2,3,7,8-TETRACHLORODIBENZO-ρ-DIOXIN (TCDD)-ELICITED STEATOSIS: THE ROLE OF ARYL HYDROCARBON RECEPTOR (AHR) IN LIPID UPTAKE, METABOLISM, AND TRANSPORT IN SCD1*/-, AND C57BL/6 MICE

Ву

Michelle Manente Angrish

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Genetics - Environmental Toxicology

2012

ABSTRACT

TCDD-ELICITED STEATOSIS: THE ROLE OF AHR IN LIPID UPTAKE, METABOLISM AND TRANSPORT IN $SCD1^{+/+}$, $SCD1^{-/-}$, AND C57BL/6 MICE

Ву

Michelle Manente Angrish

Metabolic syndrome (MetS) and its associated disorders such as obesity, type II diabetes, non-alcoholic fatty liver disease (NAFLD), and hypertension are epidemic in Western countries including the United States. Conventional thought holds excess energy consumption accountable for MetS phenotypes, and although Western diet and culture is characterized by too many calories consumed and too few calories burned, environmental endocrine disrupting chemicals (EDCs) have emerged into the spotlight for their role in positive energy balance. Dioxin-like compounds (DLCs) including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are environmentally ubiquitous and persistent EDCs that alter energy balance and lipid metabolism in animals and humans. TCDD elicited hepatic steatosis involves aryl hydrocarbon receptor (AhR) activation and is marked by increased triglycerides, free fatty acids, inflammatory cell infiltration, and increased serum alanine aminotransferase levels. Hepatic steatosis in the absence of alcohol consumption is a cryptic, yet significant manifestation of MetS and its associated diseases and may precede cirrhosis as well as other extrahepatic effects. Stearoyl-CoA desaturase 1 (Scd1) catalyzes the rate-limiting step in monounsaturated fatty acid (MUFA) biosynthesis. Its deficiency protects mice from diet-induced steatosis, and the enzyme is a target for the treatment of metabolic related disorders. In this report the role of AhR regulation of lipid uptake,

metabolism, and transport in TCDD-elicited steatosis was characterized using *Scd1* null mice, diet, and ¹⁴C-lipid uptake studies. Collectively, these studies showed that 1) AhR regulation of Scd1 contributes to the hepatotoxicity of TCDD, 2) dietary fat is the primary source of lipid in TCDD-elicited steatosis, 3) TCDD increases the uptake of dietary lipids, and 4) AhR mediates not only altered hepatic lipid composition, but also systemic lipid composition. This work indicates that AhR activation results in a systemic response that involves coordinated interactions between the digestive tract, circulatory system, and liver, with important health implications for individuals at risk for metabolic disease.

FAMILY

It is impossible to express in words my gratitude and love for you and your unyielding, everlasting, and unconditional support and love.

ACKNOWLEDGMENTS

Dr. Anna Kopec, a friend and colleague, you were essential to my success in grad school. You uniquely, unyieldingly, understandingly, (and maybe even unknowingly) offered me a pillar of support throughout my graduate career that I am forever grateful.

Dr. Barb Sears, thank you for believing, comforting, and mentoring me. I wouldn't be where I am today without you! Drs. Cindy and Dennis Arvidson same goes for you, I wouldn't be at this place in life without you either.

Dr. Olson, Dr. McCabe, Dr. Arnosti, and Dr. Cheng (my Committee)

Thank you for challenging me. Even though I may not have appreciated it at the time, a humbling experience goes a long way. Thank you for accepting a place on my committee and for pushing me to think as an independent scientist.

To my advisor, Tim Zacharewski, thank you for offering me a place in your lab and your understanding for family matters.

Dr. Jack Harkema, thank you for always making time for me and treating me with respect.

Dr. Ed Dere, I missed you these last two years.

Bryan Mets, wherever you are and whatever you are doing, I wish you well.

Friends, quality matters. Nathan, Christina, Lisa, Tyler, Steve, Alexis, Jenna, Nosh, Julie, Eric, Shanti, and Tony, you are all the best.

Thanks to Girls' night, an essential unwinding occasion.

I would also like to thank Claudia Dominici, Michelle D'Souza, and Dan Wright for technical support and Dr. Anna Kopec, Dr. Edward Dere, Rance Nault, and Agnes Forgacs for critical review.

TABLE OF CONTENTS

LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi
CHAPTER 1	
Review of the Literature: Dioxins, AhR, Liver, and Scd1	
Introduction	
Dioxin and Dioxin-like Compounds: Sources and Toxicity	
Aryl Hydrocarbon Receptor (AhR): Molecular Mechanism and Physiological Function	
Liver: A Metabolic Organ and Dioxin Target	
Stearoyl-CoA Desaturase 1 (Scd1): Role in Lipid Metabolism and Metabolic Disease	
Conclusion	
References	32
CHAPTER 2	45
Rationale, Hypothesis and Specific Aims	45
Rationale	45
Hypothesis	45
Specific Aims	45
References	48
CHAPTER 3	51
Aryl Hydrocarbon Receptor-Mediated Induction of Stearoyl-CoA Desaturase 1	
Hepatic Fatty Acid Composition in TCDD-Elicited Steatosis	
Abstract	
Introduction	52
Materials & Methods	
Results	59
Discussion	78
Appendix A	
References	
CHAPTER 4	101
Dietary Fat is a Lipid Source in 2,3,7,8-Tetrachlorodibenzo-ρ-dioxin (TCDD)-E.	
Hepatic Steatosis in C57BL/6 Mice	
Introduction	
Materials and Methods	
Results	
Discussion	
L10/4001VII	1 1 7

CHAPTER 5	
TCDD-Elicited Effects on Liver, Serum, and Adipose L Mice	
Abstract	
Introduction	
MATERIALS AND METHODS	
Results	
Discussion	
References	
CHAPTER 6	
Conclusions and Future Research	
References	

LIST OF TABLES

Table 1.1. Summary of AhR Alleles Across Mouse Strains 24
Table 3.1. Total Hepatic Lipid Composition (μmol/g) in <i>Scd1</i> ^{+/+} and <i>Scd1</i> ^{-/-} Mice 168 h Post 30 μg/kg TCDD Dose
Table A.1. Putative DRE Sequences 84
Table A.2. Terminal Body Weight, Body Weight Gain, Absolute Liver Weight and Relative Liver Weight for $Scd1^{+/+}$ and $Scd1^{-/-}$ Mice
Table A.3. TCDD Effects on Liver Histopathology in Scd1 Wild-Type and Null Mice 86
Table 4.1. Nutrient and Energy Composition of Custom Diets 104
Table 4.2. Hepatic Lipid Levels in Mice Fed Fat or Carbohydrate Adjusted Diets 168 h Post 30 μg/kg TCDD Dose 108
Table 4.3. DREs and Regions of AhR Enrichment in TCDD Responsive Genes Associated with Lipid and Carbohydrate Transport and Metabolism. 116
Table B.1. Terminal Body Weight, Body Weight Gain, Absolute Liver Weight, and Relative Liver Weight 127
Table B.2. Hepatic Lipid Levels (μmol/g) in Fat Adjusted Diet-Fed Mice 168 h Post 30 μg/kg TCDD Dose 129
Table B.3. Lipid Composition (μmol) in Fat Adjusted (A) and Carbohydrate Adjusted (B) Diets
Table B.4. Hepatic Lipid Levels (μmol/g) in Carbohydrate Adjusted Diet-Fed Mice 168 h Post 30 μg/kg TCDD Dose 133
Table 5.1. Effect of TCDD on Body, Liver, and Parametrial Fat Pad (PFP) Weights 24, 72, and 168 h Post-Dose 148
Table 5.2. Liver, Parametrial Fat Pad, and Serum Total Lipid Content

LIST OF FIGURES

Figure 1.1. Chemical Structures of TCDD and dioxin-like chemicals
Figure 1.2. General schematic representation of AhR (top) and nuclear receptors (bottom) domain organization
Figure 1.3. The ligand-activated AhR signaling pathway
Figure 1.4. The desaturation of fatty acids by stearoyl-CoA desaturase 1 (Scd1)
Figure 3.1. Hepatic lipid composition at 168 h in vehicle and 30 μ g/kg TCDD treated $Scd1^{+/+}$ (Panel A) and $Scd1^{-/-}$ (Panel B) mice.
Figure 3.2. Principal component analysis (PCA) of GC-MS lipid profiles from TCDD (T) or Vehicle (V) treated $Scd1^{+/+}$, $Scd1^{+/-}$, and $Scd1^{-/-}$ mice 24, 72 and 168 h post-dose
Figure 3.3. Scd1 activity (desaturation) index and Correlation with Hepatic Triglyceride Levels.
Figure 3.4. QRTPCR of hepatic lipid transport, modification, and biosynthesis genes in $Scd1^{+/+}$ (+/+) and $Scd1^{-/-}$ (-/-) mice gavaged with 30 µg/kg TCDD or sesame oil vehicle for 24 h 70
Figure 3.5. Scd1 activity, mRNA, and protein levels in $Scd1^{+/+}$ and $Scd1^{-/-}$ mice treated with 30 µg/kg TCDD (T) or sesame seed oil (V) 24 h post-dose
Figure 3.6. Dioxin response element (DRE) distribution and TCDD-inducible AhR enrichment within <i>Scd</i> loci, and band shift assays
Figure A.1. Serum alanine aminotransferase levels in $Scd1+/+$ and $Scd1-/-$ mice treated 168 h with either vehicle or 30 µg/kg TCDD.
Figure A.2. QRTPCR of the TCDD-inducible genes <i>Cyp1a1</i> , <i>Nqo1</i> , and <i>Tiparp</i> in $Scd1^{+/+}$ (+/+) and $Scd1^{-/-}$ (-/-) mice gavaged with 30 µg/kg TCDD or sesame oil vehicle for 24 h
Figure A.3. QRTPCR of <i>Elovl5</i> mRNA (A), Elovl5 band shift assays with putative, functional DREs (B), and DRE distribution and TCDD-inducible AhR enrichment within the <i>Elovl5</i> locus (C).
Figure 4.1. Hepatic absolute and essential fatty levels in mice fed increasing fat or carbohydrate diets treated with sesame oil vehicle (V) or 30 μg/kg TCDD (T) for 168 h
Figure 4.2. Hepatic lipid levels in Scd1 wild-type (wt) and null mice 120 h post-dose with 30 µg/kg TCDD dose

Figure 4.3. AhR-mediated increase in dietary lipid in TCDD elicited hepatic steatosis
Figure B.1. ¹⁴ C levels in Scd1 wild-type (wt) and null mice gavaged with 30 μg/kg TCDD for 120 h (A-C) or 168 h (D)
Figure 5.1. Total fatty acid composition in liver (A), parametrial fat pad (PFP, B), and serum (C) of mice 168 h post 30 μg/kg TCDD or sesame oil vehicle dose
Figure 5.2. The 18:1n9/18:0 desaturation index in liver, serum, and parametrial fat pad (PFP) tissue of mice treated with 30 μ g/kg TCDD or sesame oil vehicle 168 h post-dose 155
Figure 5.3. Serum cholesterol and apolipoprotein b (Apob) 100 and Apob48 levels in Scd1 wild-type mice treated with 30 μ g/kg TCDD or sesame oil vehicle
Figure 5.4. Differential expression of hepatic genes involved in cholesterol metabolism (A-E) and parametrial fat pad genes involved in lipid metabolism and transport (F-J) in mice gavaged with 30 μg/kg TCDD or sesame oil vehicle for 24 h

LIST OF ABBREVIATIONS

AA Arachidonic acid

AhR Aryl hydrocarbon receptor

ALT Alanine aminotransferase

ANOVA Analysis of variance

ARNT Aryl hydrocarbon receptor nuclear translocator

bHLH Basic-helix-loop-helix

BW Body weight

cDNA Complementary deoxyribonucleic acid

CHOL Cholesterol

ChREBP Carbohydrate response element binding protein

CM Chylomicron

COUP-TF Chicken ovalbumin upstream promoter transcription factor

DAG Diacylglycerol

DHA Docosahexaenoic acid

DBD DNA binding domain

DLC Dioxin like chemical

DRE Dioxin response element

EDC Endocrine disrupting compound

EPA Eicosapentaenoic acid

ER Estrogen receptor

FA Fatty acid

FFA Free fatty acid

FAME Fatty acid methyl ester

Foxo1 Forkheadbox transcription factor 1

GC-MS Gas chromatography-mass spectrometry

HDL High-density lipoprotein

HFD High fat diet

HLH Helix-loop-helix

HNF4α Hepatocyte nuclear factor alpha

LDL Low-density lipoprotein

LBD Ligand binding domain

LXR Liver X receptor

MCD Methionine choline deficient

MetS Metabolic syndrome

MSS Matrix similarity score

MUFA Monounsaturated fatty acid

NAFLD Non-alcoholic fatty liver disease

NASH Non-alcoholic steatohepatitis

N/A Not available

NC No change

ND Not detected

NEFA Non-esterified fatty acids

NLS Nuclear localization signal

NR Nuclear receptor

OVX Ovariectomized

PAH Polyaromatic hydrocarbon

PAS Per-Arnt-Sim

PBDF Polybrominated dibenzofuran

PCA Principal component analysis

PCB Polychlorinated biphenyl

PCDD Polychlorinated dibenzo-*p*-dioxin

PCDF Polychlorinated dibenzofuran

Per Period

PGC1 α Peroxisome proliferator activated receptor γ coactivator 1 α

PND Postnatal day

PPARα Peroxisome proliferator activated receptor alpha

PUFA Polyunsaturated fatty acid

PWM Position weight matrix

PVDF Polyvinylidene flouride

PXR Pregnane X receptor

QRTPCR Quantitative real time polymerase chain reaction

RAR Retinoic acid receptor

RLW Relative liver weight

RNA Ribonucleic acid

ROS Reactive oxygen species

RXR Retinoid X receptor

Scd1 Stearoyl-CoA desaturase 1

SDS PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SD Standard deviation

SE Standard error

SFA Saturated fatty acid

Sim Single-minded

TAD Transcriptional activation domain

TAG Triglyceride

TCDD 2,3,7,8-Tetrachlorodibenzo-*p*-dioxin

TEF Toxic equivalency factor

TEQ Toxic equivalents

TFA Total fatty acid

TiPARP TCDD-inducible poly(ADP-ribose) polymerase 7, PARP7

TLC Thin layer chromatography

TR Thyroid receptor

VLDL Very low-density lipoprotein

CHAPTER 1

CHAPTER 1

REVIEW OF THE LITERATURE: DIOXINS, AHR, LIVER, AND SCD1

INTRODUCTION

The AhR is a basic helix-loop-helix (bHLH) Period (Per)/ aryl hydrocarbon receptor nuclear translocator (ARNT)/ single minded (Sim) (PAS) transcription factor family member that mediates a wide-range of species- and tissue-specific effects in response to ligand activation [1]. Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) are the best-characterized high-affinity AhR ligands that are ubiquitously distributed throughout the environment. HAHs describe a family of polychlorinated dibenzo- ρ -dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polybrominated dibenzofurans (PBDFs) and polychlorinated biphenyls (PCBs). PCDD/Fs and PBDFs with chlorine or bromine substitutions in the 2, 3, 7, and 8 positions and PCBs that have four or more coplanar chlorine atoms are termed "dioxin-like chemicals" (DLCs) due to their structural and chemical similarity (Figure 1.1). DLCs elicit common, species- and tissue-specific toxic effects including wasting syndrome, immunotoxicity, reproductive abnormalities, tumor promotion, induction of gene expression, hepatotoxicity, and endocrine disruption [2-4]. Due to their resistance to degradation and lipophilicity, DLCs bioaccumulate in animal fat stores, persist in the environment, and pose a risk to wildlife and human health [5].

Persistent AhR activation significantly alters hepatic function with the potential to negatively affect metabolism and influence the development of metabolic disease. AhR

Figure 1.1. Chemical Structures of TCDD and dioxin-like chemicals.

For interpretation of the references to color in this and all other figures the reader is referred to the electronic version of this dissertation.

2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD)

3,3',4,4',5-pentachlorobiphenyl (PCB126)

2,3,7,8-tetrabromodibenzo-4-dioxin (TBDD)

ligands elicit lipid abnormalities such as fatty liver (steatosis) [6-9] that is also the hepatic manifestation of MetS [10, 11], a term used to describe a group of multi-factorial risk factors that include dyslipidemia, obesity, insulin resistance or type II diabetes, and hypertension [12]. Examination of ligand-activated, AhR-mediated alterations in global lipid uptake, metabolism, and transport can significantly expand our current understanding of AhR physiological function, as well as etiology of metabolic disease.

DIOXIN AND DIOXIN-LIKE COMPOUNDS: SOURCES AND TOXICITY

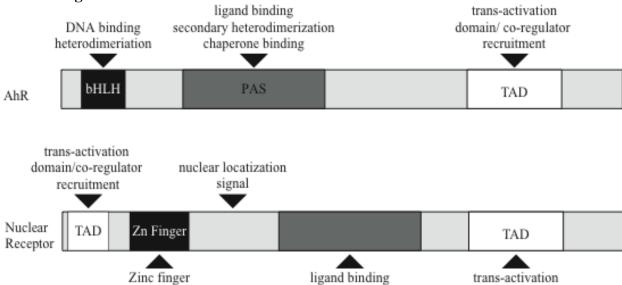
DLCs represent a class of toxic chemicals predominantly produced as by-products of combustion, chemical processes involving chlorine, metals smelting, refining, and process sources, environmental reservoirs, and natural sources such as forest fires and volcanoes [13]. The term dioxin is often used to describe not only TCDD, the most widely studied HAH, but also complex mixtures of TCDD and related chemicals. TCDD is one of the most toxic dioxins with a toxic equivalency factor (TEF) = 1 and therefore used as the reference compound for this class of chemicals. The TEF approach [14, 15] was developed to simplify risk assessment and extrapolate the toxicity of complex dioxin mixtures into a single value expressed as toxic equivalents (TEQs). For the TEF approach, each dioxin-like congener is assigned a TEF by scientific experts based on available data relative to TCDD, ranging from 0.000001 to 1 [16]. The TEFs for each congener in a mixture are multiplied by their respective mass concentration to identify a TEQ representative of a mixture's toxicity.

According to a 2003 draft report, the U.S. Environmental Protection Agency estimated average U.S. adult TEQ intake at 66 pg/day, well above the 2012 EPA non-cancer reassessment reference dose of 0.7 pg/kg/day or 49 pg/day for an average 70 kg adult. Human exposure to

dioxin is primarily through the food supply, mainly consumption of animal fats including meat, fish, and dairy. Dioxins bioaccumulate in animal fat depots and in humans, persist with a half-life of ~7 years [17]. Therefore, although strict industrial regulations have led to a ~90% reduction in nationwide emission over the past 40 years, food safety issues have become an increasing public concern [18].

Numerous human effects documented from direct dioxin contamination incidents have emphasized the clinical impact of dioxin exposure. Cross-sectional and longitudinal studies have evaluated 1) U.S. chemical workers exposed to dioxin after a TCP reactor explosion in West Virginia [19], 2) German BASF employees exposed to TCDD after an uncontrolled reactor decomposition reaction [20], 3) U.S. Air Force Ranch Hand personnel exposed to the herbicide Agent Orange during the Vietnam war [21], 4) residents of communities in Missouri exposed to dioxin contaminated waste oil [22], and 5) residents of Seveso, Italy exposed to industrial emissions caused by an explosion of a trichlorophenol reactor [23, 24]. These studies have linked exposure in adults and children to chloracne [25, 26], impaired immune function [20, 22], impaired nervous system and reproductive development [27], altered liver function [20-22, 28], incidences of dyslipidemia [20, 25, 26, 28], and Type II diabetes [29-31]. The fetus and newborn infants, with rapidly developing organ systems, are subgroups particularly sensitive to dioxin exposure. In particular, Dutch postnatal studies identified an association between maternal exposure and elevated TSH and T4 levels in nursing infants [32] that suggest dioxin exposure modulates the hypothalamic-pituitary-thyroid axis, an essential metabolic regulator.

Recently, environmental contaminants have received increasing attention for their roles in disrupting energy balance and homeostasis [33-36]. In humans, dioxin's metabolic disruptive effects are further highlighted by epidemiological studies that frequently link dioxin exposure to


dyslipidemia, insulin resistance, and cardiovascular abnormalities [30, 37-44]. In rodents, dioxin elicits similar effects [45] including reduced gluconeogenesis [46], inhibited adipogenesis [47], and decreased glucose transport activity *in vitro* [48, 49]. Collectively, these studies emphasize the potential for dioxin exposure to adversely affect human health and strongly imply endocrine-disruption. Considering that the AhR mediates most, if not all effects elicited by dioxin, the receptor has been extensively studied and will be discussed below.

ARYL HYDROCARBON RECEPTOR (AHR): MOLECULAR MECHANISM AND PHYSIOLOGICAL FUNCTION

The AhR is a bHLH-PAS transcription factor that mediates most, if not all, effects elicited by dioxins. The AhR bHLH domain is strictly conserved, allows contact with DNA, and functions as the primary heterodimerization surface [50] (Figure 1.2). The PAS domain serves as a secondary heterodimerization surface that promotes interactions with other PAS protein family members and also functions as a ligand binding domain (LBD) [50-52]. The C-terminal transcriptional activation domain (TAD) is essential for AhR mediated gene transcription and recruits transcriptional co-regulators and other basal transcription machinery [50].

PAS family transcription factors, such as AhR, are structurally and functionally distinct from nuclear receptors (NR). All NR are grouped into a large superfamily of homologous proteins based on their conserved DNA binding domain (DBD) that consists of two highly conserved zinc finger motifs [53]. NRs are classified as either Type I or Type II depending on their ability to homo- or heterodimerize and bind to inverted or direct repeat DNA half sites, respectively. Estrogen receptor (ER) is an example of a Type I NR. Peroxisome proliferator activated receptor (PPAR), retinoid X receptor (RXR), retinoic acid receptor (RAR) and thyroid

Figure 1.2. General schematic representation of AhR (top) and nuclear receptors (bottom) domain organization.

secondary

hetero/homo-

dimerization

domain/co-regulator

recruitment

DNA binding

hetero/homo-dimerization

receptor (TR) are all Type II receptors [53]. The C-terminal conserved LBD contains a ligand-dependent activation domain, which interacts with chaperone proteins and transcriptional coregulators. The N-terminus also contains a transcriptional activation surface that recruits coregulators [53].

Unlike nuclear receptors, the AhR resides in the cytoplasm. The classical mechanism of AhR activation involves ligand diffusion into the cytoplasm where it is bound by the AhR (Figure 1.3). Ligand binding is presumed to induce a conformational change exposing the AhR nuclear localization signal (NLS) and induce dissociation of chaperone proteins hsp90, p23, and XAP2 [54, 55]. The liganded AhR translocates to the nucleus where it forms a heterodimer with ARNT, another member of the bHLH-PAS family. This high-affinity AhR:ARNT heterodimer binds specific DNA recognition sites with the invariant core sequence GCGTG that are termed dioxin response elements (DREs) [56, 57]. AhR:ARNT DNA binding leads to chromatin remodeling, transcriptional co-activator recruitment, and altered rates of gene transcription [54, 58]. *Cytochrome P450 1a1* and *1a2* are the best characterized and prototypical AhR activated genes whose transcriptional activation is often used as litmus test for AhR induction and ligand potency [3, 59-62]. AhR:ARNT-dependent gene transcription terminates after heterodimer dissociation from the DRE followed by ubiquitin-mediated 26S proteasome pathway AhR degradation [63].

Accumulating evidence indicate a polymorphic cytochrome P450 response to TCDD toxicity across species that is dependent on AhR binding affinities [64]. Specifically, inbred mouse strains have inter-individual genetic susceptibility to dioxin toxicity due to four distinct Ahr alleles $(Ahr^{b1}, Ahr^{b2}, Ahr^{b3}, and Ahr^d$, Table 1.1) with 10-20-fold differences in ligand binding affinity that renders them either responsive (b alleles, $K_d \le 1$ nM) or unresponsive d

Figure 1.3. The ligand-activated AhR signaling pathway.

Ligand passively diffuses into the cell and is bound by the aryl hydrocarbon receptor (AhR). Ligand binding induces a conformational change leading to dissociation of chaperone proteins (hsp90, p23, and XAP2) and exposing the AhR nuclear localization signal. The liganded AhR translocates to the nucleus and heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT). The AhR:ARNT heterodimer binds to dioxin response elements (DRE) located in the promoters of target genes to activate gene transcription.

Table 1.1. Summary of AhR Alleles Across Mouse Strains

AhR Allele	AhR ^d	AhR ^{b1}	AhR ^{b2}	AhR ^{b3}	Unknown
Affinity for TCDD	Low	High	High	High	
Strain	AKR/J	MA/MyJ	A/J	MOLF/Ei	SM/J
	DBA/2J	C57BL/6J	BALB/cByJ	SPRETUS/Ei	WSB/EiJ
	I/LnJ	C57BLKS/J	C3H/HeJ		RIIIS/J
	LG/J	C57BR/cdJ	CBA/J		FVB/NJ
	LP/J	C57L/J	PERA/EiJ		NOD/LtJ
	NZB/BINJ	C58/J	PL/J		NON/LtJ
	129S1/SvImJ		SEA/GnJ		PWD/PhJ
	SWR/J		BUB/BnJ		
	SJL/J		CE/J		
	CAST/Ei				

Bold – ancestral wild-type derived strains. Data were summarized from Thomas et al., 2002 [66] and the mouse phenome database (http://phenome.jax.org).

Allele ($K_d = 16$ nM) [65-67]. Studies using transgenic mice harboring the b allele have highlighted the importance of the AhR nuclear signaling pathway in mediating the toxicities of dioxins, with a particular focus on TCDD [68, 69]. Transgenic mice carrying mutations in the NLS or DBD are resistant to TCDD toxicity, including hepatic steatosis. However, TCDD-elicited DRE-independent and/or ARNT-independent effects have also been reported [70-72].

Despite generation of the AhR knock-out [73, 74] and transgenic animal models [69, 75], the physiological function of AhR, beyond xenobiotic metabolism and hepatic growth and development, remains elusive. AhR conservation among all vertebrates [76] as well as similar cytochrome P450 up-regulation in fish, rodents, and birds [77, 78] suggests a fundamental role for the AhR. Yet it is unlikely that ancient exposure to POPs (that have been introduced into the environment along with the industrial revolution [79]) provided selective pressure on AhR during vertebrate evolution. No high affinity endogenous AhR ligand has been identified although the AhR is activated by diverse lipophilic endobiotics (indoles, tetrapyrroles, and arachidonic acid metabolites) and naturally derived molecules (vegetable-, fruit-, and tea-derived indoles and flavonoid metabolites) [1, 80]. Collectively, the developmental phenotypes in AhR null mice and AhR evolutionary conservation suggest a role for AhR in cellular physiology other than metabolism of foreign chemicals, although it remains to be elucidated. Nonetheless, AhR ablation is accompanied by several liver defects, a metabolic organ coincidentally targeted by TCDD toxicity.

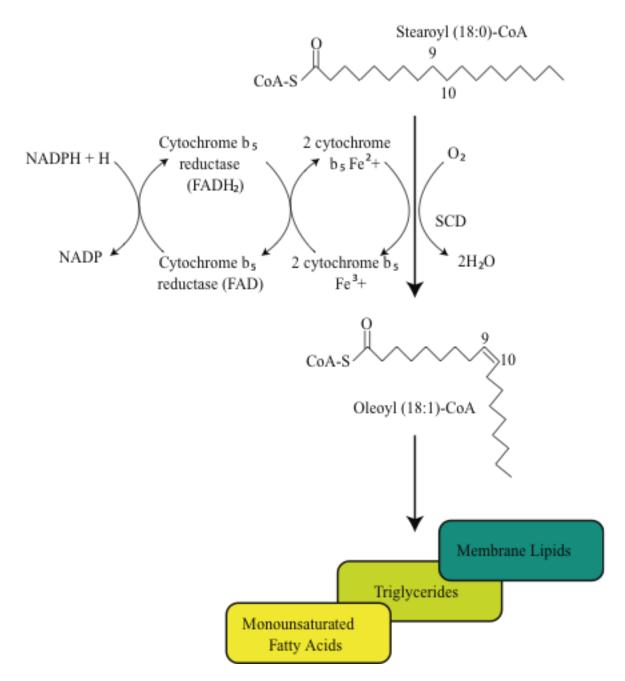
LIVER: A METABOLIC ORGAN AND DIOXIN TARGET

The liver is a primary target of TCDD with steatosis, hepatomegaly, and elevated liver enzymes (alanine aminotransferase and glutathione S-transferase) representing significant

hepatotoxic endpoints [45, 81-84]. Strategically situated between the portal and systemic circulation, the liver, which has first access to absorbed nutrients as well as other exogenous substances, is the site for primary metabolism. The principal function of the liver is to metabolize, detoxify, inactivate, and convert both endogenous and exogenous substance that are either excreted into bile or returned to the systemic circulation [85]. Another important liver function is synthesis and degradation of protein, carbohydrates, and lipids for distribution to extrahepatic tissues depending on energy needs. Finally, the liver regulates whole body cholesterol balance via biliary excretion of cholesterol (CHOL), CHOL conversion to bile acids, and by regulating CHOL synthesis [85]. Consequently, the liver is an essential regulator of whole body metabolism and energy homeostasis that is disrupted by TCDD.

Studies suggest that TCDD exposure in rodents and humans disrupts hepatic energy balance by altering normal anabolic and catabolic pathways. For example, one of the most important metabolic functions performed by the liver is maintenance of blood glucose levels between meals. When insulin levels are high and glucagon levels are low (after a meal), the liver takes-up glucose and either stores it as glycogen or breaks it down into pyruvate. Conversely, when glucose and insulin levels are low and glucagon levels are high, hepatic gluconeogenesis and glycogenolysis prevail [85]. During periods of energy excess, the liver can convert glucose into fatty acids (FAs) that are esterified into triglycerides (TAGs). TAGs are either stored or packaged with cholesterol and apolipoprotein b100 into very low-density lipoproteins (VLDL) for export into the blood. TAGs within circulating VLDL are hydrolyzed by circulating lipases that release FA for peripheral tissue (primarily muscle and adipose) uptake [86]. During periods of negative energy balance, FAs metabolized by β-oxidation generate acetyl CoA and ketone bodies. Dioxin exposure disrupts liver metabolism by decreasing gluconeogenesis [87], FA and

CHOL synthesis [88, 89], and mitochondrial beta-oxidation [9, 90], while promoting hepatic steatosis [6, 7, 91-93] regardless of the hepatic energy state. These effects collectively net altered energy balance with implications for global metabolic disruption.


Importantly, TCDD-elicited steatosis and lipid abnormalities are also observed in humans [8]. Hepatic steatosis in the absence of alcohol consumption constitutes NAFLD, the hepatic manifestation of MetS, with insulin resistance as the primary pathogenic route [11]. Epidemiological studies have not only linked human dioxin exposure to incidences of steatosis, but also other MetS associated risk factors including dyslipidemia, insulin resistance/diabetes [8, 38, 39, 94, 95], and hyperglycemia [96]. Collectively, these studies in combination with TCDD-dependent alterations in hepatic lipid and glucose metabolism, further suggest TCDD and similar compounds may underlie AhR-mediated alterations in global lipid metabolism and the etiology of metabolic disease.

STEAROYL COA DESATURASE 1 (SCD1): ROLE IN LIPID METABOLISM AND METABOLIC DISEASE

Interestingly, several toxicities elicited by AhR activation, including steatosis and insulin resistance, are common effects observed in Scd1 mouse models [97-99]. Scd1 is an endoplasmic reticulum bound trans-membrane $\Delta 9$ desaturase that catalyzes the rate-limiting step in MUFAs synthesis. MUFAs are critical components of complex lipids including membrane lipids, phospholipids, TAGs, and CHOL esters [100]. Scd1 together with cofactors NADH, b₅ reductase, cytochrome b₅, and oxygen introduce a double bond into fatty acyl-coenzyme A [101] (Figure 1.4). Palmitate (16:0) and stearate (18:0) are the

Figure 1.4. The desaturation of fatty acids by stearoyl-CoA desaturase 1 (Scd1).

The oxidative reaction catalyzed by Scd1 introduces a double bond into the $\Delta 9$ position between carbons 9 and 10. Electrons flow from NADPH to cytochrome b_5 reductase to cytochrome b_5 to activate O_2 that is reduced to H_2O . Steatate is the preferred substrate for Scd1 and desaturated to oleate, a major constituent of monounsaturated fatty acids, triglycerides, and membrane lipids.

preferred substrates for SCD and are desaturated into palmitoleate (16:1n7) and oleate (18:1n9), respectively.

Multiple SCD isoforms have been identified in mice (*Scd1-Scd4*) [102-105] and humans (SCD1 and SCD5) [106-108] and these genes exhibit tissue-specific expression. In mice, *Scd1* and *Scd2* are primarily expressed in liver and adipose, but also other lipogenic tissues. *Scd2* is expressed in neonates, while *Scd1* is the predominant form expressed in adults. Unlike other *Scd* isoforms that confer activity towards stearoyl-CoA [99], *Scd3* exhibits substrate preference for palimtoyl-CoA [109] and is primarily expressed in skin, Harderian gland and preputial gland [105]. *Scd4* is exclusively expressed in heart [102]. Human SCD1 is primarily expressed in adipose and liver and shares ~85% amino acid similarity with *Scd1-Scd4*. SCD5 is unique to primates and abundantly expressed in brain and pancreas [108].

Scd1 is transcriptionally regulated by a variety of nutrients (glucose, fructose, CHOL, polyunsaturated fatty acids (PUFAs)), hormones (insulin, glucagon, thyroid hormone, estrogen) and environmental factors (temperature, light, cadmium) [99, 110, 111] and their cognate transcription factors. Specifically, nutrient sensing by liver X receptor (LXR) [112], sterol regulatory element binding protein-1c (SREBP-1c) [113, 114], carbohydrate response-element binding protein (ChREBP) [115, 116], pregnane -X receptor (PXR) [117, 118] and PPARs [119] positively regulate Scd1 transcription. Scd1 activity is also controlled by post-translational ubiquitin-pathway mediated degradation [120] that is inhibited by PPARα activation [121].

Evidence from knockout and transgenic studies suggests that Scd1, required for TAG, phospholipid, CHOL ester, and VLDL synthesis [122, 123], is important for the development of diet-induced metabolic disorders. Specifically, mice with targeted disruption of the *Scd1* gene are protected from high-fat and high-carbohydrate diet-induced steatosis and obesity [113, 124-126],

and exhibit improved insulin sensitivity [97, 127]. In humans, increased Scd1 expression is associated with insulin resistance [128] and an increased 18:1n9/18:0 plasma ratio (an indirect measure of Scd1 activity) that positively correlates with increased TAGs [129]. Furthermore, several single nucleotide polymorphisms located within intron, exon, and 3'UTR SCD1 genic regions are associated with body fat distribution and insulin sensitivity [130]. Consequently, Scd1 has become a pharmacological target for the treatment of MetS risk factors including obesity and diabetes [97].

CONCLUSION

TCDD and similar chemicals bioaccumulate and persist in the food chain to elicit adverse health effects in humans and animals. Accumulating evidence suggests these chemical effects superimpose upon a Western lifestyle to initiate or exacerbate disruption of energy metabolism [131]. Hepatic steatosis is the consequence of TCDD-mediated AhR activation and also linked with metabolic disease. Hepatic steatosis is a significant complication associated with obesity and other MetS phenotypes [132], such as insulin resistance, however the underlying pathophysiological mechanism in the absence of alcohol consumption remains unknown [133]. Several Scd1 phenotypes (steatosis, increased TAG levels, insulin resistance) overlap with TCDD-elicited toxicities, suggesting plausible interactions between AhR and Scd1 regulation of energy metabolism. Furthermore, the liver performs a pivotal role in nutrient sensing, uptake, and efflux. Therefore AhR regulation of lipid uptake, metabolism, and transport in an Scd1 knockout model may further our understanding of steatosis pathogenesis with important implications for MetS risk factor etiology.

REFERENCES

REFERENCES

- 1. Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B: **Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor.** *Toxicol Sci* 2011, **124:**1-22.
- 2. Denison MS, Heath-Pagliuso S: The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. *Bull Environ Contam Toxicol* 1998, **61:**557-568.
- 3. DeVito MJ, Birnbaum LS: **The importance of pharmacokinetics in determining the relative potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran.** Fundam Appl Toxicol 1995, **24:**145-148.
- 4. Safe S: Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 1990, 21:51-88.
- 5. Swedenborg E, Ruegg J, Makela S, Pongratz I: **Endocrine disruptive chemicals:** mechanisms of action and involvement in metabolic disorders. *J Mol Endocrinol* 2009, **43:**1-10.
- 6. Boverhof DR, Burgoon LD, Tashiro C, Chittim B, Harkema JR, Jump DB, Zacharewski TR: Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-Mediated hepatotoxicity. *Toxicol Sci* 2005, **85:**1048-1063.
- 7. Kopec AK, Boverhof DR, Burgoon LD, Ibrahim-Aibo D, Harkema JR, Tashiro C, Chittim B, Zacharewski TR: Comparative toxicogenomic examination of the hepatic effects of PCB126 and TCDD in immature, ovariectomized C57BL/6 mice. *Toxicol Sci* 2008, 102:61-75.
- 8. Lee CC, Yao YJ, Chen HL, Guo YL, Su HJ: **Fatty liver and hepatic function for residents with markedly high serum PCDD/Fs levels in Taiwan.** *J Toxicol Environ Health A* 2006, **69:**367-380.
- 9. Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, Xie W: A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. *Gastroenterology* 2010, **139**:653-663.

- 10. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ: **Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.** *J Clin Invest* 2005, **115**:1343-1351.
- 11. Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Jarvinen H, Svegliati-Baroni G: From the metabolic syndrome to NAFLD or vice versa? *Dig Liver Dis*, **42:**320-330.
- 12. Olufadi R, Byrne CD: Clinical and laboratory diagnosis of the metabolic syndrome. *J Clin Pathol* 2008, **61:**697-706.
- 13. U.S. Environmental Protection Agency W, DC, EPA/600/P-03/002F.: U.S. EPA. An Inventory of Sources and Environmental Releases of Dioxin-Like Compounds in the U.S. for the Years 1987, 1995, and 2000 (Final, Nov 2006). (EPA US ed. Washington, DC.
- 14. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM: Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. *Endocrinology* 2007, **148:**116-127.
- 15. Vandenberg LN, Wadia PR, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM: The mammary gland response to estradiol: monotonic at the cellular level, non-monotonic at the tissue-level of organization? *J Steroid Biochem Mol Biol* 2006, 101:263-274.
- 16. EPA U: Human Health Risks: Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. (EPA US ed. Washington DC; 2010.
- 17. Michalek JE, Pirkle JL, Caudill SP, Tripathi RC, Patterson DG, Jr., Needham LL: **Pharmacokinetics of TCDD in veterans of Operation Ranch Hand: 10-year follow-up.** *J Toxicol Environ Health* 1996, **47:**209-220.
- 18. Committee on the Implications of Dioxin in the Food Supply NRC: *Dioxins and Dioxin-like Compounds in the Food Supply: Strategies to Decrease Exposure*. Washington, D.C.: The National Academies Press; 2003.
- 19. Sweeney A: Reproductive epidemiology of dioxins. Dioxins and health edn; 1994.
- 20. Ott MG, Olson RA, Cook RR, Bond GG: Cohort mortality study of chemical workers with potential exposure to the higher chlorinated dioxins. *J Occup Med* 1987, **29:**422-429.
- 21. Roegner RH, Grubbs WD, Lustik MB, Brockman AS, Henderson SC, Williams DE, W.H. W, Michalek JE, Miner JC: Air Force Health Study: an epidemiologic investigation of health effects in Air Force personnel following exposure to herbicides. Serum dioxin analysis of 1987 examination results. (Medicine USoA ed. Brooks Air Force Base, Texas; 1991.

- 22. Webb KB, Evans RG, Knutsen AP, Roodman ST, Roberts DW, Schramm WF, Gibson BB, Andrews JS, Jr., Needham LL, Patterson DG: Medical evaluation of subjects with known body levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin. *J Toxicol Environ Health* 1989, 28:183-193.
- 23. Biscanti L, Bonetti F, Caramaschi F, al. e: **Experience of the accident of Seveso.** In *Proceedings of the 6th European Teratology Conference; Akademiai Kiado, Pub.*; 1979
- 24. Homberger E, Reggiani G, Sambeth J, al. e: **Seveso accident: its nature, extent and consequences.** In *Report from Givaudan Research Company Ltd and F Hoffmann-La Roche & Co Ltd*; 1979.
- 25. Caramaschi F, del Corno G, Favaretti C, Giambelluca SE, Montesarchio E, Fara GM: Chloracne following environmental contamination by TCDD in Seveso, Italy. *Int J Epidemiol* 1981, **10**:135-143.
- 26. Moses M, Lilis R, Crow KD, Thornton J, Fischbein A, Anderson HA, Selikoff IJ: **Health** status of workers with past exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in the manufacture of 2,4,5-trichlorophenoxyacetic acid: comparison of findings with and without chloracne. *Am J Ind Med* 1984, 5:161-182.
- 27. Wolfe WH, Michalek JE, Miner JC, Rahe AJ, Moore CA, Needham LL, Patterson DG, Jr.: Paternal serum dioxin and reproductive outcomes among veterans of Operation Ranch Hand. *Epidemiology* 1995, **6:**17-22.
- 28. Calvert GM, Willie KK, Sweeney MH, Fingerhut MA, Halperin WE: **Evaluation of serum lipid concentrations among U.S. workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.** *Arch Environ Health* 1996, **51:**100-107.
- 29. Fujiyoshi PT, Michalek JE, Matsumura F: **Molecular epidemiologic evidence for diabetogenic effects of dioxin exposure in U.S. Air force veterans of the Vietnam war.** *Environ Health Perspect* 2006, **114:**1677-1683.
- 30. Kang HK, Dalager NA, Needham LL, Patterson DG, Jr., Lees PS, Yates K, Matanoski GM: **Health status of Army Chemical Corps Vietnam veterans who sprayed defoliant in Vietnam.** *Am J Ind Med* 2006, **49:**875-884.
- 31. Everett CJ, Frithsen IL, Diaz VA, Koopman RJ, Simpson WM, Jr., Mainous AG, 3rd: Association of a polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with diabetes in the 1999-2002 National Health and Nutrition Examination Survey. *Environ Res* 2007, 103:413-418.
- 32. Pluim HJ, Koppe JG, Olie K, Vd Slikke JW, Kok JH, Vulsma T, Van Tijn D, De Vijlder JJ: **Effects of dioxins on thyroid function in newborn babies.** *Lancet* 1992, **339:**1303.
- 33. Baillie-Hamilton PF: Chemical toxins: a hypothesis to explain the global obesity epidemic. *J Altern Complement Med* 2002, **8:**185-192.

- 34. Chen JQ, Brown TR, Russo J: Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. *Biochim Biophys Acta* 2009, 1793:1128-1143.
- 35. Grun F, Blumberg B: **Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling.** *Endocrinology* 2006, **147:**S50-55.
- 36. Grun F, Blumberg B: **Endocrine disrupters as obesogens.** *Mol Cell Endocrinol* 2009, **304:**19-29.
- 37. Calvert GM, Wall DK, Sweeney MH, Fingerhut MA: Evaluation of cardiovascular outcomes among U.S. workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Environ Health Perspect* 1998, **106 Suppl 2:**635-643.
- 38. Cranmer M, Louie S, Kennedy RH, Kern PA, Fonseca VA: Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with hyperinsulinemia and insulin resistance. *Toxicol Sci* 2000, 56:431-436.
- 39. Kern PA, Said S, Jackson WG, Jr., Michalek JE: **Insulin sensitivity following agent orange exposure in Vietnam veterans with high blood levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin.** *J Clin Endocrinol Metab* 2004, **89:**4665-4672.
- 40. Martin JV: Lipid abnormalities in workers exposed to dioxin. *Br J Ind Med* 1984, **41:**254-256.
- 41. Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, Jacobs DR, Jr.: A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care 2006, 29:1638-1644.
- 42. Lee DH, Lee IK, Steffes M, Jacobs DR, Jr.: Extended analyses of the association between serum concentrations of persistent organic pollutants and diabetes. *Diabetes Care* 2007, **30:**1596-1598.
- 43. Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR, Jr.: Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care 2007, 30:622-628.
- 44. Lee DH, Lee IK, Porta M, Steffes M, Jacobs DR, Jr.: Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetologia 2007, 50:1841-1851.
- 45. Pohjanvirta R, Tuomisto J: **Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models.** *Pharmacol Rev* 1994, **46:**483-549.

- 46. Croutch CR, Lebofsky M, Schramm KW, Terranova PF, Rozman KK: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD) alter body weight by decreasing insulin-like growth factor I (IGF-I) signaling. *Toxicol Sci* 2005, 85:560-571.
- 47. Alexander DL, Ganem LG, Fernandez-Salguero P, Gonzalez F, Jefcoate CR: Arylhydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. *J Cell Sci* 1998, 111 (Pt 22):3311-3322.
- 48. Enan E, Liu PC, Matsumura F: **2,3,7,8-Tetrachlorodibenzo-p-dioxin causes reduction** of glucose transporting activities in the plasma membranes of adipose tissue and pancreas from the guinea pig. *J Biol Chem* 1992, **267:**19785-19791.
- 49. Nishiumi S, Yoshida M, Azuma T, Yoshida K, Ashida H: **2,3,7,8-tetrachlorodibenzo-p-dioxin impairs an insulin signaling pathway through the induction of tumor necrosis factor-alpha in adipocytes.** *Toxicol Sci* 2010, **115:**482-491.
- 50. Kewley RJ, Whitelaw ML, Chapman-Smith A: **The mammalian basic helix-loop-helix/PAS family of transcriptional regulators.** *Int J Biochem Cell Biol* 2004, **36:**189-204.
- 51. Gu YZ, Hogenesch JB, Bradfield CA: **The PAS superfamily: sensors of environmental and developmental signals.** *Annu Rev Pharmacol Toxicol* 2000, **40:**519-561.
- 52. Burbach KM, Poland A, Bradfield CA: Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. *Proc Natl Acad Sci U S A* 1992, 89:8185-8189.
- 53. Novac N, Heinzel T: Nuclear receptors: overview and classification. Curr Drug Targets Inflamm Allergy 2004, **3:**335-346.
- 54. Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH: **The aryl hydrocarbon** receptor complex and the control of gene expression. *Crit Rev Eukaryot Gene Expr* 2008, **18:**207-250.
- 55. Hankinson O: **The aryl hydrocarbon receptor complex.** *Annu Rev Pharmacol Toxicol* 1995, **35:**307-340.
- 56. Denison MS, Fisher JM, Whitlock JP, Jr.: **The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis.** *J Biol Chem* 1988, **263:**17221-17224.
- 57. Denison MS, Fisher JM, Whitlock JP, Jr.: **Inducible, receptor-dependent protein-DNA** interactions at a dioxin-responsive transcriptional enhancer. *Proc Natl Acad Sci U S A* 1988, **85**:2528-2532.
- 58. Hankinson O: Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. *Arch Biochem Biophys* 2005, **433:**379-386.

- 59. Chen HL, Su HJ, Wang YJ, Guo YL, Liao PC, Lee CC: Interactive effects between CYP1A1 genotypes and environmental polychlorinated dibenzo-p-dioxins and dibenzofurans exposures on liver function profile. *J Toxicol Environ Health A* 2006, 69:269-281.
- 60. Nukaya M, Bradfield CA: Conserved genomic structure of the Cyp1a1 and Cyp1a2 loci and their dioxin responsive elements cluster. *Biochem Pharmacol* 2009, 77:654-659.
- 61. Van Der Burght AS, Kreikamp AP, Horbach GJ, Seinen W, Van Den Berg M: Characterization of CYP1A in hepatocytes of cynomolgus monkeys (Macaca fascicularis) and induction by different substituted polychlorinated biphenyls (PCBs). Arch Toxicol 1998, 72:630-636.
- 62. Whitlock JP, Jr.: **Induction of cytochrome P4501A1.** *Annu Rev Pharmacol Toxicol* 1999, **39:**103-125.
- 63. Pollenz RS: The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem Biol Interact 2002, 141:41-61.
- 64. Connor KT, Aylward LL: **Human response to dioxin: aryl hydrocarbon receptor** (AhR) molecular structure, function, and dose-response data for enzyme induction indicate an impaired human AhR. *J Toxicol Environ Health B Crit Rev* 2006, **9:**147-171.
- 65. Poland A, Palen D, Glover E: **Analysis of the four alleles of the murine aryl hydrocarbon receptor.** *Mol Pharmacol* 1994, **46:**915-921.
- 66. Okey AB, Vella LM, Harper PA: **Detection and characterization of a low affinity** form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. *Mol Pharmacol* 1989, 35:823-830.
- 67. Thomas RS, Penn SG, Holden K, Bradfield CA, Rank DR: **Sequence variation and phylogenetic history of the mouse Ahr gene.** *Pharmacogenetics* 2002, **12:**151-163.
- 68. Bunger MK, Glover E, Moran SM, Walisser JA, Lahvis GP, Hsu EL, Bradfield CA: Abnormal liver development and resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in mice carrying a mutation in the DNA-binding domain of the aryl hydrocarbon receptor. *Toxicol Sci* 2008, 106:83-92.
- 69. Bunger MK, Moran SM, Glover E, Thomae TL, Lahvis GP, Lin BC, Bradfield CA: Resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor. *J Biol Chem* 2003, 278:17767-17774.

- 70. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR: Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver. *BMC Genomics* 2011, 12:365.
- 71. Murray IA, Morales JL, Flaveny CA, Dinatale BC, Chiaro C, Gowdahalli K, Amin S, Perdew GH: Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. *Mol Pharmacol* 2010, **77:**247-254.
- 72. Tanos R, Patel RD, Murray IA, Smith PB, Patterson AD, Perdew GH: **Ah receptor regulates the cholesterol biosynthetic pathway in a dioxin response element-independent manner.** *Hepatology* 2012.
- 73. Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA: Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. *Proc Natl Acad Sci U S A* 1996, **93**:6731-6736.
- 74. Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ: Arylhydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. *Toxicol Appl Pharmacol* 1996, 140:173-179.
- 75. Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S, Hanberg A, Poellinger L: A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. *Proc Natl Acad Sci U S A* 2002, **99:**9990-9995.
- 76. Hahn ME, Karchner SI, Shapiro MA, Perera SA: Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. *Proc Natl Acad Sci U S A* 1997, **94:**13743-13748.
- 77. Holland PW, Garcia-Fernandez J: **Hox genes and chordate evolution.** *Dev Biol* 1996, **173:**382-395.
- 78. Ruddle FH, Bentley KL, Murtha MT, Risch N: **Gene loss and gain in the evolution of the vertebrates.** *Dev Suppl* 1994:155-161.
- 79. Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, Cristanini G, Tiribelli C: **Prevalence of and risk factors for hepatic steatosis in Northern Italy.** *Ann Intern Med* 2000, **132:**112-117.
- 80. Nguyen LP, Bradfield CA: **The search for endogenous activators of the aryl hydrocarbon receptor.** Chem Res Toxicol 2008, **21:**102-116.
- 81. Gasiewicz TA, Neal RA: **2,3,7,8-Tetrachlorodibenzo-p-dioxin tissue distribution, excretion, and effects on clinical chemical parameters in guinea pigs.** *Toxicol Appl Pharmacol* 1979, **51:**329-339.
- 82. Greig JB, Jones G, Butler WH, Barnes JM: **Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin.** *Food Cosmet Toxicol* 1973, **11:**585-595.

- 83. McConnell EE, Moore JA, Dalgard DW: **Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rhesus monkeys (Macaca mulatta) following a single oral dose.** *Toxicol Appl Pharmacol* 1978, **43:**175-187.
- 84. McConnell EE, Moore JA, Haseman JK, Harris MW: **The comparative toxicity of chlorinated dibenzo-p-dioxins in mice and guinea pigs.** *Toxicol Appl Pharmacol* 1978, **44:**335-356.
- 85. Boron w, Boulpaep E: *Medical Physiology*. 2nd edn: Saunders; 2008.
- 86. Lass A, Zimmermann R, Oberer M, Zechner R: Lipolysis a highly regulated multienzyme complex mediates the catabolism of cellular fat stores. *Prog Lipid Res* 2011, 50:14-27.
- 87. Viluksela M, Unkila M, Pohjanvirta R, Tuomisto JT, Stahl BU, Rozman KK, Tuomisto J: Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on liver phosphoenolpyruvate carboxykinase (PEPCK) activity, glucose homeostasis and plasma amino acid concentrations in the most TCDD-susceptible and the most TCDD-resistant rat strains. *Arch Toxicol* 1999, 73:323-336.
- 88. Lakshman MR, Campbell BS, Chirtel SJ, Ekarohita N: **Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on de novo fatty acid and cholesterol synthesis in the rat.** *Lipids* 1988, **23:9**04-906.
- 89. Lakshman MR, Chirtel SJ, Chambers LL, Coutlakis PJ: **Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on lipid synthesis and lipogenic enzymes in the rat.** *J Pharmacol Exp Ther* 1989, **248:**62-66.
- 90. Lakshman MR, Ghosh P, Chirtel SJ: **Mechanism of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin on intermediary metabolism in the rat.** *J Pharmacol Exp Ther* 1991, **258**:317-319.
- 91. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Burg AR, Lee AW, Tashiro C, Potter D, Sharratt B, Harkema JR, Rowlands JC, et al: **Automated dose-response analysis and comparative toxicogenomic evaluation of the hepatic effects elicited by TCDD, TCDF, and PCB126 in C57BL/6 mice.** *Toxicol Sci* 2010, **118**:286-297.
- 92. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, Sharratt B, Harkema JR, Zacharewski TR: **PCB153-elicited hepatic responses in the immature, ovariectomized C57BL/6 mice: comparative toxicogenomic effects of dioxin and non-dioxin-like ligands.** *Toxicol Appl Pharmacol* 2010, **243:**359-371.
- 93. Kopec AK, D'Souza ML, Mets BD, Burgoon LD, Reese SE, Archer KJ, Potter D, Tashiro C, Sharratt B, Harkema JR, Zacharewski TR: Non-additive hepatic gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) co-treatment in C57BL/6 mice. Toxicol Appl Pharmacol 2011.

- 94. Kerger BD, Leung HW, Scott P, Paustenbach DJ, Needham LL, Patterson DG, Jr., Gerthoux PM, Mocarelli P: **Age- and concentration-dependent elimination half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Seveso children.** *Environ Health Perspect* 2006, **114:**1596-1602.
- 95. Wang SL, Tsai PC, Yang CY, Leon Guo Y: Increased risk of diabetes and polychlorinated biphenyls and dioxins: a 24-year follow-up study of the Yucheng cohort. *Diabetes Care* 2008, 31:1574-1579.
- 96. Kanagawa Y, Matsumoto S, Koike S, Tajima B, Fukiwake N, Shibata S, Uchi H, Furue M, Imamura T: Association of clinical findings in Yusho patients with serum concentrations of polychlorinated biphenyls, polychlorinated quarterphenyls and 2,3,4,7,8-pentachlorodibenzofuran more than 30 years after the poisoning event. Environ Health 2008, 7:47.
- 97. Issandou M, Bouillot A, Brusq JM, Forest MC, Grillot D, Guillard R, Martin S, Michiels C, Sulpice T, Daugan A: **Pharmacological inhibition of Stearoyl-CoA Desaturase 1** improves insulin sensitivity in insulin-resistant rat models. *Eur J Pharmacol* 2009.
- 98. Popeijus HE, Saris WH, Mensink RP: **Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome.** *Int J Obes (Lond)* 2008, **32:**1076-1082.
- 99. Ntambi JM, Miyazaki M: **Regulation of stearoyl-CoA desaturases and role in metabolism.** *Prog Lipid Res* 2004, **43:**91-104.
- 100. Flowers MT, Ntambi JM: Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. *Curr Opin Lipidol* 2008, **19:**248-256.
- 101. Ntambi JM: Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. *J Lipid Res* 1999, **40:**1549-1558.
- 102. Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM, Ntambi JM: Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. *J Biol Chem* 2003, 278:33904-33911.
- 103. Tabor DE, Xia YR, Mehrabian M, Edwards PA, Lusis AJ: A cluster of stearoyl CoA desaturase genes, Scd1 and Scd2, on mouse chromosome 19. *Mamm Genome* 1998, 9:341-342.
- 104. Zheng Y, Eilertsen KJ, Ge L, Zhang L, Sundberg JP, Prouty SM, Stenn KS, Parimoo S: Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. *Nat Genet* 1999, 23:268-270.
- 105. Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S: Scd3--a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. *Genomics* 2001, 71:182-191.

- 106. Zhang S, Yang Y, Shi Y: Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. *Biochem J* 2005, **388**:135-142.
- 107. Zhang L, Ge L, Parimoo S, Stenn K, Prouty SM: **Human stearoyl-CoA desaturase:** alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. *Biochem J* 1999, **340** (**Pt 1**):255-264.
- 108. Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, Cao G: Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. *Biochem Biophys Res Commun* 2005, 332:735-742.
- 109. Miyazaki M, Bruggink SM, Ntambi JM: **Identification of mouse palmitoyl-coenzyme A Delta9-desaturase.** *J Lipid Res* 2006, **47:**700-704.
- 110. Ntambi JM, Miyazaki M: **Recent insights into stearoyl-CoA desaturase-1.** Curr Opin Lipidol 2003, **14:**255-261.
- 111. Ntambi JM, Miyazaki M, Dobrzyn A: **Regulation of stearoyl-CoA desaturase expression.** *Lipids* 2004, **39:**1061-1065.
- 112. Chu K, Miyazaki M, Man WC, Ntambi JM: Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. *Mol Cell Biol* 2006, 26:6786-6798.
- 113. Miyazaki M, Dobrzyn A, Man WC, Chu K, Sampath H, Kim HJ, Ntambi JM: **Stearoyl-CoA** desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. *J Biol Chem* 2004, **279**:25164-25171.
- 114. Biddinger SB, Almind K, Miyazaki M, Kokkotou E, Ntambi JM, Kahn CR: **Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1, and the development of the metabolic syndrome.**Diabetes 2005, **54:**1314-1323.
- 115. Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A, Saez E: **The nuclear receptor LXR is a glucose sensor.** *Nature* 2007, **445:**219-223.
- 116. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K: **Deficiency of carbohydrate** response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. *Proc Natl Acad Sci U S A* 2004, **101**:7281-7286.
- 117. Mitro N, Vargas L, Romeo R, Koder A, Saez E: **T0901317** is a potent **PXR ligand:** implications for the biology ascribed to LXR. FEBS Lett 2007, **581:**1721-1726.

- 118. Zhou J, Zhai Y, Mu Y, Gong H, Uppal H, Toma D, Ren S, Evans RM, Xie W: A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. *J Biol Chem* 2006, **281:**15013-15020.
- 119. Miller CW, Ntambi JM: **Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression.** *Proc Natl Acad Sci U S A* 1996, **93:**9443-9448.
- 120. Kato H, Sakaki K, Mihara K: **Ubiquitin-proteasome-dependent degradation of mammalian ER stearoyl-CoA desaturase.** *J Cell Sci* 2006, **119:**2342-2353.
- 121. Toyama T, Kudo N, Mitsumoto A, Hibino Y, Tsuda T, Kawashima Y: **Stearoyl-CoA** desaturase activity is elevated by the suppression of its degradation by clofibric acid in the liver of rats. *J Pharmacol Sci* 2007, **103**:383-390.
- 122. Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM: **The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1.** *J Biol Chem* 2000, **275**:30132-30138.
- 123. Miyazaki M, Ntambi JM: Role of stearoyl-coenzyme A desaturase in lipid metabolism. *Prostaglandins Leukot Essent Fatty Acids* 2003, **68:**113-121.
- 124. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM: Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. *Cell Metab* 2007, **6:**484-496.
- 125. Miyazaki M, Kim YC, Ntambi JM: A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. *J Lipid Res* 2001, **42:**1018-1024.
- 126. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD: Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. *Proc Natl Acad Sci U S A* 2002, **99:**11482-11486.
- 127. Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP, Ntambi JM, Attie AD: Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. *Diabetes* 2007, **56:**1228-1239.
- Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM: Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. *Cell Metab* 2005, 2:251-261.
- 129. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM: Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. *J Lipid Res* 2002, 43:1899-1907.

- 130. Warensjo E, Ingelsson E, Lundmark P, Lannfelt L, Syvanen AC, Vessby B, Riserus U: Polymorphisms in the SCD1 gene: associations with body fat distribution and insulin sensitivity. Obesity (Silver Spring) 2007, 15:1732-1740.
- 131. Grun F, Blumberg B: **Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis.** Rev Endocr Metab Disord 2007, **8:**161-171.
- 132. Brunt EM: **Pathology of nonalcoholic fatty liver disease.** Nat Rev Gastroenterol Hepatol 2010, **7:**195-203.
- 133. Cheung O, Sanyal AJ: **Recent advances in nonalcoholic fatty liver disease.** *Curr Opin Gastroenterol* 2010,,**26**, 202-208.

CHAPTER 2

CHAPTER 2

RATIONALE, HYPOTHESIS AND SPECIFIC AIMS

RATIONALE

Hepatic steatosis in the absence of alcohol consumption is considered the hepatic manifestation of MetS [1]. Human exposure to TCDD and related compounds have been implicated in the development of MetS [2, 3] and its associated risk factors including insulin resistance [4, 5], hypertriglyceridemia [6-8], and steatosis [9]. In rodents Scd1 performs a critical role in lipid homeostasis and when deleted, protects mice from diet-induced hepatic lipid accumulation and improves insulin sensitivity [10]. TCDD and DLC exposure in mice elicits hepatotoxicity marked by the differential expression of genes involved in lipid metabolism, including Scd1 [11], and increased hepatic vacuolization due to lipid accumulation [11-14]. In summary, these results suggest that AhR-mediated effects on Scd1 regulation, lipid metabolism, and transport may underlie DLC-induced steatosis and other related pathophysiologies.

HYPOTHESIS

TCDD-elicited, AhR mediated steatosis involves Scd1 dependent and independent alterations in lipid uptake, metabolism, and transport.

SPECIFIC AIMS

Specific aim 1 will test the subhypothesis that Scd1 deficiency protects from TCDD-elicited steatosis. AhR regulation of Scd1 and TCDD-induced steatosis in Scd1 wild-type and null mice will be characterized.

Specific aim 2 will test the subhypothesis that diet is the primary source of lipid in TCDD-elicited steatosis. Dietary fat, carbohydrate, and ¹⁴C-oleate will be examined as hepatic lipid sources in TCDD-elicited steatosis.

Specific aim 3 will test the subhypothesis that TCDD not only alters liver lipid composition, but also parametrial adipose and serum lipid composition. TCDD effects on liver, parametrial fat pad (PFP), and serum fatty acid levels and composition will be examined by gas chromatographymass spectrometry (GC-MS). In addition serum lipid profiles (total CHOL, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TAG) and VLDL) will be examined.

REFERENCES

REFERENCES

- 1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr.: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120:1640-1645.
- 2. Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR, Jr.: Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care 2007, 30:622-628.
- 3. Lee DH, Lee IK, Porta M, Steffes M, Jacobs DR, Jr.: Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetologia 2007, 50:1841-1851.
- 4. Cranmer M, Louie S, Kennedy RH, Kern PA, Fonseca VA: Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with hyperinsulinemia and insulin resistance. *Toxicol Sci* 2000, 56:431-436.
- 5. Kang HK, Dalager NA, Needham LL, Patterson DG, Jr., Lees PS, Yates K, Matanoski GM: **Health status of Army Chemical Corps Vietnam veterans who sprayed defoliant in Vietnam.** *Am J Ind Med* 2006, **49:**875-884.
- 6. Calvert GM, Willie KK, Sweeney MH, Fingerhut MA, Halperin WE: **Evaluation of serum lipid concentrations among U.S. workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.** *Arch Environ Health* 1996, **51:**100-107.
- 7. Martin JV: Lipid abnormalities in workers exposed to dioxin. *Br J Ind Med* 1984, **41:**254-256.
- 8. Moses M, Lilis R, Crow KD, Thornton J, Fischbein A, Anderson HA, Selikoff IJ: **Health** status of workers with past exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in the manufacture of 2,4,5-trichlorophenoxyacetic acid: comparison of findings with and without chloracne. *Am J Ind Med* 1984. 5:161-182.

- 9. Lee CC, Yao YJ, Chen HL, Guo YL, Su HJ: **Fatty liver and hepatic function for residents with markedly high serum PCDD/Fs levels in Taiwan.** *J Toxicol Environ Health A* 2006, **69:**367-380.
- 10. Flowers MT, Ntambi JM: Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol 2008, 19:248-256.
- 11. Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, Mendrick DL, Zacharewski TR: Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. *Toxicol Sci* 2006, 94:398-416.
- 12. Kopec AK, Boverhof DR, Burgoon LD, Ibrahim-Aibo D, Harkema JR, Tashiro C, Chittim B, Zacharewski TR: Comparative toxicogenomic examination of the hepatic effects of PCB126 and TCDD in immature, ovariectomized C57BL/6 mice. *Toxicol Sci* 2008, 102:61-75.
- 13. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, Sharratt B, Harkema JR, Zacharewski TR: **PCB153-elicited hepatic responses in the immature, ovariectomized C57BL/6 mice: comparative toxicogenomic effects of dioxin and non-dioxin-like ligands.** *Toxicol Appl Pharmacol* 2010, **243:**359-371.
- 14. Kopec AK, D'Souza ML, Mets BD, Burgoon LD, Reese SE, Archer KJ, Potter D, Tashiro C, Sharratt B, Harkema JR, Zacharewski TR: Non-additive hepatic gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) co-treatment in C57BL/6 mice. Toxicol Appl Pharmacol 2011.

CHAPTER 3

Angrish MM, Jones AD, Harkema JR, Zacharewski TR: **Aryl Hydrocarbon Receptor-Mediated Induction of Stearoyl-CoA Desaturase 1 Alters Hepatic Fatty Acid Composition in TCDD-Elicited Steatosis.** *Toxicol Sci* 2011, **124:**299-310.

CHAPTER 3

ARYL HYDROCARBON RECEPTOR-MEDIATED INDUCTION OF STEAROYL-COA DESATURASE 1 ALTERS HEPATIC FATTY ACID COMPOSITION IN TCDD-ELICITED STEATOSIS

ABSTRACT

TCDD induces hepatic dyslipidemia mediated by the AhR. Scd1 performs the ratelimiting step in MUFA synthesis, desaturating 16:0 and 18:0 into 16:1n7 and 18:1n9, respectively. To further examine the role of Scd1 in TCDD-induced hepatotoxicity, comparative studies were performed in $Scd1^{+/+}$ and $Scd1^{-/-}$ mice treated with 30 µg/kg TCDD. TCDD induced Scd1 activity, protein, and mRNA levels ~2-fold. In Scd1 +/+ mice, hepatic effects were marked by increased vacuolization and inflammation, and a 3.5-fold increase in serum ALT levels. Hepatic TAGs were induced 3.9-fold and lipid profiling by GC-MS measured a 1.9-fold increase in FA levels, consistent with the induction of lipid transport genes. Induction of Scd1 altered FA composition by decreasing saturated fatty acid (SFA) molar ratios 8% and increasing MUFA molar ratios 9%. Furthermore, ChIP-chip analysis revealed AhR enrichment (up to 5.7fold) and computational analysis identified 16 putative functional DREs within Scd1 genomic loci. Band shift assays confirmed AhR binding with select DREs. In Scd1^{-/-} mice, TCDD induced minimal hepatic vacuolization and inflammation, while serum ALT levels remained unchanged. Although Scd1 deficiency attenuated TCDD induced TAG accumulation, overall FA

levels remained unchanged compared to $Scd1^{+/+}$ mice. In $Scd1^{-/-}$ mice, TCDD induced SFA ratios 8%, reduced MUFA ratios 13%, and induced polyunsaturated fatty acid ratios 5% relative to treated $Scd1^{+/+}$ mice. Collectively, these results suggest AhR regulation of Scd1 not only alters lipid composition, but also contributes to the hepatotoxicity of TCDD.

INTRODUCTION

TCDD and related compounds elicit a broad spectrum of biological responses ranging from effects on development to pathologies affecting specific organ functions as well as the immune and nervous system. These effects are mediated by the AhR a cytosolic ligand-activated bHLH PAS family transcription factor [1, 2]. The proposed mechanism involves ligand binding to the cytosolic AhR, leading to dissociation of chaperone proteins and translocation of the AhR to the nucleus [3]. The activated AhR then heterodimerizes with the ARNT [4] to bind DREs located within regulatory regions of target genes [5] recruiting chromatin remodeling complexes and transcriptional co-regulators that modulate gene transcription [6].

Although the range of endogenous functions regulated by the AhR remains uncertain, studies in null mice show it is necessary for proper liver development and mediates the toxicity of TCDD [7-9]. TCDD elicits hepatomegaly [2] and liver pathologies that include hepatocellular neoplasms [10], inflammation, necrosis, steatosis, and the differential expression of lipid metabolism and transport genes in mice [11-14]. DNA binding by AhR is compulsory for TCDD-induced hepatic steatosis [15].

Scd1 catalyzes the rate-limiting step MUFA biosynthesis and is a target for the treatment of metabolic related disorders [16, 17]. Scd1 desaturates palmitate (16:0) and stearate (18:0) into

palmitoleate (16:1n7) and oleate (18:1n9), respectively, which can be metabolized further to other MUFAs and PUFAs, the primary constituents of membrane lipids, triglycerides, phospholipids and cholesterol esters [18, 19]. Dietary, hormonal and environmental factors regulate Scd1 mRNA expression and protein stability, emphasizing the importance of Scd1 in lipid metabolism [18, 20]. Furthermore, Scd1^{-/-} mice are resistant to diet-induced steatosis and exhibit impaired triglyceride synthesis [19, 21]. In humans, the Scd1 activity index (serum ratios of 16:1/16:0 or 18:1/18:0) correlates with hypertriglyceridemia and insulin resistance [22, 23] and is predictive of metabolic syndrome [24]. Furthermore, single nucleotide polymorphisms have been identified in human Scd1 that are associated with obesity and insulin sensitivity [25].

In this study, we examined AhR regulation of Scd1 and TCDD elicited steatosis in $Scd1^{+/+}$ and $Scd1^{-/-}$ mice. Hepatic fatty acid profiling with complementary histopathology, enzyme activity assays, and gene expression were assessed in immature $Scd1^{+/+}$ and $Scd1^{-/-}$ female mice and integrated with AhR ChIP-chip, band shift, and computational data. Our results suggest that the regulation of hepatic lipid transport and metabolism genes by the AhR, including Scd1, is involved in TCDD-induced steatosis in the mouse.

MATERIALS & METHODS

ANIMAL BREEDING AND GENOTYPING

B6.129-Scd1^{tm1Myz}/J heterozygous mice were obtained from the Jackson Laboratory (Ben Harbor, Maine) and bred at the Michigan State University Laboratory Animal Care facility. Mice were maintained on a 12h light/dark cycle and housed in autoclaved polycarbonate cages with microisolator lids containing aspen woodchips and nesting material. Animals were allowed free access to Harlan Teklad irradiated F6 rodent diet 7964 (Madison, WI) and autoclaved

deionized water throughout the study. On postnatal day (PND) 21 mice were genotyped by ear punch and weaned. All procedures were carried out with the approval of the Michigan State University Institutional Animal Care and Use Committee.

IN VIVO TREATMENT

On PND 28 mice were gavaged with 0.1 ml of sesame oil for a nominal dose of 0 (vehicle control) or 30 µg TCDD per kg body weight. The immature mouse was used to facilitate comparisons with other data sets as well as avoid potential interactions with estrogens produced by developed ovaries. Doses were chosen to elicit moderate hepatic effects while avoiding overt toxicity in long term studies. Litters were combined with no more than five animals per cage. Animals were sacrificed at 24, 72 and 168 h post dose. Mice were weighed and blood was collected via submandibular vein puncture before sacrifice. Tissue samples were removed, weighed, flash frozen in liquid nitrogen and stored at -80°C. The right lobe of the liver was fixed in 10% neutral buffer formalin for histological analysis.

HISTOPATHOLOGY AND CLINICAL CHEMISTRY

Fixed liver tissues were processed as previously described [14] at the Michigan State University Investigative Histopathology Laboratory, Division of Human Pathology, using a modified version of previously published procedures [26]. Serum alanine aminotransferase levels (ALT) were measured by the Michigan State University Diagnostic Center for Population and Animal Health Clinical Laboratory.

HEPATIC TRIGLYCERIDE LEVELS

Frozen liver samples (~100 mg) were homogenized (Polytron PT2100, Kinematica) in 1 ml of 1.15% KCl. Triglycerides were extracted from 200 µl of hepatic homogenate with 800 µl of isopropyl alcohol by vortex mixing for 10 min. The samples were centrifuged for 5 min at

800xg at room temperature and the supernatant was collected into separate vials. The concentration of hepatic triglycerides was determined by spectrophotometry from $20~\mu l$ supernatant with a commercial L-Type Triglyceride M kit (Wako Diagnostics, Richmond, VA) with Multi-Calibrator Lipids as a standard (Wako Diagnostics) according to manufacturer's protocol. Final results were normalized to the initial weight of the liver sample.

GC-MS FATTY ACID METHYL ESTER (FAMES) HEPATIC LIPID PROFILING

Liver samples (~100 mg, n=5/group) were homogenized in 40% methanol and acidified with concentrated HCl (~34µL). Lipids were extracted with chloroform: methanol (2:1) containing 1 mM 2,6-di-tert-butyl-4-methylphenol. The organic phase was removed and protein and aqueous phases were re-extracted with chloroform. The organic phases were pooled and solvents evaporated under nitrogen. The samples were resuspended in 3 N non-aqueous methanolic HCl and held at 60°C overnight. The next day samples were cooled to room temperature and 0.9% (w/v) NaCl and hexane was added. The organic phase was separated by centrifugation, collected, dried under nitrogen and resuspended in hexane. Samples were separated and analyzed with an Agilent 6890N GC with a DB23 column (30 meter length, 0.25 mm id, 0.25 µm film thickness) interfaced to an Agilent 5973 MS. 19:1n9 free fatty acid (FFA) and 19:0 TAG were added as extraction efficiency controls and 17:1n1 fatty acid methyl ester was spiked in as a loading control (Nu-chek, Elysian, MN). GC/MS data files were converted to Waters MassLynx file format and were analyzed with MassLynx software and are reported as µmol/g liver tissue or mol%. Fatty acid levels are based upon peak areas from total ion chromatograms and µmol/g is obtained from a linear calculation of a calibration curve normalized to sample weight. Principal component analysis of fatty acid abundance was performed in R V2.6.0.

SCD1 ACTIVITY ASSAY

Scd1 activity assays were performed as previously described [27]. Microsomal fractions were isolated by differential centrifugation, and protein was quantified by using the Bradford assay (BioRad). Assays were performed at 37°C for 30 min with 100 μg microsomal protein, 0.03 μCi ¹⁴C-stearoyl-CoA (ARC 0756, 50-60 mCi/mmol, American Radiolabeled Chemicals, St. Louis, MO) 2 mM NADH, 0.03 mM cold stearoyl-CoA in 0.1 M phosphate buffer at pH 6.8. The reaction was quenched with 2.5 M KOH and saponified at 80°C for 45 min. Fatty acids were acidified with formic acid, extracted with hexane and dried under nitrogen. FAs were resuspended in 50 μL hexane and separated by 100 g/L AgNO₃ impregnated TLC using CHCl₃:MeOH:acetic acid:water (90:8:1:0.8 v/v) as a developing solvent. TLC plates were dried and exposed to autoradiography film, bands scraped into scintillation fluid, and measured by liquid scintillation counting. Scd1 activity is expressed as nmol/(mg protein*min).

WESTERN BLOTTING

Microsomal fractions isolated for activity assays (10 μg each) were separated in a 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel and transferred to a polyvinylidene flouride (PVDF) membrane (Millipore Billerica, MA). Scd1 protein was immunoblotted with an Scd1 antibody (SC-14719; Santa Cruz Biotechnology Santa Cruz, CA). Conventional western blot loading controls such as Gapdh and Actb are cytosolic proteins, and therefore removed during microsome purification. Epoxide hydrolase (Epxh1, ab76226; Abcam, MA) is a microsomal protein and was used as a reference for loading control. Immunoreactive bands were visualized by chemiluminescnce with the Pierce ECL Western blotting substrate (Thermo Scientific Rockford, IL) [21]. Immunoreactive bands were quantified by densitometry (ImageJ) and normalized to the loading control.

AHR CHIP-CHIP AND DRE MOTIF COMPARISONS

The genomic locations of AhR enrichment were previously determined by ChIP-chip from hepatic tissue of immature female ovariectomized C57BL/6 mice orally gavaged with 30 µg/kg TCDD [28]. The genomic locations of the 5'-GCGTG-3' DRE core sequences were previously determined in mouse [29]. The DRE core along with the flanking upstream and downstream 7 bp were compared to a position weight matrix and matrix similarity scores (MSS) were calculated [29]. Regions of AhR enrichment were compared against DRE core sequences across *Scd1*, *Scd2*, *Scd3*, and *Scd4* loci. Associated mouse genomic annotation (mm9) was downloaded from the UCSC Genome Browser [30].

BAND SHIFT ASSAYS

Putative DREs with a MSS > 0.8 located from -10 kb upstream from the *Scd1* transcriptional start site (TSS) were targeted for band shift assays that were performed as previously described [31]. Equimolar complimentary DNA oligonucleotides (Table A.1) were combined and annealed by heating at 95°C for 5 min and cooling to room temperature. The double-stranded DNA oligonucleotide was labeled with T4 polynucleotide kinase (M0201S; New England Biolabs) and [y-32P]ATP (0135001; MP Biomedicals, OH). Each reaction contained 3 μg hepatic guinea pig cytosol extract* mixed with either 20 nM TCDD or an equivalent volume of DMSO and was incubated for 1 hr at room temperature. Guinea pig AhR is readily transformed *in vitro* and binds DREs with high affinity [32]. The activated cytosols were combined with HEDG buffer (25 mM Hepes, pH 7.7/1 mM EDTA/1 mM dithiothreitol/10% glycerol) and 1.7 μg polyd(I-C) (Invitrogen) and incubated at room temperature for an additional 15 minutes. ³²P-labeled double-stranded DNA oligonucleotide (10,000 cpm, 0.1-0.3 ng in HEDG buffer) was added to the pre-incubation mixture and incubated for an additional 15

minutes. For supershift assays, either 1 µg AhR (ab2769; Abcam, MA) or ARNT (SC-5580; Santa Cruz Biotechnology Santa Cruz, CA) antibody was added to the pre-incubation mixture. Samples were resolved by non-denaturing polyacrylamide gel electrophoresis and imaged by autoradiography. In competition experiments unlabeled competitor DNA was added to the pre-incubation mixture at 100-fold molar excess.

RNA ISOLATION

RNA was isolated from frozen liver samples with 1.3 mL TRIzol (Invitrogen) according to the manufacturer's protocol and an additional acid phenol:chloroform extraction as previously described [11]. Total RNA was resuspended in RNA storage solution, quantified by spectrophotometery at A_{260} and quality assessed by gel electrophoresis.

QRTPCR

Quantitative real-time PCR (QRTPCR) of *Scd1*, *Scd2*, *Scd3*, *Scd4*, *Cyp1a1*, *Nqo1*, *Tiparp*, *Elovl5*, *Cd36*, *LdlR*, *Fabp4*, *Vldlr*, *Acaca*, and *Fasn* expression was performed as previously described [11]. The copy number of each sample was standardized to the geometric mean of *Gapdh*, *Hprt*, and *Actb* to control for differences in RNA loading, quality, and cDNA synthesis [33]. Data are reported as the fold change of standardized treated over standardized vehicle.

STATISTICAL ANALYSIS

Data were analyzed by analysis of variance (ANOVA) followed by Tukey's *post hoc* test in SAS, unless otherwise stated. Differences between treatment groups were considered significant when p<0.05.

RESULTS

TCDD EFFECTS ON BODY WEIGHTS, LIVER HISTOPATHOLOGY, AND CLINICAL CHEMISTRY

Consistent with previously reported changes in body weights and liver histopathology changes in mice exposed to TCDD [11], $Scd1^{+/+}$ and $Scd1^{-/-}$ intact female mice gavaged with 30 μg/kg TCDD had increased relative liver weight (RLW) with the greatest increases observed at 168 h (Table A.3). No significant alterations in body weight or body weight gain were detected throughout the study. Histopathological changes were marked by cytoplasmic vacuolization in the periportal and midzonal regions that decreased with time (not shown). In Scd1 wild-type mice, hepatic vacuolization was accompanied by cellular inflammation that increased by 168 h, while minimal cellular inflammation was observed at only 168 h in Scd1 null mice. Further analysis of serum ALT levels, a marker of liver damage, identified a 3.5-fold increase in treated wild-type mice at 168 h (Figure A.1), while ALT levels remained unchanged in Scd1 nulls. Increased ALT levels suggest liver damage in treated wild-types only, however longer term exposure may be necessary to differentiate histopathological differences between the two strains.

TCDD EFFECTS ON HEPATIC LIPID CONTENT IN SCD1 +/+ MICE

In *Scd1*^{+/+} mice, TCDD induced hepatic TAGs and hepatic total fatty acid (TFA) content 3.9- and 1.9-fold, respectively, compared to vehicle controls (Figure 3.1, panel A). Analysis of fatty acid composition by GC-MS identified TCDD-induced alterations in the SFA/MUFA/PUFA molar proportions (Figure 3.1, panel A). Overall, TCDD reduced SFA by 8%, increased MUFA by 9%, and had no effect on PUFA proportions. Further analysis of individual fatty acid species revealed that palmitate (16:0), stearate (18:0), and lignoceric acids

(24:0) represented more than 95% of the total SFA content (Table 3.1). Interestingly, palmitate (67%) and stearate (16%) are the major SFA constituents of the rodent chow diet (Harlan Teklad rodent diet 7964).

Increases in absolute hepatic levels of MUFAs were primarily due to a 3-fold increase of oleic acid (18:1n9), representing >85% of all MUFAs (Table 3.1). Increases in accumulation of palmitoleic acid (16:1n7, increased 1.9-fold), eicosenoic acid (20:1n9, increased 7.2-fold), erucic acid (22:1n9, increased 2-fold), and nervonic acid (24:1n9, increased 6-fold) accounted for the remaining 15% of MUFAs.

Although TCDD did not alter PUFA levels expressed as mol%, absolute hepatic levels were increased 1.8-fold by TCDD (Table 3.1). In general, TCDD treatment increased all PUFAs (absolute hepatic levels) examined except for timnodonic acid (20:5n3). Linoleic acid (18:2n6) and arachidonic acid (20:4n6, AA) were the dominant PUFAs, representing ~60% and ~25% of PUFAs, respectively. The n-3 and n-6 PUFAs exhibit anti- and pro-inflammatory effects, respectively [34]. The n3/n6 ratio was induced by TCDD and accompanied by the depletion of AA (Figure 3.1, panel A).

TCDD EFFECTS ON HEPATIC LIPID CONTENT IN SCD1^{-/-} MICE

Scd1 performs the rate-limiting step in MUFA synthesis and its deficiency has been reported to impair triglyceride synthesis and protect from diet-induced hepatic steatosis. In *Scd1*/- mice, TCDD increased TAGs 2.5-fold and TFA content 1.6-fold compared to vehicle controls.

However, TAG levels were 42% lower in *Scd1*/- mice when compared to treated wild-type mice, yet there was no difference in TFA levels between genotypes (Figure 3.1, panel B).

Figure 3.1. Hepatic lipid composition at 168 h in vehicle and 30 μ g/kg TCDD treated $Scd1^{+/+}$ (Panel A) and $Scd1^{-/-}$ (Panel B) mice.

Total triglycerides (TAGs) were extracted from mouse liver and quantified using a commercial L-Type Triglyceride M kit (Wako Diagnostics). Data are reported as mg/dL TAG per gram of liver tissue. Absolute total hepatic fat was extracted from $Scd1^{+/+}$ and $Scd1^{-/-}$ mouse liver and analyzed by GC-MS and are reported as μ mol/g tissue. Hepatic fat compositions (saturated fatty acid (SFA)/ monounsaturated fatty acid (MUFA)/ polyunsaturated fatty acid (PUFA) ratios) are reported as mol%. SFA (dark grey)/ MUFA (light grey)/ PUFA (medium grey) proportions are represented. n3/n6 fatty acid ratios are reported as mol %. Arachidonic acid (20:4n6) levels are reported as mol%. Data were analyzed by factorial ANOVA followed by Tukey's *post hoc* test. Bars represent mean \pm SEM, n=5 biological replicates, (*) represents p<0.05 for TCDD compared to Vehicle within a genotype, (**) represents p<0.05 for $Scd1^{-/-}$ TCDD compared to $Scd1^{+/+}$ TCDD, and (***) represents p<0.05 for $Scd1^{-/-}$ Vehicle compared to $Scd1^{+/+}$ Vehicle.

Figure 3.1 (cont'd)

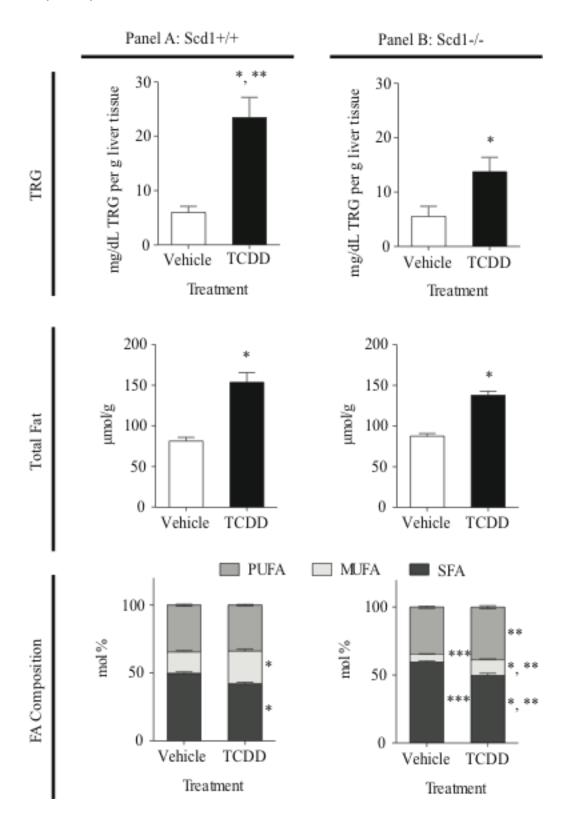
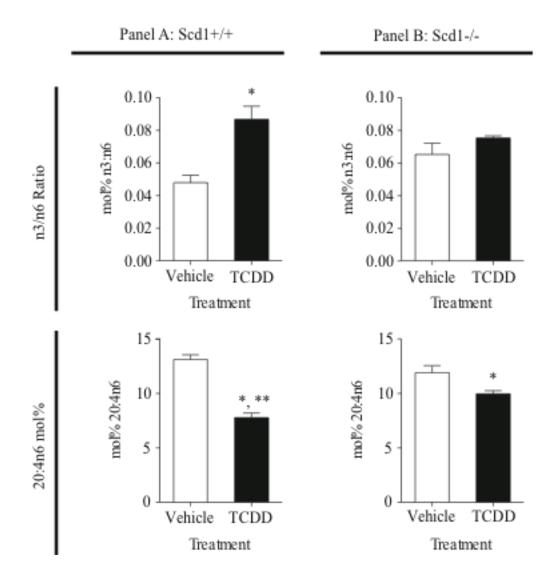



Figure 3.1 (cont'd)

Examination of the SFA/MUFA/PUFA ratios in *Scd1*^{-/-} mouse liver revealed that TCDD reduced SFA proportions and increased relative MUFA and PUFA levels compared to vehicle controls. Scd1 deficiency also induced SFA by 8%, reduced MUFA by 13%, and induced PUFA by 5% compared to treated wild-type mice, consistent with loss of Scd1 activity (Figure 3.1, panel B).

Further analysis of individual fatty acid species identified increases of 18:0, while 16:1n7, 18:1n9, and 20:1n9 were reduced in treated null mouse livers compared to treated wild-type mice (Table 3.1). Surprisingly, MUFA increases in *Scd1* null mice were primarily due to a 3.2-fold induction of 18:1n9. Similar to *Scd1*^{+/+} mice, overall PUFA levels were induced by TCDD in *Scd1*^{-/-} mice. In contrast, the n3/n6 ratios were not altered and the molar ratio of AA [(nmol/g AA)/(nmol/g total FA detected)] was higher compared to treated wild-type mice (Figure 3.1, panel B).

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) was performed to characterize the trends exhibited by GC/MS-FAMES data. PCA of hepatic TFAs indicated a clear time-, treatment-, and Scd1 dose-dependent effect on hepatic fatty acid composition (Figure 3.2). PC1 and PC2 accounted for 95% of the cumulative proportion of the variance with vehicles clustering along PC1, treated groups separating along PC1, and genotype separating along PC2. All treated animals exhibited a similar temporal trajectory.

Table 3.1. Total Hepatic Lipid Composition (μmol/g) in $Scd1^{+/+}$ and $Scd1^{-/-}$ Mice 168 h Post 30 μg/kg TCDD Dose.

Lipid	Scd1	+/+ ,	Vehicle	Scd	1+/+	TCDD	Scd1 ^{-/-} V	ehicle	Scd1 ^{-/-} T	CDD
Total fatty acids	81.4	<u>+</u>	10.4	153.6	<u>+</u>	26.7*	87.6 <u>+</u>	7.3	137.8 <u>+</u>	11.1*
Saturated fatty acid	40.6	<u>+</u>	6.5	64.6	<u>+</u>	11.1*	52.3 <u>+</u>	5.3	68.8 <u>+</u>	7.1*
Palmitic acid (16:0)	19.9	<u>+</u>	2.6	29.2	<u>+</u>	3.7*	19.8 <u>+</u>	2.6	27.8 <u>+</u>	2.8*
Stearic acid (18:0)	17.0	<u>+</u>	3.1	20.2	<u>+</u>	2.2*, **	19.6 <u>+</u>	2.1	27.1 <u>+</u>	3.2*
Arachidic acid (20:0)	0.064	<u>+</u>	0.006	0.066	<u>+</u>	0.010	0.117 <u>+</u>	0.076	0.093 <u>+</u>	0.011
Behenic acid (22:0)	0.269	<u>+</u>	0.044***	0.175	<u>+</u>	0.017	0.425 <u>+</u>	0.140	0.292 <u>+</u>	0.056
Lignoceric acid (24:0)	3.33	<u>+</u>	1.01***	14.9	<u>+</u>	7.3*	12.4 <u>+</u>	1.9	13.4 <u>+</u>	1.9
Monounsaturated fatty acid	12.7	<u>+</u>	1.5***	36.8	<u>+</u>	7.8*, **	5.1 <u>+</u>	0.5	15.8 <u>+</u>	0.01*
Palmitoleic acid (16:1n7)	1.24	<u>+</u>	0.26***	2.39	<u>+</u>	0.64*, **	0.20 <u>+</u>	0.03	0.46 <u>+</u>	0.08
Oleic acid (18:1n9)	11.2	<u>+</u>	1.4***	32.9	<u>+</u>	6.9*, **	4.68 <u>+</u>	0.44	14.7 <u>+</u>	1.8*
Eicosenoic acid (20:1n9)	0.10	<u>+</u>	0.015***	0.72	<u>+</u>	0.22*, **	0.040 <u>+</u>	0.008	0.27 <u>+</u>	0.056*
Erucic acid (22:1n9)	0.028	<u>+</u>	0.005	0.056	<u>+</u>	0.009*	0.031 <u>+</u>	0.005	0.064 <u>+</u>	0.009*
Nervonic acid (24:1n9)	0.135	<u>+</u>	0.043	0.802	<u>+</u>	0.353*, **	0.189 <u>+</u>	0.047	0.277 <u>+</u>	0.040
Polyunsaturated fatty acid	28.1	<u>+</u>	3.4	52.2	<u>+</u>	10.1*	30.1 <u>+</u>	2.4	53.2 <u>+</u>	5.3*
Total n3 fatty acids	1.30	<u>+</u>	0.37	4.23	<u>+</u>	1.56*	1.85 <u>+</u>	0.49	3.70 <u>+</u>	0.36*
Total n6 fatty acids	26.7	<u>+</u>	3.09	47.6	<u>+</u>	8.5*	28.2 <u>+</u>	2.0	49.2 <u>+</u>	4.9*

Table 3.1 (cont'd)

Lipids	Scd1 ^{+/+} Vehicle	$Scd1^{+/+}$ TCDD	Scd1 ^{-/-} Vehicle	Scd1 ^{-/-} TCDD
Linoleic acid (18:2n6)	14.8 <u>+</u> 1.83	31.7 <u>+</u> 5.67*	16.7 <u>+</u> 1.65	31.7 <u>+</u> 3.53*
Eicosadienoic acid (20:2n6)	0.31 ± 0.042	1.26 <u>+</u> 0.26*	0.30 ± 0.040	$1.20 \pm 0.25*$
Dihomo-Y- linolenic acid (20:3n6)	0.95 ± 0.10	2.60 <u>+</u> 0.69*	0.786 ± 0.111	$2.52 \pm 0.37*$
Arachidonic acid (20:4n6)	10.6 <u>+</u> 1.38	12.0 <u>+</u> 2.66	10.4 ± 0.88	13.7 <u>+</u> 1.06*
Docosapentaenoic acid (22:2n6)	0.015 ± 0.007	$0.035 \pm 0.012*$	0.018 ± 0.004	$0.042 \pm 0.008*$
Eicosatetraenoic acid (20:4n3)	0.033 ± 0.005	$0.162 \pm 0.057*$	0.032 ± 0.006	$0.153 \pm 0.046*$
α-Linolenic acid (18:3n3)	0.458 ± 0.101	1.36 <u>+</u> 0.30*	0.045 ± 0.088	1.09 <u>+</u> 0.25*
Timnodonic acid (20:5n3)	0.614 ± 0.240	0.593 ± 0.231	0.629 ± 0.234	0.694 ± 0.146
Docosapentaenoic acid (22:5n3)	0.193 ± 0.078	2.12 <u>+</u> 1.04*	0.743 ± 0.232	1.76 <u>+</u> 0.24*

Data were analyzed by factorial ANOVA followed by Tukey's *post hoc* test, n=5 biological replicates. (a) p < 0.05 for TCDD vs. Vehicle within the same genotype; (b) p < 0.05 for +/+ TCDD vs. -/- TCDD; (c) p < 0.05 for +/+ Vehicle vs. -/- Vehicle

TCDD EFFECTS ON THE SCD1 DESATURATION INDEX

Scd1 is the primary hepatic $\Delta 9$ desaturase, metabolizing 16:0 and 18:0 into 16:1n7 and 18:1n9, respectively. TCDD induced the hepatic 18:1n9/18:0 ratio in $Scd1^{+/+}$ mice compared to vehicles (Figure 3.3A). In humans, positive correlations between the Scd1 desaturation index and triglyceride levels have been reported [35]. Similarly, TAG levels increased with the 18:1n9/18:0 ratio in TCDD treated $Scd1^{+/+}$ mice (Pearson's r = 0.825, p = 0.0003) (Figure 3.3B).

TCDD EFFECTS ON HEPATIC LIPID METABOLISM GENE EXPRESSION

To further examine TCDD's effects on hepatic lipid composition in $Scd1^{+/+}$ and $Scd1^{-/-}$ mice, QRTPCR was used to quantify mRNA levels for genes involved in lipid metabolism. Consistent with TCDD-induced increases in hepatic lipid levels, the fatty acid transport genes Cd36, Ldlr, Vldlr and Fabp4, were induced 3-5-fold in both genotypes (Figure 3.4A-D). Furthermore, Cd36, Vldlr and Fabp4 were significantly increased in treated $Scd1^{-/-}$ mice compared to $Scd1^{+/+}$ mice and may explain increases in 18:1n9 levels, the primary MUFA (81.3% of all MUFAs) in Harlan Teklad rodent diet 7964, in null mice.

Four isoforms, *Scd1-4*, exist in the mouse and may underlie increases in 18:1n9. However, *Scd3* is reported to be expressed by sebocytes in skin, the preputual gland, and the Harderian gland [36] while *Scd4* expression is limited to the heart [37]. Neither *Scd3* or 4 were detected in the liver of either TCDD-treated genotype. *Scd2* is primarily expressed in adipose tissue, but also in the neonatal mouse liver. *Scd2* was expressed in wild-type mice, but not induced by TCDD (Figure 3.4E). Surprisingly, *Scd2* mRNA levels were scarce (100-fold lower) in null mice compared to wild-types. The lack of *Scd2* mRNA expression in nulls suggests *Scd1* deletion also affected *Scd2* expression.

Figure 3.2. Principal component analysis (PCA) of GC-MS lipid profiles from TCDD (T) or Vehicle (V) treated $Scd1^{+/+}$, $Scd1^{+/-}$, and $Scd1^{-/-}$ mice 24, 72 and 168 h post-dose.

PCA was performed in R as described in the Materials and Methods. PC1 and PC2 accounted for 95% of the cumulative proportion of the variance with vehicles clustering along PC1, treated groups separating along PC1 and genotype separating along PC2. Dashed lines ($Scd1^{-/-}$) dotted lines ($Scd1^{+/+}$) solid lines ($Scd1^{+/+}$), n=5 biological replicates.

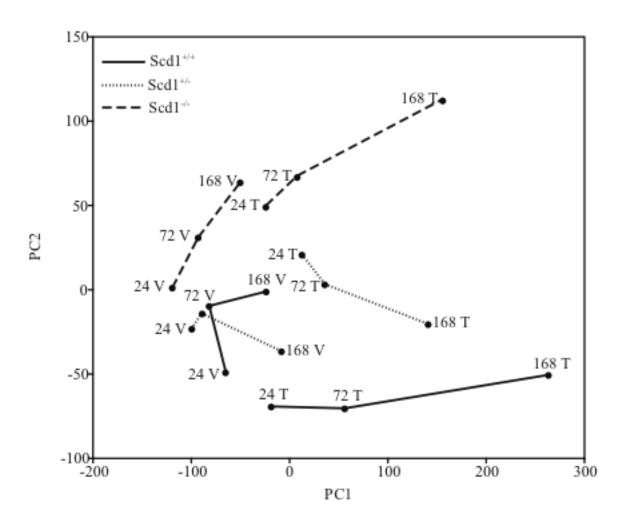
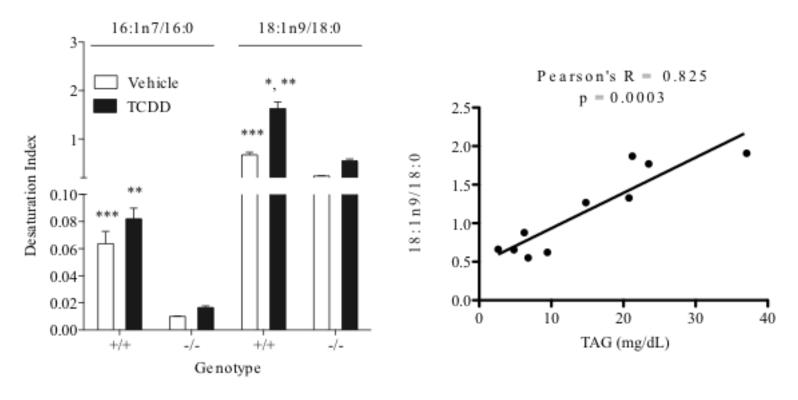



Figure 3.3. Scd1 activity (desaturation) index and Correlation with Hepatic Triglyceride Levels.

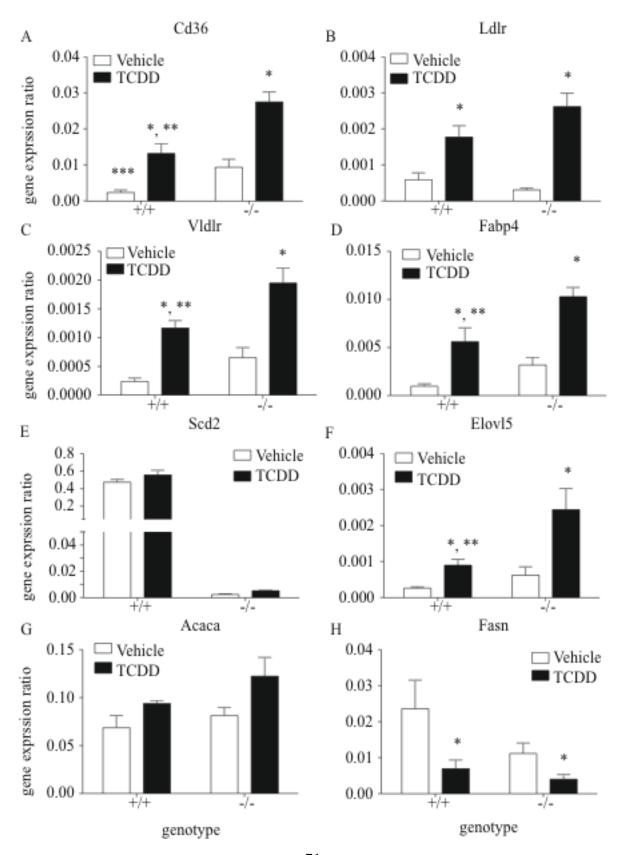

(A) Scd1 desaturation index in female TCDD (T) or vehicle (V) treated $Scd1^{+/+}$ and $Scd1^{-/-}$ mice. The desaturation index is the ratio of palmitoleic (16:1n7) or oleic acid (18:1n9) to the precursors palmitic (16:0) or stearic acids (18:0), respectively. Bars represent mean \pm SEM, n=5 biological replicates, * represents p<0.05 for TCDD compared to vehicle within a genotype, ** represents p<0.05 for $Scd1^{-/-}$ TCDD compared to $Scd1^{+/+}$ TCDD, and *** represents p<0.05 for $Scd1^{-/-}$ vehicle compared to $Scd1^{+/+}$ vehicle. Data were analyzed by factorial ANOVA followed by Tukey's *post hoc* test. (B) Correlation analysis was performed in Graphpad Prism 5.0a between the hepatic triglyceride (TAG) levels and the 18:1n9/18:0 desaturation index in $Scd1^{+/+}$ mice gavaged with $30\mu g/kg$ with TCDD or vehicle for 168 h.

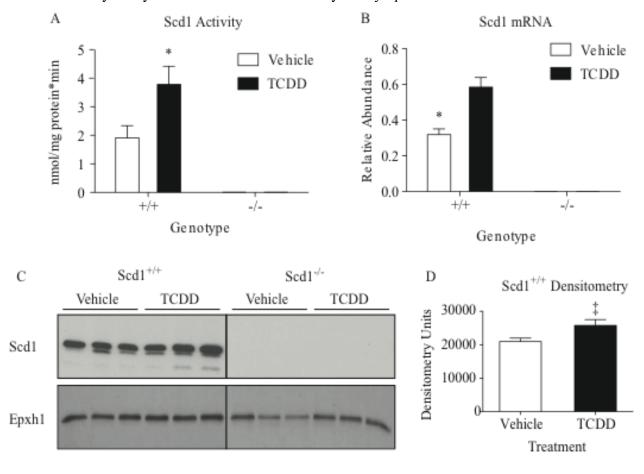
Figure 3.4. QRTPCR of hepatic lipid transport, modification, and biosynthesis genes in $Scd1^{+/+}$ (+/+) and $Scd1^{-/-}$ (-/-) mice gavaged with 30 µg/kg TCDD or sesame oil vehicle for 24 h.

The gene expression ratio is the total quantity normalized to the geometric mean of Hprt, Actb, and Gapdh. Genes are indicated by official gene symbols. Error bars represent the standard error mean (SEM), n=5, * represents p<0.05 for TCDD compared to vehicle within a genotype, ** represents p<0.05 for $Scd1^{+/+}$ TCDD compared to $Scd1^{-/-}$ TCDD and *** represents p<0.05 for $Scd1^{+/+}$ vehicle compared to $Scd1^{-/-}$ vehicle. Data were analyzed by factorial ANOVA followed by Tukey's Post hoc test.

Figure 3.4 (cont'd)

TCDD-mediated increases in the PUFAs eicosatetraenoic acid (20:4n3) and docosapentaenoic acid (22:5n3) were consistent with the 2-fold induction of *Elovl5* (Figure 3.4F) an elongase that catalyzes the elongatation very long chain PUFAs [38]. The lipogenic gene *Acaca*, which provides malonyl-CoA for fatty acid biosynthesis, was not altered by TCDD (Figure 3.4G). *Fasn*, the long-chain fatty acid synthetase was reduced 2.5-3-fold by TCDD in both genotypes (Figure 3.4H), suggesting that increases in hepatic lipid content are not due to *de novo* lipogenesis. Finally, the well-characterized TCDD-inducible genes *Cyp1a1*, *Nqo1*, and *Tiparp* exhibited comparable induction in wild-type and null mice (Figure A.2).

TCDD EFFECTS ON SCD1 ACTIVITY, MRNA AND PROTEIN


The effects of TCDD on Scd1, activity, mRNA, and protein levels were examined. Scd1 enzyme activity was measured by following the conversion of ¹⁴C18:0 to ¹⁴C18:1n9. Consistent with increases in the 18:1n9/18:0 desaturation index, TCDD induced Scd1 activity 2-fold in wild-type mice compared to vehicles at 24 h (Figure 3.5A). QRTPCR also showed that TCDD induced *Scd1* mRNA levels 1.5-fold in *Scd1*^{+/+} mice (Figure 3.5B). Furthermore, western blots showed an increase in Scd1 immunoreactivity in treated *Scd1*^{+/+} microsomal fractions (Figure 3.5C and 3.5D). Induction in Scd1 activity, mRNA, and protein were not detected in control or TCDD-treated *Scd1*^{-/-} mice.

PUTATIVE DRE DISTRIBUTION AND AHR ENRICHMENT AT SCD1 LOCI

To further examine AhR regulation of *Scd1*, Figure 3.6A summarizes the ChIP-chip analysis of AhR enrichment at *Scd1-4* genomic loci induced by TCDD [28]. The moving average (MA) value visualizes the enriched genomic regions within the *Scd1-4* loci while the log₂

Figure 3.5. Scd1 activity, mRNA, and protein levels in $Scd1^{+/+}$ and $Scd1^{-/-}$ mice treated with 30 µg/kg TCDD (T) or sesame seed oil (V) 24 h post-dose.

(A) Scd1 activity. Hepatic microsomes (100 μ g, n=5) isolated from mice were incubated with 0.03 μ Ci ¹⁴C-stearoyl-CoA (¹⁴C 18:0), NADH and stearoyl-CoA. ¹⁴C 18:0 was separated from ¹⁴C 18:1 by silver ion chromatography and radioactivity measured by scintillation counting. Scd1 activity is expressed as nmol ¹⁴C 18:0 converted to ¹⁴C 18:1 per mg Scd1 protein per min. (B) QRTPCR of Scd1 mRNA (n=5). Expression is represented as a ratio of the total quantity of *Scd1* normalized to the geometric mean of *Hprt*, *Actb*, and *Gapdh*. (C) Scd1 Western blot. Hepatic Scd1 protein (n=3) was detected in 10 μ g of microsomes. Epoxide hydrolase (Epxh1) was used as a microsomal protein reference for loading control. (D) Densitometry. Densitometry was determined with ImageJ from Scd1 bands and normalized to Ephx1 bands. ‡ for p = 0.08. For A, B, and D bars represent mean ± SEM, * indicates p<0.05 for T compared to V within a genotype. Data were analyzed by factorial ANOVA followed by Tukey's *post hoc* test.

enrichment illustrates the fold change for each Affymetrix probe. Six AhR enriched regions (up to 5.7-fold, FDR < 0.01, red bar) ranging from 70 to 4200 bp were associated with *Scd1* (Figure 3.6A). AhR enrichment was located within 10 kb upstream region through the 3'-UTR. In contrast, the adjacent ~150 kb genomic region spanning *Scd2*, *Scd3*, and *Scd4* exhibited only two, AhR-enriched regions (2- to 2.7-fold).

AhR is proposed to regulate gene expression through DNA binding at DREs containing the core sequence 5'-GCGTG-3'. DREs with matrix similarity scores (MSS) ranging from 0.69 to 0.93 were identified within the genomic region spanning *Scd* genomic loci [29]. Of the 39 DREs possessing a putative functional (high scoring) MSS (> 0.8; track 4, horizontal line), 16 were located 10 kb upstream of the *Scd1* TSS through the *Scd1* 3'-UTR (Figure 3.6B). Five of these 16 high scoring *Scd1* DREs overlapped with regions of AhR enrichment (track 4, yellow shading). Notably, 7 DREs that did not overlap with regions of significant AhR enrichment coincided with regions lacking tiling probes (track 4, purple shading). One DRE core fell within a 2-fold AhR enriched region that failed to meet the FDR cut-off of 0.01 (track 4, green shading). Moreover, three AhR enriched regions lacked any DRE cores (track 5, orange shading) consistent with promoter- and genome-wide ChIP-chip studies reporting 50% overlap between DRE cores and AhR enrichment as well as other studies suggesting AhR interaction with DNA independent of ARNT [28, 29, 39-41].

BAND SHIFT ASSAYS

Two DRE cores (Figure 3.6B, track 4, indicated by*) within 10 kb upstream of the *Scd1* TSS and with a MSS > 0.8 exhibited band shifts with TCDD-activated guinea pig cytosol (Figure 3.6C). The addition of AhR or ARNT antibodies to the incubation resulted in a supershift,

Figure 3.6. Dioxin response element (DRE) distribution and TCDD-inducible AhR enrichment within *Scd* loci, and band shift assays.

(A) Genomic region spanning Scd1, Scd2, Scd3, and Scd4. (B) Scd1 genomic region only. Genomic DRE distributions and regions of AhR enrichment induced by TCDD were previously determined [28, 29]. Track 1: scale and chromosome position. Track 2: probe tiling across the Affymetrix 2.0R mouse array. Track 3: gene organization including transcriptional start site (TSS) (closed arrow), exons (closed boxes), introns and direction of transcription (solid arrowhead line). Track 4: location of DRE cores (5'-GCGTG-3'). Height of vertical bars indicate matrix similarity score (MSS) for the 19 bp DRE sequence [29]. The horizontal line indicates the MSS = 0.8. MSSs greater than 0.8 are considered putative functional DREs. The asterisk (*) denotes 19 bp DRE sequences that bound TCDD-activated AhR in band shift assays. Track 5: regions of significant (FDR<0.01) AhR enrichment in genome-wide ChIP-chip assays. Tracks 6 and 7: histograms depicting the signal intensities for the moving average (MA; blue, track 6) and log₂ fold enrichment (green, track 7) values for regions exhibiting AhR enrichment in genome-wide ChIP-chip assays. The above tracks were modified from the UCSC genome browser. (B) Scd1 genomic region only. Track 4: yellow shading, putative DRE-AhR enrichment overlap; purple shading, putative DREs lacking affymetrix tiling probes; grey shading, putative DREs that do not overlap with AhR enrichment; green shading, putative DRE in an AhR region that failed to meet the FDR cut-off of 0.01. Track 5: orange shading, AhR enriched regions that do not overlap with putative DREs. (C) Representative band shift assays with putative, functional DREs (track 4, asterisks (*)). The DRE position is numerically indicated relative to the Scd1 TSS. Solid arrows indicate a TCDDinducible band shift. Hatched or dashed arrows indicate an AhR or ARNT supershift, respectively.

Figure 3.6 (cont'd)

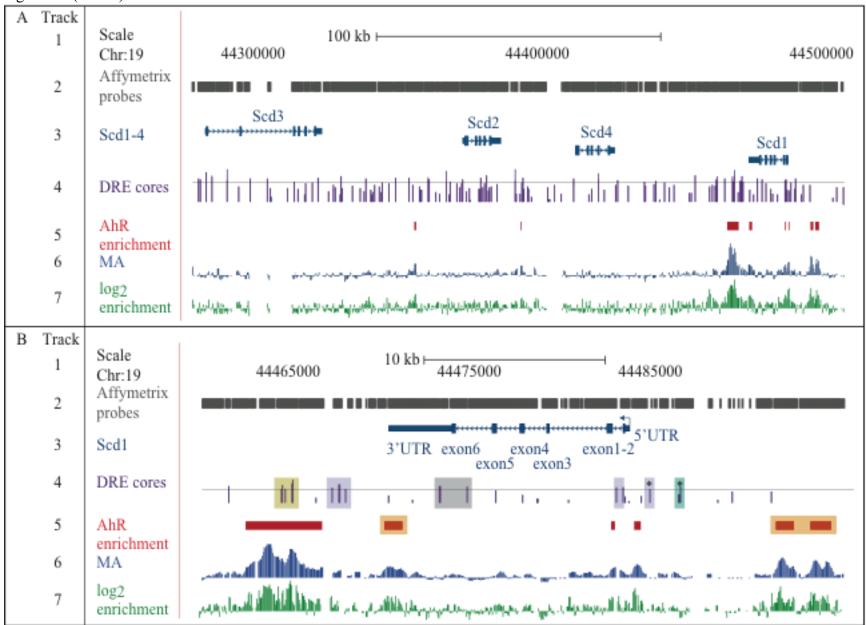
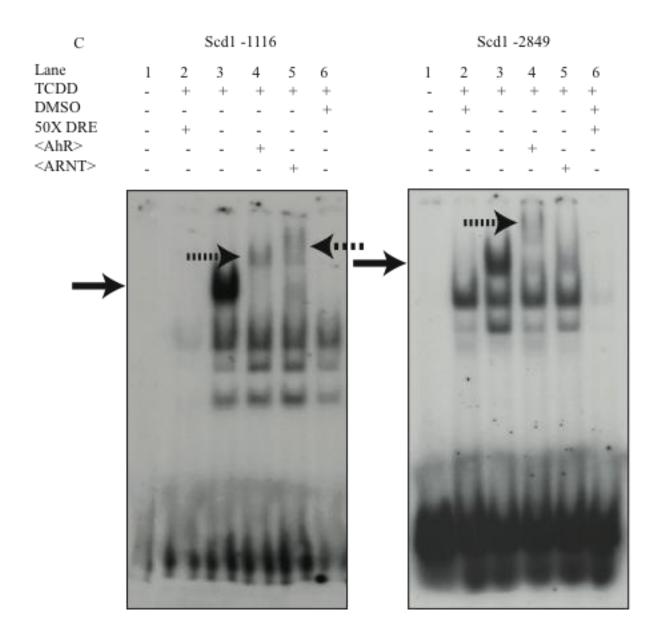



Figure 3.6 (cont'd)

confirming AhR binding to these putative DREs. Nucleotides flanking the DRE core sequence binding affinity and co-activator recruitment and may underlie differences in the banding pattern between the two DREs [42-45]. These results, in addition to mRNA, protein and activity levels, support AhR recruitment to and regulation of *Scd1* by TCDD.

DISCUSSION

Previous studies examining the role of Scd1 in hepatic diseases have focused on dietary or genetic modulation of lipid metabolism [25, 35, 46-48], but not the effects of environmental contaminants. In this study, AhR mediated induction of Scd1 by TCDD and subsequent effects on hepatic FA composition were examined in $Scd1^{+/+}$ and $Scd1^{-/-}$ mice. Here we report that TCDD induced hepatic TRG and FA accumulation, elicited differential gene expression of lipid metabolism and transport, and increased Scd1 mRNA, protein, and activity, as a result of AhR recruitment to Scd1 genic regions. Collectively, these studies suggest that AhR-regulation of Scd1 alters hepatic fatty acid composition, which influences TCDD-induced hepatotoxicity.

TCDD altered hepatic gene expression associated with lipid transport, partitioning and metabolism in mice [11, 14, 49]. For example, TCDD induced the lipolytic genes lipoprotein lipase (Lpl), phospholipase A2, group XIIA (Pla2g12a), monoglyceride lipase (Mgll) and pancreatic lipase-related protein (Pnliprp1) that hydrolyze hepatocellular TRG stores into FFAs and monoglycerides [50]. It also induced low-density lipoprotein receptor (Ldlr), very low-density lipoprotein receptor (Vldlr), Cd36 antigen (Cd36), and fatty acid binding protein (Fabp4) in $Scd1^{+/+}$ and $Scd1^{-/-}$ mice. Ldlr and Cd36 are membrane-associated proteins that facilitate the uptake of chylomicron and VLDL remnants as well as long-chain fatty acids [51, 52]. Cd36 has been implicated in the etiology of obesity and diabetes, and Cd36 null mice exhibit minimal

TCDD-elicited steatosis [53-56]. Fabps are cytosolic, high-affinity long-chain fatty acid binding proteins that target lipids to intracellular compartments [57]. Fabp4, which mediates lipid trafficking to the nucleus and may provide ligands for PPARs [58, 59], was also induced. Furthermore, inhibition of VLDL secretion has been reported in mice following TCDD treatment [56]. These changes likely underlie effects that contribute to TCDD-elicited hepatic fatty acid accumulation.

ChIP-chip analysis identified six *Scd1* genic regions with AhR enrichment. Two proximal AhR enriched regions were within 2 kb of the TSS [28]. The 3' regions also exhibited AhR enrichment and high-scoring DREs, suggesting AhR regulation by distal enhancer sites. Although distal regulation remains largely uninvestigated, studies suggest transcription factor binding at these sites promotes chromatin looping and structural modifications that facilitate gene expression [60-62]. Two 5' AhR enriched regions at distal sites lacked DRE cores, providing further evidence of DRE-independent AhR-DNA interactions, which may involve tethering to other DNA interacting transcription factors [63]. However, the arrays do not have uniform tiling across the genome and several genomic regions lack probe coverage in areas containing high-scoring DREs that may confound mapping AhR enrichment to regions containing DREs.

AhR enrichment at *Scd1* genic regions and the induction of Scd1 mRNA, protein, and activity by TCDD provided compelling evidence for AhR regulation of *Scd1*. The induction of Scd1 activity increased MUFA levels, decreased SFA levels and increased MUFA:SFA and PUFA:SFA ratios. Scd1 deficiency did not affect TCDD induced hepatic lipid accumulation (as measured by GC-MS analysis of FAMES). However, null mice had fewer TAGs, reduced MUFA levels and exhibited less hepatic injury relative to treated wild-type mice. More

specifically, $Scd1^{-/-}$ mice exhibited no increase in serum ALT, less hepatic vacuolization and reduced immune cell infiltration compared to $Scd1^{+/+}$ mice suggesting lower overall TCDD elicited hepatotoxicity.

In addition to Scd1, hepatic FA profiles indicate that AhR regulates other lipid modifying enzymes in addition to Scd1. Increases in n-6 and n-3 pathway intermediates (e.g. 20:2n6, 20:3n6, 20:4n3, 22:5n3) suggests the induction of Elovl5 activity [64]. QRTPCR, band shift and ChIP-chip assays (Appendix A Figure 3A-C) verified AhR mediated induction of Elovl5 by TCDD. The n-3 and n-6 PUFAs, particularly eicosapentanoic acid (EPA, 20:5n3) and arachidonic acid (AA, 20:4n6) metabolites, exhibit anti- and pro-inflammatory activities, respectively [34, 65-67]. EPA is an Elovl5 substrate, therefore excess 20:5n3 may be elongated into 22:5n3, which is increased in both genotypes. AA is not an Elovl5 substrate, but is rapidly metabolized by TCDD-inducible prostaglandin-endoperoxide synthase 1 (Ptgs1), arachidonate 12-lipoxygenase (Alox12) [14, 28], and glutathione transferases [68] into pro-inflammatory ecosanoids. Additionally, AA is liberated from membrane phospholipids by Pla2g12a, another TCDD-inducible gene. AA levels were lower in treated $Scd1^{+/+}$ mice compared to vehicles and treated nulls, and, although we cannot rule-out their conversion into inflammatory ecosanoids, are consistent with the increased level of inflammation in wild-type mice compared to nulls. Inflammation in $Scd1^{+/+}$ mice may also be due to the induction of Scd1, which would sequester cytochrome b₅, uncouple P450 monoxygenases, and increase superoxide and ROS formation [69, 70]. However, P450 monoxygenase and xanthine dehydrogenase induction by TCDD are the primary ROS contributors [71, 72].

Our results differ from studies examining the protective effects of Scd1 deficiency from steatosis and exacerbated steatohepatitis elicited using *in vivo* dietary-induced models of liver injury. For example, high fat diets (HFD) induce steatosis in mice. $Scd1^{-/-}$ mice fed HFD exhibit no evidence of hepatomegaly or histological changes [73], yet hepatomegaly is observed in all animals exposed to TCDD (Poland and Knutson, 1982). Methionine choline deficient (MCD) diets induce steatohepatitis, but in contrast to TCDD, decrease Scd1 expression and induce Cyp4A expression, an enzyme involved in lipid peroxidation (Li et al., 2009, Yamaguchi et al., 2007, and Anstee & Goldin, 2006). Cyp4a is a peroxisome proliferator activated receptor (PPAR) target and administration of a PPAR agonist to MCD fed mice decreases liver damage (Nagasawa et al., 2006), suggesting a role for PPAR rather than AhR in MCD-elicited liver injury. Furthermore, our results are consistent with increased MUFA:SFA ratios in lipotoxic mechanisms of liver injury (Larter et al. 2008).

TCDD-induced steatosis is a significant hepatotoxic effect and AhR-mediated induction of Scd1 exacerbates TCDD hepatotoxicity by altering the composition of accumulated lipids. Scd1-mediated increases in unsaturated fatty acid levels may alter membrane fluidity, increase lipid peroxidation and reactive oxygen species formation, as well as propagate inflammatory responses through TRAIL-mediated cytotoxicity [74, 75]. Steatosis followed by a progressive inflammatory response poses a significant risk of progression to cirrhosis and may contribute to hepatocellular carcinoma development in rodents.

The induction of hepatic lipid accumulation in mice is consistent with the occurrence of dyslipidemia in humans following TCDD exposure at high doses [76]. Interestingly, the hepatic fatty acid composition induced by TCDD is similar to serum and lipid profiles (e.g. increase in TAGs, and 16:1n7 and 18:1n9 levels) described for human NAFLD patients [77, 78]. NAFLD is

considered the hepatic manifestation of metabolic syndrome, and precedes non-alcoholic steatosis, and cirrhosis. This report suggests that AhR regulation of lipid transport, metabolism, and modifying enzymes, including Scd1, alters lipid composition that contributes to the hepatotoxicity of TCDD.

FOOTNOTES

¹Guinea pig cytosol was a gift from Dr. Michael Denison, Department of Environmental Toxicology, Meyer Hall, University of California, Davis, CA 95616, USA.

FUNDING

This work was supported by the National Institute of Environmental Health Sciences Superfund Basic Research Program (P42ES04911).

APPENDIX A

APPENDIX A

Table A.1. Putative DRE Sequences

Gene	MSS	Position	Sequence
Scd1	0.812732	-2849	TCTCTCTGCGTGCCTTTAT
			AGAGAGACGCACGGAAATA
	0.803264	-1116	TGGCTAAGCGTGACCACAG
			ACCGATTCGCACTGGTGTC

Matrix Similarity Score (MSS), Position is relative to the transcriptional start site.

Table A.2. Terminal Body Weight, Body Weight Gain, Absolute Liver Weight and Relative Liver Weight for $Scd1^{+/+}$ and $Scd1^{-/-}$ Mice

Time (h)	Genotype	Treatment	Body Weight (g)	Body Weight Gain (g)	Liver Weight (g)	Relative Liver Weight	
24	+/+	Vehicle	14.7 ± 1.0	1.4 ± 0.9	0.844 ± 0.064	0.057 ± 0.004	
		TCDD	14.2 ± 0.5	0.8 ± 0.5	$0.914 \hspace{0.2cm} \pm \hspace{0.2cm} 0.079$	$0.064 \pm 0.004*$	
	-/-	Vehicle	13.1 ± 1.3	1.2 ± 0.4	0.771 ± 0.116	0.059 ± 0.005	
		TCDD	13.2 ± 1.3	0.6 ± 0.5	0.905 ± 0.123	$0.068 \pm 0.003*$	
72	+/+	Vehicle	13.2 ± 2.5	1.4 ± 0.9	0.728 ± 0.204	0.054 ± 0.008	
		TCDD	13.0 ± 1.2	1.9 ± 0.7	$0.818 \hspace{0.2cm} \pm \hspace{0.2cm} 0.116$	0.063 ± 0.006	
	-/-	Vehicle	12.6 ± 1.5	2.2 ± 0.5	0.756 ± 0.095	0.060 ± 0.003	
		TCDD	12.8 ± 1.6	1.9 ± 0.5	0.891 ± 0.102	$0.070 \pm 0.010*$	
168	+/+	Vehicle	15.5 ± 1.2	2.6 ± 1.8	0.778 ± 0.135	0.050 ± 0.006	
		TCDD	15.0 ± 1.3	2.0 \pm 0.8	0.959 ± 0.114*	0.064 ± 0.003*, **	
	-/-	Vehicle	15.8 ± 1.8	3.5 ± 0.7	0.926 ± 0.097	0.059 ± 0.004	
		TCDD	15.3 ± 1.5	3.3 ± 0.7	1.080 ± 0.111	$0.071 \pm 0.005*$	

Data were analyzed by factorial ANOVA followed by Tukey's *post hoc* test, n=8 biological replicates. * p<0.05 for TCDD vs. Vehicle within the same genotype, ** p<0.05 for +/+ TCDD vs. -/- TCDD

Table A.3. TCDD Effects on Liver Histopathology in Scd1 Wild-Type and Null Mice

Time (hr)		24		72		168	
Genotype	·	+/+	-/-	+/+	-/-	+/+	-/-
Vacuolization	V	0.5	0.2	0.3	0.3	0.1	0.0
vacuonzation	T	3.0	2.3	2.3	1.5	0.9	1.6
Inflammation	V	0.3	0.0	0.0	0.0	0.4	0.0
miammauon	T	0.4	0.0	0.4	0.0	1.5	0.4
Hemoutuonher	V	0.0	0.0	0.0	0.0	0.0	0.0
Hypertrophy	T	1.4	0.0	0.8	0.0	1.3	1.0

The severity of vacuolization, inflammation and hypertrophy are scored as 1-minimal, 2-mild, 3-moderate, 4-marked. N=8, TCDD (T), Vehicle (V).

Figure A.1. Serum alanine aminotransferase levels in Scd1+/+ and Scd1-/- mice treated 168 h with either vehicle or 30 μ g/kg TCDD.

Serum alanine amino transferase (ALT) levels in Scd1+/+ and Scd1-/- mice treated with 30 $\mu g/kg$ TCDD or sesame seed oil vehicle 24 h post-dose. Error bars represent the standard error mean (SEM), n=3, (*) represents p<0.05 for TCDD compared to vehicle within a genotype. Data were analyzed by Dunnett's t-test.

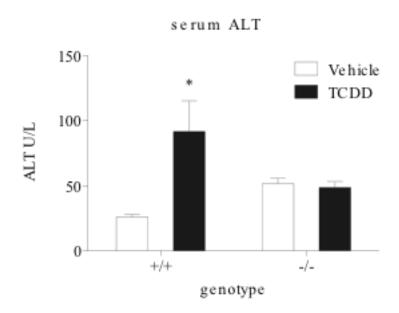


Figure A.2. QRTPCR of the TCDD-inducible genes *Cyp1a1*, *Nqo1*, and *Tiparp* in *Scd1*^{+/+} (+/+) and *Scd1*^{-/-} (-/-) mice gavaged with 30 µg/kg TCDD or sesame oil vehicle for 24 h. The gene expression ratio is the total quantity normalized to the geometric mean of *Hprt*, *Actb*, and *Gapdh*. Genes are indicated by official gene symbols. Error bars represent the standard error mean (SEM), n=5, * represents p<0.05 for TCDD compared to vehicle within a genotype and ** represents p<0.05 for $Scd1^{+/+}$ TCDD compared to $Scd1^{-/-}$ TCDD. Data were analyzed by factorial ANOVA followed by Tukey's *post hoc* test.

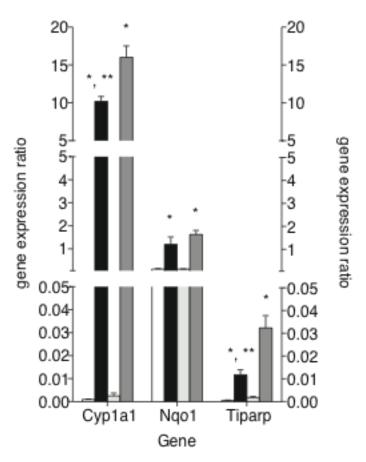


Figure A.3. QRTPCR of *Elovl5* mRNA (A), Elovl5 band shift assays with putative, functional DREs (B), and DRE distribution and TCDD-inducible AhR enrichment within the *Elovl5* locus (C).

(A) Elovl5 mRNA expression is represented as a ratio of the total quantity of *Elovl5* normalized to the geometric mean of *Hprt*, *Actb*, and *Gapdh*. Bars represent mean \pm SEM, * indicates p < 0.05for T compared to V within a genotype and ** represents p<0.05 for $Scd1^{-/-}$ T compared to $Scd1^{+/+}$ T within a time point. Data were analyzed by factorial ANOVA followed by Tukey's post hoc test, n=5. (B) The DRE position is numerically indicated relative to the Elovl5 TSS. Solid arrows indicate a TCDD-inducible band shift. Hatched or dashed arrows indicate an AhR or ARNT supershift, respectively. (C) DRE distributions and regions of AhR enrichment induced by TCDD were previously determined [28, 29]. Track 1: scale and chromosome position. Track 2: probe tiling across the Affymetrix 2.0R mouse array. Track 3: gene organization including transcriptional start site (TSS) (closed arrow), exons (closed boxes), introns and direction of transcription (solid arrowhead line). Track 4: location of DRE cores (5'-GCGTG-3'). Height of vertical bars indicate matrix similarity score (MSS) for the 19 bp DRE sequence [29]. The horizontal line indicates the MSS = 0.8. MSSs greater than 0.8 are considered putative functional DREs. The asterisk (*) denotes 19 bp DRE sequences that bound TCDD-activated AhR in band shift assays. Track 5: regions of significant (FDR<0.01) AhR enrichment in genome-wide ChIPchip assays. Tracks 6 and 7: histograms depicting the signal intensities for the moving average (MA; blue, track 6) and log₂ fold enrichment (green, track 7) values for regions exhibiting AhR enrichment in genome-wide ChIP-chip assays. The above tracks were modified from the UCSC genome browser.

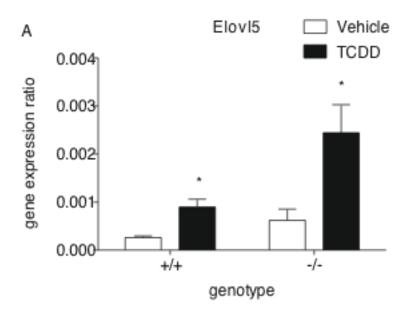


Figure A.3 (cont'd)

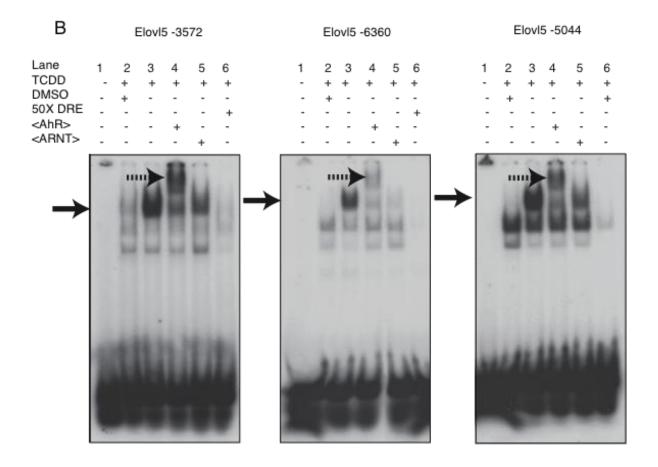
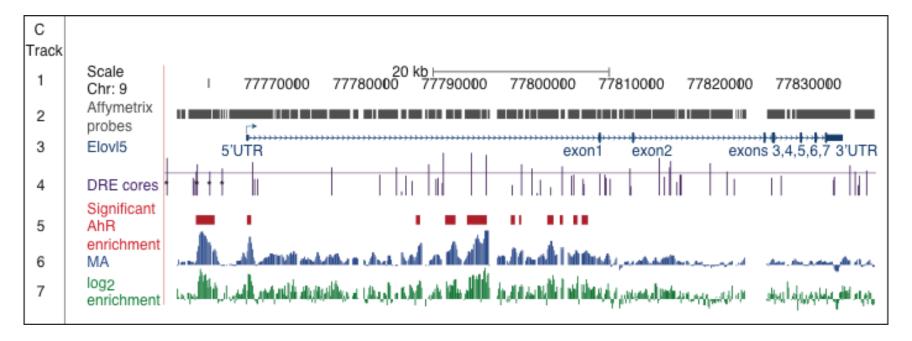



Figure A.3 (cont'd)

REFERENCES

REFERENCES

- 1. Croutch CR, Lebofsky M, Schramm KW, Terranova PF, Rozman KK: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD) alter body weight by decreasing insulin-like growth factor I (IGF-I) signaling. *Toxicol Sci* 2005, 85:560-571.
- 2. Poland A, Knutson JC: **2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity.** *Annu Rev Pharmacol Toxicol* 1982, **22:**517-554.
- 3. Pollenz RS, Sattler CA, Poland A: The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. *Mol Pharmacol* 1994, **45**:428-438.
- 4. Hankinson O: **The aryl hydrocarbon receptor complex.** *Annu Rev Pharmacol Toxicol* 1995, **35:**307-340.
- 5. Swanson HI, Chan WK, Bradfield CA: **DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins.** *J Biol Chem* 1995, **270**:26292-26302.
- 6. Beischlag TV, Wang S, Rose DW, Torchia J, Reisz-Porszasz S, Muhammad K, Nelson WE, Probst MR, Rosenfeld MG, Hankinson O: Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. *Mol Cell Biol* 2002, 22:4319-4333.
- 7. Bunger MK, Moran SM, Glover E, Thomae TL, Lahvis GP, Lin BC, Bradfield CA: Resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor. *J Biol Chem* 2003, 278:17767-17774.
- 8. Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ: Arylhydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. *Toxicol Appl Pharmacol* 1996, 140:173-179.
- 9. Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA: Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. *Proc Natl Acad Sci U S A* 1996, **93**:6731-6736.

- 10. Huff J, Cirvello J, Haseman J, Bucher J: Chemicals associated with site-specific neoplasia in 1394 long-term carcinogenesis experiments in laboratory rodents. *Environ Health Perspect* 1991, 93:247-270.
- 11. Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, Mendrick DL, Zacharewski TR: Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. *Toxicol Sci* 2006, 94:398-416.
- 12. Kopec AK, Boverhof DR, Burgoon LD, Ibrahim-Aibo D, Harkema JR, Tashiro C, Chittim B, Zacharewski TR: Comparative toxicogenomic examination of the hepatic effects of PCB126 and TCDD in immature, ovariectomized C57BL/6 mice. *Toxicol Sci* 2008, 102:61-75.
- 13. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Burg AR, Lee AW, Tashiro C, Potter D, Sharratt B, Harkema JR, Rowlands JC, et al: **Automated dose-response analysis and comparative toxicogenomic evaluation of the hepatic effects elicited by TCDD, TCDF, and PCB126 in C57BL/6 mice.** *Toxicol Sci* 2010, **118:**286-297.
- 14. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, Sharratt B, Harkema JR, Zacharewski TR: **PCB153-elicited hepatic responses in the immature, ovariectomized C57BL/6 mice: comparative toxicogenomic effects of dioxin and non-dioxin-like ligands.** *Toxicol Appl Pharmacol* 2010, **243:**359-371.
- 15. Bunger MK, Glover E, Moran SM, Walisser JA, Lahvis GP, Hsu EL, Bradfield CA: Abnormal liver development and resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in mice carrying a mutation in the DNA-binding domain of the aryl hydrocarbon receptor. *Toxicol Sci* 2008, 106:83-92.
- 16. Issandou M, Bouillot A, Brusq JM, Forest MC, Grillot D, Guillard R, Martin S, Michiels C, Sulpice T, Daugan A: **Pharmacological inhibition of Stearoyl-CoA Desaturase 1** improves insulin sensitivity in insulin-resistant rat models. *Eur J Pharmacol* 2009.
- 17. Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yang Q, Wu M, Ronan J, Esau C, Murphy C, Szalkowski D, et al: **Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1.** *J Clin Invest* 2005, **115:**1030-1038.
- 18. Ntambi JM, Miyazaki M: **Regulation of stearoyl-CoA desaturases and role in metabolism.** *Prog Lipid Res* 2004, **43:**91-104.
- 19. Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM: **The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1.** *J Biol Chem* 2000, **275:**30132-30138.
- 20. Flowers MT, Ntambi JM: Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. *Curr Opin Lipidol* 2008, **19:**248-256.

- 21. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM: Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. *Cell Metab* 2007, **6:**484-496.
- 22. Stefan N, Peter A, Cegan A, Staiger H, Machann J, Schick F, Claussen CD, Fritsche A, Haring HU, Schleicher E: Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. *Diabetologia* 2008, 51:648-656.
- 23. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U: Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. *Lipids Health Dis* 2009, 8:37.
- 24. Warensjo E, Ohrvall M, Vessby B: **Fatty acid composition and estimated desaturase** activities are associated with obesity and lifestyle variables in men and women. *Nutr Metab Cardiovasc Dis* 2006, **16:**128-136.
- 25. Warensjo E, Ingelsson E, Lundmark P, Lannfelt L, Syvanen AC, Vessby B, Riserus U: Polymorphisms in the SCD1 gene: associations with body fat distribution and insulin sensitivity. Obesity (Silver Spring) 2007, 15:1732-1740.
- 26. Sheehan DC, Hrapchak BB: *Theory and Practice of Histotechnology*. second ed edn. St. Louis: Mosby; 1980.
- 27. Attie AD, Flowers MT, Flowers JB, Groen AK, Kuipers F, Ntambi JM: **Stearoyl-CoA desaturase deficiency, hypercholesterolemia, cholestasis, and diabetes.** *Nutr Rev* 2007, **65:**S35-38.
- 28. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR: Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver. *BMC Genomics* 2011, 12:365.
- 29. Dere E, Forgacs AL, Zacharewski TR, Burgoon LD: **Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes.** Chem Res Toxicol 2011, **24:**494-504.
- 30. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA, Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, et al: **The UCSC Genome Browser database: update 2010.** *Nucleic Acids Res* 2010, **38:**D613-619.
- 31. Maines MD, Wiley online library.: **Current protocols in toxicology.** New York: John Wiley; 2002.
- 32. Bank PA, Yao EF, Phelps CL, Harper PA, Denison MS: **Species-specific binding of transformed Ah receptor to a dioxin responsive transcriptional enhancer.** Eur J Pharmacol 1992, **228:**85-94.

- 33. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* 2002, 3:RESEARCH0034.
- 34. Marszalek JR, Lodish HF: **Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you.** *Annu Rev Cell Dev Biol* 2005, **21:**633-657.
- 35. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM: **Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia.** *J Lipid Res* 2002, **43:**1899-1907.
- 36. Miyazaki M, Bruggink SM, Ntambi JM: **Identification of mouse palmitoyl-coenzyme A Delta9-desaturase.** *J Lipid Res* 2006, **47:**700-704.
- 37. Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM, Ntambi JM: Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. *J Biol Chem* 2003, 278:33904-33911.
- 38. Guillou H, Zadravec D, Martin PG, Jacobsson A: The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. *Prog Lipid Res* 2010, **49:**186-199.
- 39. Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH: **The aryl hydrocarbon receptor complex and the control of gene expression.** *Crit Rev Eukaryot Gene Expr* 2008, **18:**207-250.
- 40. Klinge CM, Kaur K, Swanson HI: **The aryl hydrocarbon receptor interacts with estrogen receptor alpha and orphan receptors COUP-TFI and ERRalpha1.** Arch Biochem Biophys 2000, **373:**163-174.
- 41. Marlowe JL, Fan Y, Chang X, Peng L, Knudsen ES, Xia Y, Puga A: **The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced apoptosis.** *Mol Biol Cell* 2008, **19:**3263-3271.
- 42. Gillesby BE, Stanostefano M, Porter W, Safe S, Wu ZF, Zacharewski TR: Identification of a motif within the 5' regulatory region of pS2 which is responsible for AP-1 binding and TCDD-mediated suppression. *Biochemistry* 1997, 36:6080-6089.
- 43. Lusska A, Shen E, Whitlock JP, Jr.: **Protein-DNA interactions at a dioxin-responsive enhancer. Analysis of six bona fide DNA-binding sites for the liganded Ah receptor.** *J Biol Chem* 1993, **268**:6575-6580.
- 44. Shen ES, Whitlock JP, Jr.: **Protein-DNA interactions at a dioxin-responsive enhancer. Mutational analysis of the DNA-binding site for the liganded Ah receptor.** *J Biol Chem* 1992, **267**:6815-6819.

- 45. Bank PA, Yao EF, Swanson HI, Tullis K, Denison MS: **DNA binding of the transformed guinea pig hepatic Ah receptor complex: identification and partial characterization of two high-affinity DNA-binding forms.** *Arch Biochem Biophys* 1995, **317:**439-448.
- 46. Miyazaki M, Kim YC, Ntambi JM: A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. *J Lipid Res* 2001, **42:**1018-1024.
- 47. Popeijus HE, Saris WH, Mensink RP: **Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome.** *Int J Obes (Lond)* 2008, **32:**1076-1082.
- 48. Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM: **Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat.** *J Biol Chem* 2007, **282:**2483-2493.
- 49. Kopec AK, D'Souza ML, Mets BD, Burgoon LD, Reese SE, Archer KJ, Potter D, Tashiro C, Sharratt B, Harkema JR, Zacharewski TR: **Non-additive effects of PCB153 and TCDD on hepatotoxicity in C57BL/6 mice.** *Toxicol Appl Pharmacol* In Press.
- 50. Giller T, Buchwald P, Blum-Kaelin D, Hunziker W: **Two novel human pancreatic** lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity. *J Biol Chem* 1992, **267**:16509-16516.
- 51. Ibrahimi A, Abumrad NA: Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 2002, 5:139-145.
- 52. Iqbal J, Hussain MM: **Intestinal lipid absorption.** *Am J Physiol Endocrinol Metab* 2009, **296:**E1183-1194.
- 53. Drover VA, Ajmal M, Nassir F, Davidson NO, Nauli AM, Sahoo D, Tso P, Abumrad NA: **CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood.** *J Clin Invest* 2005, **115:**1290-1297.
- 54. Hajri T, Han XX, Bonen A, Abumrad NA: **Defective fatty acid uptake modulates** insulin responsiveness and metabolic responses to diet in CD36-null mice. *J Clin Invest* 2002, **109:**1381-1389.
- 55. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Perusse L, Bouchard C: **The human obesity gene map: the 2005 update.** *Obesity (Silver Spring)* 2006, **14:**529-644.
- 56. Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, Xie W: A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. *Gastroenterology* 2010, **139:**653-663.
- 57. Storch J, Thumser AE: **Tissue-specific Functions in the Fatty Acid-binding Protein Family.** *J Biol Chem* 2010, **285:**32679-32683.

- 58. Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, Wahli W, Noy N: Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. *Mol Cell Biol* 2002, 22:5114-5127.
- 59. Gillilan RE, Ayers SD, Noy N: **Structural basis for activation of fatty acid-binding protein 4.** *J Mol Biol* 2007, **372:**1246-1260.
- 60. Li Q, Barkess G, Qian H: Chromatin looping and the probability of transcription. *Trends Genet* 2006, **22:**197-202.
- 61. Farnham PJ: **Insights from genomic profiling of transcription factors.** *Nat Rev Genet* 2009, **10:**605-616.
- 62. Long X, Miano JM: **Remote control of gene expression.** *J Biol Chem* 2007, **282:**15941-15945.
- 63. Murray IA, Morales JL, Flaveny CA, Dinatale BC, Chiaro C, Gowdahalli K, Amin S, Perdew GH: Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. *Mol Pharmacol* 2010, **77:**247-254.
- 64. Wang Y, Torres-Gonzalez M, Tripathy S, Botolin D, Christian B, Jump DB: **Elevated** hepatic fatty acid elongase-5 activity affects multiple pathways controlling hepatic lipid and carbohydrate composition. *J Lipid Res* 2008, **49:**1538-1552.
- 65. Di Marzo V: Arachidonic acid and eicosanoids as targets and effectors in second messenger interactions. *Prostaglandins Leukot Essent Fatty Acids* 1995, **53:**239-254.
- 66. Simopoulos AP: The importance of the ratio of omega-6/omega-3 essential fatty acids. *Biomed Pharmacother* 2002, **56:**365-379.
- 67. Yashodhara BM, Umakanth S, Pappachan JM, Bhat SK, Kamath R, Choo BH: **Omega-3 fatty acids: a comprehensive review of their role in health and disease.** *Postgrad Med J* 2009, **85:**84-90.
- 68. Boverhof DR, Burgoon LD, Tashiro C, Chittim B, Harkema JR, Jump DB, Zacharewski TR: Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-Mediated hepatotoxicity. *Toxicol Sci* 2005, **85**:1048-1063.
- 69. Hardwick JP, Osei-Hyiaman D, Wiland H, Abdelmegeed MA, Song BJ: **PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease.** *PPAR Res* 2009, **2009:**952734.
- 70. Schenkman JB, Jansson I: **The many roles of cytochrome b5.** *Pharmacol Ther* 2003, **97:**139-152.

- 71. Sugihara K, Kitamura S, Yamada T, Ohta S, Yamashita K, Yasuda M, Fujii-Kuriyama Y: Aryl hydrocarbon receptor (AhR)-mediated induction of xanthine oxidase/xanthine dehydrogenase activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Biochem Biophys Res Commun* 2001, 281:1093-1099.
- 72. Zimmerman BJ, Granger DN: **Mechanisms of reperfusion injury.** *Am J Med Sci* 1994, **307:**284-292.
- 73. Li ZZ, Berk M, McIntyre TM, Feldstein AE: **Hepatic Lipid Partitioning and Liver Damage in Nonalcoholic Fatty Liver Disease: ROLE OF STEAROYL-CoA DESATURASE.** *J Biol Chem* 2009, **284:**5637-5644.
- 74. Trauner M, Arrese M, Wagner M: **Fatty liver and lipotoxicity.** *Biochim Biophys Acta* 2010, **1801:**299-310.
- 75. Malhi H, Barreyro FJ, Isomoto H, Bronk SF, Gores GJ: Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. *Gut* 2007, **56**:1124-1131.
- 76. Pelclova D, Fenclova Z, Preiss J, Prochazka B, Spacil J, Dubska Z, Okrouhlik B, Lukas E, Urban P: **Lipid metabolism and neuropsychological follow-up study of workers exposed to 2,3,7,8- tetrachlordibenzo- p-dioxin.** *Int Arch Occup Environ Health* 2002, **75 Suppl:**S60-66.
- 77. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos MJ, Sanyal AJ: **A lipidomic analysis of nonalcoholic fatty liver disease.** *Hepatology* 2007, **46:**1081-1090.
- 78. Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, Contos MJ, Sterling RK, Fuchs M, Zhou H, et al: **The plasma lipidomic signature of nonalcoholic steatohepatitis.** *Hepatology* 2009, **50:**1827-1838.

CHAPTER 4

Angrish MM, Mets, BD, Jones, AD, Zacharewski TR: **Dietary Fat is a Lipid Source in 2,3,7,8-Tetrachlorodibenzo-** ρ **-dioxin** (**TCDD**)**-Elicited, Hepatic Steatosis in C57BL/6 Mice**. (accepted, Toxicol Sci).

CHAPTER 4

DIETARY FAT IS A LIPID SOURCE IN 2,3,7,8-TETRACHLORODIBENZO- ρ -DIOXIN (TCDD)-ELICITED, HEPATIC STEATOSIS IN C57BL/6 MICE

ABSTRACT

TCDD increases FA transport and FA levels, resulting in hepatic steatosis in mice. Diet as a source of lipids was investigated using customized diets, Scd1 null mice, and ¹⁴C-oleate (18:1n9) uptake. C57BL/6 mice fed 5%, 10%, or 15% fat or 50%, 60%, or 70% carbohydrate diets exhibited increased relative liver weight following gavage with 30 µg/kg TCDD for 168 h. Hepatic lipid extract analysis from mice fed 5%, 10% and 15% fat diets identified a dosedependent increase in total FAs induced by TCDD. Fat-diet fed mice also exhibited a dosedependent increase in the dietary essential linoleic (18:2n6) and α-linolenic (18:3n3) acids. No dose-dependent FA increase was detected on carbohydrate diets, suggesting dietary fat as a source of lipids in TCDD-induced steatosis as opposed to de novo lipogenesis. TCDD also induced oleate levels 3-fold in Scd1 null mice that are incapable of desaturating stearate (18:0). This finding is consistent with oleate representing >90% of all MUFAs in rodent chow. Moreover, TCDD increased hepatic ¹⁴C-oleate levels 2-fold in wild-type and 2.4-fold in Scd1 null mice concurrent with the induction of intestinal and hepatic lipid transport genes (Slc27a, Fabp, Ldlr, Cd36, and Apob). In addition, computational scanning identified putative DREs and in vivo ChIP-chip analysis revealed regions of AhR enrichment proximal to lipid transport genes

differentially regulated by TCDD. Collectively, these results suggest the AhR mediates increased uptake of dietary fats that contribute to TCDD-elicited hepatic steatosis.

INTRODUCTION

Activation of the AhR, a bHLH PAS transcription factor, elicits a broad spectrum of species-specific effects [1]. Epidemiological and rodent studies have linked exposure to TCDD and related compounds to dyslipidemia and disrupted energy balance [2, 3]. Briefly, ligands bind to the cytosolic AhR causing a conformational change, dissociation of chaperone proteins, and translocation to the nucleus where it heterodimerizes with ARNT [4, 5]. The complex binds DREs to modulate gene transcription, although DRE-independent binding to DNA has also been reported [6, 7].

The role of the AhR in hepatotoxicity and lipid metabolism has not been fully elucidated. TCDD induced hepatic steatosis is characterized by increases in TFAs, TAGs, vacuolization, inflammatory cell infiltration, and serum ALT levels [8, 9] that are absent in *AhR*, null mice The AhR also mediates mobilization of peripheral fat [10-12], inhibition of FA oxidation [10, 13], repression of VLDL secretion [13], and hepatic lipid and composition alterations [14].

In this report, we examine diet as a lipid source in TCDD-elicited hepatic steatosis. Dose-dependent increases in hepatic fat accumulation, including essential dietary FAs, suggest dietary fat rather than carbohydrate is an important lipid source in TCDD-elicited steatosis. Increases in hepatic MUFA levels in *Scd1* null mice, and hepatic ¹⁴C levels, provide further evidence that AhR activation increases dietary fat processing that contributes to TCDD-elicited hepatic steatosis. Complementary gene expression analysis integrated with computational DRE search [15] and ChIP-chip [6] data indicate the AhR mediates intestinal and hepatic responses that enhanced dietary fat processing and transport, resulting in hepatic steatosis. Collectively, these

results suggest continuous AhR activation may contribute to diseases associated with hepatic steatosis.

MATERIALS AND METHODS

ANIMAL HANDLING

C57BL/6 ovariectomized (ovx) female mice were obtained from Charles Rivers Laboratories (Portage, MI) on postnatal day (PND) 25 with body weights within 10% of the mean body weight upon arrival. B6.129-Scd1^{tm1Myz}/J heterozygous mice (Jackson Laboratory, Ben Harbor, ME) had free access to chow or custom diets and water upon arrival and throughout the study. On PND 21 mice were genotyped and weaned. Mice were maintained on a 12 h light/dark cycle, housed in standard cages containing aspen woodchips. B6.129-Scd1^{tm1Myz}/J heterozygous mice were fed Harlan Teklad 7964 F6 Rodent diet (chow). All procedures were carried out with All-University Committee on Animal Use and Care approval.

DIET COMPOSITIONS

Custom diets consisted (by weight) of 19.6% protein, 5%, 10%, and 15% fat with decreasing carbohydrate (68%, 56%, and 44%) for an isocaloric intake of 3.7 kcal/g (Table 4.1). Carbohydrate adjusted diets consisted (by weight) of constant fat and protein (6.6% and 19.6%, respectively) with increasing total carbohydrate content of 50%, 60% and 70% for total caloric intakes of 3.3, 3.7, and 4.1 kcal/g, respectively (Table 4.1). Custom diets use different ingredients compared to standard chow, which confounds comparisons to other studies. Specifically,

Table 4.1. Nutrient and Energy Composition of Custom Diets

	Chow	Isocaloric, Fat Adjusted Diets		Constant Fat, Carbohydrate Adjusted Diets			
		% Fat			% Carbohydrate		
		5%	10%	15%	50%	60%	70%
Metabolizable Energy (kcal/g)	3.1	3.7	3.7	3.7	3.3	3.7	4.1
% by Weight							
Fat	6.4	5	10	15	6.6	6.6	6.6
Protein	24.3	18.3	18.3	18.3	18.3	18.3	18.3
Carbohydrate	38.7	63.6	52.4	41.1	48.6	59	68.6
Fiber	11.3	3	10.5	18	18	7	

diet formulations use purified ingredients. In contrast, chow (31% protein, 19% fat, and 50% carbohydrate calories by weight) consists of a proprietary blend of soybean meal, ground corn, wheat, fishmeal, soybean oil, whey, brewers yeast, and other vitamins and minerals.

DIET STUDY IN VIVO TREATMENT

On PND 28, mice fed custom diets (n=5) were gavaged with 0.1 ml of sesame oil (vehicle control) or 30 µg TCDD (Dow Chemical Company, Midland, MI) per kg body weight. Immature ovx mice were used to facilitate comparisons with other data sets, as well as minimize potential interactions with estrogens from maturing ovaries. The dose was chosen to elicit moderate hepatic effects while avoiding overt toxicity. Animals were sacrificed at 24 and 168 h post dose, weighed, and blood was collected via submandibular vein puncture before sacrifice. Tissue samples were removed, weighed, flash frozen in liquid nitrogen, and stored at -80°C.

GC-MS FATTY ACID METHYL ESTER (FAMES) HEPATIC LIPID PROFILING

Hepatic lipid analysis was performed as previously described [14]. Briefly, liver lipids were extracted by Folch method, dried down under nitrogen, converted to methyl esters and resuspended in hexane. Samples were separated and analyzed by GC-MS. 19:1n9 FFA and 19:0 TAG were added as extraction efficiency controls and 17:1n1 FAME (Nu-chek, Elysian, MN) was spiked in as a loading control. Data were analyzed with QuanLynx software and reported as μmol/g liver tissue. FA levels are based on peak areas from total ion chromatograms and μmol/g is obtained from a linear calculation of a calibration curve normalized to sample weight.

¹⁴C-OLEATE STUDIES

On PND 28, *Scd1* wild-type and null mice (n=5) were gavaged with sesame oil or 30 μ g/kg TCDD. 4 h before sacrifice at 120 h, mice were gavaged with 2 μ Ci ¹⁴C-oleate (0.1 mL of 20 μ Ci/mL in sesame oil; ARC 0297; American Radiolabeled Chemicals, St. Louis, MO).

Blood was collected from the saphenous vein at 0.5, 1 and 2 h after ¹⁴C-oleate gavage or the submandibular vein at 4 h. Tissues were harvested, weighed, flash frozen in liquid nitrogen, and stored at -80°C. Duodenum (~3.5 cm) and jejunum (~6 cm) sections were collected, flushed with phosphate buffered saline, and cut longitudinally. Intestinal epithelium were scraped into vials containing ~1.0 ml of TRIzol (Invitrogen, Carlsbad, CA), snap-frozen in liquid nitrogen, and stored at -80°C. For fecal pellet analysis, mice were gavaged with 2 μCi ¹⁴C-oleate 120 h post TCDD dose and all fecal matter was collected until 48 h post ¹⁴C-oleate gavage.

Liver, parametrial adipose, and muscle samples were homogenized in Folch solution (2:1 chloroform:methanol), 0.2 mL 40% methanol was added, vortexed, and centrifuged at 10,000 x g for 5 min. The organic phase was dried under nitrogen and resuspended in hexane. Samples were directly added to 10 mL liquid scintillation fluid (Safety-Solve, RPI, Mount Prospect, IL) and ¹⁴C levels counted on a Packard Tri Carb Liquid Scintillation Counter (PerkinElmer; Waltham, MA). Each sample was spiked with 17:1n1 FAME (Nu-chek; Elysian, MN) to control for extraction efficiency and quantified by GC-MS. Liver and adipose samples were normalized to sample weight x whole organ weight. Muscle samples were normalized to sample weight. For ¹⁴C levels in fecal pellets, ~30 μg dried pellets were ground to a fine powder with mortar and pestle and added to 10 mL liquid scintillation fluid. Fecal samples were normalized to total dry fecal pellet weight. For ¹⁴C levels in serum, 5 μL of serum was added directly to scintillation cocktail. Samples were normalized to the average body weight of each mouse.

QUANTITATIVE REAL TIME PCR (QRTPCR)

RNA was isolated from frozen liver samples and intestinal scrapings and QRTPCR expression was performed as previously described [8]. The copy number of each sample was standardized to the geometric mean of *Gapdh*, *Hprt*, and *Actb* to control for differences in RNA loading, quality, and cDNA synthesis [16]. Data are reported as the fold change of standardized treated over standardized vehicle values.

STATISTICAL ANALYSIS

Data were analyzed by ANOVA followed by Tukey's *post hoc* test in SAS V9.2 (SAS Institute, Cary, NC). Differences between treatment groups were considered significant when p<0.05.

RESULTS

BODY AND LIVER WEIGHTS

Mice fed fat adjusted diets had increased RLWs (Appendix B, Table 1) at 24 and 168 h following a single oral gavage of 30 μ g/kg TCDD. In contrast, mice fed carbohydrate adjusted diets exhibited increased RLW at 168 h only. There were no significant alterations in body weight or body weight gain throughout the study, suggesting treatment had no effect on feed consumption.

HEPATIC LIPID CONTENT IN MICE FED AN ISOCALORIC, FAT ADJUSTED DIET

Vehicle treated mice exhibited a dose-dependent decrease in TFAs primarily due to decreases in MUFAs (Table 4.2A). However, TCDD increased TFAs 1.4-, 1.7-, and 2.0-fold in mice fed 5%, 10%, and 15% fat diets, respectively (Figure 4.1A), compared to diet-matched vehicles. More specifically, absolute levels of SFA MUFA, and PUFA

Table 4.2. Hepatic Lipid Levels in Mice Fed Fat or Carbohydrate Adjusted Diets 168 h Post 30 μg/kg TCDD Dose

<u> </u>		V 9 100						
A. Adjusted Fat Diet		% Fat						
	Treatment	5%	10%	15%				
Total FA	Vehicle	135.6 ± 16	1.7 113.5 ± 9.5	96.3 ± 7.1††				
	TCDD	195.0 ± 14	$.0^*$ 194.3 \pm 16.4*	188.0 ± 15.6*				
Total SFA	Vehicle	40.9 ± 3.3	41.9 ± 3.8	36.6 ± 2.0				
	TCDD	53.9 ± 3.3	3*, ** 53.8 ± 1.4*	47.7 ± 3.8*				
Total MUFA	Vehicle	54.1 ± 12	$.1$ $31.0 \pm 4.8 \dagger \dagger$	$18.2 \pm 2.8 \dagger \dagger$				
	TCDD	92.6 ± 12	$.0^*, **$ $66.0 \pm 11.0^*$	$54.8 \pm 7.3\dagger$				
Total PUFA	Vehicle	33.2 ± 2.7	40.6 ± 2.6	41.5 ± 2.9				
	TCDD	47.7 ± 2.8	8*, **, † 74.4 ± 4.4*, **	85.5 ± 7.2*				
B. Adjusted Carl	bohydrate Diet	% Carbohydrate						
	- Treatment	50%	60%	70%				
Total FA	Vehicle	108.8 ± 24	.6 113.0 ± 4.7	135.9 ± 9.8				
	TCDD	156.8 ± 7.6	5^* 148.6 \pm 22.3**	193.0 ± 34.8*				
Total SFA	Vehicle	45.1 ± 7.7	74 46.7 ± 3.2	49.7 ± 4.9				
	TCDD	54.3 ± 2.7	$51.0 \pm 5.4**$	64.5 ± 8.7*				
Total MUFA	Vehicle	28.4 ± 11	$.6$ 31.0 ± 2.6	51.2 ± 6.1				
	TCDD	50.7 ± 5.5	5** 51.3 ± 12.8	79.8 ± 26.0*				
Total PUFA	Vehicle	35.4 ± 5.6	35.3 ± 3.3	35.0 ± 2.4				
	TCDD	51.8 ± 2.5	5* 46.3 ± 4.9*	48.7 ± 5.0*				

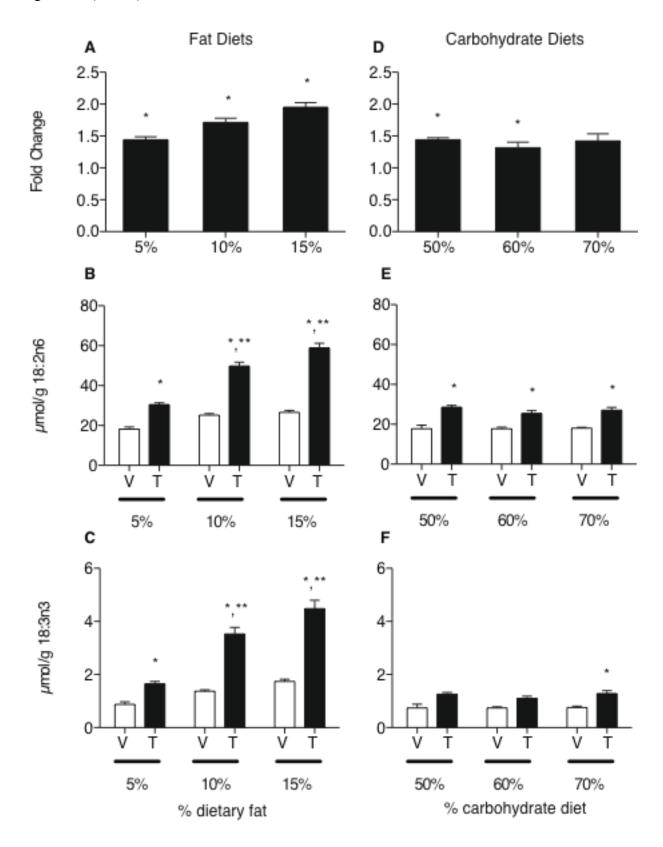

A. Adjusted Fat Diet : *p<0.05 for TCDD compared with Vehicle within a diet, **p<0.05 for TCDD 15% fat compared with TCDD 5% or 10%, †p<0.05 for TCDD 5% fat compared with TCDD 10%, ††p<0.05 for Vehicle 5% compared with Vehicle 10% or 15%,

Table 4.2 (cont'd)

n=5. **B. Adjusted Carbohydrate Diet:** * p<0.05 for TCDD compared with Vehicle within a diet,** p<0.05 for TCDD 70% carbohydrate compared with TCDD 50% or 60% carbohydrate, n=5.

Figure 4.1. Hepatic absolute and essential fatty levels in mice fed increasing fat or carbohydrate diets treated with sesame oil vehicle (V) or 30 μg/kg TCDD (T) for 168 h. (A-C) 5%, 10%, and 15% fat diet fed mice, (A) total fatty acids (TFA), (B) α-linoleic acid (18:2n6), and (C) α-linolenic acid (18:3n3) levels. * p<0.05 for TCDD compared with Vehicle within a diet, ** p<0.05 for TCDD 15% fat or 10% fat compared with TCDD 5% fat. (D-F) 50%, 60%, and 70% carbohydrate diet fed mice, (D) TFAs, (E) 18:2n6, (F) 18:3n3. * p<0.05 for TCDD compared with Vehicle within a diet; ** p<0.05 for TCDD 70% carbohydrate compared with TCDD 50% carbohydrate. (A-F) Bars represent mean ± standard error of the mean (SEM), n=5.

Figure 4.1 (cont'd)

increased with palmitic (16:0) and oleic (18:1n9) acids representing 80-90% of all hepatic SFAs and MUFAs, respectively (Table B.2). Note that palmitic and oleic acids represent >66% and >98% of dietary SFAs and MUFAs, respectively, in the fat adjusted diets (Table B.4A), with absorption efficiencies of >90% [17].

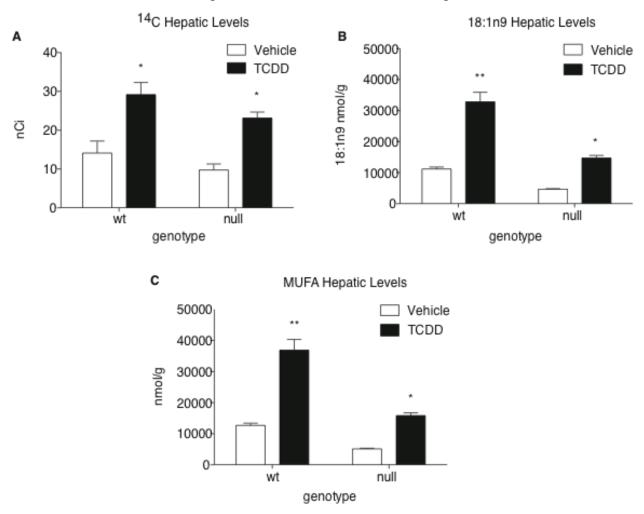
Hepatic PUFAs also exhibited a dietary fat dose-dependent increase (Table 4.2A) primarily due to linoleic acid (18:2n6) accumulation (Figure 4.1B). 18:2n6, which represents ~65% of all hepatic PUFAs, is an essential FA that can only be acquired from the diet with a reported absorption efficiency of >95% [17]. α-Linolenic acid (18:3n3), another dietary essential FA, exhibited similar hepatic increases with increasing dietary fat content that was further induced by TCDD (Figure 4.1C). 18:2n6 and 18:3n3 represent >99% of the PUFA content in isocaloric, fat adjusted diets (Table B.4A). These results suggest that AhR activation enhances dietary fat processing and/or transport that contributes to TCDD elicited hepatic steatosis.

HEPATIC LIPID CONTENT IN MICE FED A CONSTANT FAT, CARBOHYDRATE ADJUSTED DIET

Mice fed 50%, 60%, or 70% carbohydrate diets did not exhibit a dose-dependent increase in hepatic TFA following TCDD treatment. TCDD induced TFAs ~1.4-fold across all carbohydrate adjusted diets (Figure 4.1D). Absolute SFA and MUFA levels increased 1.3- and 1.6-fold, respectively, in mice fed the 70% carbohydrate diet compared to controls (Table 4.2B). 16:0, 18:1n9, and 18:2n6 were the predominant hepatic SFA, MUFA, and PUFA species, respectively, similar to the composition in mice fed fat adjusted diets (Table B.4). However, 18:2n6 and 18:3n3 levels, the essential dietary FAs, remained constant across TCDD treated mice on carbohydrate diets (Figure 4.1E-F), suggesting dietary carbohydrate is not a significant contributor to AhR-mediated steatosis.

¹⁴C-OLEATE STUDIES

Lipid accumulation in the liver was investigated in *Scd1* wild-type and null mice gavaged with 2 μCi ¹⁴C-oleate 5 days post-dose with 30 μg/kg TCDD. Scd1 performs the rate-limiting step in MUFA synthesis. Therefore, null mice are incapable of desaturating 18:0 to 18:1n9, yet 18:1n9 is still available via the diet (Table B.4). ¹⁴C-levels in hepatic lipid extracts increased 2-and 2.4-fold in TCDD treated wild-type and *Scd1* null mice, respectively (Figure 4.2A). This increase is consistent with the ~2-fold oleate increase in mice fed fat or carbohydrate adjusted diets (Appendix B Tables 2 and 4), and the ~3-fold increase in 18:1n9 levels in TCDD-treated Scd1 wild-type and null mice (Figure 4.2B) [14]. The absorption efficiency of oleate is reported to be >95% efficient [17]. Furthermore, oleate represents >90% of total MUFAs in treated mouse livers (Figure 4.2C) [14]. TCDD increased serum (1.4-fold) and muscle (1.2-fold) and decreased adipose (-1.3-fold) and stool (-1.5-fold) ¹⁴C levels, although statistical significance was not achieved (Figure B.1A-D).


DIFFERENTIAL INTESTINAL AND HEPATIC GENE EXPRESSION

To further examine the effect of AhR activation on dietary lipid uptake gene expression, intestinal and hepatic mRNA was examined. Of the genes examined, >80% contained a putative, functional DRE (matrix similarity score > 0.847) and/or had hepatic AhR enrichment in ChIP-chip analysis (Table 4.3) [6, 15].

Dietary FA (>16C) hydrolyzed from TAG by gastric and pancreatic lipases in the intestinal lumen are actively transported into enterocytes before export into the lymphatic and systemic circulation [18]. In the duodenum, TCDD induced *Ldlr* (2.3-fold), *Cd36* (2.7-fold), and *Slc27a4* (1.4-fold), as well as *Fabp1* (1.4-fold), and *Fabp4* (1.4-fold) (Table 4.3). Although implicated in

Figure 4.2. Hepatic lipid levels in Scd1 wild-type (wt) and null mice 120 h post-dose with 30 μ g/kg TCDD dose.

(A) 14 C-levels were measured in lipid extracts by liquid scintillation counting after gavage with 2 μ Ci 14 C-oleate 4 h prior to sacrifice. GC-MS analysis of hepatic oleate (18:1n9) (**B**) and monounsaturated fatty acid (**C**) levels (expressed in nmol/g) in *Scd1* wild-type and null mice 168 h after oral gavage with 30 μ g/kg TCDD [14]. * p<0.05 for TCDD compared with Vehicle, ** p<0.05 for *Scd1* wt TCDD compared with *Scd1* null TCDD. Bars represent mean \pm SEM, n=5.

mitochondrial β -oxidation [19, 20] and insulin sensing [21], Slc27a1 expression (2.3-fold in duodenum, -5.8-fold in jejunum) occurs primarily in muscle and adipose tissue making its role in other tissues uncertain.

Endothelial lipases hydrolyze serum lipids absorbed by the intestine. The resulting products are taken up by the liver via facilitated transport or receptor-mediated endocytosis. TCDD induced hepatic long-chain FA uptake family members *Cd36* (4.4-fold), *Slc27a3* (2.7-fold), *Slc27a4* (3.0-fold), and *Ldlr* (3.2-fold) (Table 4.3). Hydrolytic cleavage of TAG by cytosolic lipases further adds FAs to the hepatic pool. TCDD induced *Lpl* (3.2-fold), *Clps* (2.6-fold), *Pnlprp1* (3.7-fold), and *Mgll* (1.4-fold), but repressed *Pnpla3* (3.3-fold) (Table 4.3). Interestingly, sequence variations in *PNPLA3* are associated with hepatic TAG content and NAFLD in humans [22].

Intracellular FAs are directed to TAG biosynthetic and β -oxidation pathways by Fabps. Fabp1 and 4 were induced 2.9- and 1.4-fold, respectively. However, TCDD repressed hepatic mitochondrial acyl-CoA synthetase genes (Acsm1-4 and Acsl1, 3-4, repressed 1.3 to 2.3-fold) that activate FAs for transport into the inner membrane space for subsequent β -oxidation (Table 4.3). These gene expression changes are consistent with the reported inhibition of mitochondrial β -oxidation by TCDD [10, 13]. Furthermore, TCDD induced the expression of hepatic triglyceride biosynthesis genes (Mogat1, Mogat2, Dgat1, and Dgat2 induced 3.6-, 3.0-, 1.6-, and 1.3-fold, respectively), consistent with hepatic TAG accumulation [9, 14].

Hepatic differential gene expression is also consistent with TCDD elicited disruption of carbohydrate catabolism (Table 4.3). TCDD induced hexokinase (*Hk3*) 2.2-fold, which catalyzes the irreversible phosphorylation of glucose to glucose-6-phosphate (G6P). In contrast, genes involved in gluconeogenesis (*Pcx* -1.3-fold, *Pck1* -2.0-fold, *G6pc* -2.7-fold) and glycogen

Table 4.3. DREs¹ and Regions of AhR Enrichment² in TCDD Responsive Genes Associated with Lipid and Carbohydrate Transport and Metabolism.

Gene ID	Gene Symbol	Liver	Duodenum	Jejunum	# of DREs ¹	ChIP peaks 2h ²	Function ³	Regulated by ³
Xenobiotic	c Metabolisn	1						
13076	Cyplal	5799*	222*	22.7*	7	4	xenobiotic metabolism	AhR
Fatty Acid and Triglyceride Synthesis								
14104	Fasn	-2.8*	NC	NC	4	1	fatty acid synthesis	SREBP, TR, LXR, cAMP, AMPK
153674	Acly	-2.6**	nd	nd	0	0	citrate metabolism	oxaloacetate, ATP
107476	Acaca	-1.4**	nd	nd	3	5	malonyl CoA acylation	glucagon
68393	Mogatl	3.6*	NC	NC	1	0		
233549	Mogat2	3.0*	NC	1.4*	4	3	triglyceride	DDAD CEDD
13350	Dgat1	2.0	1.4	1.6*	4	0	synthesis	PPAR, CEBP
67800	Dgat2	1.3	1.4	1.6	2	7		
Fatty Acid	l Transport							
238055	Apob	2.5*	NC	1.8*	2	0	VLDL and chylomicron assembly	APOBEC-1
16835	Ldlr	3.2*	2.3*	NC	2	4	lipoprotein uptake	LXR

Table 4.3 (cont'd)

	Symbol	Liver	Duodenum	Jejunum	# of DREs ¹	ChIP peaks 2h ²	Function ³	Regulated by ³
12491	Cd36	4.4*	2.7*	NC	0	1	fatty acid uptake	PPAR, CEBPα, AMPK
26457	Slc27a1	-2.9*	2.3*	-5.8†	2	0	mitochondrial β- oxidation	PPARα, PPARγ
26568	Slc27a3	2.7*	NC	NC	1	0	unknown	
26569	Slc27a4	3.0*	1.4†	1.4†	0	0	peroxisomal β- oxidation, CHOL-ester synthesis	PPARγ, SREBP1c
14080	Fabp1	2.9*	1.4*	1.7*	2	4	TAG synthesis, β-oxidation	PPARα, HNF4α
11770	Fabp4	1.4†	1.5	2.5	0	0	chylomicron assembly	cJun, PPARγ
117147	Acsm1	-2.0**	nd	nd	3	0	medium chain	
233799	Acsm2	-1.5**	nd	nd	0	0	fatty acid	
20216	Acsm3	-1.6**	nd	nd	2	0	transport (mitochondrial	acetyl-CoA,
233801	Acsm4	-1.2**	nd	nd	0	0	β -oxidation)	malonyl-CoA,
14081	Acsl1	-1.4**	nd	nd	6	5	long chain fatty	NADPH, NADH
74205	Acsl3	-2.3**	nd	nd	0	0	acid transport (mitochondrial	
50790	Acsl4	-1.3**	nd	nd	0	2	β -oxidation)	

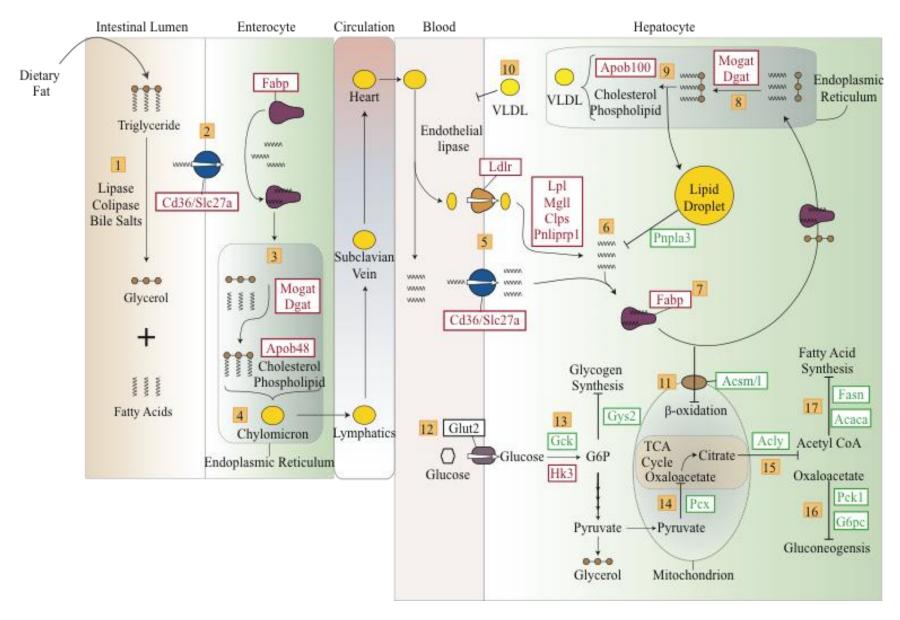
Table 4.3 (cont'd)

Gene ID	Gene Symbol	Liver	Duodenum	Jejunum	# of DREs ¹	ChIP peaks 2h ²	Function ³	Regulated by ³
Fatty Acid	l Metabolism	1						
16956	Lpl	3.2**	nd	nd	2	0	TAG metabolism	Insulin,
109791	Clps	2.6**	nd	nd	0	0	of lipoproteins &	glucagon,
18946	Pnliprp1	3.7**	nd	nd	0	0	chylomicrons	epinephrine
11343	Mgll	1.4**	nd	nd	9	0	monoglyceride metabolism	PPARα
116939	Pnpla3	-3.3**	nd	nd	0	1	TAG metabolism	
Glycolysis	/ Gluconeoge	enesis/ Glyco	ogen Synthesis					
18534	Pck1	-2.0**	nd	nd	0	1		insulin, glucagon, cAMP
14377	G6pc	-2.7**	nd	nd	1	5	gluconeogenesis	insulin, glucose
18563	Pcx	-1.3**	nd	nd	5	4		ATP
103988	Gck	-1.5**	nd	nd	3	2		
212032	Hk3	2.2**	nd	nd	1	0	glucose metabolism	G6P, insulin, glucagon
232493	Gys2	-1.5**	nd	nd	2	4	incus on sin	gracugon

^{*} p<0.05 or † p<0.01 for TCDD compared with Vehicle, QRT PCR data at 24h post-dose. QRTPCR data were analyzed by Dunnett's t-test, n-=5. ** for P1(t) \geq 0.999 for microarray data at 168 h post-dose [15]. DRE distributions were previously determined [15]. Only DREs satisfying a matrix similarity score of \geq 0.85 were included. AhR enrichment was previously determined [6]. Data from [19, 20, 51]. NC, no change; nd, not detected.

synthesis (*Gck*, -1.5-fold, *Gys2* -1.5-fold) were repressed. Similarly, genes that provide FA synthesis substrates, such as ATP-citrate lyase (*Acly* -2.6-fold) and acetyl-CoA carboxylase (*Acaca* -1.4-fold), and fatty acid synthetase activity (*Fasn*, -2.8-fold) were repressed (Table 4.3). These changes are consistent with the lack of a dose-dependent increase in hepatic TFAs through *de novo* lipogenesis in mice fed carbohydrate adjusted diets. Furthermore, reported changes in hepatic gene expression are consistent with hepatic TCDD reported in the same model [8].

DISCUSSION


Hepatic steatosis can result from the disruption of multiple processes involved in lipid and carbohydrate uptake, metabolism and efflux. Our studies provided evidence that dietary fat, rather than carbohydrate, is an important lipid source in TCDD-elicited steatosis in mice. Computational DRE search, ChIP-chip, and gene expression [6] data indicate AhR activation results in a coordinated response involving the digestive, circulatory and hepatic systems (Figure 4.3). This suggests any ligand (e.g., chemical, drug, endogenous substance, natural product) capable of activating the AhR may enhance dietary fat processing and transport, although continuous exposure may be required.

Increases in hepatic ¹⁴C levels clearly demonstrated diet as a source of lipids in TCDD-elicited hepatic steatosis. Previous studies have implicated the mobilization of peripheral adipose tissue based on increased serum 16:0, 18:1, 18:2, and 18:3 free FA levels and their abundance in adipose tissue [10-12]. However, these FAs also represent the primary lipids in chow (Table B.4). Furthermore, increases in oleate, the primary MUFA in rodent chow, and

Figure 4.3. AhR-mediated increase in dietary lipid in TCDD elicited hepatic steatosis.

Step 1 - Dietary fat is hydrolyzed in the intestinal lumen by pancreatic lipase, colipase, and bile salts into glycerol and free fatty acids (FFAs). Step 2 - FFA are transported into enterocytes by fatty acid transport proteins and sequestered by cytosolic fatty acid binding proteins (Fabps). Step 3 - Fabps deliver FAs to the endoplasmic reticulum (ER) where they are synthesized into triglycerides (TAGs) with glycerol. Step 4 - TAGs are packaged with apolipoprotein b48, cholesterol, and phospholipids into chylomicrons that are secreted into the systemic circulation. Step 5 - In the blood, endothelial lipases hydrolyze TAGs associated with chylomicrons and lipoproteins into FFAs and remnant lipoprotein products that are actively transported into hepatocytes via fatty acid transport proteins and receptor-mediated endocytosis. Step 6 - Intracellular lipoprotein TAGs are further hydrolyzed by cytosolic lipases into free fatty acids. Step 7 - Fabp binds FFA and transports them to the endoplasmic reticulum for TAG biosynthesis. Step 8 - In the ER, Mogat and Dgat synthesize TAG from FFA and glycerol. Step 9 - TAGs synthesized in the ER are stored in cytosolic lipid droplets and/or packaged with apolipoprotein b100 (Apob100), cholesterol, and phospholipids into very low-density lipoproteins (VLDL). Step 10 -TCDD is reported to inhibit VLDL secretion thus contributing to hepatic fat accumulation [25]. Step 11 - Acyl-CoA synthetase is required for FA acylation, transport into the mitochondria, and subsequent β-oxidation. Step 12 - Glucose is transported into hepatocytes via the insulin-independent glucose transporter Glut2. Step 13 - Glucose is phosphorylated to glucose-6-phosphate by glucokinase (Gck) or hexokinase (Hk3). Step 14 - The mitochondrial gluconeogenic enzyme pyruvate carboxylase (Pcx) converts pyruvate to oxaloacetate that can enter the TCA cycle for conversion to citrate. Step 15 – Cytosolic citrate is converted by ATP citrate lyase (Acly) to acetyl CoA and oxaloacetate. Step 16 - Oxaloacetate may be converted to glucose via gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PckI) and glucose 6 phosphatase (G6pc). Step 17 – Acetyl-CoA carboxylase (Acaca) converts acetyl-CoA to malonyl-CoA, a substrate for fatty acid synthesis that is catalyzed by fatty acid synthase (Fasn). Lines with arrowheads, reaction/pathway direction; lines with blunted ends, reaction/pathway inhibition; red boxes, induced gene expression; green boxes, repressed gene expression.

Figure 4.3 (cont'd)

hepatic ¹⁴C levels in Scd1 null mice provide further evidence of a role for dietary fat in AhR-mediated steatosis.

Complementary gene expression analysis is consistent with a role for the AhR in mediating hepatic accumulation of dietary lipids (Figure 4.3). Free FAs hydrolyzed by pancreatic and gastric lipases, colipases and bile salts passively diffuse (FA<16C) and are actively transported (FA>16C) into enterocytes by *Cd36* and *Slc27a4* that were induced by TCDD (steps 1-3). A role for Cd36 in intestinal lipid clearance and FFA uptake has been demonstrated in null mice [23], while Slc27a4 (Fatp4) is associated with obesity in humans [24]. Once intracellular, fatty acid binding proteins (Fabps) sequester FAs to prevent their transport back into the intestinal lumen and targets them to specific organelles [25]. TCDD inducible *Fabp1*, unlike other family members, binds two rather than one FA, as well as other small hydrophobic ligands [26], and is involved in intestinal FA processing and chylomicron maturation (step 4) [27, 28]. Although intestinal lipid absorption is highly efficient [17, 29], AhR activation may enhance intestinal lipid processing and efflux, consistent with TCDD induced increases in serum FFAs and TAGs [8].

The concurrent induction of several hepatic genes associated with lipid transport, processing and metabolism further promotes steatosis (Figure 4.3). *Ldlr*, *Cd36*, and *Slc27a* actively transport increased circulating FFAs, chylomicrons and lipoprotein remnants into the liver (step 5). TCDD also induced lipoprotein lipase (*Lpl*), monoglyceride lipase (*Mgll*), pancreatic lipase-related protein 1 (*Pnliprp1*), and pancreatic colipase (*Clps*) that hydrolyze intracellular lipoprotein remnants to further increase the intracellular FA pool (step 6). Induced *Fabp1* binds and sequesters intracellular FAs and targets them for TAG synthesis [30]. Mogat1/2 and Dgat1/2, induced by TCDD, then facilitate hepatic TAG biosynthesis (steps 7-8). TAGs are

stored in lipid droplets (step 9), or incorporated into VLDLs (step 10). However, TCDD inhibits VLDL secretion (step 10) [13], consistent with AhR-mediated increases in hepatic TAG and vacuolization [14, 31].

Fabp1 also targets FAs for mitochondrial β-oxidation [30]. TCDD inhibits FA oxidation [10, 13] possibly by inhibiting transport into mitochondria, further adding to hepatic FA accumulation. More specifically, TCDD inhibits medium and long chain FA mitochondrial acyl-CoA synthetase gene expression (*Acsm1-4*, *Ascl1 and 3-4*) (step 11) that is required for transport across the mitochondrial matrix via carnitine for subsequent β-oxidation. Yet, TCDD induced ketone body accumulation *in vitro* [10], suggesting an intact carnitine pathway. Nonetheless, plasma ketones do not increase in response to TCDD exposure *in vivo* [32] and requires additional investigation.

The inability of carbohydrate diets to enhance hepatic steatosis appears to involve TCDD dysregulation of carbohydrate metabolism gene expression (step 12). For example, anabolic pathways typically dominate in fed animals, yet TCDD decreased glucokinase (*Gck*) and glycogen synthase (*Gsy2*), suggesting suppression of hepatic glycogen synthesis (step 13). Glucokinase is the predominant enzyme regulating hepatic glucose metabolism in response to nutritional states such as refeeding and insulin stimulation [33]. Although TCDD induced hexokinase (*Hk3*), this enzyme is expressed at low levels in hepatocytes, yet exhibits compensatory induction following glucokinase repression, as found in liver cirrhosis [34]. TCDD also inhibited mitochondrial pyruvate carboxylase (*Pcx*) that converts pyruvate into oxaloacetate, suggesting flux towards glycerol production to support hepatic TAG production leading to greater sequestration of hepatic FA. Metabolomic studies also report TCDD increases

hepatic glycerol levels [35] and that TCDD treatment prevents glycerol ketogenesis without affecting esterification to TAG [10].

TCDD suppressed phosphoenolpyruvate carboxykinase (PckI) and glucose-6 phosphatase (G6pc) expression, key regulators of gluconeogenesis (steps 14 and 16). These genes are commonly regulated by peroxisome proliferator-activated receptor γ (PPAR γ) coactivator 1 α (PGC-1 α) [36] that is functionally impaired by AhR-mediated induction of TiPARP (TCDD-inducible poly(ADP-ribose) polymerase 7, PARP7) [37]. TCDD also repressed ATP-citrate lyase (Acly), which converts citrate to oxaloacetate and acetyl-CoA (step 15). Acetyl CoA is critical for de novo FA synthesis by Fasn (step 17), which was dose-dependently repressed by TCDD, TCDF, and PCB126 [38].

These gene expression changes are consistent with TCDD-mediated inhibition of gluconeogenesis [39], *de novo* lipogenesis [40] and FA oxidation, and may be partially explained by AhR interactions with other signaling pathways involved in hepatic glucose and FA metabolism regulation including PPARs (Table 4.3), Pgc1 α [37], Forkhead box O1 (Foxo1) [41] and hepatocyte nuclear factor 4, alpha (HNF4 α) [19]. Evidence suggests AhR and PPAR signaling pathways interact [42-44] to alter PPAR expression [45]. Other studies identified overrepresentation of PPAR and HNF4 α binding motifs in ChIP-chip regions of AhR enrichment that lack DRE cores suggesting AhR binding to DNA independent of DREs [6, 7]. For example, AhR interacts with chicken ovalbumin upstream promoter transcription factor (COUP-TF) [46], and COUP-TF is reported to antagonize HNF4 α -mediated responses by binding to HNF4 α response elements [47]. Consequently, AhR-COUP-TF complexes binding to HNF4 α response elements may inhibit HNF4 α -regulated lipid transport and metabolism gene

expression and contribute to TCDD-elicited steatosis [6]. Interestingly, hepatic steatosis has been reported in HNF4 α null mice [48].

Collectively, our data indicate that TCDD-mediated hepatic steatosis involves enhanced uptake of dietary fat suggesting a novel endogenous role for the AhR. Other ligands including endogenous metabolites (indoles, tetrapyrroles, and arachidonic acid metabolites), and natural products (e.g. vegetable-, fruit-, and tea-derived indole and flavonoid metabolites) [49, 50] also activate the AhR providing a possible selective evolutionary advantage that optimizes fat absorption to maximize energy intake. Interactions with other nuclear receptors and transcription factors can further impact energy homeostasis and lipid metabolism, transport and deposition. However, persistent AhR activation in combination with the consumption of a high fat diet may also have adverse health implications for fatty liver and its associated diseases including NAFLD, metabolic syndrome and diabetes. Preliminary studies indicate AhR-activation increases TFA levels in human primary hepatocytes (data not shown), although further studies are needed to elucidate species-specific differences in AhR-mediated effects including steatosis.

FUNDING

This work was supported by the National Institute of Environmental Health Sciences Superfund Research Program (P42ES04911).

APPENDIX B

APPENDIX B

Table B.1. Terminal Body Weight, Body Weight Gain, Absolute Liver Weight, and Relative Liver Weight

1. Terminal Body Weight, Body Weight Gam, Absolute Liver Weight, and Relative Liver Weight						
Time (h)	% by weight	Treat- ment	Terminal Body Weight (g)	Body Weight Gain (g)	Liver Weight (g)	Relative Liver Weight
A. Fat	Adjusted	Diets				
	5%	Vehicle	14.26 ± 0.71	0.84 ± 0.57	0.82 ± 0.10	0.058 ± 0.005
	370	TCDD	14.70 ± 0.78	1.08 ± 0.41	1.04 ± 0.07	$0.071 \pm 0.002*$
24	10%	Vehicle	14.68 ± 0.66	1.20 ± 0.43	0.89 ± 0.06	0.060 ± 0.002
	1070	TCDD	14.68 ± 0.73	1.24 ± 0.22	0.99 ± 0.05	$0.067 \pm 0.002*$
	15%	Vehicle	14.92 ± 0.41	1.04 ± 0.21	0.87 ± 0.06	0.058 ± 0.004
	1370	TCDD	14.40 ± 0.60	0.70 ± 0.31	0.94 ± 0.05	$0.065 \pm 0.003*$
	5%	Vehicle	17.28 ± 0.87	3.50 ± 1.37	1.00 ± 0.09	0.058 ± 0.003
	3 70	TCDD	16.78 ± 1.13	3.30 ± 0.74	1.29 ± 0.11	$0.077 \pm 0.002*$
168	10%	Vehicle	15.88 ± 1.01	2.58 ± 0.89	0.84 ± 0.05	0.053 ± 0.001
	1070	TCDD	15.72 ± 0.61	2.02 ± 0.82	1.05 ± 0.08	$0.067 \pm 0.003*$
	15%	Vehicle	17.12 ± 0.90	3.56 ± 0.75	0.90 \pm 0.06	0.052 ± 0.002
		TCDD	17.14 ± 0.75	3.46 ± 0.33	1.14 ± 0.07	$0.067 \pm 0.004*$
B. Car	bohydrate	e Adjusted D	Piets			
	50%	Vehicle	16.02 ± 1.11	0.18 ± 0.13	0.86 ± 0.09	0.053 ± 0.004
	5070	TCDD	15.92 ± 0.35	0.12 ± 0.16	0.94 ± 0.02	0.059 ± 0.001
24	60%	Vehicle	16.22 ± 0.32	0.58 ± 0.37	0.89 ± 0.21	0.055 ± 0.012
	00 /0	TCDD	15.80 ± 0.66	0.10 ± 0.19	0.94 ± 0.10	0.060 ± 0.004
	70%	Vehicle	15.90 ± 0.49	0.52 ± 0.16	0.96 ± 0.04	0.060 ± 0.004

Appendix B, Table 1 Cont'd

Time (h)	% by weight	Treat- ment	Terminal Body Weight (g)	Body Weight Gain (g)	Liver Weight (g)	Relative Liver Weight
		TCDD	15.94 ± 0.47	0.56 ± 0.27	1.09 ± 0.12	0.068 ± 0.007
	50%	Vehicle	17.40 ± 0.60	1.96 ± 0.71	0.99 ± 0.08	0.057 ± 0.004
	3070	TCDD	17.34 ± 0.64	1.88 ± 0.42	1.14 ± 0.05	$0.066 \pm 0.002*$
168	60%	Vehicle	18.14 ± 1.01	2.30 ± 0.64	1.04 ± 0.08	0.058 ± 0.003
	0070	TCDD	17.06 ± 0.56	0.98 ± 0.64	1.14 ± 0.04	$0.067 \pm 0.001*$
	70%	Vehicle	18.38 ± 0.46	2.50 ± 0.84	1.11 ± 0.11	0.060 ± 0.005
	7070	TCDD	17.24 ± 0.51	1.54 ± 0.62	1.18 ± 0.12	0.068 ± 0.006

^{*} p<0.05 for TCDD vs. Vehicle within a diet.

Table B.2. Hepatic Lipid Levels (μ mol/g) in Fat Adjusted Diet-Fed Mice 168 h Post 30 μ g/kg TCDD Dose

	Treat- ment	5% Fat	10% Fat	15% Fat
Saturated Fatty Acids				
Palmitic acid (16:0)	Vehicle	27.50 ± 3.63	21.62 ± 1.97 †	17.59 ± 1.19†
	TCDD	33.79 ± 3.27*, **	$29.79 \pm 2.51*$	$24.94 \pm 3.27*$
Behenic acid (22:0)	Vehicle	0.26 ± 0.03	0.28 ± 0.03	0.30 ± 0.01
	TCDD	$0.15 \pm 0.01*$	$0.22 \pm 0.02*$	$0.23 \pm 0.01*$
Monounsaturated Fatty	Acids			
Palmitoleic acid	Vehicle	5.69 ± 1.88	2.58 ± 0.31 †	$1.31 \pm 0.36 \dagger$
(16:1n7)	TCDD	$7.50 \pm 1.54**$	5.42 ± 1.20*	$3.91 \pm 1.02*$
Oleic acid (18:1n9)	Vehicle	47.41 ± 10.19**	$27.71 \pm 4.37**$	16.42 ± 2.52
	TCDD	81.90 ± 10.29*, **,	†† 58.30 ± 9.52*, **	$48.95 \pm 6.10*$
Eicosenoic acid	Vehicle	0.61 ± 0.13	0.37 ± 0.08 †	$0.23 \pm 0.05 \dagger$
(20:1n9)	TCDD	2.72 ± 0.34*, **	1.87 ± 0.35*, ††	1.66 ± 0.25*
Polyunsaturated Fatty	Acids			
α-Linolenic acid	Vehicle	0.88 ± 0.21	$1.37 \pm 0.12 \dagger$	$1.74 \pm 0.19*$
(18:3n3)	TCDD	1.65 ± 0.19*, **,	*† 3.53 ± 0.55*	$4.48 \pm 0.70*$
Eicosatrienoic acid	Vehicle	0.04 ± 0.01	0.06 ± 0.01 †	0.07 ± 0.01 †
(20:3n3)	TCDD	$0.25 \pm 0.03*, **, *$	*† 0.53 ± 0.07*	$0.65 \pm 0.07*$
Eicosatetraenoic acid	Vehicle	0.06 ± 0.02	0.08 ± 0.02	0.09 ± 0.01
(20:4n3)	TCDD	0.17 ± 0.03**, ††	$0.42 \pm 0.03*$	$0.61 \pm 0.16*$
Timnodonic acid	Vehicle	0.40 ± 0.04	0.08 ± 0.02	0.40 ± 0.03
(20:5n3)	TCDD	0.30 ± 0.03*, ††	$0.42 \pm 0.02*$	$0.76 \pm 0.15*$
Docosapentaenoic acid	Vehicle	0.24 ± 0.03	0.41 ± 0.02	0.31 ± 0.06
(22:5n3)	TCDD	$0.68 \pm 0.04*, **, *$	$0.60 \pm 0.02*$	$1.49 \pm 0.33*$

Table B.2 (cont'd)

	Treat- ment	5% Fat	10% Fat	15% Fat
Linoleic acid (18:2n6)	Vehicle	18.21 ± 2.46	$25.19 \pm 1.80 \dagger$	26.55 ± 2.25 †
	TCDD	30.50 ± 1.90*, **, ††	49.83 ± 4.24*, **	58.89 ± 5.18*
Eicosadienoic acid	Vehicle	0.45 ± 0.02	$0.49 \pm 0.05 \dagger$	0.49 ± 0.04
(20:2n6)	TCDD	1.43 ± 0.1*, **, ††	2.42 ± 0.28*, **	$2.94 \pm 0.18*$
Dihomo-Y-linolenic	Vehicle	1.33 ± 0.02	1.08 ± 0.14	0.98 ± 0.08
acid (20:3n6)	TCDD	2.24 ± 0.1*, **, ††	3.26 ± 0.10*, **	$3.98 \pm 0.48*$
Arachidonic acid	Vehicle	11.29 ± 0.39	11.27 ± 0.75	10.59 ± 0.75
(20:4n6)	TCDD	9.71 ± 1.22*, ††	11.61 ± 0.71	10.62 ± 0.11

The following fatty acids were detected, but not significantly altered by TCDD: adrenic acid (22:4n6), nervonic acid (24:1n9), stearic acid (18:0), and behenic acid (22:0). Data are reported as μg fatty acid methyl ester/g liver tissue. N=5, * p<0.05 for TCDD vs. Vehicle within a diet, ** p<0.05 for TCDD 15% fat vs. TCDD 5% or 10%, † p<0.05 for Vehicle 5% fat vs. Vehicle 10% or 15%, †† p<0.05 for TCDD 5% fat vs. TCDD 10%.

Table B.3. Lipid Composition (µmol) in Fat Adjusted (A) and Carbohydrate Adjusted (B)

Diets

A. Fat Diets		% Fat	
	5%	10%	15%
Saturated Fatty Acids			
Palmitic Acid (16:0)	23.91 ± 3.01	43.92 ± 4.44	59.18 <u>+</u> 9.10
Stearic Acid (18:0)	9.18 <u>+</u> 1.09	18.39 <u>+</u> 1.71	26.34 ± 4.08
Arachidic Acid (20:0)	0.54 ± 0.06	1.72 ± 0.12	1.72 ± 0.26
Behenic Acid (22:0)	0.50 ± 0.05	1.05 ± 0.11	1.59 ± 0.24
Lignoceric Acid (24:0)	0.11 ± 0.02	0.23 ± 0.03	0.36 ± 0.06
Monounsaturated Fatty Ac	ids		
Palmitoleic Acid (16:1)	0.19 ± 0.02	0.33 ± 0.04	0.48 ± 0.08
Oleic Acid (18:1)	39.17 ± 4.76	80.08 ± 6.81	113.47 <u>+</u> 16.74
Gondoic Acid (20:1)	0.24 ± 0.03	0.51 ± 0.06	0.76 ± 0.12
Polyunsaturated Fatty Acid	ls		
Linoleic Acid (18:2n6)	94.51 <u>+</u> 11.47	7 180.39 <u>+</u> 16.52	248.93 <u>+</u> 37.16
α-Linolenic Acid (18:3n3)	16.95 ± 2.10	47.74 ± 3.00	47.74 <u>+</u> 7.10

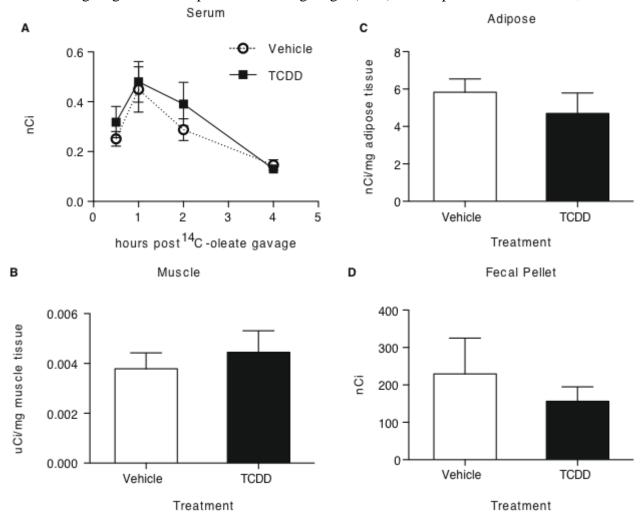
Table B.3 (cont'd)

B. Carbohydrate Diets	% Carbohydrate					
	50%	o O	60%	60%))
Saturated Fatty Acids						
Palmitic Acid (16:0)	28.33 <u>+</u>	2.48	31.47 <u>+</u>	1.42	26.01 <u>+</u>	5.73
Stearic Acid (18:0)	12.25 <u>+</u>	0.95	11.47 <u>+</u>	0.1	11.47 <u>+</u>	1.91
Arachidic Acid (20:0)	0.81 <u>+</u>	0.06	0.76 <u>+</u>	0.04	0.76 <u>+</u>	0.09
Behenic Acid (22:0)	0.78 <u>+</u>	0.05	0.75 <u>+</u>	0.08	0.75 <u>+</u>	0.06
Lignoceric Acid (24:0)	0.22 <u>+</u>	0.03	0.19 <u>+</u>	0.02	0.19 <u>+</u>	0.03
Monounsaturated Fatty A	eids					
Palmitoleic Acid (16:1)	0.25 <u>+</u>	0.03	0.27 <u>+</u>	0.00	0.23 <u>+</u>	0.04
Oleic Acid (18:1)	53.01 <u>+</u>	4.22	56.91 <u>+</u>	1.41	46.48 <u>+</u>	1.82
Gondoic Acid (20:1)	0.34 <u>+</u>	0.03	0.33 <u>+</u>	0.02	0.33 <u>+</u>	0.04
Polyunsaturated Fatty Acid	ds					
Linoleic Acid (18:2n6)	115.13 <u>+</u>	9.59	126.43 <u>+</u>	2.75	106.73 <u>+</u>	20.02
α-Linolenic Acid (18:3n3)	19.86 <u>+</u>	1.63	21.81 <u>+</u>	0.23	18.54 <u>+</u>	3.44

¹GC-MS-FAMES hepatic lipid profiling was performed as described in the materials and methods from 100 mg ground rodent diet.

Table B.4. Hepatic Lipid Levels (μmol/g) in Carbohydrate Adjusted Diet-Fed Mice 168 h Post 30 μg/kg TCDD Dose

. <u></u>	Treatment	50% Carbohydrate	60% Carbohydrate	70% Carbohydrate				
Saturated Fatty	Acids							
Palmitic acid	Vehicle	22.64 ± 11.18	24.46 ± 1.86	26.92 ± 3.21				
(16:0)	TCDD	26.67 ⁺ 1.04**	25.83 ± 3.67**	35.72 [±] 7.18*				
Stearic acid	Vehicle	14.29 ± 1.63	14.69 ± 1.10	15.04 ± 1.20				
(18:0)	TCDD	17.05 ± 1.27	15.97 ± 1.49	19.14 ± 2.24*				
Lignoceric acid (24:0)	Vehicle	7.80 ± 0.90	7.18 ± 0.89	7.32 ± 1.10				
	TCDD	10.20 ± 0.59*	8.86 ± 1.10	9.34 ± 0.85*				
Monounsaturat	ted Fatty Acids							
Palmitoleic	Vehicle	2.72 ± 1.16	2.71 ± 0.42	4.00 ± 0.54				
acid (16:1n7)	TCDD	$4.26 \pm 0.62**$	4.03 ± 1.23*, **	$6.72 \pm 2.15*$				
Oleic acid	Vehicle	24.80 ± 10.31	27.40 ± 2.37	45.80 ± 5.50				
(18:1n9)	TCDD	44.68 ± 4.71**	45.51 ± 11.31**	70.95 ± 23.23*				
Eicosenoic	Vehicle	0.75 ± 0.16	0.43 ± 0.05	0.89 ± 0.20				
acid (20:1n9)	TCDD	1.18 ± 0.17*	1.24 ± 0.30*	1.67 ± 0.65*				
Polyunsaturate	Polyunsaturated Fatty Acids							
α-Linolenic acid (18:3n3)	Vehicle	0.74 ± 0.32	0.74 ± 0.74	0.75 ± 0.11				
	TCDD	$1.26 \pm 0.14*$	1.10 ± 1.10	1.28 ± 0.26*				
Eicosatrienoic	Vehicle	0.05 ± 0.02	0.05 ± 0.05	0.05 ± 0.01				
acid (20:3n3)	TCDD	$0.18 \pm 0.03*$	$0.16 \pm 0.16*$	$0.13 \pm 0.02*$				


Table B.4 (cont'd)

	Treatment	50% Carbohydrate	60% Carbohydrate	70% Carbohydrate
Timnodonic	Vehicle	$0.42 \pm 0.12*$	$0.33 \pm 0.33*$	0.34 ± 0.02
acid (20:5n3)	TCDD	0.46 ± 0.03	0.36 ± 0.36	$0.42 \pm 0.06*$
Linoleic acid	Vehicle	17.76 ± 4.13	17.79 ± 17.79	18.07 ± 0.97
(18:2n6)	TCDD	$28.55 \pm 2.18*$	25.47 ± 25.47*	27.06 ± 3.28*
Eicosadienoic	Vehicle	0.48 ± 0.09	0.48 ± 0.48	0.59 ± 0.05
acid (20:2n6)	TCDD	$1.11 \pm 0.13*$	$1.01 \pm 1.01*$	$0.94 \pm 0.14*$
Dihomo-Y- linolenic acid	Vehicle	1.23 ± 0.21	1.26 ± 1.26	1.49 ± 0.13
(20:3n6)	TCDD	$2.46 \pm 0.13*$	$2.32 \pm 2.32*$	$2.43 \pm 0.36*$
Arachidonic Acid (20:4n6)	Vehicle	14.03 ± 1.30	13.97 ± 13.97	13.14 ± 1.52
	TCDD	16.71 ± 0.73*	14.88 ⁺ 14.88	15.40 ⁺ 1.42

The following fatty acids were detected, but not significantly altered by TCDD: adrenic acid (22:4n6), nervonic acid (24:1n9), behenic acid (22:0), docosapentaenoic acid (22:5n3), and eicosatetraenoic acid (20:4n3). Data are reported as μ g fatty acid methyl ester/g liver tissue. N=5, * p<0.05 for TCDD vs. Vehicle within a diet, ** p<0.05 for TCDD 70% carbohydrate vs. TCDD 50% or 60% carbohydrate.

Figure B.1. 14 C levels in Scd1 wild-type (wt) and null mice gavaged with 30 µg/kg TCDD for 120 h (A-C) or 168 h (D).

¹⁴C levels were measured from (**A**) serum, (**B**) muscle, and (**C**) adipose 4 h after gavage with 2 μCi ¹⁴C-oleate. (**D**) Fecal ¹⁴C levels were measured from animals gavaged with 2 μCi ¹⁴C-oleate 120 h post TCDD dose. Total ¹⁴C levels were measured from all fecal matter excreted at ¹⁴C-oleate gavage until 48 h post ¹⁴C-oleate gavage. (**A-D**) Bars represent mean \pm SEM, n=5.

REFERENCES

REFERENCES

- 1. Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B: Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. *Toxicol Sci* 2011, **124**:1-22.
- 2. Lee CC, Yao YJ, Chen HL, Guo YL, Su HJ: Fatty liver and hepatic function for residents with markedly high serum PCDD/Fs levels in Taiwan. *J Toxicol Environ Health A* 2006, **69:**367-380.
- 3. Swedenborg E, Ruegg J, Makela S, Pongratz I: **Endocrine disruptive chemicals:** mechanisms of action and involvement in metabolic disorders. *J Mol Endocrinol* 2009, **43:**1-10.
- 4. Hankinson O: **The aryl hydrocarbon receptor complex.** *Annu Rev Pharmacol Toxicol* 1995, **35:**307-340.
- 5. Pollenz RS, Sattler CA, Poland A: The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. *Mol Pharmacol* 1994, **45**:428-438.
- 6. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR: Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver. BMC Genomics 2011, 12:365.
- 7. Murray IA, Morales JL, Flaveny CA, Dinatale BC, Chiaro C, Gowdahalli K, Amin S, Perdew GH: Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. *Mol Pharmacol* 2010, **77:**247-254.
- 8. Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, Mendrick DL, Zacharewski TR: Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. *Toxicol Sci* 2006, 94:398-416.
- 9. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, Sharratt B, Harkema JR, Zacharewski TR: **PCB153-elicited hepatic responses in the immature, ovariectomized C57BL/6 mice: comparative toxicogenomic effects of dioxin and non-dioxin-like ligands.** *Toxicol Appl Pharmacol* 2010, **243:**359-371.
- 10. Lakshman MR, Ghosh P, Chirtel SJ: **Mechanism of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin on intermediary metabolism in the rat.** *J Pharmacol Exp Ther* 1991, **258**:317-319.

- 11. Pohjanvirta R, Sankari S, Kulju T, Naukkarinen A, Ylinen M, Tuomisto J: **Studies on the role of lipid peroxidation in the acute toxicity of TCDD in rats.** *Pharmacol Toxicol* 1990, **66:**399-408.
- 12. Albro PW, Corbett JT, Harris M, Lawson LD: **Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on lipid profiles in tissue of the Fischer rat.** *Chem Biol Interact* 1978, **23:**315-330.
- 13. Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, Xie W: A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. *Gastroenterology* 2010, **139**:653-663.
- 14. Angrish MM, Jones AD, Harkema JR, Zacharewski TR: **Aryl Hydrocarbon Receptor-Mediated Induction of Stearoyl-CoA Desaturase 1 Alters Hepatic Fatty Acid Composition in TCDD-Elicited Steatosis.** *Toxicol Sci* 2011, **124:**299-310.
- 15. Dere E, Forgacs AL, Zacharewski TR, Burgoon LD: **Genome-wide computational** analysis of dioxin response element location and distribution in the human, mouse, and rat genomes. *Chem Res Toxicol* 2011, **24:**494-504.
- 16. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* 2002, 3:RESEARCH0034.
- 17. Labonte ED, Camarota LM, Rojas JC, Jandacek RJ, Gilham DE, Davies JP, Ioannou YA, Tso P, Hui DY, Howles PN: **Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc111-/mice.** *Am J Physiol Gastrointest Liver Physiol* 2008, **295:**G776-783.
- 18. Iqbal J, Hussain MM: **Intestinal lipid absorption.** *Am J Physiol Endocrinol Metab* 2009, **296:**E1183-1194.
- 19. Hardwick JP, Osei-Hyiaman D, Wiland H, Abdelmegeed MA, Song BJ: **PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease.** *PPAR Res* 2009, **2009**:952734.
- 20. Watkins PA: Very-long-chain acyl-CoA synthetases. J Biol Chem 2008, 283:1773-1777.
- 21. Wu Q, Ortegon AM, Tsang B, Doege H, Feingold KR, Stahl A: **FATP1 is an insulinsensitive fatty acid transporter involved in diet-induced obesity.** *Mol Cell Biol* 2006, **26:**3455-3467.
- 22. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH: **Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.** *Nat Genet* 2008, **40:**1461-1465.

- 23. Drover VA, Ajmal M, Nassir F, Davidson NO, Nauli AM, Sahoo D, Tso P, Abumrad NA: **CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood.** *J Clin Invest* 2005, **115:**1290-1297.
- 24. Gertow K, Pietilainen KH, Yki-Jarvinen H, Kaprio J, Rissanen A, Eriksson P, Hamsten A, Fisher RM: Expression of fatty-acid-handling proteins in human adipose tissue in relation to obesity and insulin resistance. *Diabetologia* 2004, 47:1118-1125.
- 25. Smathers RL, Petersen DR: The human fatty acid-binding protein family: evolutionary divergences and functions. *Hum Genomics* 2011, **5:**170-191.
- 26. Storch J, Thumser AE: **Tissue-specific Functions in the Fatty Acid-binding Protein Family.** *J Biol Chem* 2010, **285:**32679-32683.
- 27. Storch J, McDermott L: **Structural and functional analysis of fatty acid-binding proteins.** *J Lipid Res* 2009, **50 Suppl:**S126-131.
- 28. Neeli I, Siddiqi SA, Siddiqi S, Mahan J, Lagakos WS, Binas B, Gheyi T, Storch J, Mansbach CM, 2nd: Liver fatty acid-binding protein initiates budding of prechylomicron transport vesicles from intestinal endoplasmic reticulum. *J Biol Chem* 2007, 282:17974-17984.
- 29. Simon T, Cook VR, Rao A, Weinberg RB: Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. *J Lipid Res* 2011, **52**:1984-1994.
- 30. Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB, Schroeder F: Liver fatty acid-binding protein and obesity. *J Nutr Biochem* 2010, 21:1015-1032.
- 31. Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM: **The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1.** *J Biol Chem* 2000, **275:**30132-30138.
- 32. Pohjanvirta R, Tuomisto J: **Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models.** *Pharmacol Rev* 1994, **46:**483-549.
- 33. Agius L: Glucokinase and molecular aspects of liver glycogen metabolism. *Biochem J* 2008, **414:**1-18.
- 34. Lowes W, Walker M, Alberti KG, Agius L: **Hexokinase isoenzymes in normal and cirrhotic human liver: suppression of glucokinase in cirrhosis.** *Biochim Biophys Acta* 1998, **1379**:134-142.
- 35. Forgacs AL, Kent MN, Makley MK, Mets B, Delraso N, Jahns GL, Burgoon LD, Reo NV, Zacharewski TR: Comparative Metabolomic and Genomic Analyses of TCDD-Elicited Metabolic Disruption in Mouse and Rat Liver. *Toxicol Sci* 2011.

- 36. Burgess SC, Leone TC, Wende AR, Croce MA, Chen Z, Sherry AD, Malloy CR, Finck BN: Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-deficient mice. *J Biol Chem* 2006, 281:19000-19008.
- 37. Diani-Moore S, Ram P, Li X, Mondal P, Youn DY, Sauve AA, Rifkind AB: Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. *J Biol Chem* 2010, 285:38801-38810.
- 38. Kopec AK, D'Souza ML, Mets BD, Burgoon LD, Reese SE, Archer KJ, Potter D, Tashiro C, Sharratt B, Harkema JR, Zacharewski TR: Non-additive hepatic gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) co-treatment in C57BL/6 mice. Toxicol Appl Pharmacol 2011.
- 39. Viluksela M, Unkila M, Pohjanvirta R, Tuomisto JT, Stahl BU, Rozman KK, Tuomisto J: Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on liver phosphoenolpyruvate carboxykinase (PEPCK) activity, glucose homeostasis and plasma amino acid concentrations in the most TCDD-susceptible and the most TCDD-resistant rat strains. *Arch Toxicol* 1999, 73:323-336.
- 40. Lakshman MR, Campbell BS, Chirtel SJ, Ekarohita N: **Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on de novo fatty acid and cholesterol synthesis in the rat.** *Lipids* 1988, **23:**904-906.
- 41. Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D: Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 2007, 6:208-216.
- 42. Liu PC, Matsumura F: **Differential effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the "adipose- type" and "brain-type" glucose transporters in mice.** *Mol Pharmacol* 1995, **47:**65-73.
- 43. Remillard RB, Bunce NJ: Linking dioxins to diabetes: epidemiology and biologic plausibility. *Environ Health Perspect* 2002, **110**:853-858.
- 44. Alexander DL, Ganem LG, Fernandez-Salguero P, Gonzalez F, Jefcoate CR: Arylhydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. *J Cell Sci* 1998, 111 (Pt 22):3311-3322.
- 45. Wang C, Xu CX, Krager SL, Bottum KM, Liao DF, Tischkau SA: **Aryl Hydrocarbon Receptor Deficiency Enhances Insulin Sensitivity and Reduces PPAR-alpha Pathway Activity in Mice.** *Environ Health Perspect* 2011, **119:**1739-1744.

- 46. Klinge CM, Kaur K, Swanson HI: The aryl hydrocarbon receptor interacts with estrogen receptor alpha and orphan receptors COUP-TFI and ERRalpha1. Arch Biochem Biophys 2000, 373:163-174.
- 47. Mietus-Snyder M, Sladek FM, Ginsburg GS, Kuo CF, Ladias JA, Darnell JE, Jr., Karathanasis SK: **Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells.** *Mol Cell Biol* 1992, **12:**1708-1718.
- 48. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ: **Hepatocyte nuclear factor 4alpha** (nuclear receptor **2A1**) is essential for maintenance of hepatic gene expression and lipid homeostasis. *Mol Cell Biol* 2001, **21:**1393-1403.
- 49. Denison MS, Nagy SR: Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. *Annu Rev Pharmacol Toxicol* 2003, 43:309-334.
- 50. Nguyen LP, Bradfield CA: **The search for endogenous activators of the aryl hydrocarbon receptor.** Chem Res Toxicol 2008, **21:**102-116.
- 51. Boron W, Boulpaep E: *Medical Physiology*. 2nd edn: Saunders; 2008.

CHAPTER 5

Angrish MM, Dominici CY, Jones AD, Zacharewski TR: 2,3,7,8-Tetrachlorodibenzo- ρ -dioxin (TCDD)-Elicited Effects on Liver, Serum, and Adipose Lipid Composition in C57BL/6 Mice.

CHAPTER 5

TCDD-ELICITED EFFECTS ON LIVER, SERUM, AND ADIPOSE LIPID COMPOSITION IN C57BL/6 MICE

ABSTRACT

The AhR mediates alterations in hepatic lipid composition elicited by TCDD. In order to further investigate the effects of TCDD, liver, serum and parametrial fat pad (PFP) FAMEs and lipids were examined in fasted 4-week-old female mice orally gavaged with 30 µg/kg TCDD and sacrificed at 24, 72, and 168 h. Mean (µmol/g) hepatic FAME levels (Vehicle/TCDD: 236.7 compared with 392.2) increased, but did not change in PFP or serum. Hepatic levels of SFAs (16:0, 18:0, 20:0, and 22:0) decreased, while TCDD increased MUFAs (16:1n7, 18:1n9, and 20:1n9) consistent with AhR-mediated induction of Scd1. In addition, TCDD induced levels of selected PUFAs (20:2n6, 20:3n6, 18:3n3, and 22:5n3) while others (20:4n6, 22:6n3) decreased. There were modest increases in PFP 20:2n6 and 20:3n6 levels, while 18:0 decreased and 18:1n9 increased in serum. TCDD also lowered total CHOL, low-density lipoprotein (LDL), and highdensity lipoprotein (HDL) by 25% in serum. Decreases in serum CHOL, LDL, and HDL levels were consistent with the differential expression of hepatic CHOL metabolism and transport genes Hmgcs1 (-2.1-fold), Hmgcr (-2.3-fold), Apoal (-1.7-fold), Lcat (2.0-fold), and Ldlr (3.6fold). Moreover, TCDD decreased serum Apob100 (4.4-fold) and Apob48 (2.2-fold) levels, consistent with serum lipid clearance and decreased hepatic efflux. Collectively, these results suggest TCDD-elicited, AhR-mediated decreases in circulating lipid levels are consistent with the induction of hepatic steatosis.

INTRODUCTION

TCDD and similar chemicals bioaccumulate in food supplies, mainly animal fats, and elicit adverse hepatotoxic effects in animals and humans that are mediated by the AhR. The AhR is a ligand activated PAS transcription factor family member [1] that binds structurally diverse environmental contaminants (halogenated aromatic hydrocarbons and non-halogenated polycyclic aromatic hydrocarbons) with high affinity [2]. Although the AhR also binds endogenous endobiotics (indoles, tetrapyrroles, and arachidonic acid metabolites), and natural products (vegetable-, fruit-, and tea-derived indoles and flavonoid metabolites) [3, 4], no known endogenous high affinity ligand has been identified. The classical AhR pathway involves ligand activation, translocation to the nucleus, and heterodimerization with ARNT [5, 6]. The AhR:ARNT heterodimer binds DREs in the promoters of target genes and recruits transcriptional co-activators to positively regulate gene transcription [7, 8].

TCDD-elicited, AhR-mediated disruption of hepatic energy balance results in steatosis accompanied by increased triglycerides, inflammation and the differential expression of hepatic genes involved in lipid metabolism [9-11]. These gene expression changes include induction of hepatic lipid transporters *Cd36* [12], *Vldlr*, *Ldlr*, *Fabp1*, and *Slc27a3-4* concurrent with decreased *Fasn* expression [13, 14] and enzyme activity [15]. Diet and ¹⁴C-oleate studies strongly suggest dietary fat as a lipid source in TCDD-elicited steatosis [16] and, collectively with gene expression data, imply hepatic lipid accumulation is due to TCDD enhanced hepatic uptake of dietary lipid rather than *de novo* synthesis. It is also believed that adipose lipolysis can contribute to ectopic fat accumulation, including hepatic steatosis. However, data regarding the importance of adipose lipolysis in the promotion of TCDD-elicited hepatic steatosis are lacking

since conclusions were based on serum FA measurements [17-19]. No experiments have reported TCDD effects on adipose tissue FA composition.

Excessive hepatic lipid accumulation frequently results in non-alcoholic steatohepatitis (NASH), a widespread condition linked to insulin resistance [20] and dyslipidemia that is characterized by altered serum lipid profiles [21]. Animal and human epidemiological studies collectively provide conflicting data relating serum lipid levels to TCDD exposure, even from the same lab [22, 23]. However hepatic steatosis and insulin resistance are conditions associated with TCDD exposure in humans [9, 10, 24, 25]. Considering that the liver partitions lipids for hepatocellular storage as well as storage in peripheral adipose tissue via the circulatory system [26], it is appreciated that TCDD effects on hepatic lipids are complex. Therefore, TCDD alterations in FA composition in the liver, PFP, and serum of fasted mice were investigated. Furthermore, serum lipid panels, which are routine tests used to identify alterations in metabolism, were also examined. Collectively, the reported changes in systemic lipid profiles provide insight into hepatic lipid metabolism with potential implications for novel biomarkers of TCDD-elicited hepatotoxicity and steatosis.

MATERIALS AND METHODS

ANIMAL HUSBANDRY AND IN VIVO TREATMENT

Heterozygous B6.129-*Scd1*^{tm1Myz}/J mice (Jackson Laboratory, Ben Harbor, Maine) were bred, genotyped and weaned as previously described [27]. On PND 28 mice (n=5) were gavaged with 0.1 ml of sesame oil (vehicle control) or 30 μg/kg TCDD (Dow Chemical Company, Midland, MI). Wild-type, immature mice were used to facilitate comparisons with other data sets and to minimize potential interactions with estrogens produced by developing ovaries. The dose

was chosen to elicit moderate hepatic effects while avoiding overt toxicity. Animals were fasted 4 h prior to sacrifice at 24, 72, and 168 h post-dose. Mice were weighed and blood was collected via submandibular vein puncture before sacrifice. Liver and PFP tissue were weighed and samples flash frozen. All procedures were carried out with Michigan State University Institutional Animal Care and Use Committee approval.

SERUM LIPID PANELS

Serum total CHOL, free CHOL, LDL, high density HDL, FFA, and TAG were measured according to the manufacturer's microtiter protocol (CHOL E; Free CHOL E, L-Type LDL, L-Type HDL, NEFA-HR(2), L-Type TG M, Wako Diagnostics).

GC-MS FATTY ACID METHYL ESTER (FAMES) LIPID PROFILING

Lipid analysis was performed as previously described [27]. Lipids extracted from liver (~100 mg), PFP (~30 mg), and serum (50 μL) were separated and analyzed with an Agilent 6890N GC with a 30mDB23 column interfaced to an Agilent 5973 MS. 19:1n9 FFA and 19:0 TAG were added as extraction efficiency controls and 17:1n1 FAME (Nu-chek, Elysian, MN) was spiked in as a loading control. GC-MS data files were converted to Waters MassLynx file format, analyzed with MassLynx software and reported as μmol/g liver or adipose tissue and nmol/mL serum. FA levels are based on peak areas from total ion chromatograms, and μmol is obtained from a linear calculation of a calibration curve and normalized to sample weight (liver and PFP) or volume (serum). Mol% is the ratio of a particular FA relative to TFA.

WESTERN BLOT

Apolipoprotein B (ApoB) Western blot was performed from serum. Briefly, serum was diluted 1:5 in RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1mM EDTA). Diluted serum was separated in 5% SDS-PAGE and transferred to a

PVDF membrane (Millipore Billerica, MA). ApoB protein was immunoblotted with an ApoB antibody (SC-11795; Santa Cruz Biotechnology Santa Cruz, CA). Immunoreactive bands were visualized by chemiluminescence with the Pierce ECL Western blotting substrate (Thermo Scientific Rockford, IL) and quantified by densitometry (ImageJ).

RNA ISOLATION

RNA was isolated from frozen liver and PFP samples with \sim 1.0 mL TRIzol (Invitrogen) according to the manufacturer's protocol and an additional acid phenol:chloroform extraction as previously described [13]. Total RNA was resuspended in RNA storage solution, quantified by spectrophotometery at A_{260} and quality assessed by gel electrophoresis.

QRTPCR

Quantitative real-time PCR (QRTPCR) was performed as previously described [13]. The copy number of each sample was standardized to the geometric mean of *Gapdh*, *Hprt*, and *Actb* to control for differences in RNA loading, quality, and cDNA synthesis [28]. Data are reported as the fold change of standardized treated over standardized vehicle.

STATISTICAL ANALYSIS

Data were analyzed by ANOVA followed by Tukey's *post hoc* test in SAS 9.2 (SAS Institute, Cary, NC), unless otherwise stated. Differences between treatment groups were considered significant when p<0.05.

RESULTS

TCDD EFFECTS ON BODY, LIVER, AND ADIPOSE WEIGHTS

Fasted mice gavaged with 30 μ g/kg TCDD had increased absolute and relative (whole liver weight normalized to whole body weight at sacrifice) liver weights at 72 and 168 h

Table 5.1. Effect of TCDD on Body, Liver, and Parametrial Fat Pad (PFP) Weights 24, 72, and 168 h Post-Dose

Time (h)	Treatment	Body Weight (g)	Body Weight Gain (g)	Absolute Liver Weight (g)	Relative Liver Weight	Absolute PFP Weight (g)	Relative PFP Weight
24	Vehicle	12.1 ± 1.9	0.5 ± 0.6	0.74 ± 0.103	0.061 ± 0.002	0.04 ± 0.02	0.0035 ± 0.0011
	TCDD	12.8 ± 0.9	-0.2 ± 0.8	0.80 ± 0.095	0.063 ± 0.007	0.05 ± 0.01	0.0040 ± 0.0009
72	Vehicle	14.5 ± 0.9	1.6 ± 0.2	0.79 ± 0.051	0.055 ± 0.001	0.08 ± 0.02	0.0055 ± 0.0013
	TCDD	14.0 ± 0.9	1.4 ± 0.1	$0.94 \pm 0.074*$	$0.067 \pm 0.003*$	0.06 ± 0.03	0.0039 ± 0.0019
168	Vehicle	15.3 ± 0.7	3.3 ± 1.1	0.85 ± 0.070	0.055 ± 0.002	0.06 ± 0.01	0.0041 ± 0.0006
	TCDD	15.2 ± 0.6	3.4 ± 1.0	1.04 ± 0.060 *	$0.068 \pm 0.002*$	0.07 ± 0.02	0.0044 ± 0.0010

^{*}p<0.05 for TCDD compared with Vehicle.

post-dose (Table 5.1). There were no significant alterations in body weight, body weight gain, or adipose weight throughout the study suggesting treatment had no effect on food consumption.

TOTAL LIVER, ADIPOSE, AND SERUM LIPID CONTENT

We have previously reported TCDD- and *Scd1* genotype-dependent alterations on hepatic lipid composition in fed mice [27]. Similar to the livers of fed TCDD treated mice, analysis of FA composition by GC-MS in fasted mice identified increased mean (μmol/g) TFAs (1.7-fold), SFAs (1.25-fold), MUFAs (3.1-fold), and PUFAs (1.5-fold) (Table 5.2). In contrast to liver, TFA levels were unaffected in adipose and serum.

FAME LEVELS IN LIVER, PFP AND SERUM

As reported in fed mice, TCDD decreased hepatic SFA levels relative to vehicle (Figure 5.1A). Palmitate (16:0) and stearate (18:0), precursors for long chain FA synthesis and the Scd1 desaturation reaction, were significantly depleted. However, palmitate (16:1n7), oleate (18:1n9), and eicosanoic acid (20:1n9), downstream products of SFA desaturation and elongation, increased with treatment.

The n-3 and n-6 PUFAs are derived from the diet or via modification of the essential FAs linoleic (18:2n6) and α -linolenic (18:3n3) acids [29]. Both n-3 and n-6 pathway intermediates exhibited a mixed response to TCDD (Figure 5.1A). Specifically, 18:2n6 levels were not altered, while levels of its derivatives, eicosadienoic acid (20:2n6) and dihomo- γ -linolenic acid (20:3n6), were increased. Arachidonic acid (AA, 20:4n6), another downstream product of linoleic acid that can be further metabolized into bioactive products promoting pro-inflammatory conditions [30], exhibited a significant decrease in TCDD-treated mice.

N-3 derivatives are highly regarded for their health benefits, including improved insulin

Table 5.2. Liver, Parametrial Fat Pad, and Serum Total Lipid Content

Treatme		Liver (µmol/g)	PFP (µmol/g)	Serum (nmol/mL)
Total FA	Vehicle	237 ± 26	3408 ± 1280.9	413 ± 104
	TCDD	392 ± 58*	3928 ± 945.2	411 ± 100
Total SFA	Vehicle	89 ± 6.8	1251 ± 435.3	147 ± 37
	TCDD	113 ± 10*	1476 ± 413.2	137 ± 39
Total MUFA	Vehicle	34 ± 4.2	901 ± 338.2	63 ± 17
	TCDD	106 ± 22*	1033 ± 214.6	74 ± 19
Total PUFA	Vehicle	114 ± 15	1257 ± 513.0	204 ± 53
	TCDD	173 ± 28*	1420 ± 323.6	$200 \ \pm \ 47$
20:4n6/18:2n6	Vehicle	$0.8 \pm 0.1*$	0.022 ± 0.010	0.24 ± 0.04
_	TCDD	0.5 ± 0.1	0.027 ± 0.004	0.21 ± 0.05
20:5n3/18:3n3	Vehicle	1.0 ± 0.03*	nd^1	nd^2
	TCDD	0.4 ± 0.1	nd^1	nd ²

^{*} p<0.05 for TCDD compared with Vehicle; nd, not detected. 1 20:5n3 was not detected in PFP. 2 20:5n3 and 18:3n3 were not detected in serum.

resistance and plasma lipid profiles [30]. The precursor for all n-3 FAs, α-linolenic acid (18:3n3), was increased by TCDD relative to vehicles (Figure 5.1A). The n-3 intermediate timnodonic acid (20:5n3) was decreased, while docosapentaenoic acid (22:5n3) was induced. Docosahexaenoic acid (DHA, 22:6n3), required for proper infant growth and neurodevelopment [29], was decreased by TCDD.

Increased 20:2n6, 20:3n6, and 22:5n3 were consistent with *Elovl5* induction [27]. Although lower 20:4n6 and 20:5n3 levels suggest decreased Δ5 desaturase activity [31], Δ5 destaturase mRNA levels were unaffected by TCDD (data not shown). Therefore, decreased n-3 and n-6 pathway product/precursor ratios (20:5n3/18:3n3, decreased 57% and 20:4n6/18:2n6, decreased 40%, Figure 5.2) are the possible result of TCDD-mediated metabolic PUFA conversions into anti- and pro-inflammatory signaling molecules [32].

TCDD had minimal effects on PFP FAME levels with no alterations in SFAs or MUFAs (Figure 5.1B). Only 20:2n6 and 20:3n6 PUFAs were increased by treatment. In serum, 16:0, 18:0, 18:1n9, 18:2n6, and 20:4n6 (Figure 5.1C) were detected. These FAs are the predominant species in Harlan Teklad diet F6 rodent diet 7964 as well as lipoprotein glycerolipids, cholesteryl esters, and phospholipids [33]. The SFA 18:0 was decreased, while the MUFA 18:1n9 increased. No alterations in serum PUFAs were detected.

TCDD Induction of the Scd1 Desaturation Index

We previously reported AhR-mediated increases in Scd1 activity [27]. The 18:1n9/18:0 ratio is an indirect measure of Scd1 activity, and its increase is associated with hyperlipidemia in humans [34]. The Scd1 activity index was induced 2.9- and 1.4-fold in TCDD compared with vehicle in liver and serum, respectively (Figure 5.2). The adipose Scd1 activity index was not affected by treatment.

Figure 5.1. Total fatty acid composition in liver (A), parametrial fat pad (PFP, B), and serum (C) of mice 168 h post 30 μ g/kg TCDD or sesame oil vehicle dose.

Total fatty acids were extracted by Folch method and quantitated by GC-MS as described in the materials and methods. * p<0.05 for TCDD compared with vehicle. SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid. Bars represent mean + standard error of the mean (SEM). Liver, n=4; adipose and serum, n=5.

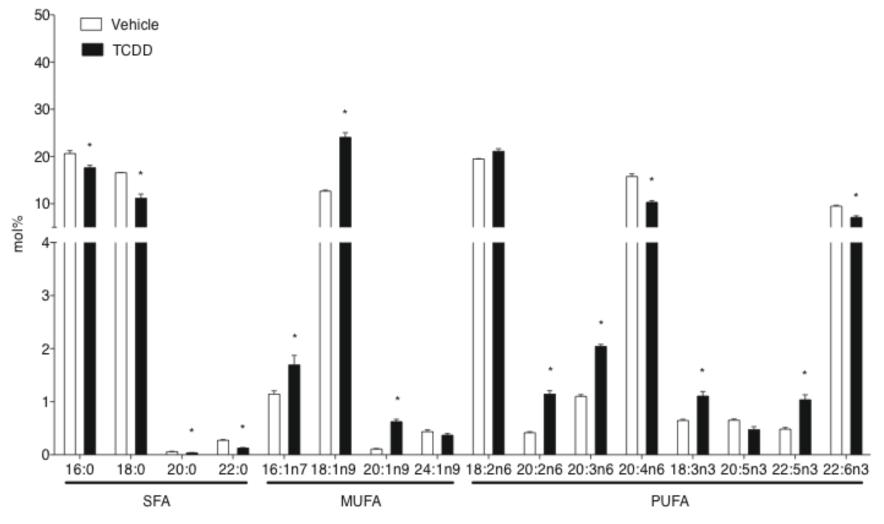


Figure 5.1 (cont'd)

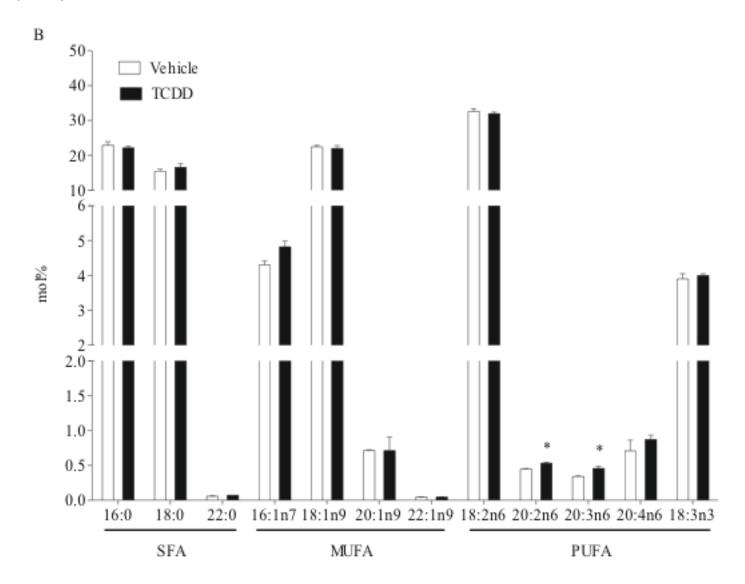


Figure 5.1 (cont'd)

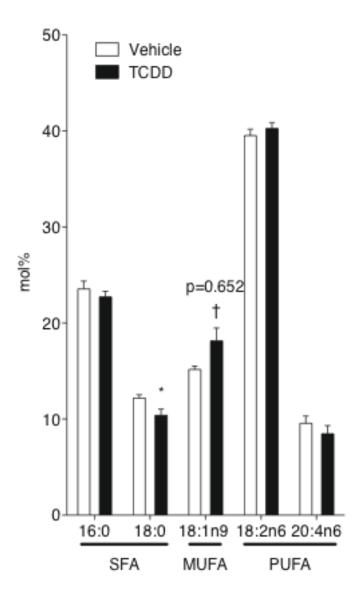
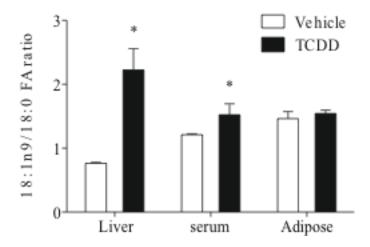
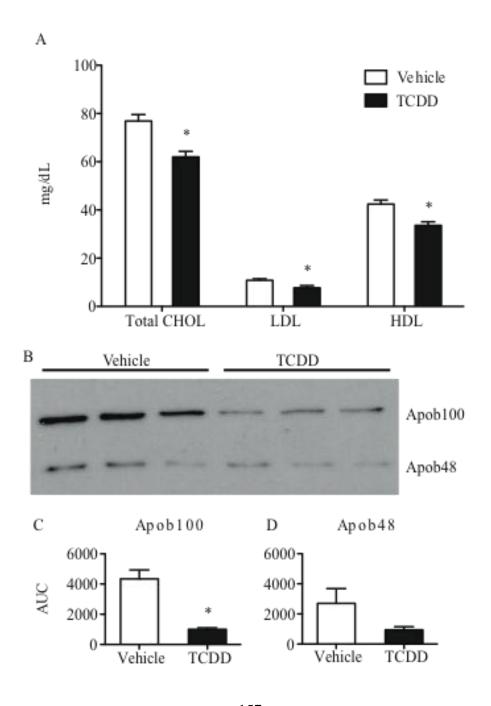



Figure 5.2. The 18:1n9/18:0 desaturation index in liver, serum, and parametrial fat pad (PFP) tissue of mice treated with 30 μ g/kg TCDD or sesame oil vehicle 168 h post-dose.

The desaturation index is the ratio of oleic acid (18:1n9) to the precursors stearic acids (18:0) and an indirect measure of Scd1 activity. * p<0.05 for TCDD compared with vehicle. Bars represent mean + SEM, n=5.

ALTERATIONS IN SERUM LIPIDS


A 20% decrease in total CHOL, a measure of free CHOL (unchanged by TCDD, data not shown), LDL CHOL (decreased 30%), and HDL CHOL (decreased 20%) was detected in TCDD mice compared with vehicles (Figure 5.3A). Decreased LDL, a modification product of VLDL [33], suggests decreased VLDL secretion that was further supported by a 4.3-fold decrease in serum Apob100 protein levels (Figure 5.3B-C). Apob100 is the major non-exchangeable lipoprotein found in VLDL and LDL particles produced by the liver. Apob48 is a truncated form of Apob100 and the major scaffold protein of chylomicrons produced exclusively by the small intestine of mammals and also the livers of mice [33]. TCDD decreased serum Apob48 protein levels 2.8-fold compared to vehicles (Figure 5.3B & D). Serum free FA, free CHOL, and triglycerides (TAG) were not affected by treatment in fasted mice (data not shown).

DIFFERENTIAL HEPATIC AND ADIPOSE GENE EXPRESSION BY TCDD

To further examine the effect of TCDD on lipid metabolism, QRTPCR was performed from liver and adipose mRNA extracts. Decreases in serum CHOL levels suggested TCDD-elicited alterations in hepatic CHOL biosynthesis. QRTPCR analysis identified a 2.1- and 2.3-fold decrease in hepatic *Hmgcs1* and *Hmgcr* (Figure 5.4A-B) whose gene products catalyze the initial condensation and reduction reactions, respectively, in the cholesterol biosynthetic pathway [33]. Apolipoprotein A1 (Apoa1) is the primary HDL apolipoprotein expressed in the liver, and to a lesser extent in the intestine. Apoa1 is also a cofactor for lecithin cholesterolacyltransferase (Lcat), an enzyme that produces the bulk of plasma CHOL esters. In the liver, TCDD decreased *Apoa1* 1.7-fold, while *Lcat* was increased 2-fold (Figure 5.4C-D). The lipoprotein transporter *Ldlr*, involved in lipoprotein endocytosis and reverse CHOL transport, was increased 3.6-fold by TCDD (Figure 5.4E). Increased *Lcat* and *Ldlr* expression are consistent with TCDD-mediated

Figure 5.3. Serum cholesterol and apolipoprotein b (Apob) 100 and Apob48 levels in Scd1 wild-type mice treated with 30 μ g/kg TCDD or sesame oil vehicle.

(A) Total cholesterol (CHOL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels were decreased 25% by TCDD at 168 h post-dose. Serum lipids were measured by commercial assay (WAKO Diagnostics) (n=8) and are presented as mg/dL. (**B**) Apob100 and Apob48 protein levels were detected by Western blot at 72 h from serum diluted 1:5 (n=3). (**C-D**) Densitometry (determined with ImageJ) identified a TCDD-dependent 4.4- and 2.2-fold decrease in Apob100 (**C**) and Apob48 (**D**) bands, respectively. * p<0.05 for TCDD compared with Vehicle. Bars represent mean + SEM.

increases in hepatic CHOL levels, while decreased CHOL synthesis gene expression suggests feedback inhibition.

In addition to the marginal changes in PFP lipid composition, TCDD altered the expression of several genes involved in FA metabolism and transport. For example, Slc27a1, a fatty acid transporter that translocates to the plasma membrane in response to insulin [35], was induced 7.5-fold, and triglyceride lipase Pnpla3 was repressed 2.4-fold (Figure 5.4F-G). Interestingly, TCDD induced Adipoq 1.6-fold, whose gene product adiponectin exhibits hormonal regulation of lipid and glucose metabolism (Figure 5.4H). Furthermore, TCDD induced the prototypical TCDD-inducible gene Cyp1a1 mRNA levels (Figure 5.4I), indicating adipose tissue is responsive to TCDD treatment. TCDD also induced Scd2, the predominant adipose $\Delta 9$ desaturase, 2.1-fold, consistent with TCDD-dependent AhR-mediated regulation of $\Delta 9$ desaturase activity (Figure 5.4J) [27].

DISCUSSION

The liver's role in lipid storage and lipid partitioning is a fundamental process regulating whole body energy metabolism [36]. Altered hepatic and systemic lipid homeostasis is a pathophysiological sign of liver disease [21, 37] that is also observed after TCDD exposure. By examining lipogenic tissue FA levels and composition along with serum lipid panels, the current study provides direct insight into the effects of acute TCDD exposure on the state of whole-body FA and CHOL metabolism, with implications for AhR-mediated hepatic steatosis.

The current study corroborated existing evidence that TCDD increases hepatic lipid accumulation and alters hepatic FA composition [27, 38, 39]. Specifically, TCDD increased MUFA levels, particularly 18:1n9 consistent with AhR mediated induction in Scd1 activity [27].

Figure 5.4. Differential expression of hepatic genes involved in cholesterol metabolism (A-E) and parametrial fat pad genes involved in lipid metabolism and transport (F-J) in mice gavaged with 30 μ g/kg TCDD or sesame oil vehicle for 24 h.

The relative abundance is the total mRNA quantity normalized to the geometric mean of Hprt, Actb, and Gapdh. Genes are indicated by official gene symbols. * Represents p < 0.05 for TCDD compared to vehicle. Bars represent mean + SEM, n=5 biological replicates.

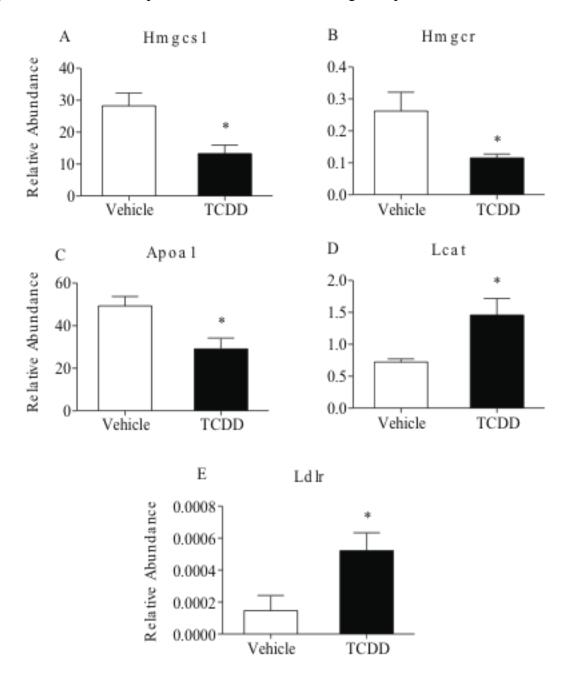
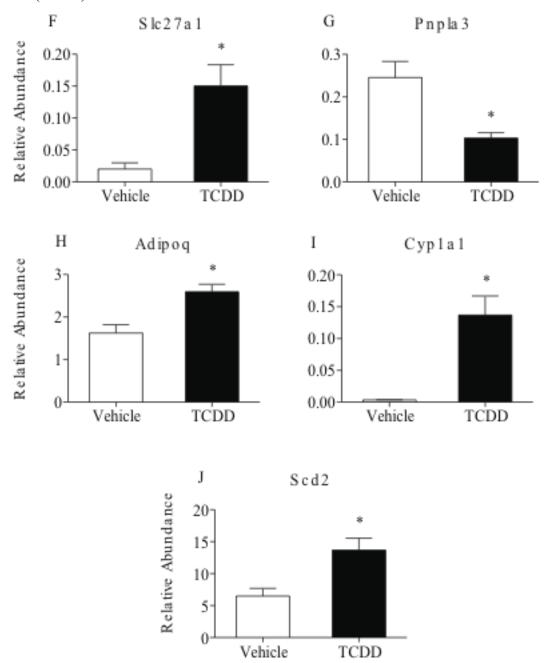



Figure 5.4 (cont'd)

TCDD also increased PUFA levels marked by increased 20:3n6 and decreased 20:4n6 (AA) and 22:6n3 (DHA), indicators of increased Elovl5 activity [40]. These TCDD-elicited FA changes are common effects observed during excessive hepatic lipid accumulation including NAFLD, a condition considered the hepatic manifestation of MetS risk factors, including obesity and other pathophysiological conditions of hepatic FA overload such as insulin resistance [41, 42].

Insulin resistance is a condition shown to be associated with TCDD exposure in humans [43, 44] as well as adipose tissue fatty acid mobilization [36]. Furthermore, adipose lipolysis is a reported FA source in TCDD-elicited steatosis [17-19]. However, the current study challenges TCDD-mediated adipose lipolysis by the observation that adipose FA levels were not affected by treatment. This was not completely surprising since studies attributed adipose lipolysis to increased serum 16:0, 18:1, 18:2, and 18:3 levels. Not only are these FAs predominant in adipose tissue [45-48], but also in rodent chow [16]. Furthermore, TCDD-treated animals examined from these studies were not fasted and it has been demonstrated that dietary fat is an important lipid source in TCDD-elicited steatosis [16].

The current study further supports existing evidence that diet is a source of lipids in TCDD-elicited steatosis. In the fasted state, serum reflects lipid origins and analysis of serum FAMEs, FFAs, and TAGs from fasted mice identified no change after TCDD treatment. In contrast, FFAs [13, 49] and TAGs [23, 50, 51] were increased by TCDD in fed animals, suggesting diet is necessary for TCDD-elicited hyperlipidemia. In the fasted state, serum lipids also reflect lipid metabolic transformations [26]. Specifically, the 18:1n9/18:0 product/precursor ratio, a functional measure of Scd1 activity increased in the liver, was also increased in serum. Elevated 18:1n9/18:0 ratios are associated with hyperlipidemic humans [34] raising the possibility that 18:1n9/18:0 ratios are a potential biomarker for hepatic steatosis.

Alterations in CHOL, lipoproteins, and apolipoproteins provided further insight into TCDD-dependent alterations in lipid metabolism. TCDD decreased serum Apob48 and Apob100 protein levels, the primary apolipoproteins in CM and VLDL particles, suggesting enhanced clearance from serum and/or efflux from liver. However, unlike humans that exclusively synthesize Apob48 in the intestine and Apob100 in liver, post-transcriptional editing in mouse liver produces Apob48 and Apob100 protein [52]. Therefore, Apob levels in treated, fasted mice suggest decreased hepatic efflux and are supported by TCDD-mediated decreases in VLDL secretion [12]. Decreased serum Apob levels may be explained by TCDD-dependent activation of IRS-PI3K-AKT pathway [53] and/or promotion of ER stress that assists Apob degradation [42, 54]. Specifically, microsomal triglyceride transfer protein (Mttp), a lipogenic mediator required for VLDL assembly [54-56], is regulated by Foxo1, a transcription factor inhibited by the IRS-PI3K-AKT signaling [57]. Furthermore, Foxo1 is regulated by PGC1α, a transcriptional coactivator deactivated by TCDD induction of TiPARP [58]. However, Mttp is minimally repressed by TCDD (-1.2-fold, [59]) and the exact relationship between intracellular signaling, Mttp function, and Apob production/degradation requires further investigation.

Decreased Apob and VLDL levels are also consistent with TCDD-mediated decreases in LDL particles, products of metabolic VLDL transformation in the serum [33], and decreased serum total CHOL and HDL. These changes in conjunction with increased hepatic expression of reverse CHOL transport genes *Ldlr* and *Lcat*, decreased hepatic CHOL biosynthesis gene expression, and increased hepatic CHOL levels [14] strongly imply TCDD-dependent dysregulation of liver CHOL metabolism. Increased reverse CHOL transport further adds to the hepatic CHOL pool enhancing feedback inhibition of CHOL biosynthesis. Furthermore, increased hepatic CHOL may initially stimulate bile acid production, that is later feedback

inhibited, netting hepatic hypercholesterolaemia and exacerbated hepatic steatosis. These changes are consistent with differential expression of Cyp7a1 (induced at 24 h, repressed at 72-168 h post-TCDD dose) the rate-limiting enzyme in bile acid synthesis that is also feedback inhibited by CHOL [59]. Given these data, it would be interesting to further investigate DRE-independent AhR-mediated regulation of the CHOL biosynthetic pathway [60] in the absence of direct CHOL regulation.

Lipids are not only important biological components, but also potent signaling molecules, metabolic regulators and transcription factor ligands [33] that when altered, effect diverse biological processes. The present study provides several examples of TCDD-elicited alterations in systemic lipid composition that may be of consequence in the pathophysiology of AhR-mediated hepatic steatosis.

REFERENCES

REFERENCES

- 1. Kewley RJ, Whitelaw ML, Chapman-Smith A: **The mammalian basic helix-loop-helix/PAS family of transcriptional regulators.** *Int J Biochem Cell Biol* 2004, **36:**189-204.
- 2. Safe S, Robertson LW, Safe L, Parkinson A, Bandiera S, Sawyer T, Campbell MA: **Halogenated biphenyls: molecular toxicology.** Can J Physiol Pharmacol 1982, **60:**1057-1064.
- 3. Denison MS, Nagy SR: Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. *Annu Rev Pharmacol Toxicol* 2003, 43:309-334.
- 4. Nguyen LP, Bradfield CA: **The search for endogenous activators of the aryl hydrocarbon receptor.** Chem Res Toxicol 2008, **21:**102-116.
- 5. Hankinson O: **The aryl hydrocarbon receptor complex.** *Annu Rev Pharmacol Toxicol* 1995, **35:**307-340.
- 6. Pollenz RS, Sattler CA, Poland A: The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. *Mol Pharmacol* 1994, 45:428-438.
- 7. Denison MS, Fisher JM, Whitlock JP, Jr.: Inducible, receptor-dependent protein-DNA interactions at a dioxin-responsive transcriptional enhancer. *Proc Natl Acad Sci U S A* 1988, **85**:2528-2532.
- 8. Yao EF, Denison MS: **DNA sequence determinants for binding of transformed Ah** receptor to a dioxin-responsive enhancer. *Biochemistry* 1992, **31:**5060-5067.
- 9. Lee CC, Yao YJ, Chen HL, Guo YL, Su HJ: **Fatty liver and hepatic function for residents with markedly high serum PCDD/Fs levels in Taiwan.** *J Toxicol Environ Health A* 2006, **69:**367-380.
- 10. Lee DH, Lee IK, Porta M, Steffes M, Jacobs DR, Jr.: Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetologia 2007, 50:1841-1851.

- 11. Swedenborg E, Ruegg J, Makela S, Pongratz I: **Endocrine disruptive chemicals:** mechanisms of action and involvement in metabolic disorders. *J Mol Endocrinol* 2009, **43:**1-10.
- 12. Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, Xie W: A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. *Gastroenterology* 2010, **139:**653-663.
- 13. Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, Mendrick DL, Zacharewski TR: Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. *Toxicol Sci* 2006, 94:398-416.
- 14. Kopec AK, Boverhof DR, Burgoon LD, Ibrahim-Aibo D, Harkema JR, Tashiro C, Chittim B, Zacharewski TR: Comparative toxicogenomic examination of the hepatic effects of PCB126 and TCDD in immature, ovariectomized C57BL/6 mice. *Toxicol Sci* 2008, 102:61-75.
- 15. Lakshman MR, Campbell BS, Chirtel SJ, Ekarohita N: **Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on de novo fatty acid and cholesterol synthesis in the rat.** *Lipids* 1988, **23:**904-906.
- 16. Angrish MM, Mets B, Jones AD, Zacharewski T: **Dietary Fat is a Lipid Source in 2,3,7,8-Tetrachlorodibenzo-ρ-dioxin (TCDD)-Elicited Hepatic Steatosis in C57BL/6 Mice.** (Accepted, Toxicol Sci).
- 17. Albro PW, Corbett JT, Harris M, Lawson LD: **Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on lipid profiles in tissue of the Fischer rat.** *Chem Biol Interact* 1978, **23:**315-330.
- 18. Lakshman MR, Ghosh P, Chirtel SJ: **Mechanism of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin on intermediary metabolism in the rat.** *J Pharmacol Exp Ther* 1991, **258**:317-319.
- 19. Pohjanvirta R, Sankari S, Kulju T, Naukkarinen A, Ylinen M, Tuomisto J: **Studies on the role of lipid peroxidation in the acute toxicity of TCDD in rats.** *Pharmacol Toxicol* 1990, **66:**399-408.
- 20. den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA: **Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models.** *Arterioscler Thromb Vasc Biol* 2004, **24:**644-649.
- 21. Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, Contos MJ, Sterling RK, Fuchs M, Zhou H, et al: **The plasma lipidomic signature of nonalcoholic steatohepatitis.** *Hepatology* 2009, **50:**1827-1838.
- 22. Gasiewicz TA, Holscher MA, Neal RA: **The effect of total parenteral nutrition on the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat.** *Toxicol Appl Pharmacol* 1980, **54:**469-488.

- 23. Gasiewicz TA, Neal RA: **2,3,7,8-Tetrachlorodibenzo-p-dioxin tissue distribution, excretion, and effects on clinical chemical parameters in guinea pigs.** *Toxicol Appl Pharmacol* 1979, **51:**329-339.
- 24. Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR, Jr.: Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care 2007, 30:622-628.
- 25. Lee DH, Lee IK, Steffes M, Jacobs DR, Jr.: Extended analyses of the association between serum concentrations of persistent organic pollutants and diabetes. *Diabetes Care* 2007, **30:**1596-1598.
- 26. Boron w, Boulpaep E: *Medical Physiology*. 2nd edn: Saunders; 2008.
- 27. Angrish MM, Jones AD, Harkema JR, Zacharewski TR: **Aryl Hydrocarbon Receptor-Mediated Induction of Stearoyl-CoA Desaturase 1 Alters Hepatic Fatty Acid Composition in TCDD-Elicited Steatosis.** *Toxicol Sci* 2011, **124**:299-310.
- 28. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* 2002, 3:RESEARCH0034.
- 29. Marszalek JR, Lodish HF: **Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you.** *Annu Rev Cell Dev Biol* 2005, **21:**633-657.
- 30. Yashodhara BM, Umakanth S, Pappachan JM, Bhat SK, Kamath R, Choo BH: **Omega-3 fatty acids: a comprehensive review of their role in health and disease.** *Postgrad Med J* 2009, **85:**84-90.
- 31. Guillou H, Zadravec D, Martin PG, Jacobsson A: The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. *Prog Lipid Res* 2010, **49:**186-199.
- 32. Kraemer SA, Arthur KA, Denison MS, Smith WL, DeWitt DL: **Regulation of prostaglandin endoperoxide H synthase-2 expression by 2,3,7,8,-tetrachlorodibenzo-p-dioxin.** *Arch Biochem Biophys* 1996, **330:**319-328.
- 33. Vance DE, Vance JE: *Biochemistry of Lipids, Lipoproteins and Membranes, 4th edition.* Elsevier; 2006.
- 34. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM: **Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia.** *J Lipid Res* 2002, **43:**1899-1907.

- 35. Wu Q, Ortegon AM, Tsang B, Doege H, Feingold KR, Stahl A: **FATP1 is an insulinsensitive fatty acid transporter involved in diet-induced obesity.** *Mol Cell Biol* 2006, **26:**3455-3467.
- 36. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ: **Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.** *J Clin Invest* 2005, **115**:1343-1351.
- 37. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos MJ, Sanyal AJ: **A lipidomic analysis of nonalcoholic fatty liver disease.** *Hepatology* 2007, **46:**1081-1090.
- 38. Forgacs AL, Kent MN, Makley MK, Mets B, Delraso N, Jahns GL, Burgoon LD, Reo NV, Zacharewski TR: Comparative Metabolomic and Genomic Analyses of TCDD-Elicited Metabolic Disruption in Mouse and Rat Liver. *Toxicol Sci* 2011.
- 39. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, Sharratt B, Harkema JR, Zacharewski TR: **PCB153-elicited hepatic responses in the immature, ovariectomized C57BL/6 mice: comparative toxicogenomic effects of dioxin and non-dioxin-like ligands.** *Toxicol Appl Pharmacol* 2010, **243:**359-371.
- 40. Wang Y, Torres-Gonzalez M, Tripathy S, Botolin D, Christian B, Jump DB: **Elevated** hepatic fatty acid elongase-5 activity affects multiple pathways controlling hepatic lipid and carbohydrate composition. *J Lipid Res* 2008, **49:**1538-1552.
- 41. Brunt EM: **Pathology of nonalcoholic fatty liver disease.** Nat Rev Gastroenterol Hepatol 2010, **7:**195-203.
- 42. Verges B: Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. *Atherosclerosis* 2010, **211**:353-360.
- 43. Cranmer M, Louie S, Kennedy RH, Kern PA, Fonseca VA: **Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with hyperinsulinemia and insulin resistance.** *Toxicol Sci* 2000, **56:**431-436.
- 44. Kang HK, Dalager NA, Needham LL, Patterson DG, Jr., Lees PS, Yates K, Matanoski GM: **Health status of Army Chemical Corps Vietnam veterans who sprayed defoliant in Vietnam.** *Am J Ind Med* 2006, **49:**875-884.
- 45. Christie WW, Jenkinson DM, Moore JH: **Variation in lipid composition through the skin and subcutaneous adipose tissue of pigs.** *J Sci Food Agric* 1972, **23:**1125-1129.
- 46. Christie WW, Moore JH: **A comparison of the structures of triglycerides from various pig tissues.** *Biochim Biophys Acta* 1970, **210:**46-56.
- 47. Christie WW, Moore JH: **The structures of adipose tissue and heart muscle triglycerides in the domestic chicken (Gallus gallus).** *J Sci Food Agric* 1972, **23:**73-77.

- 48. Christie WW, Moore JH, Lorimer AR, Lawrie TD: **The structures of triglycerides from atherosclerotic plaques and other human tissues.** *Lipids* 1971, **6:**854-856.
- 49. Boverhof DR, Burgoon LD, Tashiro C, Chittim B, Harkema JR, Jump DB, Zacharewski TR: Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-Mediated hepatotoxicity. *Toxicol Sci* 2005, **85:**1048-1063.
- 50. McConnell EE, Moore JA, Dalgard DW: **Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rhesus monkeys (Macaca mulatta) following a single oral dose.** *Toxicol Appl Pharmacol* 1978, **43:**175-187.
- 51. McConnell EE, Moore JA, Haseman JK, Harris MW: **The comparative toxicity of chlorinated dibenzo-p-dioxins in mice and guinea pigs.** *Toxicol Appl Pharmacol* 1978, **44:**335-356.
- 52. Higuchi K, Kitagawa K, Kogishi K, Takeda T: **Developmental and age-related changes** in apolipoprotein B mRNA editing in mice. *J Lipid Res* 1992, **33:**1753-1764.
- 53. Tannheimer SL, Ethier SP, Caldwell KK, Burchiel SW: Benzo[a]pyrene- and TCDD-induced alterations in tyrosine phosphorylation and insulin-like growth factor signaling pathways in the MCF-10A human mammary epithelial cell line. Carcinogenesis 1998, 19:1291-1297.
- 54. Gibbons GF: Assembly and secretion of hepatic very-low-density lipoprotein. *Biochem J* 1990, **268:**1-13.
- 55. Chang BH, Liao W, Li L, Nakamuta M, Mack D, Chan L: Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse. *J Biol Chem* 1999, 274:6051-6055.
- 56. Gibbons GF, Wiggins D, Brown AM, Hebbachi AM: **Synthesis and function of hepatic very-low-density lipoprotein.** *Biochem Soc Trans* 2004, **32:**59-64.
- 57. Cheng Z, Tseng Y, White MF: **Insulin signaling meets mitochondria in metabolism.** *Trends Endocrinol Metab* 2010, **21:**589-598.
- 58. Diani-Moore S, Ram P, Li X, Mondal P, Youn DY, Sauve AA, Rifkind AB: Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. *J Biol Chem* 2010, 285:38801-38810.
- 59. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR: Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver. *BMC Genomics* 2011, 12:365.

60. Tanos R, Patel RD, Murray IA, Smith PB, Patterson AD, Perdew GH: **Ah receptor regulates the cholesterol biosynthetic pathway in a dioxin response element-independent manner.** *Hepatology* 2012.

CHAPTER 6

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

The preceding reports examined the role of AhR-mediated regulation of lipid uptake, metabolism, and transport in TCDD-elicited steatosis using Scd1 null mice, diet, ¹⁴C-lipid uptake, and GC-MS lipid analysis. Collectively, these studies showed that AhR regulation of Scd1 contributed to the hepatotoxicity of TCDD (Chapter 3), dietary fat is the primary source of lipid in TCDD-elicited steatosis (Chapter 4), and AhR mediated not only altered hepatic lipid composition, but also systemic lipid composition (Chapter 5). Collectively, this work provides compelling evidence that TCDD activation of the AhR coordinates interactions between the digestive tract, circulatory system and liver to evoke hepatic steatosis, the hepatic manifestation of MetS. Considering that TCDD and related chemicals are ubiquitous environmental contaminants, the data suggest a pathophysiological relationship between DLC exposure and adverse health effects such as metabolic disease.

Although the toxicological effects of AhR activation have been extensively studied, this research illustrates a complex and equivocal function for the AhR in biological and physiological processes effecting lipid metabolism. The data generated advances knowledge on how TCDD-dependent AhR activation produces steatosis, which is a significant hepatotoxic effect of TCDD. It furthers our understanding of the mode-of-action and events that may be linked to cancer. Specifically, the novel findings that AhR regulation of Scd1 promotes inflammation and increased MUFA levels may be key events linked to cryptic cirrhosis and hepatocellular carcinoma observed in numerous rodent bioassays [1]. Cancer cell growth and proliferation requires energy and the production of new lipids for membrane synthesis. MUFAs are the major

fatty acid species in mammals and fundamental constituents of diacylglycerols (DAGs), phospholipids, TAGs, and CHOL esters vital for membrane structure and energy storage [2]. Furthermore, Scd1 performs the rate-limiting step in MUFA formation and its inhibition slows the rate of cell proliferation and decreases cell survival [3-5]. Therefore, the understudied involvement of Scd1 in mechanisms of TCDD-elicited carcinogenesis warrants further examination. However, establishing that Scd1 is not only necessary, but also sufficient for the observed TCDD-elicited increase in inflammation and MUFAs may be an important step prior to conducting carcinogenicity bio-assays.

Notably, studies in *Scd1* null mice identified increased hepatic MUFAs even though no Scd1 activity was detected (Chapter 3). Diet and ¹⁴C studies demonstrated for the first time that these MUFA increases were due to TCDD enhanced lipid uptake from the diet. Yet, it remains unclear whether increased hepatic lipid content resulted from enhanced intestinal absorption, hepatic clearance from the serum, or both. To clarify, intestinal lipoprotein secretion rate *in vivo* could be measured [6-8] by tracking ¹⁴C-oleate gavage immediately followed by injection with Triton WR-1339 (500 mg/kg), a detergent that forms micelles around lipid particles preventing their hydrolysis and absorption [9]. Serum ¹⁴C secretion rates would indicate whether TCDD increases dietary lipid absorption with implications for dioxin as an emerging factor in the obesity epidemic [10, 11].

Lipid balance is tightly regulated since its alteration influences cellular functions. GC-MS analysis conducted throughout Chapters 3-5 identified significant treatment effects on FA composition linked to gene expression changes. It is not known, however, whether these TCDD-elicited FA changes affect the lipid signatures of free FA, TAG, DAG, CHOL ester, and

phospholipids, important complex lipids regulating signaling, membrane integrity, and lipid secretion and storage. Future comprehensive lipidomic analyses coupled with gene expression, ChIP-chip, and computational DRE distribution data [12] should provide the appropriate framework for hypothesis generation and confirmation by focused studies.

In conclusion, although several epidemiological [13-20] and rodent [21-24] studies have linked dioxin exposure to lipid abnormalities and increased risk of metabolic disease, a variety of factors obscure their relevance and impact on human health. Exposures rarely occur in isolation and seldom affect a genetically homogenous population. Strong genetic components are believed to underlie xenobiotic-induced adverse effects with inter-individual variation and idiosyncratic reactions representing common regulatory concerns [25]. Therefore, future studies using genetically diverse recombinant inbred mouse populations can model the heterogeneous human population [26] for the systemic identification of complex environmental and genetic combinations that may underlie etiologic interactions.

REFERENCES

REFERENCES

- 1. Huff J, Cirvello J, Haseman J, Bucher J: Chemicals associated with site-specific neoplasia in 1394 long-term carcinogenesis experiments in laboratory rodents. *Environ Health Perspect* 1991, 93:247-270.
- 2. Vance DE, Vance JE: *Biochemistry of Lipids, Lipoproteins and Membranes, 4th edition.* Elsevier; 2006.
- 3. Scaglia N, Caviglia JM, Igal RA: **High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts.** *Biochim Biophys Acta* 2005, **1687**:141-151.
- 4. Scaglia N, Igal RA: Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. *J Biol Chem* 2005, **280**:25339-25349.
- 5. Scaglia N, Igal RA: Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. *Int J Oncol* 2008, **33:**839-850.
- 6. Lam TK, Gutierrez-Juarez R, Pocai A, Bhanot S, Tso P, Schwartz GJ, Rossetti L: **Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins.**Nat Med 2007, **13:**171-180.
- 7. Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, Xie W: A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. *Gastroenterology* 2010, **139:**653-663.
- 8. Wang Q, Li S, Jiang L, Zhou Y, Li Z, Shao M, Li W, Liu Y: **Deficiency in hepatic ATP-citrate lyase affects VLDL-triglyceride mobilization and liver fatty acid composition in mice.** *J Lipid Res* 2010, **51:**2516-2526.
- 9. Millar JS, Cromley DA, McCoy MG, Rader DJ, Billheimer JT: **Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339.** *J Lipid Res* 2005, **46:**2023-2028.
- 10. Grun F, Blumberg B: **Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling.** *Endocrinology* 2006, **147:**S50-55.
- 11. Grun F, Blumberg B: **Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis.** Rev Endocr Metab Disord 2007, **8:**161-171.

- 12. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR: Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver. *BMC Genomics* 2011, 12:365.
- 13. Bertazzi PA, Consonni D, Bachetti S, Rubagotti M, Baccarelli A, Zocchetti C, Pesatori AC: **Health effects of dioxin exposure: a 20-year mortality study.** *Am J Epidemiol* 2001, **153:**1031-1044.
- 14. Calvert GM, Wall DK, Sweeney MH, Fingerhut MA: Evaluation of cardiovascular outcomes among U.S. workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Environ Health Perspect* 1998, **106 Suppl 2:**635-643.
- 15. Calvert GM, Willie KK, Sweeney MH, Fingerhut MA, Halperin WE: **Evaluation of serum lipid concentrations among U.S. workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.** *Arch Environ Health* 1996, **51:**100-107.
- 16. Swedenborg E, Ruegg J, Makela S, Pongratz I: **Endocrine disruptive chemicals:** mechanisms of action and involvement in metabolic disorders. *J Mol Endocrinol* 2009, **43:**1-10.
- 17. Sweeney A: Reproductive epidemiology of dioxins. Dioxins and health edn; 1994.
- 18. Chang JW, Chen HL, Su HJ, Liao PC, Guo HR, Lee CC: **Dioxin exposure and insulin resistance in Taiwanese living near a highly contaminated area.** *Epidemiology* 2010, **21:**56-61.
- 19. Everett CJ, Frithsen IL, Diaz VA, Koopman RJ, Simpson WM, Jr., Mainous AG, 3rd: Association of a polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with diabetes in the 1999-2002 National Health and Nutrition Examination Survey. *Environ Res* 2007, 103:413-418.
- 20. Fierens S, Mairesse H, Heilier JF, De Burbure C, Focant JF, Eppe G, De Pauw E, Bernard A: Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium. *Biomarkers* 2003, 8:529-534.
- 21. Pohjanvirta R, Tuomisto J: **Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models.** *Pharmacol Rev* 1994, **46:**483-549.
- 22. Pohjanvirta R, Vartiainen T, Uusi-Rauva A, Monkkonen J, Tuomisto J: **Tissue** distribution, metabolism, and excretion of 14C-TCDD in a TCDD-susceptible and a TCDD-resistant rat strain. *Pharmacol Toxicol* 1990, 66:93-100.
- 23. Poland A, Glover E: **Studies on the mechanism of toxicity of the chlorinated dibenzo-p-dioxins.** *Environ Health Perspect* 1973, **5:**245-251.

- 24. Safe S, Robertson LW, Safe L, Parkinson A, Bandiera S, Sawyer T, Campbell MA: **Halogenated biphenyls: molecular toxicology.** Can J Physiol Pharmacol 1982, **60:**1057-1064.
- 25. Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, Stylianou IM, Boorman GA, Russo MW, Sackler RS, Harris SC, et al: **Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans.** *Genome Res* 2009, **19:**1507-1515.
- 26. Threadgill DW, Miller DR, Churchill GA, de Villena FP: **The collaborative cross: a recombinant inbred mouse population for the systems genetic era.** *ILAR J* 2011, **52:**24-31.