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ABSTRACT

ANEW MODEL-BASED METHOD FOR ESTIMATING THE ABUNDANCE OF
STANDING DEAD TREES
BY

Hong Su An

Standing dead trees (SDT) are an important component of forest ecosystems. However, it
can be a challenge to develop reliable estimates of population parameters because dead trees are
generally lower in abundance and have more complex spatial distributions (e.g., are more
clustered) than live trees. In addition, most forest inventories are designed for sampling live
trees. Previous studies (e.g., Bull et al. 1990) have recommend using a relatively higher
sampling intensity or larger plot sizes for dead versus live trees, but this is more time consuming
and costly. Adding new plots, increasing plot sizes or otherwise modifying plot designs can be
especially costly in the case of large scale (e.g., national forest inventories) and other permanent
plot network. This thesis sought to explore approaches to improving estimation of standing dead
tree abundance, other than adding more plots or modifying plot designs, in the context of the US
National Forest Inventory and Analysis Program (USDA Forest Service 2008) and US Forest
Health Monitoring (FHM) Program (now merged with the FIA plot design) and other similar
permanent plot networks.

One major consequence of using sampling plots that are either too small or too few for
sampling standing dead trees is that it is likely that there will be a large proportion of zero
observations in data, typically referred to as “zero-inflated” data. Excess zero observations

increases variation of estimates of standing dead tree parameters. To reduce this variability



caused by zero-inflated data, a new model, Expected-Zero Hurdle (EZ-Hurdle) method, is
proposed. The EZ-Hurdle method replaced the observed zero proportion in data with an
expected zero probability obtained from auxiliary information describing the distance from a
random point (plot center) to the nearest standing dead tree.

The EZ-Hurdle method greatly improved the precision and showed less average bias than
fixed-area sampling, with or without adjustment using the standard Hurdle model when tested
with both simulation and field studies. The EZ-Hurdle method improved the precision without
adding fixed-area plot but it required additional information to explain the uncertainty caused by
zero observations in data. Especially, EZ-Hurdle methods improved the precision when only
additional information was applied without adding points. Therefore, it can be applied to
improve the precision of estimates without changing plot design such as FIA and FHM program.
The EZ-Hurdle method performs best when the density of standing dead trees is low or a small
fixed-area plot size is used to collect the data because the expected zero probability which is
modeled from auxiliary information showed less variation than observed zero proportion in data.

Although EZ-Hurdle method showed better precision, it is less cost and sampling
efficiency than fixed-area sampling method due to time to search the nearest standing dead tree.
Therefore, distance-limited EZ-Hurdle method which restricts the search radius to find the
nearest standing dead tree was proposed to reduce time to collect auxiliary information.
Distance-limited EZ-Hurdle method showed better precision than fixed-area sampling for all
circumstances such as densities and spatial patterns. It also has better time efficiency than the
original EZ-Hurdle method. Therefore, the EZ-Hurdle method with a distance-limited method
can be an alternative method to improve the precision for estimating the density of standing dead

trees without changes of plot design using reasonable cost and time to collect the data.
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1. Introduction

1.1. The Importance of Dead Trees in Forest Ecosystems

Dead trees influence many aspects of forest ecosystems such as soil fertility, hydrology,
and wildlife habitat (Kimmins 1992). Tree death changes the resource availability for other
organisms in the ecosystem (Franklin et al. 1987). Resources such as light, nutrients, and water
are increased by tree death. For example, dead trees release nutrients and energy as they
decompose (Harmon et al. 1986), so dead trees influence nutrient cycling (Maser and Trappe
1984). Consequently, dead wood is an important component to the global carbon (C) cycle
(Oswalt et al. 2008). Following international agreements to control C emissions, quantifying the
C source and sink by region is an important issue (Rothstein et al. 2004) and dead wood holds a
substantial amount of C, which is slowly released to the atmosphere and soil during
decomposition (Harmon et al. 1990; Keenan et al. 1993; Krankina and Harmon 1995). Therefore,
the death of trees causes increases in C levels in the atmosphere (Clark et al. 2004). In some
cases, dead components of the forest such as dead wood and litter may have more C than live
components (Delaney et al. 1997).

Dead trees also affect the species diversity in forest ecosystems because they offer
habitat for a variety of organisms (Franklin et al. 1987; Green and Peterken 1997; McCarthy and
Bailey 1994). For example, standing dead trees and fallen dead trees provide habitat for birds
(McClelland 1977), amphibians (Jaeger 1980), small mammals (Dueser and Shugart Jr 1978;
McComb et al. 1993), and reptiles (Harmon et al. 1986). Brown (1985) reported that about 100
species of vertebrates use standing dead trees and 150 species use logs. Maser and Trappe

(1984) reported that insects use the dead trees for their habitat, and fungi and mosses are living in



dead trees.

Dead tree populations are also critical to assess and monitor the health of forest
ecosystems (Gray 2003; Greif and Archibold 2000). The abundance or size of dead trees has
been used to assess the stage of forest development. For example, the density of dead trees
suggests one of the criteria to define the old-growth Douglas-fir and mixed-conifer forest in the
Pacific Northwest and California (Franklin et al. 1986). Dead wood is often used as part of
criteria and indicators of sustainable forest management by some international initiatives, such as
Montreal Process or International Tropical Timber Organization (ITTO) (Butler and Schlaepfer
2004). Dead wood and dead trees have been suggested as an indicator for biodiversity in forest
by the Fourth Ministerial Conference on the Protection of Forests in Europe in 2003. Several
forest health indicators can be obtained from inventory data such as stand density, species
composition, mortality/growth data, and growth-to-removals ratio (O'Langhlin and Cook 2003).
Dead trees and dead wood are closely connected with mortality/growth rates. Therefore, reliable
estimation of dead tree population attributes are important to assess and monitor forest

ecosystem process (e.g., carbon cycling) and values (e.g., biodiversity).

1.2. Challenges for Estimating the Abundance of Standing Dead Trees

It can be a challenge to develop reliable estimates of population parameters because dead
trees are generally lower in abundance and have more complex spatial distributions (e.g., are
more clustered) than live trees. The abundance and spatial pattern of dead trees are different by
geographical location, stand age, forest type and management regime (Cline et al. 1980, Guby
and Dobbertin 1996, Green and Peterken 1997, Fridman and Walheim 2000). Fridman and

Walhem (2000) reported that the volume of dead wood (standing dead trees and logs) is different



by vegetation type and geographical location in Sweden. Stephens (2004) reported that standing
dead tree abundance is increased with increasing stand age in pine-mixed conifer forests.
However, the number of standing dead trees may not correlate with the age of stand
(Vasiliauskas et al. 2004). The abundance of dead trees are different by management regimes in
hemlock-hardwood forest (Tyrrell and Crow 1994), temperate deciduous forest (Green and
Peterken 1997), pine forest (Montes and Canellas 2006; Reid et al. 1996), and Norway spruce
(Ranius et al. 2003). The spatial pattern of mortality is also different by the agent that caused
tree death (Franklin et al. 1987). For example, forest fires or wind throw causes clustering of
dead trees. This wide degree of variation in standing dead tree abundance between forest
ecosystems increases sampling error. However, it suggests that auxiliary information regarding
forest condition might allow for better estimation of standing dead tree abundance.

Another issue for sampling dead trees is that most forest inventories are designed for
sampling live trees, with dead tree data often collected under the live-tree design(e.g., standing
dead trees on the US National Forest Inventory and Analysis Program (FIA) plots (Bechtold and
Patterson 2005)). Since the abundance of standing dead trees is generally lower and they have a
more variable spatial pattern than live trees, larger plot sizes or higher sampling intensities
should be needed to get the same relative accuracy for dead trees as achieved for live ones. For
example, 0.4 or 1.0 ha plots have been used to estimate the abundance of standing dead trees
(Ganey 1999; Spiering and Knight 2005; Stephens 2004). Bull et al., (1990) recommended a
factor-5 prism (using horizontal point sampling), 1 ha fixed-area plot size, or an overall sampling
intensity of about 5%, when the mean density of standing dead trees is between 0.5 to 5 standing
dead trees per hectare in order to estimate standing dead tree density within 24% of the actual

density, and a complete count survey has been recommended when the mean density of standing



dead tree is less than 0.5 per hectare.

While intensification of sampling efforts or changing plot designs for estimating
attributes of standing dead trees is a straightforward solution to the problem, ultimately the cost
of intensification of sampling must be considered and weighted against the value of increased
accuracy (Curtis and Marshall 2005; Gregoire and Valentine 2008). Adding new plots,
increasing plot sizes or otherwise modifying plot designs can be especially costly in the case of
large scale (e.g., national) forest inventories and other permanent plot networks and may be
infeasible in some cases. Thus, a solution based utilizing relatively cheap auxiliary data or
models to enhance estimates derived from standard forest inventory data might provide an
efficient alternative to dramatically increasing sampling intensity or modifying plot designs.

One major consequence of surveying too-small an area (e.g., using plot sizes that are too
small) is that there may be a large number of zero observations of standing dead trees. Excess
zero observations (a.k.a. zero-inflated data) will increase variation in estimates of standing dead
tree parameters (Eskelson et al. 2009; Potts and Elith 2006). Because of the tendency for
standing dead trees to be aggregated in space and a generally lower abundance of standing dead
trees relative to live ones, the problem of zero-inflated data is likely large. For example, about
44% of National Forestry Inventory (FIA) plots observed no dead trees on them (Woodall et al.
2011). Therefore, an estimator, which uses relatively cheap auxiliary information to clarify
uncertainty created by zero observation of standing dead trees under standard forest inventory

designs, could provide cost-efficient estimation of standing dead tree abundance.

1.3. Goals and Objectives of this Dissertation

This thesis explores a new approach to improving estimation of stand dead tree



abundance, other than adding more plots or modifying plot designs, in the context of the US
National Forest Inventory and Analysis Program (Bechtold and Patterson 2005) and US Forest
Health Monitoring (FHM) Program (now merged with the FIA plot design) and other similar
permanent plot networks. The main goal of this research was to develop a new estimator to
predict the abundance of standing dead trees more precisely using auxiliary data and a model to
reduce estimation uncertainty associated with excessive zero observations in data. The
underlying hypothesis of this thesis was that auxiliary information regarding the distance to the
nearest standing dead tree could reduce the variation of estimates caused by large zero
observations in data under a given plot design.
In order to meet the main research goal several objectives were undertaken and met:

1. Review the general problem of zero-inflated or large zero observations in data and review
sampling methods and models and examine this problem in the specific context of estimating

standing dead tree abundance.

2. Develop a new estimation method for standing dead trees which expands on existing zero-
inflated modeling methods and which is compatible with typical estimation methods used by

forestry practitioners.

3. Use simulation studies and field data to explore the problem of zero-inflated or large zero

observations in data for estimating the density of standing dead trees from fixed-radius plot

sampling under different simulated and real forest conditions.

4. Examine the properties of the proposed new estimator, under simulated and real forest



conditions.

5. Compare the new estimator with existing methods such as simple random sampling method
and simple random sampling combined with existing zero-inflated models, in terms of estimation

error and costs of data collection.

6. Finally, this research suggests a sampling strategy for estimating standing dead tree abundance

with reference to the FIA/FHM plot design.



2. Review of General Sampling Methods and Models for Dealing with Zero-

Inflated Data

2.1. Overview of Sampling Inference

Most forest inventories are focused on estimating population parameters, such as mean
per unit area (or plot), and its associated variance, from sample data, which are then extrapolated
to the larger population of interest (the reference population). Sampling inference can be
classified into design-based and model-based inference. Model-based inference is usually
applied at the estimation stage. Gregoire (1998) argued that "sample selection cannot be
inherently model based”. Sample selection can be described as probabilistic, sequential, or
purposive (Gregoire 1998). On the other hand, models can be applied to estimate the population
parameters during the estimation stage. Ratio and regression estimators are well-known model-
based estimators. In this research, population parameters estimated by both design-based and

model-based estimators were compared.

2.1.1. Design-Based Estimation
Suppose the population is consisted of N sample units. Each unit is identified by a label

i, whichis i={1..,N}. Let Y be the observed characteristics or measurement such as number

of standing dead tree at the ith unit. The population is represented by N sample units and
observed characteristicsy, Y = {yi yees YN } with unknown parameters. Let y be the sample data,
y={y1,..., yn} where n is number of selected sample units that are selected by specific sampling

design. In survey sampling, the interest is making inference of population parameters from the

sample data (y).



In the design-based view, the y;j of populations are considered as a fixed set of unknown

constants. Therefore, the estimated population parameters are also considered as a fixed

constants (Dorazio 1999; Gregoire 1998). Generally, the population mean is defined as
yzl/N-Zililyi . An estimator which is used to calculate the estimates of population

parameters arises directly from the sampling design. The choice of sampling design is important
to having precise population parameter estimates because the sampling design defines the
selection method for an individual sample unit which represents the population. Sampling
design is a system of sampling methods selecting the sample unit from the sample space under
the same probability of being sampled. Therefore, the design-based approach can be defined as
probability-based sampling which is called randomness. Therefore, no assumptions about the
population Y are needed in design-based approach (Dorazio 1999). Based on selected sampling
design, an estimator is a rule to calculate the population parameters from the sample data. The
term "sampling strategy" is used to define the combination of sampling design and estimator.

An estimator of the population parameter is commonly derived to ensure that the
expected value of the estimator equals the value of population parameter. Such estimators are

said to be a design-unbiased estimators. For example, the estimator of population mean (u«)

under simple random sampling is u = Zinzl Yj /n . Since E (,u) , Which is the expected value of

the estimate () estimated by all possible sample y under simple random sampling, is equal to
the population mean ( u), the estimator is design-unbiased for 4. The estimators are unbiased

regardless of the nature of population. It is an important consequence of linkage between
sampling design and estimation.

Most current forest inventory methods for standing dead trees are based on design-based



inference using sampling strategies for standing live trees (Kenning et al. 2005). These methods
include simple random sampling with fixed-area plot, variable radius sampling (point sampling),
and strip cruising. Fixed-area sampling and point sampling have been recommended to estimate
the density of standing dead trees (Bull et al. 1990). For fixed-area sampling, arguably the most
common plot design, the shape and size of plot and sampling intensity should be decided at the
sampling design stage. Any shape of plots can be used, but circular or rectangular shapes are
commonly used in practice. Ganey (1999), for example, used square 1 ha plots to collect the
information of standing dead trees, and Bull et al. (1990), Stephens (2004), Kenning et al. (2005),
and the FIA program use a circular plot to collect the standing dead tree information. The size of
plot and sampling intensity are usually decided by the variable of interest, allowable costs, and
desired precision (Avery and Burkhart 1983). After plot size and sampling intensity have been
decided, one needs to decide the sampling design to be applied to establish the plot in the
research area. In most situations, sampling locations are point locations. For example, a
sampling location is the plot center of circular plot or a corner point of rectangular plot. In this
research, simple random sampling (SRS) and systematic sampling (SS) designs were applied to
define the baseline method for estimating the abundance of standing dead trees.

Generally, the population parameters of interest are mean per sampling unit or mean per
unit area and the population total. When we know at least one population parameter, we can
extrapolate the other population parameters. The estimator of sample mean and the variance

estimator of sample mean are as follows:
n
- 1
y==-2 Vi
n :
=1

§=832,/n



Where Yj is measured characteristic of interest on sampling unit isuch as number of trees, nis

number of sampling units (plots) in the sample, and S% is the variance of y. The mean per unit
area is estimated by

Yunit =Y E

E=1A

where E is an expansion factor and A is the area of plot.

2.1.2. Model-Based Estimation

In model-based view, a model is a theoretical construction which defines the differential

probability of objects being sampled because the y;j of population is considered as a realization of
one or more stochastic processes. Therefore, the population of Y is modeled as a random

variable whose joint distribution fy(y|0) is defined by one or more unknown, fixed

parameter(s) &, where yis observed data set, y={y1,..., yn}. The model is built based on the

information of interest such as density, age, or distribution pattern. The information can be
obtained from prior researches and/or assumptions suggested by the structure of population.
After the model is defined, the common objective is to estimate the unknown parameter & from

sample y (Dorazio 1999). For example, we assume that the underlying distribution of standing
dead tree population (Y') is the Poisson distribution, Y ~ Pois(1). We assume the observed data,

Yi={Y1,--» ¥n}. is also Poisson distribution. Given this assumption, the number of standing

dead trees for each yjis modeled as a random outcome of a Poisson process, which has the

density function f(y;ﬂ)z/lyoe_’i/y!. The unknown parameter A of Poisson distribution

10



corresponds to the probability that number of standing dead trees tallied within plot. Under the
Poisson model, E(x)=1 and inference about A and x are equivalent. In other words, the
model which is fitted with estimated parameter A is used to make inference about the standing
dead tree population. The parameter (&) and population parameters are commonly estimated by
the method of maximum likelihood (ML), which defines the value of & that is most likely for

the given data and model. ML is estimated by maximizing the likelihood function L(6'| y):

L(6]y)=f(y]9),

where y is observed or selected data set. Because the likelihood function is a function of &
with fixed y, we have different parameter @ for the different sample set. The ML method
provides the most likely value for 6. In addition, the sampling design is not relevant to
inference because the estimation is based on the likelihood function. Gregoire (1998) stated that
in model-based inference, an estimator of population mean (;1) is to be model unbiased when
E(u—-u)=0.

There are many advantages for model-based estimators and inferential procedures. Since
population Y is a single realization of one or more stochastic processes, there is considerable
flexibility in identifying and selecting classes of models for approximating the true value which
is underlying processes believed to have generated Y . The prior and observed information can

be used to determine the model. For example, according to the several studies and prior

information, the number of standing dead trees is observed in each plot and y values are often
dominated by counts of 0 or 1 (e.g., Eskelson et al. 2009) and y values are nonnegative integers.

Based on the prior information, we can assume that the underlying distribution can be Poisson or

negative binomial distribution. Based on the assumption, the model is fitted to sample data.
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However, it is not always easy to find the best model. If the model of data is not correct, the
estimated parameters may be biased (Dorazio 1999). Therefore, we need to be careful when we
select the model to make inference from the sampling data.

Count regression models have been applied to estimate the abundance of species, dead
trees, and mortality. Count regression models have been widely used in fields such as
econometrics, epidemiology, and nursing, but have only recently been introduced into forest
ecosystem sciences (e.g., Affleck, 2006). In a comparison of five count regression models for
estimating the abundance of a vulnerable plant species, Potts and Elith (2006) demonstrated that
the Hurdle model, which assumes that the observed data set follows mixture of two statistical
distributions, showed the best fit to model the observed data set. Negative binomial regression
model and nearest neighbor imputation method were compared by Eskelson et al. (2009) to
predict the abundance of standing dead trees and cavity trees (Eskelson et al. 2009). Affleck
(2006) also compared different count regression models to predict the stand mortality, finding the
Hurdle and negative binomial models to provide good fits to data. These previous studies aimed
to find the best fit model for observed data set to explain the relationship between the abundance
data or mortality and some environmental variables. These indicate that the model performance
is different by underlying assumption for population parameters. Hence, the assumption for the
underlying statistical distribution of the model is important factor to predict the abundance of
standing dead tree population. Several count regression models used to model standing dead tree

data are introduced next chapter.
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2.2. Statistical Models for Count Data and the Problem of Zero-Inflation

2.2.1. Overview

As the statistical model, count data, y = (y1,..., yn ), is a random variable. The count data
y is modeled by the probability mass function (f(y|9)) such as Poisson or negative binomial

(NB) distribution which is characterized by one or more unknown and fixed parameter 6 .
Statistical models for count data are a kind of discrete response models that aim to explain the
number of occurrences or count of events (Hilbe 2007). Since count data has only non-negative
integer values, such as the number of standing dead trees per plot, the probability mass which
uses non-negative integer values is applied to model the count data, such as Poisson and negative
binomial distribution. Here, the counts of interest are counts of standing dead trees in fixed-area
plots, which form the base data for making inference about standing dead tree density (standing

dead trees per unit area).

2.2.2. Poisson Model

The Poisson model is a basic count regression model derived from the Poisson

distribution. For example, let’s say that Y, is the number of standing dead trees at site i. Under
simple random sampling (SRS), we typically assume that Y; is Poisson-distributed with a mean
4 and an associated variance. The number of occurrences in count data (i.e., counts in the

fixed-area plots) is estimated by Poisson distribution. The probability function of Poisson

distribution can be characterized as

P{Y =y} = "
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where y={0,1,2,3,...}, the random variable Y is the count response, and the parameter
4 1s the expected value and variance. An important property of the Poisson probability is that
the mean (= E[Y ]) and variance (Var[Y ]) are equal.

One of the central problems associated with both spatial aggregation and low abundance
of standing dead trees is the excess zero observations in sample data (i.e., plots where no dead
trees were observed). When there is a larger proportion of zero count observations in the data
than assumed under the statistical distribution (i.e., Poisson distribution), this data is called ‘zero
inflated data’ (Tu 2002). Typical statistical methods are unsuitable or difficult to apply when
analyzing zero inflated data. For example, Ganey (1999) used medians and interquantile ranges
instead of means and variances for inference, because the frequency of standing dead trees in his
sample data was highly skewed. Zero-inflated data usually do not hold to normality or
homoscedasticity assumptions. In addition, insufficient nonzero observations increase the
uncertainty of estimation.  Therefore, statistical models, which apply other statistical

distributions, have been developed to model large proportions of zero observations in data.

2.2.3. Negative Binomial Model

The negative binomial (NB) distribution can be applied when there is over-dispersion in a
Poisson regression model. The NB distribution is as a combination of two distributions, giving a

combined Poisson-gamma distribution. It assumes that count responses (y ) are Poisson
distributed with x, and u is assumed to follow a gamma distribution. The NB distribution is

characterized as
I(y+k) K O kK Y
P{Y = y} = . J1-
r'(y+)rk) (u+k u+K
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where y={0,1,2,3,...}, the random variable Y is the count response. The expected value is u

and the variance is ,u+,u2/k where k is a dispersion parameter. When k is large, the term

ﬂz/k is approximately 0. Although the NB model is more flexible than the Poisson model, it

may also problems where zero probability in data is greater than or less than the zero probability

estimated by a regular count distribution.

2.2.4. Hurdle Model

The Hurdle model, proposed by Mullahy (1986), was developed to account for excess
zero observations in count data; it consists of two component models representing two processes
defining the proportion of zero and non-zero counts and the “hurdle” is a partition between them.
For the case of standing dead trees, one process is causing the absence of standing dead trees at a
location and another process is influencing the number of standing dead trees where they occur.
In the Hurdle model, the binomial distribution can be used to model the absence and presence of
standing dead trees and a zero-truncated count distribution, such as Poisson and NB distribution,
can be used to model the portion of the count data where at least one standing dead tree was

found. The combined probability function for the Hurdle model is defined as follows:

Vs y=0

(TS R

y>0

where 7 is observed zero probability in count data according to binomial distribution,

f(Y =y|u)/[1- f(Y =0]|u)]is the zero-truncated form of Poisson or NB distribution, and
f(Y =0| u)is the probability of zero estimated by Poisson or NB distribution. The expected

value and variance of Y in Poisson Hurdle model are estimated by:
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where 7 is the observed zero probability estimated by binomial process and yis the expected

value of the Poisson distribution. In case of NB Hurdle model, the expected value and variance

of Y in NB Hurdle model are estimated by:

k
Epang [Y ]=(1-7)-—5— where Po=( ‘ j

1-R Hj +K
2 2
VarthBWF%-(uz +u+ﬂ7)—[(1—n)l_“Po}

where 7 is observed zero probability estimated by binomial process, u is the expected value of

NB distribution, k is dispersion parameter which is estimated by NB distribution. The zero
probabilities () for both Poisson Hurdle and NB Hurdle models are estimated from binomial

process using observed absence and presence data.

16



3. Development of the EZ-Hurdle Method

3.1. Model Development

Since the Hurdle model estimates the zero-probability in the count data based on the
observed proportion of 0’s in the sample data, the zero-probability is a population parameter also
subject to sampling error due to, e.g., a too-small plot size and/or variation in standing dead tree
spatial pattern and abundance. To reduce this variability, we proposed the Expected-Zero (EZ)
Hurdle model, which replaces the observed proportion of 0’s from the sample data with an
expected zero-probability obtained from auxiliary information. This expected zero-probability
provides additional information which, theoretically, should reduce random variation associated
with observed zero-proportion in the count data.

To use the additional information regarding the zero probability, the EZ-Hurdle method
adds an additional stage to the estimation process. The first step is estimating the expected zero-
probability observations ( Py ) given the sampling intensity. Here, the expected zero-probability
is estimated by the predicted inclusion probability of a standing dead tree for a given search
radius, but it could be estimated otherwise (e.g., from another data source or model). The
relationship between the expected zero-probability and the inclusion probability of a standing
dead tree is:

Peid =1~ Pinc(id)

where Pyjq is the expected zero probability for the given search radius d with restricted
condition i such as spatial pattern and density of standing dead trees and Pjuc(id) is the
inclusion probability of a standing dead tree at the search radius d . In this application, a model
is applied to find the inclusion probability of a standing dead tree for a given search radius at
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each sample point, using the observed distance from a sample point to the nearest standing dead
tree as the source of auxiliary information. As the fixed-area plot radius increases, the inclusion
probability of a standing dead tree approaches one and the number of non-observations, i.e., the
number of 0’s, approaches zero. Thus, for any given search radius employed during sampling, an
expected number of 0’s can be estimated from a data set consisting of point-to-dead tree
distances, or from a function derived from such data.

The second step is estimating non-zero counts using zero-truncated count distributions
such as Poisson or NB distribution by adjusting the zero-probability estimated during the first
step. An expected zero-probability is obtained as a function of a search radiusd , and the
probability ( Psjg ) is plugged into the following probability function:

Peid y=0

P{Y =y} = (Y =yl
e (1_Pe‘d)'1-g‘Y(Y:yi)Tﬁ3)

y>0

where Pajg is the modeled expected zero-probability for the given search radius d and g is

estimated mean by truncated count distributions such as Poisson and NB distribution for the
given search radius d and i is the restricted condition such as spatial pattern and density of

standing dead trees. The log-likelihood function of the EZ-Hurdle model is as follows:

n
L(Yit, Yin) = 2. {In T (yjj | 44) = In[1- £ 0] 14 ]}

j=1
If one can estimate the expected zero-probability for the given search radius (d ) precisely, one

can obtain a more precise estimate of the number of standing dead trees. For the EZ-Hurdle with

Poisson distribution (EZP) model, the expected value and variance for the count distribution are:
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and for the EZ-Hurdle model with NB distribution (EZNB):

Kid
. \ Mid Kid
EEZNB |Yid | = (- Peid) - 7—~ where By =(—j
[Yia 1-R Hid +Kid

. 2 72
Vargzng [Yi] = %(uf + 44 +ﬂ7') —[(1— Peid )ﬁ}

where Pajq is the expected zero-probability estimated by model for the given search radius d ,

g 1s the expected value of truncated Poisson or NB distribution for restriction i, such as spatial

pattern and density, and kjq is dispersion parameter which is estimated by NB distribution.
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4. A Simulation Study to Understand the Properties of the EZ-Hurdle Method

and Compare it to Related Approaches

4.1. Overview

A simulation study was chosen to illustrate the properties of the EZ-Hurdle method and to
compare it to some existing approaches. A simulation study was advantageous because the true
density of standing dead trees was known and because different spatial patterns and abundances
of dead trees could be devised. A simulated area of 324ha (1,800x1,800m) was chosen to
represent a large forest stand and in order to avoid the problem caused by small data set which is
less than 30 observations when we applied large plot size. Three different spatial patterns
random, clustered and highly clustered were applied to generate the standing dead trees at three

different abundance levels ranging from 12/ha to 49/ha (Table 4.1).

Table 4.1. Parameters to create clustering patterns from a Matern Cluster Point Process.

Spatial Pattern ~ No. of clusters/ha Radius of cluster(m) Density/ha
Cluster | 3 30 12,24, 49
Cluster Il 2 30 12,24, 49

With typical tree abundances in forests ranging from hundreds to thousands of trees per
hectare, this represents a range of dead tree relative abundances ranging from about 1 to 25% of
all standing trees. Random patterns were generated by a Poisson process, and clustered patterns
were generated by the Matern-cluster point process. A Matern-clustered point process was used,
where the number of clusters, cluster size, and mean density are fixed for each cluster (Matern

1986). The Spatstat package in R (Baddeley and Turner 2005) was used to create simulated
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populations of standing dead trees. Figure 4.1 shows an example of standing dead trees
generated for the simulation. Cluster pattern Il has more aggregation than cluster pattern | when

the density is 12.36/ha.
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Figure 4.1. The distribution of simulated standing dead trees by spatial pattern when the density
is 12/ha. The area depicted for each pattern is about 18 ha.

4.2. Data

In fixed radius plot sampling method, sampling locations are point locations, which are
commonly selected randomly or systematically from the continuous area frame. A sampling
location is the center of circular plot or a corner point of a rectangular plot. In this simulation
study, two different fixed-radius sample plots were used. One is a 7.32 m radius circular plot
which is same as the ‘subplot’ in the FIA design. Another is a 17.95 m radius circular plot which
is same as the ‘annular plot’ in the FIA design. In order to reduce the edge effect, a 50 m buffer
area was applied. Therefore, plot locations (plot centers) were randomly selected within a core
area which was 289 ha. Ten different sampling intensities were applied representing 1% to 10%
of the total forest area covered by the sum of the areas of all the plots, by a 1% interval for the
two specified plot sizes (Table 4.2). The number of standing dead trees was counted and the
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distance from the plot center to the nearest standing dead tree was measured. Three thousand
data sets were generated for each sampling intensity and plot size by spatial pattern using a
custom algorithm written in the R statistical computing language (R Development Core Team
2011). The three thousand data sets were used to estimate the population parameters under each

sampling method.

Table 4.2. Number of samples by sampling intensity (%) and plot size (radius, m).

radius(m
Intensity (%) (m) 7.32 17.95
1 193 32
2 385 64
3 578 96
4 771 128
5 964 160
6 1,156 192
7 1,349 224
8 1,542 256
9 1,735 288
10 1,927 320
4.3. Methods

4.3.1. Estimating the Expected Zero Probability

The inclusion probability of a standing dead tree was modeled based on the distance from
random points to the nearest standing dead tree. Models fit to the simulation data were used to

calculate the inclusion probability of at least one standing dead tree ( Pjnc(d) ) and the
corresponding expected zero probability (1— Pjnc(d)) for each search radius. We considered an
array of potential models that are sigmoid-type functions (Table 4.3), which indicate an initially
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low change in the inclusion probability over relatively short distances and then exponentially
increasing inclusion probability as the search radius continues to increase, ultimately saturating
as the inclusion probability approaches one; this pattern was observed in the data. Two models
were selected and the best of the two was determined based on root mean squared error (RMSE)

and Aikake’s Information Criterion (AIC).

Table 4.3. Models to estimate the inclusion probability of a standing dead tree.

Name Model
Pinc(id) =0, d=0
Model | .
(Reduced Logistic function) Pinc(id) = d>0
1+b-exp
Model 11 Pinc(id) =0, d=0

(Reduced Gompertz function) Pinc (id) = eXIO(—b><cd ) ds0

Pinc(id) is the inclusion probability of a standing dead tree in forest iand d is search radius (m).

Figure 4.2 shows the change of inclusion probability of a standing dead tree estimated by
the reduced Gompertz function. Both models are sigmoid curves. The change of inclusion
probability has strong relationship with the inflection point. For example, a inflection point
moves to the left (close to 0) when the density of standing dead trees is getting high and the
spatial pattern of standing dead trees is random because there are high inclusion probabilities.

In order to find the best model, 964 points were randomly selected by spatial pattern and
density. There is one reason that the maximum number of random points is 964 because
according to a previous study, 5% sampling intensity is recommended to estimate the abundance
of standing dead trees when fixed-area sampling method is applied (Bull et al. 1990). Hence, it

assumed that 964 random points should be enough to test the model performance to estimate the
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inclusion probability of a standing dead tree. Three hundred iterations had been applied by
spatial pattern and density of standing dead trees. For each iteration, RMSE and AIC were

calculated. Finally, the best model was selected which has better RMSE and AIC.
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Figure 4.2. The change of inclusion probability of a standing dead tree estimated by the reduced
Gompertz function under different conditions.

It was expected that the precision of estimated inclusion probability should be increased
with increasing the number of random points. In order to find a reliable number of random
points to estimate the inclusion probability, the change of variation for the estimated inclusion
probability was examined by spatial pattern and density using the different number of random

points from 30 to 1,050. The inclusion probability for given search radii 7.32 and 17.95 m were
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estimated from 3,000 data sets by spatial pattern and density using selected model.

4.3.2. Comparison of EZ-Hurdle to Existing Methods and Models

Using 3,000 simulated data sets, the abundance of standing dead trees per ha was
estimated by spatial pattern and density of standing dead trees and for each method including
SRS, Poisson, Poisson-Hurdle, NB-Hurdle, Poisson EZ-Hurdle, and NB EZ-Hurdle method. In
the simulation, we knew the true abundance of standing dead trees per ha, so, root mean square
error (RMSE) and error (Error) were used to compare the methods. The RMSE and average bias

were computed as follows for each simulation environment:

Error = (Ejjkmp — T jkmp) » and

L 2
_Z(Eijkmp ~Tjkmp)

where E is estimated density of standing dead trees per ha by method, T is the true density of

standing dead trees, i is the number of iterations (3,000), j is the density of standing dead trees,

k is a spatial pattern, m is a sampling intensity, and p is a plot size.

4.3.3. Sensitivity Analysis

Due to the EZ-Hurdle method being a model-based estimator, any estimate is sensitive to
the modeled inclusion probability. Therefore, a sensitivity analysis was conducted to examine
the sensitivity of the EZ-Hurdle method to errors in specifying the corrected inclusion probability,
i.e., when the expected probability of zero is different from the “true” zero probability under a

fixed sample size and plot size. This was quantified by the estimated % change in the estimation
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error of standing dead tree density estimated by EZ-Hurdle method as a function of changing the
inclusion probability of a SDT under holding all other factors constant such as spatial pattern,

density, and plot size. The percent error (%) in standing dead tree density was calculated as:

Mxloo,

percent error =
D

where Tp is the true density and Ep is the estimated density by EZ-Hurdle method.
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4.4. Results

4.4.1. Inclusion probability

The reduced Gompertz function (Model 11) was selected to model the inclusion
probability. Model 11 tended to have the smallest RMSE and AIC for overall spatial pattern and
density (Table 4.4). Both models show that RMSE increases with increasing clustering of dead
trees relative to a random pattern (Table 4.4), since there is a lower inclusion probability of a

standing dead tree under a clustered pattern and a correspondingly greater zero inflation for any

given density.

Table 4.4. Mean RMSE and AIC by model to estimate the inclusion probability of a standing

dead tree.

. . Model |
Spatial Pattern Density/ha RMSE AIC RMSE AIC
12.4 0.159 -2932 0.061 -3479
Random 24.7 0.042 -678 0.042 -2454
42.0 0.092 -1486 0.031 -1805
49.4 0.082 -1544 0.032 -1822
12.4 0.651 -3513 0.093 -5119
Clustered | 24.7 0.980 -2719 0.276 -3642
42.0 1.353 -3130 0.574 -3875
49.4 1.423 -2488 0.641 -3074
12.4 0.842 -3321 0.412 -4835
Clustered II 24.7 0.652 -2343 0.326 -3538
42.0 0.843 -2874 0.756 -3427
49.4 1.321 -2784 0.847 -3173

The variation of the estimated inclusion probabilities decreased with increasing number
of random points for all spatial pattern and densities for both search radii (Figs. 4.3 and 4.4).
With an increasing number of random points, the mean of inclusion probability approaches the

true value. For example, the inclusion probability approaches to 0.176 with increasing the
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random points when spatial pattern is random, density is 12/ha, and search radius is 7.32m (Fig.
4.3). The results clearly show that the 95% CI are decreased with increasing the random points
and that the confidence intervals are overlapped and do not dramatically decrease after 500
random points. However, in absolute terms, the 95% CI were less than 1% over all sampling
intensities, spatial patterns, and densities (Figs. 4.3 and 4.4), so a much smaller number of points
than 500 can yield good estimates of the inclusion probabilities. Therefore, the 500 random
points were used to estimate the inclusion probability of a standing dead tree during the
simulation.

The inclusion probabilities were different by the spatial patterns and densities of a
standing dead tree for both radii (Figs. 4.3 and 4.4). Inclusion probabilities were higher under a
random distribution of trees than that found for the two clustered patterns for all densities and
search radii. In addition, clustered pattern | showed relatively higher inclusion probabilities than
clustered pattern Il because clustered pattern Il has more aggregation than clustered pattern I.
These results indicate that the inclusion probabilities are highest when the density of standing
dead trees is high and randomly distributed in area and lowest with a few trees in tight clusters.
However, the increase in inclusion probabilities with increasing dead tree density was much
smaller when trees were clustered than randomly distributed (compare the top and bottom rows
of sub-figures in Figs. 4.3 and 4.4), because in the former case, the inclusion probability was
largely dependent on a sample point landing in or near a cluster, rather than how many dead trees

were in a cluster.
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Figure 4.3. The mean and 95% CI of inclusion probabilities by spatial patterns and densities of
standing dead trees when the search radius is 7.32m.
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One way to understand how the EZ-Hurdle method works is to see how the observed zero
proportion varies over many samples and compared that to the variation in the expected zero
probability predicted from the model. Figure 4.5 shows the variation of observed and expected

zero proportion (i.e., the expected zero probability) by spatial patterns in 3,000 simulated data

sets.
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Figure 4.5. Observed and expected zero proportion in 3,000 simulated data sets by spatial
patterns, when the plot radius is 7.32m and density is 24/ha.

In this example, there are 578 random plots with a sampling intensity of 3% and a plot
radius is 7.32 m. The mean of observed zero proportion is increased with decreasing density of
standing dead trees. The mean of observed zero proportion is approximately 0.67 or 67% when
the spatial pattern is random. It means that approximately 67% of plots among 3,000 plots have
no dead trees. The mean of modeled expected zero probability when 500 random points are used
is approximately 0.66 at the same spatial pattern, so only slightly different than the observed.

However, and the expected zero probability from the model has an order of magnitude smaller

31



variation than observed zero proportion. Especially, there is more improvement of zero
proportion when the standing dead trees are more clustered. Therefore, EZ-Hurdle method can
have better estimates than SRS or other methods which used observed zero proportion because

there is less variation in the estimate of the observed zero proportion between samples.

4.4.2. Comparison of Estimated Density of SDT/ha by Methods

The EZ-Hurdle method showed better precision in estimating standing dead tree density
than SRS and various forms of the Hurdle model over all scenarios examined. Figure 4.6 and 4.7
show the distribution of estimated densities of standing dead trees per ha using different
estimators, based on 3,000 samples generated at different sampling intensities, with lower (Fig.
4.6) and higher dead tree densities (Fig. 4.7), respectively. The data clearly show a narrower
distribution of estimates with a greater proportion of estimates concentrated around the mean
when the EZ-Hurdle method is employed (Figs. 4.6 and 4.7). The EZ-Hurdle with Poisson
(EZP) or EZ-Hurdle with NB distribution (EZ-NB) yielded nearly identical distributions of
estimates to each other, so only results for EZP are shown. SRS, the Hurdle model with Poisson
(HDP) or the Hurdle model with negative binomial distribution (NB-Hurdle) methods yielded
nearly identical distributions of estimates to each other. The lack of difference of Hurdle-based
approaches from SRS is not surprising, since they all use the observed zero proportion from the
plot data, while the EZ-Hurdle method uses nearest standing dead tree distances to reduce the

variation associated with zero observations in the data.
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Figure 4.6. The distribution of estimated density of standing dead trees by sampling intensities
(1%, 3%, 5%, 7%) and methods when the plot radius is 7.32m and spatial pattern is
random. True density is 12 trees per ha. SRS is simple random sampling method with
fixed-area circular plot. HDP is Hurdle model with Poisson distribution and EZP is
EZ-Hurdle model with Poisson distribution.
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Figure 4.7. The distribution of estimated density of standing dead trees by sampling intensities
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with fixed-area circular plot. HDP is Hurdle model with Poisson distribution and EZP
is EZ-Hurdle method with Poisson distribution.
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As expected, the precision of all methods increased with increasing sampling intensity.
However, under the same sampling intensity, the distribution of estimates was more different
between EZ-Hurdle and other methods when plot size was small and density was low (Figs. 4.6
and 4.7). Conversely, the distribution of estimates between all the methods were much more
similar when a larger plot size was applied and a lower sampling intensity was employed,
although the EZ-Hurdle model did not converge on the same distribution of estimates given by
the other methods for any other the scenarios examined. Theoretically, SRS and the EZ-Hurdle
method should converge only when the expected and observed zero proportions are the same.

The RMSE captures the overall difference in estimation error between the methods as
compared to the true estimate. The RMSE of EZP was almost always lower than that from SRS
under all of the different scenarios examined, except at the highest density and largest plot size
when sampling intensity was greater than 5% (Fig. 4.8, the other Hurdle methods are omitted
from the figure because they give nearly identical results to SRS). The difference in RMSE of all
the methods decreases as the sampling intensity increases under the same conditions (plot size,
desnity and spatial pattern), with EZ-Hurdle always outperforming SRS when sampling intensity
is less than 5% and in many cases still outperforming SRS up to the maximum sampling intensity
examined (10%). All the methods worked the best when dead trees were distributed randomly in
space and the superiority of the EZ-Hurdle method was greater when standing dead trees were
clustered in space (for reasons explained prviously, see Fig. 4.6). When zero inflation was
highest (low density and small plots, upper left sub-figure, Fig. 4.8), EZ Hurdle was superior

regardless of spatial pattern.
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The EZ-Hurdle method has less variation in estimation error for all spatial patterns,
densities, and plot sizes (Figs. 4.9, 4.10, 4.11, and 4.12). Variation in estimation error was
decreased with increasing sampling intensity for both SRS and EZ-Hurdle method. Variation in
estimation error also increased when standing dead trees were clustered for both methods. Under
the same density of standing dead trees, the EZ-Hurdle method showed greater improvement in
estimation error over SRS when a smaller plot size (7.32 m radius) was applied. The difference
between the methods was also larger when standing dead tree density was lower (compare Figs.
4.9, 4.10 to 4.11 and 4.12). These results were expected because the EZ-Hurdle method should
perform better when there are more zero observations in the data. Under either method, there
was higher variation of estimation error when the density of standing dead trees was 49 per ha
than compared to 12 per ha (Figs. 4.9, 4.10, 4.11, and 4.12), which was expected because larger
variation is typically associated with a larger population mean (Avery and Burkhart 1983).

SRS is a design-unbiased estimator, while the EZ-Hurdle method is model-based
estimator, which is expected to be biased (Gregoire 1998). The data show that errors for both
methods were clustered around zero (Figs. 4.9, 4.10, 4.11, and 4.12), such that the bias in the EZ-

Hurdle method is apparently low.
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Figure 4. 9. The errors by sampling intensity when density is 12/ha and plot radius is 7.32 m.
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Given that a relatively large number (n = 500) random sample points were used to
estimate the inclusion probability of a standing dead tree under a given search radius, it is
important to consider how sensitive the EZ-Hurdle method is to errors in specifying the expected
zero probability, i.e., if lower numbers of random point to dead tree distances were employed to
calibrate the EZ-Hurdle model. The results of the sensitivity analysis (Fig. 4.13) show that a 1%
change of the estimated inclusion probability corresponds to less than a 0.1% change in error in
actual standing dead tree density, indicating that the method is robust to relatively small errors in

estimating the expected zero-probabilities.
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Figure 4.13. The changes of errors (%) by the changes of inclusion probability when sampling
intensity is 5% and plot radius is 7.32m.

This is supported by the results in Figure 4.3 and 4.4, which show that even with sample sizes as

low as 30 the expected difference between the estimated and true inclusion probability is only a

few percentage points. The results (Fig. 4.10) also show that the percent error is more sensitive
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to the change of inclusion probability when the density of standing dead trees is lower and when

the standing dead trees are more clustered in space.

4.5. Discussion of Simulation Study

The EZ-Hurdle method employs the EZ-Hurdle model to clarify the variability associated
with estimating the true proportion of zeros in count data, in this case counts of standing dead
trees in fixed radius plots. The results clearly show that additional information regarding the true
proportion of zeros reduces estimation error both in terms of increased precision and reduced
average bias, i.e., improved accuracy, except under conditions where the data has a small number
of zero observations, either because dead tree density is high or because plot sizes are large and
trees are distributed randomly in space. On the other hand, the standard Hurdle model shows
similar results to compare SRS for all combinations examined because it uses the observed zero
proportion from the sample data when estimating the population parameter. This latter result was
expected because previous studies estimating the abundance of snags (Eskelson et al. 2009),
species abundance (Potts and Elith 2006), and modeling stand mortality functions (Affleck 2006),
reported that the Hurdle model performs well for fitting the distribution of observed data, i.e.,
Hurdle models parameterized with the observed proportion of zeros in the data should have
similar expected value as estimated by SRS.

The EZ-Hurdle method gave superior estimates in almost all cases examined when the
sampling intensity was less than 5%, which is consistent with the recommendation by Bull et al.,
(1990) that a 5% sampling intensity is necessary for reliable estimates of standing dead trees
using standard (e.g., simple random) sampling methods. Recognizing that the EZ-Hurdle
method relies on an underlying sampling design, it can allow for greater flexibility in choosing a

sampling design; for example deciding the plot size to estimate the abundance of standing dead
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trees. The EZ-Hurdle method can improve the precision when using smaller plot sizes than
typically recommended for standing dead trees (e.g., 0.1 to 1 ha plots,. (Ganey 1999; Stephens
2004)). In effect, the EZ-Hurdle method helps to mitigate increased variation and possible bias
associated with too many non-observations of standing dead tree within plot, which is associated
with decreasing plot size (Kenning et al. 2005). Hence, the EZ-Hurdle method can allow for
reductions in plot size or plot numbers when the auxiliary information, such distances to nearest
standing dead trees, is available from previous studies or additional data collection.

The improved results shown here for estimating standing dead tree abundance are likely
general, in that we believe that the EZ-Hurdle method should work well whenever zero
observations in data are a major source of uncertainty in the data (i.e., zero-inflated data). For
example, it may allow for increased accuracy in estimating the abundance of rare species by
enhancing the Hurdle model-based methods of Potts and Elith, (2006). However, it is important
to emphasize that the EZ-Hurdle method requires that the expected zero-probability be estimable
through some auxiliary data source, which in this case was as simple as measuring the distance
to the nearest standing dead tree. For other situations, estimating the expected zero probability
may not be so simple. According to a study by Kenning et al. (2005), the time requirement to
measure the nearest dead tree was increased with a decreasing density of dead trees and the latter
is the best application of the EZ-Hurdle model. Therefore, further work is needed beyond this
simulation to examine the cost efficiency of applying the EZ-Hurdle method, when the auxiliary
information used to estimate the expected zero-probability is calculated from locally collected
distances to the nearest dead tree (this is dealt with in later chapters of this dissertation).

It might be possible to estimate the inclusion probability of a standing dead tree from

stand level attributes or models calibrated elsewhere, e.g., in similar stands (see e.g., Eskelson et
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al. 2009). There were some clear trends in the data that the inclusion probability of a standing
dead tree under a given plot design was different by both the density of standing dead trees and
their spatial pattern. In fact, many studies suggest that the abundance and spatial pattern of
standing dead trees varies by geographical location, stand age, forest type and management
regime (Cline et al. 1980, Guby and Dobbertin 1996, Green and Peterken 1997, Fridman and
Walheim 2000). Thus, it might be more cost-effective to predict the expected zero probability
under a given sampling design and set of forest conditions from simple auxiliary variables, rather
than collecting additional data such as nearest dead tree distances on site. The biggest concern
would likely be that estimated population parameters from the EZ-Hurdle method would be more
likely to be biased with the additional auxiliary data than with the observed data, and thus not
representative of local conditions (Dorazio 1999). Further studies along these lines are needed.
Nonetheless, studies of the relationship between expected zero-probabilities for dead trees and
forest attributes have an intrinsic value, in that they might serve to establish expected baseline
mortality rates for comparing observed rates, which could provide benchmarks for assessing and

monitoring the health of forest ecosystems.
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5. An Application of the EZ-Hurdle Method for the Estimation of Standing

Dead Tree Abundance in a Real Forest Setting

5.1. Introduction

Beech bark disease is a disease of American beech (Fagus grandifolia Ehrhart) which is
caused by an interaction of the exotic sap-feeding beech scale (Cryptococcus fagi Baer) with at
least three species of Nectria fungi (Nectria galligena, N. coccinea var. faginata, and N.
ochroleuca) (McCullough et al. 2001). Beech bark disease has several effects on beech trees:
reducing leaf size, discoloring foliage, causing stem and crown dieback, reducing tree growth,
reducing masting, and eventually causing tree mortality (McCullough et al. 2001). In 2000,
beech bark disease was reported in Michigan. More than 7.5 million beech trees could die after
the introduction of beech bark disease (Petrillo et al. 2004). Therefore, the beech bark disease
monitoring system (BBDMS) was developed to monitor the beech bark disease. From 2001 to
2003, 202 monitoring plots were established in Michigan. This monitoring system has been used
to find the temporal and spatial changes, and determine the impacts that the beech disease has on
beech trees and northern hardwood forest ecosystem.

In this study, a new estimator, the EZ-Hurdle method was used to estimate the density of
standing dead trees in the BBDMS. A conventional simple random sampling method with fixed-
area plots and was compared to the EZ-Hurdle method to estimate the abundance of standing
dead trees. In addition, the inclusion probabilities of a standing dead tree on fixed radius plots

were examined by disease occurrence.
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5.2. Methods

5.2.1. Data Collection

Based on the previous data from the BBDMS, 20 forests were selected which have
similar stand characteristics, such as basal area and location, in the Lower Peninsula of Michigan

(Fig. 5.1); 10 infected forests and 10 non-infected forests were selected.
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Figure 5.1. The selected locations among beech bark monitoring plot (BBDMS) and Pigeon
River Country Forest (PRC).

The BBDMS used two transect matrix layouts 5x6 or 10x3 (Fig. 5.2) employing
systematic sampling with fixed-area plots (abbreviated as fixed-area sampling, FAS). Where
possible, the matrix was positioned as parallel to the nearest road. In this study, new sample
plots were superimposed over the old BBDMS grid, consisting of 30 plot centers spaced 40 m

apart. The first plot center was always at least 40 m from a road or another forest type to remove
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the edge effects. The areas of forest were chosen to be at least 6 ha in order to insure that all 30
plot centers were located within same forest type. Two circular plots were established for each
plot center. FlA-sized subplots (7.32 m radius = 0.017 ha) and annular plots (17.95 m radius =
0.100 ha) were employed to make the study relevant to the FIA program (USDA Forest Service
2005) and Forest Health Monitoring (FHM) programs, which mostly use subplots to collect data
on standing dead trees, except in the Pacific Northwest states such as Oregon and California,
where the annual plots are sometimes used to collect additional standing dead tree data for dead

trees whose DBH is greater than 54 cm (24 in).
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Figure 5.2. Plot design with 30 sampling points in the transect layout.
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All data collection was conducted to match some of the basic protocols of the FIA
program. All live and standing dead trees with a DBH of > 12.7 cm (5 in) were tallied at each
subplot. Since the definition of dead material in forests differs by researcher (Voller and
Harrison 1998), the definition of a standing dead tree used by the FIA program was applied to
define standing dead trees in the field studies. Thus a standing dead tree had to be taller than 1.3
m, have a DBH of 12.7 cm and a lean of less than 45 degrees from vertical; otherwise it is

classified as coarse woody debris (CWD) (Fig. 5.3, from USDA Forest Service 2005).

/ 45°

Standing dead : Yes

i /

137 4 / 1.37m

Standing dead : No

Figure 5.3. A standing dead tree is defined as a dead tree greater than 12.7 cm DBH, which is
taller than 1.37 m and leans less than 45 degrees from vertical (USDA Forest Service
2005).

For both live and standing dead trees, characteristics recorded were species, DBH, and distance

and azimuth from plot center. In case of standing dead trees, decay class was also recorded
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according to the five-class system following the FIA program (Table 5.1, from USDA Forest

Service 2005); Distance was measured with an electronic distance measuring device (Vertex Ill,

Haglof, inc.) or a measuring tape, when the electronic distance measurer did not work because

the distance was too far to measure. Unlike the FIA protocol, the distance to the nearest standing

dead tree was also measured when the standing dead trees were outside of the plot boundaries.

The time to completely measure the subplot and annular plot was recorded.

Table 5.1. Guide to define the decay class by conditions (USDA Forest Service 2005).

Decay Limbs and Remaining . .
Class  branches Top bark (%) Sapwood condition  Heartwood condition
Intact; sound, Sound, hard, original
1 All present  Pointed 100 incipient decay, ’ » ONg
- color
hard, original color
Few limbs Sloughing; Sound at base, incipient
. 7' May be . advanced decay, decay in outer edge of
2 No fine Variable . . h
branches broken flbrOI_Js, firmto  upper bolt_e, hard, light to
soft, light brown reddish brown
Incipient decay at base,
. Sloughing; fibrous, advanced decay
3 Llrr:)t;”stubs Broken Variable soft, light to throughout upper bole,
y reddish brown fibrous, hard to firm,
reddish brown
. Advanced decay at
Sloughing; .
. base, sloughing from
Few or no . cubical, soft, .
4 Broken Variable . upper bole, fibrous to
stubs reddish to dark .
brown cublca_l, soft, dark
reddish brown
Sloughing, cubical, soft,
dark brown, OR fibrous,
5 None Broken  Less than 20 Gone very soft, dark reddish

brown, encased in
hardened shell
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5.2.2. Statistical Analysis

The estimates of the density of standing dead trees per ha was calculated by using an
estimator for fixed-area sampling method (FAS) and the EZ-Hurdle method. According to the
simulation study, there was no significant difference of parameter estimates between EZ-Hurdle
with Poisson vs. negative binomial distributions. Thus, EZ-Hurdle method with a Poisson
distribution (EZP) was used to estimate the density of standing dead trees for the field study.
The spatial pattern of standing dead trees in the field study was unknown, so several test
statistics were explored to test for spatial pattern. To evaluate whether the standing dead trees
were aggregated in infected and non-infected forests, a variance-to-mean ratio was calculated

using fixed-area plot data as follows:

where 5)2( is variance and x is mean.

The variance-to-mean ratio under an assumed Poisson distribution has been used to measure
spatial pattern, however, it can be a poor indicator of spatial pattern when sampling intensity is
too low, or plot sizes are not large enough (Young and Young 1998). An alternative metric, the
Index of Dispersion (ID), which directly takes into account the sample size, was calculated as
follows:

(n—l)xs)z(
X

ID =

where n is number of plot. If the variance equals the mean, ID has an approximately ;(2

distribution with (n—1) degrees of freedom (Fisher 1922).

In order to compare the FAS and EZP from the field data, a simple bootstrap re-sampling
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procedure was used (Efron and Tibshirani 1993) to estimate the variance of estimated density of
standing dead trees for both methods. For the FAS method, plot centers were re-sampled from all
collected data using subplot by different sampling intensity. Several different sampling scenarios
were tested for the EZP method, consisting of different point-to plot-ratios (PPR), calculated as:

_ No. random points
No. fixed area plots

PPR

Recall that, in the field study, the distance to the nearest standing dead tree was measured from a
point at the center of each fixed area plot; this corresponds to a sampling scenario of PPR = 1
(Table 5.2). At PPR > 1 additional random points are added outside the plots. 1,000 repetitions

were applied to estimate the density of standing dead trees for each scenario (Table 5.2).

Table 5.2. The number of fixed-area plots and random points by sampling intensity and method.

Method
Type FAS EZP
No. plot PPR
Sl (%) 1.00 1.25 1.50 1.75 2.00
1 36 36/36 45/36 54/36 63/36 72/36
2 72 72/72 90/72 108/72 126/72 144/72
3 108 108/108 135/108 162/108 189/108 216/108
4 144 144/144 180/144 216/144 252/144 288/144
5 180 180/180 225/180 270/180

Sl is sampling intensity, FAS is fixed-area sampling method, EZP is EZ-Hurdle method with
Poisson distribution, No. plot is the number of fixed-area plot used FAS, and PPR is point to plot
ratio which is the number of random points / the number of fixed-area plots.

Since we did not know the true density of standing dead trees per ha in these forests, the
RMSE could not be calculated, so instead the coefficient of variation (CV) of standing dead tree
density from FAS vs. EZP was calculated using 1,000 repetitions from bootstrapping with each

different sampling scenarios. The CV is expressed as a percentage value and allows for
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comparison of the relative variability about mean (Avery and Burkhart 1983). The CV is
calculated by

Cv :STXxlOO
X

where Sy is a standard deviation.

5.3.Results

Table 5.3 summarizes the stand statistics obtained by traditional FAS. Both beech bark
disease-infected forests and non-infected forests had similar density of live trees, but the infected
forests had more than twice the density of standing dead trees than non-infected areas.

Expressed as basal area for standing dead trees, infected forests had a significantly greater basal

2 . i .
area (BA, m /ha); about 3 times greater than non-infected stands. Results were similar whether

larger (annular) or smaller (sub) plots were employed (Table 5.3, note: live trees were not

measured in the annular plots).

Table 5.3. Summary of statistics from fixed-area sampling method by infestation status.

Plot Infected n No. live/ha No. SDT/ha BA (live) BA(SDT)

No 299 452.0+153"  195+4.4" 26.9+6.5" 1.0+0.6 "

Subplot A B B B
Yes 299  434.7+6.3 52.3%7.7 32.4+3.9 3.0+1.8

No 299 i 23.3+2.49" . 1.240.7°

Annular B B
Yes 299 i 50.843.87 - 3.2+16

Estimates are shown as mean+95% ClI, A and . are significantly different (« =0.05), and
Infected is the infection status of beech bark disease.
The decay class was classified by five-class system. The decay class was compared by

infestation status and also compared between all standing dead trees and American beech trees.
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Figure 5.4 shows the distribution of number of standing dead trees per ha by decay class. More
than 50% of standing dead trees was classified as decay class 2 and 3 for both infected and non-
infected forests when all species are included. However, more than 50% American beech trees
was classified into decay class 1 and 2 in case of infected areas, indicating that a lot of the

standing dead American beech trees died recently (between 2003 and 2008) from beech bark

disease.

0o Non-infected 0. Infected
All species ]
ety = AB =Ly ]
@ OV o
- -~
5
o (O [
o
Z - ©
N N ljﬂ._@
o- o
1 2 3 4 5 1 2 ! 4 2
Decay class

Figure 5.4. The number of standing dead trees (No. SDT/ha) in five decay classes in two forest
types. AB is American beech.

Although the density of standing dead trees was significantly different, the standing dead
trees for both infected and non-infected forests show clustered pattern (Table 5.4). The variance-
to-ratio values are greater than one and index of dispersion is also significantly different from
one at 95% probability level for both infected and non-infected forests. In other words, the
spatial pattern of the standing dead trees showed aggregation for both infected and non-infected

areas.
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Table 5.4. The results of variance-to-mean ratio and index of dispersion.

Plot Infected n Variance ratio ID
No 299 77.84 597.60
Subplot *
Yes 299 87.96 387.71
No 299 20.74 276.22
Annular -
Yes 299 23.01 201.32

Infected is infected status, ID is index of dispersion and . is significantly different from one by

index of dispersion.

Figure 5.5 shows the inclusion probability a standing dead tree estimated by reduced

Gompertz function (Table 5.5) by infected status. The inclusion probability was significantly

different by infected status because the 95% confidence interval (CI) of parameters do not

overlap (Rubin and MacFarlane 2008). As expected, there is higher inclusion probability in

infected forests than non-infected forests because the density of standing dead trees is almost

twice as high in infected forests. Note that the plot size is a major determinant of zero-inflation

in the data (Fig. 5.5).

Table 5.5. The estimated parameters and standard errors () of reduced Gompertz function.

Parameters

Infected Status

C
Yes 4.11(0.068) 0.78(0.002)
No 4.85(0.122) 0.85(0.002)

d
Reduced Gompertz function is Pjpc(id) :exp(_b><C ) where b and ¢ are parameters and d is

search radius.
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Figure 5.5. Estimated inclusion probability by infected status. Dashed line is 7.32 m.

Figure 5.6 shows the coefficient of variation for estimated density of standing dead trees
per ha by method and PPR. The results clearly show that the EZ-Hurdle method improved the
precision of estimating standing dead tree abundance over FAS, as indicated by the CV. The CV
of standing dead tree abundance decreased with increasing the number of fixed-area plots or
increasing the relative number of random points (i.e., PPR) used for the EZP method. The CV
was lower under all methods in the infected plots, because standing dead tree density was higher
and so zero inflation was lower (Fig. 5.6). One interesting result is that the EZ-Hurdle method
showed smaller coefficient of variation when only addition information was applied to estimate
the expected zero probability without adding additional random points. The improvement of
coefficient of variation was much larger when PPR> 1(compare e.qg., difference between PPR =1
and PPR = 1.25, Fig. 5.6) because additional sample locations are added to extend the
information content of the auxiliary data.
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Figure 5.6. The change of coefficient of variations by the number of fixed-area plots. FAS is
fixed-area sampling method, PPR is point to plot ratio of data for EZ-Hurdle method.
Solid line is infected forests and dashed line is non-infected forests.

5.4. Discussion for Applied Study

The results of the field study reinforce those of the simulation study, demonstrating that
the EZ-Hurdle method (EZP) increased the precision of estimates of the density of standing dead
trees relative to the FAS method for both infected and non-infected forests. The auxiliary
information, which is distance to the nearest standing dead tree, reduces the variation caused by
zero observation, which is largest when dead tree densities are lowest (Fig. 5.5). When
additional points to collect the auxiliary information are added, EZP method shows greater

improvements of precision. In addition, EZ-Hurdle method has better precision than FAS when
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only additional information is added without adding points. This property can be an advantage
to improve the precision without changing plot design or adding more plots. Although EZ-
Hurdle method gave better estimates than FAS, it also required more data, which imposes
additional costs. Thus, further examination was needed to confirm that EZ-Hurdle method can
be more cost-efficient than FAS. Cost efficiencies for the EZ-Hurdle method and strategies for
applying it to FIA plots are discussed in the chapters which follow.

The spatial pattern and density of dead trees were also found different by species and site
characteristics (Ganey 1999) and also different due to the agent of tree death (Franklin et al.
1987). In this study, beech bark disease is the major source of beech tree mortality. Both the
variance-to-mean ratio and index of dispersion (ID) showed that standing dead trees were
clustered in both infected and non-infected forests. Additionally, the shape of inclusion
probability function can be an indicator of spatial pattern and density of standing dead trees
because the inclusion probability increases rapidly within short distance because generally there
are more points within short distances when points are clustered in area (Bailey and Gatrell

1995).
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6. Cost and Sampling Efficiency of EZ-Hurdle Method

6.1. Overview

A well designed sampling strategy usually provides a more efficient alternative to a
census, but since it leaves significant portions of the population out, the choice of sampling
strategy is critical to obtaining reliable parameters of the population of interest. Efficiency
relates the amount of information collected to the resources expended (Gregoire and Valentine
2008) and is a critical factor for selection of the sampling strategy. Sampling efficiency is
typically evaluated by two aspects: accuracy of estimated population parameters and cost effort
to collect sample data.

According to previous studies, EZ-Hurdle method produces better estimates than FAS
when additional information is collected, in this case, measuring the distance to the nearest
standing dead tree from fixed-radius plot centers and from additional random points. If one can
obtain such auxiliary information for improving the estimate at relatively low cost, the EZ-
Hurdle method should be efficient as well as accurate.

Auxiliary information describing the expected zero probability can be obtained by two
methods. One is from a previous study or prior information, which would be less costly than
collecting new data, but this could cause biasd estimates if the density and spatial pattern of
standing dead trees at the locality of interest is different than that of the prior study. More
straightforward, and likely more reliable, would be to derive the auxiliary data from additional
field data collected at the site. The latter should be more costly.

In this study, the EZ-Hurdle method is compared side by side with FAS on both precision
of estimation and cost to collect the data. The precision was evaluated by the coefficient of

variation of standing dead tree density per hectare and cost was evaluated by the time to collect
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the data. A priori, it is understood that the time requirement to collect the data for EZ-Hurdle
method is always greater than time requirement for FAS, because EZ-Hurdle method enhances
FAS plot data through use of auxiliary data. In this study, the time requirement for the EZ-
Hurdle method was measured in the field and the efficiency of the method was examined by
combining time cost information from field data with another simulation. In the next chapter,
this data analysis is extended to determine the best sampling strategy to estimate the density of

standing dead trees.

6.2. Data

The time requirement for fixed-area sampling method was modeled from BBDMS data
used in the previous study and the time requirement for searching for the nearest standing dead
tree was modeled using new field data which was collected from Pigeon River Country Forest
(PRC) in Michigan (Fig. 6.1). The density of standing dead trees was estimated from both actual

data (BBDMS) and simulation data.

Data for estimating the time requirement of fixed-area plot

As in the FIA design, the (larger) annular plots were superimposed over the subplots at
each sample point, so the time to collect all the tree data on both sub- and annular plots in the
BBDMS, with a two-person crew, was recorded sequentially as follows: the start time and end
time for a subplot and the additional time to measure trees to the boundary of the annular plot.
Therefore, time to finish the annular plot is the combination of the time to finish the subplot plus
the additional time requirement to measure standing dead trees which are located in the area
between subplot and annular plot boundaries. The time to measure the distance to the nearest

dead tree within the plot areas was recorded, as this data is collected under the current FIA
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design. However, when there was no standing dead tree within annular plot, the nearest standing
dead tree was still measured, but the search time to find the nearest standing dead trees was not

recorded.

.

Figure 6.1. The location of Pigeon River Country Forest (PRC) in MI.

Data for estimating the search time to the nearest standing dead tree

Because the time to search for the nearest standing dead tree was not recorded for each tree
in the BBDMS study and because the BBDMS only focused on a limited range of beech-
dominated northern hardwood stands, additional data was collected at Pigeon River Country
State Forest (PRC) in Michigan (Fig. 6.1) to (1) better understand the time-cost-efficiency of the
EZ-Hurdle method and (2) to explore the prospects for predicting the expected zero probability
from basic stand data (forest type and density). According to previous studies, the density of
standing dead trees differs by geographical location, species, and management regime (Cline et
al. 1980; Fridman and Walheim 2000; Wisdom and Bate 2008), but is not correlated with stand
age (Lee et al. 1997; McCarthy and Bailey 1994, Sturtevant et al. 1997; Vasiliauskas et al. 2004).
Therefore, four different forest cover types were selected: Oak, Pine, Aspen, and Northern
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hardwood forest based on species composition and each forest type was further subdivided into

four stand density types according to basal area (m2/ha) (Table 6.1) to represent a wide range of

stand conditions for sampling.

Table 6.1. The classification of basal area (BA) class.

BA (m?/ha) BA class
BA <9.2 1
9.2<BA<I16.1 2
16.1 <BA<23.0 3
23.0<BA 4

Three replications of each forest cover type — stand density combination were installed to
understand within condition variation. The forest stands surveyed were at least 7 ha and a 40 m
buffer area was applied to avoid the edge effects, such as roads or other forest types, following
protocols similar to that of the BBDMS design. Within each replication, 30 points were
randomly selected. At each sample point, species, DBH, decay class, and distance were recorded
for the nearest standing dead tree. The characteristics of live trees, DBH and species, were also
collected, at five randomly selected points using fixed-area subplots. For each standing dead tree,
the combined time to search for the nearest standing dead tree and measure its attributes was

recorded with two-person crews.

6.3. Analytical Methods

Boot-strapping and Simulation
Similar to that discussed earlier, a boot strapping approach was used to re-sample the

BBDMS data. Five sampling intensities of n = 1,000 of a 1% to 5% sampling intensity by 1%

62



interval (see, Table 5.2) were applied. A 5% sampling intensity was chosen as the upper end
based upon the fact that the previous chapters show that the benefit of EZ-Hurdle is low when
sampling intensity with FAS is greater than this. Five PPR strategies were applied to collect the
distance information (see Table 5.2). For each scenario, 1,000 repetitions were applied.

Another simulation study was run with experimental treatments including two spatial
patterns, random and cluster pattern 1, three different densities, such as 12, 24, and 49/ha, applied
for each spatial pattern in order to compare field study. The same number of plots and points
used for bootstrapping study (Table 5.2) were applied.

In both the bootstrapping and simulation study precision was compared using the

coefficient of variation for the estimated density of standing dead tree per ha.

Estimation of time costs from field data for bootstrapping and simulation
Time costs to complete both fixed-area sampling and the EZ-Hurdle method varied from
place to place depending on several factors. The measured BBDMS and PRC time data were
used to develop models which could represent time variability in the simulation / re-sampling
environments.

In fixed-area sampling method, time requirement is strongly influenced by the number of tallied
standing dead trees (Kenning et al. 2005) and plot size (area). Hence, in this study, the time
requirement for FAS is proportional to the number of tallied trees times the plot size:

TFAS o nt - plot

where Tgag is time requirement for FAS and n is the number of tallied trees and plot is the area

of the plot. To estimate time requirement for fixed-area plot with a certain plot area i was
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modeled as:
ti=fo+/L-nt+e
where t;j is the time required at a fixed-area plot of a specified size, n; is the number of standing

dead trees tallied, ¢ is an error term, and B and S are fitted coefficients. Because of the way

the time data were collected, the time to count and measure all of the dead trees in a subplot was
not directly available (live trees were also measured, see previous chapter for more details); only
the time to count and measure the dead trees in the area between the boundaries of the sub- and
annular plots was known. Therefore, in the regression model, the time requirement to complete
FAS in a plot size of interest, was weighted by w calculated as follows:

W Area Plot;
Area between subplot and annular plot

where w is weight.
Finally, the time requirement for a subplot is
TFAS =W

Figure 6.2 shows the density distribution for different counts of dead trees within a 0.08
ha plot (the size of the area between annular plot and subplot). Approximately 50% of such
fixed-area plots has less than 2 standing dead trees within a 0.08 ha area and the median time

requirement to complete the plot was approximately 7.30 minutes (Fig. 6.2).
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Figure 6.2. Distribution of the number of SDT per plot and time requirement to measure the SDT
within plot (0.08 ha). Dashed lines are medians.

Table 6.2 shows the estimated parameters of the regression model fit to the BBDMS time
data. The intercept is 303 seconds. Therefore, it was assumed that 303 seconds are required
when there is no standing dead tree within 0.08 ha. This parameter determined the minimum
search time for FAS for a plot of this size and was extrapolated to FIA plots using the weight (w)

described above.

Table 6.2. The estimated parameters and R-square for regression model to estimate the time
requirement for a 0.08 ha fixed area plot.

Response Intercept( Ag) Parameter (51) R-square

Time (second) 303.4*** 63.8*** 0.56
The numebr of crews is two. Statistical significant level (***, p <0.001).

Figure 6.3 shows the relationship between the time to complete a 0.08 ha FAS plot and
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number of standing dead trees tallied, along with the associated residual errors. The results show
a relatively unbiased model but with a considerable amount of scatter in the relationship, since
only about 56% of time requirement was explained by the number of standing dead trees tallied
(Table 6.3). The spread of residuals was roughly the same across the range of fitted values.
Other factors affecting this relationship included the relative difficulty of navigating the terrain
the density of the vegetation and the time spent identifying and classifying dead trees. Based on
the lack of bias in the model, it was assumed that time requirement for plots of other sizes is
roughly proportional to this relationship, i.e., the proportion of the number of standing dead trees

times plot size (TEag o nt - plot) was proportional to the time requirement for other (sub- and

annular) plot sizes. Thus, for the bootstrapping and simulation procedure the model (Table 6.2)

and procedure above was used to estimate the time to complete FAS for every plot in every

iteration.
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Figure 6.3. The scatter plot between time (second) and number of SDT within plot and residuals
of regression model to estimate time requirement for fixed area (0.08 ha).
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Estimation of search time for finding and measuring the nearest standing dead tree

For the bootstrapping and simulation procedure, it was also necessary to estimate the time
to find and measure the nearest standing dead tree for every plot in every iteration. From the
PRC data, the distance to the nearest standing dead trees has a strong influence on time
requirements. Therefore, the time requirement to find and measure the nearest standing dead tree

was modeled by
Tneari = o + AL 7(di) +&
where Tpeari iS the time required at plot or point i, djis the distance from the plot center

(point) to the nearest standing dead tree, ¢ is an error term describing other factors effecting the

time requirement, and B and S are coefficients which were obtained from fitting the model to

the PRC data. Because DBH, species, and decay class were also recorded for the nearest

standing dead tree, the time requirement estimated (Thegri) IS an overestimate of the time to

measure the distance to the nearest standing dead tree. However, since tree classification and

measurement times were also included in the time estimates for the FAS method, both Tneari

and TEas can be considered as standardized for the purposes of comparing the time cost of FAS

to EZ-Hurdle method.

From the raw PRC data, we can see that the average search time to find and measure the
nearest standing dead tree was dramatically increased due to the fact that some standing dead
trees were located very far away from the random points (Fig. 6.4). Because the search area and
time to measure the nearest standing dead tree were right skewed, several data transformations

were applied to find the best fit model.
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Figure 6.4. The distribution of search area (ha) and time (second) to measure the nearest SDT in
PRC. Dashed lines are median values.

Based on the residual of sum of squares (RSS) and AIC, the best fit regression model (Fig.

6.5) was:
N Time = g + p1 - Vradius + &

where time is in seconds, radius, is the radius of search area in meters, ¢ is an error term, and

Bo and pare coefficients of the model fitted to the PRC data. There was strong linear

relationship between search time and search radius when both variables were square root
transformed. About 96% of time variation was explained by search radius alone and there was
no major pattern in residual plot (Fig. 6.5) to indicate significant bias in the model, except a very
small distortion for very small search areas / very short search times (the intercept of the model
was -5 seconds, Table 6.3). The estimated parameters (Table 6.3) were used to estimate the

search time for both the simulation and the boot-strapping study.
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Figure 6.5. The scattered plot between search time (Sec.) and search radius (m) and residuals of
selected regression model to estimate time to search the nearest SDT.

Table 6.3. The estimated parameters and R-square for regression model to estimate the search
time to measure the nearest SDT.

Response Intercept( £p) Parameter ( /1) R-square

\/Time(sec.) -5.04*** 6.24*** 0.96

Statistical significant level (***, p <0.001).

Estimation of time requirement for EZ-Hurdle method
Recall that the EZ-Hurdle method is applied to FAS data, where auxiliary data is
collected or otherwise available. The time cost for the EZ-Hurdle method was computed as the

sum of three time components:

Tez =TrEas +(n—ng) - (Thear —TFAS,0) + "™ Tnear
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where Tgz is time requirement for EZ-Hurdle model, n is the number of fixed-area plots, ng is

the number of fixed-area plots with a standing dead tree, Tnegr IS time requirement to measure
the nearest standing dead tree, Tepg o is time requirement for FAS when there is no standing
dead trees in plot, and n* is the number of additional points to collect the distance information.

Tgz isequal to TEps when n* and (n-ng) are 0.

Estimation of sampling efficiency
Sampling efficiency was evaluated by both the precision of parameters and the time cost

to collect data (Lessard et al. 1994). The relative efficiency to compare FAS was calculated by:

2 —
Ep = CVZEZ x?TeZ , where,
CVFAS FAS

_ n
TEZ = ZTEZi/n,and
i=1

TEAS = 3 Tras /1
i=1

and where CVgz is the coefficient of variation of the parameter estimated by EZ-Hurdle

method, CVEag is the coefficient of variation of the parameter estimated by FAS, iis the

number of repetitions (1,000), Tgzjis the required time to collect data for repetition i for EZ-

Hurdle, and Tgasj the required time to collect data for repetition i for FAS. When E <1, the

EZ-Hurdle method is more efficient than FAS.
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6.4. Results

6.4.1. Comparison of Inclusion Probabilities Between Different Forest Type

Conditions

Table 6.4 summarizes the results of the random point to nearest standing dead tree data

collected from the PRC.

Table 6.4. Summary of results for BA for live trees, density of standing dead trees (No.SDT/ha),
average distance (Dist.) from point to the nearest SDT, and average time (Time) to
search for and measure the nearest standing dead tree with standard deviation in ()
after the value.

Type BAClass  BA (m%ha) No.SDT/ha Dist. (m) Time® (sec.)
1 8.83 (0.34) 6.4 (2.9) 18.0 (8.0) 398 (242)
Aspen 2 1052 (0.71) 13.7 (10.2) 12.4 (8.0) 250 (228)
3 19,57 (2.05) 33.5 (11.9) 8.1 (5.4) 139 (126)
4 2773(423)  34.0(283) 8.0 (5.3) 143 (139)
1 9.69 (0.37) 8.4 (10.9) 148 (8.7) 384 (288)
N 2 13.92 (1.63) 16.4 (8.5) 12.0 (7.0) 315 (243)
3 20.42 (1.77) 18.2 (12.2) 11.5 (6.4) 304 (233)
4 27.27 (2.88) 15.1 (10.9) 125 (6.4) 307 (224)
1 8.50 (0.83) 5.8 (1.9) 18.6 (8.5) 474 (280)
oa 2 14.75 (0.51) 6.0 (5.7) 18.4 (9.1) 480 (299)
3 21.83 (0.39) 12.5 (16.9) 12.1 (8.0) 288 (253)
4 28.29 (1.94) 44.5 (13.0) 7.2 (4.4) 144 (123)
1 8.96 (1.18) 6.3 (3.1) 17.7 (9.6) 454 (326)
i 2 14.96 (0.42) 13.1 (11.6) 13.4(7.9) 310 (256)
3 20.26 (1.78) 7.4 (17) 16.2 (8.9) 402 (297)
4 20.09 (2.67) 23.3 (21.8) 9.9 (6.1) 204 (187)

a..
time per two-person crew.

Densities of standing dead trees generally increased with increasing basal area with some

variation in the trend for NHW and pine forests, indicating an accumulation of dead trees as the
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stands developed, consistent with the even-aged management that has been applied to the stands
(even the NHWSs). Some of the anomalies in this trend (Table 6.5) may be explained by the fact
that most forests in the PRC are managed forest for timber production, sometimes treated with
pre-commercial thinning, which often include removals of low vigor and dying trees.

The average distance between random points to the nearest standing dead tree tended to
be decreased with increasing the density of standing dead trees (Table 6.4). The decline in mean
time to search for and measure the nearest standing dead tree was similar for all forest types,
except NHW forest which had very similar time costs, densities of dead trees and distances to
dead trees in the higher three basal area classes, which (anecdotally) appeared to be because of
relatively thicker understory vegetation in dense forests of this type that may have increased the
search time. These data (Table 6.4) indicate that, in general, the inclusion probability of a

standing dead tree may be estimable from stand level data.

Table 6.5. Estimated coefficients and standard errors () for reduced Gompertz function fitting by
forest cover type and basal area class.

Forest BA Parameters Forest BA Parameters
type  class b(se) c(se) type  class b(se) c(se)

1 6.88 (0.286)  0.88 (0.002) 1 7.06(0.195) 0.88(0.001)

Aspen 2 3.60(0.088)  0.86 (0.002) 2 5.26(0.120) 0.89(0.001)
3 3.61(0.092) 0.78(0.003) 3 4.26(0.129) 0.83(0.003)
4 4.34(0.083) 0.76 (0.002) 4 4.94(0.074) 0.73(0.002)
1 3.35(0.104)  0.89(0.002) 1 4.09(0.083) 0.90(0.001)

NHW 2 4,58 (0.070)  0.84(0.001) 2 4.67(0.110) 0.85(0.002)
3 4.71(0.102)  0.83(0.002) 3 4.49(0.074) 0.88(0.001)
4 4.32(0.095) 0.84(0.002) 4 4.52(0.082) 0.80(0.002)

BA is basal area, NHW is northern hardwood forest, and se is standard error.

(—bxcd)

When the reduced Gompertz function: Pjnq(id) = exp was fitted to the PRC data,

the inclusion probability was significantly different by forest type and basal area class (the 95%
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confidence interval of estimated coefficients did not overlap, Table 6.5).
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Figure 6.6. The inclusion probabilities by forest type and basal area class. Dashed lines are the
radii of subplot (7.32 m) and annular plot (17.95 m).

Figure 6.6 shows the inclusion probability of a standing dead tree by forest type and basal area
class predicted from the models in Table 6.5. As expected from previous chapters, the inclusion
probability was increased with increasing the density of standing dead trees. For all forest types,
stands in the lowest and highest basal area class were clearly different, but there was not always

a noticeable difference in the intermediate classes (Fig. 6.6), especially in NHW forests, where
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BA class 1 was different, but there was little difference between the other three BA classes. The
most unusual case was that of the pine forests, where there was a higher inclusion probability
(higher mortality, Table 6.4) in BA class 2 than 3 (Fig. 6.7). The latter indicates that under some
circumstances the abundance of standing dead trees is not proportional to stand basal area, and

other density-independent mortality factors are at work.

6.4.2. Results of Time Requirement Studies

Table 6.6 summarizes the simulated average required time to count and measure standing
dead trees using a 7.32 m (subplot) and 17.95 m radius fixed-area sampling plot and the time to
search for and measure the nearest standing dead tree (300 random points were used to generate

the average times), in computer-generated forests of varying densities and spatial patterns.

Table 6.6. Average of estimated time requirements (minutes) by survey type from calibrated
simulations under different spatial patterns and standing dead tree densities.

Spatial Density Subplot Annular Nearest
12 11 9.2 5.8

Cluster 24 11 10.7 6.1
49 1.2 13.7 5.3
12 1.1 9.1 5.8

Random 24 1.1 10.7 3.8
49 1.2 13.8 2.3

Nearest is time to search for and measure the nearest standing dead tree.

The calibrated simulations (Table 6.6) show only relatively small differences of time
requirement in the FAS between the different spatial patterns and densities when subplot in FIA

is used. However, there was clear pattern that the time requirement for annular plots increases
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with increasing density of standing dead trees, but with no significant difference between the
spatial pattern types. In the case of the time to find and measure the nearest standing dead tree,
the time requirement tended to decrease with increasing density of standing dead trees in a
random pattern, but there was no difference between densities when the dead trees were in a
clustered pattern, because most of the time was spent finding the nearest standing dead tree,
regardless of the density, since trees within the cluster were relatively close together. In terms of
the differences between methods, the simulations showed that finding and measuring the nearest
standing dead tree took about 2 to 5.5 times longer than counting and measuring dead trees in a
subplot, but only about 1/6 to about 6/10 of the time to complete an annular plot, depending on
the conditions of the stand (Table 6.7). The annular plots require from about 8 to about 11.5

times longer to complete than the subplots.

Table 6.7. Estimated average time requirement (min.) per plot (& point) by method and plot type
when time models are applied to the BBDMS data.

FAS
Infected status Subplot Annular EZ-Hurdle (w/subplot)
Yes 1.9 11.5 2.9
No 1.4 8.5 5.4

Time requirement was measured with two-person crews. FAS is fixed-area sampling method,
subplot is 7.32 m radius, annular plot is 17.95 m radius, and EZ-Hurdle is sum of the time to find
and measure the nearest standing dead tree and to measure standing dead trees within a subplot.
The time models were also applied to the BBDMS and the average time requirement per
plot or point by survey method was estimated by infected status (Table 6.7). For FAS, in both the
infected (about 52 SDT / ha) and non-infected plots (about 21 SDT / ha), annular plots required

about 6 times longer than the subplots to complete. The estimated time for the EZ-Hurdle

method, which includes both the time to complete a subplot and the time to find and measure the
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nearest standing dead, was about 1.5 to 3.9 times longer than the time for the subplot alone, for

infected vs. non-infected forests, respectively, the latter because with fewer standing dead trees,

it took longer to find them. However, the EZ-Hurdle method required about 1.5 to 4 times less

time than annular plots for infected and non-infected forests indicating that the EZ-Hurdle

method has a much lower time cost than FAS with annular-sized plots.

Table 6.8. Estimated time requirement (hr) for FAS with 7.32 m radius subplots and the
additional time requirement for EZP by PPR for a specific number of fixed-area plots,
with two-person crews.

Random Cluster
EZP EZP
Nha No. plot PPR FAS PPR
1.00 1.25 150 1.75 2.00 1.00 1.25 150 1.75 2.00
36 0.7 35 44 53 61 7.0 07 60 75 9.0 105 120
72 1.5 71 88 106 123 141 15 121 152 182 21.3 243
12 108 22 106 132 158 185 21.1] 2.2 18.0 225 271 316 36.1
144 30 140 175 210 245 28.0 3.0 242 30.2 36.3 423 483
180 3.7 175 219 26.3 30.7 350 3.7 30.1 37.6 452 528 60.3
36 0.9 21 26 32 37 42 09 44 54 65 76 87
72 1.7 42 53 63 74 84 1.7 8.7 10.8 13.0 152 174
24 108 2.6 6.3 79 95 111 127 26 131 164 196 229 26.1
144 35 84 105 126 147 16.8/ 35 173 21.7 26.1 304 347
180 44 105 132 158 184 21.1] 43 218 272 327 38.1 436
36 1.1 14 17 20 24 27 11 38 48 57 67 1.7
72 2.3 27 34 41 48 54 22 7.7 97 116 135 154
49 108 3.4 41 51 61 71 81 34 116 144 173 20.2 23.1
144 45 54 6.8 82 95 109 45 153 19.2 23.0 26.8 30.7
180 5.7 6.8 85 102 119 136/ 56 19.1 239 287 336 38.4

FAS is fixed-area sampling method, No. plot is the numer of fixed-area plots, N/ha is density of
standing dead trees per ha, EZP is EZ-Hurdle method, and PPR is point to plot ratio.

The time data was further extrapolated via simulation to allow for the time requirement

to be explored under different sampling scenarios (Table 6.8). The data show that it can take a
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very large amount of additonal time to collect the additional point to standing dead tree distances
to gain greater precision under the EZ-Hurdle method, and that this is sensitive to both stand
conditions (density and spatial pattern) as well as the quantity of additonal data collected (Table
6.8). Much of this additional time comes from searching for the occasional dead tree that is very
far away from the plot center or random point (when PPR > 1). This is particularly problematic
when dead trees are in a clustered pattern at low density, because the distribution of distance
between random point to the nearest standing dead trees is strongly right skewed (Fig. 6.7). The
additonal time was much lower when dead trees were randomly distributed (about one-third to
one-half of that for clustered trees), but was still quite large compared to the base time for FAS

(Table 6.8).
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The additional time requirements were also extrapolated from the BBDMS data through
the bootstrapping procedure. As in the simulation, times were much lower when the density of
standing dead trees was higher (52/ha) in the non-infected forests, for all PPR and numbers of
plots, in comparison with non-infected forests where denstities were lower. Additonal time

requirements for the EZ-Hurdle method increased linearly with increasing the number of

additional random points outside of the plots (Fig. 6.8).
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PPR from field study. Solid line is infected forests and dashed line is non-infected
forests.
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6.4.3. Comparison of the Coefficient of Variation by Method in Simulation

The coefficient of variation for different sampling strategies explotred via simulation are
shown in Figure 6.9. The coefficients of variation decreased with increasing the number of plots
for both methods. The coefficients of variation of EZP method were smaller than FAS for all
PPR and the number of fixed-area plot. The improvement of coefficient of variation by EZP
method was greater under clustered patterns than random patterns, given the same number of
fixed-area plots. As expected from the previous applied study, there were greater or similar
improvements of coefficients of variation when PPR is greater than 1, because additional
locations are sampled outside of the plot network. However, the data above show that this

additonal data comes at a very high time cost to collect the auxiliary data.
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6.4.4. Comparison Sampling Efficiency by Method

First, relative sampling efficiency was examined via simulation. Relative sampling
efficiencies for estimating abundance of standing dead trees are shown in Tables 6.9 when suplot
was applied. Because relative efficiency is greater than 1 for all densities and spatial patterns
(Table 6.9), the FAS method has a better sampling efficiency than the EZ-Hurdle method because

the increase in precision required a relatively much larger increase in the time requirement.

Table 6.9. Relative sampling efficiency of EZ-Hurdle method to compare FAS by density and
spatial pattern.

Random Cluster

N/ha No. plot PPR PPR
100 125 150 175 200 1.00 125 150 175 200
36 55 55 59 59 6.1 6.4 7.0 7.4 78 81
72 55 6.2 6.2 6.4 6.3 55 5.6 5.8 6.2 6.4
12 108 5.2 5.8 59 5.9 6.1 4.9 54 55 57 6.0
144 5.3 5.9 6.1 6.2 6.5 4.8 4.9 51 53 56
180 5.2 5.7 6.0 6.4 6.4 5.1 5.4 5.8 6.2 6.5
36 3.1 3.2 3.3 34 3.5 1.3 1.2 1.2 1.2 1.2
72 3.0 2.8 3.0 3.1 3.2 1.6 1.6 1.6 1.6 1.7
24 108 3.0 3.2 3.2 3.3 35 1.9 2.0 2.0 22 22
144 2.9 2.9 2.9 3.0 3.2 2.1 2.2 2.3 24 24
180 3.0 3.1 3.2 3.4 3.6 2.4 2.5 2.7 28 29
36 1.8 1.8 1.9 2.0 2.1 1.3 1.2 1.2 1.2 1.2
72 1.8 1.9 1.9 1.9 2.0 15 1.4 1.4 1.5 1.5
49 108 1.9 1.9 1.9 2.0 2.0 1.8 1.9 2.0 20 21
144 1.9 1.8 1.9 2.0 2.1 2.0 2.0 2.0 21 21
180 1.9 1.8 1.9 1.9 2.0 2.1 2.2 2.2 22 23
No. plot is the numer of fixed-area plots, N/ha is density of standing dead trees per ha, EZP is

EZ-Hurdle method with Poisson distribution, and PPR is point to plot ratio.

In the applied study, the difference in efficiency between EZ-Hurdle and FAS (with small
plots) was smaller. However, the FAS method with subplots had better sampling efficiency than

EZ-Hurdle method in field study (Table 6.10) and the overall patterns in the results mirrored
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those observed in the simulation. The time requirement for the EZ-Hurdle method was more than
double in non-infected forests, relative sampling efficiencies were worse when density of
standing dead trees is low (non-infected forests) than high density forests (infected forest). In
combination, the field study and simulation results, indicate that, holding all else constant, it is
more cost-effective to add more smaller (FIA-subplot-sized) plots, where possible, then to collect
point-to-dead tree distances to improve precison under the EZ-Hurdle method. However, this is
not true for larger plots sizes (e.g., annual-size plots) and is irrelevant under circumstances where
additional plots cannot be added, due to other costs or data needs (e.g., permanent sample plots,

such as those used by FIA).

Table 6.10. Relative sampling efficiency of EZ-Hurdle method to compare FAS by infected

status.
Infected PPR
No. plot

status 1.00 1.25 1.50 1.75 2.00
36 1.55 1.70 1.81 1.93 2.11
72 1.60 1.69 1.86 2.04 2.18
Yes 108 1.51 1.68 1.81 1.97 2.09
144 1.63 1.78 1.95 2.11 2.26

180 1.55 1.82 1.96
36 3.97 3.40 4.49 4,71 4.93
72 3.82 4.10 4.46 4.76 4.95
No 108 3.94 4.56 4.97 5.20 5.36
144 3.68 4.06 4.57 4.99 5.63

180 3.83 4.79 5.34
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6.5. Discussion for Cost and Sampling Efficiency

Sampling efficiency is an important factor to decide the sampling strategy for estimating
population parameters (Gregoire and Valentine 2008). To estimate the abundance of standing
dead trees, inventory methods for estimating live trees have been modified (Kenning et al. 2005).
Modifications include increasing the intensity of typical sampling methods such as strip cruising,
sampling with fixed-area plots, and horizontal point sampling (prism sampling), which can have
poor precision and high variation, despite a considerable time investment, when such methods
are applied to areas where individuals in the population are in relatively low abundance or in
high variability areas (Bull et al. 1990).

In this study, the EZ-Hurdle method increased the precision of estimates under all
conditions by introducing auxiliary data, but at a significantly increased cost under some
conditions. Although the EZ-Hurdle model showed better precision than the FAS method when
additional information was applied to estimate the expected zero probability, EZ-Hurdle method
had worse sampling efficiency than FAS method due to the relatively high search time to find
and measure the nearest dead tree, particularly at low standing dead tree density, where zero
inflation is most likely, and where EZ-Hurdle performs the best. According to the previous study
for N-tree sampling method, one-tree sampling method showed better sampling efficiency than
FAS method for estimating the abundance of snags when the density is greater than 70 per ha
(Kenning et al. 2005). In this latter case, the FAS method needed more than twice the time
requirement than one-tree sampling. In this study, the focus was on stands with lower
abundances of standing dead trees which caused the EZ-Hurdle method to be less time efficient
when compared with FAS using smaller (FIA-sized subplot) plots, even though EZ-Hurdle

produced better estimates. In other words, it’s more cost efficient to add more FAS plots, rather
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than adding more dead-tree distances for plots of this size, under situations where zero inflation
in the data is likely (very low densities of dead trees). On the other hand, the EZ-Hurdle method
showed better cost efficiency when compared with FAS using larger (FIA-sized annular) plots,
which means, e.g., that EZ-Hurdle method might be beneficial in the Northwestern FIA region
where currently annular plots are used in some cases to estimate standing dead tree abundances.
Hence, in situations where there is a restriction on the number of plot locations that can be added,
the EZ-Hurdle method can be an alternative approach to improve the precision of estimates for
the density of standing dead trees because it can improve estimates without the need to establish
new plots. But, where there is no such restriction, applying many, smaller FAS plots might be
the most effective way to deal with the problem of zero-inflated data sets that arise when dead
tree abundances are relatively low. Therefore, EZ-Hurdle method might be most useful to apply
to monitoring or inventory programs which use a fixed number of permanent sample plots or
cannot change the sampling design, such as the BBDMS in Michigan, the FIA in the USA and
the National Inventory System in South Korea (which uses a very similar design to FIA). The
EZ-Hurdle method needs less than 5 minutes to find the nearest standing dead tree. In the case
of the FIA program, it takes about one day to collect all data to finish one FIA plot, which
consists of 4 subplots, so the additional 20 minutes to improve the precision of standing dead tree
estimates is a relatively small portion of the total work load for that plot.

Finally, given that the EZ-Hurdle method produces better estimates and its main
limitation is the (time) cost of the auxiliary data, it would be beneficial to reduce the cost of the
auxiliary data to improve the sampling efficiency of the method. One alternative could be
estimating the inclusion probability of a standing dead tree under the sampling design from stand

attributes such as forest type, density, spatial pattern, or basal area. In this study, the inclusion
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probability was predictably different by density of standing dead trees, species, and spatial
pattern, in most cases, which suggests that this is a promising. This will be the subject of further
research on the EZ-Hurdle method. Another alternative could be a distance-limited method
which restricts the search radius to find the nearest standing dead tree; this is pursued in the next

chapter.
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7. Developing a Distance-Limited EZ-Hurdle Method

7.1. Overview

Both the field and simulation studies showed that that the time requirement to search the
nearest standing dead tree was dramatically increased with decreasing the density of standing
dead trees because there are points in space where it takes quite a long time to find the nearest
dead tree. Therefore, a distance-limited EZ-Hurdle method was explored, where various

maximum search radii were applied to find the nearest standing dead tree.

7.2. Methods

Simulation data were used again in this study, following the same basic design as
described previously, except that under the original EZ-Hurdle method, there is no distance
restriction to search for the nearest standing dead tree. In this new simulation study, a subplot
(7.32 m radius) was again used to collect the standing dead tree data, but six different scenarios
were used to define the maximum search radius to find the nearest standing dead tree, the first
four at +2 meter increments beyond the plot boundary, the fifth out to the boundary of an FIA
annular plot and finally to unlimited distance from the point (Table 7.1). Following the previous
design (see Table 5.2), five different PPR were applied to collect the data and two different
spatial patterns, random and cluster I, were applied with three different densities (12, 24, and
49/ha) to define the underlying populations. For each scenario, 1,000 repetitions were applied to

examine the properties of distance-limited EZ-Hurdle method.
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Table 7.1. Maximum search radii to find the nearest standing dead tree.

Maximum search radius (m)
9.32 11.32 13.32 15.32 17.94 Unlimited

The coefficient of variation for estimates and expected zero probability were calculated
by search radius. The change of coefficient of variation was compared by density of standing
dead trees and spatial patterns. In order to evaluate the time requirement by search radius, time
requirement was calculated using regression models developed previously from BBDMS and

PRC data (see Tables 6.2 and 6.3).

7.3. Results

Comparison of coefficient of variation by search radii

Tables 7.2 and 7.3 show the coefficient of variation of estimates (N/ha) and expected zero
probability (EZP) by the number of fixed-area plot and PPR when the density of standing dead
trees is 12 per ha, and when the spatial pattern is random and clustered, respectively. As in
previous analyses, the EZ-Hurdle method had a smaller coefficient of variation for all search
radii and PPR for both spatial patterns than FAS (Tables 7.2 and 7.3).

There was a strong relationship between the coefficients of variation of the estimates and
expected zero probabilities. When the coefficient of variation of expected zero probability
decreases, the coefficient of variation of estimate also decreases because the expected zero
probability in EZ-Hurdle model reduces the uncertainty caused by zero observations in data.
This means that the EZ-Hurdle method still gives a benefit even when one searches only a small

distance outside of the FAS plot.
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Table 7.2. The CV of estimates (N/ha) and expected zero probability (EZP) by PPR and search
radius (m) for EZ-Hurdle method when the spatial pattern of standing dead trees is
random and density is 12/ha.

Search radius (m)
9.32 1132 1332 1532 17.94 0
N/ha 3824 3426 3339 3333 3366 3434 37.36

No. fixed PPR Value FAS

1.00 EZP 8.35 8.02 7.57 7.46 7.5 7.62 8.04
1.5 N/ha 38.24 31.04 30.06 30.09 30.58 314 3412
EZP 8.35 7.08 6.62 6.57 6.66 6.82 7.21
N/ha 38.24  29.46 28.6 28.77 29.28 29.98 3251

36 1.50
EZP 8.35 6.51 6.13 6.11 6.22 6.36 6.72
175 N/ha 3824 2793 2718 2732 27.69 2819 3047
EZP 8.35 6.05 5.72 5.71 5.79 5.89 6.23
500 N/ha 38.24 2685 26.15 2624 26.61 2712 29.14
EZP 8.35 5.71 5.40 5.38 5.46 5.56 5.85
1.00 N/ha 2558 23,57 2294 2285 23.07 23.86 2491
EZP 5.55 5.21 4.97 4.93 4.97 5.12 5.43
105 N/ha 2558 2183 21.34 213 2143 2211 24.06
EZP 5.55 4.75 4.54 4.52 4.54 4.67 4.95
N/ha 2558 2022 19.72 1971 1985 20.38 22.24

72 1.50
EZP 5.55 4.34 4.13 411 4.14 4.25 4.52
175 N/ha 2558 19.03 1857 1858 18.82 19.39 211
EZP 5.55 4.02 3.82 3.81 3.87 3.99 4.25
200 N/ha 2558 1791 1746 1747 1768 18.14 19.7
EZP 5.55 3.73 3.55 3.54 3.59 3.69 3.93
1.00 N/ha 2094 1885 1823 1825 1854 19.14 19.88
EZP 4.67 4.19 3.97 3.97 4.04 4.17 4.44
1.5 N/ha 2094 1722 16.68 16.73 17.04 17.58 19.17
EZP 4.67 3.74 3.57 3.57 3.64 3.76 4.01
N/ha 2094 16.09 1561 1564 15.89 16.39 17.82

108 1.50
EZP 4.67 341 3.25 3.26 3.32 3.43 3.66
175 N/ha 2094 1512 1467 14.67 14.9 153 16.64
EZP 4.67 3.15 3.00 3.00 3.05 3.14 3.37
500 N/ha 2094 1455 1411 1410 1432 1471 15091
EZP 4.67 2.99 2.85 2.84 2.89 2.98 3.19

No. fixed is the number of fixed-area plots, PPR is point to plot ratio, FAS is fixed-area sampling
method, and EZP is expected zero probability.
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Table 7.2. Continue.

Search radius (m)
9.32 1132 1332 1532 17.94 0
N/ha 17.85 16.31 1594  15.89 16.16 16.56 17.12

No. fixed PPR Value FAS

1.00
EZP 3.96 3.59 3.45 3.44 3.50 3.58 3.81
125 N/ha 17.85 1489 1452 14.46 147 1506 16.42
EZP 3.96 3.18 3.05 3.04 3.09 3.17 3.39
144 150 N/ha 17.85 14.04 1365 13.58 13.8 1415 1542
EZP 3.96 2.95 2.82 2.80 2.86 2.93 3.14
175 N/ha 1785 1344 13.04 13.00 1322 1355 14.62
EZP 3.96 2.79 2.66 2.65 2.70 2.77 2.94
200 N/ha 1785 1286 1248 1246 12.68 13.00 14.05
EZP 3.96 2.61 2.49 2.49 2.54 2.60 2.78
1.00 N/ha 16.16 1475 1426 1423 1445 149 1542
EZP 3.54 3.2 3.03 3.02 3.07 3.17 3.36
1.5 N/ha 16.16  13.47 1299 1299 13.17 1357 14.71
EZP 3.54 2.88 2.72 2.72 2.76 2.84 3.02
N/ha 16.16 1275 1229 1228 1245 1281 13.92

180 1.50
EZP 3.54 2.68 2.53 2.52 2.56 2.64 2.81
175 N/ha 16.16 1227 1186 11.84 1201 1237 1342
EZP 3.54 2.55 241 2.4 2.44 2.52 2.69
500 N/ha 16.16 1158 11.22 1119 1133 11.66 12.66
EZP 3.54 2.37 2.25 2.24 2.27 2.34 2.51

No. fixed is the number of fixed-area plots, PPR is point to plot ratio, FAS is fixed-area sampling
method, and EZP is expected zero probability.

For example, when maximum search radius is 9.32, which is 2 m greater than an FIA subplot, the
EZ-Hurdle method had less coefficient of variation than FAS (Tables 7.2 and 7.3). Therefore,
distance-limited EZ-Hurdle method can improve the precision without heavy investment of
search time to find the nearest standing dead trees. In order to confirm this trend, the coefficient
of variation of estimate and expected zero probability were examined with additional two

different densities such as 24 and 49 per ha.
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Table 7.3. The CV of estimates (N/ha) and expected zero probability (EZP) by PPR and search
radius (m) for EZ-Hurdle method when the spatial pattern of standing dead trees is
cluster and density is 12/ha.

Search radius (m)
9.32 1132 1332 1532 17.94 0
N/ha 3951 3654 3559 3454 34.02 3344 3312

No. fixed PPR Value FAS

1.00 EZP 7.53 7.32 6.64 6.28 6.16 6.07 6.14
1.5 N/ha 3951 3468 3361 3261 3211 3167 31.35
EZP 7.53 6.52 5.93 5.6 5.49 5.43 5.53
N/ha 39.51 3237 3161 3094 3047 2995 29.59

36 1.50
EZP 7.53 5.78 5.31 5.07 4.98 491 5.02
175 N/ha 3951 31.07 3027 29.63 29.14 2871 28.32
EZP 7.53 5.45 5 4.78 4.69 4.64 4.73
500 N/ha 3951 29.73 2899 2845 2799 2759 2711
EZP 7.53 5 4.6 441 4.32 4.28 4.34
1.00 N/ha 27.69 2599 2521 2477 2424 23.69 2293
EZP 5.22 491 4.57 4.44 4.33 4.26 4.31
105 N/ha 27.69 23.82 22.88 225 2207 2151 20.96
EZP 5.22 4.26 3.91 3.79 3.71 3.64 3.71
N/ha 27.69 2242 2155 2117 2081 20.33 19.6

72 1.50
EZP 5.22 3.91 3.59 3.48 3.41 3.35 3.37
175 N/ha 2769 2158 2083 20.38 20.04 196 1891
EZP 5.22 3.71 3.42 3.29 3.23 3.18 3.19
200 N/ha 2769 2062 1993 1949 1916 18.73 18.12
EZP 5.22 3.50 3.23 3.11 3.05 3.00 3.02
1.00 N/ha 23.28 2146 20.71 2026 19.86 19.42 18.77
EZP 4.42 3.98 3.68 3.56 3.50 3.44 3.50
1.5 N/ha 23.28 2052 1979 1938 19.00 1858 17.83
EZP 4.42 3.66 3.38 3.27 3.21 3.15 3.18
N/ha 23.28 19.12 1847 18.07 17.72 1735 16.63

108 1.50
EZP 4.42 3.31 3.05 2.95 2.89 2.85 2.87
175 N/ha 2328 1789 1730 1695 16.63 16.31  15.69
EZP 4.42 3.06 2.83 2.73 2.67 2.63 2.66
500 N/ha 23.28 1733 16.79 16.47 16.17 15.85 15.19
EZP 4.42 2.89 2.68 2.59 2.54 2.50 2.51

No. fixed is the number of fixed-area plots, PPR is point to plot ratio, FAS is fixed-area sampling
method, and EZP is expected zero probability.
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Table 7.3. Continue.

Search radius (m)
9.32 1132 1332 1532 17.94 0
N/ha 20.17 18.67 1790 1755 17.22 16.79  16.25

No. fixed PPR Value FAS

1.00
EZP 3.86 3.49 3.22 3.13 3.08 3.03 3.07
125 N/ha 20.17 17.04 16.28 1592 1561 1524 14.78
EZP 3.86 3.10 2.84 2.75 2.70 2.65 2.70
144 150 N/ha 20.17 16.02 1533 1499 1470 1439 13.92
EZP 3.86 2.89 2.65 2.57 2.52 2.49 2.53
175 N/ha 20.17 1536 1470 1438 1411 13.83 13.25
EZP 3.86 2.72 2.50 242 2.37 2.35 2.36
200 N/ha 20.17 1473 1411 1380 1356 13.30 12.74
EZP 3.86 2.58 2.37 2.29 2.25 2.23 2.23
1.00 N/ha 1765 16.83 16.29 1591 1563 1532 14.69
EZP 3.33 3.10 2.90 2.80 2.75 2.72 2.72
1.5 N/ha 1765 1554 1505 1473 1447 1422 13.66
EZP 3.33 2.80 2.61 2.53 2.49 2.46 2.47
N/ha 1765 1482 1434 1406 1383 13.60 13.09

180 1.50
EZP 3.33 2.63 2.45 2.38 2.34 2.32 2.32
175 N/ha 1765 1413 1373 1350 1330 13.08 12.59
EZP 3.33 2.44 2.28 2.22 2.19 2.17 2.16
500 N/ha 1765 1350 13.15 1295 1277 1257 1214
EZP 3.33 2.28 2.13 2.07 2.04 2.03 2.03

No. fixed is the number of fixed-area plots, PPR is point to plot ratio, FAS is fixed-area sampling
method, and EZP is expected zero probability.

Figures 7.1 and 7.2 show the coefficients of variation of estimated density of standing
dead trees (N/ha) by spatial pattern and search radii when density of standing dead trees are 24
per ha and 49 per ha, respectively. The same trends are observed as when the density of standing
dead trees was 12 per ha. These results indicate that the coefficient of variation for the estimated
density of standing dead trees by EZ-Hurdle method is always less than FAS for both spatial
patterns and PPR, whenever one searches beyond the plot radius.

One strange pattern was that the coefficient of variation decreased until the search radius
was 13.32 and then increased or was very similar when the search radius was greater than 13.32
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up to an unlimited distance for all number of fixed-area plots and PPR under a random pattern

(Tables 7.2 and 7.3 and Figs. 7.1 and 7.2).
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Figure 7.1. The coefficients of variation (CV) of estimated density of standing dead trees by
spatial pattern and search radius. FAS is the fixed-area sampling method, PPR is the
point to plot ratio, and Inf. means unlimited search radius.
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Figure 7.2. The coefficients of variation (CV) of estimated expected zero probability (EZP) by
spatial pattern and search radius. FAS is the fixed-area sampling method, PPR is the
point to plot ratio, and Inf. means an unlimited search radius was used.

Whereas, the coefficients of variation was decreased continuously when the search radius
limitation increased up to an unlimited search under the clustered pattern. It was expected that
the expected zero probability for the given search radius (7.32 m radius in this study) should
have less variation when there is no distance limit to search the nearest standing dead tree.

However, according to Table 7.2 and Figure 7.1, the EZ-hurdle method had the best precision
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when the maximum search radius was 11.32 or 13.32 m under a random spatial pattern. This
unusual result was checked several times but persisted, suggesting that under some conditions
the distance-limited approach can perform better than the distance-unlimited approach in terms
of improved precision.

In general, the model selected as the best model for estimating the inclusion probability
was the one which has the least square errors for data. Especially, in the case of a parametric
method, it is possible that the least square error can be worse when more information or data is
added to fit the model when the additional information creates more variability. It is not
guaranteed that the inclusion probability in 7.32 m radius is equal to for all search radii (Fig. 7.3).
For example, the inclusion probability was 0.34 when the maximum search radius is 9.32 and
11.32 m but it was decreased to 0.33 when the maximum search radius is greater than 11.32 (Fig.
7.3). When events (standing dead trees in this study) are randomly distributed the nearest
neighbor distance from random point should be equal to event to event distances. It means that
there is no pattern for the inter-event interaction, which is the distance between point to event or
event to event in space. It is possible that the nearest neighbor distance from large search areas
to find the nearest standing dead tree can bring another inter-event interaction which is different
inter-event interaction within small search area because the define of spatial pattern of events
(standing dead trees) using inter-event interaction is very sensitive to the spatial scale (Bailey
and Gatrell 1995). Therefore, when additional information is collected from the larger search
area which is greater than 13.32 m were added to model the inclusion probability, the addition
data can introduce the random noise such as another inter-event interaction to the data and can
increase the variation to estimate the inclusion probability of give search radius. In other words,

it is not guaranteed that one can have better precision to estimate inclusion probability although
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add more data.
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Figure 7.3. The change of inclusion probability of a standing dead tree by increasing the search
radius when density of standing dead trees is 24/ha and spatial pattern is clustered.
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Comparison of time requirement by search radius

Figure 7.4 shows the additional time requirement for EZ-Hurdle method by maximum
search radius. When the search radius is limited, the EZ-Hurdle method takes a lot less time to
collect the distance information. For example, when the maximum search radius is 9.32, more
than 70% of the time requirement can be saved compared to the distance-unlimited method. If
maximum search radius is 17.95 m, more than 50% of the time requirement can be saved.
In general, for both spatial patterns and all densities, additional time requirements were rapidly
increased when search radius changes from 17.95 m to unlimited distance (effectively infinite,
denote as Inf. in Fig. 7.4). In the case of a random pattern, the additional time requirement was
moderately increased until search radius was 17.95 m in comparison to the additional time
requirement under a clustered pattern. Especially, when the density of standing dead trees is 49
per ha in random pattern, there was similar time requirement until the search radius was 17.95 m.
Thus, much of the additional time cost, which comes from searching for the nearest standing
dead tree which is, on occasion, very far away from the point, which may even reduce the quality
of the estimate under some conditions (Figs. 7.1 and 7.2), can be saved with distance limiting

method.
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7.4. Discussion for Distance-Limited EZ-Hurdle Method

The distance-limited EZ-Hurdle method showed better precision for all restricted search
radii, spatial patterns, and densities. Moreover, it still shows better precision even when PPR is 1.
Therefore, distance-limited EZ-Hurdle method can be applied to estimate the density of standing
dead trees without changes in plot designs such as that used in the FIA and FHM program.

According to the results of time requirement study, the distance-limited EZ-Hurdle
method showed great improvement in cost efficiency over the standard EZ-Hurdle method with
no distance limit set to find the nearest standing dead tree. The additional time requirement was
less than 70% in comparison with the distance-unlimited method when the search radius is 2 m
greater than the subplot radius. In addition, we can save more than 50% time requirement when
maximum search radius is equal to annular plot (17.95 m) in FIA.

Although the maximum search radius has to be decided based on budget or sampling
design, according to the results of this study, 13.32 m should be the best choice when the
standing dead trees are randomly distributed. When standing dead trees are clustered, 17.95 m
should be the best as the maximum search radius because the precision of estimates is increased
with extending the search radius and we can save more than 50% time requirement than standard
EZ-Hurdle method. When the maximum search radius is 17.95 m (equal to annular plot),
average time investment per plot should be less than 2 minutes based on the BBDMS data.
However, we do not know the true spatial pattern of standing dead trees in practice. Therefore,
these results suggest that the most efficient application of the method for FIA / FHM program
should be the 13.2 m radius distance-limited EZ-Hurdle method, which should prove to be the
best all around in the typical case when the spatial pattern of standing dead trees is unknown. It

should allow for modest gains in precision in estimates of standing dead tree densities under the
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current FIA or FHM plot design, without changing plot design and relatively small investment of

time and cost at each plot.
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8. Conclusion

Based on both simulation studies and applied studies in real forests, the EZ-Hurdle
method can improve the precision of an estimate where zero-inflated data are a source of
estimation error. However, the method requires adding additional (auxiliary) data to estimate the
expected zero proportion in the data, in this case by collecting additional data describing the
distance between a fixed-area plot center or random point and the nearest standing dead tree.
This additional data comes at an additional time cost, which can be quite large as shown here and
can make the method less cost—efficient than cheaper methods even if the estimates are of lower
quality. For the specific case of improving estimates of standing dead tree density from fixed-
area plots, the EZ-Hurdle method produces better, but less cost-efficient estimates than FAS
method with smaller (e.g., 7 m radius) fixed-area plots, because the time to search for standing
dead trees can be quite long compared to establishing a small fixed radius plot which quite often
contains few or no dead trees and it proved much more time-cost competitive than using larger
(e.g., 17.95 m) fixed area plots. A search distance-limited variant of the EZ-Hurdle method
showed promise for reducing the cost inefficiency of the method. The results of this study also
suggest that the expected zero probability for including standing dead trees in fixed area plots
may also be estimated from simple stand data, such as forest type and basal area, at little or no
additional cost, which would make the method even more cost efficient. For the case of standing
dead trees, the EZ-Hurdle method is best applied under conditions where zero-inflation in the
data is likely and where adding additional samples is unlikely.

In this dissertation, EZ-Hurdle method was been applied to estimate the density of
standing dead tree. Because EZ-Hurdle method can perform better when there are large or

excess zero observations in data, it might also be used to estimate the density of rare species or
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other low-abundance populations. Future work is planned to explore the application of the EZ-
Hurdle method to estimate the carbon sequestration of dead trees. Further research is needed to
examine the properties of the inclusion probability of a standing dead tree for different forest
types, because it may be used to define an “expected mortality” benchmark for forest health

monitoring and understanding stand mortality processes.
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