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ABSTRACT

INELASTIC RESPONSE OF A BEAM SUBJECTED

TO A COASTING LOAD

by F. Farhoomand

In this thesis a numerical method for analyzing the

dynamic response of a beam subjected to a coasting load is

presented. The method is based on a discrete model with

lumped mass and stiffness. The moment-curvature relation

is of a general elastic-plastic-strain-hardening type with

hysteretic behavior.

Numerical solutions are obtained using an iterative

procedure for a simply-supported slender beam subjected to

a coasting mass load.

The distinguishing feature of the present analysis

lies in the treatment of the kinematics of the beam defor-

mations. The analysis corresponds to a large-deflection

theory.

In comparison with available experimental data, the

present analytical results indicate a better agreement than

those for the small-deflection analysis.

Certain parametric studies are also included in the

thesis. It is found that for a load lighter than the ul-

timate load there exists a finite initial speed which is
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most damaging to the beam. It is also found that a mass

load heavier than the ultimate load can cross the beam,

resulting in only moderate permanent deflections, if its

initial speed is sufficiently large.
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I. INTRODUCTION

1.1. General

In recent years the problem of moving loads on

structures has been the subject of many theoretical and

experimental investigations. Most of the works reported

in the literature have been limited to the linearly elastic

range of structural behavior. However, more recently there

have been some studies that considered the inelastic range.

The history of past work in the latter category was

reported in Ref. 5. In that reference was also presented a

method of analyzing the dynamic inelastic response of beams

subjected to moving loads. The method was based on a bilin-

ear type of moment-curvature relation and a small-deflection

approximation, i.e., the angle of the slope at any point of

the beam was approximated by its sine.

The same problem was further considered in Ref. 3

in which both experimental and analytical results were pre-

sented. The analysis utilized the same approach as in Ref.

5 except that a more general type of moment-curvature rela-

tion was employed. Comparisons between the theoretical and

experimental responses generally seemed satisfactory. HOW-

ever, serious discrepancies emerged near the end of crossings
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for those cases in which the beam suffered appreciable per-

manent set. In such cases the analysis predicted a complete

collapse of the beam while the experiments showed only a

finite permanent set.

These discrepancies were reasoned to have resulted

from the assumptions of the small deflection theory which

led to two consequences: (1) the moving load maintained a

constant horizontal speed and (2) the load effectively stayed

on the beam over a longer period of time. Accordingly, it

was felt that by using more exact geometrical relations in

place of the small-deflection assumption it would be possible

to improve on the theoretical analysis. This consideration,

in fact, motivated the present work.

In passing it may be added that in recent years, the

ultimate strength theory has been gaining increasing accep—

tance in structural engineering. However, comparative ex-

perimental and analytical works have been scarce in inelastic

dynamics of structures. In this connection, the present

study may have some value beyond its apparent scope of moving

loads, as it also reflects the validity of the same general

approach for other loading conditions.

1.2. Scope

The physical system considered is first defined in

Chapter 2. There the method of analysis, including the der-

ivation of the equations of motion, is also presented. In



Chapter 3, the numerical method of solution is described.

Chapters 4 and 5 contain the numerical results of the study.

In Chapter 4, analytical results are compared with experi-

mental ones. ‘In Chapter 5, the influence of three important

physical parameters on the response is studied. The last

chapter comprises a summary of the present study.

1.3. Notation

The symbols and letters used in this report are

listed in alphabetical order, with English letters preceding

Greek letters. They are also defined where they are first

introduced.

A letter with an upper bar represents a dimensionless

variable. By the same token, a letter with one or two upper

dots indicates a first or second derivative with respect to

time.

a1, a2, a3 = auxiliary variables

Ai = auxiliary variable

B1’ B2, B3 = auxiliary variables

C = auxiliary variable

di = auxiliary variable

dt = finite increment in time

B = modulus of elasticity

g = acceleration of gravity

h = length of panel



X-component of internal force between

joint (i) and panel (1)

X-component of internal force between

joint (i) and panel (i-l)

auxiliary variable

dummy subscripts

moment of inertia

subscript identifying the panel being

traversed by load

length of beam

lumped mass at any interior joint of

model

bending moment at joint (i)

yield moment; see Fig. 2

number of panels

interactive force between load and

model

4My/L; yield load

total mass of beam

mass of load

time

time when load is passing joint (i)

time infinitesimally after ti

time infinitesimally before ti

fundamental period of elastic vibration

of beam



smallest period of elastic vibration

of beam

initial speed of load

Y-component of internal force between

joint (i) and panel (i)

Y-component of internal force between

joint (i) and panel (i-l)

X-coordinate of load

X-coordinate of joint (i)

Cartesian coordinate

Y—coordinate of load

Y-coordinate of joint (i)

Cartesian coordinate

PyL3/(48EI); maximum elastic deflection

of beam when Py is applied at midspan

angle of relative rotation of two ad-

jacent panels connected to joint (1)

angle of deviation of panel (i) from

X-axis



II. METHOD OF ANALYSIS

2.1. General

Consider a system of beam and load as shown in Fig.

The beam is straight, slender and simply-supported.

It has a uniform distribution of mass and stiffness. The

left—hand support is hinged at the origin of the coordinate

axes OX and OY. The right-hand support is allowed to slide

along the X-axis.

The load consists of a single unsprung mass. It

enters the beam at time t = O with an initial speed v, and

is to coast on the beam from the left to the right.

The relation between the bending moment and curva-

ture of the beam is of the general elasto-inelastic type

described in Ref. 3. Assuming a rectangular cross-section

and referring to Fig. 2 the relation for loading is given

by

M = EIk for k 5 ky (la)

2
M = 1.5M - 0.5M k k f r k < k < 10k lby y(y/) o y“ _ y ()

s k (1c)M = 1.5M + 0.03EI k - 10k for 10k

Y ( Y) Y

where M denotes the bending moment, k the curvature, My the

yield moment, ky the yield curvature, E the modulus of

6



elasticity, and I the moment of inertia. The relations

for unloading and reloading, after the initial elastic

region is exceeded, depend on the history of deformation.

They follow a hysteretic pattern as fully explained in

Ref. 4.

The assumptions made in this study are outlined

below.

1) Axial and shearing deformations are negligible.

2) Bending deformations are not affected by axial and

shearing forces.

3) The beam has no rotary inertia.

2.2. Discretization of Beam
 

In order to accomplish a numerical analysis of the

problem described in the preceding section, the continuous

properties of the beam are lumped or discretized. The man-

ner of discretization corresponds to that for "model B"

discussed in Ref. 4. Accordingly, the beam is replaced by

a finite number of massless rigid panels connected by flex-

ible joints with lumped masses. The panels are further

assumed to be of equal length h.

The lumped mass at any interior joint of the model

is m = Qb/n, where Qb is the total mass of the beam and n

the number of panels. Furthermore, at a boundary joint, the

lumped mass is m/2 = Q /2n.
b



The moment-rotation relation for each interior

joint (i) is obtained from Eqs. 1 by replacing M by Mi and

k by ¢i/h, where Mi is the bending moment at joint (i) and

¢i the angle of relative rotation between panels (i-l) and

(i).

2.3. Equations of Motion
 

Let k identify the panel being traversed by the

coasting load at some typical instant t. Referring now to

Fig. 3a, application of the linear momentum theorem to the

coasting load yields

P Sln 6k = QZX (2)

and

ng " P COS 6k = QZY (3)

in which P denotes the interactive force between the model

and the moving load, 6k the angle of deviation of panel (k)

from the X-axis, QZ the mass of the load, (i,§) the accel-

eration components of the load, and g the acceleration of

gravity.

Similarly, considering Fig. 3b, application of the

linear momentum theorem to a generic panel (i) as well as

to the specific panel (k) gives

- H? = 0 where i # k (4a)
1

H' - H+ P s'n e — 0 (4b)
k" 1 k—



and

= 0 where i # k (5a)

V - V + P cos 6 = 0 (5b)
k

in which (HI, VI) and (HE, Vi) are the internal forces act-

ing on joint (i) transmitted by panels (i) and (i-l),

respectively.

Another application of the same theorem to a generic

joint (i) in Fig. 3c provides

Hf - HT = mx. where i # n + 1 (6a)
1 1 1

+ - _ m

Hn+1 - Hn+1 7 xn+1 (6b)

and

+ - _ 00

where (xi, yi) denotes the acceleration components of joint

(1).

Furthermore, application of the angular momentum

theorem to the left end of a generic panel (i) as well as

to the left end of the specific panel (k) gives

M. - M. - HT h sin ei + VT
1 1+1 1+1 1+1 h cos 6i = 0

where i # k (8a)

Mk - Mk+1 - Hk+l h Sin 6k + Vk+l h cos 6k

X-X

+P m=o (8b)
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in which x and xk are the X-coordinates of the load and

joint (k), respectively.

To carry out an analysis of the system, Equations

1 through 8 must be supplemented by certain kinematical

equations. These equations, with reference to Fig. 4, are

readily given by

 

. yi+l - yi
6i = Arcs1n h (9)

ix. = h cos 6. (11)

y = yk + (x - xk) tan 6k (12)

where (x,y) and (xi,yi) are the coordinates of the load and

joint (1), respectively.

Taking the first partial derivative of Equations 11

and 12 with respect to time they are transformed into

x
0

II I

M
P
“

.=2 (yj - yj-l) tan ej-l (13)

3

. . . . (x-xm'r -§r>
y = yk + (x - xk) tan 6k + k 3k+l k

h cos 6k

(14)

in which (x,y) and (xi,yi) are the velocity components of

the load and joint (i), respectively.
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Taking once more the first partial derivative of

Equations 13 and 14 with respect to time they are further

transformed into

 

 

 

 

. - - 2

1 (Y. - y~_l)

fi- = - Z (9. - §._ ) tan e._ + 3 3

1 j=2( 3 31 31 hcos36.
j-l

(15)

y = yk + (x - xk) tan 6k

+ (X ’ xk)(yk+l ’ Yk)

h cos3 a

k

+ 2‘* ' xk)(yk+l ' Yk)

h cos3 9k

+ 2 4’ tan 8k (16)

h cos 6

k

Elimination of i and y between Equations 2, 3 and

16 leads to the following equation for P.

 

 

 

x - x

k n

P = Q - cos 6 y

Z h cosZ_ek k k

x - x
k u

- QZ;____§__—yk+l + 019 cos 6k

cos 6k

(i-a’cuiz -9)

+ Q i sin 8 - 20 k k+1 R
Z k k Z h cos2 e

k

. . 2

(x - x )(y - y )
k k+l k

— 30Z 2 3 tan 6k (17)

h cos 6k
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Elimination of H: between Equations 4 and 6 leads

to

H; = -mxi + Hi+l where i # k, n + 1 (18a)

H; = -mxk + Hk+l - P sin 6k (18b)

Hn+1. = Jilin+l (18c)

It should be recognized that in the above transition the

boundary condition HH+1 = 0 has been used. Equations 18

are now solved for Hi'

n

Hl - §xn+l — mjéix - P s1n 9k for 1 s k (10a)

Hi = -§xn+l - mgixj for k < 1 s n (19b)

- _ _IE..

Hn+1 _ 2xn+l' (19C)

For convenience in subsequent computations an auxiliary

variable Hi (which has no apparent physical meaning) is

introduced.

1.. n ..
H. = -§Xn+l - E X. (20)

Equations 19 are thus written as

H. = mHi - P sin e for i s k (21a)
k

H. = mH. for k < 1 (21b)
1 1
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Solution of Equations 8 for v; with the latter sub-

stitution for H; yields

 

Vi+l = mdi+l - P Sin 6k tan 6i for 1 < k (22a)

_ x - xk

vk+1 = mdk+1 ’ P 2 (22b)
h cos 6

k

Vi+1 = mdi+l for k < 1 (22c)

where

Mi ' Mi-l
 

d1 = Hi tan 61-1 + mh cos 61-1

Elimination of v: between Equations 5 and 7 yields

myi = Vi+l - Vi where 1 # k (23a)

myk = Vk+l - Vk + P cos 6k (23b)

Finally, substitution of Equations 22 into 23 gives the

following differential equations of motion.

" _ _ _ §_ . _
yi — di+l di m Sln 6k(tan 8i tan ei-l)

for i < k (24a)

x—

X

k
 

.. P .

yk — dk+1 - dk + 5(51n 8k tan ek-l + cos 6k -

(24b)

h cos2 6
k

)



(24c) 

91 = d. - d. for k+l < 1 (24d)

2.4. Jumps in Velocities and Accelerations
 

It is evident that the velocity and acceleration of

a mass load coasting on a smooth beam with continuous dis-

tribution of stiffness are continuous functions of time,

so long as the load is in contact with the beam. However,

if the discrete model used in the present analysis replaces

the beam, these functions are no longer continuous. In

fact, when the load is passing a joint, the velocity and

acceleration of the load will experience sudden changes or

"jumps." At the same time, similar jumps will also take

place in the velocity and acceleration of the very joint

being passed by the load.

1) Jumps in Velocities

Let the time when the load is passing a joint (1)

be denoted by ti’ and the instants immediately before and

after that by t; and ti. Then, Equation 13 at times t;

and t: becomes

xi = -(yi - yi-l) tan 91-1 - 2 (y - yj-l) tan 6j_1
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and

i-l
0+_-0+-0 - 0-0

xi - (yi yi-l) tan ei_l jEZ (yj yj-l) tan ej-l

in which the superscripts "-" and "+" refer, respectively,

to t; and t1. Subtracting one of these two equations from

the other, there results

0+ 0—

X. = X.

l 1

0+ 0-

- (yi — yi) tan ei_l (25)

Letting x = xi at time t1, Equation 14 becomes

-+ _ + _ °- -+
y — (x Xi) tan 6i + yi (26)

Furthermore, conservation of linear momentum in the X and

Y directions provides

0+ 0- 0+ .—

Q(x - x ) + m(xi - xi) = O (27)

and

on? - 9‘) + mu}: - 9;) = o (28)

-+
Elimination of 4*, y , and k: between Equations 25 through

28 produces

._ y- - i; - (x- - ii) tan 91

= y- + (l + m—)(1 + tan 6 tan 6 ) (29)
Q1 1 i-l

 

Next, i: is determined by back substitution of 9: into Equa-

tion 25. Using i: and §:, Equations 27 and 28 yield x+ and

.+
y , respectively.
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2) Jumps in Accelerations

It is recalled that the interactive force between

the load and the model is always normal to the panel being

traversed by the load. Thus, in passing from t; to ti,

the interactive force suddenly changes direction. This

causes jumps in accelerations. However, all equations of

kinetics must be satisfied. In order to account for these

jumps, the transition from t; to t: is treated as a step

in the general numerical integration procedure, to be dis—

cussed in the next chapter, with the following modifications:

(1) dt = t? - t7 = 0
l l

(2) k is increased by one.



III. METHOD OF NUMERICAL SOLUTION

3.1. Dimensionless Form of Equations

of Motion

 

 

In computing numerical results it is convenient to

deal with dimensionless equations. To this end, the fol-

lowing dimensionless variables and parameters are introduced.

_ h
_ M

H-=_H. M,=—l—

1 2 1 1 M

V Y

-_P -_v
P-P—— t—Ht

Y

§_§ i=3}-
- h v

__h.. -_yi

x-T‘ Yl-h—
v

' _ i 3 _

yl-V— Yi‘—Yi
v

2

V QZ QQZ

°“'h‘1'>_‘ B=p

Y Y

Y=31 gig.
—hMQb y

Where Py = 4My/L denotes the "yield load."

17
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With the use of the dimensionless variables and

parameters, Equations 9, 10, 1, 15, 20, 17, 24, and 2 are,

respectively cast in the following dimensionless form.

3
|

3
|

3
|

X
u

X
v

 

Arcs1n (yi+l - yi) (30)

ei-l - 6i (31)

C¢i for §¢i s 1 (32a)

1.5 - 0.5(C<1>i)-2 for 1 5 C¢i s 10 (32b)

1.5 + O.O3(C¢i - 10) for 10 S C¢i (32C)

1 _ (§j - §j_l)2

-.§ (yJ - yj-l) tan 8 l + 3

j—2 cos 6

j-l

(33)

12 n 2

- §xn+l - .E. Xj (34)
3—1

B17k + BZyk+1 + B3 (35)

Ai + a3P for 1 < k (36a)

Ak + aZP (36b)

Ak+1 + alP (35C)

Ai for k + 1 < 1 (36d)

P .
a s1n 6k (37)
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in which

i-S’ck

B1 = a -——7——- - cos 6k

cos 6

k

82 = — Bl - a cos 6k

 

 

  

- 2a

2

cos 6k

- 3a tan 6

cos3 6 k

k

A1 = Hi+l tan 6i - Hi tan ei_l

yn i+l M1 M1 - M1-1
+

4a cos 6. cos 6.

1 1-1

a1 = 13}. X ' xk

d cos 9k

a = 12(sin 6 tan 6 + cos 9 ) - a

2 a k k-l k l

— _Y_n - _a3 - a Sln 6k(tan 6i tan ei_l)

For completeness, Equations 29, 25, 28, and 27 are

also put in the following dimensionless form.



III. METHOD OF NUMERICAL SOLUTION

3.1. Dimensionless Form of Equations
 

of Motion
 

deal with dimensionless equations.

In computing numerical results it is convenient to

To this end, the fol-

lowing dimensionless variables and parameters are introduced.

where P

Y

F
1

N
:

X
I

W
I

w
.

P
-

=—H. 174'.
V2 1 1

_P -_ 5. t

Y

_§ 5;-

‘h

=h_;; g,
V2 1

=_i =

V yl

v2QZ

‘53— B
y

.32. C

Qb

4My/L denotes the "yield load."

17

M

.1

M

Y

<
H
X
-

:
fl
<

r
i
-

S
I
R
:

p
.
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the use of the dimensionless variables and

parameters, Equations 9, 10, 1, 15, 20, 17, 24, and 2 are,

respectively

3
|

u

2
|

u

3
|

n

|
<

w

ll

M
k

II

cast in the following dimensionless form.

 

Arcs1n (yi+l - yi) (30)

61-1 — e1 (31)

C¢i for C¢i s 1 (32a)

1.5 — o.5(q¢i)‘2 for 1 s c¢i s 10 (32b)

1.5 + 0.O3(?;¢i - 10) for 10 5 C¢i (32C)

1 2 .2 (§' - §'_l)2

- X (y. - y. ) tan 6. + l 3
._ j j-l -1 3
3-2 005 8

j-l

(33)

l2 n u

x Z 52. (34)
2 n+1 j=i j

Blyk + Bzyk+l + B3 (35)

Al + a3P for i < k (36a)

Ak + a2P (36b)

Ak+l + alP (36c)

Ai for k + l < 1 (36d)

F .
3 Sin 6k (37)



in which
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- 2a cos2 9

k

(2-2M‘ -§r>2
k yk+1 k

- 3a tan 6

cos3 9 k
k

H +1 tan 6i - Hi tan ei_l

+ In i+l Mi _ Mi _ M1-1

4a cos 6. cos 6.

1 1-1

is x"xk

a cos 6k

Yn - _
—E(S1n 6k tan ek-l + cos 6k) al

yn

Sin 6k(tan 8i — tan ei-l)

For completeness, Equations 29, 25, 28, and 27 are

also put in the following dimensionless form.
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1+ = 1- + n 7 ‘ 91 ’ (R ’ 21) tan 61 (38)

Y1 Y1 Y (1 + yn)(1 + tan 6i tan 91—1)

&+ 1- 1+ 1-
i — xi - (yi - yi) tan 61-1 (39)

z+ _ :- _ i i

y - y Yn (40)

:+ _ :-
§+ = fi— _ _£____£ (41)

yn

3.2. Description of Parameters
 

The problem under consideration has eight dimen-

sional physical parameters: n, L, Qb, EI, My’ v, 01’ and

9. According to the theory of dimensional analysis these

can be grouped into five independent dimensionless para-

meters which may be chosen to be n, a, B, y, and Q, as

listed in the preceding section. Alternatively, any other

independent combination of these parameters can be adopted.

It is of some interest to interpret the physical

character of the parameters a, B, Y, and C. The speed

parameter a = VZQZ/hpy is directly proportional to the ini-

tial kinetic energy of the load. The weight parameter

8 = gQZ/Py is a measure of the load weight in terms of the

yield load. The mass parameter y = QZ/Qb stands for the

ratio of the load mass to the beam mass. The stiffness

parameter Q = EI/hMy is such that its reciprocal represents

the angle of rotation ¢i when Mi = My'
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3.3.Numerica1 Integration of Accelerations

and Velocities

In order to integrate the accelerations and veloci—

ties numerically, the so-called 8 method of integration as

outlined in Ref. 2, with B = O, is used.

Introducing dE to denote a small increment in t,

the formulas for integrating § and i are

§(E) + 0.5 §(E) + §<E + dEfldE (42a)§(E + dE)

§(E + dE) §(E) + é<E>aE + 0.532(E>dE2 (42b)

Similarly for §i and §i, they are

yi(t) + 0.5 yi(t) + yi(t + dt) dt§i(E + dE)

(43a)

§i<E + dE) = §i<E) + §i(t)dE + o.s§i(E)dE2 (43b)

The truncation error of these formulas ix; 0(dt3).

According to Ref. 2, in order to assure stability

of the integration procedure, the dimensional time increment

dt for each step must be less than l/n times T8, the smallest

period of elastic vibration of the beam. In this case

T = T/n2, where T is the fundamental period of vibration of
s

the beam and n the number of panels into which the beam is

divided.
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3.4. Numerical Solution of Equations

of Motion

 

 

Equations 36 and 37 constitute the governing equa-

tions of motion. Since these differential equations are

nonlinear and heavily coupled, a closed-form solution is

practically impossible. Furthermore, it does not even seem

feasible to obtain a direct numerical solution (by using

the integration formulas: Equations 42 and 43). Thus, it

appears that iterative methods are the only alternatives.

Among various possibilities, the following procedure

seems to be most expeditious. Assuming a set of values for

§(t + dt) and §i(t + dt) and using Equations 42 and 43, R,

x, yi, and §i, at time t + dE, are computed. Then, Equa—

tions 30 through 35 are used to compute 8i, Mi, Hi, and P.

These values are now substituted into Equations 36 and 37

to obtain a new set of values for §(t + dt) and §i(t + dt)

which, of course, is to be compared with the assumed set.

The above procedure turned out to be divergent.

Several other procedures were tried based on different se-

quences of substitutions of the variables and/or different

forms of the equations modified by substitutions of the

variables. Divergence ensued in all these attempts before

the following successful procedure was found.

The procedure requires a recast of the governing

equations. Replacing P in Equations 36 by Equation 35, the

former equations are transformed into the following.
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F1 = Ai + a3(B1§k + B2§k+l + B3) for i < k (44a)

§k = Ak + a2(Bl§k + B2§k+l + 33’ (44b)

i(la-1 = Ak+1 + al(Bl§k + B2§k+l + 83’ (44C)

§i = A1 for k + l < 1 (44d)

Regarding Equations 44b and c as two linear equa-

tions with two unknowns §k and they are solved by
yk+1’

Cramer's rule. Thus, §k and §k+l are given by

yk Ak + a2C (45b)

A + a C (45c)
yk+1 = k+l 1

where

BlAk + BZAk+l + B3

C = l - a B - a B

1 2 2 1

 

It must be noted that in the transition from Equations 44b,

c to Equations 45 b, c, the auxiliary variables Ak’ Ak+l’

and B3 are treated as constants although they include §k

and §k+l implicitly.

The next step is to substitute §k and §k+1 from

Equations 45b, c into Equation 44a. The resulting equation

along with Equations 45b, c and 44d constitute the desired

form of the equations of motion. For future reference, they

are grouped in the following.
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91 = Ai + a3c for i < k (45a)

§k = Ak + a2C (45b)

§k+l _ Ak+1 + a1C (45C)

5i = Ai for k + 1 < 1 (45d)

It is now shown how a step-by-step numerical solution

of the equations of motion is performed.

1)

2)

3)

4)

5)

At time t, the beginning of an arbitrary step, x(t),

(t), x(t), and §i(t), §i(t), §i(t) are known.X
h

In order to have the iteration started, the unknowns

§(E + dt) yi(t + dt) are set equal to §(t) and §i(t),

respectively. Using Equations 42, §(t + dt) and

x(t + dt) are computed.

Having the assumed values for §i(t + dt), Equations 43

are used to compute §i(E + dE) and §i(E + dt).

The variables Si, Mi, and Hi are now computed by making

use of Equations 30 through 34. Next, the auxiliary

variables a1, a2, a3, Aj’ Bl’ B2, B3, and C are computed.

Equations 45 readily produce new values for §i(t + dt)

which are compared with the assumed ones used in part 3

to see whether their differences are within an allowable

tolerance.

6a) If not, the newly computed §i(E-+dt) are used as assumed

§i(E + dt) in part 3 to start another cycle of iteration.
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6b) If yes, the iteration is said to have converged.

7) By means of Equations 37 and 42, §(t + dt), §(t +dE),

and i(t + dt) are successively computed to complete the

necessary initial conditions for the next time interval

of the integration.

In conclusion, it is worth observing that i is not

involved in the iterations. The reason is that § is always

relatively small compared to §i. It is, however, possible

to include § in the ,iterations. In fact, this was carried

out in several solutions. The results appeared to be prac—

tically the same as those obtained without this refinement.

3.5. Use of Computer
 

The numerical results presented in the next two

chapters were obtained on the CDC3600 digital computer of

Michigan State University. A copy of the FORTRAN program,

and the formats of the parameters as well as some other

pertinent details are compiled in the Appendix.



IV. COMPARISON OF ANALYTICAL AND

EXPERIMENTAL RESULTS

4.1. General

This chapter is devoted to comparing certain numeri-

cal results obtained from: (1) the present large-deflection

analysis, (2) the laboratory experiments, and (3) the small-

deflection analysis. The experimental data are taken from

Ref. 3. The experimental set-up is briefly described below.

The beams used were made of mild steel. They were

rectangular in cross section and had the following average

properties: weight = 1.97 1b.; length = 24 in.; modulus of

section = 0.0104 cu. in.; static yield stress = 30,300 psi;

modulus of elasticity = 28,000,000 psi.

The loads used weighed in the neighborhood of 70 lb.

Their initial speeds varied from approximately 6 to 20 fps.

It may be recalled that the following simplifying

assumptions made in the small-deflection theory have been

removed in the present large-deflection analysis: (1) the

angle of the slope at any point of the beam is equal to its

sine, and (2) the speed of the load is constant.

In both analyses to account for the dynamic nature

of the loading, the yield stress is computed by multiplying

26
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the static yield stress by a factor of l + (0.0004/td)l/6,

where td is the time needed to initiate plastic deformation.

According to Ref. 3, the time td' which must be less than

L/v, is chosen to be (L/v)/3.

4.2. Midspan Deflection versus Time
 

Figures 5a, b, c illustrate the midspan deflection

versus time for three initial speeds, 6.56, 11.30 and 13.50

fps. From Fig. 5a, it is seen that for the low speed, 6.56

fps., a fairly good agreement exists between either analy-

tical graph and the experimental one.

For the higher speeds, 11.30 and 13.50 fps., Figs.

5b, 0 show that the experimental and analytical midspan de—

flections stayed close to one another until 90% of the beam

had been traversed by the load. There the graph associated

with the large—deflection theory still followed the experi-

mental graph and they both rebounded. On the other hand,

the deflection predicted by the small-deflection theory

continued to increase, indicating a collapse of the beam,

which of course did not take place in the experiments.

4.3. Interactive Force versus Time
 

For the same initial speeds, Figs. 6a, b, c illus-

trate the interactive force versus time. These figures

reveal the fact that the graphs generated by the two ver-

sions of analyses differ only slightly. For the low speed

they also follow the experimental graph during the entire
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passage of the load on the beam. But, for each one of the

higher speeds, the analytical and experimental graphs begin

to diverge after the load has traversed 90% of the beam.

In fact, both analytical interactive forces become much

larger than that of the experiments.

4.4. Permanent Sets
 

For the low speed, 6.56 fps., there was no measur—

able permanent set in the experiments, and analytically the

set was negligibly small. For the higher speeds, 11.30 and

13.50 fps., the permanent sets are presented in Figs. 7a, b.

It should be noted that in each figure the graph correspond-

ing to the large-deflection theory is plotted with the same

scale as that for the experimental data. However, a scale

of an order of magnitude smaller is used in plotting the

graph associated with the small-deflection theory.

It is seen that the graphs generated by the small-

deflection analysis neither in magnitude, nor in overall

shape, agree with the experimental graphs. Indeed, the

magnitudes differ by a factor of approximately 10. On the

other hand, the shape of the damaged beams predicted by the

large-deflection theory agree quite well with the experi-

mental data. The difference in magnitudes is still large,

that is, 100% to 250%. However, they do represent an im-

provement over the small-deflection theory. In view of the

fact that the present problem involves unconstrained

plasticity, a discrepancy of order of 100% or so between
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the analytical and experimental results might be considered

as not excessive.

4.5. Maximum Midspan Deflection versus

Speed

 

For the last stage of comparison, the maximum mid-

span deflection of the beam is plotted in Fig. 8 against

the initial speed of the load. The analytical graphs ob-

tained for B = 0.9 and 1.3 are compared with the experimental

data taken from Ref. 1. It is observed that for the lighter

load (8 = 0.9) the relevant graphs are almost coincident.

For the heavier load (8 = 1.3), they differ by approximately

20% although their overall shapes are harmonious. Thus, on

this item of comparison, the results based on the large-

deflection theory and experiments also appear to agree well.



V. INFLUENCE OF PARAMETERS

5.1. General

In order to gain some insight into the physics of

the problem, the effects of the initial speed of the load

on the midspan deflection of the beam are considered.

Moreover, these effects are studied for loads of different

weights and also for beams of different moment capacities.

5.2. Influence of Load Weight
 

In Figs. 9a, b are presented, respectively, the

maximum midspan deflection and permanent set for a range

of v varying from 0.5/Hg to 16/53. In each figure three

graphs are plotted which correspond to B = 0.9, 1.3, 1.7,

and the following parameters: n = 10, y/B = l, and C = 50.

These data may be regarded as representing a bridge with

L = 40 ft., E1 = 2 x 108 1b. ft.2, My = 106 lb. ft.,

ng = 105 1b., and three loads with gQZ = 0.9 x 105, 1.3 x

5 5
10 , 1.7 x 10 1b., v = 5.67 to 181.44 fps.

Fig. 9a shows that all the graphs have the same

general trend. The maximum midspan deflections increase

with the initial speed of the load, rising to a peak and

gradually tapering off at higher speeds. They are also

30
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seen to be larger for heavier loads. The deflections at

the peaks are 8.10A, 4.35A, and 2.17A for B = 1.7, 1.3,

and 0.9, respectively.

To explain qualitatively the relative positions of

the peaks on the speed axis, the beam-load system might be

considered as having a single degree of freedom. Consider-

ing the load to be situated at the midspan of the beam, the

fundamental circular frequency of the system (assumed elas-

 

tic) is readily given by /96EIL'-3/(ZQZ + Qb). The circular

frequency of the "forcing function" due to the moving load

may be approximated by NV/L. These two frequencies are

equated, from which the "resonant speed" is found to be

 

/64fl-2CYB-l/(2Y + 1) - /H§} Accordingly, the resonant

speeds pertaining to the data in Fig. 9a are 5.26/55,

5.81/33, and 6.59/33, for B = 1.7, 1.3, and 0.9, respec-

tively.

These estimated resonant speeds are to be compared

with 2.10/35, 3.40/35, and 5.70/56 which correspond to the

peaks of the graphs in Fig. 9a. Qualitatively, the agree-

ment is fairly good inspite of the fact that the model used

in the estimation is a very rough one for the actual system.

This comparison means that the system appeared to have re-

sponded like one with a single degree of freedom.

The graphs of permanent sets shown in Fig. 9b also

exhibit the same general features as in Fig. 9a.
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5.3. Influence of Beam Moment-Capacity
 

In Figs. 10a, b are presented six graphs similar

to those shown previously in Figs. 9a, b. The three graphs

of each figure correspond to B = 1.0, 1.5, 2.0 and the fol-

lowing parameters: n = 10, y = 1.5, C/B = 50. With this

choice of parameters, My is the only physical parameter

which is variable between the three graphs.

Fig. 10a exhibits essentially the same characteris-

tics as those shown in Fig. 9a except for the graph corres-

ponding to 8 = 2.0. For the range of v considered, this

graph does not rise to any peak. In other words, the

maximum midspan deflection increases steadily as v decreases.

This is explained in the following by referring to the

stiffness properties of the beam.

For B = 1.5, when v approaches zero the fully plastic

moment (1.5My) will be reached at the midspan, but the beam

will not collapse because of the strain-hardening properties.

The stiffness in the strain—hardening region is, however,

very small (3% of the initial elastic stiffness). There-

fore, the beam is expected to collapse only when 8 is larger

than 1.5 and v approaches zero.

For B = 1.5 and 1.0 each graph attains a peak. It

is possible to explain the relative positions of these peaks

on the speed axis on a basis similar to that discussed pre-

viously in connection with the peaks in Fig. 9a. However,

in this case since EI, L, Qb' and 01 are the same, the
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natural frequency of the beam-load system may be regarded

as depending on the "effective stiffness" of the beam.

For any joint (1), the effective stiffness may be consid—

ered to be equal to the value of My divided by the maximum

value of ¢i that has incurred. Since this maximum is ob-

viously smaller for the beam with B = 1.0 than for the one

with B = 1.5, the load-beam system corresponding to B = 1.0

is stiffer and would have a higher "natural frequency." It

follows that the peak for B = 1.0 graph should take place

at a higher frequency of the forcing function, that is, at

a higher initial speed of the load.

The graphs of permanent sets illustrated in Fig.

10b also indicate the same trends as in Fig. 10a discussed

in the preceding.



VI. SUMMARY AND CONCLUSIONS

A numerical method for analyzing the dynamic response

of a beam subjected to a coasting mass load was presented.

The method was based on a discrete model with lumped mass

and stiffness. In defining the stiffness properties of the

beam, the type of elastic-plastic-strain-hardening and

hysteretic behavior of such material as mild steel was

considered.

A similar method of analysis had been reported in

Ref. 3. The present method differs from that in the treat-

ment of the kinematics of the problem. While the work of

Ref. 3 may be called a small-deflection theory, the present

method represents a large-deflection analysis.

In comparison with experimental data (Ref. 3) the

present analytical results indicate better agreements than

those of the small-deflection theory. This is particularly

true for the cases in which large permanent deflections have

taken place. Since in solving such problems the occurrence

of large permanent deflections is in general not always pre-

dictable, it is safer to use the large-deflection analysis.

Certain parametric studies, considering the influ-

ence of initial load speed, load weight, and beam yield-moment,

34
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were also included in this report. For the range of para-

meters considered the following were found to be noteworthy.

1) As long as the load weight was less than the static

2)

3)

4)

ultimate load (1.5Py) the response (maximum or permanent

midspan deflection) showed a relative maximum when

plotted against the initial speed of the load. In other

words, this relative maximum occurred at a "most damag-

ing" initial speed.

When the load weight was greater than the static ulti-

mate load, no relative maximum was obtained. Instead,

the response continued to increase as the initial speed

of the load decreased. However, such heavy loads could

still cross the beam, with only moderate permanent de-

flections, if their initial speeds were sufficiently

large.

In connection with the relative maxima, the behavior of

the system could be qualitatively explained on the basis

of a single-degree-of—freedom system. In this system

the load played the role of the forcing function and,

in part, also that of the mass. The beam mainly supplied

the stiffness, although its contribution to the mass was

also substantial.

The effect of an increase in the load weight was quali-

tatively similar to that of a decrease in the beam

yield-moment.
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APPENDIX

COMPUTER PROGRAM

In this Appendix, the computer program as well as

certain pertinent information are presented.

1. Identification of Parameters and

Variables

 

 

The parameters and some important variables are

identified in the following:

N = n

ALPHA = a

BETA = B

GAMMA = y

ZETA = c

DELTA = A/L

NS = number of steps between two con-

secutive print-outs

DTIME = of

TOL = tolerance of iterations

K = k

z = i - ik

s = k + (i - xk)/cos ek

T = E

52



H(I)

TH(I)

AN1(I)

BMA(I)

AXl

VXl

DXl

AX(I)

vx(I)

AYl(I)

VY1(I)

DY1(I)

DYD(I)

DYMAX(I)

SDYMA(I)

TDYMA (I)

PMAX

SPMA

TPMA

PA(I)

PD(I)
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M
E

M
I

>
u
-

x
u

3
|

X
I
.

yi/A

maximum yi/A

S where yi/A attains its maximum

T when yi/A attains its maximum

maximum P

S where P attains its maximum

T when P attains its maximum

permanent oi

permanent yi/A
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2. Print-outs

At the beginning, all the parameters as well as

DELTA, NS, DTIME, and TOL are printed out.

During the process of step-by-step solution, S, DXl,

VX1, AXl, P, T, and DYD(I) are also printed out.

At the end are printed out DYMAX(I), SDYMA(I),

TDYMA(I), PA(I), PD(I), PMAX, SPMA, and TPMA.



n

#22:.

#12:.

@ON

O—ZNZM—OZ DXAvaa<XAvaob<~Ammv.><Nammvob<wammvo<<uammvo<<mammv.

~0<~.mm.oU<NAva.U<OANWV.M40>ANWV.mqowfimmv.03>.va.mzwammvomznammv.

Nazcammvomzramm..DZ—.vaobzmammv.DZGANmV.DDAIANw..HIDFAvaafizmAvao

U034amm.anbmnmmv.ODOAvaoflnmzammv.UDMbamm..Ubammvonoammv.0<szammvo

bm0<2>ammvofio<gbammvodlammv.O>AvaoIAva.DAva.m.va

Dbnbzmamnm ***

Z"

DFUIbu

mm4>u

Obzzbu

Vfldbn

>CX~F~>D< (DD—bmrmm ***

Z~uZ+~

OMF4DHZ\A~N00*NM4>V

UHOMF4>*Z

Nu0>33>*2

Wum\>FUI>

nwflTI*Z\b. 0O

HOFfluoOMIU

OM~3NNO¢~O\MDD4AO*NM4DV

~u~00m+u*04~3m+00m

O4~3mflpoomlu*~

Zmum00m1H\04_3m

OOZUC4ND DDOODDZ

UD~24 OON.Z.>FUI>.mm4>.0>33>on4>.OmF4>.Zm.04~3mofior

MODE>4._IH.N.\vobI Z n~

uflmomo mxoflIGDZZP unwomo

Nfldob.\.mI 2m “RU. mx.4IO4~3m "MO-U.

U. flxofllbrnlb

mX.OINm4> «MOoN.

n *** ~Z—4~>F~N>fi~02 OM <>D~>wrmm ***

bmmumz 9N0 40 ZDD

KuFuQu<X~unoO

HHOXHHDXHHDXNMUZDXHO

DO 000 _u~.ZH

><~auvu><mauvu><ua~vu<<uauvu<<mauvu0<~aHvuO<NA~vuO<2>XA~v

02>“nvumzmauvumznauvubzuauvnbzmauvubzmamquszauquDmbauv

nbmaHyunbmauvunzmauvu034auvu00.HVHO

w40>A~VHMA0mAqvn~oO

wzcauvu+uoo

mm

"“00No

oxomIAOF

oxowlmm4> u

mXoQIONFAD u

"mm0HoNA\vv

O

O



O
K
)

600

***

604

608

***

300

298

297

296

295

294

293

292

***

18

***

***

201

503

501

500

231

502

235

271

56

BML‘I)=-100

RETURN ***

M=NS

DT=DTIME

LOCATION OF COASTING LOAD ***

DO 298 I=19N

DY2<I+1)=DY1(I+1)+DT*VY1(I+l>+0.5*DT**2*AYI(I+l)

TH(!)=ASINF(DY2(I+1)-DY2(I))

IFtK.E0.0) GO TO 292

DX2=DX1+DT*vx1+0.5*DT**2*Ax1

x=o

DO 297 I=19K

X=X+COSF(TH(I))

IF(L.E0.0) GO TO 295

IF(DX2-X) 29492959296

DT=(-VX1+SORT(VX1**2-2*AX1*(DXl—X)))/AX1

L=O

GO To 300

Z=COSF(TH(K))

ASSIGN 422 To NAP

L=l

GO TO 293

Z=DX2-(X-COSF(TH(K)))

S=K+(DX2~X)/COSF(TH(K))

CONTINUE

ANGLE OF ROTATION ***

DO 18 1:29N

AN2(1)=TH(Idl)-TH(I)

DA(I)=AN2(I)“AN1(I)

BENDING MOMENT ***

DO 240 1=Z9N

IF(lo5-STGA(I)) 200,200,201

STAGE ONE ***

BMB(I)=BMA(I)+DA(I)*ZETA

IF(BML(I)-BMU(I)) 50295029503

IF(DA(I)) 50095009501

IF(BMB(I)-BML(I)) 24092409271

IF(BMB(I)-BMU(I)) 23192409240

CMB(I)=PREM(I)

CAB(I)=PQEA(1)

STGB(1)= 291

GO TO 222

IF (DA(I)) 23592369236

IF(BMB(I)-BML(I)) 27192409240

STGB(I)=2.3
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mu

UDNZAHVHOZAA~V

UDm>A~VHODOA~V

DO 40 mmm

mum Hflnmzmauvlmzcamov mh0.mbo.mup

n *** mdbom 420 ***

moo HNAU>A~.*U>AI.~33 www.mmm.mmm

NNH WZCAHVHWZDAAV

mammxaouu.o

mgr.~Vumzcx_.+m202flxm.o.0>.~3.

03m.—Vuo.m*am3C.~.+m3Fx~.o

Ohm.—on>22._o+m202han.o.0>a~33\Nm4>

OO 40 Now

Nmm >20A_.u>2maaotn>m.~.

mznauvuflZANmfibobzoa~vv

mzwxucunzwxuo+mzna~c

moo nozaazcm

n

n *** >CX~F~>D< <>D~>mrmm ***

00 NO ~HNoZ

mo mx~ouo*axmzmx_+_.Im3m.~v.\nOMM.41~~.VI

flamzwauvlm3m~~l~oo\00m1A41A~I—vvv

no XuN\nOMNAHIAK33**N

>_HM*X

>Nufl*amHZMAAIAKV.*4>ZMA4IAKI_vv+nomflafilafivVVIDH

GEHDFDI>*AXIOOMMAAIAK333

QNHIDFUI>*X

nnu2.0I>H*mmlpm*m_

n

n *** “ZAmODDAHOZ w< mmab zmdloo ***

_ooo 00 no Hum.z

><maqvn><wauo

Ho <<m.~3u<<_A_.+oom*04*.><mxmc+><px2..

<xmn<x~+o.m*04*.>xm+>xao

n *** <Xx~o >20 >x.~v ***

00 ab unmoza

<xx_.no

>x...no

00 ab Lumou

<XA~VH<XA~3la<<magvl<<maLluv3*4>ZfladI.Ll~..

Hp bxauonbxx~GIAD<NAL3I><NALIHV3*HDZMAHIALl233I

~A<<NAL3I<<NALI~v.**m\nomfladI~LI_..**u

n *** Ixav ***

Ixz+nvulo.m*>x.2+~.

00 am ~HNoZ

IAEVHIAZ+23

00 am LuH.Z

Hm Ixmoulauclbxxto



n

n ***

mm

om

be

90

n

n ***

am

GA

00

n

n ***

mm

o

n ***

omo

n

n *#*

bmm

mm

><UAKV >20 ><U~K+~v ***

00 mm unmoz

Dauvnmauv+laa+~3*MDZMAMIA~3311A~v*4>ZMAAIaml_33

muumm4>*00mfladlaflvV+DFDI>*>XAKV*MHZMAAIAKV3|

HN*>FUI>*A<XNI<XAK.3*A<<NAK+~v|<<NAKVV\OOMMA41AKVV**NI

NU*>FDI>*N*A<<NAK+Hvl<<NAKVV**N*4>ZMAAIAKVV\OOMMafiIAva**U

nuamu*>.Kv+mN*>AK+uv+mmv\nn

ufiafiomOopv 00 40 Db

mflaxomoozv 00 40 km

><UAKVHDAKV+>N*O

><UAK+HVHDAK+HV+>»*O

$0 40 b0

D<UAKVHA>AKV+>N*WUV\A~90l>N*muv

OO 40 90

><U~K+~OHADAK+~3+>_*muv\an90lbu*mmv

0024~ZCW

><uauv ***

00 GO numoz

00 4O AON.OO.OOSO¢O.HIK+N

DUM1T*M~ZWAAIAKV“*AfibzmafiIAHVVIHDZWAHIAuIvaV

><Uamvu>5uv+bw*n

00 40 00

><U~~vn>aav

0024~ZCN

nImnK OM OOZ<mDGmZON ***

00 mm ~uN.Z

"MabmmN~><N.~31><UAH33904940FV 00 do ~OOO

0024H2Cm

0 >20 bxm ***

Dum_*><u.Ko+mm*><uAK+pv+mu

bxmuD*mHZM.AIAKV.\>FDI>

awxnoma.oo mo 40 bmo

Ono

gum

nozauzcm

LCZUm ***

OO 40 ZDU

bmwamz DNO 40 ZDU

<<uA<XNI<XAKV3*ADZMAHIaKv3+

~N*.<<NAK+~vl<<NAKVV\OOMM~416K.V**U+<<NAK.

x".~.o+m.*1_.o+4>zn.arxxc.*4>zn141.x+c...\m

o<<u.<<|<<mxx+a.Ix<xmn<x1x+2..*a>znxarxx+_.c.\x

<<S.K+_cu<<m1K+acu<<mxx+Hc+o<<

<x~u<xmn<xm+o<<*4>zmxarxxc.\m
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T=T+DT

DT=Z=O

K=K+I

IF(K9LE.N) GO TO 80

O=O

M=l

426 CONTINUE

C *** INITIAL CONDITIONS FOR NEXT STEP OF SOLUTION ***

T=T+DT

DXI=DX2

VX1=VX2

AX1=AX2

DO 45 I=Z9N

PATH(I)=BMB(I)-BMA(I)

BMA(I)=BMB(I)

DY1(I)=DY2(I)

VY1(I)=VY2(I)

AY1(I)=AY3(I)

AN1(1)=AN2(I)

CMT(1)=CMB(I)

CAG(I)=CAB(I)

STGA(I)=STGB(I)

DYD(1)=DY1(I)/D

45 CONTINUE

C *** MAXIMUM RESPONSE ***

IF(K0E090) GO TO 408

DO 404 1:29N

IF(DYMAX(I)oGEoDYD(I)) GO TO 404

DYMAX(I)=DYD(I)

SDYMA(I)=S

TDYMA(I)=T

404 CONTINUE

IF(PMAX0GE0P) GO TO 408

PMAX=P

SPMA=S

TRMA=T

408 CONTINUE

C *** PRINT-OUTS ***

M=M-1

IF(M.GT90) GO TO 608

pRINT 4429SODX19VX19AX19P

442 FORMAT(1H 93HS =F5929 7X95HDX1 =F592911X95HVX1 =

1F704912X05HAX1 35902910X93HP =E902)

PRINT 4469T9(DYD(I)91=29N)

446 FORMAT(1H 93HT =F5929 7X98HOYD(I) =F50298F1202/(F290298F1292))

IF(0.GT.O) GO TO 604



3O

31

32

33

C ***

23

24

25

26

37

38

39

750

760

770

60

PRINT 30

FORMAT(3(/)9*MAXIMUM RESPONSE*)

PRINT 319(DYMAX(I)9I=29N)

FOPMAT(*DYMAX(I) =*9 7X99F1292/(5X910F1292))

PRINT 329(SDYMA(I)9I=29N)

FORMAT(*SDYMA(I) =*9 7X99F1292/(5X910F1292))

PRINT 339(TDYMA(I)9I=29N)

FORMAT(*TDYMA(I) =*9 7X99F1292/(5X910F1292))

PERMANENT SET ***

DO 23 1:29N

PA(I)=AN1(I)-BMA(I)/ZETA

U=O

X=O

Y=0

DO 24 [=29N

U=U+PA(I)

X:X+SINF(U)

Y=Y+COSF(U)

PA(1)=ATANF(X/(1.0+Y))

DO 25 I=39N1

U=O

DO 25 J=39I

U=U+PA(J-l)

PD(I)=PD(I)+SINF(PA(l)-U)

DO 26 1:29N1

PD(I)=(SINF(PA(1))+PD(I))/D

PRINT 379(PA(I)9I=19N)

FORMAT(*PA(I) =*9Ell0299E1292/(9X9IOE1202))

PRINT 389(PD(I)9I=19N1)

FORMAT(*PD(I) =*9El1.299E1292/(9X910EI292))

PRINT 399PMAX9SPMA9TPMA

FORMAT(l(/)9*PMAX =*9E1205910X9*SPMA =*9E12959IOX9*TPMA*9E1205)

END

FUNCTION FN(ZETA9THETA)

STHD=1000

FLEX=100/ZETA

IF(ABSF(THETA)oLEoSTHD*FLEX) GO TO 750

X=105+O003*(ZETA*ABSF(THETA)'STHD)

1F(THETA9LT90) X=-X

GO TO 770

IF(ABSF(THETA)9LE0FLEX) GO TO 760

X=I05-005/(ZETA*ABSF(THETA))**2

IF‘THETAOLTOO) thx

GO TO 770

X=ZETA*THETA

FN=X

END
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