SPACE REQUIREMENTS IN MILK PROCESSING PLANTS

Thesis for the Degree of M. S.
MICHIGAN STATE COLLEGE
Donald M. Florence
1952

This is to certify that the

thesis entitled

"Space Requirements in Milk Processing Plants"

presented by

Donald M. Florence

has been accepted towards fulfillment of the requirements for

M. S. degree in Agricultural Engineering

Walte M. Carletter

Date__November 1, 1952

SPACE REQUIFEMENTS IN MILK PROCESSING PLANTS

Вy

Donald M. Florence

THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Agricultural Engineering

THESIS

ACKNOWLEDGMENTS

11 8 S 2

The author wishes to express his sincere appreciation to Professor

A. W. Farrall for initiating this study, and for the guidance and many
helpful suggestions offered during the investigation.

Grateful acknowledgment is due to Dr. W. M. Carleton and Professor

C. W. Hall for their guidance, interest, and valuable assistance throughout this investigation.

The author is also indebted to Dr. I. Olkin for his counsel and helpful suggestions in applying the statistical methods for this investigation.

This study could not have been carried out without the aid of the many dairymen who answered the questionnaire and permitted the writer to inspect their dairy plants. Also, many thanks are extended to the dairy equipment manufacturing companies who supplied valuable information relating to dairy equipment and dairy plant layout and design.

SPACE REQUIREMENTS IN MILK PROCESSING PLANTS

Ву

Donald M. Florence

AN ABSTRACT

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Agricultural Engineering

Year

1952

Approved Walter M. Carleton

DOTALD M. FLOTUTOR APPRENCE

In the design of a milk processing plant means factors must be considered, such as senitery requirements, labor requirements, initial capital investment, overhead costs, and expected sales value. Labor costs, building and construction costs, equipment costs, and power costs are all at a premium and the plant must be designed to keep such costs at a misimum. Therefore, the design of the milk plant must provide for a highly efficient operation that will produce a high-applity product at a low cell—insprice.

Preliminary investigations indicated that the space requirements, or the size of the milk plant, had a pronounced effect on the operating efficiency. This study was undertaken to determine a method for estimating or predicting the amount of space required for a milk processing plant to handle a given amount of product. The major points investigated in this study are listed below.

- 1. Space Feruired for Mills Handling and Processing Rooms.
- 2. Space Feruired for Auxiliary and Service Departments.
- 3. Incee Feruired for Flant Offices.
- 4. Opace Required for Storage Areas.

For this stude, a number of milk plants, handling from 500 to 5,000 gallons of milk daily, were selected which were considered to have an efficient operation. A questionnaire was constructed and mailed to 54 dairy plants and of the 54, seven were returned to the author. This

DOMALD 1. FLOT TWO ARRESTS ARE STRUCT

plants were virited personally and studied by the outhor, and of these, seven were used in the anclusis of data.

The analysis of data was conducted to obtain a relationship between the volume of milk handled dealy and the space required in the various rooms of the milk plant. The data eccuired from the questionnaire and the plants visited were compiled into and group and the relationship between the two variables analyzed by the locat squares method. The everyone quentity of milk handled daily was taken as a figure which was estimated by the plant operator since it was assumed he should have a fairly accurate knowledge of the emount of milk the plant was processing. The plant operator's opinion was also recorded in determining whether or not the rooms in the milk plant were of sufficient size. From which were considered to be too small were not included in the final analysis.

From the analysis of data, it was found that a general relationable existed between the callons of milk handled daily by the milk plant and the amount of floor space required for the receiving, processing, bottle washing, milk storage, dry storage, boiler, and office rooms. Because of insufficient and highly variable data, no relationship was found between the amount of milk handled daily and the floor space required for the compressor, plant maintenance, locker, and driver's check rooms.

TAPLE OF COMMENTS

IMTHEDUOTICH
LITERATURE REVIEW4
Value of effective design 4
Space requirements in relation to efficiency
Size of the plant11
Size of processing rooms
Size of receiving room17
Size of pasteurizing room18
Size of bottle washing room
Size of milk storage room20
Space for dry storage rooms22
Size of office space
METHOD OF SHUDY25
PPECCEL ATICY OF DATA
Space required for processing rooms
Space required for bottle washing rooms
Space required for milk storage rooms43
Space required for dry storage rooms46
Space required for boiler rooms49
Space required for plant offices52
Space required for compressor rooms55
Space required for plant maintenance shops
Space required for locker rooms58

Space required for driver's check room	59
Space required for total plant erea	60
ocholusions	62
REGORMENDATIONS FOR FUTURE STUDY	64
APPLNDIX I	65
Statistical analysis of data	65
Receiving rooms	66
Processing rooms	78
Bottle washing rooms	82
Milk storege rooms	 €5
Dry storage rooms	28
Eciler rooms	91
Plant offices	94
APPENDIX II	98
List of plant descriptions	3ç
APPENDIX III	.126
Plant study questionnaire	.126
LIGHTAGUES CIFUE	.133
CTMFR RUPLECTO'S	.135

LIST OF TABLES

Table	I	Floor space in the various workrooms of five well-arranged milk plants	.12
Table	II	Milk storeme rooms required for dairy plents	.22
Table	III	Allocation of apace for office activities	.21
Teble	ĪΛ	Floor space smailable for compressor rooms in ten milk plants	.56
Table	Λ	Floor space available for maintenance shaps in seven milk plants	•57
Table	AI	Floor space available for locker rooms in nine milk plants	•59
Table	VII	Floor space available for driver's chack room in seven milk plants	. <i>6</i> 0
Table	AIII	Floor space required in the important rooms of milk plents headling between FCO and f, CC callons of milk daily.	.61

Light of markes in Appendix I

Toble	ΛΙ	Data used in colculations of the relationship between sollons of milk handled drily and floor apace required for the various rooms in the milk processing plant66
Table	AII	Sample calculations showing the relationship between the gallons of milk handled daily and the area of milk plant receiving rooms
nble	AIIT	Provilts obtained from calculations for the relationship between called of milk bendled daily and the floor ores for milk plant receiving reseas
[oh]e	VIA	Estimate of floor area required for milk plant receiving rooms used in constructing Fig. 1
Toble	AT	Fesults obtained from colculations for the relationship hetween pullons of milk handled daily and the floor area for milk plant processing rooms
Table	AVI	Estimate of floor area required for milk plant processing rooms used in construction Fig. 2
Table	AVII	Fogults obtained from colculations for the relationship between rellons of botiled milk handled delly and the floor area for milk plant bottle weeking rooms?
Toble	AVIII	Tetirate of floor area required for milk plant bottle weshing rooms used in construction Fig. 3
Toble	AIK	Peaults obtained from calculations for the relationship between callons of milk handled deally and the floor erea required for milk plant milk storage rooms86
Table	AX.	latimate of floor erea required for milk plant milk storage rooms used in constructing Fig. 4
Table	AVI	Feaults obtained from calculations for the relationship between cellons of milk handled daily and the floor area required for milk plant dry storage rooms
Cablo	ATTI	Estimate of floor area required for milk plant dry

Table	AXIII	Fesults obtained from calculations for the relationship between relicons of milk handled drily and the floor area required for milk plant boiler rooms
Table	AMIV	Estimate of floor area required for milk plant boiler rooms used in construction Fig. 6
Table	Y.A	Posults obtained from calculations for the relationship between callons of milk handled daily and the floor area required for milk plant offices
Trble	AVWŢ	Estimate of floor area required for milk plant offices used in constructing Fir. 7

LIST OF FIGURES

Figure	1	Floor	space	required	for	milk	plent	receiving rooms
Figure	2	Floor	space	required	for	milk	plent	processing rooms
Figure	3	Floor	space	required	for	milk	plant	bottle washing rooms42
Figure	4	Floor	apace	required	for	milk	plant	milk storage rooms45
Figure	5	Floor	space	required	for	milk	plont	dry storage rooms48
Figure	6	Floor	abace	required	for	milk	plant	boiler rocms51
Figure	7	Floor	space	required	for	milk	plant	cf ices54

INTRODUCTION

The dairy industry is one of the leading industries in the field of food processing. It is of a highly competitive nature and it operates on a narrow margin. Dairy products play a very important part in the food habits of the people of this country. Almost everyone utilizes milk and its products in one form or another. The consuming public is constantly seeking economical and high-quality products. The manufacturer that can produce a high-quality product at a relatively low cost will expand his sales volume, prosper, and survive under present-day competitive conditions.

The modern milk plant is a structure designed for the purpose of housing the equipment and facilities for processing and handling fluid milk. Fluid raw milk is usually bought from individual producers and shipped to the city milk plant where it is inspected, processed, and packaged for sale to retail stores, and directly to individual consumers. In the design of a milk processing plant many factors must be considered, such as sanitary requirements, labor requirements, initial capital investment, overhead costs, and expected sales volume. Labor costs, building and construction costs, equipment costs, and power costs are all at a premium and the plant must be designed to keep such costs at a minimum. Therefore, the design of the milk plant must provide for a highly efficient operation that will produce a high-quality product at a low selling price.

In the initial stages of planning, the investigation was designed to determine some of the desirable basic principles of dairy plant design and layout. The points that were to be determined are listed below.

- 1. Space Requirements
- 2. Layout Principles
- 3. Plant Location
- 4. Arrangement of Rooms
- 5. Arrangement of Equipment
- 6. Ventilating Requirements
- 7. Lighting Requirements
- 8. Materials of Construction

Following the review of literature, it was found that some of the principles regarding the above factors had been fairly well established. Also, in conducting the investigation, it was discovered that time limitations would not permit a study of such wide scope.

The information available for determining or estimating the size of a dairy plant for a given volume of milk handled, was quite limited. The review of literature indicated that a few general figures are available for estimating the total plant size and the size of the rooms in the plant. However, there was no indication of any study conducted for the specific purpose of determining space requirements.

It was apparent, however, that space requirements, or the size of the milk plant, had a very pronounced effect on operating costs, overhead costs, and the initial capital investment. The space allotted to the various operations in a milk plant and to the building as a whole, determines to a large degree the efficiency of the operation. If crowded conditions are prevalent, workers interfere with each other's duties, good housekeeping is impaired, and, in general, there is a resulting loss of efficiency. Excess space, on the other hand, results in additional unnecessary time being consumed by workers in moving to and from their work, higher overhead costs, and higher initial investment. Here again, we evidence an overall reduction in the plant's efficiency.

The space requirements for the milk processing plant appeared to be one of the major factors in a design for efficiency. This study was undertaken to determine a method for estimating or predicting the amount of space required for a milk processing plant to handle a given amount of product. For the most part, the investigation was confined to a study of the smaller plants since it is these that usually are not able to acquire the services of an engineer or architect. However, it is not always the small plant that has an inefficient operation.

The major points investigated in this study are listed below.

- 1. Space Required for Milk Handling and Processing Rooms.
- 2. Space Required for Auxiliary and Service Departments.
- 3. Space Required for Plant Offices.
- 4. Space Required for Storage Areas.

LITERATURE REVIEW

Value of Effective Design

The modern milk processing plant should be designed to house the facilities of an operation and meet certain sanitary requirements. In the eyes of the consuming public, the physical appearance of the milk plant is an important guide in determining cleanliness and also in determining the quality of the finished product. A properly designed dairy plant will tend to make the job of maintaining cleanliness much easier and will also aid in keeping the employees' morale at a high level. If the milk plant is overcrowded, housekeeping will be more difficult, a more disorderly appearance will result, and employees will find more difficulty in performing their daily tasks. An important factor to consider in the design of a milk plant is the determination of the size of the plant to eliminate overcrowding and the resulting disorderly appearance.

Babcock (2) stated that the milk processing plant should be a modern sanitary structure of durable construction if it is to satisfactorily serve its intended purpose. In order that all operations can be conducted efficiently and economically, it will be essential not only to install sanitary and up-to-date equipment, but also to provide for an efficient layout of the building and equipment. Bartlett (Ref. 3, p. 54) listed the conclusions of Kelly and Clement¹, in which

I E. Kelly and C. E. Clement. City Milk Plants, Construction and Arrangement, U.S.D.A. Bul. 849, 1920. pp. 34-35.

they stated that modern milk plants should have a good appearance from an architectural point of view. Broughton (6) contended that the dairy plant of the future will have a sparkling sanitary interior, an attractive modern exterior, and be streamlined for efficient production. A modernistic, attractive plant has a perpetual advertising value; beauty is synonymous with construction materials and designs. Broughton (7) maintained that beauty and efficiency are complementary; the dairy plant must be attractive inside and out. Clarkson (9) declared that for survival under present-day competitive conditions, modern design is a "must" for all buildings.

It was maintained that the physical maintenance of a dairy plant is essential not only to protect the owner's investment in the building, but also to present an attractive looking plant to the public (18). The majority of consumers are inclined to associate a neat, well-kept plant with high-quality products, making the appearance of the plant one of the most effective means of advertisement. Ackerman (1) said that public confidence and acceptance always follow the more efficient operating methods and rigid product controls. Although there are many firms and competition is keen, there will always be a place for the efficient, well-managed plant, whether large or small. The general rule for successful dairy plant operators will be efficient plant operations and narrow operating margins.

Parker (Ref. 21, p. 34) advanced the policy of a streamlined series of operations from the receiving point of the raw material to the ware-house for the finished product. Congestion of equipment and a maze of pipe lines are discouraging to the workers responsible for cleamup and

have an important bearing upon effectiveness and economy. A lack of interest in, and an indifference toward effective sanitary practice will result from tiresome and involved disassembly and assembly of equipment and pipe lines. It is well to keep in mind that congestion, besides being aggravating to employees, is irritating to those officials responsible for approving processing and sanitary practices. Erb (10) acknowledged that the first impression a person gets in entering a dairy plant is the state of housekeeping. Good housekeeping is a very important part of consumer confidence due to rising standards of living and new concepts of cleanliness. The dairy processing plant should be immaculate on the inside, for the state of housekeeping soon becomes public knowledge. Housekeeping is made more difficult by crowded conditions and too much volume for the size of the plant but they do not eliminate its existence.

Parker (Ref. 21, pp 14-15) observed that sometimes reference is made to inadequate washing facilities, improper plant surroundings, badly designed buildings, inadequate lighting, and inadequate ventilation when classifying food establishments as insanitary. Furthermore, aside from the Federal food laws, conditions designed to ensure the comfort and morale, as well as, the health of the employees is included in sanitary codes and legal requirements. A well-lighted, well-designed, well-kept dairy plant is a means of impressing upon employees and visitors that care is being exercised in maintaining clean conditions and surroundings. Farrall (14) declared that we should aim towards a more compact plant design and direct our energies toward making the plant easier to keep clean and sanitary.

Eliminating crowded conditions and maintaining a well-designed plant for milk processing was believed to be one of the major elements in establishing a successful dairy manufacturing enterprise. An efficient and economical operation is realized when housekeeping is carried out with ease, and sanitary requirements are met with little difficulty. An effective advertising medium for building public confidence is made possible by utilizing a well-designed and well-maintained plant. To help insure that the operation will be conducted in an efficient and economical manner, the employee's morale must be maintained at a high level by avoiding overcrowding and providing the necessary comforts for his well-being. A well-designed dairy plant will aid in establishing these desirable characteristics in the milk processing business.

Space Requirements in Relation to Efficiency

The operating efficiency of a milk processing plant will depend to a large measure on the amount of space that is allotted to the various operations.

A limited amount of space will result in excessively crowded conditions. Plant workers will interfere with each other's duties. Extra time and labor will be required for maintaining and cleaning the processing equipment. Time and labor may be wasted because only a limited amount of product can be handled in a given amount of time. Production will not be as flexible as the demand and progress will be hampered, resulting in an eventual loss of business due to keen competition. Extra costs for essential materials and supplies will result from the inability to purchase large quantities at a discount. Time, labor, and costs for maintenance in case of emergencies may be increased because of the in-

ability to provide adequate spare parts storage. Thus, a limited amount of plant space will tend to raise time, labor, and material costs and decrease the operating efficiency.

An excessive amount of plant space will also tend to reduce the overall efficiency of the operation. Time and labor requirements will be excessive because of the extra number of steps required in performing daily tasks. The increase in heating, lighting, refrigerating, and ventilating requirements will raise overhead costs. Excessive lengths of piping, extra pumps, and other needed equipment will increase tosts. The added investment in the original building will not be commensurate with the size of the operation. A plant which is excessively large will increase overhead costs and the initial investment to a point where the business may eventually terminate in complete failure.

Farley (12) stated that the common objective in planning dairy plants is "to process the maximum quantity which can be sold of the highest quality products at the lowest possible costs". Bixby (4) believed that in planning a dairy plant one must know (a) the production the plant is required to handle, (b) the number of products to be handled, and (c) the method of packaging the products, because they determine (a) the size of the equipment, (b) the size of the rooms, and (c) the size of the plant, and the operation must be carried out in an economical labor day if lowest costs are to be attained.

Bartlett (Ref. 3, p. 44) made an appraisal of all the factors entering into the price consumers pay for milk. It was found that the real possibilities for savings are to be found in the more efficient distribution of milk for most markets in the country. Analysis of milk

distribution based on the itemized costs on ninety-two wholesale companies and seventy-three home-delivery companies, showed that the low costs of the more efficient group of companies were largely due to the following considerations.

- 1. Efficient layout of plant and equipment.
- 2. Limiting the number of items handled.
- 3. Exclusive stops.
- 4. Large volume per route.
- 5. Low prices for high quality milk.
- 6. Large volume per store.

Shubin and Madeheim (Ref. 23, pp. 312-313) stated that because the floor space of a plant represents an investment, it should be utilized to its fullest extent. This is particularly true when additional floor space is costly. A high output per unit of floor space will usually be the result of an efficient plant layout with a well-integrated and compact floor plan.

Tracy (24) conducted a study of four milk plants in Washington, D.C. in 1943 to determine why plants in that city have shown low margins, as compared with many other cities, for receiving, processing, bottling, selling, and delivery of milk. The results indicated that as the number of square feet of floor space per hundred gallons of milk handled increased, the number of menhours required per hundred gallons milk handled also increased. He concluded that a well-planned layout can reduce the capital cost of milk distribution by minimizing the floor area required per hundred gallons of milk, in addition to bringing about low unit labor costs.

Babcock (2) stated that the economy of operation as well as sanitation must be taken into account when arranging rooms and equipment.

The arrangement of rooms and equipment should be such that the men can

carry out their work with the least possible steps and plant space will be utilized most economically. Proper arrangement will reduce expensive lengths of piping and numerous fittings which cause extra labor and also decrease losses which may result from milk sticking to sides of pipes and from leaks at pipe connections. Babcock (2) concluded that in a well-arranged plant it is possible to effect great economies in labor while a poorly planned plant may result in a continual source of added expense due to excessive labor requirements. Bartlett (Ref. 3, p. 54) listed the conclusions of Kelly and Clement. They stated that the rooms in a plant should be arranged to cause the lowest possible expense for machinery and labor, and also, so that the work should be accomplished with the fewest possible steps. Labor requirements are increased with a poorly arranged plant.

Shubin and Madeheim (Ref. 23, p. 72) stated that a reduction of the total plant space required for a given output of products results from conservation of floor space. As a result, overhead costs are lowered and thus, the fixed cost per unit of output is reduced. The extra burden of having a large building for future expansion will increase the overhead and daily operation cost so much that the business will be unable to grow (8). For this reason, the larger sized building that had been planned will not be able to be used at any future date. Babcock (2) stated that the rooms in the plant should be large enough to prevent crowding of machinery and workmen; however, at the same time there should be no unused space.

I E. Kelly and C. E. Clement. City Milk Plants, Construction and Arrangement, U.S.D.A. Bul. 849, 1920. pp. 34-35.

Excess space requires unnecessary labor in moving milk from one piece of equipment to another and also requires an added investment.

It was found that a properly designed plant, having the required amount of space, will aid materially in minimizing the capital investment, labor requirements, and overhead costs.

Size of the Plant

It has been found that a well-designed plant, the size being a major factor, has an important bearing on efficiency, cost of operation, over-head costs, capital investment, and sales appeal. The size of the milk processing plant will depend upon a number of related conditions. The most important consideration is, of course, the volume of product handled. The amount of space required will be determined to a lesser extent by the method of operation, the type of equipment utilized, and the method of packaging the finished product. These various factors, however, are usually determined in some degree by the volume of product handled.

Mitten (19) stated that the size of a plant is a function of the amount of milk handled per square foot of floor space. He further stated that the size would depend upon considerations, such as, the type of processing, the storage areas, and other features which are incorporated. Areas which are generally not included are garages and retail stores. Ross (Ref. 22, p. 324) maintained that the size of a processing plant depends entirely on the amount of milk handled and how it is utilized.

Babcock (2) said that the size of the rooms in milk plants and the floor area required per hundred gallons of bottled milk handled daily are widely variable. For the most part, lack of standardization, and construction without due consideration to the important factors which have a bearing on the size of the rooms, is responsible for this variation.

Mortensen (Ref. 20, p. 24) maintained that the requirements for floor space depend not only on the character and volume of business to be conducted, but also on the methods of manufacture. He further stated that there is no definite rule by which the amount of floor space needed to manufacture a particular volume of finished product, can be calculated. The floor space required will depend on the kind of machinery installed, as well as, upon the method of manufacture. One pasteurizer may occupy twice the floor space of another utilizing the same capacity.

Kelly and Clement (Ref. 16, p. 268) found that no uniformity existed between the size of rooms and the volume of milk handled because, in addition to the volume handled, the size required depends on the method of handling. This conclusion was the result of the data given in Table I.

TABLE I¹
FLCOR SPACE IN THE VARIOUS WORKROOMS OF
FIVE WELL-ARRANGED MILK PLANTS

Quantity of Bot- tled Milk Handled Daily (gallons)	Receiv- ing Room (ft.2)	Bottle Wash- ing Room (ft.2)	Pasteur- izing Room (ft.2)	Bottl- ing Room (ft.2)	Area, Handl-	(ft. ²)	Clean Bottle Storage Room (ft.2)
1,000	400	600	500	300	1,800	450	400
1,500	-	700	500	375	1,625	550	•
3,000	900	1,050	1,300	1,200	4,450	1,200	750
4,000	460	1,886	540	700	3,586	1,426	540
6,000	1,200	1,908	720	720	4,548	1,110	720
1 E.	Kelly and	C. E. Cl	ement. Cit	y Milk	Plants,	Constructi	on and

Arrangement, U.S.D.A. Bul. 849, 1920.

Kelly and Clement made the following statements regarding the information presented in Table I.

- 1. The plant handling four-thousand gallons daily had a comparatively small pasteurizing room, although the total area for handling rooms was ample.
- 2. The plant handling three-thousand gallons daily had space enough to handle considerably more than this quantity.
- 3. The milk-storage room and clean bottle storage rooms in the plant handling six-thousand gallons daily were hardly large enough for this quantity of milk, but some milk was sent directly onto the delivery wagons and so less storage space was required.
- 4. The figures in the table, besides giving an idea of the space required, also effectually illustrate the lack of standardization, even in modern plants.

The conclusion made by Kelly and Clement stating that no uniformity existed between the size of rooms and the volume of milk handled appears to be somewhat in error. They stated that the plant handling three-thousand gallons daily had an excess amount of floor space. If this had been taken into consideration, the data given in Table I would tend to show that a direct relationship probably does exist between the floor space and the volume of product handled.

Bixby (4) asserted that in order to plan a dairy plant, one must know (a) the amount of product to be handled, (b) the number of products to be handled, and (c) the method of packaging the product, because they effect (a) equipment size, (b) room sizes, and (c) plant size and in addition the operation must be completed in an economical labor day if the lowest costs are to be realized. Babcock (2) acknowledged that construction requires careful study and planning, since the building represents a large capital investment. Fair (11) advanced the policy of determining the actual size of the plant in order to insure the lowest unit production costs. Furthermore, when planning the layout, have a definite purpose in mind and use models.

Kelly and Clement (Ref. 16, p. 268) believed that rooms should be of adequate size to avoid crowding machinery or workmen; however, there should be no excess or unused space. Unused floor space requires extra labor in moving from one piece of equipment to another. Shubin and Madeheim (Ref. 23, p. 72) contended that bottlenecks resulting from inadequate materials handling, poor locations of work stations; and insufficient capacity of work stations, inspection stations, and cribs, may be eliminated by the use of layout engineering and operation analysis.

Mitten (19) stated that one to two square feet of floor area per gallon of milk handled may be allowed for the total plant area for plants handling over twenty-thousand pounds of milk daily. For plants handling less than twenty-thousand pounds daily, up to three square feet per gallon should be used for the total plant area.

Farrall (13) maintained that the greatest mistake usually made in the construction of a dairy plant is building it too large or too small, or in such a manner that ready expansion is made difficult. Ackerman (1) acknowledged that many operations began in small plants with additions being made as needed and, as a result, little attention was given to engineering and future plans.

Shubin and Madeheim (Ref. 23, p. 6), Broughton (7), and Mitten (19) believed that it is necessary to build the plant originally for the present volume with an additional capacity to accommodate any expected increase in sales in the near future. The most important consideration, however, is to plan the building so that future expansion of the plant capacity can be had with a minimum loss of previous investment and without interfering with the operation (18). Broughton (6) and Farrall (13)

emphasized that it is essential to study the building, the lot, and the complete layout and determine if it is possible to expand or add another dairy department. Shubin and Madeheim (Ref. 23, p. 6) and Farrall (13) declared that excess capacity or too large a plant should be avoided. Farrall (13) warned that, particularly in a new business, the overhead costs of a large building and equipment have been a major factor contributing to the bankruptcy of many concerns.

Shubin and Madeheim (Ref. 23, p. 313) found that in a layout with a low percentage of space allocated for the production floor in relation to the total plant area, a large amount of space was occupied by non-productive activities, such as office space, storage areas, and tool cribs. They concluded that for average conditions, a desirable floor-space ratio of thirty percent of the space for nonproductive activities and seventy percent for productive activities may be considered as a rough estimate. This ratio, of course, will vary from industry to industry. It was also stated that in order to eliminate waste areas, mezzanines might be utilized for offices, storerooms, inspection cribs, laboratories, and locker rooms.

Broughton (6) said that hallways and passageways should be avoided in planning small and medium sized plants because they are nonproductive areas. Babcock (2) believed that a mezzanine or balcony is advantageous from the standpoint of providing extra floor space without increasing the ground space or man and labor requirements. Broughton (7), Maguire (17), and Ackerman (1) preferred the use of one-story buildings because they are more flexible, require less supervision, save time and labor, require less space because the equipment is more closely connected, and

permit more floor space per square foot of building. Babcock (2), found that for small plants, the one-story building was the most popular, and the next most popular type was the one-story building with a mezzanine or balcony. Broughton (17) stated that medium and small plants have found that multi-level buildings are more costly in operation.

Broughton (6) proposed that long, narrow rooms should be avoided, because square rooms provide for better arrangement, are the most economical, and are readily adaptable to changing conditions.

The size of a milk processing plant was found to be dependent on the volume of product handled and the amount of space allotted to service and auxiliary departments. Hallways, passageways, and other nonproductive areas should be avoided as much as possible because they increase the capital investment of the building by increasing the floor space, and may increase time and labor requirements. Mezzanines and balconies may be utilized to provide space for nonproductive activities without increasing the total plant space and building size. For small and medium sized plants, the one-story building will require less space, is the most economical, and can be readily expanded to meet changing conditions. The rooms in a plant should be as nearly square as possible to give less expensive construction, to provide a better arrangement, and to allow for ease of expansion. The plant should be built originally for the expected volume with provisions for ready expansion in case of future increases in capacity. Excess capacity should be avoided in order to keep capital investment, overhead costs, and labor requirements to a minimum.

Size of Processing Rooms

The size of the rooms in the milk processing plant will exert a profound effect on the capital investment, overhead costs, and labor requirements. Therefore, it is imperative that the size of the rooms in the milk plant be determined in such a manner that capital investment and operating costs be kept to a minimum.

Mitten (19) found the minimum allowable floor area required for processing rooms (A) could be determined by knowing the area (a) occupied by the equipment. The minimum allowable area, (A) = ______. After expansion 0.20. to twice the original volume, the area obstructed by equipment should not be more than one-third the total area. The New York City receiving station specifications stated that in a milk handling room, the equipment should not occupy more than twenty-five percent of the total floor area (8).

Size of Receiving Room

Babcock (2) stated that a small receiving room will soon become cluttered with milk cans and other objects, and will be difficult to keep clean and attractive. The receiving room in small plants should be of a sufficient size to handle at least one truck load of milk in cans and provide enough space to handle the cans without crowding. The receiving room in larger sized plants should preferably be large enough to handle several truck loads of milk in a short period of time. Enough floor space or conveyor space should be provided to handle this amount of milk until it can be dumped.

It was found that to give maximum efficiency at a minimum cost under a given set of conditions, some of the points to consider in designing the

receiving room were (a) local health board requirements, (b) the volume of milk to be handled, especially during the flush season, (c) the method of delivery, and (d) the amount of floor space, or conveyor space, for incoming and washed cans (18). Furthermore, sufficient space and equipment must be allowed for the inspection of milk and for handling cans of rejected milk.

It was said that in many of the smaller plants, the rotary can washer, which occupies a small space and can be operated by one employee, is used (18).

Farrall (15) announced that one of the latest improvements in milk handling equipment is the bulk handling system as used on California farms. With this particular system of handling milk, the receiving room, as such, would be almost entirely eliminated. However, space would need to be provided for receiving the milk directly from the tanker trucks.

Most milk plants have storage tanks for handling incoming raw milk and also, frequently for skim milk and other products.(18). Vertical tanks, in comparison with horizontal tanks, require less space, but horizontal tanks require less head room. Most storage tanks are cylindrical in shape but some rectangular tanks are used. Rectangular tanks require less floor space, but they are structurally weak and the reinforcement of construction is expensive.

Size of Pasteurizing Room

It was stated that pasteurizing rooms seldom need to be expanded because increased capacity can be accomplished by installing greater capacity equipment (8). However, Broughton (7) believed that even in the smaller plants the pasteurizing room should never be less than twenty-four by twenty-four feet.

Babcock (2) contended that space may be reduced in plants processing large quantities of milk by utilizing high-temperature short-time pasteurization. Bixby (4) stated that plants using batch pasteurization could change to high-temperature short-time pasteurization and provide great increases in capacity without requiring more floor space, and because of the compact design, could create additional floor space.

According to Maguire (17) floor space requirements may be reduced as much as sixty to seventy percent with the use of high-temperature short-time pasteurization and, in addition, make a straight line flow even more efficient. However, as stated by Babcock (2) and Farley (12), even with high-temperature short-time pasteurization, vat-type pasteurizers are still needed for pasteurizing cream and by-products. Babcock (2) and Farley (12) announced that the line of demarcation for high-temperature short-time pasteurization, is at a plant capacity of 2,500 pounds per hour with a total capacity of ten to twelve thousand pounds daily.

Size of Bottle Washing Room

Broughton (7) stated that the bottle washing room should contain enough floor space to house the bottle washer and the case washer and, in addition, provide enough room to handle the daily run of all sizes of bottles, to allow sorting of crates and bottles, and to provide storage for new bottles and new crates. Mitten (19) and one sales engineering department (8) recommended that the size of the bottle washing room be approximately equal to the total space occupied by the bottle washer, the case washer, and the cold storage rooms. It was also found necessary to allow about seven feet in front of the bottle washer to provide space for stacking cases required for the bottles necessary to fill the bottle

washing machine (8). Babcock (2), however, believed that the size of the bottle washing room would depend on the method of handling the bottles in the plant. If most of the bottles are sent directly from delivery trucks to the washer, only enough space is needed for the bottle washer, conveyors, and workmen. As a rule, however, many of the bottles will have to be stored before being washed and sufficient storage space should be provided.

A sales engineering department (8) recommended that space should be provided for the expansion of the bottle washing room because an increase in capacity must be accommodated by an increase in the size of the room.

Boucher (5) stated that the soaker-type bottle washer is more efficient than the jet-type, however, it requires more floor space for the same capacity.

Size of Milk Storage Room

Babcock (2) and Kelly and Clement (Ref. 16, p. 382) maintained that the milk storage room should provide adequate space for storing all the milk a plant can handle when running at full capacity plus additional space for conveyors, cooling units, emergencies, and passageways between stacks of various kinds of products. It was stated, however, that too large a room is costly and requires additional refrigeration. Babcock (2) further stated that the size of room needed will depend on the proportion of milk held over in storage. Also, if large quantities of milk are stored in cans, more space will be required because it is impractical to stack cans more than two tiers high.

Broughton (7) and Mitten (19) found that the size of cold storage rooms handling round bottles, can be figured on the basis of $5\frac{1}{4}$ gallons

per square foot. Mitten (19) stated that for square bottles, a factor of $7\frac{1}{2}$ gallons per square foot may be used. The above mentioned calculations allow space for aisles and fifty percent excess space.

One sales engineering department (8) recommended using approximately one square foot of space for each case of round bottles or each can shown on the daily processing requirement analysis. With the use of square bottles and bottle cases, one-third less space is required. These figures will allow for aisles and conveyor space when cases are stacked five high. Cases can be stacked seven high, providing for a forty percent expansion in business.

Babcock (2) recommended that full, quart-bottle cases be stacked six tiers high and full, pint-bottle cases be stacked seven tiers high. When cases of round bottles are stacked in this way, approximately two-thousand gallons of bottled milk in cases can be stacked in an area fifteen by sixteen, or 240 square feet, exclusive of space for conveyors, passageways, cooling units, and emergencies. If allowence is made for the men to work and for emergencies, a room approximately eighteen by twenty feet would be needed for storing this quantity of milk. If square bottles are used in place of round bottles, nearly fifty percent more milk can be stored on a given floor area.

Babcock (2) recommended the approximate sizes of milk storage rooms required for plants handling various quantities of bottled milk as shown in Table II.

TABLE II

MILK STORAGE ROOMS REQUIRED
FOR DAIRY PLANTS

Gallons of Bottled	Size of
Milk Handled	Room, feet
300	8x8
500	10x10
1,000	12x15
2,000	18x20
4,000	24 x 30

The figures shown in Table II allow space for the men to work and space for emergencies.

Space for Dry Storage Rooms

Babcock (2) declared that all milk plants, regardless of size, should have a place to store washing powders, bottle caps, replacement parts, and other such items. Small plants may provide suitable storage by having cabinets located in the by-products room, but large plants will usually require a separate room.

It was stated that a clean and orderly stock room, easily accessible, and large enough to store all the supplies needed daily in the plant, is one of the first requirements of good housekeeping (18). Adequate shelf and locker space should be allotted for storing parchment wrappers, milk bottle caps, clean cartons, cleaning materials, and other similar items.

Broughton (6) said that very few plants of any size have enough dry storage space. A large dry storage space will effect a saving in

time and aid materially in preventing waste and contamination of bottle caps, washing powder, parchments, and other supplies. Clarkson (9) and the plant operators manual (8) recommended that adequate dry storage be readily accessible to the loading platform and processing rooms. Shubin and Madeheim (Ref. 23, p. 313) maintained that storerooms should be consolidated and overhead space should be utilized for high stacking in order to reduce inventories.

Shubin and Madeheim (Ref. 23, p. 400) proposed that the size of a warehouse be determined from the inventory and the desired provisions for future expansion. The optimum shape is a square building with the maximum ratio of one dimension to another not exceeding three to one. A long building results in extra handling and construction costs are unnecessarily increased.

Broughton (7) and Mitten (19) found the minimum allowable area for dry storage space to be approximately twenty-five percent of the total plant area. Broughton (7) further stated that the storage area may range up to one-hundred percent of the total plant area.

Size of Office Space

Shubin and Madeheim (Ref. 25, p. 216) believed that individual office space requirements should be determined by the area required for the office equipment and the activities conducted. A general standard for the allocation of space for various office activities is given in Table III. The standard requirements shown in Table III would vary according to the size of desk used, the arrangement of desks, and the space required for bulky equipment, such as files and mechanical office equipment.

TABLE III1

ALLOCATION OF SPACE FOR OFFICE ACTIVITIES

Office Activity	Area (ft. ²)
Private office for executives	300
Private office for dept. head or technician	250
Space for division head, chief clerk, etc.	150
Space for stenographer-secretary	50
Space for clerical work	40-50
Allocation of Office Space. Management Review	w. May. 1940.

METHOD OF STUDY

The size of a milk processing plant may depend upon a number of related factors. The amount of space required may be determined largely by the volume of product hendled, however, the method of handling, the type of equipment employed, and the method of packaging the finished product may also require consideration. Of course, the volume of milk handled will be the foundation for establishing these variables, at least to a certain degree. It would be expected also, that the rate at which the product is processed will regulate the size of the equipment to be employed and thus put its limitations on the necessary space requirements to ensure proper and efficient handling.

This investigation was suggested for the purpose of determining the amount of space required for a milk processing plant to handle a given amount of milk. It was believed that the volume of milk handled daily was the most important element in establishing the space requirements.

For this study, a number of plants were selected which were considered to have an efficient operation. The plants selected ranged in size from 500 to 11,000 gallons of milk handled daily. However, due to the limited amount of information obtained from the larger plants, the only plants considered in this investigation ranged in size from 500 to 8,000 gallons of milk handled daily.

A questionnaire was constructed incorporating the major points of dairy plant design and layout, including both ice cream and milk plants. This form was then sent to 34 dairy plants located in various parts of the United States.

Nine questionnaires, or approximately 27 per cent, were completed and returned to the author. Of the nine, two were received from ice cream plants and not used in the analysis. One of the nine returned questionnaires was not completed in the section referring to room sizes and also the section on the size and kind of equipment used.

The author personally visited nine other plants in the vicinity of Lansing, Michi an and gathered the necessary information as outlined in the questionnaire. Two of the nine plants visited were ice cream manufacturing plants and one milk plant was considered too large to be included and, therefore, were not contained in the final analysis.

A supplementary questionnaire was later formulated to obtain additional information regarding the amount of milk handled daily, the number of units packaged in glass and in paper, the number and kinds of products handled, and the number of personnel required for processing, offices, and routes. This form was mailed to eight of the plants which had supplied information for the original questionnaire. Of the eight, six were completed and returned. Two of the supplementary forms were completed personally by the author.

In this study, an effort was made to obtain a correlation or relationship between the volume of milk handled daily in the milk plant and the
space which was required to handle it. The data collected from the various
milk plants studied, both by mail and by personal visit, were compiled
into one group to obtain an effective sample and statistically analyzed.
The average number of gallons of milk handled daily was taken as a figure
which was estimated by the plant supervisor since it was assumed that
he should have a fairly accurate knowledge of the amount of milk which

his plant was handling daily. The plant supervisor's opinion was also regarded in determining if the rooms throughout the milk plant were of adequate size to carry out the processing operations.

The size of the rooms as reported in the questionnaire was assumed to be accurate on those forms received by mail. In those plants studied by a personal visit, the rooms were measured by the author where floor plans were not available. If floor plans were made available, the measurements were taken directly from the plans.

The gallons of milk handled daily and the area, in square feet, of the several rooms in the milk plant were tabulated and an effort was made to obtain the best equation and representative curve of the relationship between these two variables by the least squares method. In the mathematical analysis, those rooms that were considered too small for efficient production were not included. Only those areas that were considered to be large enough were used in making the calculations.

PRESENTATION OF DATA

Space Required for Receiving Rooms

The receiving room in a milk processing plant is designed to contain the equipment and facilities for handling raw milk which is shipped to the city milk plant, generally by individual producers, for processing and subsequent sale to the public. It must be designed for efficient and rapid handling and also meet rigid sanitary requirements.

The equipment employed in the receiving room varied from plant to plant, but appeared to follow a general trend. (See Appendix II). This variation, in part, would depend upon the original design, the number of producers supplying milk, the amount of milk supplied by each producer, and the rate at which the milk is handled in the plant. Generally, the equipment will include a can washer, a weigh tank with scales and a receiving tank, and conveyors for handling the incoming and outgoing milk cans.

From the data collected on twelve milk plants, some general statements can be made in reference to the equipment needed in the receiving room. It appeared that those plants handling approximately 2,000 to 3,000 gallons of milk daily, or less, would find a rotary can washer quite satisfactory. The capacity of the can washer varied between one can per minute and six cans per minute. The rotary can washer occupies a small amount of space and can be operated by one employee (18). In six of the installations using the rotary can washer, roller conveyors were utilized to aid in the handling of milk cans, while in the seventh plant no conveyors were used in the receiving room.

Milk plants that were handling approximately 3,000 to 8,000 gallons of milk daily required the use of a straight-away can washer. The capacity of these washers ranged from six to ten cans per minute, depending on the rate at which the milk was received. All of the installations utilizing the straight-away can washer had the services of power conveyors for conveying the milk cans to and from the receiving point.

The weigh tank should be of sufficient capacity to handle approximately all of the largest producer's milk at one weighing. Weigh tanks are generally supplied in three sizes; 500, 750, and 1,000 pound capacities, although smaller and larger sizes are available. Five of the plants studied, handling from 500 to 4,000 gallons daily, were using 500 pound weigh tanks, and one plant handling twenty three hundred gallons daily was using a 750 pound weigh tank. One plant handling 700 gallons of milk daily did not use a regular weigh tank, but employed a small dump tank into which the milk was dumped and pumped to the processing room. The capacity given for the weigh tank in the other five plants was given either in gallons or in the number of cans it held so that it was difficult to decide just what size weigh tank was being employed. The size of the weigh tank should, of course, be determined by the amount of milk that is supplied by individual producers. Most plants handling less than 4,000 gallons of milk daily will not require a weigh tank with a capacity greater than 500 pounds.

The size of the receiving tank should be large enough to allow for continuous receiving and will depend on the capacity of the plant and the rate at which milk is received.

Babcock (2) stated that the receiving room in small milk plants should be large enough to handle at least one truck load of milk in cans and provide enough space to handle the cans without crowding. Also, the receiving room in larger plants should preferably be large enough to handle several truck loads of milk in a short period of time. It was further stated that sufficient floor space or conveyor space should be provided to handle the milk until it can be dumped. Sufficient space and equipment must be allowed for the inspection of the milk and for handling cans of rejected milk (18).

In most of the smaller plants, it was observed that only enough conveyor space was required to transport the milk cans between the milk truck and the receiving point. Only this small amount of conveyor space was necessary because the full cans were unloaded and empty cans were reloaded simultaneously at the same point. However, in the larger plants it was necessary to provide enough conveyor space to handle the largest load of milk received, since unloading and loading was done at two different stations. This added convenience allows for rapid and efficient receiving of milk.

One of the latest improvements in milk handling equipment is the bulk handling system as practiced on some farms in California (15). With this system of handling milk, the receiving room is almost entirely eliminated, however, space should be provided for receiving the milk directly from tanker trucks.

The space required for the receiving room was studied in thirteen milk plants. The amount of milk handled daily by these plants ranged from 580 to 7,950 gallons. The size of the rooms and the equipment used,

are listed in Appendix II. Two of the thirteen plants stated that the receiving room was too small and the data was not used in constructing the curve shown in Fig. 1. The plant handling 975 gallons of milk daily and the plant handling 4,190 gallons of milk daily each had one fifteen hundred gallon storage tank located in the receiving room. Minety-six square feet, the area occupied by the tank, was subtracted from the total area of the room for this analysis.

The required amount of floor space for receiving rooms as shown in Fig. 1 should allow enough area for a can washer, a weigh tank with scales and a receiving tank, in addition to a sufficient amount of space to satisfactorily handle all milk cans.

Referring to Fig. 1, the solid line shows the best estimate of the area, in square feet, for receiving rooms handling from 500 to 8,000 gallons of milk daily. The curve should not be extended beyond the limits of Fig. 1, since another sample containing larger sized plants might possibly produce a much different result. The two broken lines shown in Fig. 1 represent the upper and lower limits of the required area for receiving rooms. This variation should account for differences in the type of equipment employed, variations in conveyor space, layout, and other design features. The variation between the solid line and either broken line is approximately seventy-two square feet measured on a vertical line.

The amount of floor space required for a receiving room can also be calculated from the following equation which was used in constructing

Fig. 1.

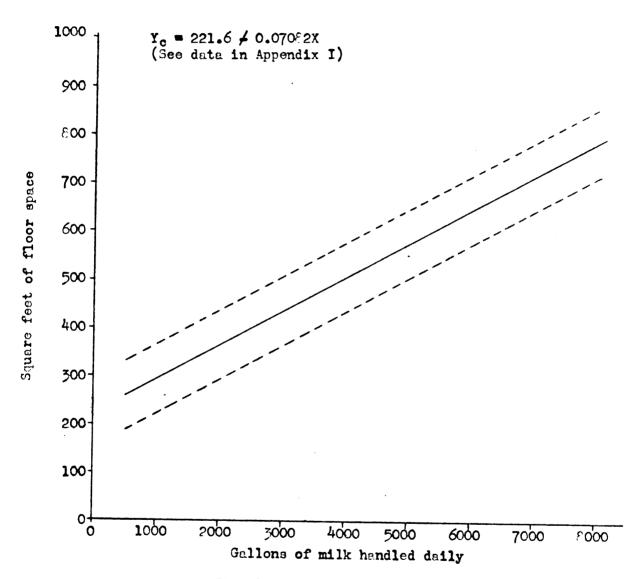


Fig. 1. Floor space required for milk plant receiving rooms.

 $Y_c = 221.6 \neq 0.07082X$

Y_c = the required amount of floor space expressed in square feet.

X = gallons of milk handled daily.

The limitations of this equation are the same as those stated above for the curve shown in Fig. 1.

Space Required for Processing Rooms

After the milk has been received and weighed at the milk plant, it is usually pumped to the processing room where it may be stored for a short time and subsequently processed and packaged for sale. The equipment required for processing milk and its byproducts may vary from plant to plant. The type of equipment employed will depend on the size of the operation, the number and kinds of products handled, the method of packaging the finished product, and the method of handling the product. The processing room, however, should be designed to handle the incoming raw milk efficiently with a minimum of time and labor and yet produce a high quality product which will meet rigid sanitary standards.

The data recorded from twelve milk plants ranging in size from 500 to 8,000 gallons daily indicated that the majority of the processing operations are done in one room. Five of the twelve plants had all the processing equipment located in one room. One plant handling 975 gallons of milk daily was equipped with a special byproducts room and the milk storage tank was located in the receiving room. The plant handling 1,100 gellons of milk daily had a separate room for the milk storage tank and the pipe washing tank. A separate room was used for housing the milk storage tank in the plant handling 2,200 gallons of milk daily. A special byproduct room for the manufacture of cottage cheese and butter,

was utilized in the plant handling 4,190 gallons of milk daily, and the milk storage tank was located in the receiving room. The plant handling 4,800 gallons of milk daily had the milk storage tanks located in a separate room. All the processing operations, with the exception of cottage cheese manufacturing, were handled in one room in the plant processing 6,400 gallons of milk daily. The cheese vats were housed in a separate room. Separate rooms were provided for pasteurizing, milk tank storage, byproducts manufacturing, and bottle filling in the plant handling 7,950 gallons of milk daily.

Those plants processing approximately 4,000 gallons of milk daily and less, would probably find one room in which to conduct all processing operations sufficient. As the operation becomes larger, it is advantageous to design separate rooms for tank storage, pasteurizing, bottle filling, and byproducts manufacturing. This type of layout in larger plants will allow a better arrangement, better working conditions, and help to prevent crowding and cluttering of equipment.

The most essential items of equipment that were necessary in all plants appeared to include pasteurizing equipment, a separator, a method for cooling the pasteurized milk prior to bottling, and a bottle filler. It was also obvious that today's milk plant requires the services of a homogenizer. All of the plants studied included a homogenizer in the list of equipment.

Milk storage tanks were generally not found in milk plants handling much less than 1,000 gallons of milk daily; although one plant handling 730 gallons of milk daily was using a 300 gallon storage tank. In the smaller plants where vat-type pasteurizers are used and the total volume of milk handled is relatively small, the pasteurizer supplies most of the necessary storage space.

For larger sized plants, especially those using high-temperature short-time pasteurization, milk storage tanks are usually required since the milk cannot be processed as fast as it is received and must be stored for a period of time. Nine plants handling from 975 gallons to 7,950 gallons of milk daily had total storage tank capacities ranging from fifteen hundred to seven thousand gallons.

The equipment required for pasteurization showed some variation, but seemed to evidence a general trend. The five plants processing between 500 and 1,100 gallons of milk daily utilized vat-type pasteurizers. The total capacity of the pasteurizers for these five plants ranged between 300 and 600 gallons. One plant handling 4,190 gallons daily and another processing 4,800 gallons daily each had vat-type pasteurizers with capacities totaling thirteen hundred gallons. However, it was believed that these two plants could well afford to install the high-temperature short-time system and would find it more satisfactory from the standpoint of efficiency and floor space requirements.

Those plants handling from 1,165 gallons to 7,950 gallons of milk daily, with the exception of the two previously mentioned plants, used the high-temperature short-time method of pasteurization. The capacity of these systems ranged between 3,000 and 8,000 pounds per hour. However, with short-time pasteurization, vat-type pasteurizers were necessary for the processing of cream and byproducts. With this type of pasteurization the amount of floor space required is reduced considerably.

Maguire (17) stated that floor space requirements may be reduced as much as sixty to seventy per cent with the use of high-temperature short-time pasteurization. However, as stated by Babcock (2) and Farley (12), even with this system, vat-type pasteurizers are still needed for past-

eurizing cream and byproducts. They further stated that the line of demarcation for high-temperature short-time pasteurization is at a plant capacity of 2,500 pounds per hour with a total capacity of from ten to twelve thousand pounds daily.

The type of bottle filling equipment used appeared to be uniform throughout all plants. The bottle filling equipment for nine plants handling from 580 to 2,310 gallons of milk daily had capacities ranging from twenty-six to one hundred and twenty quarts per minute. One plant processing 4,190 gallons of milk daily had two fillers with capacities of sixty quarts per minute and eighteen quarts per minute, respectively.

The three largest plants packaged milk in both glass bottles and paper containers. The plant handling 4,800 gallons of milk daily was using an eighty-four quart per minute bottle filler and a thirty-five quart per minute paper carton filler. The bottle filler in this plant was too small. Another plant processing 6,400 gallons of milk daily was utilizing a bottle filler with a capacity of 140 quarts per minute, operated at 110 quarts per minute, and had, in addition, a sixty-five quart per minute paper certon filler. One plant handling 7,950 gallons of milk daily was packaging milk with a ninety-seven quart per minute bottle filler and an eighty-four quart per minute paper carton filler.

Obviously, it would not be feasible nor economical for a small plant to handle a combined operation for both glass and paper containers. However, for larger plants, competition may require the production of milk in both types of containers.

All other minor items of equipment used in the processing rooms for the plants investigated in this study are listed in Appendix II. It

appeared that as the total amount of milk handled increased, there was a definite trend to use equipment with a greater capacity and therefore, increase the space requirements.

Seven plants were used in making the analysis of the space requirements for processing rooms. The sample is somewhat limited in its scope, but it seems to provide a good indication of the amount of floor space required for processing a given amount of milk.

The area for the processing room includes that required for all operations in the preparation of raw milk and its byproducts for consumption. This area includes that necessary for milk tank storage, pasteurizing, homogenizing, cooling, bottle filling, byproducts manufacturing, and all other allied operations.

The two plants handling seven hundred gallons and 975 gallons of milk deily produced a small amount of ice cream in addition to the regular products. It was assumed that this would have little effect on the total area required for processing and consequently, the areas were used in making this analysis.

The amount of floor space required for processing rooms for milk plants handling from 500 to 5,000 gallons of milk daily is illustrated in Fig. 2. The curve shown should not be extended beyond these limits, since an analysis including larger plants could possibly give a much different result.

The solid line shown in Fig. 2 indicates the best estimate of the average amount of floor space, in square feet, required for the processing room. This area includes that required for milk tank storage, pasteurizing, cooling, homogenizing, bottle filling, byproducts manufacturing,

and all other allied operations in the processing of bottled milk. The two broken lines on either side of the solid line indicate the upper and lower limits of the area required for the processing room. It should be noted that the variation between the solid and broken lines is less for smaller plants than for larger plants. This could be expected since the small sized operations usually require only a limited amount of additional equipment and floor space for the manufacture of products other than bottled milk.

The area required for the processing room can also be found by use of the following equation which was used in constructing Fig. 2.

 $Log_{10} Y_c = 1.123181 \neq 0.621603 Log_{10} X$

Log₁₀ Y_c = logarithm to the base ten of the floor area required, in square feet.

Log10 X = logarithm to the base ten of the gallons of
 milk handled daily.

The same limitations are required in the use of this equation as was mentioned above for Fig. 2.

Space Required for Bottle Washing Rooms

After the milk has been pasteurized and cooled to approximately 58 to 40 degrees Fahrenheit, it is put into clean, sterile bottles and capped for storage and delivery. A separate room is provided for storing, sorting, and washing the incoming dirty bottles before they are taken to the bottle filler for filling. The bottle washing room should be large enough to accomodate a bottle washer, space for sorting bottles and cases, and provide sufficient storage space for the daily run of all incoming bottles. Additional space amy also be required to allow the use of con-

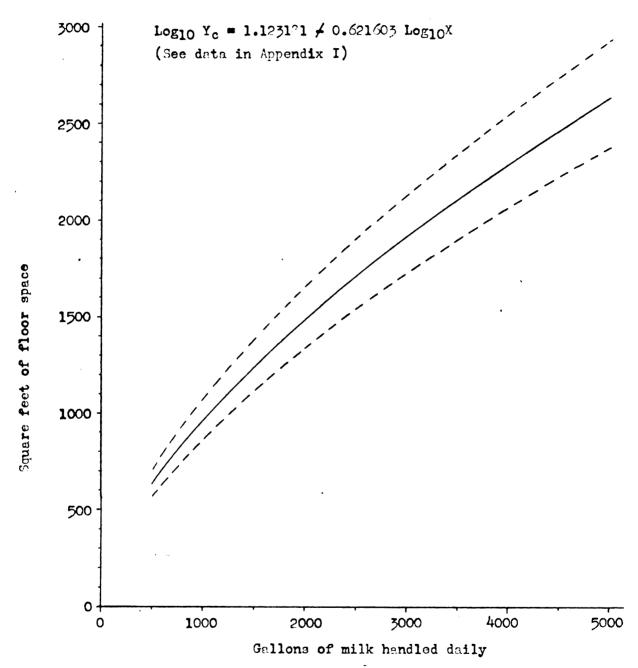


Fig. 2. Floor space required for milk plant processing rooms.

veyors. In plants where a large number of bottles are handled, it is advantageous to provide a loop in the conveyor line entering the bottle washer in order that empty cases, from bottles required to fill the washer, need not be removed and stored until the washer is emptied.

The size of the bottle washing room should be approximately equal to the total space occupied by the bottle washer, case washer, and cold storage rooms (19). In addition, about seven feet should be allowed in front of the bottle washer to stack the cases required for filling the bottle washing machine (8). Babcock (2) stated that the size of the bottle washing room would depend on the method of handling the bottles in the plant. If most of the bottles are sent directly from the delivery trucks to the washer, only enough space is needed for the bottle washer, conveyors, and workmen. As a rule, however, many of the bottles have to be stored before being washed and sufficient storage space should be provided.

The soaker-type bottle washer is more efficient than the jet-type, however, it requires more floor space for the same capacity (5).

The amount of floor space that is required for the bottle washing room will largely depend on the amount of bottled milk handled, the size of the bottle washer, and the styles of bottles used. Ample storage space should be provided for storing cases of bottles and also for the sorting of bottles and cases.

The soaker-type bottle washer was used in all twelve plants studied. (See Appendix II). The amount of bottled milk handled daily by these twelve plants ranged between 500 and 25,100 gallons. The size of the bottle washers used varied from a four-wide washer with a capacity of approximately 32 quarts per minute to a twelve-wide washer with a capacity of

114 quarts per minute. This trend illustrates a general relationship between the size of the bottle washer and the amount of bottled milk handled daily. However, the capacity of the bottle washer is governed entirely by the capacity of the bottle filler.

The method of handling the bottles and cases in the bottle washing room may also affect the floor space requirements. Those plants handling approximately 2,000 gallons of bottled milk daily generally used case dollies for transporting the bottle cases in place of the conveyor systems found in the larger plants. It was assumed that at one time or another during the day, most of the empty bottles were stored in the bottle washing room and were not sent directly to the bottle washer as they came in from the routes.

The square-type milk bottle was used by eleven of the twelve plants investigated. Only one plant was still using the old style round bottle.

By using square bottles and bottle cases, one-third less space is required (8).

Six of the 12 plants were used in making the final analysis of the space requirements. The plant handling 750 gallons of milk daily was still using the old style round bottle. Only plants using the square-type bottle were used in making the analysis. Two plants handling 975 to 2,310 gallons of milk daily did not indicate if the room was large enough and were omitted in the calculations. The actual amount of bottled milk handled daily by the two plants handling 1,165 gallons and 4,190 gallons of milk was not known. Also, the bottle washing room for the plant handling 4,800 gallons of milk daily was too small to be considered.

The six plants used in making this analysis were handling approximately 90 per cent of the bottled milk in quart bottles and the other 10

per cent in half-pint bottles. The approximate range was between 85 and 92 per cent for quarts and between 7 and 15 per cent for half-pints. One plant was bottling about 1.3 per cent in pints while another plant was handling approximately 1.7 per cent of the bottled milk in ten-ounce bottles.

Fig. 3 illustrates the amount of floor space required in the bottle washing room for plants handling from 500 to 5,000 gallons of bottled milk daily. When the floor space requirements are estimated by the use of Fig. 3, they should be limited to those plants handling between 500 and 5,000 gallons of bottled milk daily.

The solid line shown in Fig. 3 gives the best estimate of the required amount of floor space for the bottle washing room. The broken line on either side of the solid line indicates the upper and lower limits of the floor space required. The variation between the solid and broken line is equal to approximately 117 square feet. This variation should account for differences in handling methods, and variations in the design and arrangement of the room.

The following equation, which was used in constructing Fig. 3, may also be used for calculating the approximate amount of space required for the bottle washing room.

 $Y_c = 383.2 \neq 0.2030X$

Yc = square feet of floor space.

X = gallons of bottled milk handled daily.

The same limitations should be placed on the use of this equation as stated above for Fig. 3.

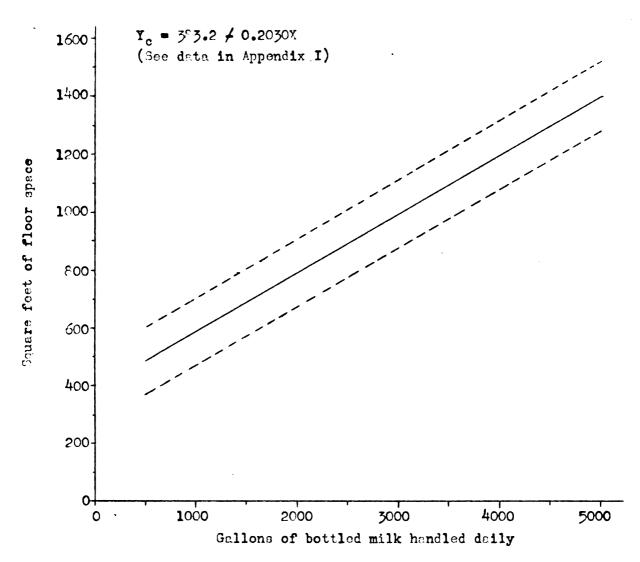


Fig. 3. Floor space required for milk plant bottle washing rooms.

Space Required for Milk Storage Rooms

Milk that has been bottled and capped is usually taken directly to the milk storage room where it is kept refrigerated until delivery. The milk storage room also generally handles bulk milk in five or ten gallon cans, packaged cottage cheese, and many other products that are sold by the dairy. It is good procedure to design the milk storage room sufficiently large enough to accommodate all the products that are processed daily plus enough additional space for aisles and conveyors. Some plants, however, may route their milk directly from the bottle filler to the delivery trucks and less storage space may be required.

Broughton (7) and Mitten (19) found the size of cold storage rooms handling round bottles to be equal to one square foot for each $5\frac{1}{2}$ gallons of milk handled. Mitten (19) used a factor of $7\frac{1}{2}$ gallons per square foot of floor space for square bottles. The above requirements allow space for aisles in addition to 50 per cent excess space.

One square foot of floor space for each case of round bottles or each can shown on the daily processing requirement analysis and two-thirds of a square foot for square bottles and cases was recommended by one sales engineering department (8). When cases are stacked five high, the above method will allow for aisles and conveyors.

Since it is impractical to stack cans more than two tiers high, more space will be required for storing large quantities of milk in cans (2). It was also recommended that full, quart-bottle cases be stacked six tiers high and full, pint-bottle cases seven tiers high.

Seven of the 12 plants investigated indicated that they had sufficient floor space in the milk storage rooms; however, one plant was using

round bottles and was not included in the analysis of data. Only those plants using square bottles were contained in the calculations. The two plants handling 975 and 2,310 gallons of milk daily did not indicate whether the room was large enough. It was assumed that the area allowed for the milk storage room in these two plants was large enough after comparing the floor space and the area per 100 gallons of milk handled daily with that of the other plants studied. Also, the plant handling 2,200 gallons of milk daily stated that there was some room for expansion in the milk storage room. It was assumed not to be excessively large and was contained in the final analysis.

The estimate of the average amount of floor space required for the milk storage room in plants handling between 500 and 5,000 gallons of milk daily is illustrated in Fig. 4. The indicated areas allow enough floor space for storing the daily run of all products in addition to that required for aisles and conveyors.

The solid line shown in Fig. 4 indicates the best estimate of the average amount of floor space required for the milk storage room in plants handling between 500 and 5,000 gallons of milk daily. The broken line on either side of the solid line indicates the upper and lower limits, respectively, of the floor space requirements. Some variation is to be expected due to differences in handling methods and variation in the design and arrangement of the room. Fig. 4 should be used for estimating the floor space requirements in milk storage rooms for only those plants using the square-type milk bottle.

The following equation, which was used in constructing Fig. 4, may also be used to estimate the floor area required for milk storage rooms.

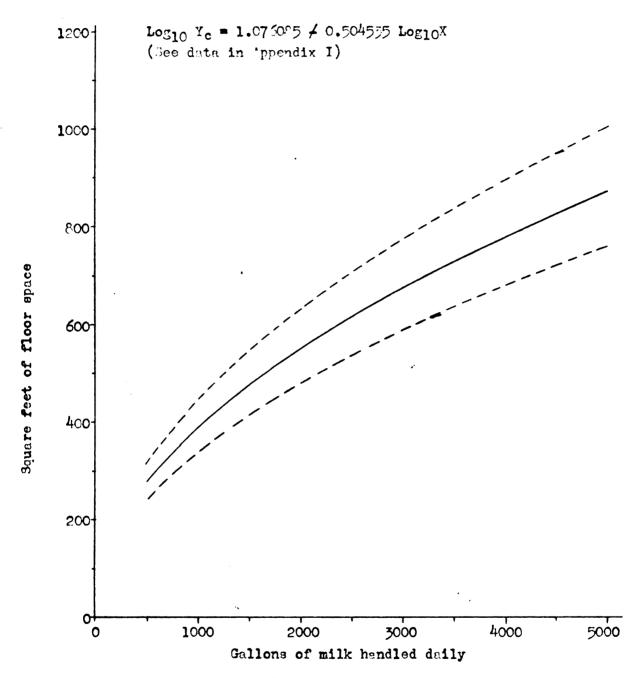


Fig. 4. Floor space required for milk plant bulk milk storage rooms.

 $Log_{10} Y_c = 1.076085 \neq 0.504535 Log_{10} X$

Log₁₀ Y_c = logarithm to the base ten of the square feet of floor area required.

Log₁₀ X = logarithm to the base ten of the gallons of milk handled daily.

Space Required for Dry S torage Rooms

The dry s torage room should be large enough to supply sufficient storage space for washing compounds, bottle caps, spare parts, and any other supplies that are required in the milk processing plant. The majority of the plants investigated in this study did not have sufficient dry storage space. A separate room should be set aside for the storing of supplies, regardless of the size of the plant. By utilizing a separate room, supplies can be purchased in larger quantities at a reduced cost, inventories are reduced, and waste and contamination are at a minimum. However, small cabinets or shelves may be placed at advantageous positions in the plant to handle most of the supplies for daily requirements.

Babcock (2) emphasized that all milk plants, regardless of size, should have a place to store washing powders, bottle caps, replacement parts, and other such items. He further stated that small plants may provide suitable storage by having cabinets located in the by-products room, but large plants will usually require a separate room.

Only a few plants of any size have adequate dry storage space (6). However, a large dry storage space will affect a saving in time, and aid materially in preventing waste and contamination of bottle caps, washing powders, parchments, and other supplies.

Storerooms should be consolidated and overhead space utilized for high stacking in order to reduce inventories (Ref. 25, p. 315).

Broughton (7) and Mitten (19) found the minimum allowable area for dry storage space to be approximately 25 per cent of the total plant area. Broughton (7) stated that this area may range up 100 per cent of the total plant area.

Of the 12 plants investigated, four indicated that the dry storage area was too small. Three plants did not submit the size of the dry storage area, and one plant did not indicate whether the room was large enough.

The plant handling 4,800 gallons of milk daily stated that the dry storage area was not large enough to handle a 50 day supply of materials. However, it was assumed that had the storage area been equipped with a 12 to 14 feet ceiling, instead of 8 feet, the emount of space would have been adequate. Also, the plant handling 700 gallons of milk daily stated that the storage area was almost large enough. Again it was assumed that if the ceiling height had been 12 to 14 feet, instead of 10 feet 8 inches, the amount of space would have been sufficient. The two plants handling 4,800 and 7,950 gallons of milk daily were packaging milk in paper containers and required more space for dry storage than ordinarily found in a plant handling milk in glass bottles only.

Fig. 5 shows the best estimate of the average amount of floor area required for the dry storage room, as calculated from that found in five milk plants. As indicated by Fig. 5, there was a very high degree of variation between the floor area required for dry storage in the plants investigated. A large amount of variation can be expected due to the wide variation of items carried by various plants. Some milk plants may carry a large supply of replacement parts or handle paper containers and

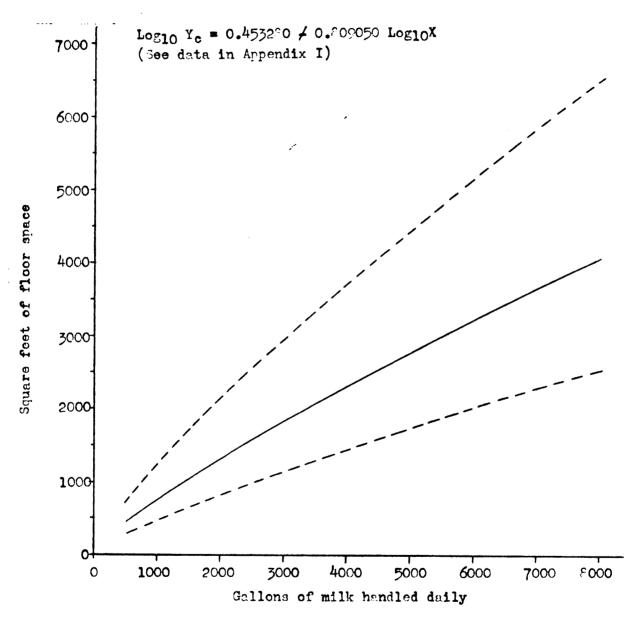


Fig. 5. Floor space required for milk plant dry storage rooms.

others may not. Some plants may be located close to suppliers and not wish to carry a large inventory, while others may find it necessary to provide enough space for at least a 30 day supply and perhaps more. However, the curve shown in Fig. 5 should indicate enough floor space for the average milk plant having a 12 to 14 feet ceiling in the dry storage room.

The solid line shown in Fig. 5 indicates the best estimate of the average amount of floor area required for the dry storage room having a 12 to 14 feet ceiling. The broken line on either side of the solid line locates the upper and lower limits of the floor area required. Fig. 5 was constructed to be used with those plants handling between 500 and 8,000 gallons of milk daily. It should not be used for plants outside this range, since another sample incorporating other plants might produce a different result.

The following equation which was used in constructing Fig. 4 may also be used to calculate the floor space requirements for the dry storage room in milk plants.

 $Log_{10} Y_c = 0.453280 \neq 0.809050 Log_{10}X$

Log10 Yc = logarithm to the base ten of the square feet of floor area.

Log₁₀ X = logarithm to the base ten of the gallons of milk handled daily.

The same limitations should be placed on the use of this equation as stated above for Fig. 5.

Space Required for Boiler Rooms

The boiler room in a milk processing plant should be located in a section of the plant completely isolated from the processing rooms. It

should have adequate floor space for a boiler which will supply the required amount of steam to carry out all processing operations. An adequate supply of steam is usually needed for the bottle washer, the case washer, the can washer, pasteurizing, water for washing and sterilizing equipment, and heating the plant.

The majority of the plants investigated in this study had no problems concerning the size of the boiler room. This room is designed to handle one piece of equipment and is not confronted with the complex problems of expansion that affect processing rooms.

Of the 12 plants investigated in this study, three plants did not make available the size of the boiler room and one plant stated that the boiler room was too small. Those plants handling between 580 and 1,100 gallons of milk daily had boilers with capacities between 20 and 40 horse-power depending upon the daily steam requirements. Plants handling between 2,310 and 7,950 gallons of milk daily had boilers with capacities between 120 and 125 horsepower; although one plant handling 6,400 gallons of milk daily had in addition to a 120 horsepower boiler, a coal-fired boiler with a 150 horsepower capacity for stand-by service. In general, most of the boilers being used today in milk plants are either gas or oil fired, thus reducing the problem of coal dust and ashes usually found with coal-fired boilers.

Fig. 6 illustrates the amount of floor space required for boiler rooms in milk plants handling from 500 to 8,000 gallons of milk daily.

The amount of floor space required as indicated in Fig. 6 does not allow for coal bins or fuel storage. The solid line shown in Fig. 6 indicates the best estimate of the average amount of floor space required for boiler

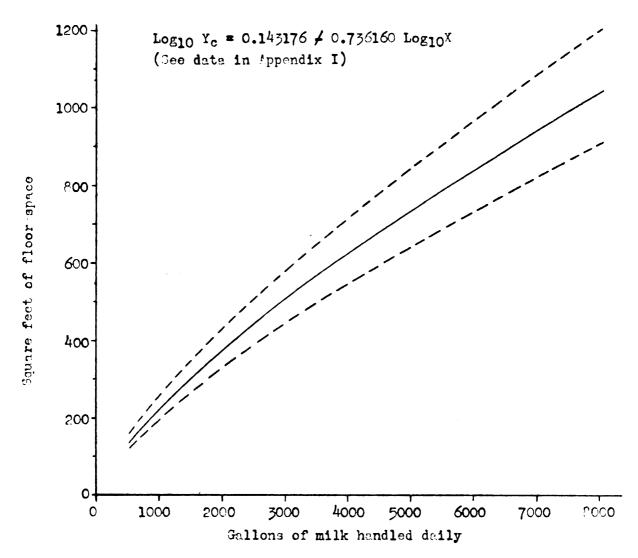


Fig. 6. Floor space required for milk plant boiler rooms.

rooms. The broken line on either side of the solid line gives the upper and lower limits, respectively, of the required amount of floor space.

The floor space required for plants outside the range stated above should not be estimated with the use of the curve in Fig. 6, since another sample for other milk plants might yield a different result.

The following equation which was used in constructing Fig. 6 may also be used to estimate the amount of floor space required for milk plant boiler rooms.

 $Log_{10} Y_c = 0.145176 \neq 0.756160 Log_{10} X$

Log₁₀ Y_c = logarithm to the base ten of the square feet of floor area required.

Log₁₀ X = logarithm to the base ten of the gallons of milk handled daily.

Space Required for Plant Offices

The milk processing plant requires a certain amount of office space in order to carry out the daily business at hand and keep an orderly file on all records. Records must be kept on all purchases and sales and all other necessary transactions for the operation of a successful enterprise.

The amount of space that is required for plant offices will depend on the number and size of the desks utilized, the amount of space required for files and office equipment, and the arrangement of these items. A general standard for the allocation of space for various office activities is given in Table III, p. 24.

Of the 12 plants studied, four did not report on the amount of floor space available for the plant offices. The plant handling 700 gallons of milk daily combined the office and the driver's check room into one room;

this plant was not used in the analysis. Of the eight plants reporting, seven stated that the space allotted to offices was adequate. It was assumed that the plant handling 975 gallons of milk daily also had adequate office space. Those plants handling up to 1,100 gallons of milk and over should not require more than a one man office force or at the most two, depending on the amount of business transacted.

Fig. 7 indicates the average amount of floor space required for offices in milk plants handling between 500 and 8,000 gallons of milk daily. We should not expect the area to decrease for larger plants as is indicated by Fig. 7. Due to the large variation found in the office space for various milk plants and the fact that we have a limited sample, this has occurred. There is no reason to believe that the area should decrease for larger plants. However, the area as indicated in Fig. 7 should provide a good estimate of the amount of floor space required for offices in milk plants.

The solid line shown in Fig. 7 indicates the best estimate of the average amount of floor space required for offices in milk plants handling between 500 and 8,000 gallons of milk daily. The area for larger plants should not be estimated from this curve. The broken line on either side of the solid line indicates the upper and lower limits of the required area. The variation between either broken line and the solid line is equal to approximately 98 square feet measured on a vertical line.

The following equation which was used in constructing Fig. 7 may be used to calculate the floor space required for milk plant offices.

$$Y_c = -143.2 \neq 0.4568X - (10-7 \times 360.5X^2)$$

Y_c = square feet of floor space required.

X = gallons of milk handled daily.

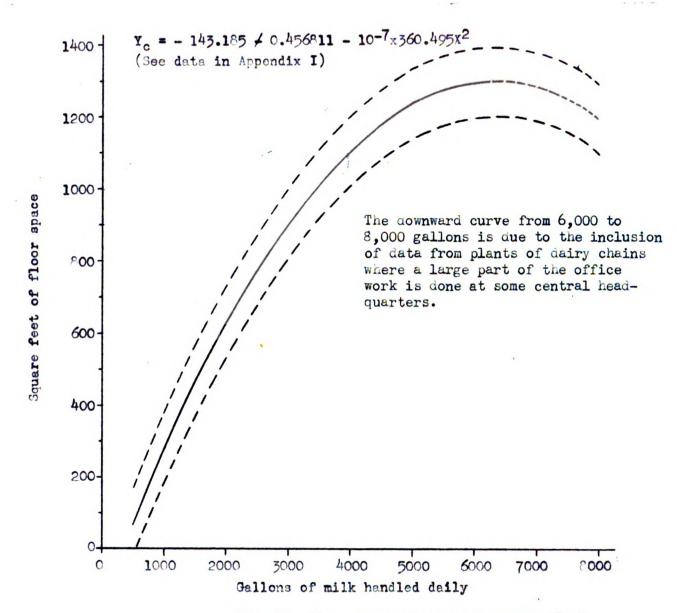


Fig. 7. Floor space required for milk plant offices.

The same limitations apply to the use of this equation as was stated above for Fig. 7.

Space Required for Compressor Rooms

The compressor room is usually located as near as possible to the cold storage rooms so that the length of refrigeration lines are kept to a minimum. It is advisable to provide a separate room for refrigeration machinery so that it may be consolidated for easy maintenance. However, in some of the smaller milk plants no specific room is provided for housing compressors.

The size of the compressor room will depend upon the number and size of compressors necessary to furnish the hourly refrigeration requirements. In most milk plants, compressors are required to maintain the temperature of the cold storage rooms, in addition to supplying the necessary amount of refrigeration for heat exchange equipment. The size of the compressors should be established accurately from the refrigeration lond as it occurs through the day. In small plants, two compressors should supply all the refrigeration for plant needs. One is required to maintain the temperature of the milk storage room and the other is used in conjunction with the sweet water system. One compressor would ordinarily supply the refrigeration requirements, however, with two compressors, less trouble is likely to occur in case of a breakdown.

A study of 12 milk plants indicated that no general relationship could be established for the size of the compressor room as determined from the amount of milk handled daily due to variable and insufficient data. Table IV shows the floor space available for compressor rooms in ten milk plants investigated for this study.

TABLE IV
FLOOP SPACE AVAILABLE FOR OCCUPEESSOR
POOMS IN TWO MILK PLANES

	Gals. of	Sizo	cf Poom	(ft.)		_
Plant	Milk Handled Doily	Midth	I'oʻn⊶,y	Maicht	(st.°)	I arge Enough?
A	<i>5</i> 80	None	None .	None	None	
Bl	700	6.00	14.00		84	Mot stated
	730	12.00	12.00	9.00	144	Yes
E	1,100	6.25 11.75	8.83 15.67	11.67 11.67	55 1902	Yes
Н	2,200	20.00	20.00	12.00	400	No
I	2,310	20.00	70.00	14.50	800	Yes
K	4,800	18.00	2° •00	<u> </u>	F04	<u> </u>
Ll	6,400	21.50	16.92	15.00	<u> 364</u>	Yes
<u>M</u>	7,950	25.00	<u> 50.00</u>	12.00	750	Yes

¹ Compressors are used for both milk and ice cream handling.

Space Required for Plant Maintenance Shops

The maintenance shop for a milk plant may range from a small cabinet, with an adequate supply of tools, in a small plant to a liberal sized machine shop in large plants. Usually in small milk plants, the plant operator conducts most of the maintenance and service work while in large plants, a trained engineer is usually hired. In the modern milk plant, there is a need for continual and periodic maintenance of equipment so that regardless of the size of the plant, some space should be provided for handling a supply of tools and equipment.

Area occupied by a sweet water tank with a 6,000 pound capacity.

The size of the maintenance shop will depend entirely upon the type of service work done in the plant and the tools and machinery required to satisfactorily handle the job. The small milk plant cannot economically afford a complete machine shop, however, tools should be available in case of a breakdown and repairs are needed. A suggested list of tools and equipment for small dairies is recommended by Farrall (Ref. 13, p. 336).

The majority of the plants investigated in this study had some type of maintenance shop available. However, not enough information was available for determining the size required for plants handling various quantities of milk. Table V shows the floor space available for plant shops as found in seven milk plants.

TABLE V
FLOOR SPACE AVAILABLE FOR MAINTENANCE SHOPS IN SEVEN MILK PLANTS

	Gals. of	Size of Room (ft.)				_
Plant	Milk Handled Daily	Width	Length	Height	Area (ft. ²)	Large Enough?
A	580	None	Mone	None	None	
_c¹	730	8,00	೭.00	9.00	64	Үез
E	1,100	None	Mone	None	Mone	
I	2,310	1°.00	34.00	14.50	612	Yes
K	4,800	10.00	27.00	8.00	270	No
Ll	6,400	15.25	60.08	12.67	917	Yes
M	7, 950	30.00	35.00	12.00	1,050	Yes

¹ Maintaining milk and ice cream equipment.

Space Required for Locker Rooms

Locker rooms should be provided for all plant employees, including bath and toilet facilities. Since it is desirable to have a neat and sanitary appearing plant, it is necessary for employees to have facilities for changing from street clothes into white uniforms.

The size required for locker rooms will depend upon the number of employees needed to handle the processing operations, the type and arrangement of lockers, and the facilities available. In some plants, it was noted that the locker room was also used for a lunch room. However, where employees are required to lunch in the plant, it is much better to have a separate room set aside for this.

Only four of the 12 plants investigated had adequate space for a locker room. The plant handling 6,400 gallons of milk daily stated that the locker room was large enough except at noon when employees utilized it as lunch room. One plant had only toilet facilities available. No conclusion could be drawn stating the amount of space required for locker rooms. Table VI illustrates the floor space available for locker rooms in nine milk plants.

TABLE VI
FLOCR SPACE AVAILABLE FOR LOCKER ROOMS IN NINE MILK PLANTS

	Gals. of	Size	of Room	(ft.)			
Plant	Milk Hendled Daily	Width	Length	Height	Area (ft. ²)	No. of Personnel	Large Enough?
A	<u>5</u> 80	7.50	13.50	9.00	101	3	Yes
В	700	8.00	8.00	9.00	64	3	Yes
C	730	7.00	7.00	8.00	49	3	Yез
E	1,100				Mone		
Н	2,200	8.00	15.00	9.00	120	3	Mo
I	2,310	8. 50	17.83	12.00	152	7	Yes
K	4,800	12.00	18.00	೯.00	216		No
L	6,400	15.00 15.00	18.00 11.00	15.00 15.00	270 ^a 165 ^b	20 c	No
M	7,950	8.00	12.00	8.00	96	25	Yes

aSpace for lockers.

Space Required for Driver's Check Room

The driver's check room is designed to provide the facilities to aid the route salesmen in keeping records of their accounts and sales to their customers. The size of the room will depend on the number of salesmen and the available facilities. In most milk plants, tables may be utilized to provide sufficient working space, space for keeping records and route books, and space for handling accounting machines.

The size of the driver's check rooms as found in this investigation was extremely variable. No definite conclusions could be made regarding

bSpace for showers and toilets.

cEmployees for both milk and ice cream.

the required size. Table VII shows the emount of floor shows evailable for driver's check rooms as found in seven hilk plants.

FLOOR SPACE AVAILABLE FOR DRIV TRIS
ONLY FOOMS IN SEVEN MILK PLANTS

Gela. of Milk		Size of Room (ft.)			Area		7
Flan t	Hendled Doily	Vidth	Lenath	Heigh t		Po. of Personnel	Larre Enough?
<u> A</u>	5^0	7.00	1 3.50	9.00	95	4	Yos
В	700	1°.00	20.00	10.67	<u>3</u> 50	6	Yes
C	730	4.00	4.00	8.00	16	5	Yes
<u> </u>		9.00	17.50		115		
3	1,100	2.83	5.67	7.40	56	6	<u></u>
I	2,710	10.00	19.00	۶ . ೧٥	190	13	Yeg
14.	7,050	ã0 . 00	40.00	٥.٥٥	1,200	51	` `o

Space Required for Total Plant Arca

The total amount of floor space required for the milk processing plant will depend upon the individual requirements for each room in the plant. Not enough information was available on the plants investigated to make an estimate of the total plant area required to handle a given amount of milk. However, by using the figures obtained from the estimating equations derived for the individual rooms, we can approximate the amount of floor space required for the more important rooms in the milk processing plant. Table VIII shows the estimate of the floor space required in the important rooms in milk plants handling between 500 and 5,000 gallons of milk daily.

TABLE VIII

FLOOP SPACE REQUIRED IN THE IMPORTANT ROOMS OF MILK PLANTS HANDLIES STEVEN 500 AND 0,000 SALLOUS OF WILK DAILY

Gals. of Milk Handled Daily	Receiv- ing Foom (ft.2)	Process- ing Foom (ft.2)	Eottle Washing Room (ft.2)	Total, Handling Reoms (ft. ²)	Milk Storage Room (ft.?)	Dry Storage Room (ft.2)
500	257	<i>6</i> 52	485	1,57/	274	433
1,000	5 <u>c</u> 5	<u>973 </u>	<u>586</u>	1,851	<u> 590</u>	759
2,000	363	1,495	729	2 , 647	552	1,330
<i>z</i> ,000	454	1,926	<u> </u>	3,352	677	1,945
4,000	505	2,303	1,155	4,005	7°2	2,351
5,000	576	2,645	1,598	4,619	<u>876</u>	2,792

CONCLUSIONS

- 1. The floor space required for milk plant receiving rooms depended largely on the number of gallons of milk handled daily for those plants handling between 500 and 8,000 gallons of milk daily.
- 2. The amount of floor space required for milk plant bottle washing rooms was directly related to the amount of bottled milk handled daily for plants handling between 500 and 5,000 callons of bottled milk daily.
- 3. The gallons of milk handled daily by a milk plant provided a good basis for estimating the size of the boiler room required for milk processing plants handling between 500 and 2,000 gallons of milk daily.
- 4. The smount of office space required for a milk processing plant was directly related to the volume of milk handled daily for those plants handling between 500 and 8,000 gallons of milk daily. However, some discrepancy was evident in this relationship for larger plants. This could be due to the small number of plants available for the investigation and also to the variability of the space available from plant to plant in the larger plants.
- 5. The floor space required for dry storage rooms was related to the gallons of milk handled daily by the milk plant. Although a relationship was indicated, due to the limited number of plants available for the analysis, a reliable prediction of the space required could not be made.

- 6. The size required for milk plant milk storage rooms appeared to be directly related to the gallons of milk handled daily for those plants handling between 500 and 5,000 gallons of milk daily. The estimate of the floor space required for milk storage rooms was not a reliable one, however, due to the small number of plants available for making the analysis.
- 7. The floor area required for milk plant processing rooms depended largely on the gallons of milk handled daily for those plants handling between 500 and 5,000 gallons of milk. The estimated area for processing rooms provides only a rough approximation of the required area because the area for all processing operations, including byproducts manufacturing, were combined into one figure.
- 8. A study by questionnaire is not entirely satisfactory for an investigation of dairy plant layout and design. A very small return may be expected, in addition to the fact that the reliability of the information obtained is open to question.
- 9. The volume of products handled by a given plant should be determined accurately from plant records.
- 10. An individual study should be made of each processing operation in the milk plant regarding the relationship between the floor area and the quantity of product handled.

RECOMMENDATIONS FOR FUTURE STUDY

- 1. Obtain the cooperation of a large number of dairies to take part in a study of the layout and design of milk plants.
- 2. Define a method for estimating the operating efficiency of a milk plant.
- 5. Determine the emount of excess space which may be included in the original plant design for future expansion without excessively increasing operation and overhead costs.
- 4. Determine how much increase in capacity can be had in a milk plant by installing greater capacity equipment without increasing the floor space requirements.
- 5. Determine the total ground space required for milk plants handling various quantities of milk.
- 6. Determine the number and kinds of products, and the quantity of each, handled by the average milk plant.
- 7. Construct operation time schedules for milk plants handling various quantities of milk and determine good layouts utilizing models or templates of the equipment.

APPENDIX I

Statistical Analysis of Data

The least squares method of analysis was employed in computing the equation to represent the relationship between the area required for the various rooms in the milk processing plant and the gallons of milk handled daily. Several variations of this method, linear, non-linear, and curvilinear regression, were tested in an effort to obtain the best fitting equation. The data used in the calculations of the space recuirements for milk processing plants are shown in Table AI.

Sample calculations are illustrated for the statistical analysis of receiving rooms only. The final results of the statistical analysis for the processing, bottle washing, milk storage, dry storage, boiler, and office rooms are given in Tables AV, AVII, AIX, AXII, AXIII, and AXV respectively.

DATA USED IN CALCULATIONS OF THE RELATIONSHIP BETWEEN GALLONS OF MILK HANDLED DAILY AND FLOOR SPACE PEQUIRED FOR THE VARIOUS ROOMS IN THE MILK PROCESSING PLANT

Plant		Gals. of Bottled Milk Handled Doily	Receiv- ing Poom (ft. ²)	Pro cess-ing Room (ft. ²)	Bottle Washing Room (ft. ²)	Milk Stor- age Room (ft. ²)	Dry Stor- age Room (ft. ²)	Boiler Room (ft. ²)	Plent Offices (ft. ²)
A	5°0	<u> 580</u>	270	700	414	349	135ª	162	153
В	700	700	200ª	700	700	<u> 308</u>	360	200	<u> 360</u>
C	750	575°	195	720	960	320	820	225 ^a	<u> 324</u>
D	<u>975</u>		375 ^b	1,162 ^b	608 ^b	302b	233 ^b		219 ^b
E	1,100	1,100	172	560ª	507	214ª	165ª	204	121
F	1,165		264	1,୦୧୫	961	102a	416ª	•	
G	1,280		400					_	
H	2,200	1,900	400	942	800	600	-	-	
I	2,510	1,570	503	1,789	გიგხ	691p		497	748
J	4,190		480	2,152	957	752	5,200	500	
K	4,800	60	512	1,624ª	864a	936a	1,932	704	1,248
L	6,400	4,610	525 ^a	5,006ª	1,439	741ª	3,872ª	1,017	_
М	7,950	4,120	<u> </u> ೭೦೦	2,960ª	1,000	1,350 ^a	3,000	1,050	1,200

aRooms which were too small.

Receiving Rooms

The size of the receiving room was investigated in 13 milk plants handling from 580 to 7,950 gallons of milk deily. Two plants handling

bAdequacy not stated.

CUsed round bottles.

•

•

•

700 and 6,400 gallons of milk daily, respectively, stated that the receiving rooms were too small and these data were not used in making this analysis. One plant handling 975 gallons of milk daily did not indicate if the receiving room was large enough, however, it was assumed to be adequate. The two plants handling 975 and 4,190 gallons of milk daily each had a 1,500 gallon storage tank in the receiving room and 96 square feet were subtracted from the area to allow for it.

The data for the receiving room in the 11 milk plants having adequate floor space were compared by four various methods of regression. Sample calculations for the relationship between the gallons of milk handled daily and the floor space required for milk plant receiving rooms is shown in Table AII.

TABLE AII

SAMPLE CALCULATIONS SHOWING THE FELATICNISHIP BETWEEN THE GALLONS OF MILK HANDLED DAILY AND THE AREA OF MILK PLANT FECEIVING ROOMS

Plant	Gals. of Milk Handled Daily X	Area ft. ² Y
A	5°0	270
C	7 50	195
	975	<u> 373</u>
E	1,100	172
ŗ	1,165	264
G	1,280	400
н	2,200	400
I	2,510	503
J	4,100	400
K	4,800	512
M	7,050	80 0

Semple calculations for linear regression. The following sums were calculated for making this analysis: $\mathbf{Z}XY = 14,542,115; \mathbf{Z}X^2 = 120,000,250;$ $\mathbf{Z}Y^2 = 2,054,887; (\mathbf{Z}X)^2 = 744,198,400; (\mathbf{Z}Y)^2 = 19,088,161; \quad \mathbf{Z}Y = 1,755,287;$ $\mathbf{Z}X = 27,280; \mathbf{Z}Y = 4,369; \quad \mathbf{Y} = 597.1818; \quad \mathbf{X} = 2,480$

The equation for linear regression is of the form

$$Y_c = a \neq m (X-\overline{X}).$$

$$a = \underbrace{x}_{n} = \overline{x} = 597.182$$

$$m = \underbrace{nxxy-xxxy}_{xx^2-(xx)^2} = \underbrace{(11)(14,542,115)-(27,280)(4,369)}_{(120,000,250)-(744,198,400)}$$

$$m = 0.070517361$$

$$Y_{c} = 397.132 \neq 0.708174(x-2,480)$$

$$Y_{c} = 221.555 \neq 0.0708174x$$

The explained sums of squares,

$$\Sigma Y_c^2 = 1,997,608$$

The correlation coefficient,

$$r = \frac{(n)(\mathbf{z} \times \mathbf{y}) - \mathbf{z} \times \mathbf{z} \cdot \mathbf{y}}{\sqrt{[n\mathbf{z} \times^2 - (\mathbf{z} \times)^2][n\mathbf{z} \times^2 - (\mathbf{z} \times)^2]}}$$

$$= \frac{(11)(14,542,115) - (27,220)(4,369)}{\sqrt{[11\times120,000,000,250) - (744,198,400)][(11\times2,054,887) - (19,038,161)]}}$$

$$r = 0.9065$$

The standard error of estimate,

Analysis of Variance for Correlation Coefficient

Explained:
$$\int_{-2}^{2} y_c = \sum \frac{Y_c^2 - \sqrt{2}Y}{m-1} = \frac{1.997.805 - 1.755,287}{1} = 252,581$$
Unexplained: $\int_{-2}^{2} y_c = \sum \frac{Y_c^2 - \sqrt{2}Y}{m-1} = \frac{1.997.805 - 1.755,287}{1} = 252,581$

Unexplained:
$$\mathbf{F}^2 y_3 = \mathbf{Z} \underline{\mathbf{Y}^2 - \mathbf{Z} y_0^2} = 2,054,507 - 1,007,500} = 6,549$$

n-m

9

. . The correlation between the two variables is significant.

Sample calculations for curvilinear regression. The following sums were calculated for making this analysis: $\mathbf{X} = 27,280$; $\mathbf{X}Y = 4,569$; $\mathbf{X}XY = 14,542,115$; $\mathbf{X}X^2 = 120,000,250$; $\mathbf{X}Y^2 = 2,054,087$; $\mathbf{X}X^2Y = 77,176,580,325$; $\mathbf{X}X^3 = 716,106,637,480$; $\mathbf{X}X^4 = 4,892,805,166,191,250$; $\mathbf{Y}XY = 1,735,287$

The equation for curvilinear regression is of the form

$$Y_c = a \neq bX \neq cX^2$$

The normal equations for solution are

1.
$$\mathbf{x} \mathbf{y} = \mathbf{n} \mathbf{a} \neq \mathbf{b} \mathbf{x} \mathbf{x} \neq \mathbf{c} \mathbf{x} \mathbf{x}^2$$

4,369 = 11a \(\frac{27}{280b} \eq 120,000,250 \)

2.
$$\mathbf{z} \times \mathbf{y} = \mathbf{e} \mathbf{z} \times \mathbf{z} \neq \mathbf{b} \mathbf{z} \times^2 \neq \mathbf{c} \mathbf{z} \times^3$$

 $14,542,115 = 27,200 \text{ a} \neq 120,000,250 \text{ b} \neq 716,106,657,480 \text{ c}$

$$5.2X^2Y = a2X^2 \neq b2X^3 \neq c2X^4$$

77,176,580,525 = 120,000,250 a / 716,106,637,480 b /

4,892,802,166,191,250c

From the simultaneous solution of the normal equations,

$$a = 216.909$$

ъ = 0.07494793

$$c = -10^{-9} \times 516.6414$$

$$Y_c = 216.909 \neq 0.0749479x - 10^{-9}x516.641x^2$$

The explained sums of scuares.

$$\mathbf{Z} Y_0^2 = 1,997,680$$

The index of correlation.

The standard error of estimate.

$$y_{s} = \sqrt{\frac{2,054,897-1,997,690}{11}}$$

$$= \frac{1}{\sqrt{2,054,897-1,997,690}}$$

$$y_{s} = \frac{1}{\sqrt{2,054,897-1,997,690}}$$

Analysis of Variance for Correlation Coefficient

Source of Variance Variance

Explained:
$$\mathbf{z}^2 y_c = \frac{1,997,690-1,735,297}{2} = 151,197$$

Unexplained: $\mathbf{z}^2 y_a = \frac{2,054,887-1,997,690}{8} = 7,151$

Total: $\mathbf{z}^2 y_a = \frac{2,054,987-1,755,287}{8} = 31,960$

F2,8 = $\frac{131,197}{7,151} = 18.347$ (F = 18.493 at 0.1% level)

. . The correlation between the two variables is significant.

Sample calculations for non-linear regression, LogicY_c = Logic a \neq b LogicX. Let X' = LogicX, Y' = LogicY, and Y_c' = LogicY_c. The following sums were calculated for making this analysis by using the LogicX and LogicY in place of X and Y respectively: $\mathbf{Z}X'Y' = 92.062108; \mathbf{Z}X'^2 = 117.446994; \mathbf{Z}Y'^2 = 72.425408; (\mathbf{Z}X')^2 = 1,277.565342; (\mathbf{Z}Y')^2 = 792.545055; \mathbf{Y}\mathbf{Z}Y' = 72.051367;$

. . .

and the first of the second of

$$\mathbf{Z}\mathbf{X}' = 55.740542; \mathbf{Z}\mathbf{Y}' = 28.148624; \mathbf{X}' = 5.249140; \mathbf{Y}' = 2.558966.$$

The equation for this analysis is

$$Y_c' = a' \neq m (X' - \overline{X}')$$

$$a = \frac{ZY'}{n} = \overline{Y}' = 2.558966.$$

$$m = \frac{nZX'Y' - ZX'ZY'}{ZX'^2 - (ZX')^2}$$

$$= \frac{(11)92.062108) - (35.740542)(28.148624)}{(11)(117.446994) - (1,277.386342)}$$

$$m = 0.456699$$

.
$$Y_c' = 2.559966 \neq 0.456699(x'-3.249140)$$

$$Y_c' = 1.075087 \neq 0.456699x'$$

$$Log_{10}Y_c = 1.075087 \neq 0.456699Log_{10}X$$

The explained sums of squares

The correlation coefficient.

The standard error of estimate

$$\int_{8} y'_{8} = 4 \sqrt{\frac{z y'^{2} - z y'^{2}}{n}}$$

$$= 4 \sqrt{\frac{72.475408 - 72.506906}{11}}$$

$$f_{y'_{s}} = \neq 0.102913$$

Analysis of variance for correlation coefficient

Source of Variance Variance

Explained:
$$\mathbf{r}_{y'c}^{2}$$
 = $\frac{72.30606-72.031367}{1}$ = 0.275559

Unexplained: $\mathbf{r}_{y's}^{2}$ = $\frac{72.423408-72.306906}{9}$ = 0.0129447

Total: $\mathbf{r}_{y'}^{2}$ = $\frac{72.423408-72.031367}{10}$ = 0.0392041
 $\mathbf{r}_{1,9}$ = $\frac{0.275539}{0.0129447}$ = 21.286 (F = 22.855 at 0.1% level)

. . The correlation between the two variables is significant.

Sample calculations for non-linear regression, $Y_c = a \neq b \log_{10} X$. Let $X' = \log_{10} X$. The following sums were calculated for making this analysis by using the $\log_{10} X$ in place of $X: XX'Y = 14,767.505818; XX'^2 = 117.446994;$ $XY^2 = 2,054,887$; $(XX')^2 = 1,277.386342$; $(XY)^2 = 19,088,161$; $(XY)^2 = 1,735,287$; $(XX')^2 = 35.740542$; $(XY)^2 = 4,369$; $(XY)^2 = 397.182$

The equation for this analysis is

$$Y_c = a \neq m (x'-\overline{x}')$$

$$a = \underline{x} \underline{y} = \overline{y} = 397.182$$

$$m = \underbrace{nix'y-ix'ixy}_{nix'^2-(xx')^2}$$

$$= \underbrace{(11)(14,767.505818)-(55.740542)(4,369)}_{(11)(117.446994)-(1,277.586342)}$$

. $Y_c = 397.182 \neq 433.025 (X'-3.249140)$

 $Y_c = 433.025X'-1.009.778$

m = 453.025503

 $Y_c = 455.025 Log_{10} X-1,009.778$

The explained sums of squares,

The correlation coefficient,

$$P_{2} = \frac{(n)(zx'y)-zx'zy}{\sqrt{[nzx'^{2}-(zx')^{2}][nzy^{2}-(zy)^{2}]}}$$

$$= \frac{(11)(14,767.504)-(55.740542)(4,369)}{\sqrt{(11)(117.446994)-(1,277.386342)][(11)(2,054,887-(19,088,161))]}}$$

$$P_{2} = 0.8804$$

The standard error of estimate,

$$y_8 = \frac{4^{2^2 - 4 \cdot 2^2}}{n}$$

$$= \frac{4^{2,054,887-1,982,983}}{11}$$

Analysis of Variance for Correlation Coefficient

Source of Variance Variance

Explained:
$$\vec{\mathbf{r}}_{y'c}^2 = 1,982,985-1,735,287 = 247,696$$

Unexplained:
$$\vec{r}_y^2$$
's = 2,054,857-1,082,083 = 7,989

Total:
$$\mathbf{f}_{y}^{2}$$
: = $2.054.887-1.755.287 = 51.960$
10
.

 $F_{1,9} = \frac{247.696}{7.989} = 31.005 (F = 22.855 at 0.1% level)$

. . The correlation between the two variables is significant.

Results for receiving rooms. Table AIII lists the results obtained from the calculations for the relationship between the gallons of milk handled daily and the required floor area for milk plant receiving rooms.

TABLE AIII

PESULTS OBTAINED FROM CALCULATIONS FOR THE PELATICISHIP BETWEEN GALLONS OF MILK HANDLED DAILY AND THE FLOOR APEA FOR MILK FLANT PEGUIVING ROOMS

Estimating Equation	Standard Error of Estimate	Correlation Coefficient
1. Y _e = 221.555 / 0.0708174x	C y _s = £ 72.055	r = 0.9063
2. Y _c = 216.909 / 0.0749479X -10-9x516.641X ²	(y _s = <u>/</u> 72.115	P = 0.9061
3. LogicYc = 1.075087 / 0.456699LogX	√ y's = <u>/</u> 0.102913	P1 = 0.8383
4. Y _e = 453.025Lo _{S10} X-1,009.778	「 y _s = <u>/</u> 80.850	P2 = 0.8804

Equation (1) was assumed to represent the best relationship between the gallons of milk handled daily and the floor area required for milk plant receiving rooms. (See Table AIII).

Equations (1) and (2) indicated almost equally, a satisfactory relationship between the gallons of milk handled daily and the amount of floor space required for the receiving room. The degree of the relationship is expressed by the correlation coefficient which, when equal to 1.00, indicates a line that describes the relationship perfectly. Also, by squaring the coefficient for equations (1) and (2) it was observed that approximately 82 per cent of the variation in the floor space over the range of plants studied was explained by the relationship of square feet to gallons of milk handled daily. The remaining 18 per cent of the variation is due to other factors, such as arrangement of equipment, type of equipment, and method of handling.

The standard error of estimate indicated that for the 11 plants used in the analysis, the amount of floor space required for receiving rooms could be expected to vary within about \neq 72 square feet of the estimated value for approximately 68 per cent of the plants when the area is estimated by either equation (1) or (2). If this range were extended to include about 95 per cent of the plants studied, we could expect to estimate the floor space requirements to within about \neq 144 square feet of the actual amount required.

The reliability of the relationship was equally well expressed by either equation (1) or (2). However, by introducing a third constant, as was done for equation (2), the reliability of the results is reduced. This gives the same result as reducing the size of the sample.

The degree of relationship between the floor area and the gallons of milk handled daily was not as well defined by equation (3). Approximately 70 per cent of the variation in the floor area was explained by equation (3) for the relationship of floor area to callons of milk handled daily. The floor area would be expected to vary between $\neq 54$ and = 42 square feet of the true value for about 6° per cent of the plants handling 500 gallons of milk daily and between \neq 195 and = 152 square feet for about 6° per cent of the plants handling

Approximately 71 per cent of the variation in the floor area was explained by the relationship of square feet to rallons of milk handled daily as expressed in equation (4). The estimate of the floor area would be expected to vary between £ 1 square feet of the required amount when estimated by equation (4), for approximately 60 per cent of the plants studied.

Therefore, equation (1) provides the best estimate of the amount of floor space required for milk plant receiving rooms as explained by

the relationship of square feet to gallons of milk handled daily for those plants handling between 500 and 8,000 gallons of milk daily.

Equation (1) indicated that a general relationship existed between the gallons of milk handled daily and the floor space required for milk plant receiving rooms. However, due to variations in arrangement of equipment, type of equipment, and methods of handling, the area required for receiving rooms is quite variable. An estimate of the floor space required, when using equation (1), would be expected to vary within \not 72 square feet of the actual value for approximately 63 per cent of the plants and within \not 144 square feet for approximately 95 per cent of the plants.

Because of the variation in the area required for milk plant receiving rooms, a precise prediction regarding the floor space requirements cannot be made. However, the area required, when calculated from the relation—ship of square feet of floor space to gallons of milk handled daily, should prove to be a satisfactory estimate.

Table AIV shows the estimate of the average amount of floor space, with upper and lower limits, required for milk plant receiving rooms as calculated from the estimating equation, $Y_c = 221.555 \neq 0.070^{\circ}174X$. The upper and lower limits for the required area were determined by adding \neq 72 square feet to the estimated area. This amount of variation in the floor area can be expected to include approximately 6° per cent of the plants studied.

TABLE AIV

FOR MILK PLANT PROFITING POOMS
USED IN CONSTRUCTING FIG. 1

Gals. of Milk Hendled	Floor	Area Featired	(ft.?)
Deily	∆vg.	llam.	lin.
500	257	<u> </u>	<u>1^5</u>
1,000	<u> </u>	554	220
2,000	<u> 363</u>	455	291
5, 000	434	506	36 <u>2</u>
4,000	505	577	433
5,000	576	645	504
6,000	647	718	574
7,000	717	799	645
ಿ , ೧೦೦	76 3	e60	716

Processing Rooms

The size of the processing room was investigated in 12 milk plants handling from 500 to 7,950 gallons of milk daily. Those plants handling 1,100; 4,800; 6,400, and 7,950 gallons of milk daily, respectively, had processing rooms which were too small and were not included in the analysis. One plant handling 975 gallons of milk daily did not indicate if the processing room was large enough, however, it was assumed to be adequate. The two plants handling 975 gallons and 4,190 gallons of milk daily each had a 1,500 gallons storage tank in the receiving room and 96 square f et were subtracted from the receiving room area and added to that of the processing room.

The area for the processing room includes the eres for restourizing, milk tank storage, bottle filling, byproducts manufacturing, cooling the milk prior to bottle-filling, homogenizing, and all other allied operations.

Femilts for processing rooms. Table AV lists the results obtained from the calculations for the relationship between the mallons of milk handled daily and the required floor area for milk plant processing comms.

TABLE AV

POSTEMS CREATING FOR CHICKLES GALLOUS FOR THE RELATIONSHIP OFFITTER GALLOUS OF HILK WANDATH DAILY AND THE FLOOR ARPA FOR MILK FLAM PROSECUING FORMS

Istimating Equation	Othndard Frror of Patimate	Correlation Coefficient
1. Y _c = 551.610 ≠ 0.417615%	(y ₃ = <u>≠</u> 164.156	r = 0.9516
2. Log10Yc = 1.1271°1 ≠ 0.621603Log10M	6 y¹ ₈ = ₹ 0.045749	/= 0.9691

Equation (?) was assumed to more nearly represent the relationship between the gallons of milk handled daily and the floor area required for milk plant processing rooms. (See Table AV).

Equation (?) gave a slightly better measure of the decree of relationship between the area required for milk plant processing rooms and the gallons of milk handled daily. The correlation coefficients were 0.0516 and 0.9601 for equations (1) and (2), respectively. A coefficient of 1.00 indicates a perfect relationship. Also, approximately \$1 and \$24 per cent of the variation in the floor area, over the range of plants studied, was explained by the relationship of square feet to sallons of milk handled daily, by equations (1) and (2), respectively.

The required amount of floor space, when estimated by equation (1), could be expected to vary between £ 154 square feet of the actual value for 6° per cent of the plants studied. If this range were extended to include approximately 95 per cent of the plants studied we should expect this estimate to vary between £ 328 square feet of the actual value.

When equation (2) is used, the estimate of the required smount of floor space would be expected to very within approximately ≠ 70 and - 63 square feet of the actual value for 6° per cent of the plants handling 500 gallons of milk daily and within ≠ 294 and - 265 square feet of the actual value for 6° per cent of those plants handling 5,000 gallons of milk daily. If these limits are extended to include approximately 95 per cent of the plants studied, those plants handling 500 gallons of milk daily would be expected to show a variation of from ≠ 140 to - 126 square feet from the correct amount while plants handling 5,000 gallons of milk daily would be expected to vary between ≠ 5°4 and - 530 square feet of the actual amount of floor area required.

Equation (2) was selected as the one best representing the relation—ship between the square feet of floor space required for milk plant processing rooms and the gallons of milk handled daily. This equation appeared to show a better representation of the data.

A large amount of variation between the size of processing rooms for milk plants was quite evident due to variations in the number of products handled, and also variations in the type and arrangement of the equipment employed. There is considera to doubt as to the reliability of the estimate of the area for processing rooms, since the area includes that required for all processing operations, including byproducts manufacturing and milk tank

storage. Also the plants used in this study included some which had high-temperature short-time pasteurization in addition to vat pasteurization, and some which did not. Therefore, the estimate of the area required for the processing rooms can only be used as a very rough approximation. It does show, however, that a general relationship exists between the amount of product handled daily and the floor area required for milk plant processing rooms.

Table AVI shows the estimate of the average amount of floor space, with upper and lower limits, required for milk plant processing rooms as calculated from the estimating equation, $\text{Log}_{10}\text{Y}_c = 1.1271^c\text{1} \neq 0.621603$ Log_{10}X . The upper and lower limits for the required area were determined by adding $\neq 0.045749$, the logarithm of the error of estimation, to the logarithm of the estimated area and then obtaining the anti-logarithm. This amount of variation in the floor area can be expected to include approximately 6^c per cent of the plants studied.

TABLE AVI

FSTIMATE OF FLOOP AFTA FERUIRED
FOR MILK PLANT PROCESSING ROOMS
USED IN CONSTRUCTING FIG. 2

Gals. of Milk Handled	Floor	Area Required	(ft. ²)
Daily	Avg.	Max.	Min.
500	652	702	569
1,000	973	1,0°1	°75
2,000	1,407	1,663	1,547
3, 000	1,926	2,140	1,753
4,000	2,303	2,550	2,072
5,000	2,645	2,050	2,321

Bottle Washing Rooms

The size of the bottling washing room was investigated in 12 milk plants handling from 580 to 7,950 gellons of milk daily. One plant handling 4,800 gellons of milk daily indicated that the bottle washing room was too small and was not included in the enalysis. In addition, the amount of bottled milk handled daily was not known for three other plants and consequently they were omitted from the analysis. Also, the plant handling 2,510 gellons of milk daily did not indicate if the bottle washing room was large enough and this plant was not included in the analysis of the data. The plant handling 730 gellons of milk daily was using round bottles and only those plants using square lottles were included in the calculations. This analysis was based on the gallons of bottled milk handled daily.

Results for bottle washing rooms. Table AVII shows the results obtained from the calculations for the relationship between the gallons of bottled milk handled daily and the required area for milk plant bottle washing rooms.

TABLE AVII

FUNDERS OBTAINED FROM CALCULATIONS
FOR THE FULATIONERUP BETWEEN GALLONS OF
SOTILED MILK HANDLED DAILY AND THE FLOOP
AFEA FOR MILK PLANT BOTTLE MASHING BOOMS

Estimeting Equation	Stendard Drnor of Estimate	Correlation Coefficient
1. Yc = 563.151 ≠ 0.203005X	√y _s = <u>/</u> 117.4°1	r = 0.9414
2. $Log_{10}Y_c = 1.355$ 21 $\neq 0.475328Log_{10}X$	√ y' ₃ = <u>₹</u> 0.100447	P = 0.9060

Equation (1) was assumed to give the best estimate of the floor area required for milk plant bottle washing rooms. (See Table AVII).

The degree of relationship between the floor area and the gallons of bottled milk handled daily was explained more satisfactorily when using equation (1) than when using equation (2) for estimating. The correlation coefficients, which are a measure of this degree of relationship, were 0.0414 and 0.9050 for equations (1) and (2), respectively. A perfect relationship is indicated by a coefficient of 1.00. Also, by squaring the coefficient, it was observed that approximately 89 and 82 per cent of the variation in the floor space for bottle washing rooms was explained in the relationship of square feet of area to gallons of bottled milk handled daily by equations (1) and (2), respectively.

The amount of variation in the estimated results was much greater when expressed by equation (2) than when expressed by equation (1). For equation (1), the estimated amount of floor space would be expected to vary within \neq 117 square feet of the actual value for 6° per cent of the plants studied. This variation in the estimated amount of floor space would be increased to \neq 254 square feet if approximately 95 per cent of the plants were to be included within the limits of variation.

When equation (2) is used, the variation to be expected between the actual and the estimated amount of floor space required for bottle washing rooms would be within \neq 259 and - 154 saugre feet for 6° per cent of the plants handling 500 gallons of bottled milk daily and within \neq 601 and - 388 square feet for 6° per cent of the plants handling 5,000 gallons of bottled milk daily. If the range of variation is extended to include approximately 95 per cent of all plants, the above variations would be doubled.

Equation (1) was selected to represent the best estimate of the floor area required for milk plant bottle washing rooms because the error of estimation was much smaller than for equation (2).

There appeared to be a general relationship between the size of milk plant bottle washing rooms and the callons of bottled milk handled daily. A variation of £ 117 agrees feet for the estimated floor area is not excessively large when considering the size of bottle washing rooms. This amount of variation is due to differences in methods of hendling bottle cases in the bottle washing room and also due in part to the limited size of the sample. However, the area as estimated by equation (1) in this section should provide a bottle washing room of adequate size handling the square-type milk bottle.

Table AVIII shows the estimate of the average amount of floor space, with upper and lower limits, required for milk plant bottle washing rooms as calculated by the estimating equation, $Y_c = 3^{\circ}5.151 \neq 0.204005X$. The upper and lower limits for the required area were determined by adding \neq 117 square feet to the estimated area. This amount of varietion in the floor area would be expected to include approximately 6° per cent of the plants studied.

TABLE AVIIT

FOR MANY OF FLOOR ARTA FERRIP D FOR MILK PLANT ROTTLE MASKING FOCH USED IN CONSTRUCTION FIG. 5

pot	ls. of ctled lilk	Floor	Area	Eeruired	(£t.2)
-	ndled ily	Avr.		Mox.	<u> Vin.</u>
	500	405		<u>602</u>	<u> 567</u>
1,	.000	<u>5°6</u>		704	469
2,	,000	<u>7°9</u>		c07	672
	_000	ററാ		1,110	8 <u>75</u>
و4	,000	1,105		1,713	<u>۱٫۲۶۸</u>
5	,000	1,708		1,516	1, ²² 1

Milk Storage Fooms

The size of the milk storage room was investigated in 12 milk plants handling from 5°0 to 7,950 gallons of milk daily. Five of the plants indicated that the milk storage room was too small and these were not included in the analysis of data. The two plants handling 975 and 2,510 gallons of milk daily did not indicate whether the milk storage room was large enough, however, they were both assumed to be adequate in size. The plant handling 750 gallons of milk daily was using round bottles and was also handling a small amount of milk in paper containers. Only those plants handling milk in square bottles were included in the analysis.

Pesults for milk storage rooms. Table AIX shows the results obtained from the calculations for the relationship between the gallons of milk handled daily and the required area for milk storage rooms.

YIA ELEAT

FISHLTS CHTAINED FROM CALCULATIONS FOR THE PALATICUOVER RUDWIEW GALLONS OF MILK NAMELED DAILY AND THE FLOOR AREA FROMERUD FOR MILK PLANT MILK SECFAGE ROCKS

Estimating Equation	Standard Error of Estimate	Correlation Coefficient
1. $Y_c = 251.046 \neq 0.136571X$	f y _s = <u>₹</u> 72.015	r = 0.9214
2. Log ₁₀ Y _c = 1.076085 / 0.504535Log ₁₀ X	√ y' _s = <u>/</u> 0.060596	6 P = 0.9522

Equation (2) was assumed to represent the best relationship between the gallons of milk handled daily and the floor area required for milk storage rooms. (See Table AIK).

The degree of relationship between the floor area and the gallons of milk handled daily was more satisfactorily explained when using equation (2) then when using equation (1), however, the difference was small, as indicated by the correlation coefficients. It was also observed that approximately 85 and 87 per cent of the variation in the floor space for milk storage rooms was explained by the relationship of square feet of area to gallons of milk handled daily when estimated by equations (1) and (2), respectively.

The amount of floor space, when estimated by equation (1), may be expected to very between £ 72 square feet of the actual value for approximately 95 per cent of the plants studied.

The range of variation to be expected between the actual and the estimated amount of floor space required for milk storage rooms would be

within \neq 41 and - 36 square feet for approximately 66 per cent of the plants handling 500 gallons of milk daily, and within \neq 151 and - 114 square feet for 66 per cent of those plants handling 5,000 gallons of milk daily, when the areas are estimated by equation (2). If the range of variation were extended to include approximately 95 per cent of all plants, the variations stated above would be doubled.

Equation (2) indicated a slightly better relationship between the floor area and the gallons of milk handled for milk storage rooms than did equation (1). Equation (2) also showed a lesser amount for small plants and a greater amount for larger plants in the variation between the actual and the estimated amount of floor space required. A larger variation, however, would be expected for the larger plants. Therefore, equation (2), probably provides the best estimate of the floor area.

The size of the milk storage room appeared to be directly related to the gallons of milk handled daily by the milk plant. The variation of the estimate was probably due to differences in the number of products handled, the method of handling the finished products, the arrangement of the room, and the height at which cases of milk are stacked. Also, some of the variation is undoubtedly due to the small number of plants available for making this analysis. The area as estimated by equation (2) should provide sufficient floor space for the milk storage room handling milk in the square-type milk bottle.

Table AX shows the estimate of the average amount of floor space, with upper and lower limits, required for milk plant, milk storage rooms as calculated from the estimating equation, $Log_{10}Y_c = 1.076085 \neq 0.504575Log_{10}X_c$. The upper and lower limits for the estimated area were determined by adding

∠ 0.060596 to the logarithm of the estimated value and then determining the anti-logarithm. This variation in the floor area would be expected to give a range of area which would include that for approximately 68 per cent of the plants studied.

TABLE AX

ESTIMATE OF FLOOR AREA PEQUIRED

FOR MILK PLANT MILK STOPAGE ROOMS USED

IN OCCUSTRUCTING FIG. 4

Gals. of Milk Handled	Floor Area	Required	(ft. ²)
Daily	Avg.	Max.	Min.
500	274	315	238
1,000	339	2.47	<u>338</u>
2,000	552	654	400
3,000	677	77흥	589
4,000	782	900	6°1
5,000	£76	1,007	762

Dry Storage Rooms

The size of the dry storage room was investigated in ten milk plants handling from 5°0 to 7,050 gallons of milk daily. Four of the plants indicated that the dry storage room was too small and these were not included in the analysis of data. The plant handling 975 gallons of milk daily did not indicate whether the milk storage room was large enough and was omitted from the calculations.

<u>Results for dry storage rooms</u>. Table AYI shows the results obtained from the calculations for the relationship between the gallons of milk handled daily and the required area for milk plant dry storage rooms.

TABLE AXI

FOR THE RELATIONSHIP BROWEEN GALLONS
OF MILK HANDLOD DAILY AND THE FLOOR
ARLA FEQUIESD FOR MILK PLANT
DRY STORIGE ROOMS

Estimating Equation	Stenderd Error of Estimate	Correlation Coefficient
1. Y _c = 864.461 ≠ 0.300495X	(y _s = ∠ 3,095	r = 0.6005
2. Log ₁₀ Y _c = 0.4532°0 ≠ 0.109050Log ₁₀ X	G y¹ ₈ = ₹ 0.204513	P = 0.8677

Equation (2) was the only equation showing a satisfactory relationship between the gallons of milk handled daily and the floor area required for milk plant dry storage rooms. (See Table AXI).

The difference between the reliability of the two estimates, as shown by the correlation coefficients, was so extreme that selection could be made on the basis of this alone, recalling that a coefficient of 1.00 indicates a relationship which is perfect. Approximately 56 and 75 per cent of the variation in the floor space for milk plant dry storage rooms, when estimated by equations (1) and (2), respectively, was explained by the relationship of square feet of area to gallons of milk handled daily. The other 64 and 25 per cent of the variation was due to other factors. Therefore, equation (2) was the only one showing any degree of relationship between the two variables.

Enaction (2), however, does not provide a very reliable relationship. The amount of floor space, when estimated by equation (2), may be expected to vary within \neq 261 and = 164 square feet of the actual value for approximately 68 per cent of those plants handling 500 gallons of milk daily and within \neq 2,456 and = 1,554 square feet of the actual value for approximately 69 per cent of those plants handling 9,000 gallons of milk daily. This large amount of variation was due to the extreme difference in the size of the dry storage rooms found in milk plants and also, to the limited number of plants included in the analysis.

Because of the large enduct of varieties found in milk plant dry storage rooms, a reliable estimate of the space requirements cannot be made.

Table A'II shows the estimate of the everage amount of floor space, with upper and lower limits, required for milk plant dry storage rooms as calculated from the estimating equation, $\log_{10} Y_{\rm c} = 0.4552^{\circ}0 \neq 0.809050\log_{10} X_{\rm c}$. The upper and lower limits for the required area were determined by adding $\neq 0.204515$, the logarithm of the estimating error, to the logarithm of the estimated area and then determining the anti-logarithm. The range of area contained within these limits would be expected to include that required for approximately 6° per cont of all plants.

TIYA TI AYII

FOR MILK PLANT DRY STORAGE POOMS USED IN OCNSTRUCTING FIG. 5

Galc. of Milk Mandled Daily	Floor A	Area Fecuir Max.	red (ft.2)
500	Lyg	<i>6</i> 94	271
1,000	750	1,215	474
2,000	1,550	2,151	<u>871</u>
5, 000	1,01,7	2,052	1,155
000 با	2,771	2,73 5	1,456
5,000	<u> </u>	2,271	1,7!4
<i>6,</i> 000	<i>5</i> ,075	5,1 ²	2,001_
7,000	z, 505	5, ⁰ 70	2,219
°,000	4,004	6 <u>,540</u>	2,550

Poiler Fooms

Data were evailable for bailer rooms from nine milk plants handling from 5°0 to 7,050 gallons of milk daily. The plant handling 750 gallons of milk daily stated that the size of the boiler room was too small and was not used in this analysis.

Focults for boiler rooms. Table AXIII shows the results obtained from the colculations for the relationship between the gallons of milk handled daily and the required area for milk plant boiler rooms.

TITYA EJCAT

FYSTILTS OBTATION FROM CALCULATIONS
FOR THE RELATIONSHIP ENTWEET GALLONS
OF MILK HANDLID DAILY AND THE FLOOR
APPA DESWIKED FOR MILK PLANT
DOILER ROOMS

Estimating Equation	Standard Error of Estimate	Correlation Coefficient
1. Y _c = 98.210 ≠ 0.126028X	√ y ₃ = <u>₹</u> 74.000	r = 0.9751
2. Log ₁₀ Y _c = 0.143176 / 0.736160Log ₁₀ X	「y's = ₹ 0.059744	P = 0.5°05

Equation (2) was assumed to represent the most satisfactory relationship between the gallons of milk handled daily and the floor area required for milk plant boiler rooms. (See Table AXIII).

The difference between the reliability of the two estimates was practically negligible, as explained by the correlation coefficient. When estimated by equations (1) and (2), respectively, approximately 95 and 96 per cent of the variation in the floor space for milk plant boiler rooms was explained by the relationship of square feet to gallons of milk handled daily, indicating a very reliable relationship.

The amount of floor space, when estimated by equation (1), may be expected to vary between $\angle 7^{4}$ square feet of the actual value for the space required in approximately 6° per cent of all plants and between $\angle 14^{\circ}$ square feet in approximately 95 per cent of all plants.

The range of variation to be expected between the actual and the estimated amount of floor space required for milk plant boiler rooms would be within \u2012 20 and - 17 square feet for approximately 69 per cent of all

plants handling 500 gallons of milk daily, and within \neq 155 and - 154 square feet for approximately 69 per cent of those plants handling 8,000 gallons of milk daily, when the areas are estimated by equation (2). If this range of variation were extended to include approximately 95 per cent of all plants, the variations stated above would be doubled.

The size of the boiler room was found to be directly related to the gallons of milk handled daily by milk plants. The variation in the estimated floor area was probably due to some differences in the original design, and also, in part, to the small size of the sample available for making this analysis.

Table AXIV shows the estimate of the average emount of floor space, with upper and lower limits, required for milk plant boiler rooms as calculated from the estimating equation, $\log_{10}Y_c = 0.145176 \neq 0.735160\log_{10}X$. The upper and lower limits for the required area were determined by adding $\neq 0.059744$, the logarithm of the estimating error, to the logarithm of the estimated value, and then determining the anti-logarithm. Approximately 60 per cent of all plants would be expected to be included in the range of area bounded by these limits.

TABLE AXIV

DESIMATE OF FLOOR ASEA SECURED FOR MILK PLANT BOILER ROOMS USED IN CONSUMBLE FIG. 6

Gals. of Milk Handled	Floor	Area Required	(ft. ²)
Daily	Av ~.	Max.	Min.
500	135	155	112
1,000	225	253	105
2,000	<u> 374</u>	450	525 <u> </u>
<u>5,000</u>	505	579	440
4,000	<u>624</u>	716	543
5,000	7 55	۶43	641
6,000	۶4 1	964	772
7,000	아1	1,010	£20
<u>°,000</u>	1,059	1,102	505

Plant Offices

Data were available for plant offices from eight milk plants handling from 500 to 7,950 gallons of milk daily. The plant handling 975 gallons of milk daily did not indicate if the space ellotted to plant offices was large enough, however, it was assumed to be adequate. The plant handling 700 gallons of milk daily included the driver's check room in the space allotted to offices and this plant was omitted from the analysis.

Results for plant offices. Table AXV shows the results obtained from the calculations for the relationship between the gallons of milk handled daily and the required area for milk plant offices.

TABLE AXV

REDULTS OBTAINED FROM CALCULATIONS FOR THE RELATICIONIP BOWEEN GAILONS OF MILK HADDLED DAILY AND THE FLOOP ATEA PEQUIRED FOR MILK PLANT OFFICES

Estimating Equations	Standard Error of Estimate	Correlation Coefficient
1. Y _c = 151.976 / 0.159190X	√ y₃ = <u>/</u> 196.854	r = 0.9014
2. Log ₁₀ y _c =-0.204774 ≠ 0.867218Log ₁₀ y	(y' _s = 0.179797	? - 0.º875
3. $Y_c = -145.185 \neq 0.456811X$ $-10^{-7}x560.495X^2$	√ ys = <u>≠</u> 98.066	P_= 0.9765

Equation (3) was assumed to represent the most satisfactory relationship between the gallons of milk handled daily and the floor area required for milk plant offices. (See Table XV).

of milk handled daily was much better explained by equation (3) as indicated by the correlation coefficients. Approximately 21 and 79 per cent of the variation in floor space for plant offices was explained by equations (1) and (2), respectively, by the relationship of square feet to gallons of milk handled daily, while about 95 per cent of the variation was explained by equation (3).

When estimated by equation (1), the amount of floor space required for plant offices may be expected to vary between \neq 107 square feet of the actual value for approximately 6° per cent of all plants. The difference between the actual and the estimated amount of floor space for plant offices, when estimated by equation (2), may be expected to vary within \neq 70 and = 46

sowere feet for 6° per cent of all plants handling 600 collons of milk deily and within \$\frac{776}{776} and \$-\$13 course floot for 60 per cent of all plants handling \$\frac{9}{600}\$ collons of milk deily. The variation expected in the floor area when estimated by equation (7), would be within \$\frac{1}{2}\$ 90 sowere feet of the actual value when approximately 5° per cent of all plants are included. If the above rances were extended to include approximately 95 per cent of all plants, the amount of variation in the floor area between the actual and the estimated values would be doubled. Since the relationship between the floor area and the pollons of milk handled deily was much more satisfactorily explained by equation (5) and also, the estimation error was smaller, especially for the larger plants, this equation was selected as the one providing the best estimate of the office cause required for milk plants.

the variability in the floor space aveilable for offices in the larger plants, the relationship established does not give a very reliable indication of the office space requirements for the larger plants. The estimated values indicated that the floor space required for plant offices increased with an increasing plant capacity for plants handling up to approximately 6,000 gallons of milk daily. For plants handling over 6,000 gallons of milk daily, the area required decreased with an increasing plant capacity. It might be expected that the area would increase at a decreasing rate, but it is imprectical to expect the required area to decrease with an increased plant capacity. Therefore, the upper limits of this estimate, probably beyond a plant capacity of approximately 5,000 gallons daily, cannot be depended upon to produce a very reliable estimate.

Table XVI shows the estimate of the average amount of floor space, with upper and lower limits, required for milk plant offices as calculated from the estimation equation, $Y_0 = -145.185 \neq 0.45\%11X - 10^{-7}x860.495X^2$. The upper and lower limits for the required area were determined by adding $\neq 9^{\circ}$ square feet to the estimated area. This amount of variation in the estimated area should give a range which would be expected to include the areas for approximately 6° per cent of all plants.

TABLE ANVI

DELIMATE OF FLOOR ANDA RECHIFFED
FOR MILK PLANT OFFICES USED
IN CONSUMPTION FIG. 7

Gals. of Milk Handled	Floor A	rea Pequir	ed (ft.2)
Dily	Av.	Mox.	Min.
500	<u>75</u>	174	- 22
1,000	278	<u>3</u> 76	1.00
2,000	626	724	502
5, 000	905	1,001	£05
4,000	1,107	1,205	1,009
5,000	1,240	1,558	1,142
ડ, 000	1,500	1,798	1,202
7,000	1,2^8	1,586	1,190
°,000	1,204	1,502	1,106

APPOINDIX II

List of Plant Descriptions

Plant A

Plant A, constructed in 1949 to handle approximately 3,500 gallons of milk daily, was a one-story structure processing 5°0 gallons of milk daily. Milk was bottled in the square-type bottle with approximately 1,000 quarts and 1,500 half-pints of milk produced daily. In addition, approximately 80 pounds of cottage choose were processed daily.

The products handled were whole milk, homogenized vitamin D milk, chocolate milk, chocolate drink, cereal mix, coffee cream, whipping cream, buttermilk, cottage cheese, and skim milk.

The employees consisted of one man for the office, four route men, and three men handling the processing operations.

The following information lists the size of the various rooms and the equipment required for the milk plent.

Receiving room. The receiving room was 150 ft. wide x 20 ft. long x 14 ft. high and was considered to be large enough. The following equipment was listed for the receiving room.

- 1. Weigh tank, (50 gals.)
- 2. Rotery can wesher, (4 cpm.)
- 3. Poller conveyors for receiving and returning cans

Processing room. The dimensions for the processing room were 20 ft. wide x 55 ft. long x 14 ft. high. This room was assumed to be sufficiently large.

The equipment required for processing is listed as follows.

- 1. Preheater, (4,000 lbs. per hr.)
- 2. Pasteurizers, (2 at 200 gals. each)
- 3. Homogenizer, (200 gal. per hr.)
- 4. Surface cooler, (2,500 lbs. per hr.)
- 5. Bottle filler, (26 gts. per min.)
- 6. Cheese vat, (50 gal.)
- 7. Separator-clarifier, (1,000 lbs. per hr.)

Bottle washing room. The size of the bottle washing room was 10 ft. wide x 25 ft. long x 14 ft. high and was considered to be adequate in size. The equipment indicated for the bottle washing room was as follows.

- 1. Soaker-type bottle washer, (4-wide, 32 bpm)
- 2. Compressors, (2 at 2 hp)
- 3. Cases of bottles handled on dollies

Milk storage room. The milk storage room was 15% ft. wide x 22 % ft. long x 9 ft. high and was assumed to be large enough. Milk was stored in squaretype milk bottles.

Dry storage room. The dry storage room was approximately one-third as large as necessary and was 10 ft. wide x $1\frac{1}{20}$ ft. long x 14 ft. high.

Office space. This plant had an office $8\frac{1}{2}$ ft. wide x 18 ft. long x 9 ft. high and was considered to be large enough.

<u>Driver's check room</u>. A sufficiently large driver's check room was available which measured 7 ft. wide x 1^{-1} ft. long x 14 ft. high.

Boiler room. A 40 horsepower oil-fired boiler was located in a 12 ft. wide x 17 ft. long x 14 ft. high room. This room was considered to be adequate in size.

Locker room. A small room $7\frac{1}{2}$ ft. wide x $13\frac{1}{2}$ ft. long x 9 ft. high was available as a lavatory and shower room, and was sufficiently large.

Plant B

Plant B, processing approximately 700 gallons of milk daily, was a one-story plant constructed in 1947 to handle 750 gallons of milk daily. Milk was bottled in square-type bottles with approximately 2,400 quarts and 1,200 half-pints being bottled daily. In addition, approximately 80 pounds of cottage cheese per day and 10,000 gallons of ice cream per year were being processed.

The products handled were grade A and B milk, raw milk, homogenized vitamin D milk, chocolate milk, buttermilk, light cream, heavy cream, and orangeade.

This operation required three men for processing, two office workers, and six route salesmen.

The following information gives the size of the rooms for this plant and the equipment required to carry out the processing operations.

Receiving room. The size of this room was stated as being 10 ft. wide x 20 ft. long x 10 2/3 ft. high. The operator indicated that this room should probably be 15 ft. wide. The list of equipment for the receiving room was as follows.

- 1. Fotary can washer, (1 cpm)
- 2. Dump tank

<u>Processing room.</u> An adequate sized room for processing was available which measured $17\frac{1}{3}$ ft. wide x 40 ft. long x 10 2/3 ft. high. The equipment required for processing included:

- 1. Clarifier, (6,000 lls. per hr.)
- 2. Separator, (5,500 lbs. per hr.)
- 3. Fosteurizers, (5 at 150 gal. each)
- 4. Cheese vats, (00 gal.)
- 5. Homogonizer, (400 gal. per hr.)
- 6. Orbinet cooler, (4,000 lbs. per hr.)
- 7. Bottle filler, (2,000 gts. per hr.)
- 8. Batch freezer, (5 gal.)
- 9. Ice cream pac'tage filler, hand operated

Bottle washing room. The bottle washing room was $17\frac{1}{5}$ ft. wide x 40 ft. long x 10 2/3 ft. high and was assumed to be large enough. The following equipment was located in this room.

1. Sonker-type bottle washer, (4 wide; 2,200 bph)

Milk storage room. The milk storage room was sufficiently large and measured 14 ft. wide x 22 ft. long x $\frac{1}{2}$ ft. high. Milk was handled in square bottles.

Dry storage room. This room was indicated as being just about large enough. The dimensions were 10 ft. wide x 20 ft. long x 10 2/3 ft. high.

Cffice and driver's check room. The size of this room was 18 ft. wide x 20 ft. long x 10 2/3 ft. high and was considered to be large enough.

Epilor room. A 30 horsepower horizontal, package unit boiler was located in a sufficiently large room measuring 10 ft. wide x 20 ft. long x 10 2/3 ft. high.

Compressor room. This room measured 6 ft. wide x 14 ft. high and was adequate in size. The following compressors were located in this room.

- 1. One, 5 hp. (Freen-12)
- 2. Two, 2 hp. (Freen-11)
- 5. One, 2 hp. (Mothyrl-chloride)
- 4. One, 1 hp. (Freen-12)

<u>Locker room</u>. The size of the locker room was " ft. wide x " ft. long x 9 ft. binh and was of sufficient size.

Flant C

Figure C was a one-story built originally in 1942 to bendle 400 callons of milk daily. In 1950, a new building was erected, additions were made to the original plant, and the complete legal was recreaned to headle 750 gallons of milk daily. The majority of the milk was bottled in the round-type bottle with approximately 2,000 quarts, 100 pints, and 1,000 half-pints being bot led daily. Approximately 400 quarts were handled in paper containers. In addition, about 10,000 gallons of ice cream were processed yearly.

The products handled were market milk, cottens cheese, buttermilk, ice creek, orange drink, and chocolete milk.

Three man were amployed to handle processing, one was required for the office, and five were needed as route salesmen.

The information listed below states the size of the the ${\bf v}$ rious rooms found in the plant and the covirrent required.

Encouring room. The receiving room was 15 ft. wide x 15 ft. long x % ft. light and was considered to be large enough. The equipment required included.

- 1. Value took. (500 15.)
- 9. Feller compound

Processing room. The dimensions of the processing room were 1° ft. wide x 40° ft. long x 1° ft. high and it was assumed to be sufficiently large. The equipment required for processing is listed as follows.

- 1. Plate pro-heater, (4,000 lla. per hr.)
- 2. Separator-clarifier, (4,000 lbs. per br.)
- 3. Milk storm to tank, (300 gal.)
- 4. Fraterrisers, (2 et 150 mol. ench)
- 5. Cheese vat, (100 grl.)
- 6. Homomonizer, (200 mal. por hr.)
- 7. Plate cooler, (5,000 lbs. per hr.)
- 8. Eattle filler, (50 to 40 ats. per min.)

Bottle weeking room. The size of the lettle weshing room was 50 ft. wide x 52 ft. long x 13 ft. high and it was considered to be adequate in size. The equipment indicated for the bottle weaking room was as follows.

- 1. Scaler-type bottle washer, (32 to 49 ofs. per min.)
- 2. Roller conveyor for cases from washer to filler.
- 3. Power conveyor for bottles from weather to filler.

<u>Milk storeds room.</u> The milk storege room was sufficiently large and measured 15 ft. wide x 20 ft. long x of ft. high. Milk was handled in round bottles with a small except handled in paper containers.

Dry storeme room. There were two rooms for dry storeme and the total area was considered to be too small. One room measured 20 ft. wide x 25 ft. long x 10 ft. bish, while the other room was 16 ft. wide x 20 ft. long x 6 ft. high.

Boiler room. This room, which was large enough, was 15 ft. wide x 15 ft. long x 9 ft. high. It contained a 20 horsepower boiler which was assumed to be too small.

Compressor room. This room measured 12 ft. wide x 12 ft. long x 9 ft. high and was considered to be sufficiently large. The following compressors were used for both milk and ice cream handling.

- 1. Che 10 hp. compressor
- 2. One 20 hm. compressor

<u>Maintenance shop</u>. The size of this room was θ ft. wide $x \in \theta$ ft. long $x \in \theta$ ft. high and it was adequate in size.

Locker room. The locker room was large enough and measured 7 ft. wide x 7 ft. long x $^\circ$ ft. high.

Office space. This plant had an office 1° ft. wide x 1° ft. long x ° ft. high which was considered to be sufficiently large.

Driver's check room. A check room considered to be adscuate in size was available which measured 4 ft. wide x 4 ft. long x 2 ft. high.

Plant D

Plant D was a two-story plant, becoment and ground floor, built in 1950 to handle 2,000 gallons of milk daily. At the time of this study

975 gallons of milk deily was being processed. In addition, this plant was processing approximately 50,000 gallons of ice cream per year.

The information listed below indicates the size of the various rooms found in the plant and the equipment required. No response was given indicating whether or not the rooms were large enough.

Receiving room. The receiving room was 15 ft. wide \times 29 1/3 ft. long. The following equipment was listed for this room.

- 1. Rotary can washer, (6 cpm.) too small
- 2. Weich tank, (500 1b.)
- 3. Clarifier, (800 gal. per hr.)
- 4. Milk storage tank, (1,500 gal.)
- 5. Roller conveyors for receiving and returning cans

Processing room. This room was 20¹ ft. wide x 52 ft. long. The equipment required included.

- 1. Senarator, (120 gal. por hr.) too small
- 2. Pasteurizers, (3 at 300 gal. and 1 at 100 gal.)
- 5. Homoganizer, (400 gal. per hr.)
- 4. Plate cooler, (500 gal. per hr.)
- 5. Bottle filler, (50 cts. per min.)

Byproducts room. This room was measured in two sections because of the shape. The dimensions were 11.2/3 ft. wide x $10\frac{1}{2}$ ft. long plus $11\frac{1}{2}$ ft. wide x 23 ft. long. The only equipment listed for this room was.

- 1. Batch freezer, (10 mal.)
- 2. Ice cream package filler, hand operated

Bottle washing room. The size of the bottle washing room was 19 ft. wide

- x 32 ft. long. The equipment listed for this room was as follows.
 - 1. Sosker-type washer, (6 wide)
 - 2. Onse washer

<u>Milk storage room</u>. The dimensions listed for this room were 12 1/3 ft. wide x $24\frac{1}{3}$ ft. long. Foller conveyors were used for loading delivery trucks.

Dry storage rooms. The dry storage room measured 12 1/6 ft. wide x 19 1/6 ft. long.

Office space. This plant had an office 15% ft. wide x 15% ft. long.

Driver's check room. The room available measured 9 ft. wide x 12 ft. long.

Besement. The basement was utilized for refrigeration, boiler room, maintenance shop, and truck storage. Some of the equipment listed was as follows.

- 1. Cne, 5 hp. compressor
- 2. Two, 10 hp. compressors
- 3. One, 15 hp. compressor
- 4. Cne, 20 hp. boiler

Plant E

Plant E was a one-story plant handling approximately 1,100 gallons of milk daily. All milk was handled in the square-type milk bottle.

Four men were employed to handle the processing, while one was required for the office and six were required to handle the milk routes.

The information listed below indicates the size of the rooms in the plant and the equipment available to handle the processing operations.

Feceiving room. The receiving room was 11 ft. wide x 15 ft. long x 11 2/3 ft. high and was considered to be large enough. The equipment required included.

- 1. Rotary can washer, (3 cpm.)
- 2. Weigh tank, (500 lbs.)
- 3. Roller conveyor for receiving cans

Tenk storage room. This room was $1^{l\frac{1}{2}}$ ft. wide x 15 ft. long x 11 2/3 ft. high and was adequate in size. The equipment used was as follows.

- 1. Milk storage tank, (1,500 gal.)
- 2. Pipe washing tank

Processing room. The processing room was smaller than required and was $14\frac{1}{3}$ ft. wide x 24 1/6 ft. long x 11 2/3 ft. high. The equipment required included.

- 1. Separator, (7,000 lbs. per hr.)
- 2. Pasteurizers, (1 each at 100, 200, & 300 gal.)
- 3. Homogenizer, (400 gal. per hr.)
- 4. Flate Cooler (6,000 lbs. per hr.)
- 5. Bottle filler, (48 gts. per min.)

Bottle washing room. The size of this room was given as being 15 ft. wide x 21½ ft. long x 9 ft. high plus a section 11½ ft. wide x 15 ft. long x 9 ft. high. This L-shaped room was considered to be sufficiently large to handle all incoming bottles. The following equipment was listed for this room.

- 1. Socker-type bottle washer, (8 wide, 55 bpm)
- 2. Cases of bottles handled on dollies

<u>Milk storage room</u>. The milk storage room was too small and cases of milk could not be stored on dollies. This room measured 14 ft. wide x $15\frac{1}{5}$ ft. long x $6\frac{1}{5}$ ft. high.

Dry storage room. The dry storage room was too small and measured $11\frac{1}{2}$ ft. wide x $14\frac{1}{2}$ ft. long x 11 2/3 ft. high.

Office space. This plant had an office 11 ft. wide x 11 ft. long and it was considered to be sufficiently large.

<u>Driver's check room</u>. The room available measured 5 2/3 ft. wide x 9 5/6 ft. long x $7\frac{1}{6}$ ft. high and was not adequate in size.

Poiler room. A 50 horsepower gas-fired boiler was located in a room 11 1/3 ft. wide x 18 ft. long x 11 2/3 ft. high which was assumed to be large enough.

Compressor room. This room measured $6\frac{1}{5}$ ft. wide x $\frac{8}{5}$ ft. long x 11 2/3 ft. high and was emple in size. One $7\frac{1}{5}$ horsenower compressor was available. In addition, a space 11 1/5 ft. wide x 16 2/3 ft. long x 11 2/3 ft. high was occupied by a 6,000 lb. capacity sweet water tank.

Plant F

Plant F, a one-story structure built in 1949 to handle approximately 2,525 gallons per day, was processing 1,165 gallons per day. This plant was still in the process of remodeling. Milk was handled in the squaretype milk botale. In addition, approximately 20,000 gallons of ice cream

were processed yearly and 300 nounds of cottage cheese were processed weekly.

Four men were required to handle the processing operations.

The following information lists the size of the various rooms and the equipment required for handling all processing operations.

<u>Focaiving room</u>. The receiving room was 14% ft. wide x 1°% ft. long x 9 ft. high and was considered to be large enough. The following equipment was listed for the receiving room.

- 1. Rotary can washer, (5 cans)
- 2. Which tank
- 3. Follonce tank, (200 gal.)
- 4. Foller conveyors for receiving and returning cans

Processing room. This room was measured in three arctions because of the variable shape. The sections measured were 20 ft. wide x 30 ft. long x 12 1/3 ft. high, 7 ft. wide x 27 ft. long x 12 1/3 ft. high, and 6 ft. wide x 10 f/5 ft. long x 12 1/3 ft. high and were considered to be sufficiently large. The equipment required for processing is listed as follows.

- 1. Milk storese tank, (1,500 gel.)
- 2. Separator, (250 cal. per br.)
- 3. 4.T.S.T. pasteurizer, (5,000 lbs. per hr.)
- 4. Posteurizer, (5 et 200 gol. each, 1 et 60 gol.)
- 5. Momogenizer, (2,700 lbs. per hr.)
- 6. Cheese vat., (100 cal.)
- 7. Pottle filler, (10 gta. per min.)
- 9. Wesh tank with power brush
- 9. Dry storest cuploard

- 10. Power conveyor from weather to filler for bettles
- 11. Follor conveyor from washer to filler to storage for cases

Fottle weshing room. The size of the tottle weshing room was given in two sections because of the variable shape of the room. One section was 22 2/3 ft. wide x 25 5/6 ft. long x 12 1/5 ft. bigh and the other was 14 ft. wide x 30 ft. long x 12 1/5 ft. high. This room was considered to be adequate in size. The emigment indicated for the bottle washing room was as follows.

- 1. Scaler-type bottle washer, (8 wide, 50 bpm)
- 2. Bottle cases handled on dollies

Milk storage room. The milk storage room was 12 ft. wide x 15 ft. long x 6% ft. high and was much too small. Milk was handled in the square-type bottle.

Dry storage room. The dry storage room was also too small and was 16 ft. wide x 26 ft. long x 5 ft. high. It was necessary to have most of the paper supplies stored by the supplier and have them ordered as needed.

Other rooms. This plant was in the process of remodeling and had planned a new boiler room which would contain the compressor room and the maintenance shop. In addition, the new plans called for larger storage rooms, new locker rooms, offices, and retail store. The other equipment is listed below.

- 1. One 5 hm. compressor
- 2. One, 25 hp. coal-fired boiler, standby
- 5. Cne, 50 hm. oil-fired boiler

Plant G

Plant G, processing approximately 1,200 callons per day of milk, was a two-story plant built in 1920. Now additions have been made since that time to accommodate an expanding business. In addition to handling milk, this plant processed approximately 125,000 callons of ice cream yearly plus some cottage chaese. Six men were required to handle all processing operations.

The only information evailable from this plant was that for the receiving room. This room measured 20 ft. wide x 20 ft. long x 10 ft. high and was considered to be sufficiently large.

Plant H

Plant H, processing approximately 2,200 gallons of milk daily, was a one-story plant constructed in 1947 to handle 2,000 gallons of milk daily. Since that time, a change has been made in the pasteurisation equipment and raw milk storage to accompdate the increase in production. Milk was bettled in square-type bottles with approximately 6,940 quarts, 200 pints, and 2,500 half-pints being bottled daily.

The products handled in addition to milk were buttermilk, chocolate milk, heavy creem, light cream, cereal mix, cottage cheese, and skim milk.

Three men were employed to handle processing, two were required for the office, and six were needed as route salesmen.

The information listed below states the size of the various rooms found in the plant and the equipment required.

<u>Poceiving room</u>. The receiving room was 20 ft. wide x 20 ft. long x 12 ft. high and was considered to be large enough. The equipment required included.

- 1. Rotary can washer, (3 cans)
- 2. Weigh tank, (5 cons)
- 3. Roller conveyors for receiving end returning cans

Tent storage room. The dimensions for this room were 12 ft. wide x 15 ft. long x 10 ft. high. It was considered to be sufficiently large enough to provide space for one, 5,000 gallons storage tank. Provisions were being made to add another tank.

Processing room. An adequate sized room for processing was evailable which measured 25 ft. wide x 50 ft. long x 12 ft. high. The equipment required for processing included.

- 1. Clarifier, (900 gal. per hr.)
- 2. Separator, (sir tight)
- 3. H.T.S.T. pasteurizer, (600 gal. per hr.)
- 4. Homogenizer, (600 gel. per hr.)
- 5. Bottle filler

Bottle washing room. The bottle washing room was 20 ft. wide x 40 ft. long x 12 ft. high and was assumed to be large enough. The following equipment was located in this room.

- 1. Soaker-type bottle washer, (8 wide)
- 2. Power conveyor from washer to filler for bottles
- 3. Roller conveyor from washer to filler for cases
- 4. All cases of bottles are handled on dollies from trucks to the washer

Milk storage room. The milk storage room had space for expansion and measured 20 ft. wide x 50 ft. long x 6 ft. high. Milk was handled in square bottles.

Compressor room. This room measured 20 ft. wide x 20 ft. long x 12 ft. high and was considered to be too small. The following compressors were located in this room.

- 1. One ammonia compressor, (4x4)
- 2. One ammonia compressor, (5x5)

Locker room. The size of the locker room was 8 ft. wide x 15 ft. long x 9 ft. high and it was too small.

The boiler room, dry storage room, and offices were located in a separate building constructed since the plant was originally built. A 25 horsepower gas-fired boiler was available as a steam generator.

Plant I

Plant I, a two-story plant constructed in 1949 to handle 750 gallons of milk per hour, was processing approximately 2,510 gallons of milk daily. The second floor of this plant was used for dry storage and offices. Milk was bottled in square-type bottles with approximately 9,820 quarts, 1,790 third-quarts, 265 pints, 5,100 half-pints, and 575 quarts in bulk being handled daily.

The products handled were grade A milk, homogenized milk, skim milk, buttermilk, light and heavy cream, and chocolate milk.

The employees consisted of six men for the office, thirteen route men, and seven men handling the processing operations.

Receiving room. The receiving room was 15 ft. wide x 38 2/3 ft. long x 14% ft. high and was considered to be large enough. The following equipment was listed for the receiving room.

- 1. Straighy-away can washer, (6 cpm)
- 2. Weich tank, (750 lbs.)

Processing room. The dimensions for the processing room were 36.2/5 ft. wide x 46.1/5 ft. long x 1/6 ft. high. This room was assumed to be sufficiently large. The equipment required for processing is listed as follows.

- 1. Pre-heater, (11,000 lbs. per hr.)
- 2. Clarifier, (6,500 lbs. per hr.)
- 3. Storage tanks, (2 at 5,000 gal. each)
- 4. H.T.3.T. Pasteurizer, (6,500 lbs. per hr.)
- 5. Pasteurizers, (2 at 200 gal. each)
- 6. Homogenizer, (4,200 lbs. per hr.)
- 7. Milk cooler, (25,000 lbs. per hr.)
- €. Bottle filler and hooder, (120 gts. per min.)

Bottle washing room. The size of the bottle washing room was 25 ft. wide x 35% ft. long x 10 ft. high and it was considered to be adequate in size. The equipment indicated for the bottle washing room was as follows.

- 1. Soaker-type bottle washer, (90 bpm)
- 2. Case washer, (120 cases per min.)

Milk storage room. The milk storage room was 19 ft. wide x $36\frac{1}{2}$ ft. long x & ft. high. It was not indicated whether the room had adequate space.

Eoiler room. A 125 horsepower cil-fired boiler was located in a room 14 ft. wide x 35% ft. long x 14% ft. high which was considered to be adequate in size.

Compressor room. This room measured 20 ft. wide x 40 ft. long x 142 ft. high and was adequate in size. The following compressors were located in this room.

- 1. Two 5x5 compressors
- 2. Two $6^1 \times 6^1$ compressors

Maintenance shop. The shop occupied a space 18 ft. wide x 34 ft. long x 14% ft. high and was sufficiently large.

Locker room. The locker room was of adequate size and measured ξ_{0}^{\pm} ft. wide x 17 5/5 ft. long x 12 ft. high and provided facilities for seven men.

Office space. This room measured 22 ft. wide x 34 ft. long x & ft. high and was considered to be large enough.

Driver's check room. Adequate space was available in a room 10 ft. wide x 19 ft. long x 8 ft. high.

Plant J

Plant J, a two-story plant constructed in 1950, was handling approximately 4,190 gallons of milk daily. The second floor was utilized for dry storage and locker rooms. In addition to milk, this plant was producing approximately 500 gallons of ice cream per day, 3,000 to 5,600 pounds of butter per week, and cottage cheese.

The information listed below gives the size of the rooms and the equipment required for handling the milk.

Receiving room. The receiving room was 15 ft. wide x 32 ft. long x 12 ft. high and was considered to be large enough. The equipment required included.

- 1. Straight-away cen washer, (5 cpm)
- 2. Weigh tank, (500 lbs.)
- 3. Storeme tank, (1,500 gal.)
- 4. Power conveyor for receiving and returning cans

<u>Processing room.</u> The dimensions for the processing room were 32 ft. wide x 44 ft. long x 12 ft. high and it was assumed to be sufficiently large. The equipment required for processing is as follows.

- 1. Preheator
- 2. Separator, (7,000 lbs. per hr.)
- 3. Pasteurizers, (3 at 500 gal. and 2 at 200 gal. each)
- 4. Cream vet, (200 gal., coil)
- 5. Balance tank, (100 gal. on hydraulic lift)
- 6. Plate cooler, (10,000 lbs. per hr.)
- 7. Homomenizer, (SCO gal. per hr.)
- E. Bottle filler, (18 at. per min.)
- 9. Paper machine, (60 ot. per min.)

Byproducts room. The size of this room was 1° ft. wide x 36 ft. long x 12 ft. high and it was large enough. The equipment included:

- 1. Cheese vats, (2 at 300 gal. each)
- 2. Butter churn, (600 lbs.)

Lettle weaking room. The bottle washing room measured 20 ft. wide x 55 ft. long x 12 ft. high and was considered to be adequate in size. The equipment indicated was as follows:

- 1. Booker-type bottle weather, (S wide)
- 2. Onse whither

Wilt storage room. The milk storage room handled approximately 5,500 callons of milk drily, measured 16 ft. wide x 47 ft. long x 9 ft. high and was assumed to be large enough. Milk was handled in both glass bottles and paper containers.

Dry stored room. The dry stored room was large enough and measured 52 ft. wide x 100 ft. long x 12 ft. high. The area occupied by this room was equal to the total area of the processing plant.

Reiler room. A 125 horsepower oil-fired boiler was located in a room 20 ft. wide x 25 ft. long which was assumed to be adequate in size.

Plant K

Plant K, a two-story plant with a mezzanine, was originally built in 1918 and expanded by rearrangement in 1957 to handle approximately 2,900 gallons of milk per day. At the time of this investigation this plant was handling 4,000 gallons of milk per day.

Milk was handled in both the square-type bottle and paper containers.

The following information gives the size of the rooms for this plant and the equipment required to carry out the processing operations.

Becliving room. This room was friendeler in chaps and measured 32 ft. wide x 32 ft. long x 11 ft. high and was considered to be large enough. The list of equipment for the receiving room was as follows.

- 1. Straight-away can washer, (6 cpm)
- 3. Meich tenk
- 3. Fower conveyor for receiving and returning cons

Tauk storege room. This room measured 18 ft. wide x 24 ft. lone x 15 ft. bigh and was considered to be adequate in size. The equipment required was no follows.

- 1. Storage tambo, (1 ot 2,000 cal.; 2 at 1,000 cal. each)
- 2. Surface cooler, (4.000 lbs. per br.)

Freeding room. The processing room was 25 ft. wide x 36 ft. long x 15 ft. high and, in addition, contained a belong measuring 16 ft. wide x 16 ft. long x 9 ft. high. The area available for processing was too small. The equipment used included:

- 1. Clarifier, (12,000 lbs. per hr.)
- 2. Separator, (5,000 lbs. per hr.)
- 3. Preheaters, (15,000 lbs. per hr.)
- 4. Proteurizers, (6 at 200 gals. each; 1 at 100 gal.)
- 5. Belance tenks, (400 gal.)
- 6. Homogonizer, (1,100 gal. per hr.)
- 7. Surface cooler, (9,000 lbs. per hr.)
- 6. Bottle filler, (64 cts. per min.)
- 9. Paper corton filler, (35 ets. por min.)
- 10. Chasse carton filler, hand operated

<u>Hottle washing room</u>. The bottle wishing room did not have sufficient area and reasured 24 ft. wide x 35 ft. long x 15 ft. high. The equipment included:

- 1. Socker-type bottle washer, (12 wide, 108 per min.)
- 2. Care washer
- 5. Power conveyors for cases and bottles from washer to filler

Milk storage room. The milk storage room was 26 ft. wide x 36 ft. long x 97 ft. high and did not have sufficient capacity.

Dry storage room. The dry storage room was located in the basement and was not large enough to handle a 30 day supply of material. This room measured 24 ft. wide x 3° ft. long x f ft. high plus an area 30 ft. wide x 5° ft. long x f ft. high.

Eciler room. The boiler room was adequate in size and measured 22 ft. wide $x \neq 2$ ft. long.

<u>Cfflice snace</u>. The offices were located on a mezganine measuring 25 ft. wide x^{4q} ft. long x 7 ft. high and were considered to be sufficiently large.

Locker room. The locker room was 12 ft. wide x 18 ft. long x 8 ft. high and was assumed to be too small.

<u>Maintanance shor</u>. This room measured 10 ft. wide x 27 ft. long x 8 ft. high and did not contain sufficient space.

Plant L

Plant L was a one-story plant handling approximately 6,400 gallons of milk daily in addition to processing between 100,000 and 150,000 gallons of ice cross per year and 1,000 pounds of cottage chasse per week. Milk was processed in both square-type bottles and paper containers with approximately 16,200 quarts and 8,900 half-pints handled in glass bottles daily, and 5,800 quart, 1,500 pint, and 1,800 10-ounce paper containers handled daily.

The products handled in the milk plant were premium milk, regular milk, homogenized milk, homogenized vitamin D milk, skim milk, chocolate milk, light and heavy cream, buttermilk, orange drink, and cottage cheese.

Twenty men were employed to handle processing, twelve were required for the office, and approximately forty-five were needed as route salesmen.

The information listed below states the size of the various rooms found in the plant and the equipment required.

<u>Receiving room</u>. The receiving room was $17^{\frac{1}{0}}$ ft. wide x 50 ft. long x 15 ft. high and was considered to be too small. The equipment required included:

- 1. Straight-away can washer, (10 cpm)
- 2. Weigh tank, (500 lbs.)
- 5. Clarifier, (20,000 lbs. per hr.)
- 4. Power conveyors for receiving and returning cans

<u>Frocessing room</u>. The dimensions for the processing room were $25\frac{1}{9}$ ft. wide $x 52\frac{1}{9}$ ft. long $x 12\frac{1}{9}$ ft. high plus a balcony measuring $17\frac{1}{9}$ ft. wide $x 17\frac{1}{9}$ ft. long x 8 ft. high. In addition, an area $10\frac{1}{9}$ ft. wide $x 44\frac{1}{9}$ ft. long x. 12 1/3 ft. high was available for the cottage choose packing and bottle

filling operations. The total area was too small for a satisfactory operation.

The equipment required for processing is as follows:

- 1. Storage tanks, (1 at 3,000 mal. and 1 at 2,000 mal.)
- 2. Separator, (12,000 lbs. per hr.)
- 5. H.T.S.T. pesteurizer, (20,000 lbs. per hr.)
- 4. Pasteurizers, (1 at 1,000 gel.; 5 at 500 gel.; 4 at 200 gel. each)
- 5. Cabinet cooler, (15,000 lbs. per hr.)
- 6. Homogenizers, (1 et 20,000 lbs. per hr.; 1 at 600 gal. per hr.)

Biproducts room. This room, used for manufacturing cottage cheese, measured 16 ft. wide x 28 ft. long x 14 ft. high and was sufficiently large. The equipment located in this area consisted of two, 800-gallon cheese vats.

Bottle washing room. The size of the bottle washing room was 26 1/3 ft. wide x 54 2/5 ft. long x 12 2/5 ft. high and it was considered to be large enough for the present operation. The equipment listed was as follows:

- 1. Socker-type bottle washer, (12 wide, 114 bpm)
- 2. Case washer
- 3. Power conveyor for receiving cases from trucks

<u>Milk storage room</u>. The milk storage room was too small to satisfactorily handle all products. This room, divided into two areas due to the variable shape, measured $17\frac{1}{2}$ ft. wide x $43\frac{1}{2}$ ft. long x 7 5/6 ft. high plus 5 ft. wide x 14 ft. long x 7 5/6 ft. high. A cold diffuser located in this room occupied approximately 2^{4} square feet. A power conveyor was used to handle milk cases into and from this room.

Ery storage room. The area allotted to dry storage was considered to be too small. For milk processing, the following areas were evailable for dry storage: (a) 29 ft. wide x 69 2/3 ft. long x 12 2/3 ft. high, (b) 45 1/6 ft. wide x 80 ft. long x 12 ft. high, and (c) 14 ft. wide x 17 ft. long x 16 ft. high.

Boiler room. A 100 horsepower sas-fired boiler and a 150 horsepower coalfired standby boiler were located in a room 26% ft. wide x 78 3/4 ft. long, which was adequate in size.

Compressor room. The compressor room was 17 ft. wide x 21 ft. long x

16 ft. high and was sufficiently large. The following compressors, for both
the milk and ice cream operations, were located in this room.

- 1. Three 50 hp. compressors
- 2. One 20 hp. compressor

Meintenance shop. The room for maintenance work was of edequate size and measured 15% ft. wide x 60 ft. long x 12 2/3 ft. high.

Locker room. The area allowed for lockers was 15 1/6 ft. wide x 18 ft. long x 15 ft. high, end that allotted to showers and a lovatory measured 11 ft. wide x 15 1/6 ft. long x 15 ft. high. This room was considered to be too small to provide adequate facilities for $2^{\frac{1}{4}}$ men.

Plant M

Plant M, processing approximately 7,950 gallons of milk daily, was a two-story plant originally constructed in 1928 to handle 4,000 gallons of milk daily. Since that time, additions, new buildings, and rearrangements have been made to handle the increased production. Milk was handled in

both square-type glass bottles and paper containers with approximately 14,100 quarts, 820 10-cunce bottles, and 4,300 half-pints handled in glass and 5,200 quarts, 460 pints, and 2,000 10-cunce handled in paper containers. In addition, approximately 350 pounds of cottage cheese were processed daily.

Twenty-five men were employed to handle processing, seven were required for the office, and fifty-one were needed as route salesmen.

The following information gives the size of the rooms for this plant and the equipment required to carry out the processing operations.

Escaiving room. The sine of this room was stated as being 20 ft. wide x 40 ft. wide x 8 ft. high and was considered to be large enough. The list of equipment for the receiving room was as follows:

- 1. Straight-away can washer, (8 cpm)
- 2. Weigh tank
- 3. Fower conveyors for handling cans

Contractor room. This room measured 20 ft. wide x 36 ft. long x 8 ft. high and contained sufficient floor space. Four storage tanks were located here with a total conacity of 7,000 callons.

Pesteurising room. The posteurizing room was sufficiently large and measured 15 ft. wide x 35 ft. long x 12 ft. high. The equipment required for processing was indicated as follows:

- 1. Clarifier, (12,000 lbs. per br.)
- 2. M.T.S.T. Pasteurizer (9,000 lbs. per hr.)
- 3. Homomenizer, (SGC cal. per hr.)

- 4. Plate cooler
- 5. Bolonce tenk

Bottle filling room. This room did not have adequate space and measured 20 ft. wide x 25 ft. long x 16 ft. high. The equipment located here was as follows:

- 1. Paper corton machine
- 3. Bottle filler, (97 ofs. por min.)
- 3. Power conveyors from fillers to conler

Figureducts room. The homoducts room was 20 ft. wide x 60 ft. long x 12 ft. high and was too small for efficient production. The equipment used included:

- 1. Cheese vats, (3 of 400 sel. each)
- 2. Comerator, (7,000 lbc. nor hr.)

Pattle we drive room. Cufficient space was evailable for bottle weaking in a room 50 ft. wide x > 50 ft. long x = 6 ft. high. The following equipment was located in this room:

- 1. Sontor-type bottle weater, (%4 to 9° bpm)
- 2. Come gooter

Filt stores room. Addreste floor area was not provided in a space 70 ft. wide x 45 ft. leng x ft. high to effectively bendle all products.

The rooms evailable for dry storage measured 40 ft. wide x 45 ft. long x 10 ft. high and 20 ft. wide x 60 ft. long x 10 ft. high and provided a sufficient amount of space.

Boiler room. A 180 horsenower oil-fired boiler was located in an adequate size room measuring 30 ft. wide x 35 ft. long x lo ft. high.

<u>formeroscer room.</u> The compressor room was 25 ft. wide x 30 ft. long x 12 ft. high, was sufficiently large, and contained one compressor.

Maintenance shop. Sufficient apace was provided in a room 30 ft. wide x 35 ft. long x 12 ft. high.

Locker room. This room measured ? ft. wide x 12 ft. long x 8 ft. high and was considered large enough to provide facilities for twenty-five men.

Cffice space. A room 50 ft. wide x 10 ft. larg x 2 ft. high provided ample office quarters.

Driver's check room. The main office was also utilized as a driver check room and sufficient space was not available for this.

APPENDIX III

QUESTIONNAIRE FOR THE STUDY OF DAIRY PLANTS

1.	Name of plant
2.	Location of plant
3•	Plant manager
4.	Give location in relation to the nearest city or town.
5•	What is the average daily production of your plant?
	A. Milk - gals. per day, or lbs. per day
	B. Ice Cream - gal. per year
	C. Other (Cheese, butter, etc.)
6.	What is the present maximum daily capacity of your plant?
	A. Milk - gals. per day, or lbs. per day
	B. Ice cream - gals. per year
	C. Other (cheese, butter, etc.)
7•	What was the maximum output on any one day in 1950?
	A. Milk - gals. per day, or lbs. per day
	B. Ice cream - gals. per year
	C. Other
8.	For what capacity was the plant originally built?
	Date built Did it handle the amount designed for?
9•	Has the plant ever expanded? How was it expanded? (Addition,
	new building, rearrangement, etc.)
10.	Was the above method of expansion satisfactory? Please explain.
11.	Do you believe that a plant should be built large enough originally, to
	accomodate an increase in production, or should it be built just large
	enough to handle the known capacity with provisions to permit additions
	as needed?

12.	Is the present plant site large enough to allow for a building expansion?
	. Draw a simple sketch of the plant and plant site showing its
	limitations.
13.	Do you believe that the plant site should be large enough to permit
	ready expansion on a one floor level? Please explain.
14.	Are the rooms arranged to obtain efficient use of labor and efficient
	operating conditions? Please explain.
15.	Can the plant operation, as a whole, be easily supervised? If
	not, why not?
16.	What type of delivery schedule do you maintain (every other day, three
	day week, etc.)? How many days per week is the plant in operation?
17.	Is the storage tank capacity large enough for normal operating conditions?
	Does the storage tank capacity provide enough flexibility to
	take care of emergencies, such as, a decline in sales or a breakdown?
	Do you think that the tank capacity should provide for such emergencies?
18.	How much space, in general, is left between pieces of processing equipment
	Is this sufficient for proper maintenance and cleaning?
19.	At what distance from the walls is processing equipment?
	Is this satisfactory?
20.	What methods are used for the mechanical cleaning of sanitary pipe lines?
	Are they satisfactory?
21.	What methods are used for holding milk lines in place?
22.	Where are the water, steam, and refrigeration lines located? (In walls,
	tunnels, suspended from the ceiling, etc.) Is this method satisfactory?
	How would you change?

23. Size of rooms

Type of room	Length	Width	Height	Amt. prod. handled or stored	Large enough? Yes or No
Receiving					
Tank storage					
Pasteurizing					
Byproduct s					
Filling					
Milk storage (cooler)					
Bottle washing					
Mix room					
Freezer room					
Hardening room					
Dry storage					
Boiler room					
Compressor room					
Laboratory					
Shop					
Locker rooms					
Office space					
Retail store					
Driver's check-in					
Garage					
Loading docks					
Unloading docks					
Other					

24. List major items of equipment

Item	Size or capacity	Туре	Large enough? Yes or No
Can washers			
Weigh tanks			
Pre-heaters			
Clarifiers			
Storage tanks			
Separators			
Pasteurizers			
Cheese vats			
Homogenizers			
Coolers			
Fillers			
Bottle washers			
Case washers			
Freezers			
Flavor vats			
Fruit feeders			
Ice cream pkg. fillers			
Specialty tanks			
Compressors			
Boilers			
Other			

<i>2)</i> •	• Do you reel that they are efficient and
	economical? Where are they used? (State whether powered or
	roller).
26.	Give the location of floor drains in processing rooms.
27•	How many floors does the plant have? Is this layout satisfactory?
	Explain. What is each floor used for?
28.	What type of ventilation is employed? Is this satisfactory? Explain.
29.	What type of lighting is used in processing rooms? Is this satisfactory?
30.	What type of window construction is used in processing rooms?
	A. Glass block
	B. Steel sash and frame
	C. Wood sash and frame
	D. Aluminum
31.	What materials are used for floor construction?
	A. Processing rooms
	B. Milk storage
	C. Bottle washing rooms
	D. Freezing rooms
32.	What materials are used for well construction?
	A. Exterior walla
	B. Interior walls
33•	Draw a simple sketch indicating the flow pettern for products and
	packages (label the various stations).
34.	Do you have a retail store? Is it desirable? Explain
35•	If you were to build now, in order to obtain maximum operating efficiency,
	what suggestions do you have relative to the following items?

A. Building materials
Floors
Exterior wells
Interior walls
Window construction
B. Placement of drains in processing rooms.
C. Type of electric lighting.
D. Use of conveyors.
E. Fefrigeration system and layout.
F. Number of floors for the plant.
G. Ventilation.
H. Arrangement of rooms in relation to each other.
I. Other suggestions.
What questions would you like to have answered?
If it is possible, would you provide us with detailed floor plans of
your plant leyout? If this is not possible, would you provide us with
a simple sketch of the layout; label individual rooms and give the
dimensions. Any plans will be returned to you after a reasonable
period of time.
Number of men handling processing?
Number of hours worked per day?
If you feel that it is not too confidential, could you state the cost
of processing alone per 100 lbs. of milk? Per 100 gels. of
ice cream?

36.

37•

3⁸ •

30.

40.

DAIRY PLANT STUDY SUPPLEMENTARY QUESTIONNAIRE

	Please indicate the average daily amounts for the following items.
1.	Milk received daily, gals. or lbs.
2.	Total products pasteurized daily, gals. or lbs.
3•	Total products held in storage tanks deily, gals. or lbs.
4.	Total products handled in milk storage (cooler) daily,gals.
	a. Please indicate the total number of units handled in the milk storage daily for the following.
	1. Paper containers 2. Glass bottles
	quarts quarts
	pints pints
	helf-pints helf-pints
5•	Total products bottled daily.
	a. Paper containers gals.
	b. Glass bottles gals.
	1. Please indicate the total number of units bottled daily.
	a. Paper containers b. Glass bottles
	quartsquarts
	pints pints
	half-pints half-pints
6.	Total number of bottles washed daily,units. RoundSquare
7.	Please list the various products that you process.
8.	Number of men/handling processing
9•	Approximate number of office personnel
10.	Number of route men utilizing the driver check-in room
11.	Name of plant
12.	Address

13. Plant manager

LITERATURE CITED

- 1. Ackerman, H. A. Common Causes For Inefficiency in the Ice Cream Industry. Journal of Milk Technology 9:346-350. November / December, 1946.
- 2. Babcock, C. J. Construction and Arrangement of Milk Plants. United States Department of Agriculture, Washington, Circ. 800, January, 1949. 36 pp.
- 3. Bartlett, R. W. The Milk Industry, Ronald Press Co., New York, 1946. 282 pp.
- 4. Bixby, G. S. Planning Your Dairy Plant. Cherry-Burrell Corp., Sales Engineering Dept. Publication. Mimcograph. October 17, 1949.
- 5. Boucher, B. A. Planning, Construction, and Maintenance of Modern Dairy Plants. Milk Plant Monthly 37(5):76-78. May, 1948.
- 6. Broughton, C. W. Dairy Plant of the Future; Construction Materials and Design. Milk Plant Monthly 35(5):26-28 /. May, 1946.
- 7. ____Dairy Plant Layout. Milk Plant Monthly 37:90-98. June, 1948.
- 8. Cherry-Eurrell Corp. Notes on Plant Layout. Sales Engineering Depart. Mimeograph. October 2, 1949.
- 9. Clarkson, H. P. Design for Merchandising. V. The Smell Pasteurizing Plant. Milk Plant Monthly 37(3):44-45. March, 1948.
- 10. Erb, J. H. Good Housekeeping in the Dairy Flant. The Dairy Conference February 9-13, 1948. Department of Dairy Technology, Ohio State University, Columbus, Ohio. Mireographed abstract. 53 pp.
- 11. Fair, E. W. Short Cuts to Better (Milk) Plant Layout. Milk Plant Monthly 36(5):94. May, 1947.
- 12. Farley, J. W. Factors to be Considered in Planning the Milk and Ice Cream Plant. Reprint. Cherry-Burrell Circle, March / April, 1946.
- 13. Farrall, A. W. Dairy Engineering, John Wiley and Sons, Inc., New York, 1942. 405 pp.
- 14. Trends in Dairy Plant Engineering. Journal of Milk Technology 8:45-47. January, 1945.
- 15. Farrall, A. W. New Developments in Dairy Equipment. The Dairy Conference February 9-13, 1948. Department of Dairy Technology, Ohio State University, Columbus, Chio. Mimeographed abstract. 55 pp.

- 16. Kelly, E. and C. E. Clement. Market Milk, ed. 2, John Wiley and Sons, Inc., New York, 1931. 480 pp.
- 17. Maguire, W. Flant Efficiencies Through Work Simplification. Milk Plant Monthly 36(2):46-50, 66. February, 1947.
- 18. Milk Industry Foundation. Manual for Milk Plant Operators, Washington, 1949. 394 pp.
- 19. Mitten, Jr., H. L. Functional Design of Fluid Milk Plants. M. S. Thesis, Michigan State College, 1948. 218 numb. leaves.
- 20. Mortensen, M. Management of Dairy Plants, The MacMillan Co., New York, 1929. 358 pp.
- 21. Parker, M. E. Food-plant Sanitation, ed. 1, McGraw-Hill, New York, 1948. 447 pp.
- 22. Ross, H. E. The Care and Handling of Milk, Crange Judd Co., New York, 1939. 417 pp.
- 23. Shubin, J. A. and H. Madeheim. Plant Layout, Prentice-Hall, Inc., New York, 1951. 433 pp.
- 24. Tracy, P. H. Chap. 13. Measuring the Efficiency of Market Milk Plants. Bartlett, R. W., Editor. The Milk Industry, Ronald Press Co., New York, 1946. 282 pp.

OTHER REFERENCES

- 1. Anon. A Man Named Dean Came to Chicago With an Idea. Milk Plant Monthly 35(1):23-27. January, 1946.
- 2. Conveyors Mean Efficiency Plus. Ice Creem Field 57(3):52-53. March, 1951.
- 3. Creamland Dairies, Inc., Albuquerque, New Mexico. Milk Plant Monthly 38(11):36-38. November, 1949.
- 4. Here are Eight Prize-Winning Design Ideas for Your New Dream Plant. Milk Dealer 29(1):36-7 /. January, 1940.
- 5. Modern Air Conditioned Plant. Ice Creem Review 31(4):42-43. April, 1948.
- 6. New Model Plant Combines Public Relations Value and Low Cost Operation. Milk Plant Monthly 36(12):38-40, 106. December, 1947.
- 7. Newest Unit, Dairy Co-op. A'ssn. Milk Plant Monthly 34(12): 28, 32. December, 1945.
- 8. Plant Designed for Straight Line Flow. Ice Cream Trade Journal 47(2):42-44. February, 1951.
- 9. ___Streamlined Processing for Quality Control Production. Milk Plant Monthly 36(8):32-38. August, 1947.
- 10. Apple, J. M. Techniques in Plant Layout, rev. ed., Michigan State College Press, East Lansing, Michigan, 1949.
- 11. Plant Layout and Materials Handling, Ronald Press Co., New York, 1950.
- 12. Boan, J. The Hillcrest Dairy Plant at Columbia, Missouri. Milk Plant Monthly 36(3):96-98, 100-102. March, 1947.
- 13. Bowen, J. T. Dairy Engineering, John Wiley and Sons, Inc., New York, 1925.
- 14. Burn, G. A. H. Engineering Features of Pasteurizing Plants and Equipment. Journal of Milk Technology 5:59. January, 1942.
- 15. Cherry-Burrell Corp. Hardening Room Floor Space Requirements. Seles Engineering Department; Planning Plants, Ice Cream Plants, p. 1. March 15, 1951.

- 16. Cherry-Burrell Corp. Suggested Plans for Ice Cream Plants, Flow Plan, and Operational Details. Sales En incering Department; Planning Plants, Ice Cream Plants, pp. 2-11, 41-42, 70. March 29, 1951.
- 17. ____Model Continuous Butter Making Plant. Sales Engineering Department; Planning Plants, Creameries, p. 30. April 5, 1951.
- 18. Suggested Plans for Milk Plants. Sales Engineering Department; Planning Plants, Milk Plants, pp. 30-36. April 5, 1951.
- 19. Clark, G. Cascade Gold Star Dairies of Yakima, Washington. Milk Plant Monthly 38:26-29. September, 1949.
- 20. Farley, J. W. Planning the Modern Ice Cream Plant. Ice Cream Field 49(1):46-47, 50. January, 1947.
- 21. Flagg, H. Conveyor Extension Cuts Truck Loading Time. Milk Plant Monthly 38(3):52-54. March, 1949.
- 22. Gemmill, A. V. Advanced Engineering is Emphasized in New Dairy. Food Industries 20:1117-1120. August, 1948.
- 23. Modernization Ups Food-Plant Output to 155%. Food Industries 21(5):588-591. May, 1949.
- 24. They Call It the World's Modern Dairy. Food Engineering 23(7):60-71. July, 1951.
- 25. Hard, D. H. Helpful Suggestions for Planning Your New Plant. National Butter and Cheese Journal 37:41. March, 1946.
- 26. Johnson, G. R. New Approach to Plant Planning. Ice Cream Review 33:48 /. April, 1950.
- 27. Ibid. 33:43-44 /. July, 1950.
- 28. Mandt, P. H. Labor Saving Creamery Products Plant. National Butter and Cheese Journal 40(7):24-26, 46-48. July, 1949.
- 29. Remodeling Increases Capacity, Leaves Room To Spare. National Butter and Cheese Journal 39:26-29 /. September, 1948.
- 30. Some Interesting Dairy Plant Layouts. National Butter and Cheese Journal 37(10):42-43, 68, 70. October, 1946.
- 31. May, R. J. Plant Layout and Design. Ice Cream Reveiw 29:52 /. March, 1946.
- 52. Miller, R. Conveyor System Improves Loading Efficiency. Milk Plant Monthly 38:76-78. April, 1949.

- 33. Mitten, Jr., H. L. Milk Plant Layout. Milk Plant Monthly 39(3):73-74. March, 1949.
- 54. Norton, R. P. and H. G. Dunlap. Introducing Work Simplification. Ice Cream Review 51(4):40-41, 82, 84. November, 1947.
- 35. Southmayd, R. T. Problems in the Design and Layout of Dairy Plants. Milk Dealer 36(6):136, 138, 140-142. March, 1947.
- 36. Thom, E. Ideas for Your Plant Construction Scrap Book. Ice Cream Review 31:38-39 /. August, 1947.
- 37. ___Automatic Operation; Carnation Co.'s Oakland Ice Cream Plant Most Modern in West. Ice Cream Review 33:40-41 /. April, 1950.
- 58. Thomasson, H. L. Effective Plant Design. American Milk Review 10(10):68-69. October, 1948.
- 59. Thomsen, L. C. Construction and Maintenance of Dairy Products
 Plants. National Butter and Cheese Journal 33:16-18. March, 1942.
- 40. Ibid. 53:27-50. April, 1942.
- 41. Increasing Plant Efficiency. Ice Cream Review 33:48 /. March, 1950.

ROOM USE ONLY

INTER-LIBRARY LUAN NO 30'54 ROOM USE GILLY

•

,

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03056 5463