case. We choose his solutions for two main reasons: one is the simplicity

of the results; the other is its importance in the development of the field.

We first introduce the concept “regular family of curves” which is a key assumption in

his results. Let M be a bounded simply connected domain on the plane with C1 smooth

boundary ∂M . Parameterize ∂M by

x1 = τ1(t), x2 = τ2(t), 0 ≤ t ≤ T,

where t is the arc length parameter and T is the length of ∂M . We call that a family of

curves Γ in M are “regular” if the following four conditions are satisfied:

(1). For any two different points on ∂M , there exists a unique curve γ ∈ Γ joining

them.

(2). The end points and inner points of any γ ∈ Γ belong to ∂M and M respectively.
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Moreover, the lengths of all curves are uniformly bounded.

(3). For each point z ∈ M , direction θ, there exists a unique curve γ ∈ Γ passing

through z with direction θ. We parameterize the curve by γ = γ(z, θ, s) where s is the

standard length parameter.

(4). The vector-valued function γ in (3) is C3 in M and satisfies

∂γ

∂(θ, s)
≥ sC

for some C > 0.

We remark that in the case when the family of curves are the geodesics (with respect

to some metric equipped to M) passing through M , the “regular” condition can be shown

to be equivalent to the “simple metric” assumption on the underlining metric.

Now, we formulate and present Mokhometov’s solution to the 2D inverse kinematic

problem of seismic. Let n(x, y) > 0 be a function defined in M . Consider the Riemannian

metric

dτ2 = n2(x, y)(dx2 + dy2)

and the corresponding functional

J(γ) =

∫
γ
dτ =

∫
γ
n(x, y)

√
dx2 + dy2.

Assume that the family of extremals of the functional J(γ) is regular in the sense just
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defined. We can thus define the boundary distance function

Γ(t1, t2) =

∫
γ(t1,t2)

nds,

where γ(t1, t2) is the unique extremal of the functional J(γ) joining the boundary points

(τ1(t1), τ2(t1)) and (τ1(t2), τ2(t2)).

Mukhometov established the following result.

Theorem 2.2.1. Let n ∈ C4(M̄) be such that the corresponding family of extremals for J

is regular. Then n(x, y) can be uniquely determined from Γ(t1, t2), moreover, the following

stability estimate holds:

∥n1 − n2∥L2(M)
≤ 1√

2π
∥∂(Γ1 − Γ2)

∂t1
∥
L2([0,T ]×[0,T ])

.

Proof. See [21].

In addition to the nonlinear inverse problem considered above, Mukhometov investi-

gated the linearized problem, which is a X-ray transform, and derived a similar Lipschitz

stability estimate.

Theorem 2.2.2. Let f ∈ C2(M̄), define

I(f)(t1, t2) =

∫
γ(t1,t2)

f(x1, x2) ds, 0 ≤ t1, t2 ≤ T,

where γ(t1, t2) is the unique curve in Γ joining the boundary points (τ1(t1), τ2(t1)) and

(τ1(t2), τ2(t2)). If the family of curves {γ(t1, t2)}0≤t1,t2,≤T are regular, then the following
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estimate holds

∥f∥
L2(D)

≤ 1√
2π

∥∂g(t1, t2)
∂t1

∥
L2([0,T ]×[0,T ])

.

Proof. See [20].

2.3 The lens rigidity problem

Let (M, g) be a compact Riemannian manifold with boundary ∂M . LetHt be the geodesic

flow on the tangent bundle TM and let SM be the unit tangent bundle. Denote

S+∂M = {(x, ξ) : x ∈ ∂M, |ξ|g = 1, ⟨ξ, ν(x)⟩ > 0};

S−∂M = {(x, ξ) : x ∈ ∂M, |ξ|g = 1, ⟨ξ, ν(x)⟩ < 0}.

where ν is the unit out-normal and ⟨·, ·⟩ stands for the inner product. We now define the

scattering relation. There are several definitions. Here, we only introduce the simplest

one. We assume that the metric g is known for all points on the boundary. For each

(x, ξ) ∈ S−∂M , define L(g)(x, ξ) > 0 to be the first positive moment at which the unit

speed geodesic passing through (x, ξ) hits the boundary ∂M . If L(g)(x, ξ) does not exist,

we define formally Lg(x, ξ) = ∞ and call the corresponding geodesic trapped. We define

Σ(g) : S−∂M → S+∂M by

Σ(g)(x, ξ) = ΦL(g)(x, ξ).

We call the manifold (M, g) non-trapping if there exists T > 0 such that L(g)(x, ξ) ≤ T

for all (x, ξ) ∈ S−∂M . We call the pair (Σ(g), L(g)) the full scattering relation induced

by the metric g.
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The lens rigidity problem can be formulated as recovering the metric g from its induced

full scattering relation (Σ(g), g). It is known that there is no uniqueness to this problem.

The first obstruction comes from the diffeomorphisms which leave the boundary ∂M fixed.

In addition to this, trapping of geodesics also prevents the uniqueness of the problem. See

the counterexamples constructed in [17]. Therefore, a more natural formulation for the

lens rigidity problem is as follows:

Conjecture 1. Given a compact non-trapping Riemannian manifold (M, g) with bound-

ary ∂M , can we recover the metric g by its induced full scattering relation (Σ(g), L(g)),

up to an action of diffeomorphism which leaves the boundary fixed.

It was observed by Michel that the lens rigidity and boundary rigidity problem are

equivalent for simple metrics. We refer to [48] and the reference therein for the uniqueness

and stability results for the boundary rigidity problem. With regarding to the lens rigidity

problem, there are only two uniqueness results available:

1. Croke (2005) [16]: The finite quotient space of a lens rigid manifold is lens rigid.

2. Stefanov and Uhlmann (2009) [53]: Uniqueness up to diffeomorphism fixing the

boundary for metrics a priori close to a generic regular metrics.

To our best knowledge, there is no stability result on the lens rigidity problem. In

Chapter 7, we obtained a stability estimate for an equivalent problem in the case when

the metrics are conformal to the Euclidean metric, i.e. the inverse problem of recovering

velocity fields from their induced Hamiltonian flows. By exploring the relation between

the scattering relation and the information we used in the Hamiltonian flow, we can

establish a Lipschitz stability estimate for the corresponding lens rigidity problem.
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Chapter 3

Weighted X-ray transform for scale

functions

3.1 Introduction

The X-ray transform is an integral transform first introduced by Fritz John in 1938. In

the simplest form, it can be stated as follows. Let f be a compactly supported function

in Rd. for each straight line passing through point z with direction ω, define

I(f)(z, ω) =

∫
f(z + tω)dt, z ∈ Rd, ω ∈ Sd−1.

I(f) is called the X-ray transform of the function f . There are two nature questions for

the transform. One is the uniqueness, namely, given I(f)(z, ω) for all or some (z, ω), can

we recover f? The other is the stability, namely, how perturbations in the data I(f) affect

the reconstructed f .

The X-ray transform has important applications in the field of medical imaging. X-

ray computed tomography, also called computed tomography (CT), utilizes computer-

processed X-rays to produce tomographic images or slices of specific areas of human body.

In that case, f represents the density of an inhomogeneous medium and I(f) represents
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the scattered data of a tomographic scan. Besides medical imaging, the X-ray transform

also finds applications in the inverse kinematic problems of seismic and nondestructive

materials testing.

The X-ray transform coincides with the Radon transform in the two dimensional case.

The Radon transform was first introduced by Johann Radon in 1917, who also derived

a formula for the inverse transform. We remark that both the X-ray transform and the

Radon transform belong to the broad field of integral geometry. We refer to [44] for more

detail.

We shall present some basics about the X-ray transform in this chapter. Section

3.2 and 3.3 studies the case in the Euclidean space with constant and variable weight

respectively, while the case in simple Riemannian manifold is studied in Section 3.4.

These results gives necessary preliminaries for us to understand the stability results we

derived for an X-ray transform in the case when the Riemannian manifold is not simple

in Chapter 6.

3.2 X-ray transform in the Euclidean space

We study the X-ray transform in the Euclidean space with constant weight in this section.

We first derive a formula for the inverse of the transform. We start by parameterizing the

set of straight lines by

Sd−1 × Rd−1 = {(θ, x) : θ ∈ Sd−1, ⟨x, θ⟩ = 0}.
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We then define the X-ray transform in the following form

I(f)(θ, x) =

∫
f(x+ tθ)dt.

We have the following important theorem which is also called the Projection-Slice

Theorem.

Theorem 3.2.1. The following identity holds

I(f)∧(θ, ξ) = (2π)1/2f∧(ξ), ξ ⊥ θ,

where the fourier transform on the left hand side is the (d-1)-dimensional Fourier trans-

form in x ∈ θ⊥, namely,

I(f)∧(θ, ξ) =
∫
x∈θ⊥

e−ix·ξI(f)(θ, x)dx, for ξ ⊥ θ.

while the Fourier transform on the right hand side is the usual d-dimensional Fourier

transform in x ∈ Rd.

We now introduce the adjoint of the X-ray transform. We define

I†g(x) =
∫
Sd−1

g(θ, Eθx)dθ,

where Eθ is the orthogonal projection onto θ⊥, i.e. Eθx = x− ⟨x, θ⟩θ.

With the help of the adjoint operator I†, we obtain the following recovering formula.
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Theorem 3.2.2.

f =
1

2π|Sd−1|
I†R(I(f)),

where the operator R is defined by (Rh)∧(θ, ξ) = |ξ|h∧(θ, ξ).

As a consequence of the recovering formula above, we have the following uniqueness

result on the inverse of the X-ray transform.

Theorem 3.2.3. Let d = 3, and assume that each great circle on S2 meets S0. Then, f

is uniquely determined by I(f)(θ, ·) for θ ∈ S0.

The condition on S0 above is called Orlov’s completeness condition. An obvious

example of S0 satisfying Orlov’s completeness condition is the great circle.

3.3 X-ray transform with weight in the Euclidean s-

pace

We now study the X-ray transform with weight in Rd. Let M be a convex domain in Rd

and let w = w(x, θ) be a smooth function defined in M×Sd−1. Assume that suppf ⊂ M .

Define the weighted X-ray transform by

Iw(f)(x, θ) =

∫
w(x+ tθ, θ)f(x+ tθ)dt, , x ∈ Rd, θ ∈ Sd−1.

We are interested in the uniqueness and stability of recovering f from Iwf . Unfortu-

nately, for some weight, the uniqueness fails, as is shown by the following counterexample

first constructed by Boman in 1993.
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Theorem 3.3.1. Let B be the unit disk in the plane. There exist functions w ∈ C∞(B)

and f ∈ C∞(B) with the property that w > c0 > 0, f ̸= 0, but

Iw(f) ≡ 0.

Although the uniqueness does not hold in the case of a general weight. We still can

study the stability of the inverse transform up to a finite dimensional space. This is

because of the fact that the kernel of the X-ray transform can be shown to be of finite

dimensional for general smooth weight.

We now focus on the stability of the X-ray transform. Define

S−∂M = {(x, ω) : x ∈ ∂M, |ω| = 1, ⟨ω, ν(x)⟩ < 0},

SM = {(x, θ) : x ∈ M, |θ| = 1}.

The set S−∂M parameterizes all straight lines passing through M . We define a mea-

sure µ on S−∂M by

dµ(x, ω) = |⟨ω, ν(x)⟩|dS(x)dσ(ω),

where dS and dσ are the Lebesgue measures in ∂M and Sd−1. We have the following

elementary results about the X-ray transform and its adjoint.

Lemma 3.3.1. Iw is a bounded linear operator from L2(M) to L2(S−∂M, dµ).

Lemma 3.3.2. The adjoint operator I
†
w has the following representation

I†g(x) =
∫
Sd−1

g♯(x, θ)w(x, θ)dσ(θ),
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where g♯(x, θ) is defined as the function that is constant along the ray and is equal to

g(x, θ) on S−∂M .

We define the normal operator Nw to be I
†
wIw. We can show that Nw has the following

expression

Nwf(x) = cn

∫
W (x, y)f(y)

|x− y|n−1
dy,

where

W (x, y) = w̄(x,− x− y

|x− y|
)w(y,− x− y

|x− y|
) + w̄(x,

x− y

|x− y|
)w(y,

x− y

|x− y|
).

We now present some properties of the normal operator Nw.

Theorem 3.3.2. Nw is a elliptic ΨDO of order −1, provided the following elliptic con-

dition on w is satisfied:

∀ (x, ξ) ∈ M × Sd−1, ∃ θ ∈ Sd−1such that θ ⊥ ξ and w(x, θ) ̸= 0.

Moreover, in that case there exists a constant C > 0 such that

∥f∥
L2(M)

≤ C(∥Nwf∥H1(M)
+ ∥f∥H−s(M)), ∀f ∈ L2(M)

for any s > 0.

Proof. See [52].

As a consequence of the above theorem, we have the following corollary.
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Theorem 3.3.3. Let w ∈ C∞(M × Sd−1) satisfy the elliptic condition. Assume that Iw

is injective on C∞(M). Then Nw : L2(M) → H1(M) is onto, and there exists a constant

C > 0 such that

∥f∥
L2(M)

≤ C∥Nwf∥H1(M)
, ∀f ∈ L2(M).

Moreover, the above estimation remains true under small C1 perturbations of w.

3.4 X-ray transform with weight on Riemannian Man-

ifold

We consider the X-ray transform with weight defined on a Riemannian manifold in this

section. Let (M, g) be a Riemannian Manifold with boundary ∂M . Assume that ∂M is

strictly convex. Define

S−∂M = {(x, ω) ∈ TM : x ∈ ∂M, |ω| = 1, ⟨w, ν(x)⟩ < 0},

SM = {(x, ω) ∈ TM : x ∈ M, |ω| = 1}.

Define measure µ on S−∂M by

dµ(x, ω) = |⟨ω, ν(x)⟩|dSx(x)dxσ(ω),

where dxS(x) and dxσ(ω) are in surface measure in ∂M and SxM in the metric, respec-

tively. dσx(ω) = (det g)1/2dσ0(ω), where dσ0(ω) is the Lebesgue measure in Sd−1.

For each (x, ω) ∈ S−∂M , denote γx,ω(t) the unit speed geodesic through (x, ω). We
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call M non-trapping if γx,ω(t) hit ∂M at finite time for all (x, ω) ∈ S−∂M .

We define the X-ray transform on M with weight w by

Iwf(z, ω) =

∫
w(γx,ω(t), γ̇x,ω(t))f(γx,ω(t))dt.

We now present some basic results on the uniqueness and stability of the inverse of

the above X-ray transform.

Theorem 3.4.1. Let (M, g) be a simple Riemannian manifold, then I
†
wIw is an elliptic

ΨDO of order −1, provided the following elliptic condition on w is satisfied:

∀ (x, ζ) ∈ T ∗M, ∃ θ ∈ TxM such that θ ⊥ ζ and w(x, θ) ̸= 0.

Theorem 3.4.2. Let (M, g) be a simple Riemannian manifold, and let w ≡ 1, then

1. I is injective;

2. ∥f∥
L2(M)

≤ C∥Nwf∥H1(M)
.

Proof. See [22, 23, 15] and [47].

Theorem 3.4.3. Let (M, g) be a simple Riemannian manifold. Assume the ellipticity

condition on the weight w, then

1. Iw has a finitely dimensional smooth kernel;

2. ∥f∥
L2(M)

≤ C∥Nwf∥H1(M)
, ∀f ∈ (KerI)⊥;

3. If I is injective, then ∥f∥
L2(M)

≤ C∥Nwf∥H1(M)
∀f ∈ L2(M).

Proof. See [47].

22



Chapter 4

Preliminaries

Starting from this chapter, we study the main inverse problem introduced in section

1.1 in the following chapters: 5, 6, 7 and 8. For the convenience of reading, we first fix

notations and definitions in this chapter. They will be used throughout the rest of the

thesis. Let Ω be a strictly convex smooth domain in Rd with boundary Γ. Let c be a

smooth velocity field defined in Ω which is equal to one near the boundary. Then c has

natural extension to Rd. Throughout the paper, we always use the natural coordinate

system of the cotangent bundle T ∗Rd in which we write (x, ξ) for the co-vector ξjdx
j in

T ∗
xRd. For ease of notation, we also use ξ for the co-vector ξjdx

j . The meaning of ξ

should be clear from the context. The velocity field c introduces a Hamiltonian function

Hc(x, ξ) =
1
2c

2(x)|ξ|2 to T ∗Rd. It also defines a norm to each cotangent space T ∗
xRd by

|ξ|c = c(x)|ξ|, for ξ ∈ T ∗
xRd.

Here, | · | stands for the usual Euclidean norm in Rd, while | · |c stands for the norm

in T ∗Rd induced by the function c. When there is no other velocity field in the context,

we drop the subscript c and write ∥ · ∥ instead.

Denote the corresponding Hamiltonian flow by Ht
c, i.e. for each (x0, ξ0) ∈ T ∗Rd,
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Ht
c(x0, ξ0) = (x(t, x0, ξ0), ξ(t, x0, ξ0)) solves the following equations:

ẋ =
∂Hc

∂ξ
= c2 · ξ, x(0) = x0, (4.1)

ξ̇ = −∂Hc

∂x
= −1

2
∇c2 · |ξ|2, ξ(0) = ξ0. (4.2)

We call (x(·, x0, ξ0), ξ(·, x0, ξ0)) the bicharateristic curve emanating from (x0, ξ0) and

x(·, x0, ξ0) the geodesic. By the assumptions on c, the flow Ht
c is defined for all t ∈ R.

Note that the flow Ht
c is also well-defined on the cosphere bundle S∗Rd = {(x, ξ) : x ∈

R, |ξ|c = 1}.

We say that a velocity field c is non-trapping in Ω for time T > 0 if the following

condition is satisfied:

HT
c (S

∗Ω)
∩

S∗Ω = ∅. (4.3)

Denote

S∗
+Γ = {(x, ξ) : x ∈ Γ, |ξ|c = 1, ⟨ξ, ν(x)⟩ > 0};

S∗
−Γ = {(x, ξ) : x ∈ Γ, |ξ|c = 1, ⟨ξ, ν(x)⟩ < 0}.

Assume that the velocity field c is non-trapping in Ω for time T ; we now define the

scattering relation Sc : S∗
−Γ → S∗

+Γ. For each (x0, ξ0) ∈ S∗
−Γ, let l(x0, ξ0) be the first

moment that the geodesic x(·, x0, ξ0) hits the boundary Γ. Define

Sc(x0, ξ0) = Hl(x0,ξ0)
c (x0, ξ0).

24



For future reference, we define l− : S∗Ω → (−∞, 0] by letting l−(x, ξ) be the first

negative moment that the bicharacteristic curve Ht(x, ξ) hits the boundary S∗
−Γ and

τ : S∗Ω → S∗
−Γ by

τ(x, ξ) = Hl−(x,ξ)(x, ξ).

We remark that l−(·) and τ(·) are well-defined by the assumption (4.3).

We now introduce the class of admissible velocity fields that are considered in the

paper.

Definition 4.0.1. Let M0, ϵ0 and T be positive numbers. A velocity field c is said to

belong to the admissible class A(M0, ϵ0,Ω, T ) if and only if the following three conditions

are satisfied:

1. c ∈ C3(Rd), 0 < 1
M0

≤ c ≤ M0, and ∥c∥
C3(Rd) ≤ M0;

2. the support of c− 1 is contained in the set Ω0 =: {x ∈ Ω : dist(x,Γ) > ϵ0};

3. the Hamiltonian Hc is non-trapping in Ω for time T .

By Condition 2 above, we can find two small positive constants ϵ∗ and ϵ1, both de-

pending on ϵ0, such that for any (x0, ξ0) ∈ S∗
−Γ, if

{Ht(x0, ξ0) : t ∈ (0, l(x0, ξ0))}
∩

S∗Ω0 ̸= ∅,
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then

⟨ξ0, ν(x0)⟩ ≤ −ϵ∗, (4.4)

⟨ξ1, ν(x1)⟩ ≥ ϵ∗, (4.5)

l(x0, ξ0) ≥ ϵ1, (4.6)

where (x1, ξ1) = Sc(x0, ξ0).

Finally, we remark that we set up the discussion in the paper in the cotangent space

T ∗Rd. But one can also set up the discussion in the tangent space TRd, see for instance

[45], [53]. The equivalence of the two setups can be seen from the procedure of “raising and

lowing indices” in Riemannian geometry. We choose the cotangent setup mainly because

the following three reasons. First, it is more natural to the construction of Gaussian

beams. Second, the classification result of singular Lagrangian maps is more complete

than that of singular exponential maps in the literature, though these two problems are

equivalent in Riemannian manifold. Finally, it is more natural to study caustics in the

cotangent space.
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Chapter 5

Sensitivity of recovering scattering

relations from their induced DDtN

maps

We study the sensitivity of recovering scattering relations from their induced Boundary

DDtN maps in this chapter.

5.1 Gaussian beam solutions to the wave equation

We first construct Gaussian beam solutions to the wave equation system (1.1)-(1.3) in this

section. Let c be a velocity field in the class A(ϵ0,Ω,M0, T ). We now construct a Gaussian

beam in Rd. Following [36], we define G(x, ξ) = c(x)|ξ|. For a given (x0, ξ0) ∈ S∗
−Γ, let
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(x(t), ξ(t),M(t), a(t)) be the solution to the following ODE system:

ẋ = Gp, x(t0) = x0,

ξ̇ = −Gx, ξ(t0) = ξ0,

Ṁ = −G
†
xξM −MGξx −MGξξM −Gxx, M(t0) =

√
−1 · Id, (5.1)

ȧ = − a

2G
(c2trace(M)−G

†
xGξ −G

†
ξMGξ), a(t0) = λ

d
4 . (5.2)

The corresponding Gaussian beam with frequency λ (λ ≫ 1) is given as follows

g(t, x, λ) = a(t)eiλτ(t,x)

where τ(t, x) = ξ(t) · (x− x(t)) + 1
2(x− x(t))†M(t)(x− x(t)).

Let the beam g impinge on the surface Γ, we want to construct the reflected beam

g−. Without loss of generality, we may assume that the ray x(t) hits Γ at the point

x(t1) = x1. Write ξ(t1) = ξ1. We parameterize Γ in a neighborhood of x1, say V (x1),

by a smooth diffeomorphism F : U(x1) → V (x1), where U(x1) is a neighborhood of the

origin in Rd−1. We require that F (0) = x1. With the coordinate x = F (y), we can

rewrite functions restricted to the boundary Γ. For example, we rewrite

g(t, x) = g(t, F (y)) = ĝ(t, y), τ(t, x) = τ(t, F (y)) = τ̂(t, y), for x ∈ V (x1).

We next derive formulas for τ̂(t, y) and ĝ(t, y). For this, we need to calculate τ̂(t1, 0),
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∂τ̂
∂t (t1, 0),

∂τ̂
∂y (t1, 0) and M̂(t1) =: ∂2τ̂

∂(t,y)2
(t1, 0). In fact, by direct calculation, we have

∂τ̂

∂t
(t1, 0) = −1,

∂τ̂

∂y
(t1, 0) = (

∂F

∂y
(0))†ξ1.

Moreover, the imaginary part and real part of the matrix ∂2τ̂
∂(t,y)2

(t1, 0) are given below

ℑM̂(t1) =

 c4(x1)ξ
†
1ℑM(t1)ξ1 −c2(x1)ξ

†
1ℑM(t1) · ∂F∂y (0)

−c2(x1)(
∂F
∂y (0))

†ℑM(t1)ξ1 (∂F∂y (0))
†ℑM(t1)

∂F
∂y (0)


= R(t1, x1)

†ℑM(t1)R(t1, x1),

ℜM̂(t1) = R(t1, x1)
†ℜM(t1)R(t1, x1) +

 1
2∇c2(x)ξ1 −(∇ ln c(x1))

† ∂F
∂y (0)

−(∂F∂y (0))
†∇ ln c(x1)

∂2F
∂y2

(0)ξ1

 ,

where R(t1, x1) = (c2(x1)ξ1,
∂F
∂y (0)).

We claim that

ℑM̂(t1) > 0.

Indeed, note that the column vectors in the matrix ∂F
∂y (0) are linearly independent and

hence span the tangent space of the surface Γ at the point x1. By (4.5), ξ1 forms a nonzero

angle with the tangent space and thus is linearly independent with all the column vectors

in the matrix ∂F
∂y (0). Therefore the matrix R(t1, x1) is invertible, and our claim follows.

Using (4.4) and (4.5), we further have

ℑM̂(t1) > C (5.3)
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for some C > 0 depending on ϵ0 and M0.

Now, we have calculated τ̂(t1, 0),
∂τ̂
∂t (t1, 0),

∂τ̂
∂y (t1, 0) and

∂2τ̂
∂(t,y)2

(t1, 0). It follows that

τ̂(t1, y) = τ̂(t1, 0) + (
∂τ̂

∂(t, y)
(t1, 0))

†(t− t1, y) + (t− t1, y)
∂2τ̂

∂(t, y)2
(t1, 0)(t− t1, y)

†

+O(|(t− t1, y)|3)

= ⟨(−1,
∂F

∂y
(0)†ξ1), (t− t1, y)⟩+ (t− t1, y)M̂(t1)(t− t1, y)

† +O(|(t− t1, y)|3).

We proceed to construct the reflected beam g−. Write

g−(t, x, λ) = a−(t)eiλτ
−(t,x)

with

τ−(t, x) = ξ−(t) · (x− x−(t)) +
1

2
(x− x−(t))†M−(t)(x− x−(t)).

We need to find (x−(t1), ξ−(t1), a−(t1),M−(t1)) such that the g−+g ≈ 0 on the boundary.

Following [3], we impose the following condition

∂αt,y τ̂(t1, 0) = ∂αt,y τ̂
−(t1, 0), for all |α| ≤ 2. (5.4)

The above condition with |α| = 0 gives that τ̂−(t1, 0) = τ̂(t1, 0) = 0; with |α| = 1 gives

that

(
∂F

∂y
(0))†ξ1 = (

∂F

∂y
(0))†ξ−1 , (5.5)

where ξ−1 = ξ−(t1). Since the column vectors in (∂F∂y (0))
† spans the tangent space Tx1Γ,
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we see that the tangential component of ξ−1 and ξ1 are equal. Besides, note that |ξ1| =

|ξ−1 | = 1. Thus,

ξ−(t1) = ξ−1 = ξ1 − 2⟨ξ1, ν(x1)⟩ν(x1).

Condition (5.4) with |α| = 2 gives that M̂−(t1) = M̂(t1). Recall the relation between

ℑM−(t1) and ℑM(t1), ℜM−(t1) and ℜM(t1), we have the following two identities:

R(t1, x1)
†ℑM(t1)R(t1, x1) = R(t1, x1)

†ℑM−(t1)R(t1, x1),

R(t1, x1)
†ℜM(t1)R(t1, x1) = R(t1, x1)

†ℑM−(t1)R(t1, x1)

+

 −1
2∇c2(x)(ξ−1 − ξ1) 0

0 ∂2F
∂y2

(0)(ξ−1 − ξ1)

 .

Solving the above equations, we obtain ℑM−(t1) and ℜM−(t1, ) and hence M−(t1). Fi-

nally, set a−(t1) = −a(t1). Then all of the four components of (x−(t1), ξ−(t1), a−(t1),M−(t1))

are constructed. We then solve an ODE system to get (x−(t), ξ−(t),M−(t), a−(t)) as we

did for the beam g. This completes the construction for the reflected beam g−.

We now present some properties about the constructed beam. The following lemma

is crucial in the subsequent estimates. We refer to [37] for the proof.

Lemma 5.1.1. Both the matrices M(t) and M−(t) are uniformly bounded for t ∈ [0, T +

ϵ1]. Moreover, there exists C > 0, depending on M0 and ϵ0, such that ℑM(t) > C and

ℑM−(t) > C for all t ∈ [0, T + ϵ1].

We next introduce two auxiliary beams below

ĝ∗(t, y, λ) = a(t1)e
iλτ̂∗ , ĝ−∗ (t, y, λ) = a−(t1)e

iλτ̂−∗ ,
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where

τ̂∗ =
⟨
(−1,

∂F

∂y
(0)†ξ1), (t− t1, y)

⟩
+ (t− t1, y)M̂(t1)(t− t1, y)

†,

τ̂−∗ =
⟨
(−1,

∂F

∂y
(0)†ξ−1 ), (t− t1, y)

⟩
+ (t− t1, y)M̂

−(t1)(t− t1, y)
†.

It is clear that τ̂∗ = τ̂−∗ and ĝ∗ = −ĝ−∗ .

Lemma 5.1.2.

ĝ(t, y, λ) = ĝ∗(t, y, λ) +O(
√
λ) in H1((3ϵ1/4, t1 + ϵ1/2)× U(x1)), (5.6)

ĝ−(t, y, λ) = ĝ−∗ (t, y, λ) +O(
√
λ) in H1((3ϵ1/4, t1 + ϵ1/2)× U(x1)). (5.7)

Proof:. We only show (5.6), since (5.7) follows in a similar way. For simplicity, denote

D = (3ϵ1/4, t1 + ϵ1/2)× U(x1). We first show that

ĝ(t, y, λ) = ĝ∗(t, y, λ) +O(
1√
λ
) in L2(D). (5.8)

Indeed, by direct calculation,

ĝ(t, y, λ)− ĝ∗(t, y, λ) = (a(t)− a(t1))e
iλτ̂∗ + a(t)(eiλτ̂ − eiλτ̂∗). (5.9)

It suffices to show that

R1 := ∥(a(t)− a(t1))e
iλτ̂∗∥

L2(D)
. 1√

λ
,

R2 := ∥a(t)(eiλτ̂ − eiλτ̂∗)∥
L2(D)

. 1√
λ
.
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We first estimate R1. By Lemma 3.1 in [7], we have |a(t)| ≈ λ
d
4 . By equation (5.2), we

further derive that |ȧ(t)| ≈ λ
d
4 , thus

a(t)− a(t1) =

∫ 1

0
ȧ(t1 + s(t− t1)) ds(t− t1) = O(λ

d
4 )|t− t1|.

Therefore,

∥(a(t)− a(t1))e
iλτ̂∗∥2

L2(D)
.

∫
D
λ
d
2 (t− t1)

2e−λ(t−t1,y)ℑM̂(t1)(t−t1,y)
†
dtdy . 1

λ
.

This proves R1 . 1√
λ
.

We next estimate R2. Write τ̂ = τ̂∗ + δτ̂ , then δτ̂ = O(|(t − t1, y)|3) and hence

|1− eiλδτ̂ | . λ ·O(|(t− t1, y)|3). It follows that

R2 ≤
∫
D
|a(t)eiλτ̂∗ |2 · |1− eiλδτ̂ | dtdy

.
∫
D
λ
d
2 · λ · |(t− t1, y)|3e−2λ(t−t1,y)ℑM̂(t1)(t−t1,y)

†
dtdy

. 1

λ
.

This completes the proof of (5.8).

We now proceed to show (5.6). By direct calculation,

∂ĝ

∂y
− ∂ĝ∗

∂y
= iλ

∂τ̂

∂y
· ĝ − iλ

∂τ̂∗
∂y

· ĝ∗

= iλ(
∂τ̂

∂y
− ∂τ̂∗

∂y
) · ĝ + iλ

∂τ̂∗
∂y

· (ĝ − ĝ∗)

One can check that ∂τ̂
∂y − ∂τ̂∗

∂y = O|(t − t1, y)|2, then a similar argument as used in the
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estimate of R1 above shows that

∥λ(∂τ̂
∂y

− ∂τ̂∗
∂y

) · ĝ∥2
L2(D)

. 1.

Besides, (5.8) implies that

∥λ∂τ̂∗
∂y

· (ĝ − ĝ∗)∥2L2(D)
. λ.

Combining these two estimates together, we conclude that

∥∂ĝ
∂y

− ∂ĝ∗
∂y

∥2
L2(D)

. λ.

Similarly, we can show that

∥∂ĝ
∂t

− ∂ĝ∗
∂t

∥2
L2(D)

. λ.

This completes the proof of (5.6) and hence the lemma.

Note that ∥ĝ(t, y, λ)∥
L2((t1−ϵ1/2,t1+ϵ1/2)×U(x1))

≈ 1. As a direct consequence of

Lemma 5.1.2, we obtain the following norm estimate for the beam g restricted to the

boundary Γ.

Lemma 5.1.3.

∥g(·, ·, λ)∥
L2((t1−ϵ1/2,t1+ϵ1/2)×V (x1))

≈ 1. (5.10)

We now present an H1-norm estimate for g− + g and an approximation for the Neu-

mann data ∂g
∂ν

−
+ ∂g

∂ν on the boundary.
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Lemma 5.1.4.

g−(t, x, λ) + g(t, x, λ) = O(
√
λ) in H1((3ϵ1/4, t1 + ϵ1/2)× V (x1)); (5.11)

∂g

∂ν

−
+

∂g

∂ν
= 2iλg · ⟨ξ1, ν(x1)⟩+O(

√
λ) (5.12)

in L2((3ϵ1/4, t1 + ϵ1/2)× V (x1)).

Proof:. Denote D = (3ϵ1/4, t1 + ϵ1/2)× U(x1) again. We first show (5.11). Since x

is restricted to V (x1) ⊂ Γ, it suffices to show that

ĝ−(t, y, λ) + ĝ(t, y, λ) = O(
√
λ) in H1(D).

But this is a direct consequence of Lemma 5.1.2 and the fact that ĝ−∗ = −ĝ∗.

We now prove (5.12). By direct calculate

∂g

∂ν
(t, x) =

∂

∂ν
(a(t)eiλτ(t,x)) = iλg · ∂τ

∂ν

= iλg · ⟨ξ(t) +M(t)(x− x(t), ν(x)⟩

= iλg · ⟨ξ(t1), ν(x1)⟩+ iλg · (⟨ξ(t), ν(x)⟩ − ⟨ξ(t1), ν(x1)⟩)

+iλg · ⟨M(t)(x− x(t), ν(x)⟩.

Note that in the coordinate x = F (y),

|⟨M(t)(x− x(t)), ν(x)⟩| = O(|(t− t1, y)|),

|⟨ξ(t), ν(x)⟩ − ⟨ξ(t1), ν(x1)⟩| = O(|(t− t1, y)|).
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It follows that

∥g · (⟨ξ(t), ν(x)⟩ − ⟨ξ(t1), ν(x1)⟩)∥2L2(D)
. 1

λ
,

∥g · ⟨M(t)(x− x(t), ν(x)⟩∥2
L2(D)

. 1

λ
.

Thus

∂g

∂ν
(t, x) = iλg · ⟨ξ(t1), ν(x1)⟩+O(

√
λ).

Similarly,

∂g−

∂ν
(t, x) = iλg− · ⟨ξ−(t1), ν(x1)⟩+O(

√
λ).

Finally, using (5.11) and the fact that ⟨ξ−(t1), ν(x1)⟩ = −⟨ξ(t1), ν(x1)⟩, we conclude that

(5.12) holds. This completes the proof of the lemma.

Now, we are ready to construct Gaussian beam solutions to the initial boundary

value problem of the wave system (1.1)-(1.3). We first choose χϵ1(t) ∈ C∞
0 (R) such

that χϵ1(t) = 1 for t ∈ (ϵ1/4, ϵ1/2) and χϵ1(t) = 0 for t ∈ (−∞, 0)
∪
(3ϵ1/4,∞). Let

(x0, ξ0) ∈ S∗
−Γ and (x∗0, ξ

∗
0) = H−ϵ1

4 (x0, ξ0) = (x0−
ϵ1·ξ1
4 , ξ0). Let g be the Gaussian beam

constructed with the initial data x(0) = x∗0, ξ(0) = ξ∗0 ,M(0) = i · Id and a(0) = λ
d
4 . The

beam g is reflected by Γ at (x1, ξ1) = Sc(x0, ξ0) = Hl(x0,ξ0)
c (x0, ξ0) at t1 = l(x0, ξ0)+

ϵ1
4 .

We construct the reflected beam g− by the preceding procedure. Let u be the exact

solution to the wave system (1.1)-(1.3) with

f(t, x, λ) = g(t, x, λ) · χϵ1(t).
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Then u = g + g− + R, where the remaining term R satisfies the following equation

system

PR = −P(g + g−), (t, x) ∈ Ω× (0, t1 + ϵ1/2),

R(0, x, λ) = −(g + g−)(0, x, λ), x ∈ Ω,

Rt(0, x, λ) = −(gt + g−t )(0, x, λ), x ∈ Ω,

R(t, x, λ) = −g(t, x, λ)(1− χϵ1(t))− g−(t, x, λ), (t, x) ∈ (0, t1 + ϵ1/2)× Γ.

Here P stands for the wave operator 1
c2(x)

∂tt −∆.

Lemma 5.1.5.

∥∂R
∂ν

∥
L2([0,t1+ϵ1/2]×Γ)

≤ C
√
λ

for some constant C > 0 depending on ϵ0 and M0.

Proof. We apply Theorem 4.1 in [31] to derive the estimate. Note that the compat-

ibility condition is satisfied on the boundary at time t = 0. It remains to show that the

following four estimates hold:

∥P(g + g−)∥
C([0,t1+ϵ1/2];L

2(Ω))
.

√
λ, (5.13)

∥(g + g−)(0, ·, λ)∥
H1(Ω)

.
√
λ, (5.14)

∥(gt + g−t )(0, ·, λ)∥L2(Ω) .
√
λ, (5.15)

∥g(t, x, λ)(1− χϵ1(t))− g−(t, x, λ)∥
H1([0,t1+ϵ1/2]×Γ)

.
√
λ. (5.16)

First, (5.13) follows from the standard estimate for Gaussian beams, see for example [7].
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We next show (5.14). By Lemma 5.1.1, there exists a constant C > 0 depending on M0

and ϵ0 such that the following two inequalities hold

|g(t, x, λ)| . λ
d
4 · e−Cλ·|x−x−(t)|2 ,

|g−(t, x, λ)| . λ
d
4 · e−Cλ·|x−x−(t)|2 .

Thus the beam g and g− are exponentially decaying away from the ray x(t) and x−(t)

respectively. Using this property, it is straightforward to show that ∥g(0, ·, λ)∥
H1(Ω)

. 1

and ∥g−(0, ·, λ)∥
H1(Ω)

. 1, whence (5.14) and (5.15) follows.

Now, we show (5.16). We divide the domain (0, t1 + ϵ1/2)× Γ into three parts:

Σ1 = (0, ϵ1/2)× Γ, Σ2 = (ϵ1/2, t1 − ϵ1/2)× Γ, Σ3 = (t1 − ϵ1/2, t1 + ϵ1/2)× Γ.

We show that inequality (5.16) holds on each part.

For (t, x) ∈ Σ1, we have 1− χϵ1(t) = 0. Consequently,

g(t, x)(1− χϵ1(t))− g−(t, x, λ) = g−(t, x, λ).

By the exponential decaying property of g−, we obtain that

∥g(t, x)(1− χϵ1(t))− g−(t, x, λ)∥
H1(Σ1)

.
√
1.
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For (t, x) ∈ Σ2, by the exponential decaying property for both g and g− again, we obtain

∥g(t, x, λ)(1− χϵ1(t))− g−(t, x, λ)∥
H1(Σ2)

. 1.

Finally, for (t, x) ∈ Σ3, note that t1 − ϵ1
2 = l(x0, ξ0) +

ϵ1
4 − ϵ1

2 ≥ 3ϵ1
4 . We can apply

Lemma 5.1.4 to the part x ∈ V (x1) and the exponential decaying property for both g and

g− to the remaining part to conclude that

∥g(t, x, λ)(1− χϵ1(t))− g−(t, x, λ)∥
H1(Σ3)

.
√
λ

This completes the proof of (5.16) and hence the lemma.

5.2 The sensitivity result

It is known that the DDtN map Λc determines the scattering relation Sc uniquely [35].

We show that the following sensitivity result of recovering the scattering relation from

the DDtN map holds.

Theorem 5.2.1. Let c and c̃ be two velocity fields in the class A(ϵ0,Ω,M0, T ). Then

there exists a constant δ > 0 such that

Sc̃ = Sc

if ∥Λc̃ − Λc∥H1
0 [0,3ϵ1/4]×Γ→L2([0,T+ϵ1]×Γ)

≤ δ.
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Proof. For any (x0, ξ0) ∈ S∗
−Γ, let (x1, ξ1) = Sc(x0, ξ0) = Hl(x0,ξ0)

c (x0, ξ0) and

(x̃1, ξ̃1) = Sc̃(x0, ξ0) = Hl̃(x0,ξ0)
c̃ (x0, ξ0). We need to show that

(l(x0, ξ0), x1, ξ1) = (l̃(x0, ξ0), x̃1, ξ̃1)

if ∥Λc̃ − Λc∥ is sufficiently small. We do this in the following steps.

Step 1. Let t1 = l(x0, ξ0) +
ϵ1
4 and t̃1 = l̃(x0, ξ0) +

ϵ1
4 . Without loss of generality, we

may assume that t1 ≤ t̃1. Let V (x1) be a neighborhood of x1 in Γ which is parameterized

by a smooth function F : U(x1) → V (x1) as before. We may assume that x̃1 ∈ V (x1).

Let x̃1 = F (δy). We construct the initial beam g, the reflected beam g−, the boundary

Dirichlet data f , the solution u to the wave equation with velocity field c and remanning

term R as in the previous section. We similarly construct g̃, g̃−, ũ and R̃ to the system

with velocity field c̃ and with boundary Dirichlet data f̃ = f .

Step 2. Denote by I(t1, ϵ1/2) the interval (t1 − ϵ1/2, t1 + ϵ1/2). Since t1 ≤ t̃1 and

l(x0, ξ0) ≥ ϵ1, we have I(t1, ϵ1/2) ⊂ (3ϵ1/4, t1+ ϵ1/2) and I(t1, ϵ1/2) ⊂ (3ϵ1/4, t̃1+ ϵ1/2).

Then we can apply (5.12) and Lemma 5.1.5 to obtain

(Λc̃ − Λc)f =
∂u

∂ν
− ∂ũ

∂ν

=
∂(g + g−)

∂ν
− ∂(g̃ + g̃−)

∂ν
+

∂R

∂ν
− ∂R̃

∂ν

= 2iλ ·
{
⟨ξ1, ν(x1)⟩ · g − ⟨ξ̃1, ν(x̃1)⟩ · g̃

}
+O(

√
λ)

in L2(I(t1, ϵ1/2)× V (x1)).
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It follows that

⟨
(Λc̃ − Λc)f, g

⟩
L2(I(t1,ϵ1/2)×V (x1))

= 2iλ ·
[⟨

ξ1, ν(x1)
⟩
·
⟨
g, g

⟩
L2(I(t1,ϵ1/2)×V (x1))

−
⟨
ξ̃1, ν(x̃1)

⟩
·
⟨
g̃, g

⟩
L2(I(t1,ϵ1/2)×V (x1))

]
+O(

√
λ).

Note that

|⟨(Λc̃ − Λc)f, g⟩L2(I(t1,ϵ1/2)×V (x1))
|

≤ ∥(Λc̃ − Λc)f∥L2(I(t1,ϵ1/2)×V (x1))
· ∥g∥

L2(I(t1,ϵ1/2)×V (x1))

≤ ∥(Λc̃ − Λc)f∥L2((0,T+ϵ1)×Γ)
· ∥g∥

L2(I(t1,ϵ1/2)×V (x1))

≤ ∥Λc̃ − Λc∥H1
0([0,3ϵ1/4]×Γ)→L2([0,T+ϵ1]×Γ)

· ∥f∥
H1
0([0,3ϵ1/4]×Γ)

·∥g∥
L2(I(t1,ϵ1/2)×V (x1))

. λ · ∥Λc̃ − Λc∥H1
0([0,3ϵ1/4]×Γ)→L2([0,T+ϵ1]×Γ)

.

Thus the following inequality holds

|⟨ξ1, ν(x1)⟩ · ⟨g, g⟩L2(I(t1,ϵ1/2)×V (x1))
| − |⟨ξ̃1, ν(x̃1)⟩ · ⟨g̃, g⟩L2(I(t1,ϵ1/2)×V (x1))

|

≤ C√
λ
+ C · ∥Λc̃ − Λc∥H1

0([0,3ϵ1/4]×Γ)→L2([0,T+ϵ1]×Γ)
(5.17)

for some constant C > 0.

Step 3. We now estimate the two terms on the left hand side of the inequality (5.17).

41



First, by (4.5) and Lemma 5.1.3, we have

|⟨ξ1, ν(x1)⟩ · |
⟨
g, g

⟩
L2(I(t1,ϵ1/2)×V (x1))

| ≈ 1. (5.18)

We next estimate ⟨g̃, g⟩
L2(I(t1,ϵ1/2)×V (x1))

. In the coordinate x = F (y), by Lemma 5.1.2,

we have

⟨ˆ̃g, ĝ⟩
L2(I(t1,ϵ1/2)×U(x1))

= ⟨ˆ̃g∗, ĝ∗⟩L2(I(t1,ϵ1/2)×U(x1))
+O(

1√
λ
). (5.19)

Here we recall that ĝ∗ = a(t1)e
iλτ̂∗ and ˆ̃g∗ = ã(t1)e

iλˆ̃τ∗ with

τ̂∗ = ⟨(−1,
∂F

∂y
(0)†ξ1), (t− t1, y)⟩+ (t− t1, y)M̂(t1)(t− t1, y)

†;

ˆ̃τ∗ = ⟨(−1,
∂F

∂y
(δy)†ξ̃1), (t− t̃1, y − δy)⟩+ (t− t̃1, y − δy) ˆ̃M(t1)(t− t̃1, y − δy)†.

By Lemma 3.7 in [7], we have

|⟨ˆ̃g∗, ĝ∗⟩L2(I(t1,ϵ1/2)×U(x1))
| . e−c0λ|δz| (5.20)

where c0 is a positive constant depending only on ∥c∥
C3 + ∥c̃∥

C3 and

|δz| = |t1 − t̃1|2 + |δy|2 + |∂F
∂y

(δy)†ξ̃1 −
∂F

∂y
(0)†ξ1|2.
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It follows from (5.19) and (5.20) that

|⟨g̃, g⟩
L2(I(t1,ϵ1/2)×V (x1))

| . e−c0λ|δz| +O(
1√
λ
). (5.21)

Step 4. Combining (5.17), (5.18) and (5.21), we see that

e−c0λ|δz| & C1 − C2∥Λc̃ − Λc∥H1
0([0,3ϵ1/4]×Γ)→L2([0,T+ϵ1]×Γ)

− C3
1√
λ

for some positive constants C1, C2 and C3 which are independent of (x0, ξ0). By letting

λ → ∞, we conclude that δz = 0 if

∥Λc̃ − Λc∥H1
0([0,3ϵ1/4]×Γ)→L2([0,T+ϵ1]×Γ)

<
C1

C2
.

Set δ =
C1
C2

. From δz = 0 it follows that t1 = t̃1, δy = 0, and ∂F
∂y (0)

†ξ̃1 − ∂F
∂y (0)

†ξ1 = 0.

It remains to show that ξ̃1 = ξ1. Indeed, ∂F
∂y (0)

†ξ̃1 − ∂F
∂y (0)

†ξ1 = 0 implies that the

tangential component of ξ̃1 and ξ1 are equal. Besides, ∥ξ1∥ = ∥ξ̃1∥. These together with

(4.5) yield that ξ̃1 = ξ1. This completes the proof of the theorem.
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Chapter 6

Stability of X-ray transform in the

presence of caustics

6.1 The X-ray transform resulted from linearizing

Hamiltonian flow with respect to velocity field

We begin with the following observation.

Lemma 6.1.1. Let c and c̃ be two velocity fields in the class A(ϵ0,Ω,M0, T ), then Sc =

Sc̃ if and only if HT
c |S∗−Γ = HT

c̃ |S∗−Γ.

The above lemma shows the equivalence of the Hamiltonian flow and the scattering

relation. The next lemma shows that Ht
c satisfies an equivalent ordinary differential

equation (ODE) system in S∗Rd.

Lemma 6.1.2. Let (x0, ξ0) ∈ S∗Rd = {(x, ξ) ∈ R2d : c(x)|ξ| = 1}, and let (x(t), ξ(t)) =

Ht
c(x0, ξ0), then (x(t), ξ(t)) satisfies the following ODE system

ẋ =
ξ

|ξ|2
, (6.1)

ξ̇ = b(x). (6.2)
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where b(x) = −1
2∇ ln c2. Conversely, if (x(t), ξ(t)) ∈ S∗Rd satisfies the ODE system

(6.1)-(6.2), then (x(t), ξ(t)) = Ht
c(x0, ξ0).

We next linearize the operator which maps each velocity field to its induced Hamilto-

nian flow restricted to the cosphere bundle. Let c be a fixed smooth background velocity

field. Denote the perturbed velocity field and Hamiltonian flow at time T as c̃2 = c2+δc2

and HT
c̃ = HT

c + δHT
c respectively. Denote also that δb = −1

2∇(ln c̃2 − ln c2) and

A(x, ξ) =

 0 ∂
∂ξ (

ξ

|ξ|2
)

∂b
∂x 0

 .

For each (x0, ξ0) ∈ S∗
−Γ, let Φ(t, x0, ξ0) be the solution of the following ODE system

Φ̇(t) = −Φ(t)A(Ht
c), Φ(0) = Id.

By the standard linearization argument, we have

δHT
c =

δHT
c

δb
(δb) + r(δb),

where

δHT
c

δb
(δb)(x0, ξ0) =

∫ T

0
Φ−1(T, x0, ξ0) · Φ(s, x0, ξ0)

 0

δb(x(s, x0, ξ0))

 ds (6.3)

and ∥r(δb)∥L∞ ≤ C∥δb∥2
C1 for some constant C > 0 depending only on ∥c∥

C3(Rd).
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Formula (6.3) motivates us to define the following geodesic X-ray transform operator

Ic(f)(x0, ξ0) =

∫ T

0
Φ(s, x0, ξ0)f(x(s, x0, ξ0)) ds, f ∈ E ′(Ω,R2d). (6.4)

Then
δHT

c
δb (δb)(x0, ξ0) = Φ−1(T, x0, ξ0) · Ic(f)(x0, ξ0) with

f =

 0

1
2∇(ln c2 − ln c̃2)

 . (6.5)

We introduce a matrix Φ(x, ξ) for each (x, ξ) ∈ S∗Ω. Let (x0, ξ0) = τ(x, ξ) =

Hl−(x,ξ)
c (x, ξ). We then define

Φ(x, ξ) = Φ(−l−(x, ξ), τ(x, ξ)).

It is clear that the following identity holds

Φ(Hs
c(x0, ξ0)) = Φ(s, x0, ξ0)

for all s ∈ R+ such that Hs
c(x0, ξ0) ∈ S∗Ω. We can rewrite the X-ray transform operator

Ic in the following standard form

Icf(x0, ξ0) =

∫ T

0
Φ(Hs

c(x0, ξ0))f(π(Hs
c(x0, ξ0))) ds

=

∫ l(x0,ξ0)

0
Φ(Hs

c(x0, ξ0))f(π(Hs
c(x0, ξ0))) ds. (6.6)

Remark 6.1.1. Formula (6.6) is derived in the coordinate of T ∗Rd. Hence it may not
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be geometrically invariant.

Lemma 6.1.3. Assume that Sc = Sc̃, let f be defined as in (6.5), then

∥Icf∥L∞ . ∥f∥2
C1(Ω)

.

6.2 Statement of the main results for the stability of

the geodesic X-ray transform Ic

We consider the stability estimate of the operator Ic. For simplicity, we drop the subscript

c. Define β : T ∗Rd\{(x, 0) : x ∈ Rd} → S∗Rd by

β(x, ξ) =

(
x,

ξ

∥ξ∥

)
.

Let π : T ∗Rd → Rd be the natural projection onto the base space. We define ϕ :

T ∗Rd → Rd by

ϕ(x, ξ) = π ◦ Ht=1(x, ξ), (x, ξ) ∈ T ∗Rd.

We remark that ϕ defined above is equivalent to the exponential map in Riemannian

manifold.

The following result about the normal operator N = I†I is well-known.

Lemma 6.2.1. The normal operator N : L2(Ω,R2d) → L2(Ω,R2d) is bounded and has
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the following representation

Nf(x) =

∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ)) dσx(ξ), f ∈ L2(Ω,R2d) (6.7)

where dσx denotes the measure in the space T ∗
xRd induced by the velocity field c, i.e.

dσx(ξ) = c(x)ddξ, and W is defined as

W (x, ξ) =
1

∥ξ∥d−1
{Φ† ◦β(x, ξ) ·Φ◦β ◦H(x, ξ)+Φ† ◦β(x,−ξ) ·Φ◦β ◦H−1(x,−ξ)}. (6.8)

Proof. See [54] or [47].

We see from (6.7) that the local property of the normal operatorN restricted to a small

neighborhood of x ∈ Ω is determined by the lagrangian map ϕ(x, ·) : T ∗
xRd → Rd. When

the map is a diffeomorphism, it is known that the operatorN near x is a pseudo-differential

operator (ΨDO). However, in general case, the map may not be a diffeomorphism and

may have singular points which are called caustic vectors. The value of the map at caustic

vectors are called caustics. When caustics occur, the Schwartz kernel of the operator N

has two singularities, one is from the diagonal which contributes to a ΨDO N1, and the

other is from the caustics which contributes to a singular integral operator N2. The

property of N2 depends on the type of caustics. The case for fold caustics is investigated

in [54], where it is shown that fold caustics contribute a Fourier Integral Operator (FIO)

to N2. Little is known for caustics of other type. Here we recall the following definition

of fold caustics.

Definition 6.2.1. Let f : Rd → Rn be a germ of C∞ map at x0, then x0 is said to be a
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fold vector and f(x0) a fold caustic if the following two conditions are satisfied:

1. the rank of df at x0 equals to n− 1 and det df vanishes of order 1 at x0;

2. the kernel of the matrix df(x0) is transversal to the manifold {x : det df(x) = 0} at

x0.

We now introduce the following concept of “operator germ” to characterize the con-

tribution of an infinitesimal neighborhood of a caustic or a regular point to the normal

operator N.

Definition 6.2.2. For each ξ ∈ T ∗
xRd\0, the operator germ Nξ is defined to be the

equivalent class of operators in the following form

Nξf(y) =

∫
T∗yΩ

W (y, η)f(ϕ(y, η))χ(y, η) dσy(η). (6.9)

where χ is a smooth function supported in a small neighborhood of (x, ξ) in R2d. Two

operators with χ1 and χ2 are said to be equivalent if there exists a neighborhood B(x, ξ)

of (x, ξ) such that χ1 = χ2 · χ3 for some χ3 ∈ C∞
0 (B(x, ξ)) with χ3(x, ξ) ̸= 0.

The operator germ Nξ is said to has certain property if there exists a neighborhood

B(x, ξ) of (x, ξ) in T ∗Rd such that the property holds for all operators of the form (6.9)

with χ ∈ C∞
0 (B(x, ξ)).

Properties of the above defined operator germ will be given in Section 6.3.

We note from the preceding discussion that it is complicated to analyze the full oper-

ator N which contains information from all geodesics. However, for a given interior point

x, to recover f or the singularity of f at x from its geodesic transform, we need only
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to select a set of geodesics whose conormal bundle can cover the cotangent space T ∗
xRd.

Caustics may be allowed along these geodesics as long as they are of the simplest type,

i.e fold type so that we can analyze their contributions. This idea can be carried out by

introducing a cut-off function for the set of geodesics as we do now. We remark that this

idea is motivated by the work [51]. For any α ∈ C∞
0 (S∗

−Γ), we define

Iαf(x0, ξ0) = α(x0, ξ0)

∫ l(x0,ξ0)

0
Φ(Hs

c(x0, ξ0))f(π(Hs
c(x0, ξ0))) ds (6.10)

where (x0, ξ0) ∈ S∗
−Γ. Let α♯ be the unique lift of α to S∗Ω which is constant along

bicharacteristic curves, i.e. α♯(x, ξ) = α ◦ τ(x, ξ) for (x, ξ) ∈ S∗Ω. Then α♯ is smooth in

S∗Ω and we have

Iαf(x0, ξ0) =

∫ l(x0,ξ0)

0
(α♯ · Φ)(Hs

c(x0, ξ0))f(π(Hs
c(x0, ξ0))) ds (6.11)

With the original weight Φ being replaced by the new one α♯ ·Φ, we similarly can define

Nα. In fact, it is easy to check that Nα is defined as in (6.8) with W being replaced by

Wα(x, ξ) =
1

∥ξ∥d−1
|α ◦ τ ◦ β(x, ξ)|2Φ† ◦ β(x, ξ) · Φ ◦ β ◦ H(x, ξ)

+
1

∥ξ∥d−1
|α ◦ τ ◦ β(x,−ξ)|2Φ† ◦ β(x,−ξ) · Φ ◦ β ◦ H−1(x,−ξ).

It can be shown that with properly chosen α, the analysis of the operator Nα becomes

possible and we can recover the singularity of f from Nαf .

We now give two definitions whose discussions are postponed to Section 6.

Definition 6.2.3. A fold vector ξ ∈ T ∗
xRd is called fold-regular if there exists a neighbor-
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hood U(x) of x such that the operator germ Nξ is compact from L2(Ω0,R2d) to H1(U(x),R2d)

(or from Hs(Ω0,R2d) to Hs+1(U(x),R2d) for all s ∈ R).

Definition 6.2.4. A point x is called fold-regular if there exists a compact subset Z2(x) ⊂

S∗
xRd such that the following two conditions are satisfied:

1. For each ξ ∈ Z2(x), there exist only singular vectors of fold-regular type along the

ray {tξ : t ∈ R} for the map ϕ(x, ·);

2. ∀ ξ ∈ S∗
xRd, ∃ θ ∈ Z2(x), such that θ ⊥ ξ.

We remark that Z2(x) parameterizes a subset of geodesics that pass through x and

along which there exist only fold-regular caustics.

We now present the main results on the stability estimate for the geodesic X-ray

transform operator. The proofs are given in Section ?.

Theorem 6.2.1. Let x∗ be a fold-regular point, then there exist a cut-off function α ∈

C∞
0 (S∗

−Γ), a neighborhood U(x∗) of x∗, a compact operator N2,α from L2(Ω0,R2d) to

H1(U(x∗),R2d) and a smoothing operator R from E ′(Ω,R2d) into C∞(U(x∗),R2d), such

that for any U0(x∗) b U(x∗) the following holds

∥f∥Hs(U0(x∗)) . ∥Nαf∥Hs+1(U(x∗)) + ∥N2,αf∥Hs+1(U(x∗)) + ∥Rf∥Hs(U(x∗)) (6.12)

for all f ∈ D′(Ω0,R2d) and s ∈ R.

Theorem 6.2.2. Assume that the background velocity field c is strong fold-regular. Then

there exist U(xj) ⊂ Ω, αj ∈ C∞
0 (S−∂Ω), j = 1, 2...N , and a finite dimensional space
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L0 ∈ L2(Ω,R2d) such that the following estimate holds for any f ∈ L2(Ω,R2d) with

support in Ω0:

∥f∥
L2(M)

.
N∑
j=1

∥Nαjf∥H1(Ũ(xj))
+ ∥N2,αj

f∥
H1(U(xj))

+ ∥Rjf∥L2(U(xj))
(6.13)

where each N2,αj
is a compact operator from L2(Ω0,R2d) to H1(U(xj),R2d), and Rj

smoothing from E ′(Ω,R2d) into C∞(U(xj),R2d). If we denote by P
L⊥0

the orthogonal

projection in L2(Ω,R2d) onto the subspace which is perpendicular to L0, we have the

following Lipschitz estimate

∥P
L⊥0

f∥
L2(M)

.
N∑
j=1

∥Nαjf∥H1(U(xj))
. (6.14)

6.3 Local properties of the normal operator N

In this subsection, we present some results about the local properties of the normal oper-

ator N (see (6.7)).

From now on, we fix x∗ ∈ Ω. We first decompose N locally into two parts based

on the separation of singularities of its Schwartz kernel. Note that the map ϕ(x∗, ·) :

Rd → Rd is a diffeomorphism in a neighborhood of the origin. In fact, we can check

that
∂ϕ(x∗,·)

∂ξ (0) = c(x∗) · Id. Similar to the proof of existence of uniformly normal

neighborhood in Riemannian manifold [32], we can find ϵ2 > 0 and a neighborhood of x∗,

say Ũ(x∗) ⊂ Rd, such that ϕ(x, ·) are diffeomorphisms for each x ∈ Ũ(x∗) in the domain

{ξ : ∥ξ∥ < 2ϵ2}.
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Let χ∗ ∈ C∞
0 (R) be such that χ(t) = 1 for |t| < ϵ2 and χ(t) = 0 for |t| > 2ϵ2. We

then define

N1f(x) =

∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ))χ∗(∥ξ∥) dσx(ξ), (6.15)

N2f(x) =

∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) dσx(ξ). (6.16)

Note that for any f supported in Ω, f(ϕ(x, ξ)) = 0 for all ∥ξ∥ > T . Thus we have

N2f(x) =

∫
ξ∈T∗xΩ, ϵ2<∥ξ∥<T

W (x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) dσx(ξ).

It is clear that Nf = N1f +N2f . This gives the promised decomposition of N. We

next study N1 and N2 separately.

Lemma 6.3.1. N1 : C∞
0 (Ũ(x∗),R2d) → D′(Ũ(x∗),R2d) is an elliptic ΨDO of order −1

and its principle symbol is

σp(N1)(x, ξ) = 2π ·
∫
S∗xΩ

δ(⟨ξ, θ⟩)Φ†(x, θ) · Φ(x, θ) dσx(θ).

Proof. See [51] or [54].

We now proceed to study the operator N2 whose property is determined by the La-

grangian map ϕ(x∗, ·). We shall study the operator germ N2,ξ∗ for each ξ ∈ T ∗
x∗R

d. We

first consider the case when ξ∗ is not a caustic vector, i.e. ξ∗ is a regular vector.

Lemma 6.3.2. Let ξ∗ ∈ S∗
x∗R

d be a regular vector, then there exists a neighborhood U(x∗)

of x∗ and a neighborhood B(x∗, ξ∗) of (x∗, ξ∗) such that for any χ ∈ C∞
0 (B(x∗, ξ∗)) the
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following operator

N2,ξ∗f(x) =
∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) · χ(x, ξ) dσx(ξ)

is a smoothing operator from E ′(Ω,R2d) into C∞(U(x∗),R2d).

Proof. Since ξ∗ ∈ S∗
x∗R

d is regular, there exist a neighborhood V (x∗) of x∗ in Rd and

a neighborhood B(x∗, ξ∗) of (x∗, ξ∗) in R2d of the form B(x∗, ξ∗) = V (x∗) × B0(ξ∗) for

some open set B0(ξ∗) in Rd such that the map ϕ(x, ·) is a diffeomorphism between B0(ξ∗)

and its image for all x ∈ V (x∗). We denote the inverse of the map ϕ(x, ·) by ϕ−1(x, ·). By

a change of coordinate ξ = ϕ−1(x, y) and use some cut-off function, we can write N2,ξ∗

in the following form

N2,ξ∗f(x) =
∫
Ω
K(x, y)f(y) dy, f ∈ E ′(Ω,R2d)

for some smooth function K in Ω× Ω. The Lemma follows immediately.

We next consider the case when ξ∗ is a fold vector. We have the following slightly

modified result from [54].

Lemma 6.3.3. Let ξ∗ be a fold vector of the map ϕ(x∗, ·). Then there exists a small

neighborhood U(x∗) of x∗ and a small neighborhood B(x∗, ξ∗) of (x∗, ξ∗) in R2d such that

for any χ ∈ C∞
0 (B(x∗, ξ∗)), the operator N2,ξ∗ : E ′(Ω,R2d) → D′(U(x∗),R2d) defined by

N2,ξ∗f(x) =
∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) · χ(x, ξ) dσx(ξ), f ∈ E ′(Ω,R2d)

(6.17)

54



is an FIO of order −d
2 whose associated canonical relation is compactly supported in the

following set

{
(x, ξ, y, η); x ∈ U(x∗), y = ϕ(x, ω), (x, ω) ∈ B(x∗, ξ∗), det dωϕ(x, ω) = 0,

ξ = −ηi
∂ϕi(x, ω)

∂x
, η ∈ Coker (dωϕ(x, ω)).

}
(6.18)

Proof. We sketch a proof here and refer to [54] for detail. We first note that by the

fold condition, there exists a small neighborhood B1(x∗, ξ∗) of (x∗, ξ∗) in R2d such that

ξ∗ is the only singular vector of the map ϕ(x∗, ·) along the ray {tξ∗ : t ∈ R} in B1(x∗, ξ∗).

Define

S = {(x,w) : det dωϕ(x, ω) = 0} ⊂ R2d,

Σ = {(x, y) : y = ϕ(x, ω), (x, ω) ∈ S} ⊂ R2d.

By shrinking B1(x∗, ξ∗) if necessary, we can show that S
∩

B1(x∗, ξ∗) is a smooth

(2d− 1)-dimensional manifold in R2d, and ϕ is a diffeomorphism between S
∩

B1(x∗, ξ∗)

and its image. Denote

S1 = S
∩

B1(x∗, ξ∗), Σ1 = ϕ(S1).

Note that Σ1 is a smooth (2d − 1)-dimensional manifold in a neighborhood of (x∗, y∗)

in Ω × Ω. Let π2 be the projection from Ω × Ω to its second component. By the fold-

condition for ξ∗ and the fact that the matrix dx,ξϕ(x∗, ξ∗) is surjective, we can show that

dπ2 : T(x∗,ξ∗)Σ1 → Ty∗Rd is surjective. Thus there exists a neighborhood V1(y∗) of y∗
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in Rd such that V1(y∗) ⊂ π2(Σ1). We remark that the surjectivity of the linear map dπ2

implies that the conormal bundle of Σ1 belongs to (T ∗Rd \0)×(T ∗Rd \0), where 0 stands

for the zero section of the normal bundle T ∗Rd.

Let U1(x∗) be a small neighborhood of x∗ such that U1(x∗) ⊂ π(S1) and χ̃ ∈

C∞
0 (B1(x∗, ξ∗)). Consider the Schwartz kernel of operator

Ñ2,ξ∗ : E ′(Ω,R2d) → D′(U1(x∗),R2d)

defined by

Ñ2,ξ∗f(x) =
∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) · χ̃(x, ξ) dσx(ξ), f ∈ E ′(Ω,R2d).

We can show that it has conormal singularity supported in the set Σ1. Moreover, the

conormal bundle N ∗Σ1 is given by

N ∗Σ1 =
{
(x, ξ, y, η); x ∈ U(x∗), y = ϕ(x, ω), (x, ω) ∈ B1(x∗, ξ∗),

ξ = −ηi
∂ϕi(x, ω)

∂x
, η ∈ Coker (dωϕ(x, ω)), det dωϕ(x, ω) = 0.

}

By analyzing the singularity of the Jacobian determinant of dωϕ(x, ω)), we can show that

the Schwartz kernel of Ñ2,ξ∗ belongs to the conormal class I−
d
2 (Ω × Ω,Σ1,M2d×2d),

where M2d×2d denotes the vector bundle of matrices from R2d to R2d over Ω. Especially,

when the domain of Ñ2,ξ∗ is restricted to distribution sections supported in V1(y∗), the

operator Ñ2,ξ∗ is a FIO of order −d
2 from E ′(V1(y∗),R2d) to D′(U1(x∗),R2d).

The above Ñ2,ξ∗ with χ̃ ∈ C∞
0 (B1(x∗, ξ∗)) requires the domain to be E ′(V1(y∗),R2d),

56



we now show that this condition can be relaxed by further decreasing B1(x∗, ξ∗). Indeed,

let U(x∗) be a neighborhood of x∗ such that U(x∗) b U1(x∗) and B(x∗, ξ∗) be a neighbor-

hood of (x∗, ξ∗) such that B(x∗, ξ∗) b B1(x∗, ξ∗). By choosing U(x∗) and B(x∗, ξ∗) to be

sufficiently small, we can assume that the set V (y∗) = { ϕ(x, ξ) : x ∈ U(x∗), ξ ∈ B(x∗, ξ∗)}

is compactly supported in V1(y∗). We then choose χV ∈ C∞
0 (V1(x∗)) such that χV (x) = 1

for x ∈ V (x∗). One can check that for any χ ∈ C∞
0 (B(x∗, ξ∗)), the operator N2,ξ∗ defined

by

N2,ξ∗f(x) =
∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) · χ(x, ξ) dσx(ξ), f ∈ E ′(Ω,R2d)

satisfies N2,ξ∗f(x) = N2,ξ∗(χV · f)(x) for all x ∈ U(x∗). Thus N2,ξ∗ is well-defined from

E ′(Ω,R2d) to D′(U(x∗),R2d), and is a FIO of order −d
2 with canonical relation compactly

supported in the set (6.18). This completes the proof of the lemma.

6.4 Singularities of the map ϕ(x, ·)

In this subsection, we present some properties about the map ϕ(x, ·) which is equivalent

to the exponential map in Riemannian manifold.

By the classification result for Lagrangian maps (see [5] and [6] for detail), there are

only a finite number of stable and simple singular Lagrangian map germs in dimensions

between three and five and they are generic. In three dimensions, there are four types:

fold, cusp, swallow-tail and D4. The others are unstable and can be removed by using
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arbitrarily small perturbations. We define

K(x) = {ξ ∈ T ∗
xRd : the map germ ϕ(x, ·) at ξ is singular};

K1(x) = {ξ ∈ T ∗
xRd : the map germ ϕ(x, ·) at ξ has singularity of fold type};

K2(x) = {ξ ∈ T ∗
xRd : the map germ ϕ(x, ·) at ξ has singularity of cusp type};

K3(x) = {ξ ∈ T ∗
xRd : the map germ ϕ(x, ·) at ξ has simple and stable singularities

of types other than fold and cusp};

K4(x) = {ξ ∈ T ∗
xRd : the map germ ϕ(x, ·) at ξ has singularity

which are either not simple or stable}.

It is clear that K(x) =
∪4
j=1Kj(x). Denote

S(x) = {ξ ∈ S∗
xRd : rξ ∈ K for some r ∈ R},

Sj(x) = {ξ ∈ S∗
xRd : rξ ∈ Kj for some r ∈ R}, j = 1, 2, 3, 4.

We say that the map ϕ(x, ·) is in a general position(or generic) if the map germ ϕ(x, ·) is

simple and stable at all caustic vectors in K(x), i.e. K4(x) = ∅. It is possible that the map

ϕ(x, ·) can be brought to a general position by adding an arbitrarily small perturbation

to the velocity field c. By the classification result of Lagrangian maps, see for instance

[5], the following result holds for the set K(x).

Propsition 1. Assume that the map ϕ(x, ·) is in a general position, then the sets K1(x)

and K2(x) are smooth manifolds of dimensions d − 1 and d − 2, respectively. The set

K3(x) is a union of smooth manifolds of dimensions not greater than d − 3. Especially,
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for d = 3, the sets K1(x), K2(x) and K3(x) consists of smooth surfaces, smooth curves

and isolated points, respectively.

In the case when the map ϕ(x, ·) is not in a general position, it is known that

K1(x)
∪
K2(x)

∪
K3(x) is open and dense in K(x).

Note that Sj(x) are the images of Kj(x) under the map β which sends ξ ∈ T ∗
xRd to

ξ
∥ξ∥ ∈ S∗

xRd for ξ ̸= 0. We conclude that the following result holds.

Lemma 6.4.1. Assume that the map ϕ(x, ·) is in general position, then the sets S2(x)

and S3(x) are of finite d − 2 and d − 3 dimensional Hausdorff measures, respectively.

Especially, for d = 3, the set S2(x) is a curve (not necessarily smooth) of finite length in

S∗
xR3 and S3(x) consists of a finite number of points.

6.5 Discussions on the concept of Fold-regular

In this subsection, we discuss the concept “fold-regular”. We show that for a general

velocity field in Ω whose induced metric is not simple, a given point in Ω is fold-regular

under some natural assumptions.

We begin with the concept “fold-regular vector”. It is still an open problem to find

a complete characterization for it, i.e. what are the necessary and sufficient conditions

for the map germ ϕ(x∗, ·) at ξ∗ for ξ∗ to be fold-regular. We have the following partial

answer in the form of remarks.

Remark 6.5.1. In dimension d = 2, the set of fold-regular vectors is generally empty. In-

deed, for a fold vector ξ∗, the operator germ N2,ξ∗ is a FIO of order −1, and hence the best
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estimate is that it is bounded from L2(Ω0,R2d) to H1(U(x∗),R2d) for some neighborhood

U(x∗) of x∗.

Remark 6.5.2. In dimension d ≥ 3, a sufficient condition for a fold vector ξ∗ to be

fold-regular is that the following condition is satisfied

d2ξϕ(x∗, ξ∗)(Nx∗(ξ∗) \ 0× ·)|Tξ∗S(x∗)
is of full rank. (6.19)

where Nx∗(ξ∗) denotes the kernel of dξϕ(x∗, ξ∗) and S(x∗) the set of all vectors ξ ∈ T ∗
x∗R

d

such that det dξϕ(x∗, ξ) = 0. Indeed, in that case, it is shown in [54] that the canonical

relation associated with the operator germ N2,ξ∗ is locally a canonical graph and hence

N2,ξ∗ is bounded from L2(Ω0,R2d) to H
d
2 (U(x∗),R2d) for some neighborhood U(x∗) of

x∗. Note that for d ≥ 3, H
d
2 (U(x∗),R2d) is compactly embedded in H1(U(x∗),R2d), so

N2,ξ∗ is compact from L2(Ω0,R2d) to H1(U(x∗),R2d) and we can conclude that ξ∗ is

fold-regular.

The set of fold-regular vectors Z1(x∗) contains more elements than those which sat-

isfy the graph condition (6.19). In fact, let C ⊂ T ∗Ω × T ∗Ω be the canonical relation

associated with the operator germ N2,ξ∗ defined in Lemma 6.3.3. We have shown that

C is homogeneous and C ⊂ (T ∗Ω\0) × (T ∗Ω\0). By the main result in [24], N2,ξ∗ is

bounded from L2(Ω0,R2d) to H
d
2−

1
3 (U(x∗),R2d) for some neighborhood U(x∗) of x∗, if

the only singularity of the projection of C to its first or second component at the point

associated with (x∗, ξ∗) is fold or cusp. Since H
d
2−

1
3 (U(x∗),R2d) is compactly embedded

in H1(U(x∗),R2d), we see that N2,ξ∗ is compact from L2(Ω0,R2d) to H1(U(x∗),R2d) and

hence ξ∗ is fold-regular.
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We now consider the concept “fold-regular point”. We denote

Z1(x∗) = {ξ ∈ S∗
x∗R

d : ∀ r ∈ R, rξ is either regular or fold-regular}.

It is clear that

Z1(x∗) ⊂ Z(x∗) =: S∗
x∗R

d \ (S2(x∗)
∪

S3(x∗))
∪

S4(x∗).

We remark that Z(x∗) characterizes the set of geodesics that pass through x∗ and along

which the map ϕ(x∗, ·) only has singularities of fold type. By Morse’s index theorem (a

fold vector for the map ϕ(x, ·) corresponds to a fold conjugate vector for the exponential

map expx(·)), for each ξ ∈ S(x∗), there are at most finitely many fold vectors along the

geodesic π◦Ht(x∗, ξ). Using the definition of “fold-regular”, we can conclude that Z1(x∗)

is open in S∗
x∗R

d.

Recall that x∗ is fold-regular if there exists a compact subset Z2(x∗) ⊂ Z1(x∗) such

that the following completeness condition is satisfied

∀ ξ ∈ S∗
x∗R

d, ∃ θ ∈ Z2(x∗), such that θ ⊥ ξ.

Remark 6.5.3. A sufficient condition for the completeness of Z1(x∗) is that Z1(x∗)

contains a set

θ⊥ = {ξ ∈ S∗
x∗R

d, ξ ⊥ θ}

for θ ∈ S∗
x∗R

d.
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Remark 6.5.4. If the completeness condition fails for Z1(x∗), then there exists θ ∈ S∗
x∗R

d

such that

θ⊥ ⊂ S2(x∗)
∪

S3(x∗)
∪

S4(x∗). (6.20)

Assume that the map ϕ(x∗, ·) is in a general position. By Lemma 6.4.1, the set on the

right hand side of (6.20) is of finite d − 2-dimensional Hausdorff measure, so is the set

θ⊥ for each θ ∈ S∗
x∗R

d. Thus, we conclude that there exists at most a finite number of θ

such that (6.20) holds.

6.6 Proof of Theorem 6.2.1

We prove Theorem 6.2.1 in this subsection. The proof can be divided into two major

stages: in the first stage, we present some preliminaries and construct a cut-off function

α ∈ C∞
0 (S∗

−Γ) which selects a complete set of geodesics with only fold-regular caustics,

see Lemma 6.6.1; in the second stage, we study the normal operator Nα = I
†
αIα, see

Lemma 6.6.2 and 6.6.3. Theorem 6.2.1 is then a direct consequence of Lemma 6.6.2 and

6.6.3.

We now present some preliminaries that are necessary for the construction of α. Let

x∗ be a fold-regular point with the compact subset Z2(x∗) ⊂ S∗
x∗R

d in Definition 6.2.4.

Denote CZ2 = {rξ; ξ ∈ Z2(x∗), r ∈ R and ϵ2 ≤ |r| ≤ T}. For each ξ∗ ∈ CZ2, by Lemma

6.3.2 and Lemma 6.3.3, there exist a neighborhood U(x∗, ξ∗) of x∗ and a neighborhood

B(x∗, ξ∗) of (x∗, ξ∗) such that for any χ ∈ C∞
0 (B(x∗, ξ∗)) the following operator

N2,ξ∗f(x) =
∫
T∗xΩ

W (x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) · χ(x, ξ) dσx(ξ)
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is compact from Hs(Ω0,R2d) to Hs+1(U(x∗, ξ∗),R2d). Let B0(x∗, ξ∗) be another neigh-

borhood of (x∗, ξ∗) in R2d such that B0(x∗, ξ∗) b B(x∗, ξ∗). Since CZ2 is compact, there

exists a finite number of ξ∗’s in CZ2, say ξ1, ξ2,..., ξM , such that

CZ2 ⊂
M∪
j=1

B0(x∗, ξj).

We can then find smooth functions χ1, χ2,...,χM with suppχj ⊂ B(x∗, ξj) for each j such

that
M∑
j=1

χj(x, ξ) = 1 for all (x, ξ) ∈
M∪
j=1

B0(x∗, ξj).

Denote by A0 be the greatest connected open symmetric subset in
∪M
j=1B0(x∗, ξj)

which contains CZ2. Here and after, we say that a set B in R2d is symmetric if (x, ξ) ∈ B

implies that (x,−ξ) ∈ B. Define

Aϵ = {(x, ξ) ∈ R2d : |x− x∗| ≤ ϵ, ϵ2 ≤ ∥ξ∥ ≤ T}

for each ϵ > 0. It is clear that Aϵ is compact in R2d, so is the set Aϵ\A0.

Lemma 6.6.1. There exist ϵ3 > 0 and α ∈ C∞
0 (S∗

−Γ) such that the following two condi-

tions are satisfied:

α(x0, ξ0) = 1 for all (x0, ξ0) ∈ τ ◦ β(CZ2(x∗)), (6.21)

α(x0, ξ0) = 0 for all (x0, ξ0) ∈ τ ◦ β(Aϵ3\A0). (6.22)

Proof. Note that both β and τ are continuous. Since CZ2(x∗) and Aϵ\A0 are
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compact, so are the sets τ ◦ β(CZ2(x∗)) and τ ◦ β(Aϵ\A0). We claim that there exists

ϵ3 > 0 such that

τ ◦ β(CZ2(x∗))
∩

τ ◦ β(Aϵ\A0) = ∅

for all ϵ ≤ ϵ3. Indeed, assume the contrary, then

τ ◦ β(CZ2(x∗))
∩

τ ◦ β(Aϵ\A0) ̸= ∅

for all ϵ > 0. Note that the collection of compact subsets τ ◦ β(CZ2(x∗))
∩

τ ◦ β(Aϵ\A0)

is decreasing with respect to ϵ, so it satisfies the finite intersection property and we can

thus conclude that

τ ◦ β(CZ2(x∗))
∩
ϵ>0

τ ◦ β(Aϵ\A0) ̸= ∅.

But on the other hand, we can check that

∩
ϵ>0

τ ◦ β(Aϵ\A0) = τ((Aϵ\A0)
∩

S∗
x∗R

d)

τ ◦ β(CZ2(x∗)) = τ(CZ2(x∗)
∩

S∗
x∗R

d).

Using the fact that τ is injective on S∗
x∗R

d and CZ2 ⊂ A0, we obtain

τ((Aϵ\A0)
∩

S∗
x∗R

d)
∩

τ(CZ2(x∗)
∩

S∗
x∗R

d) = ∅.

Thus,

τ ◦ β(CZ2(x∗))
∩
ϵ>0

τ ◦ β(Aϵ\A0) = ∅.
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This contradiction completes the proof of our claim.

Now, we have

τ ◦ β(CZ2(x∗))
∩

τ ◦ β(Aϵ3\A0) = ∅.

By decreasing ϵ3 if necessary, we may assume that

{x : |x− x∗| ≤ ϵ3} ⊂ π(A0).

Since both the sets τ ◦ β(CZ2(x∗)) and τ ◦ β(Aϵ3\A0) are compact in S∗
−Γ, we can find

α ∈ C∞
0 (S∗

−Γ) as desired. This concludes the proof of the lemma.

The construction of α above completes the first stage of the proof of Theorem 6.2.1,

we are now at the second stage. We define the truncated geodesic X-ray transform Iαf

as in (6.10) or (6.11). By replacing the weight Φ with the new one α♯ ·Φ, we obtain Nα,

N1,α and N2,α from the corresponding formulas of N, N1 and N2. It is clear that Lemma

6.3.2, 6.3.3 still hold with the new weight.

Lemma 6.6.2. There exist a neighborhood U(x∗) of x∗ and a smoothing operator R from

E ′(Ω,R2d) into C∞(U(x∗),R2d), such that for for any s ∈ R and any neighborhood U0(x∗)

of x∗ with U0(x∗) b U(x∗), the following estimate holds

∥f∥
Hs(U0(x∗),R2d)

. ∥N1,αf∥Hs+1(U(x∗),R2d)
+ ∥Rf∥

Hs(Ω,R2d). (6.23)

Proof. We first show that N1,α is an elliptic ΨDO. Indeed, as in Lemma 6.3.1, N1,α
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is a ΨDO of order −1 from C∞
0 (Ũ(x∗),R2d) to D′(Ũ(x∗),R2d) with principle symbol

σp(N1)(x, ξ) = 2π ·
∫
S∗xΩ

δ(⟨ξ, θ⟩)|α♯(x∗, θ)|2Φ†(x, θ) · Φ(x, θ) dσx(θ).

By the construction of α, for any ξ ∈ S∗
x∗R

d, we have α♯(x∗, θ) = 1 for some θ ∈ S∗
x∗R

d

with θ ⊥ ξ. Thus

σp(N1,α)(x∗, ξ) = 2π ·
∫
θ∈S∗x∗R

d, θ⊥ξ
|α♯(x∗, θ)|2Φ†(x∗, θ) · Φ(x∗, θ) dσx∗(θ) > 0

in the sense of symmetric positive definite matrix. By continuity, we can find a neighbor-

hood U(x∗) ⊂ Ũ(x∗) of x∗ such that σp(N1,α)(x, ξ) > 0 for all x ∈ U(x∗) and ξ ∈ S∗
xRd.

Thus we can conclude that N1,α is an elliptic ΨDO of order −1 from C∞
0 (U(x∗),R2d) to

D′(U(x∗),R2d).

Now, let B be the pseudo-inverse of N1,α restricted to U(x∗). Then B is ΨDO of

order 1 and there is a smoothing operator R1 : E ′(U(x∗),R2d) → C∞(U(x∗),R2d) such

that

g = B ◦N1,αg +R1g (6.24)

for all g supported in U(x∗).

Next, let U0(x∗) be any given neighborhood of x∗ with U0(x∗) b U(x∗). For later

convenience, we write U3(x∗) for U(x∗). Then there exist two neighborhoods of x∗, say

U1(x∗) and U2(x∗) such that U0(x1) b U1(x∗) b U2(x∗) b U3(x∗). We choose three

smooth cut-off functions χ0, χ1 and χ2 such that suppχj ⊂ Uj+1 and χj |Uj = 1 for

j = 0, 1, 2. Then both χ0B(1− χ1) and χ1N1,α(1− χ2) are smoothing operators.

66



Note that χ2f is compact supported in U3(x∗), so we have by (6.24) that

χ2f = B ◦N1,α(χ2f) +R1(χ2f).

Thus,

χ0f = χ0 · χ2f = χ0 ·B ◦N1,αχ2f + χ0R1(χ2f)

= χ0Bχ1N1,αχ2 · f +
(
χ0B(1− χ1)N1,αχ2 + χ0R1χ2

)
f

= χ0Bχ1N1,αf +
(
χ0Bχ1N1,α(1− χ2) + χ0B(1− χ1)N1,αχ2 + χ0R1χ2

)
f

= χ0Bχ1N1,αf +Rf

where R = χ0Bχ1N1,α(1− χ2) + χ0B(1− χ1)N1,αχ2 + χ0R1χ2. We can check that R

is a smoothing operator from E ′(Ω,R2d) to C∞(U(x∗),R2d).

Finally, we conclude that

∥f∥
Hs(U0(x∗),R2d)

. ∥χ0Bχ1N1,αf∥Hs(U0(x∗),R2d)
+ ∥Rf∥

Hs(U0(x∗),R2d)

. ∥Bχ1N1,αf∥Hs(U3(x∗),R2d)
+ ∥Rf∥

Hs(U0(x∗),R2d)

. ∥χ1 ·N1,αf∥Hs+1(U3(x∗),R2d)
+ ∥Rf∥

Hs(U0(x∗),R2d)

. ∥N1,αf∥Hs+1(U3(x∗),R2d)
+ ∥Rf∥

Hs(U0(x∗),R2d)
.

This completes the proof of the Lemma.

We now study the operator N2,α.

Lemma 6.6.3. There exists a small neighborhood of x∗, say U(x∗), such that the following
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decomposition holds for the operator N2,α : E ′(Ω,R2d) → D′(U(x∗),R2d)

N2,α =
M∑
j=1

N2,j (6.25)

where each N2,j is compact from Hs(Ω0,R2d) to Hs+1(U(x∗),R2d).

Proof. Recall that N2,α has the following representation

N2,αf(x) =

∫
T∗xΩ

Wα(x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) · dσx(ξ),

where

Wα(x, ξ) =
1

∥ξ∥d−1
|α ◦ τ ◦ β(x, ξ)|2Φ† ◦ β(x, ξ) · Φ ◦ β ◦ H(x, ξ)

+
1

∥ξ∥d−1
|α ◦ τ ◦ β(x,−ξ)|2Φ† ◦ β(x,−ξ) · Φ ◦ β ◦ H−1(x,−ξ).

By (6.22) and the fact that A0 is symmetric, we see that supp Wα ⊂ A0 for all x with

|x− x∗| ≤ ϵ3.

Now, let χj ’s be as in the first stage. Define N2,j : E ′(Ω,R2d) → D′(U(x∗, ξj),R2d)

by

N2,jf(x) =

∫
T∗xΩ

Wα(x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) · χj(x, ξ) dσx(ξ).

Let U(x∗) =
∩M
j=1(U(x∗, ξj))

∩
{x : |x− x∗| < ϵ3}. Then U(x∗) is a neighborhood of

x∗ and each N2,j is compact from Hs(Ω0,R2d) into Hs+1(U(x∗),R2d).

We claim that N2,α =
∑M

j=1N2,j when both sides are viewed as operators from

E ′(Ω,R2d) to D′(U(x∗),R2d). Indeed, for any f ∈ C∞
0 (Ω,R2d), since

∑M
j=1 χj = 1 on
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A0 and supp Wα ⊂ A0, we have

Wα(x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) = Wα(x, ξ)f(ϕ(x, ξ))(1− χ∗(∥ξ∥)) ·
( M∑
j=1

χj(x, ξ)
)

for all x ∈ U(x∗). Thus N2,αf =
∑M

j=1N2,jf and the claim follows. This completes the

proof of the lemma.

Finally, note that Nα = N1,α +N2,α. Theorem 6.2.1 follows from Lemma 6.6.2 and

6.6.3.

6.7 Proof of Theorem 6.2.2

Proof of Theorem 6.2.2: Step 1. We show that (6.13) holds. For each x ∈ Ω0, by

Theorem 6.2.1, there exist neighborhoods U(x) b Ũ(x∗) of x and a smooth function

α ∈ C∞
0 (S∗

−Γ) such that the estimate (5.13) holds. Since Ω0 is compact, we can find

finite number of points, say x1, x2, ... xN , such that Ω0 ⊂
∪M
j=1 U(xj) and the following

estimate holds for each j:

∥f∥
L2(U(xj))

.
N∑
j=1

∥Nαjf∥H1(Ũ(xj))
+ ∥N2,αj

f∥
H1(U(xj),R2d)

+ ∥Rjf∥L2(U(xj),R2d)

where f ∈ L2(Ω) has support in Ω0. The estimate (6.13) follows by observing that

∥f∥
L2(Ω)

≤
∑N

j=1 ∥f∥L2(U(xj))
.

Step 2. From now on, we show that the second part of the theorem holds. Denote by
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H the Hilbert space
∏M

j=1H
1(U(xj),R2d). We consider the following three operators

Tf = (Nα1f,Nα2f, ...,NαM
f),

T1f = (N2,α1
f,N2,α2

f, ...,N2,αM
f),

T2f = (Rα1f,Rα2f, ...,RαM
f).

It is clear that all three operators are bounded from L2(Ω0) to H. Moreover, T1 and T2

are also compact and the following estimate holds

∥f∥
L2(Ω,R2d) . ∥Tf∥H + ∥T1f∥H + ∥T2f∥H . (6.26)

Step 3. Let L0 ⊂ L2(Ω0,R2d) ⊂ L2(Ω,R2d) be the kernel of T . We claim that

L0 ⊂ L2(Ω0,R2d) is of finite dimension. We prove by contradiction. Assume the contrary,

then there exists an infinity number of orthogonal vectors in L0 ⊂ L2(Ω0,R2d), say, e1,

e2, ..., such that ∥ej∥L2(Ω0,R2d)
= 1 and Tej = 0 for all j ∈ N. Since the sequence

{ej}∞j=1 is bounded in L2(Ω0,R2d) and the operators T1 and T2 are compact, we can

find a subsequence, still denoted by {ej}∞j=1, such that both the sequences {T1ej}∞j=1

and {T2ej}∞j=1 are Cauchy in H. By applying Inequality (6.26) to the vectors ei − ej

and recall that T (ei − ej) = 0, we conclude that the sequence {ej}∞j=1 is also Cauchy in

L2(Ω0,R2d). This contradicts to the fact that ∥ei − ej∥L2(Ω0,R2d)
> 1 for all i ̸= j. This

contradiction proves the claim.
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Step 4. We claim that

∥f∥
L2(Ω0,R2d)

. ∥Tf∥H for all f ∈ L⊥
0 . (6.27)

Indeed, assume the contrary, there exists a sequence {fn}∞n=1 ⊂ L⊥ such that

∥fn∥L2(Ω0,R2d)
= 1, and ∥Tfn∥H ≤ 1

n
for all n.

By the same argument as in Step 3, we can find a subsequence, still denoted by {ej}∞j=1,

such that both the sequences {T1ej}∞j=1 and {T2ej}∞j=1 are Cauchy in H. By Inequality

(6.26) and the fact that ∥Tfn∥H ≤ 1
n , we can conclude that {fn}∞n=1 is also Cauchy in

L2(Ω0,R2d). Let f0 = limn→∞ fn, then ∥Tf0∥H = limn→∞ ∥Tfn∥H = 0. This implies

that f0 ∈ L0. However, note that L⊥
0 is closed, as the limit of a sequence of functions in

L⊥
0 , f0 must belong to L⊥

0 . Therefore, we see that f0 = 0. But this contradicts to the

fact that ∥f0∥L2(Ω0,R2d)
= limn→∞ ∥fn∥L2(Ω0,R2d)

= 1. The claim is proved, whence

the estimate (6.14) follows.
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Chapter 7

Stability of of recovering velocity

fields from their induced

Hamiltonian flows

We investigate the stability of the inverse problem of recovering velocity fields from

their induced Hamiltonian flows.

Let c be the smooth background velocity field and let c̃ be a perturbation. We require

that c̃ is in the admissible class of velocity fields. Denote by X the X-ray transform

operator obtained from linearizing the map which associate velocity fields to their induced

Hamiltonian flows, More precisely, X =
δHT

c
δb , where b(x) = −1

2∇ ln c2. It is clear that

(see section 6.1)

Xf(x0, ξ0) = Φ−1(T, x0, ξ0) · I(f)(x0, ξ0). (7.1)

We recall the following result on the linearization.

Lemma 7.0.1. The following estimate holds

∥HT (c̃)−HT (c)− Xf∥
C1(S−∂M)

. ∥f∥2
C2(Ω)

. (7.2)
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where f is defined as in (6.5).

Theorem 7.0.1. Let d = 3. Let c be a fold-regular admissible velocity field. Then there

exist ϵ > 0, a finite dimensional subspace L ⊂ L2(Ω,R3), and a finite number of smooth

functions αj ∈ C∞(S−∂Ω), j = 1, 2, ...N , such that the following estimate holds

∥c̃2 − c2∥
H1(Ω)

.
N∑
j=1

∥α̂j(HT (c̃)−HT (c))∥
H1(S−∂Ω)

, (7.3)

for all c̃ satisfying ∥c̃− c∥
H9(Ω)

≤ ϵ and ∇(ln c2 − ln c̃2) ⊥ L.

Proof. Let f be as in (6.5). Denote by L the projection of L0 from L2(Ω,R6) to the

space L2(Ω,R3) by taking the last three components. Note that the first three components

of f are zero. Thus the condition ∇(ln c2 − ln c̃2) ⊥ L implies that f ∈ L⊥
0 . Therefore

∥f∥
L2

.
N∑
j=1

∥Nαjf∥H1(U(xj))
(by Theorem 6.2.2)

.
N∑
j=1

∥Iαjf∥H1(S−Γ)
(by the result that I† is bounded from H1 to H1)

.
N∑
j=1

∥Xαjf∥H1(S−Γ)
(by (7.1))

.
N∑
j=1

∥HT (c̃)−HT (c)∥αjf∥H1(S−Γ)
+ ∥f∥2

C2(Ω)
(by lemma 7.0.1)

.
N∑
j=1

∥αj(HT (c̃)−HT (c))∥
H1(S−Γ)

+ ∥f∥
L2(Ω)

· ∥f∥
H8(Ω)

.

(by interpolation inequality)
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By choosing ϵ to be sufficiently small, we can show that

∥f∥
L2

.
N∑
j=1

∥αj(HT (c̃)−HT (c))∥
H1(S−Γ)

.

Using the formula for f , we obtain

∥ ln c2 − ln c̃2∥
H1 .

N∑
j=1

∥αj(HT (c̃)−HT (c))∥
H1(S−Γ)

.

Finally, note that

c̃2 − c2 = c2 · (eln c̃
2−ln c2 − 1).

The estimate (7.3) follows. This completes the proof of the theorem.

Remark 7.0.1. Similar result also holds for d ≥ 3.
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Chapter 8

Sensitivity of recovering velocity

fields from their induced DDtN maps

In this chapter, we investigate the sensitivity of the inverse problem of recovering

velocity fields from their induced DDtN maps. We first present a lemma which is a direct

consequence of Theorem 5.2.1 and Lemma 6.1.3.

Lemma 8.0.2. Let c and c̃ be two velocity field in A(ϵ0,Ω,M0, T ), and let f be as in

(6.5). Then there exists δ > 0 such that if ∥Λc̃ − Λc∥H1
0 [0,3ϵ1/4]×Γ→L2([0,T+ϵ1]×Γ)

≤ δ,

then

∥If∥
L∞(S∗−Γ,R2d) ≤ C∥f∥2

C1(Ω,R2d)
(8.1)

for constant C > 0 depending M0.

Definition 8.0.1. An admissible velocity field c is called fold-regular if all points in Ω

are fold-regular with respect to the Hamiltonian flow Ht
c.

We have established the following sensitivity result. For simplicity we only consider

the case d = 3, similar results also hold for d > 3.

Theorem 8.0.2. Let c and c̃ be two velocity fields in the class A(ϵ0,Ω,M0, T ). Assume

that the velocity field c is smooth and is fold-regular. Then there exist a finite dimensional
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subspace L ⊂ L2(Ω0,R3), and a constant δ > 0 such that for all c̃ sufficiently close to c in

H
17
2 (Ω) and satisfying ∇(ln c2 − ln c̃2) ⊥ L, ∥Λc̃ − Λc∥H1

0 [0,3ϵ1/4]×Γ→L2([0,T+ϵ1]×Γ)
≤ δ

implies that c = c̃.

Proof. The proof is divided into the following three steps.

Step 1. Let L0 be defined as in Let Theorem 6.2.2. Let f be as in (6.5). Assume that

f ⊥ L0. By Theorem 6.2.2, there exist U(xj) ⊂ Ω, αj ∈ C∞
0 (S−∂Ω), j = 1, 2...N such

that the following estimate holds

∥f∥
L2(Ω)

.
N∑
j=1

∥Nαjf∥H1(U(xj))
. (8.2)

Step 2. We show that

N∑
j=1

∥Nαjf∥H1(U(xj))
. ∥f∥

2
5

H
15
2 (Ω,R2d)

· ∥f∥
L2(Ω,R2d). (8.3)

Indeed, for each Iαj , by Lemma 8.0.2, we have ∥Iαjf∥L∞(S∗−Γ) ≤ C1∥f∥2C1 . Apply I
†
αj

to both sides and use the fact that I
†
αj

is bounded from L2 to L2(see [45]), we obtain

∥Nαjf∥L2(Ω,R2d) . ∥f∥2
C1(Ω,R2d)

. (8.4)
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Then,

∥Nαjf∥H1(U(xj),R2d)
. ∥Nαjf∥

1
3
H3(U(xj),R2d)

· ∥Nαf∥
2
3
L2(Ω,R2d)

(by interpolation inequality)

. ∥Nαjf∥
1
3
H3(U(xj),R2d)

· ∥f∥
4
3
C1(Ω,R2d)

(by (8.4))

. ∥f∥
1
3
H3(Ω,R2d)

· ∥f∥
4
3
C1(Ω,R2d)

(by Lemma 6.6.2, 6.6.3)

. ∥f∥
1
3
H3(Ω,R2d)

· ∥f∥
4
3
H3(Ω,R2d)

(by interpolation inequality)

= ∥f∥
5
3
H3(Ω,R2d)

. ∥f∥
2
5

H
15
2 (Ω,R2d)

· ∥f∥
L2(Ω,R2d). (by interpolation inequality)

It follows that (8.3) holds.

Step 3. Denote by L the projection of L0 from L2(Ω,R2d) to the space L2(Ω,Rd) by

taking the last three components. Note that the first three components of f are zero,

see (6.5). Thus the condition ∇(ln c2 − ln c̃2) ⊥ L implies that f ∈ L⊥
0 . Consequently,

Inequality (8.2) holds. Combining this with (8.3), we see that

∥f∥
L2(Ω,R2d) . ∥f∥

2
5

H
15
2 (Ω,R2d)

· ∥f∥
L2(Ω,R2d).

Therefore, we must have f = 0 for ∥f∥
2
5

H
15
2 (Ω,R2d)

sufficiently small. Finally, note that

∥f∥
H

15
2 (Ω,R2d)

. ∥c − c̃∥
H

17
2 (Ω)

and that both c and c̃ vanishes near the boundary, we

conclude that f = 0 implies c = c̃. This completes the proof of the theorem.
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