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ABSTRACT

INELASTIC RESPONSE OF A BEAM SUBJECTED
TO A COASTING LOAD

by F. Farhoomand

In this thesis a numerical method for analyzing the
dynamic response of a beam subjected to a coasting load is
presented. The method is based on a discrete model with
lumped mass and stiffﬁess. The moment-curvature relation
is of a general elastic-plastic-strain-hardening type with
hysteretic behavior.

Numerical solutions are obtained using an iterative
procedure for a simply-supported slender beam subjected to
a coasting mass load.

The distinguishing feature of the present analysis
lies in the treatment of the kinematics of the beam defor-
mations. The analysis corresponds to a large-deflection
theory.

In comparison with available experimental data, the
present analytical results indicate a better agreement than
those for the small-deflection analysis.

Certain parametric studies are also included in the
thesis. It is found that for a load lighter than the ul-

timate load there exists a finite initial speed which is
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most damaging to the beam. It is also found that a mass
load heavier than the ultimate load can cross the beam,
resulting in only moderate permanent deflections, if its

initial speed is sufficiently large.
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I. INTRODUCTION

l.1. General

In recent years the problem of moving loads on
structures has been the subject of many theoretical and
experimental investigations. Most of the works reported
in the literature have been limited to the linearly elastic
range of structural behavior. However, more recently there
have been some studies that considered the inelastic range.

The history of past work in the latter category was
reported in Ref. 5. 1In that reference was also presented a
method of analyzing the dynamic inelastic response of beams
subjected to moving loads. The method was based on a bilin-
ear type of moment-curvature relation and a small-deflection
approximation, i.e., the angle of the slope at any point of
the beam was approximated by its sine.

The same problem was further considered in Ref. 3
in which both experimental and analytical results were pre-
sented. The analysis utilized the same approach as in Ref.
5 except that a more general type of moment-curvature rela-
tion was employed. Comparisons between the theoretical and
experimental responses generally seemed satisfactory. How-
ever, serious discrepancies emerged near the end of crossings

1



for those cases in which the beam suffered appreciable per-
manent set. In such cases the analysis predicted a complete
collapse of the beam while the experiments showed only a
finite permanent set.

These discrepancies were reasoned to have resulted
from the assumptions of the small deflection theory which
led to two consequences: (1) the moving load maintained a
constant horizontal speed and (2) the load effectively stayed
on the beam over a longer period of time. Accordingly, it
was felt that by using more exact geometrical relations in
place of the small-deflection assumption it would be possible
to improve on the theoretical analysis. This consideration,
in fact, motivated the present work.

In passing it may be added that in recent years, the
ultimate strength theory has been gaining increasing accep-
tance in structural engineering. However, comparative ex-
perimental and analytical works have been scarce in inelastic
dynamics of structures. 1In this connection, the present
study may have some value beyond its apparent scope of moving
loads, as it also reflects the validity of the same general

approach for other loading conditions.

1.2. Scope

The physical system considered is first defined in
Chapter 2. There the method of analysis, including the der-

ivation of the equations of motion, is also presented. 1In



Chapter 3, the numerical method of solution is described.
Chapters 4 and 5 contain the numerical results of the study.
In Chapter 4, analytical results are compared with experi-
mental ones. In Chapter 5, the influence of three important
physical parameters on the response is studied. The last

chapter comprises a summary of the present study.

1.3. Notation

The symbols and letters used in this report are
listed in alphabetical order, with English letters preceding
Greek letters. They are also defined where they are first
introduced.

A letter with an upper bar represents a dimensionless
variable. By the same token, a letter with one or two upper
dots indicates a first or second derivative with respect to

time.

al, ay, a3 = auxiliary variables

Ay = auxiliary variable

Bl’ B2, B3 = auxiliary variables

C = auxiliary variable

di = auxiliary variable

dt = finite increment in time
E = modulus of elasticity

g = acceleration of gravity

h = length of panel



X-component of internal force between
joint (i) and panel (i)

X-component of internal force between
joint (i) and panel (i-1)

auxiliary variable

dummy subscripts

moment of inertia

subscript identifying the panel being
traversed by load

length of beam

lumped mass at any interior joint of
model

bending moment at joint (i)

yield moment; see Fig. 2

number of panels

interactive force between load and
model

4My/L; yield load

total mass of beam

mass of load

time

time when load is passing joint (i)
time infinitesimally after ts

time infinitesimally before ti
fundamental period of elastic vibration

of beam



smallest period of elastic vibration
of beam

initial speed of load

Y-component of internal force between
joint (i) and panel (i)

Y-component of internal force between
joint (i) and panel (i-1)
X-coordinate of load

X-coordinate of joint (1)

Cartesian coordinate

Y-coordinate of load

Y-coordinate of joint (i)

Cartesian coordinate

PyL3/(48EI); maximum elastic deflection
of beam when Py is applied at midspan
angle of relative rotation of two ad-
jacent panels connected to joint (i)
angle of deviation of panel (i) from

X-axis



II. METHOD OF ANALYSIS

2.1. General

Consider a system of beam and load as shown in Fig.

The beam is straight, slender and simply-supported.
It has a uniform distribution of mass and stiffness. The
left-hand support is hinged at the origin of the coordinate
axes OX and OY. The right-hand support is allowed to slide
along the X-axis.

The load consists of a single unsprung mass. It
enters the beam at time t = 0 with an initial speed v, and
is to coast on the beam from the left to the right.

The relation between the bending moment and curva-
ture of the beam is of the general elasto-inelastic type
described in Ref. 3. Assuming a rectangular cross-section

and referring to Fig. 2 the relation for loading is given

by
M = EIk for k < ky (1a)
2
M=1.5M_ - 0.5M.(k _/k for k. < k < 10k 1b
% y (ky/k) or Xy = % 2 %y (1b)

M= 1.5My + 0.03EI(k - 1Oky) for lOky (lc)

In
~

where M denotes the bending moment, k the curvature, My the
yield moment, ky the yield curvature, E the modulus of

6



elasticity, and I the moment of inertia. The relations
for unloading and reloading, after the initial elastic
region is exceeded, depend on the history of deformation.
They follow a hysteretic pattern as fully explained in
Ref. 4.

The assumptions made in this study are outlined
below.
1) Axial and shearing deformations are negligible.
2) Bending deformations are not affected by axial and

shearing forces.

3) The beam has no rotary inertia.

2.2. Discretization of Beam

In order to accomplish a numerical analysis of the
problem described in the preceding section, the continuous
properties of the beam are lumped or discretized. The man-
ner of discretization corresponds to that for "model B"
discussed in Ref. 4. Accordingly, the beam is replaced by
a finite number of massless rigid panels connected by flex-
ible joints with lumped masses. The panels are further
assumed to be of equal length h.

The lumped mass at any interior joint of the model
is m = Qb/n, where Qb is the total mass of the beam and n
the number of panels. Furthermore, at a boundary joint, the

lumped mass is m/2 = Q /2n.
b



The moment-rotation relation for each interior
joint (i) is obtained from Egs. 1 by replacing M by Mi and
k by ¢i/h, where Mi is the bending moment at joint (i) and
¢i the angle of relative rotation between panels (i-1l) and

(1) .

2.3. Equations of Motion

Let k identify the panel being traversed by the
coasting load at some typical instant t. Referring now to
Fig. 3a, application of the linear momentum theorem to the

coasting load yields

P sin ek = Q% (2)

and

QZg - P cos ek = sz (3)

in which P denotes the interactive force between the model

and the moving load, 6, the angle of deviation of panel (k)

k
from the X-axis, Q, the mass of the load, (X,y) the accel-
eration components of the load, and g the acceleration of
gravity.

Similarly, considering Fig. 3b, application of the

linear momentum theorem to a generic panel (i) as well as

to the specific panel (k) gives
+ .
- H, =0 where 1 # k (4a)

- P sin 6, =0 (4b)

1
- +
H - Hk Kk



and

=0 where 1 # k (5a)

+ P cos ek =0 (5b)

V -
in which (HI, VI) and (H;, V;) are the internal forces act-
ing on joint (i) transmitted by panels (i) and (i-1),
respectively.

Another application of the same theorem to a generic

joint (i) in Fig. 3c provides

H - Hj = m&, where i # n + 1 (6a)
+ - _m .
Hiel ~Hpe1 = 7 %0 (6b)
and
+ - .
Vi - Vy = omyy (7)

where (ii, §i) denotes the acceleration components of joint
(i) .

Furthermore, application of the angular momentum
theorem to the left end of a generic panel (i) as well as

to the left end of the specific panel (k) gives

M. - M, - H.

i i+l i+1 D sin 8; + Vv,

i+l h cos ei = 0

where i # k (8a)
Mk - Mk+l - Hk+l h sin ek + Vk+l h cos Gk

X - X

*P o sse 0 (8b)
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in which x and x, are the X-coordinates of the load and
joint (k), respectively.

To carry out an analysis of the system, Equations
1 through 8 must be supplemented by certain kinematical

equations. These equations, with reference to Fig. 4, are

readily given by

Y - Y.

8. = Arcsin Zi+l i (9)
i h

% = %17 8§ (10)

i

X. = h cos 0. (11)
i j=2 j-1

Y =yt (x - xk) tan Gk (12)

where (x,y) and (xi,yi) are the coordinates of the load and
joint (i), respectively.
Taking the first partial derivative of Equations 11

and 12 with respect to time they are transformed into

)
]

~1p-

(y. - V. tan 0. 13
j=2 Yj yJ‘l) an Fy-1 (13)

.. .. (x = %) (Y1 — ¥
Y =y, + (x - xk) tan ek + s 3k+l k
h cos

Ok

(14)

in which (i,§) and (ii,§i) are the velocity components of

the load and joint (i), respectively.
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Taking once more the first partial derivative of
Equations 13 and 14 with respect to time they are further

transformed into

. . . 2
1 (y- - y"'l)
%, = -7 ([(§, - ¥, ) tan 6, . + —2 J
* j=2( J -1 3-1 h cos3 0.
j-1
(15)
y = §k + (X - ik) tan ek
L T ) Oy = ¥y
h cos3 0
k
h cos3 ek
+ ) 7 tan Gk (1le6)
h® cos”™ 6

k

Elimination of X and y between Equations 2, 3 and

16 leads to the following equation for P.

X - X
P=Q ——5—— - cos 6 Y
¢ h cos .ek k[7k
X - X
kK .
- Q) —————m—y + Q,g cos 6.
Ly cos? 0, k+1 l k

(x - xk)(yk+l - yk)

h cos2 0

k
[ ] [ ] 2
(x - x.) (y -vy,)
k k+1 k
- 3QZ 5 3 tan ek (17)
h™ cos Gk

+ Qzﬁk sin ek - 2QZ
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Elimination of HI between Equations 4 and 6 leads

to
H; = -mii + H;+1 where i # k, n + 1 (18a)
H; = -m¥, + H;+1 - P sin 6 (18b)
bl = ~2%na1 (18c)

It should be recognized that in the above transition the
boundary condition H;+l = 0 has been used. Equations 18

are now solved for H;.

n
Hi = -3%,41 - mjgixj - P sin 8 for i <k (10a)
- me.. n .
By = "T*n41 - mjzixj for k < i <n (19b)
- _ _m.
Hiel = "2%ne1- (19¢)

For convenience in subsequent computations an auxiliary
variable Hi (which has no apparent physical meaning) is

introduced.

1. oo
Hy = -5% ) - -2 X. (20)

Equations 19 are thus written as

H. = mHi - P sin @ for i1 < k (21la)

k

H, = mHi for k < i (21b)
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Solution of Equations 8 for V; with the latter sub-

stitution for HI yields

Vi+1 = mdi+l - P sin Gk tan ei for i < k (22a)
_ X - x
Vel = My TP (22b)
h cos™ 6
k
Vi+l = mdi+l for k < i (22¢)
where
Mi - Mg
dj = #; tan 8; ) + mH cos o,
i-1
Elimination of VI between Equations 5 and 7 yields
my, = V;+l - V; where i # k (23a)
mﬁk = V;+l - V; + P cos 6 (23b)

Finally, substitution of Equations 22 into 23 gives the

following differential equations of motion.

o _ _ P _. _
¥, = diy d; = sin ek(tan 8, tan ei_l)
for i < k (24a)
3 R -
¥ = A4y - 9 + m(sin 6, tan 6, _; + cos 6, - ;—;;gf—g—)
k

(24b)



(24c)

¥ =4, - 4 for k+l < i  (24d)

2.4. Jumps in Velocities and Accelerations

It is evident that the velocity and acceleration of
a mass load coasting on a smooth beam with continuous dis-
tribution of stiffness are continuous functions of time,
so long as the load is in contact with the beam. However,
if the discrete model used in the present analysis replaces
the beam, these functions are no longer continuous. 1In
fact, when the load is passing a joint, the velocity and
acceleration of the load will experience sudden changes or
"jumps." At the same time, similar jumps will also take
place in the velocity and acceleration of the very joint

being passed by the load.

1) Jumps in Velocities

Let the time when the load is passing a joint (i)
be denoted by ti' and the instants immediately before and
after that by t; and t;. Then, Equation 13 at times t;

+
and ti becomes

X, = —(yi - Yi-l) tan ei_l - X (y. - yj-l) tan ej_l
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and
i-1
‘+__'+-' _ o-o
x; = =(y; - y;_q) tan 0. _; .2 (Y = yy_p) tam 65
j=2
in which the superscripts "-" and "+" refer, respectively,

to t; and tI. Subtracting one of these two equations from

the other, there results

4 ® o
X, = X,

o+ ® -
i i (yi - yi) tan ei_l (25)

Letting x = x; at time t;, Equation 14 becomes

.+

o+— o+_0_
y = (x x;) tan 6, + vy, (26)

Furthermore, conservation of linear momentum in the X and

Y directions provides

I
o

oxt - x7) + m(iz - x7) (27)

1

and

I
o

oy’ - ¥ + my] - ¥]) (28)

Elimination of §+, §+, and i; between Equations 25 through

28 produces

Y - 9T - (& - D) tan s,
=y + — i i i (29)
(1 + 5—)(1 + tan Oi tan ei_l)
l

Next, i; is determined by back substitution of §I into Equa-

tion 25. Using i; and §I, Equations 27 and 28 yield x* and

y+, respectively.
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2) Jumps in Accelerations

It is recalled that the interactive force between
the load and the model is always normal to the panel being
traversed by the load. Thus, in passing from t; to tI,
the interactive force suddenly changes direction. This
causes jumps in accelerations. However, all equations of
kinetics must be satisfied. In order to account for these
jumps, the transition from tz to tI is treated as a step
in the general numerical integration procedure, to be dis-
cussed in the next chapter, with the following modifications:

—+__=
(1) dt-ti ti 0

(2) k is increased by one.



III. METHOD OF NUMERICAL SOLUTION

3.1. Dimensionless Form of Equations
of Motion

In computing numerical results it is convenient to
deal with dimensionless equations. To this end, the fol-

lowing dimensionless variables and parameters are introduced.

- h = My
By = =45 M=
v Y
= _ P - _ Vv
P—P— t-—Ht
Y
i:% }%:%
= Lk 7. = 4
;f i h
o_i ._.—h_‘.-o
yi v Y; = v2yi
2
VQZ gQZ
a=H§— B:P_—
Yy Y
Y 0, ¢ RN,

where Py = 4My/L denotes the "yield load."

17



With

18

the use of the dimensionless variables and

parameters, Equations 9, 10, 1, 15, 20, 17, 24, and 2 are,

respectively

6. =
i

S|
[

2
I

=
[

we
I

l»<
~
1

1
Il

cast in the following dimensionless form.

Arcsin (§i+l - §i) (30)
e1—1 B 61 (31)
§¢i for C¢i <1 (32a)
1.5 - o.5(cq>i)'2 for 1 < ¢, < 10 (32b)
1.5 + 0.03(C¢>i - 10) for 10 < c¢, (32¢)
v ¥ - §j‘1)2
—.g (yJ yj-l) tan 6. , + 3
j=2 cos™ B
j-1
(33)
1= ¥ o
X ] x. (34)
27n+1 j=i j
Bi¥yx + Bo¥y41 * By (35)
Al + a3P for i < k (36a)
Per TP (36c)
Ai for k + 1 < i (364)
P .
5 sin ek (37)
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in which
X - %

Bl = Q — - cos ek

cos” 6

k

B2 = - Bl - O cos ek
B3 = B cos Gk + aik sin ek

o X T R Wyan — Fy)

cos ek
- 3o tan 6
cos3 6 k
k

Al = Hi+l tan Gi - Hi tan ai_l

yYn i+l Ml Mi e !

* 4 cos 9 T Cos 0
i i-1
X - X
_;m k

a — 7

o cos ek

= Yn ... _
a, = a(Sln ek tan ek_l + cos ek) a;

= X0 &5 -
a3 = -~ sin 6, (tan 6, tan 6, ;)

For completeness, Equations 29, 25, 28, and 27 are

also put in the following dimensionless form.



3.1. Dimensionless Form of Equations

III.

of Motion

deal with dimensionless equations.

METHOD OF NUMERICAL SOLUTION

In computing numerical results it is convenient to

To this end, the fol-

lowing dimensionless variables and parameters are introduced.

where P
Y

A,

1

|

wi

K

| |
Qe < T %
FARN

|
<
< |©O
o~

P

0| O
T |

M,
i

il

wle

4My/L denotes the "yield load."

M

_——

M
Y

<X o<

UIK
H.



With
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the use of the dimensionless variables and

parameters, Equations 9, 10, 1, 15, 20, 17, 24, and 2 are,

respectively

6. =
1

=l
[

|
[

=
[

~
o
]

cast in the following dimensionless form.

Arcsin (§i+l - §i) (30)
e1-1 - 61 (31)
C¢i for c¢i <1 (32a)
1.5 - 0.5(z6,) 72 for 1 < g9, < 10 (32b)
1.5 + 0.03(2;¢>i - 10) for 10 < C¢i (32¢)
i . . (§' = i-;'_l)z
- Z (y. - y. l) tan 6, 1+ J 3 J
j=2 J J- J- cos” 6.
j-1
(33)
1= T
X } oz, (34)
27°n+l j=i j
By¥yx + Bo¥p41 + B (35)
A, + a3F for i < k (36a)
Byl T 3P (36c)
Ay for k + 1 < i (364)
P .
S sin 6, (37)
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in which
X - ’-‘k
Bl = Q ﬁ— - COs ek
cos” 6
k
B2 = - Bl - O cos ek
B3 = B cos Gk + aik sin ek
o X T Fe) Wiy — ¥y
cos ek
- 3o tan ©
cos3 6 k
k
A, = H,, , tan ei - H; tan 91-1
Inz Mi+1 My Mi i-1
+ -
40, cos 0, cos 0,
i i-1
X - X
= 1n k
| —
o cos” ©
k
a, = lB(sin 6, tan 6 + cos 6,) - a
2 a k k-1 k 1
= =X o5 -
az = -— sin 6, (tan 6. tan 6. ;)

For completeness, Equations 29, 25, 28, and 27 are

also put in the following dimensionless form.
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g -9; - (8 - R tan 6,

o+ -

Yi = ¥; * YR T ¥ yn) (I + tan 6, tan 8, ;) (38)

2+ =- 2+ 2

X; =%, - (y; - ¥;) tan 6, 4 (39)

2+ _ 2= 1] i

y' o=y a (40)
# &

=+ _ 2= _ 7i i

X =X ——n (41)

3.2. Description of Parameters

The problem under consideration has eight dimen-
sional physical parameters: n, L, Qb, EI, My' v, QZ’ and
g. According to the theory of dimensional analysis these
can be grouped into five independent dimensionless para-
meters which may be chosen to be n, o, 8, vy, and ¢, as
listed in the preceding section. Alternatively, any other
independent combination of these parameters can be adopted.

It is of some interest to interpret the physical
character of the parameters a, B8, Y, and . The speed
parameter o = szZ/hPy is directly proportional to the ini-
tial kinetic energy of the load. The weight parameter
B = gQZ/Py is a measure of the load weight in terms of the
yield load. The mass parameter y = QZ/Qb stands for the
ratio of the load mass to the beam mass. The stiffness
parameter ¢ = EI/hMY is such that its reciprocal represents

the angle of rotation ¢, when M, = My'
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3.3. Numerical Integration of Accelerations
and Velocities

In order to integrate the accelerations and veloci-
ties numerically, the so-called B method of integration as
outlined in Ref. 2, with B = 0, is used.

Introducing dt to denote a small increment in t,

the formulas for integrating X and X are

%(E + dE) = %(E) + 0.5[%(t) + %(t + dr)dt (42a)

Z(E + dT) = X(E) + R(E)AE + 0.5%(T)dt? (42b)

Similarly for §i and §.

i they are

fii(t_:) + 0.5(&71(1_:) + §i(E + dt) | dat
(43a)

yi(t + dt)

§,(E+ab) = 3, (0 + ¥y, (DAt + 0.57, (Dat? (43b)

The truncation error of these formulas is 0(dE>).

According to Ref. 2, in order to assure stability
of the integration procedure, the dimensional time increment
dt for each step must be less than 1/7m times Ts’ the smallest
period of elastic vibration of the beam. In this case
Ts = T/n2, where T is the fundamental period of vibration of

the beam and n the number of panels into which the beam is

divided.
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3.4. Numerical Solution of Equations
of Motion

Equations 36 and 37 constitute the governing equa-
tions of motion. Since these differential equations are
nonlinear and heavily coupled, a closed-form solution is
practically impossible. Furthermore, it does not even seem
feasible to obtain a direct numerical solution (by using
the integration formulas: Equations 42 and 43). Thus, it
appears that iterative methods are the only alternatives.

Among various possibilities, the following procedure
seems to be most expeditious. Assuming a set of values for
X(t + dt) and §i(E + dt) and using Equations 42 and 43, X,

X, §i’ and ?i, at time t + dt, are computed. Then, Equa-

tions 30 through 35 are used to compute 6., M., ﬁi, and P.

i
These values are now substituted into Equations 36 and 37
to obtain a new set of values for x(t + dt) and §i(E + dt)
which, of course, is to be compared with the assumed set.

The above procedure turned out to be divergent.
Several other procedures were tried based on different se-
quences of substitutions of the variables and/or different
forms of the equations modified by substitutions of the
variables. Divergence ensued in all these attempts before
the following successful procedure was found.

The procedure requires a recast of the governing

equations. Replacing P in Equations 36 by Equation 35, the

former equations are transformed into the following.
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§i = A, + a3(Bl§k + B2§k+1 + B3) for i <k (44a)
Ve o= Byt oay(Bid By, +By) (44b)
Viel = Pe1 * 31 (By¥y ¥ By¥yyy + By) (44c)
g, = A, for k + 1 < i (44d)

Regarding Equations 44b and c as two linear equa-
tions with two unknowns §k and §k+l' they are solved by
' o = .
Cramer's rule. Thus, Yy and Yy 4+ are given by

Yy Ak + a2C (45b)

Ye41 = Bre1 t 22C (45¢c)

where

_ BiBAg + BpApyy * B
c= 1 - a.B, - a.B
1By — 38

It must be noted that in the transition from Equations 44b,
c to Equations 45 b, c, the auxiliary variables Ays Bpqv
and B3 are treated as constants although they include §k
and §k+l implicitly.

The next step is to substitute §k and §k+l from
Equations 45b, c into Equation 44a. The resulting equation
along with Equations 45b, c and 44d constitute the desired

form of the equations of motion. For future reference, they

are grouped in the following.
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§i = Ai + a3C for i < k (45a)
F = B+ aC (45b)
Tyar = Agar * 21C (45¢)
§i = Ai for k + 1 < i (454)

It is now shown how a step-by-step numerical solution
of the equations of motion is performed.

1) At time T, the beginning of an arbitrary step, x(E),

Q(E), x(t), and §i(E)' §i(E), §i(E) are known.

2) In order to have the iteration started, the unknowns

%(T + af) yi(E + df) are set equal to %(E) and §i(E),
respectively. Using Equations 42, x(t + df) and
X(t + dt) are computed.

3) Having the assumed values for §i(E + dt), Equations 43
are used to compute §i(E + dt) and ii(E + dt).

4) The variables ei, Hi, and ﬁi are now computed by making

use of Equations 30 through 34. Next, the auxiliary

variables ajyr ay, ag, Aj, Bl’ B2, B3, and C are computed.

5) Equations 45 readily produce new values for §i(E + dt)
which are compared with the assumed ones used in part 3
to see whether their differences are within an allowable
tolerance.

6a) If not, the newly computed §i(E-+dE) are used as assumed

ﬁi(E + dt) in part 3 to start another cycle of iteration.
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6b) If yes, the iteration is said to have converged.

7) By means of Equations 37 and 42, ¥(t + 4f), x(T +df),
and X(t + dt) are successively computed to complete the
necessary initial conditions for the next time interval

of the integration.

In conclusion, it is worth observing that X is not
involved in the iterations. The reason is that ¥ is always
relatively small compared to §i' It is, however, possible
to include X in the _iterations. In fact, this was carried
out in several solutions. The results appeared to be prac-

tically the same as those obtained without this refinement.

3.5. Use of Computer

The numerical results presented in the next two
chapters were obtained on the CDC3600 digital computer of
Michigan State University. A copy of the FORTRAN program,
and the formats of the parameters as well as some other

pertinent details are compiled in the Appendix.



IV. COMPARISON OF ANALYTICAL AND

EXPERIMENTAL RESULTS

4.1. General

This chapter is devoted to comparing certain numeri-
cal results obtained from: (1) the present large-deflection
analysis, (2) the laboratory experiments, and (3) the small-
deflection analysis. The experimental data are taken from
Ref. 3. The experimental set-up is briefly described below.

The beams used were made of mild steel. They were
rectangular in cross section and had the following average
properties: weight = 1.97 1lb.; length = 24 in.; modulus of
section = 0.0104 cu. in.; static yield stress = 30,300 psi;
modulus of elasticity = 28,000,000 psi.

The loads used weighed in the neighborhood of 70 1b.
Their initial speeds varied from approximately 6 to 20 fps.

It may be recalled that the following simplifying
assumptions made in the small-deflection theory have been
removed in the present large-deflection analysis: (1) the
angle of the slope at any point of the beam is equal to its
sine, and (2) the speed of the load is constant.

In both analyses to account for the dynamic nature
of the loading, the yield stress is computed by multiplying

26
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the static yield stress by a factor of 1 + (0.0004/td)1/6,
where td is the time needed to initiate plastic deformation.
According to Ref. 3, the time td' which must be less than

L/v, is chosen to be (L/v)/3.

4.2. Midspan Deflection versus Time

Figures 5a, b, c illustrate the midspan deflection
versus time for three initial speeds, 6.56, 11.30 and 13.50
fps. From Fig. 5a, it is seen that for the low speed, 6.56
fps., a fairly good agreement exists between either analy-
tical graph and the experimental one.

For the higher speeds, 11.30 and 13.50 fps., Figs.
5b, ¢ show that the experimental and analytical midspan de-
flections stayed close to one another until 90% of the beam
had been traversed by the load. There the graph associated
with the large-deflection theory still followed the experi-
mental graph and they both rebounded. On the other hand,
the deflection predicted by the small-deflection theory
continued to increase, indicating a collapse of the beam,

which of course did not take place in the experiments.

4.3. Interactive Force versus Time

For the same initial speeds, Figs. 6a, b, ¢ illus-
trate the interactive force versus time. These figures
reveal the fact that the graphs generated by the two ver-
sions of analyses differ only slightly. For the low speed

they also follow the experimental graph during the entire
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passage of the load on the beam. But, for each one of the
higher speeds, the analytical and experimental graphs begin
to diverge after the load has traversed 90% of the beam.
In fact, both analytical interactive forces become much

larger than that of the experiments.

4,4, Permanent Sets

For the low speed, 6.56 fps., there was no measur-
able permanent set in the experiments, and analytically the
set was negligibly small. For the higher speeds, 11.30 and
13.50 fps., the permanent sets are presented in Figs. 7a, b.
It should be noted that in each figure the graph correspond-
ing to the large-deflection theory is plotted with the same
scale as that for the experimental data. However, a scale
of an order of magnitude smaller is used in plotting the
graph associated with the small-deflection theory.

It is seen that the graphs generated by the small-
deflection analysis neither in magnitude, nor in overall
shape, agree with the experimental graphs. Indeed, the
magnitudes differ by a factor of approximately 10. On the
other hand, the shape of the damaged beams predicted by the
large-deflection theory agree quite well with the experi-
mental data. The difference in magnitudes is still large,
that is, 100% to 250%. However, they do represent an im-
provement over the small-deflection theory. In view of the
fact that the present problem involves unconstrained

plasticity, a discrepancy of order of 100% or so between
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the analytical and experimental results might be considered

as not excessive,

4.5. Maximum Midspan Deflection versus

SEeed

For the last stage of comparison, the maximum mid-
span deflection of the beam is plotted in Fig. 8 against
the initial speed of the load. The analytical graphs ob-
tained for B = 0.9 and 1.3 are compared with the experimental
data taken from Ref. 1. It is observed that for the lighter
load (B = 0.9) the relevant graphs are almost coincident.
For the heavier load (B = 1.3), they differ by approximately
20% although their overall shapes are harmonious. Thus, on
this item of comparison, the results based on the large-

deflection theory and experiments also appear to agree well.



V. INFLUENCE OF PARAMETERS

5.1. General

In order to gain some insight into the physics of
the problem, the effects of the initial speed of the load
on the midspan deflection of the beam are considered.
Moreover, these effects are studied for loads of different

weights and also for beams of different moment capacities.

5.2. Influence of Load Weight

In Figs. 9a, b are presented, respectively, the
maximum midspan deflection and permanent set for a range
of v varying from 0.5/hg to 16vhg. 1In each figure three
graphs are plotted which correspond to 8 = 0.9, 1.3, 1.7,
and the following parameters: n = 10, y/B =1, and ¢ = 50.

These data may be regarded as representing a bridge with
8 2 6

L =40 £t., EI = 2 x 10° 1b. fe.%, M = 10° 1b. ft.,
gQ, = 10> 1b., and three loads with g0, = 0.9 x 10°, 1.3 x
5 5

107, 1.7 x 10 1b., v = 5.67 to 181.44 fps.
Fig. 9a shows that all the graphs have the same
general trend. The maximum midspan deflections increase

with the initial speed of the load, rising to a peak and

gradually tapering off at higher speeds. They are also
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seen to be larger for heavier loads. The deflections at
the peaks are 8.10A, 4.35A, and 2.17A for B = 1.7, 1.3,
and 0.9, respectively.

To explain qualitatively the relative positions of
the peaks on the speed axis, the beam-load system might be
considered as having a single degree of freedom. Consider-
ing the load to be situated at the midspan of the beam, the

fundamental circular frequency of the system (assumed elas-

tic) is readily given by /96EIL'-3/(2QZ + Qb). The circular
frequency of the "forcing function" due to the moving load
may be approximated by mv/L. These two frequencies are

equated, from which the "resonant speed" is found to be

/gz;_szB_l/(ZY + 1) « vhg. Accordingly, the resonant
speeds pertaining to the data in Fig. 9a are 5.26vhg,
5.81vhg, and 6.59vhg, for 8 = 1.7, 1.3, and 0.9, respec-
tively.

These estimated resonant speeds are to be compared
with 2.10v/hg, 3.40vhg, and 5.70vhg which correspond to the
peaks of the graphs in Fig. 9a. Qualitatively, the agree-
ment is fairly good inspite of the fact that the model used
in the estimation is a very rough one for the actual system.
This comparison means that the system appeared to have re-
sponded like one with a single degree of freedom.

The graphs of permanent sets shown in Fig. 9b also

exhibit the same general features as in Fig. 9a.
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5.3. Influence of Beam Moment-Capacity

In Figs. l0a, b are presented six graphs similar
to those shown previously in Figs. 9a, b. The three graphs
of each figure correspond to 8 = 1.0, 1.5, 2.0 and the fol-
lowing parameters: n = 10, y = 1.5, /B = 50. With this
choice of parameters, My is the only physical parameter
which is variable between the three graphs.

Fig. 1l0a exhibits essentially the same characteris-
tics as those shown in Fig. 9a except for the graph corres-
ponding to B = 2.0. For the range of v considered, this
graph does not rise to any peak. In other words, the
maximum midspan deflection increases steadily as v decreases.
This is explained in the following by referring to the
stiffness properties of the beam.

For 8 = 1.5, when v approaches zero the fully plastic
moment (l.SMy) will be reached at the midspan, but the beam
will not collapse because of the strain-hardening properties.
The stiffness in the strain-hardening region is, however,
very small (3% of the initial elastic stiffness). There-
fore, the beam is expected to collapse only when B is larger
than 1.5 and v approaches zero.

For 8 = 1.5 and 1.0 each graph attains a peak. It
is possible to explain the relative positions of these peaks
on the speed axis on a basis similar to that discussed pre-
viously in connection with the peaks in Fig. 9a. However,

in this case since EI, L, Qb' and QZ are the same, the



33

natural frequency of the beam-load system may be regarded
as depending on the "effective stiffness" of the beam.
For any joint (i), the effective stiffness may be consid-
ered to be equal to the value of My divided by the maximum
value of ¢i that has incurred. Since this maximum is ob-
viously smaller for the beam with B = 1.0 than for the one
with B = 1.5, the load-beam system corresponding to B = 1.0
is stiffer and would have a higher "natural frequency." It
follows that the peak for B = 1.0 graph should take place
at a higher frequency of the forcing function, that is, at
a higher initial speed of the load.

The graphs of permanent sets illustrated in Fig.
10b also indicate the same trends as in Fig. 10a discussed

in the preceding.



VI. SUMMARY AND CONCLUSIONS

A numerical method for analyzing the dynamic response
of a beam subjected to a coasting mass load was presented.
The method was based on a discrete model with lumped mass
and stiffness. In defining the stiffness properties of the
beam, the type of elastic-plastic-strain-hardening and
hysteretic behavior of such material as mild steel was
considered.

A similar method of analysis had been reported in
Ref. 3. The present method differs from that in the treat-
ment of the kinematics of the problem. While the work of
Ref. 3 may be called a small-deflection theory, the present
method represents a large-deflection analysis.

In comparison with experimental data (Ref. 3) the
present analytical results indicate better agreements than
those of the small-deflection theory. This is particularly
true for the cases in which large permanent deflections have
taken place. Since in solving such problems the occurrence
of large permanent deflections is in general not always pre-
dictable, it is safer to use the large-deflection analysis.

Certain parametric studies, considering the influ-
ence of initial load speed, load weight, and beam yield-moment,
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were also included in this report. For the range of para-

meters considered the following were found to be noteworthy.

1) As long as the load weight was less than the static

2)

3)

4)

ultimate load (1.5Py) the response (maximum or permanent
midspan deflection) showed a relative maximum when
plotted against the initial speed of the load. In other
words, this relative maximum occurred at a "most damag-
ing" initial speed.

When the load weight was greater than the static ulti-
mate load, no relative maximum was obtained. Instead,
the response continued to increase as the initial speed
of the load decreased. However, such heavy loads could
still cross the beam, with only moderate permanent de-
flections, if their initial speeds were sufficiently
large.

In connection with the relative maxima, the behavior of
the system could be qualitatively explained on the basis
of a single-degree-of-freedom system. In this system
the load played the role of the forcing function and,

in part, also that of the mass. The beam mainly supplied
the stiffness, although its contribution to the mass was
also substantial.

The effect of an increase in the load weight was quali-
tatively similar to that of a decrease in the beam

yield-moment.
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Figure 3a. Free Body Diagram of Moving Mass
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APPENDIX

COMPUTER PROGRAM

In this Appendix, the computer program as well as

certain pertinent information are presented.

l. Identification of Parameters and
Variables

The parameters and some important variables are

identified in the following:

N = n

ALPHA = q

BETA = B

GAMMA = Yy

ZETA =

DELTA = A/L

NS = number of steps between two con-

secutive print-outs

DTIME = dt

TOL = tolerance of iterations
K = k

z = X - X

S = k + (x - )-(k)/cos 0,

T = t

52



H(I)

TH(I)

AN1(I)

BMA(I)

DX1

AX(I)

VX(I)

AY1(T1)

VY1(I)

DY1(I)

DYD (I)

DYMAX (I)

SDYMA(I)

TDYMA (I)

PMAX
SPMA
TPMA

PA(I)

PD(I)

53

ME X1 Xie Xt =

e

y;/8
maximum yi/A
S where yi/A attains its maximum

T when y./A attains its maximum
Y

maximum P
S where P attains its maximum
T when P attains its maximum

permanent ¢i

permanent yi/A
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2. Print-outs

At the beginning, all the parameters as well as
DELTA, NS, DTIME, and TOL are printed out.

During the process of step-by-step solution, S, DX1,
VX1, AX1l, P, T, and DYD(I) are also printed out.

At the end are printed out DYMAX(I), SDYMA(I),

TDYMA(I), PA(I), PD(I), PMAX, SPMA, and TPMA.



COMPUTER PROGRAM

DIMENSION AX(25) s VX(25) s AY1 (25) sAY2(25) sAY3(25) e VY1 (25)eVY2(25) s
IDY1(Z5) +DY2(25) ¢+DYD(25)+STGA(25) «STGB(25) +BMA(25) +BMB(25) +BMC(25) »
2BMU(25) +BML (25) ¢+ AN1(25) s AN2(25) s ANG(25) +PATH(25) ¢« THPL(25)+CMB(25) »
3CMT(25) +CAB(25) +CAG(25) +PREM(25) +PREA(25) +PA(25) +PD(25) ¢ DYMAX(25) »
4SDYMA(25) + TDYMA(25) ¢+ TH(25) +DA(25) H(25) A(25) B(25)

C
C %##% PARAMETERS #%#x

N=

ALPHA=

BETA=

GAMMA=

7FETA=

C *%¥% AUXILIARY VARIABLES ¥##%

N1 =N+1

DELTA=N/(12,0%ZETA)

D=DELTA*N

E=GAMMA*N

F=E/ALPHA

G=F%¥N/4,0

TOL=1,0E-3

DTIME=04.16/SQRT(G*ZETA)

1=21,0E+3%DTIME+0,5S

DTIME=1,0E=-3%1

NS=5,0E-1/DTIME

PRINT 602 +NyALPHA +BETA+GAMMA ZETAWDELTAWNS+DTIME.TOL

602 FORMAT(1H142(/)e4H N =13+ 9X+s7HALPHA =F6+42¢ 6X+6HBETA =

1FSe2¢ SXe7HGAMMA =F6e29¢ SXs6HZETA =F6e2¢ SX+7HDELTA =

2FT7e89/+5H NS =139 8Xs7THDTIME =F6e3¢ 6X+SHTOL =EB8e14¢2(/))
C
C #%% INITIALIZATION OF VARIABLES #**#

ASSIGN 426 TO NAP

K=L=0=VX1=1,0

T=DX1=AX1=AX2=PMAX=0

DO 600 I=1,4N1

AY1(1)=AY2(1)=AY3(1)=VY1(1)=VY2(1)=DY1(I)=DY2(I1)=DYMAX(1)

BMA(1)=BMB(1)=BMC(1)=AN1(1)=AN2(1)=ANG(1)=PREM(]1)=PREA(T)

CAB(1)=CAG(1)=CMB(I)=CMT(1)=PD(1)=0

STGA(1)Y=STGB(1)=1,0

BMU(1)=+1.0

0
0
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00

56

600 BML(1)=-1.0

*#¥% RETURN *4%
604 M=NS
608 DT=DTIME

*%% LOCATION OF COASTING LOAD x¥*#*
300 DO 298 1=1.N
DY2(14+1)=DY1(14+1)+DTHVY1 (I+1)+0SHDTRH2¥AY]1 (I+1)
298 TH(I)=ASINF(DY2(1+1)=DY2(1))
IF(KeEQeO) GO TO 292
DX2=DX1+DTH*VX140SH#DTHX2%AX]
X=0
DO 297 I=1,K
297 X=X+COSF(TH(I))
IF(LeEQeO) GO TO 295
IF(DX2=X) 29442954296
206 DT=(-VX1+SQRT (VX1 #%#2-2%AX1%¥(DX1-X)))/AX]1
L=0
GO TO 300
295 Z=COSF(TH(K))
ASSIGN 422 TO NAP
L=1
GO TO 293
294 Z=DX2=-(X~COSF(TH(K)))
293 S=K+(DX2=~X)/COSF(TH(K))
292 CONTINUE

*%% ANGLE OF ROTATION *¥%
DO 18 1=2«N
AN2(1)=TH(I=1)=TH(I)

18 DA(I)Y=AN2(I1)=AN1 (1)

*¥%% BENDING MOMENT *¥%x

DO 240 1=2.N

IF(165-STGA(1)) 200,200,201
*%% STAGE ONE *¥%*
201 BMB(1)=BMA(I1)+DA(I1)*ZETA

IF(BML(I)=BMU(I)) S502+502,503
503 IF(DA(I1)) 50045004501
501 IF(BMB(I)=-BML (1)) 2404240,271
S00 IF(BMB(I)Y=BMU(1)) 231,240,240
231 CMB(1)Y=PREM(1)

CAB(1)=PREA(I])

STGB(1)= 2,1

GO TO 222
502 IF (DA(I)) 23542364236
235 IF(BMB(I)Y=-BML(1)) 27142404240
271 STGB(1)=2.3
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PREM(1)=CMT (1)
PREA(I1)=CAG(1])
GO TO 222
236 IF(BMB(I1)Y-BMU(1)) 24042404231
C *%% STAGE TWO *#»
200 IF(DA(I)IXPATH(I1)) 22142224222
221 BMU(T1)=BMA(])
STGB(1)=1.0
BML(I)=BMU(I)+SIGNF(2.04DA(]))
CMB(1)=0,5#(BMUCTI))+BML (1))
CAB(1)=AN1(1)+SIGNF(1.04DA(I))/ZETA
GO TO 201
222 ANG(I1)=AN2(1)=CAB(1)
BMC(I1)=FN(ZETAJANG(1))
BMB(1)=CMB(1)+BMC (1)
240 CONTINUE
c
C *%#% AUXILIARY VARIABLES *%#%
DO 20 1=2,.N
20 B(I1)=G*((BMB(1+1)-BMB(1))/COSF(TH(1))-
1(BMB(1)-BMB(I~1))/COSF(TH(I-1)))
A0 X=Z/COSF(TH(K))*%2
Al1=F*X
A2=F* (SINF(TH(K))*¥TANF (TH(K=1))+COSF(TH(K)))=-A1
B1=ALPHA® (X=COSF (TH(K)))
B2==ALPHA*X
CC=1.0-A1%B2-A2%B1

C %*%% INTEGRATION By BETA METHOD *%**
1000 DO 16 1=2.N
AY2(1)=AY3(1)
16 VY2(1)=VY1(1)+0S*#DTH*(AY2(I1)+AY1 (1))
VX2=VX1+0.S%*DT* (AX2+AX1)

C *%% VX(I1) AND AX(1) *x*
DO 14 1=24N1
vX(1)=0
AX(1)=0
DO 14 U=2,1
VX (1)=VX(T1)=CVY2(J)=VY2(J=1))*TANF(TH(U=-1))
14 AX(1)=AX(I)=(AY2(J)=AY2(J=1))I%TANF(TH(JU-1))~
1(VY2(J)=VY2(JU=1))#%#2/COSF(TH(J=1))%**3

C *%% H(T1) *¥%
HIN+1)==0.5%AX(N+1)
DO 12 I=2+N
H(IY=H(N+1)
DO 12 J=1.N
12 H(I)=H(I)=AX(J)
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AY3(K) AND AY3(K+1) *xx

DO 22 1=2.N
ACIY)=B(I)+H(TI+1)%#TANF(TH(I))-H(I)*¥TANF(TH(I=-1))
B3=BETA#COSF(TH(K) )+ALPHA¥AX(K)*¥SINF(TH(K) )~
12%ALPHA¥ (VX2-VX(K))*¥(VY2(K+1)=VY2(K))/COSF(TH(K) ) **2-

23%XALPHARZR (VY2 (K+1)=VY2(K))*#2%TANF (TH(K) ) /COSF(TH(K) ) *%3

C=(B1*#A(K)+B2*A(K+1)+B3)/CC
IF(KeEQel) GO TO 44
IF(KeEQeN) GO TO 42
AY3(K)=A(K)+A2*C
AY3(K+1)=A(K+1)+A1%C

GO TO 46
AY3(K)I=(A(K)+A2¥B3) /(1 .0-A2%B1)

GO TO 46
AY3(K+1)=(A(K+1)+A1%¥B3)/(1.0-A1%B2)
CONTINUE

AY3 (1) *x*

DO 66 1=2+N

GO TO (624664¢66+64)¢1=K+2
A3==F*¥SINF(TH(K))*(TANF(TH(I))=TANF(TH(I-1)))
AY3(I1)=A(1)+A3%xC

GO TO 66

AY3(I)=A(1)

CONTINUE

CHECK OF CONVERGENCE %%

DO 68 1=2+N

IF(ABSF (AY2(I)=AY3(1))eGT,TOL) GO TO 1000
CONTINUE

P AND AX2 *%%
P=B1¥#AY3(K)+B2*¥AY3(K+1)+B3
AX2=P#SINF(TH(K))/ALPHA
IF(PeGT«0) GO TO 480

Q=0

M=1

CONT INUE

JUMPS #*¥%%

GO TO NApP

ASSIGN 426 TO NAP

VY= (VX2=-VX(K) )*TANF (TH(K) )+
1Z¥(VY2(K4+1)=VY2(K))/COSF(TH(K) ) #¥%¥3+VY2(K)
X=(1eO0+E)# (1 eO0+TANF(TH(K) I XTANF(TH(K+1)))/E
DVY=(VY=VY2(K+1)=(VX2=VX(K+1))*TANF (TH(K+1)))/X
VY1 (K+1)=VY2(K+1)=VY2(K+1)+DVY

VX1 =VX2=VX2+DVY*TANF(TH(K))/E
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T=T+DT
DT=Z=0
K=K+1
IF(KeLEeN) GO TO 80
Q=0
M=1
426 CONTINUE

C #%% INITIAL CONDITIONS FOR NEXT STEP OF SOLUTION **#*
T=T+DT
DX1=DX2
VX1=VX2
AX1=AX2
DO 45 1=24N
PATH(I)=BMB(1)=BMA (1)
BMA(I1)=BMB (1)
DY1(1)=Dya2(1)
VY1 (I)y=VYya2(1)
AY1(1)=AY3(1)
AN1 (1)=AN2(1)
CMT(I)=CMB(1)
CAG(1)=CAB(1)
STGA(1)=STGB(1)
DYP(1)Y=DY1(1)/D

45 CONTINUE

C *%% MAXIMUM RESPONSE *¥*%

IF(KeEQesO) GO TO 408
DO 404 1=24N
IF(DYMAX(1)eGE.DYD(I)) GO TO 404
DYMAX(1)=DYD(T1)
SDYMA(1)=S
TDYMA(1)=T

404 CONTINUE
IF(PMAXeGE+P) GO TO 408
PMAX=P
SPMA=S
TPMA=T

408 CONTINUE

C *%% PRINT=0OUTS **x

M=M=
IF(MeCGTe0) GO TO 608
PRINT 442,S4DX14+VX1AX1,4P

442 FORMAT(IH +3HS =F5e2¢ 7X+5HDX]1 =FS5e24¢11Xs5SHVYX] =
IF7e4412X4SHAX1 =EQe2410X¢3HP =E9.2)
PRINT 446+To(DYD(1)e1=24N)

446 FORMATI(1IH +3HT =FSe2s 7X+8HDYD(]) =FSe2¢8F12¢2/(F29e2¢8F12,2))
IF(QeGT«0) GO TO 604
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PRINT 30

30 FORMATI(3(/) ¢ *MAXIMUM RESPONSE ¥*)
PRINT 314 (DYMAX(I)eI=24¢N)

31 FOPMAT(¥DYMAX(1) =%¢ 7X4s9F1242/(5X410F12,2))
PRINT 324 (SDYMA(1)s1=24¢N)

32 FORMAT(%*SDYMA(]) =%4¢ 7XeOF12.2/(5Xe10F12,2))
PRINT 334(TDYMA(1)eI=24sN)

33 FORMAT(®#TDYMA (1) =%¢ 7Xe9F12e2/(5Xe10F12,2))

C #%% PERMANENT SET *¥*%

DO 23 1=24N

23 PA(1)=AN1(I)Y-BMA(I1)/ZETA
U=0
X=0
Y=0
DO 24 1=24N
U=U+PA(TI)
X=X4+SINF (U)

24 Y=Y+COSF(U)
PA(1)=ATANF (X/(1,0+Y))
DO 25 1=34N1
U=0
DO 25 J=341
U=U+PA(JU-1)

25 PD(I1)=PD(I)+SINF(PA(1)=-U)
DO 26 1=2+N1

26 PD(1)=(SINF(PA(1))+PD(I1)Y)/D
PRINT 37+(PA(I)el=14N)

37 FORMAT (¥PA(1) =%#4E1162¢9E1242/(9X+10E1242))
PRINT 384 (PD(I1)s1=14N1)
38 FORMAT (*PD(1) =% 4E11,2+9E12,2/(9Xs10E12.2))

PRINT 39,.PMAXSPMA.TPMA

39 FORMAT(1 (/) s ¥PMAX =#4E12¢5¢ 10X s *#¥SPMA =%#4E12.5+ 10X+ *TPMA¥ E12.5)
END
FUNCTION FN(ZETA+THETA)
STHD=10.,0
FLEX=140/ZETA
IF(ABSF(THETA) LE.STHD*FLEX) GO TO 750
X=1e¢54+40.03% (ZETA¥ABSF(THETA)=STHD)
IF(THETAWLTL0) X==X
GO TO 770

750 1F(ABSF(THETA) LE.FLEX) GO TO 760
X=145=0e5/(ZETA¥ABSF(THETA) ) #%2
IF(THETALTe0) X==X
GO TO 770

760 X=ZETA*THETA

770 FN=X
END
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