iES’iGN C? A EERMCE mama 13:: 09mg anagram “piggy; {35' 5.15 33$?fifil I}? 3; 3: ‘iZQ'ZIC :f\\' “a :3. 2: ,; '- 303 53: $0}: 3?!“ i3?. 51‘: E343 i f £1333. ' 431, U. 4 -. T-‘ . 1’! 10h .' 3:4..1.’ 0‘ “I My? .1 Pry-i“- . $ 0 C 97,1, __-. .‘ I _+‘.-.ln.. _. ' \C -- 3.67“ * .~ : p.) :.I"y'z:. a: .' “ i. ‘ ‘ Wé‘fi“. [bill I ‘ $7." -, ‘ {3.71. y f: . . .. ‘ w, 4:. If I ..1 ~ "0-..‘3'37' 4. "1 W3 m; 3‘ ya; .; ~. Ma- r. *3); =*~.-g;-‘ g... -. ‘ 4 2:15»? "ms-w: 3x 51“.?“ ”Hf: «'13:» ‘ 5¥-*.-w“‘*'- <-- . V.-. . .. Mm - 1“"? -.-.~-. ‘ . . , fig“. 3.3" 7!: -. ‘-“.”’l’fi"r'dl 7- .3: .‘ fig, ..,» ' ’ a ' . u‘ ‘. . -‘ O .3- \ -,_ u . f ' o .o .. 'I 5 . I. I -’|)' ~‘ vl’O‘ ',—| "o". '4 ‘. . t‘v. . ,fs’v’ I. k \ nu, . ‘5 I’ H“ .fi‘ ? J, ‘.' 4.... h . ‘ ‘v ‘i - ’1' c 'I n Jb n' '9‘" ‘,jo’l.y‘.‘-€OI”1"H~? ' n, . ‘I‘Ap‘ r‘:_. .‘- I tr" - ' I . A ~ . _ . ._ . - . . a ‘ ' '5 _. I .- . . A . _ - . , . -' ' .I ' ; ' ‘ l ‘ 4 . ‘ . z X.‘ ‘- . s v > , ‘ ;' 'n- "‘ . . 4", r '75'1“ ' - " w ' 'I;1.._‘6;7'_| "7‘99: f ., . I C I V "I':"‘."'—f'..'-r L. .4. 4.4.3 0"‘0-1:‘N; we. «I I A Lulu! . It.) I? ,. 0 u“ .i ‘ -' 8 g .. >9;*‘..::é“ -- . ‘\ "".4‘ ‘5 ko' ‘ - :‘rf ».’?<”;‘:m12 : \ 4 :' . ‘.". ' ,. ,v. .4 I n!- . l 12;. 22:33.. ... 15...}? . .I.o.l . .... .. . 1.3:. . 2.;fivvf.1‘:r:2. I ....3,... ... 9.4.5.22. .p ...V.‘.v. . As!_lr.....‘r_ ..a .....n ,.........,.H.:.ur..4-. .F C... Design of A Service Garage And Office Building A The“. Submittod to 1310 Faculty of IIGHIGAN STATE 001.180! of AGRICULTURE AND APPLIED SCIENCE by Frank Grove Foster, Jr. Candidate for th. Dogréo of Batcholor of Science June 1946: THESIS a./ ACE]! OWLEDGIENTS I wish.to thank the members of the Civil Engin- eering staff for the assistance they have given.me in the design features or this thesis. I also appreciate the willingness of Ir. Grannan.or the Portland Cement Assoc- iation in.making available the services or his organiza- tion. Practical advice trcn.lr. Trumpower of the college service garage was also helpful. A d x p"l') I) , . '€ ‘. .‘ . y L/v' . \. e p. BIBLIOGRAPHY Pulver - "Construction Estimates and Costs". Sutherland 3: Reese - "Reinforced Concrete Design". Ecol a Johnson - ”Concrete Engineers Handbook". Eshback - "Handbook of Engineering Fundamentals". A.I.8.C. - "flannel of Steel Construction". Parker - ”Simplified Design of Structural Steel". 'Ihe A.C.I. Building Code. Lansing Building and Safety Code - (hereinafter re- ferred to as L.B.C.) Publications of the Portland Cement Association: "Simplified Design of Concrete Floor 8y: tens" (hereinafter referred to as 8.0.0.158.) "Reinforced Concrete Design Handbook” - (herein- after referred to as R.C.D.H.) Bulletin 81' 51 - I'Concrete Floors on Ground". CONTENTS Purpose and Scope of 'Ihesis Brief Description of Computations Computations and Sketches Drawings PURPOSE AND SCOPE OF THESIS THE PURPOSE of this thesis is to present a practical design of a building suitable for use by the college for a service garage with separate office space provided in the second story. The inadequacy of the exp isting garage facilities make this a timely subject for thesis and the variety of design features entailed make it an excellent student problem.as well as one'which a practicing engineer mdght be called upon to solve. The existing service garage space could.be cone veniently utilized for the parking of the trucks_operated by the Buildings and Grounds Department whose offices are in the same building. This would also serve to relieve the parking problem in this congested area as well as pro- tech the equipment. The.college operates at East Lansing, including automobiles, trucks, buses and trailers, about 125 vehicles; this figure being liable to increases in the future. 0c- casionally the college garage is called upon to service as many as 25 of these in one day. The proposed building, with.its more than 5,000 sq. ft. of floor space available, would be fully capable of providing the facilities required to cope with this situation. The location of the proposed building, as shown by the sketch, provides two convenient entrances to the garage and does not in any way impair the:functions of the existing'buildings in the vicinity. The entrance to the east is directly in line with the exit from the main.campus drive, while the entrance to the rear would.be used for the necessary dead storage within the building. The front (east end) of the proposed building is to be two stories high. Ihe ground floor of this portion of the building contains a garage office and a parts stor- age room. The second story contains three offices with dimensions 19'x17', 19*‘113', and lSi'xlS' for use by the Stores Department. TEE SCOPE of the thesis is naturally limited by the problmm itself and‘by the time and space available for its development. All problems of engineering design which will be encountered in the evolution of this building have been.adequately dealt with. No attempt has been made to invade the sphere of the architect, however, in computing dead loads certain basic architectural features have been assumed which.should'be adhered to by the architect. These assumptions, evident from.the computations, tend to give the proposed building an architecture similar to that of the existing Stores building to which it is attached. Simdlarly no space is given to plumbing, heating or‘wiring. Included in the thesis are all,computations, sketches and drawings necessary to draw up complete arch- itects and mechanics prints and form.the bill of materials -4- for the proposed building. Specifications should be made with reference to the unit stresses used in design as stated in the computations. . y the. Q. mmkokm fl , ///////////////////./////////// / fl / 0 41k / F. G / m m K// W M if E W... a N mu. m \Q Y? .A m m /// /////A//////////////// /A///M Do A / .93 ton? Ekfia W 7 a 5734557— E W :6- BRIEF EXPLANATION OF COIPUTATI 0N3 The Lansing Building and Safety Code classifies all buildings according to occupancy and type of construc- tion. The service garage portion of this building is class- ified as ”sub-class B-l”, with types 1, 2, 5, 4 or 5 con- struction allowable. I have chosen type 5 or skeleton con— struction for the service garage. The second.floor portion of the building containing offices comes under "class 0' buildings, with types 1, 2, 5, 4 or 6 construction allow- able. I have chosen type 3 or protected construction for this portion of the'building. Because of the class B and C occupancies in the same'building a complete fire separa- tion is necessary, otherwise both.parts of the building would.be subject to the strictest requirements of either classification. The fire separation is Obtained through the design herein presented. All unit stresses and design methods are those prescribed by the L.B.C., A.C.I. Code and A.I.S.G. TIMBER AND STRUCTURAL STEEL DESIGN GARAGE ROOF DESIGP: Using type 5 or skeleton construction for the service garage, unprotected steel and timber members may. be employed. Using 5-ply felt, 5 coats of asphalt and 1” sheathing, (From Pulver - ”Construction Estimates and Costs") we obtain a dead roof load of 6# per sq. ft. The L.B.C. specifies a live load of 40# per sq. ft. for flat (less than l/6 pitch) roofs, giving a total of 46# per sq. ft. -6- Using unit stresses Obtained from L.B.C. for common struc- tural fir or pine, timber rafters spaced 18' o.c. and pur- lins spaced 5' c.c. were designed. TO SUPPm‘I‘ ROOF SISTER: Instead of using four 60' trusses, it was decid- ed in the interests of economy to use eight identical 30' trusses. This necessitates a row of columns at the center of the garage, however, the economy of the shorter span will outweigh any inconvenience involved. has 30' truss is designed with 6 panels 0 5'. Panel loads are computed at 4,740# per panel. Using a horizontal lower chord and an upper chord with 1/6 pitch the truss was analysed for total depths or 45". 6P and e} ft. lbs lightest angle used in practice as truss members is the 2" x 25" x 5/16" angle. With a total depth of truss of 6% ft., it was found that two 2" x 2}" x 6/16" angles - 3/8" back to back - short legs outstanding could be used for all members throughout truss, therefore this design was used. its methods of analysis used were those of moments, shears, Joints and summations of forces in H and V direction. lhe final design was checked by the methods of graphic statics. Shop details of truss were obtained graphically by drawing each panel to 1/2 actual size and scaling off dimensions. Rivet spacings used are those recommended by A.I.S.C. TO SUPPORT TRUSS: Using unit stresses in masonry prescribed by L.B.C. no pilasters are required in the south wall to support truss if made of brick 12" thick with portland cement mortar. For columns #9, #10, #ll, #12 to support trusses at center of garage rolled sections were selected from A.I.S.O. tables computed for column fornmla - r 3 18 000 W as required by 1.3.0. for l/r ratio between 60 and 120. At north side of building a cement block pier is used - ratio of height to least dimension being less than 12 and compressive stresses within the L.B.G. requirements. To provide lateral support for trusses and facilitate the add- ition of a moveable 2000# chainfall, a double angle section was designed to be run from column to column, welded at each end to truss bearing plate; the first and last member to be anchored in 12" wall. LINTEL DESIGN: Although architectural details are not included in this thesis it is assumed that window openings will be similar to those of the existing adjacent building, thus at the north and south ends of the building 11 ft. wide window openings will be used and at the south side 13 ft. wide window openings. Garage door Openings are 14 ft. wide and office entrance is 3*} ft. wide. Lintels are designed to support a 12" brick wall with surface area shaped as an equilateral triangular with.base equal to width.of Opening. Lintels are composed of "I" beams and angles welded to 12" plates. JOISTS TO SUPPORT OFFICE ROOF: The character of the roof slab over the offices necessitates a rolled section or small truss for its support. I am.using Bethlehem.rolled steel joists spaced 2} ft. o.c. for this purpose. BEARING PLATES: . Bearing plate areas are computed.from.allowable L.B.C. unit compressive stresses for material carrying load. Thicknesses are computed.by A.I.S.C. method. Bearing plates were necessitated.by bearing of truss on outside wall, bear- ing of truss on columns #9, #10, #11, #12 and‘bearing of truss on cement block piers, also at base of central columns and at base and top of column "A”. No‘bearing plates were required for bearing of lustels on 12' wall, bearing of office roof joists on 12" wall, and‘bearins of Sect. 1 on 12” wall or Sect. 2 on 4“ partition. REINFORCED CONCRETE DESIGN All unit stresses and requirements for reinfor- cement‘bending, placing, anchorage, stirrups spacing and etc. used in the design of reinforced concrete members are those prescribed by the A.C.I. Code as the sections of the -11- L.B.C. covering reinforced concrete were repealed in 1940 and the A.C.I. Code substituted. OFFICE ROOF DESIGN: Ilhe office roof was designed as a 2%" concrete slab with expanded metal reinforcement supported by rolled steel Joists 2} ft. 0.0. The live load of 40# per sq. ft. as given in the L.B.C. was used. OFFICE FLOOR DESIGN: The L.B.C. recommended live load of 50# per sq. ft. for office space was used in the design‘of this floor system. The design was based on a location of partitions as shown on sheet 2 instead of increasing the unit design load for partitions as is sometimes done. file greater part of the slab is composed of a divided joist slab using tap- ered metal pans. Between beams #4 and #5 a one way flat slab is used. REINFORCED CONCRETE BEANS, GIRDERS AND JOISTS: Total loads supported are computed with no re- ductions of live load and moments are figured by method of moment coefficients. Spans are measured between faces of supporting members. Actual design was accomplished by the methods of “Sutherland 3: Reese” using A.C.I. specifications. STAIR DESIGN: The two flight stairs with 7}“ riser and 10" tread meets the class 0 building requirements of one separate exit from the office space. Stairs are designed for 10039 per sq. ft. of horizontal span with a one way flat slab landing. Rolled sections #1 and #2, column "A“ and beam #6 are designed to support stairs and landing. REINFORCED CONCRETE COLUINS: . Leeds on columns supporting continuous girders were computed from the three moment theorem and then in- creased fer ratio of I'height of column" to 'least dimension" greater than 10, by A.C.I. formula. Rectangular tied col- umns are used throughout. Reinforcement and lateral ties are computed by A.C.I. methods and formulas. FOOTINGS: Due to proximity of proposed building to existing Stores building, footings #1 and #4 were designed as rect- angular beams with concentrated load and uniformly distri- buted soil reaction. Spread footings were designed byuse of table 35 of B.G.D.H. Computations show that no reinfor- cement was required to resist bending or shearing stresses for wall footings and footing "A”, therefore plain concrete with temperature steel only is used. Dowels were used to transfer stress of longitud- inal reinforcement to footings and in some cases pedestals were required. FOUNDATION WALL: Foundation walls were designed to bring the wall footings below the frost line. The weight supported by foundation wall produced unit stresses which required only the minimum A.C.I. reinforcement which was provided. GARAGE FLOCB: Garage floor was designed by the methods set forth in the Portland Cement Association bulletin, ST 51, "Con- crete Floors (h Ground“. Assuming maximum wheel loads of 5000# a 6" slab is used with welded mesh reinforcement and dowels, expansion and contraction Joints provided where necessary. C OIPUTATI OHS -15- DESIGN OF STRUCTURAL STEEL AND TIIBER MEMBERS Allowable Unit Stresses From.Lansing Building And Safety Code. TIMBER Common Structural Fir or Pine Stress in extreme fibre in‘bending.........1400 P.S.I. Horizontal shearing stress................. 125 P.S.I. Compression.parallel to grain..............1000 P.S.I. Compression perpendicular to grain......... 250 P.S.I. Extreme bearing stress.....................1700 P.S.I. STRUCTURAL STEEL Extreme fibre stress in bending............18,000 P.S.I. Shearing stress............................12,000 P.S.I. Compressive stress.........................15,000 P.S.I. Rivet Bearing Single shear..........................24,000 P.S.I. Double shear..........................50,000 P.S.I. 5.11m Extreme fibre stress in'bending............18,000 P.S.I. Shearing stress............................15,5OO P.S.I. Rivet bearing Single shear..........................24,000 P.S.I. Double shear..........................30,000 P.S.I. Standard notation is used throughout this thesis except that for any Joist,‘beam, girder, rafter, purlin, lintel or other horizontal member supporting a uniformly distributed verticle load: "1 Total superimposed load in # per. lin. ft. '2 In Total weight of member in # per lin. ft. '1 pl“. '2 SAFE LOADS FOR MASONRY Prom - Lansing Building a Safety Code Lime and Portland Cement lortar Cosmlon Brickwork Clam Tile Lead on Gross Area Concrete Blocks Load on Gross Area Compression In Bulk of Masonry 150 P0801. 90 P.S.I. 90 P.S.I. Bearing Press- ure for concen- trated loads. 175 P.S.I. 115 P.S.I. 115 P.S.I. -17- a» llllll]HIHIFLJIIIHIIIJIIIIHHTI]IJTUJJTIIT Hafiz .4w1 ’Q /./w.9 I /./w 1 Jo»? ,4wQ. , 5.017 , owl; .42? Ho «——»4. ELK , 4‘7 \\ 1wa ’é/w’k .42.»? flaw/93’ pawl??- .276} '°“W”.z7 1 ‘ L L W .61 I " .6} ’4 Joan?“ J00)!" F/G.#1 : y w! j LIFTIIIITllIIJIIIlIII.lIllllIlTIIII .5YIL1 ’1 .52! 1:iflA25hL!z 1 D 441171 77 WWW .{wfl -13- RAFTER DESIGN 5 ply felt at 5“ per sq. = 150# per sq. 5 coats asphalt G 25# per sq. 8 1251? per sq. sheeting -"' 5% per sq, Total = 575# per sq. . Say 6# per sq. ft. D.L. 6# per sq. ft. - D.L. : M e u a Total roof load 8 46# " " fl Rafters 15 ft. long supported by purlins every 5 ft. and spaced 18" o.c. Assume 2" x 6" nominal sise 1-5/8" x 5-5/8“ dressed size '1 = 45 x 1.5 = SW/ft/ I2 I 2.5#/ft. w : 71.5w“. lax. llom. = .10 w12 (See Fig. l) = .l x 71.5 x 52 179'# or 2150'# Allowable Iom. = f8 I g 24e10 .3 3 e WI " 3'57 f3 8 1200 x 8.57 8 10,300'# (0.1:. - overdesigned for rigidity). PURLIN DESIGN Purlins 18' long - simply supported - spaced 5 ft. o.c. Use 4" x 14" timbers - dressed sise - 5-5/8” x 15-1/2” ~- -19- 740 4740 a’ 740 4740 c é ‘9 4 ,r 4740 £570 A ’ M; {.0 5 0/ f 9 2570 I I o 9’" é '06 agar: 4 \ e 7 ‘ 5-06" ‘ chgémg,@t\9‘~//. Q 6”? :0 3:5 ‘6 s_ ‘s. Ar“ as .33 a k0 2 Q9 0's * 5 ‘ \n ‘9 4 . d h V‘ 1 3 <3 /0 /Z V I. 4- szo 4 @ 500' = 30’ #220 THEORETICAL; TRUSS A 73/63 3 DES/6N 5.12.5: /"= 5' B 2 C 4 L: 7 3,/O 5:53} .4: Z 6 E 9 F 1! {1} H GRAPH/c F/a, #4 ANALYSIS 5041.5: /"—' @030” I1 = 71.5 x 5 x 12/18 8 25% per ft. '2 . 3 I” per ft. ' . 251.” ”1‘ ft. lax. lam. . I? (See Fig. 2) = $1.341? a 10,150'# or 122,000'# Allowable Ion. 3 Sf I 745 2:5 3-..s_3.:758 110.11 :3 = 110.11 x 1200 8 132,000"# (0.1.) Check for horizontal shear: V=SV3251x18x5 '51 I 1353 x 8 69.6 P.S.I. (0K) LOADING OP TRUSS It. Roof per panel I 251 x 18 = 4520!! It. Truss per panel (assume) I 220# Total panel load = 4,74.an ANALYSIS 0]? 151038 ’ See Fig. 5 for theoretical truss proportions. Taking free body - Fig. 5 sinOirggé. d = 29 x 12.66.. .’ 18.15' Summation IO = 0 -11,850 x 24 / X(ls.ls) s o x a 15,690 Stress In (1-2) 8 15,6991: Taking free body - Fig. 6 ... - - as g 4 85 d. 3‘ x m . 23e61 Sumtion Io . O -21- I A ) P.) b F/G. 7 7/9. 3 F/G. 7 -11,S5O (24) ,I 4740 (29) / x(2s.el) . o ' x I 5,220 Stress In (5-4) = 61%! Taking free body - Fig. 7 sin e I 31.3% d I 59 x 3.1% = 29.20 Summation to = o :11,950(24) / 4740(29) / 4740(54; / 2(29.2) - o ' x u: 479 Stress In (5-6) I 4—7319. Taking Free Body - Fig. 8 Summation N I 0 (1-2)}: . 15590 (3725) = 12,250 ‘3 «5-2)n 15-2) I 12,250 (-54%?- ) - 12,400 ’ Stress In ib-2) «13 12.4% Taking Free Body - Fig. 9 Summation V = 0 12-5) r’ 15-2), - 11550 I o (5-2)v I 12,400 (3.1%) = 2,050 (2-5) = 9,920 as... In (2.5) I 9,92% Taking Free Body - Fig. 10 Summation R I 0 (Io-21h - (o-uh / (5-411, :- 0 12,250 / ”20(37331 = te-4)h \c-4)h I 16720 (04) I 16,720 (9-7-32) I 16,900 Stress In (0-4) I 16.9% . c . o _ . .. —. _ . e o .1 2 . . . s ; O o . I «I \ _ ... an I a . v. . I u 7 r V. . s . .o]:i.1l L7 1 (' r) I /: _\ It 7/ 'x ‘4 ,1 . fi 4' I W.) Fun/0 -23- A F113 / / V -24- Taking Free Body - r13. 11 Summation H I 0 (5-1) I (1-2)h I 12,250 Stress In (5-1) = 12,259fi2 Taking Free Body - Fig. 15 Summation B I 0 (c-4)h - (5-5)}, I (5-5),1 15,720 - wear-33») = (d-6)h (d-6)h .-. 15,400 (d-6) = 15,400(§§°-£) = 15,520 Stress In (d-5) I 15,529fl Taking Free Body - Fig. 12 Summation V'I 0 (4-5) = (3-4)' 52209—53): 4550 Stress In 4-5 8 4% Taking Free Body - Fig. 12 Summation.fl I 0 (5-1) I (5-1) / (3-01; (5-1) I 12250 / 4470 I 15,720 Stress In (5-1) I 16.72%T mung Free Body - Fig. 14 Summation V I 0 (5-7) I -2(d-5)v / 4,740 (5-7) I -2(15520 x 52.3%) ,1 4740 I -710 Stress In (5-7) I 1151! Taking Free Body - 5'13. 5 At Joint a-l-i-a -25- Summation H I 0 Stress In (a-l) I 14,220fl Summation V I 0 Stress In (1-1) I Qt TRUSS ANALYSIS 512353 SUMMARY !2!22£. 222222 a-l 14, 220#0 5-2 12,4oo#0 0-4 16, 900% d-6 15,520#c 1-1 0# 1-5 12,250#r 1-5 15,720#T 1-2 15,59o#r 5-4 5,220#r 5-5 479#0 2-5 9,920#c 4-5 4,55o#c 6-7 7109)”! Selection of lembers for Truss laximum tension 8 l6,’720# (Iember i-5) Roq'd. Ares = §§§§g I .95 so. In. effective A.I.S.C. effective area in tension 3 Back - Rivet ,1 1/2 ‘ outstanding leg. Using 2 - 2}" x 2' x 5/16" angles back to back with L A short legs outstanding f“: m:- -25- Eff. Area I 1.51 - (5/16 x 7/8) - l-ll/l6 x 1/2 x 5/16 3 .73 .75 x 2 I 1.46 Sq. In. 93 Compression Iembers For l/r Ratio greater than 60, L.B.C. requires use of column formula, f = 18000 I ; 1:71am (I7r)z From A.I.S.C. Table, 2 angles - 2}" x 2" x 5/15' - 5/9' back to back will withstand compressive force of from 29,000# to 59,000# for unsupported lengths of from 4 to '7 ft. l/r ratio in all cases less than 120, complying with L.B.C. merefore 2 - 2}” x 2" x 5/16" angles - 5/8" back to back with short legs outstanding will withstand maximum tensile and compressive forces in truss, and being the min- imum size angle ilich will take a 5/4' rivet. his angle will be used throughout. Rivets Regired Use 5/4" Shop rivets. One rivet in shear (double) 2 2 P1 (12 x r = 2 3 1416 7 x 15,500 = 11,9204)e One rivet in bearing (single) 5/9 x 5/4 x 50,000 I 5,440! Bearing stress will govern. lenber Stress Rivets IIIowa'SIe beariilgjer five? Req'd. 1:235 -27- [ember Stress Rivets Wearfgg pgr RIveE Red'dL— ... Its-91% 2 ‘ 8.44 8 0 1-1 0 2 311?};- 1-3' 12 250 2 "61176 1-5 16 720 2 ‘5"; 40 1-2 15.690 2 3-4 6 220 2 » 8.430 5-6 479 2 LEE: a 2-3 9.820 2 4-5 4 350 2 m _ 6-7 710 2 For shop details of truss members see Figs. 15, 16 and 1'7. Dinensions were obtained by laying out truss to 1/2 full scale and scaling off. Rivet spacing is in compliance with L.B.C. and A.I.S.C. Upper and lower chord masters are to be fabricated as shown in Figs. 16 and 1'7. Values of "L' for web msnbers (Fig. 15) are as follows: ~28- - W55 Mama-5R5 776 /5’ m 3% nos-«No- eke-C kwkom (tom-k ..a\\ II J... mulllllunb - . "a..- -..- LE- -T 1E..- L- I: \ ~Illl-l-IL_. _ ____ . _._ _ __ EL): IILWon-rllln-fi “-1IL. \Nr ‘- - liemfi. 1n \- gh ..\ .. \Nfix 523252.550 new-w ...-«0th. {9(an 09.me mu Nun-SQQ A‘s-no? we. sR-u-ww- N -mc-Q-Q tho-03 - 3.9K Q ..wx \e.e . - -29- £92222. "I." in Inches a-l 54-5/4 2-5 44-5/4 4-5 54-3/ 4 6-7 64-3/ 4 .1-2 50-15/15 5-4 57-11/15 5-5 74-7/15 Check Wt. of Truss It. 2}“ x 2" x 5/16" angles I 4.5# Per Ft. 5.05 x 5 I 50.55 5.40 5 x 5 I 50.00 5.95 5.252712% 1.59, 97.11 20.91 21-5-3 97°11 Lineal Ft. of Double Angle = 155f53'rt. 159.95 x 4.5 x 2 I 1260 # Wt. Angles 24 at. 0.2. (Approximately) 50 # Wt. Truss 1500 (Assumed 220# per panel) Truss BearflPlate in Isl; From L.B.C. - Allowable compressive stress under concentrated loads in common brickwork = 1'75 P.S.I. Load = 14,220# Ii.;§2 I 51.5 Sq. In. Req'd. -30- Use 8' x 12' plates. 8 x 12 I 96 sq. in. ’55—“ 220 = 149 P.S.I. - m1. 1: 15.3 than 150 P.S.I. in'bulk of masonry - complying with.L.B.O. and making pilasters unnecessary. Bearing Plate Thickness (A.I.S.C.) t2 :- 5.21:5 = 1% = .555 t i .6" - Say 5/8' Use 8' x 12'' x 5/8" Bearing Plate In v.11. Truss Bearing Plates 0n Piers #15, #14, #15, #16. From,L;B.C. - Allowable compressive stress in cement block masonry = 115 P.S.I. - 4 - Required Area - l—i§§9 - 124 sq. in. Use 12" x 12' Plates. p = 1422° a 95.7 P.S.I. 144 t2 8 9: 7 6 3 .53 t = .72” Use 12' x 12" x 5/4" Bearing Plate on Piers. Piers #15, #14, #15, #15 - 2' x 2' x 15' high - nude or concrete blocks, ratio of height to least dimension.mnst be 1ess than 12 (L.B.C.) lé""3ar'7.5 0: Oclulns #9, #10,1#11, #12 - See Fig. 18. man Load a 28,440# ,4 4,000 = 52,440# Unsupported Height I 15 ft. For %. ratio less than 120 as stipulated‘by L.B.C. we reduce / [+155 BEAR/N3 PLATE- 5ux5'1x z/zH—\ i AL 3 X I :1 .. .. ,. \-- I---- --2—5’-5/’2x//z by) BA SK 779 ’52.; ~'.T,:\’ — COLUMN 3/1953 7‘ L535 L035" I 20‘3- OUTSTANDING 7/6. /<5 “WL /\ / \ WALL. AREA jlllHHIHJB a UPPOF? TED ‘ V a $0 I I I I l l I ...—60 l AIM/TEL | I \ r: 7 7 I I l I LL 7 , 7%“ "I." #:654 iro— I BEAM r —1 J" FLA 7,5- /,2"x;;,r”x'z."+1' FIG. M L/NTEL CRoss- Star/0N "r" to r : 18000 1 1 1718000 117142 From A.I.S.C. Tables A 6" x 6"H 20# column is required. Footing Bearing Plates - 1- fo-2000 égaégg I 16.22 sq. in. req'd. Use 8” x 8” x 5/4' plates welded to top and bottom or columns. Tb support truss lateralli and to facilitate the addition of movable chainfall, angle sections will be run from column to column and welded at each end to bearing plate. The first and last member to be anchored in.the wall. See Fig. 16. Ihese angles to support a maximum.concentrated load of 2000#. lax. Mom. - 2000 x 9 - 1000 x 9 8 9000'# or 108,000"#. I 108000 3 I .I I 6.0"3 f 1"“8,00"0 Use 2 - 5' x 3}" x-i' angles‘back to'back dhort legs outstanding. Check shear - 1000 g m 200 P. 3.1. 2; LINTEL DESIGN It. brickwork I 125# per cubic rt. lhll = 13' thick “L“ C 11 ft. (see fig. 19). Area supported I 5.5 x 5.5 xW/S = 52.5 sq. ft. 52.5 x 15/12 x 125 = 7,100# lo a %— «.- 11.03.312.11. = 15,000'# or 155,000'# -53- I 156000 - 03 s a s - 8.57 13,000 Use 5" I 17.25# «1550 to 12" x 2" x 12' Plate. Check shear Valli-9985550 1:5.02 v . 23.5%2 : 705 2.5.1. 93 Check bearing 5%.; = 59.2 2.5.1. 95 (Allowable 175 2.5.1. - L.B.c.) 1.111551 for "L" s 15' (213. 19) Area supported 8 6.5 x 6.5 x /3 8 73.2 sq. ft. 75.2 1: 15/12 x 125 :- 9,900# '3 I :- 1'33: :- Wig-iii a 21,450'# or 255,000"! a - n I “253380 - 14.5 Use 5" I 15.4# welded to 12" x i" x 14' 21:50. Check Shear - 723-299-85950 4-5.54 v = $23- : 954 2.3.1:. 01: check Bearing - Egg-g— = 82.5 P.S.I. 95 (175 P.S.I. 1115.351. - L.B.C.) Lintel for 'L" = 14' (Fig. 19) Area supported I 7 x 7 x /5 8 84.7 sq. ft. 54.7 x 15/12 x 125 = 11,450# I 2 13—15. = wk)- = 26,800'# . or 521,000'# In 321000 '3 “flaw-”7'3 Use 8" IF 21! welded to 12" x i“ x 15' Plate. .. -34- Check Shear - v s $11429 I 5,725 A = 5.15 v a gag - 925 2.5.1. 2; Check Bearing - {-33-- 95.4 2.5.1. 2; Joists to Support Office Roof (see fig. 20) ' Spaced 2&2 0.0. Span - 15' I1 I 71.2 x 2‘} 3 1785‘ per ft. '2 I 8.5# per ft. (assume) I I 186.5# per ft. I = 1;. = 132.235.1913 . 7,550'# or 90,700'# “5.....- 555-5504 , 00 Use 6" x 4" - 8.5# per ft. Bethlehem Rolled Steel :01..th Check Shear - 78W =1575# 4:2.50 sq. In. 7 I «Egg = 570 2.5.1. 215 Check Bearing - Load = 1678# Flange Width 3 4" 1%? = 70 2.5.1. 95 (175 P.S.I. Allowable - L.B.O.) e . REINFORCED CONCRETE D8310] A.O.I. ALLOIIBLE'UNIT STRESSES Beams, Girders, Columns, Poctings, Ialls :- 23 = 2500 2.5.1. n = 12 r. s 1125 2.5.1. 1'; . 20,000 P.S.I. '6 3 50 P.S.I. u ‘ 125 P.S.I. Stairs and office floor slab :- fé :. 200° P.S.I. n = 15 to . 900 P.S.I. ‘- ‘ 20,000 PeseIe '3 ' ‘0 P.SeIe u = 1.00 Garage Floor Slab :- 2; = 5000 2.5.1. 2. = 25,000 2.5.1. ZI/z Con/c. 51.21.57 Exp/220050 . ” 5TEEL I 4.”; 4” ROLLED dot-'57: ~ 2 -6 o.c. F5247: T .5 Rm». MALL a), = Wig/Fr. # L w, = 306 /FT. )— 7‘) $~ it— F/G . 21 - 54¢2H\ page of 02:15” Roof 51.5 (See 215. 20) Use 2}" Slab. '1 s 1.1.. s 40# per sq. ft. (1.5.0.) '2 I 1 x fig x 150 3 $51.25* per ft. w I 71.24 per ft. 2 2 a . 1%- . W = 55.7'# or 557'? kd : 1125 . 2:5 27:72 ““1001 2/5 kd = 1.01 2.2/5 I .57" 2.5-1.01 - 1.49 0 Isl—1535.11.01 :12 = 5,520# 5520 x .57 . 4,570": a, x 20,000 x 1.49 a 4,570“! ‘2 ' 231355—115 "' '1“ "1° 1“ D x . p.’ ft. Use Steel-Tex or comparable expanded steel reinforce- ment having an area of .154 sq. in. per ft. width. Check Shear - 71 2 x 2 5 . 89 . -J-.T-+ - 89# m 8 2.9 P.S.I. .95 Temp. Steel for Roof Slab -(A.O.I.) lax. Spacing I 5t or 18" gem : .0022 A. = .055 Sq. In. per ft. 5tI5x2.5Il2" Use i" round bars 0 9" 0.0. It. of Office Partitions 2" x 4" Studs - Plastered Both sides. 16# per sq. ft. 19x1 I 144} per ft. I I‘ H); 'fi—‘-+ “.2 - .4 5w // / a, /// J? ,. d dI/ _)L_ (LI—fl _JLéw + + + )f-én l (A C_'l"l-I\I I /’—_j C_J_|_L.lh.l___ _ _ _/_ __J l/xz; M / "H 'I ++++ Z FM; 2.3 j/MFLE JP~W a I-———II :—_-_ E‘H‘K ,g" 342' | fl ;l H -, .1. rd [70 52.4\/ F4, 24 a ——_l" " _.L,_ l —= ’ 77‘. if If 1. I #4L'gt‘lJ—_———_L._ l ‘ , / ’42 III 042 I /Z | “/42 Ll ‘ ——~ Li’ffi-Jk CPA 7'}; 2 5‘ -59- univ. Uniformly Distributed Load on Floor Joists - -a=144x2xl§_:—§x5.5=500'# 2 T'1 =500 w 5005 a 22.1,? per ft. 22.1 a 11# per sq. ft. Equiv. partition load supported by Jcists. DESIGN OIFICE FLOOR Using 20" metal tapered pans and concrete Joists. Clear span I‘ 17' Live Load 3 50# per sq. ft. (L.B.C.) Pinish’lccrIl/24xlxlxl50I6i6‘per sq. ft. Bquiv. Part. Load I 11# per sq. ft. Total superimposed load 3 67# per sq. ft. From "Simplified Deeigg of Concrete Floor lstems - b e , 6" Pans - 2}” Top - 4" Joists - 24" 0.0. . It. Slab I 50# per sq. ft. 1‘ = 21-532 x 1.95 = .79 sq. in. Use 2 - 3/4” round bars -2" 0.0. Bend as mown Fig. 26 Check bond - V . 1&31 I . x . "- 57.5 2.5.1. 2;: Using Standard Hooks - L : fuaD = ZOaOOOEE'IS) g 25!! Tranverse Steel Req'd. =- .O49 Sq. In. per ft. at 5f 0.0. 11: Use 1*" round bars - 12 o.c. ‘IIIII'II'I J ,1 I II 1.”) I. .[3 I ;‘IK II II II II II II I II I II rl [IV IiEA II —III'|'I-Il['llll"l\'llJ _IIIII I .I II II III. ‘I‘I'IIIIIIIIIIII'IT' 4 . IJ rIII I IIIL «.4, H .I I I I I I I I I I I, I L ____.___-l__ __ n 2 A I. "I ”C: 3x Q}. ‘1 (b )\ '\ f 1“ (:3 T 1:11 I I I I I I I II I II-. I I .ILJ /9¢8 ' l I . I - II li'l‘l'l'lll'll F'- I I I 2} a. I Al 2)! a." '_I I' 5- F/G. 48$ -41- 03}? x 21 = .049 sq. In. 21;, Dead Load on Sean #1 It. Roof - Concrete 3 21% x l x 1 x 150 = 51.2# Per Sq. Ft. Joiste I 8.5 x 1/2.5 I 5.4# Per sq. ft. Plaster and suspended ceiling 3 10.0# Per sq. ft. TOTAL I 44.6! Per sq. ft. 17x601144.6= 2x35 . 579# Per ft. of beam from roof. it. lhll - 5/12 x 125 x 12 x 50 = 50,000# Less Window Openings 11 x 7.5 x 5/12 x 125 x 5 s 20,5001II Remaining - 50,000 - 20,500 a 59,400# 25.9.3399- : 5571‘ per ft. due to brick work. 5 x 9 I 45:? per ft. due to wall plaster. (6 ,l 11 f 50) x 9 I 605# per ft. due to floor. Total dead load on beam #1 = 579 ,l 557 ,1 45+ 505 = 16 r It. Live Load 0n Beam #1 From Roof I 40 x 17/2 I 5402? per sq. ft. .From Floor I 50 1: 17/2 I 4255‘ per sq. ft. Total live load I 765# per sq. ft. Design Bean # l '1 s 75.5,! 1554 :- 25495I per rt. '2 I 3007? per ft. (Assam) I I 274315‘ per ft. Span I 18' - 8" From Fig. 1 2 la. non. = .1 '12 = 2"” " 18°67 - 95,700'# or 1,148,000” Fran fig. 22 Assume b I 12" 0 . } tobkd = l-l522(12)(.4050)d - 27255 27250 x .15 8 1,114,500 52 a 455 d I 22.0" 22"4 2"0over I 24" Bean Check '5. Beam - I zdllexlxlsoIsoofi‘perft. OK I =._1114.500 “‘13?! W ”2°90 "1° 1“- Use 4-1" round bars spaced 2%“ 0.5. and bend as ‘ sham in F135. 24 and 25. Check Bond - V 2749 x 18,6712 3 u C m- . . X . 6 x 106 P0301. .9}. Check Shear ‘1 ' fir m 3 11° P-S-I- Stirrups - 7° I 50 P.S.I. Allowsble (A.G.I.) v' I 110 - 50 = 60 P.S.I. P.0d. Iethod - From S.D.0.F.8., Fig. 1'7. v'b I 720 -43- -1 1'_6011807- ..- .-.. “21v “W's-m 5'1 lax. Allowable Spacing I 22/2 I 11" Use 5/5' round stirrups 5 - 5 5 5", 1 a 5", 5 5 11" Using Standard Hooks - L , ran , 201000?) g 33.3. Dead Load on Bean # 2 From Boat I 379;? per ft. From Wall I 657# per ft. From Wall Plaster I. 45;? per ft. Prom Floor = _6_9_:_5_# per 1:. TOTAL 168% per ft. Live Load on Beam # 2 From Office Roof I 3403? per ft. From 01:15. Plow I 32% per rt. TOTAL 755# per :5. Dead Load and Live Load from Garage Root - £5522 x 12 T I 452# per ft. '1 . 452-} 755+ 1554 I 2901:? per :5. '2 I 350# per ft. (mums) w I $261153 per ft. Design Bean # 2 w I 325113é per rt. Span I 18.67' I max. I .10 wl2 (see fig. 1) _ 2 a 3251 13 6'7 : 1l:5,lOO'# or 1,358,000'# From Fig. 22 Assume b I 12" 0 I i fobkd . 1126/2 (12)(.4050) a x 27250 27255 x Jd - 1,555,000 255052- 1,555,000 52 . 575 d I 24.0" 24"} 2" cover I 26" Beam Check It. Bean - §%x1x1x1160I325#perft. 21;, I 358 000 ‘a 'na W‘Hs’q- 1’" Use 3-13" round bars o6" o.c. Bend as shown in Figs. #24 an! # 25. Check Bond - v , 5251 x 15.57 “' 3.x.86'7x - 105 2.5.1. g; Check Shear - v I 533 a 12 x .86 x ' 12° P‘S'I' Stirrups - '0 I 60 P.S.I. A.G.I. v' I 120 - 50 I 70 P.S.I. From 8.D.C.F.8. Fig. 17 - V'b370x123840 a =%;- = We 6" x 7° 8 5.44! . 5'-5" lax. 8 I 24/2 I 12" 1150 3/8" round stirrups, S I 1 Q 3", 4 0 6", 1 o 9", 5 5 12" -45- Using Standard Hooks - L , r35~, 20,000 x 1-115 . 37.5. DESIGI‘BEAI # 5 - It. Partition I 144# per ft. Floor L.L. I 50 x 1.5 I 75# per rt. Floor D.L. I 5/12 x 150 x 2 I_Z§# per ft. ' w1 I 294# per ft. w? : _§§# per ft. (Assume) w I 379# per rt. Span I 17' 575 17 3 I I 1/8 I].2 I -'—é—-l* I 15,700'# or 164,500“# Assume b I 6" See fig. 22 c = 5 ram . l-1-52-§(5)(.4050)(0) = 15500 15500 x 10 a 154,500 115002 154,500 02 = 155 0 = 11.75" 11.75" .1 1.75" cover . 15%" Beam Check It. Beam - ' ' 15 5 x gz,‘ 1 x 150 : 54.5# per rt. .25 . mm = .784 “to in. Use 2-3/4' round'bars -2" 0.0. Bond ‘3 6110'!) Fig. 23a Check Bond - “‘fiz'MR-TWHH-SJ- 2'! -46- Check Shear - v = 5220 ' ' m = 51-2 P-S-I. vc I 50 P.S.I. (A.G.I.) Therefore no web reinforce- ment required. Using Standard Hooks - D .t D U L-t-zs DESIGN ONE WAY RECTANGULAR SLAB - 13'-6" x 5'-O" Live Load I 50# per sq. ft. Wt. Slab I 38# per sq. ft. Fran 15515 7 - S.D.0.F.S. 6" Slab Allowable Load I 140# per sq. ft. As I .19 x.§%gé;I§§'I .10 sq. in.per ft. Use 5/8" round bars spaced 8.5" 0.0. Every other bar bent up at supports as shown 1n.fig. 26. Check P - 5525 - ,, Pz'fiéI‘FLE‘TF—1 .57 5--.7""5)"°9 25- M. 315001 " A 3-5;. 3 e002 , A. = .072 8Qe inc per ft. lax. Spacing I 5t I 15' (A.O.I.) Use 5/8' round'bars - 15” 0.0. 4‘7- DESIGN BEAN # 4 Span I 13'-O" Floor Load (Dead 5: Live) I 88 x 2.5 I 220# per ft. Partition Load I 13% per ft. '1 I 3645‘ per ft. w2 (Assume) I fl per ft. w I 434# per ft. I = 1/5 '12 = 2§2é1§13, = 9,170'# or 110,000"# From Fig. 22 Assume b I 6 0 a g r5520 3 (5)(.405)(0) I 15550 15550 x 30 . 110,000'# 115002 ' 110,000 (12 1125 T 95.5 d I 9.65 Say 9.75 9.757,! 1.5" cover a 11.25" Beam Check It. Bean- I g-é- :fi-EEE x 150 - 70# per ft. 21; ‘ 110 000 _ s fT‘Jd 'ms) .66 sq. in. Use 2-5/4" round bars - spaced 2" o.c.. Bend as shown in fig. 25. Check Bond - uIv 4 . ‘ WW7: 70.2 p.01. 2; Check Shear - 3 v 2520 V m 86.6 .5 =55PeseIe V0 : 50 P0391. 7' = 55 - 50 . 5 PeseIe From seDecePese H e 1" over? -43- Prom S.D.G.F.S. Fig. 17 v'd = 5 x 5 a 50 "%"%"%§;§3%I .59' 87" lax. Spacing a 5.75/2 = 4.5" Use 24" round stirrups 5 4" Using Standard Hooks - L a 51% 8 20 OOO(.75 . 25.. DESIGN STAIRS Lower 3115113 - “-6" Wide '- Horizontal span I 11I-5" hon 5.5.0.5.5. - 7.51. 25 Thickness of slab I 7" Steel Required I 5/8” round.bars - 7' 0.0. For Bending and Placing details see Pig. 23 Wt . Lower Flight «- zfgxg-é-x4.5x150x.5Il58# E x {3- x 4.5 x 150 . 323% 4% w I 605# per horisontal ft. of stairs. Upper Illflt - 3'-6" Wild. - Horizontal Span I 5'-5' From S.D.0.P.S. - Table 23 Ih11¢5kness of slab I 4" Steel Required I 5/8" round bars - 5.5' 0.0. For Bending and Placing details see Fig. 28. v - ——_—-_____ V _ -49- PART/T/O/f—j £- FRONT WALL. M / Maw/232; /”(‘/ear IITF/oor] /;. Tofa/ dcpfh ofs/w __‘=_—_=‘/ “' J l I H ' n 4" [#1 2": -1 1569’=//-3 4 3-6» - _ Fm. Z7 LOWER FLIGHT "f BEAM ”5‘ f _5/D£ WALL \ / 7% “I . \ / ‘. /"., 05/1107 , 1 ,, .9 :1 7 / / [fear I 1mm 1911:5125 0x551 é 55:7 '2 4 If,” I 6’5?" 4‘49" 7@ 9"=5’-3" FIG. 26 UPPER 'FLIGHT -50- "to Upper Plight " Zi-g-xg-gxs.5x1sox.5=125# fix§§x3.5xl50 2131,53 254.3164 __:_§._..254 3 x 12 s 339.5! per horizontal ft. or spam. loteMSteel of upper flight to be continued across landing forming a one way slab «- 5.5" thick, capable of withstanding load of 29“ p” “1' ft' 51515 7 - 5.5.0.5.5. 515110201101. 51551. 50 5529052 55115 Section # 2 - See Fig. 28 Dead Load «- i upper £11355 5 559 x 5.25 x .5 I 5505‘ funding-44x5.5x4.5x.5 I_5_21£ 1177# Live Load - 1} uppor £11351; 8 100 x 5.25 x 5.5 x .5 a 915# 2 14mm; x 100 x 4.5 x 5.5 x .5 = 155i 1705# 1705544 11775! I 2555.? Span I 3.5 ft. w I 2%}:- I 8245‘ per ft. 7 I 33-2-3- I, 1441 . 2 I I = 1/5 an.2 I 824 3 5 = 1255'# or 15.200"# 3 5'15555'-85" -7-1441 , “rm-dumm- Use 5" I 1055‘ - 5'-lO" long - with Standard A.I.S.C. A-l connection to column ”A" Section I - See Fig. 27 Dead Load - i lower £11355 = 11.25 x 505 x .5 = 5410# Idve Load - i lover £11355 :- 100 x 11.25 x 4.5 x .5 = 2550# 5410144 2550# . 5940# 3 9339'! 1,320# per ft. 2 I 8 1/3 '12 s 1320 4 5 8 3360'#' or 40,250'# 3=I=§g§§g.2,2y3 9 C” F‘ 3 v = = 29705G A: :%=.245 sq. in. Use 5" I 10# -5 ft. long with standard A.I.S.C. been ..."! connection A-l to column "A”. Bearing of Sect. I on 12" I511. ,- v = 2970,! 10 x 4.5 x .5 = 2995# Roq'd- A ' {r = %$§ = 17.1 sq. in. lb have 6' x 3' o 18 sq. in. Therefore no bearing plate is required. Bearing of Sect. II on 4' Clay Tile. Partition - V314411‘1013.51.5=l459# ROQ'deA=?81§'§§= 12.7 Sq. in. Nb have 4' x 3" 8 12 sq. in. therefore no‘bearing 9135. is required. DESIGN 00me "A” Dead 5: 1.1" Load from floor = 454 x 5.5 a 2520# ' 7-3.55. 1 - 299519 V-Sect. II " M Total mu Load: 7274# 351355 = 15' Reducing f by A.I.S.C. column formula and using A.I.S.C. table for l/r ratio less than 120, a 6" x 6" H 20# is required. Bearing Plates - P - 7274 "r-ww c . Use 8" x 8" x 3/4“ plates welded at top and I 3.6 sq. in. Req'd. bottom of colum. 0551511 55“ fl See Fig. 21 Span ’- 1'7 'oOO" Floor Load (Dead 5: Live) 8 88 x 3.5 3 SW per ft. Stair Load (Dead 5 Live) 8 88 x l x 824 = 912# per ft. Find Point of laximum Moment - 505 x 17 x .5 = 2500964 912 x 5.5 = 5190# 5190 x 1.75/17 :- 528# 51 a 2500 / 529 a 2929#, 32 : 2500-,1 2552 = 5452:? 2925 - 5051: a o x = 9.5' lax. lam. . 2925 x 9.5 - 505 x 9.5 x 9.5 x .5 11 = 14,000'# or 155,000'# '2 8 100# per ft. (Assume) 1'7 x. 100 x .5 = 850# Additional Moment- ! = 550 x 9.5 - 100 x 9.5 x 9.5 x .5 = 5550'#~ or 42,500"# Total n a 155,000.; 42,500 = 210,500"£ Pros: Fig. 22 Assume b = 8" 0 = 5:05:55 8 l%§§(5)(.405)d = 19205 15205 x :5 ' 210,500'# 157552 a 210,500‘# 52 = 155.7 d = 11.5" 11.5"-/ 1.6" cover 8 13" bean. check Wt. Beam - fixgxuosiow 21;, ‘a 'g-na-‘Wfim: 1.05 sq. in. Use 2-7/8' round bars -.‘5" 0.5. . Bend as show in Fig. 23. Check Bond «- V 5462 > u I a : m WW . . 98.7 P.S.I. Check Shear - V - 5462 .. vgm-W-68 P.S.I. 7° ' 5° AeceIe Prom S.D.GQF.8. F180 17 IE v'-v-vc‘68-5o=38 P.S.I. v'b='59x5=504 1 1'31'71138 “5H W'4"9" §661RDE I? l 14j37 “iii—4 E A (3 SEE 1 H. ”lg ..DW :5 WEHEHW _— umiflfl EIHW _ m . J fiflfliflifl__n mm L flljjfi U riam tha L lax. Spacing = 13/2 3 6.5“ Use i" round stirrups S = 10 0 8" Using Standard Hooks - Ingfizzoooo 8'75 325': DESIGN COLUIN f 6 85 i '7 From Fig. 1 - w 0 2750 1 1'- 18.67 P = 1.1 '1 = 2750(15.57)(1.1) = 55,457# hon F180 29 '- ast Dimension ' 1 " 14'25 Increase Load for 13‘- ratio greater than 10 (A.0.I.) P' 3 P(1.5 - .osg) P . figzm :5 64,900# P = Ag(.225fg-/ raps).8 54,900 a 100(.225 x 2500-,4 20,000 p8).8 p8 ' .0125 1111s is between .01 and .04 therefore 0K Ins-f; , .0125=f3-5 A, 8 1.25 sq. in. Use 4 - 5/8" round bars as shown in Fig. 24. lateral Ties s : 15 x 5/5 a 10" Use 1" round ties as shown in Fig. 29. DESIGN COLUMN f 5 8: i 8 From Fig. 1 w = 2750 1 = 18.67 P I .4 w1 3 .4(2750)(18.67) 8 20,534# his value is less than that of columns # 6 and '7, therefore the same design will be used as this is the min-- I. -55- imum (A.G.I.) amount of steel allowable. DESIGN COLUIH i 2 and fl From Fig. 1 - w 8 3251 1 = 18.67 P = 1.1 '1 = 1.1(5251)(15.57) = 55,754# PromFig. 29 -§-=¥f§§s14.25 Increase P for g greater than 10 1H : P(l.3 - .05§) 55 754 P " W‘ 76.60““ r . Ag(.225 1;,1 r.p3).5 75,500# - 100(.225 x 2500-/ 20,000 x p8).8 p8 ‘ .0198 This is between .01 and .04 - 95 P3 3 x‘: , A. 8 peas 8 100(.0198) 3 1.98 sq. in. Use 4 - 7/8" round bars as shown in Fig. 29. Lateral Ties «- 5:15:7/5s'14' 3848:}31211 Usei'roundtiesasshownin .7 Fig. 29. DESIGN COLUIN l a 4 From Fig. l - w 3 3251 1 3 18.67 P = .4 wl s .4(5251)(15.57) = 24,274# his value is less than that of columns #6 and #7, therefore the same design will be used as this is the mini- mum (1.0.1.) amount of steel allowable. POOTIHG DESIGN Soil pressure 3 20009? per sq. ft. I D ,_ I. I .. 0 O O r .- .. -.. -57.. 2500 P.S.I. 3 12 a 0 II 1125 2.5.1. 1, a 20,000 2.3.1. 75 2.5.1. 141 2.3.1. Column Footing £2, #10I #11, #12 Gal. Load = 25,4404 2000+ 15(20) = 50,7001? From Table 35 - 3.0.13.3. 4 u S I! Use Footing 4'-9" square - 15" deep 9-3/8" round bars each way with standard hooks D placed as shown in Fig. 29. Column Footing g 2, g 5 ' col. Load 3 55,7544 1 11 1 x 150 x 15 = 55,704# From Table 35 - R.C.D.H. Use Footing 6'-8" square - 15" deep. 17-3/8" round bars each way - standard hooks - - placed as shown in Fig. 29. column Foot 1 Col. Load a 24,274 ,1 1950 = 25,2241!E From Table 35 - R.G.D.H. Use Footing 4'-9" square - 15" deep 9-3/8" round bars each way - standard hooks - placed as shown in Fig. 29. Column Footi 6 and 7 ca. Load a 55,457,! 1950 = 55,417# From Table 35 - R.C.D.H. -8- Use 5'-9' square footing - 13“ deep 11-3/8" round.bars each.way - standard hook: - placed as shown in Fig. 29. Column Pooti 8 051. Load = 20,554,! 1950 I 22,484# From Table 35 - R.C.D.H. Use Footing 4'-9' square - 15" deep 9-3/8' round bars each way - standard hooks - placed as shown in.ng. 29. Pier Foot # l3I f 14I £15. £16 Pier Load I 14,220,! 2 x 2 x 15 x 120 = 20,450# From Table 35 - R.C.D.H. Use Footing 3'-4' square - 15' deep . 5-5/5' round bars each ... - standard hooks - placed as shown in Fig. 29. Column Footing # l, i 4 Col. Load I 26,224# qu'd. Area I 13-33%?— I 15.112 sq. ft. Width Footing I 20" I 1.57' I9:151:11 ". ‘3 LE-f—g-g = 7.5' I 7'-9" I I 15,112 x i x 5/2 I 25,2249!I = 515,000'# Assume total depth 3 16” d- 12' 3” clear. From Fig. 22 c = i fobkd : i(1125)(20)(.4050)(12) = 54,500# 0 x Jd I 54,500(.5557)(12) = 557,000"# 93. 1 x Jd I A,(20,000)(.5557)(12) I 515,000"# A. ‘ Wm = 1-515 “1° 1m 5 0 ‘ Use 5-5/8" round bars - 3" o.c. - Standard.hooks - as shown Fig. 29 except only one way. Check Shear - 13 112 "Té‘fis‘54-7 21S. Check Bond - V . 13112 u I 3 126 P.S.I. ‘QE Column Footing "A" 001. Load I 7,274# Req'd. Area I £31753 = 5.55 sq. ft. Use20" x 20" Plain Concrete Footing 12" deep. A.C.I. - Allowible for stresses for Plain Concrete .. Footings - T = .03 f; 8 .03(2500) I 75 P.S.I. w I .02 :3 I .02(2500) I 50 2.5.1. Using A.C.I. method we take amount about section half- way between column and edge of base plate. w = 1%? I 114 P.S.I. n = 2000 (5/12) (20/12)(4/12) - 2(114)(5)(1/12) I 559 '# or 7055'# From Fig. 22 1 = c = 1% (5)(20) I 4500# Allowable I 8 4500 1.8 = 36,000”# [fig V (at edge of base plate) 8 §§-(%%) (2000) 8 555# 555 _ 25";‘15 - 2-3 9.3.1. .95. Therefore, no steel required in this footing. ~60- Use Dowels to transmit stress of longitudinal column reinforcement to footings. Columns with 5/8" round bars - Use 3/4" round bowels. Extension into footing- 20,000 x .51 = 5200# = 2.55 x L x 125 L = 21" Use 1-42' -3/4" round dowel - 8" pedestals will be necessary for 15" footings. Columns with 5.4" round bars - Use 7/5" round dowels. Extension into footings - 20,000 x .60 = 12,000# 3 3.14 x L x 125 L = 50" Use 2 30"-7/8" round dowels - no pedestal req'd. DESIGN FOUNDATION WALL Maximum weight per foot of outside wall will occur under south wall. With 12" x 3.5 ft. foundation wall this weight '111 be - 5'0" Rm!" Lit-fig)- I 790# per ft. From Brickwork - 125‘27‘1g'11‘13 = 2550# per ft. From Windows - W : 40# per ft. From Foundation - 3.5 x l x 150 I 525# per ft. 50111. - W per ft. Allowable (1.0.1.) working stress for minimum reinfor- cement = .25 f; I .25(2500) I 625 P.S.I. 625 x 144 I 90,000# per ft. morefore, use minimum (A.C.I.) steel in foundation wall. .0025 x 12 x 12 = .36 sq. in. per ft. each way required. Use 5/8' round bars spaced 18” o.c. vertically 2" from outside face. Use 5/8" round bars spaced 18" o.c. horizontally 2" from inside face. DESIGN WALL FOOTINGS It. wall 3 3735# per ft. Wt. Fboting I 265i per ft. (Assume) TOtIl . 4000' per ft. 4000 2000 qu 2' wide footing - 12" deep - plain concrete. Area req'd. per ft. I I 2 sq. ft. Allowable 1 I .05 1"; I .05(2500) I 75 P.S.I. Thking lament at face of wa11 - u I 2000 1 g5 11 g- I 1000'# I 12,000"# CIT=75/2x6x12I2700# a I 2700 x 8 I 21,500"# Allowable .95 Check Shear - .02 r; I 50 P.S.I. Allowable Punching Shear I 2000 'x g? x i, s 1000# 139-315 ' '7 IRS-I. 91!. Therefore, no steel required for Shear or bending. For Tbmperature steel - use 4-3/8' round.bars - 5' o.c. running longitudinally to take care of cracks due to vary- ing soil bearing and contraction. DESIGN FLOOR 0F GARAGE Using Portland Cement Association Bulletin No. ST 51, "Concrete Floors on Ground". lax. Wheel Load 3 5000# Area Loaded = 30 sq. in. Impact I 25% 5000 x 1.25 I 5250# From Fig. 2 (ST 51) Using 5000# concrete - modulus of rupture = 675 P.S.I. From.Pig. 3 (ST 51) A safety factor of 2 willfibe used due to frequent stress repititions. Therefore the design modulus will be - 935 I 555 2.3.1. Fig. 1 (ST 51) is based on modulus I 300, therefore - 300 - 6250 x 350 5360# Entering Fig. 1 (ST 51) with load = 5360# and loaded area of 30 sq. in. a 5.25" slab is required. Use 6' sldb. Steel to Prevent Large Cracks 5:: A: we x1x150I76# a: i L I 18' r-2 1. I 20,000 75 18 2 - ‘ 3 2 25,000 as .54 sq. in. per fte U50 any welded wire fabric having this cross sectional area. A fabric with longitudinal wires, gauge I 00, and spaced 2' 0.0. is suggested. -55- v-. 0 '°3§'0': o .9..501l O 0" 0° '- Q .45 I. 2.. ..' o-nD°n 3o 00 ° 9" .0. I. ' 0. .§ 0 D 0,99'0 '0 Db.) l g—flhsnr '. '_b.'°.0 9. .0.p. .O .' o,‘ ' " ’5' ‘9' O ?. fix-.9: 3/; D‘O’Y‘ELS é/ZHO'C- __-_'_°_'_'_ .24 LoNG Qb-D'.O o.c.-Io" U.‘ - on {0.5 5'5: 2 9.”??? D b-0 o..%r- 4.0:: n / 1‘" COLUMN 012 .p‘? WALL . O ‘ / ’ . 33. /2 7711.5)“: . 91 I ... O s. ’k ' .- . h .‘D .IO-‘D. ..')..15 9'... 3/4" expansion Joints as shown in Fig. 30 should be placed on column lines as shown on sheet 1. Protected expansion Joints as shown in Fig. 31 should be used at both exits. 1/2' expansion Joints should be placed at all walls, columns and piers as shown in Fig. 32. -Pinia- .4»; \. t ' ' , q? . .. - , , ,) .h ‘ a a ‘ ;' iV'qW" I I“ ' ' I .-I l 0 .e ‘ - " i ’1‘" 5“, ,‘ 'a . 5:0" ~ “I ‘ ' —’ '54 5 1‘. /‘4' s’. '31 ' ’q I .~ 9 ‘ 'r‘ ‘,‘D\‘ .- ' a " I. _1 . ‘ '. 1 - "'3: t. L.- ‘,. .- L V' A r‘ ', d . V ’ \ l ‘ ". *“31 ' 1. 3'7“. ’ 5' 4 “ ,’ 0': " V. a ‘q . ~ f5 “ v a s' EJ IO“ X\ " ~1. l ' ‘ ,\ l . l ' .’-"' 7' .A ‘ ,. y-‘AI' '. .- . ’ ..‘ r! - I wf‘"[ - ‘ It” 4‘ 3,5, ’ 9‘ cf -v‘2 '. '1' ‘fi I}. ; . JCT ‘ "3-H 1w, 5 . " ”7.13 .-_1‘ . r _ r v ”3-: .’_ ‘- a" f 'A' V A' .tfv '\ 73, I. _‘ , , V. , rs: ' . ‘.~ "' .1 ‘ at u ". ’44" '2 't I" I - ". ..'" 5' iv Mild. J I 6 _ -. " 1". 4" S' ~v‘. ‘ \f“? ' A ’1‘. " . ,. . ‘. .2 ' tapff,‘ ' C . . ' 11': .TV'“: . , 91:95.. 7 7 - ’5' \ Li ' l ‘ ruff: ‘, . ‘ ' r. l A. ‘4. .s 7". j, u I o -'. l ,' A ‘- I -'I I . ‘1’ . o '_ ’-._-‘- 1» ’ < 1,. '. .a'.- Q ‘7')?Jnl'x‘ .- J'. - . I . . l‘, . , l \ ; I § . 5 I . 'Ny Iv. . I ‘ e l {a . '. . f I v u’, f , |. .. | ,‘ . ‘ ' I , . a. V ' . A! is I ~ . .‘fi 01' , ' . 1 . . . ' ‘ , Eff, , y, . ‘- . 7 - _ l . . r q l' . ~4' ' i . I. , I O ,. . . X . I.‘ . T . ' ' Ir . o r \ . 7‘ ‘ J L ‘ a s.‘ . ‘I.’" A ‘. r . .4 3 0 J \_ F '. '. .~ 04‘ w all I}; ‘j . I (“v s ' ‘ ~04. ‘_ ' s .4 \_' ~\L“'1 -- . w ). u -. —- r. \I , Ir ‘1 l' ‘g ' ‘ ' I: J’}, ‘. ‘I’ 'aS *p - I. v .“ . \)._ ‘ nn'd . 3x . . ‘45”- 'v 4," ‘.'. ', . ‘M. . 7 -. v' ,1 - J . 1 . 1'9?» '_’ ‘ ‘~J'~ .' . P -..‘s u . ,0 ~ , ..'. I ‘1 I P '\ o c - .1“: . . AH .' ‘ F ‘ - ' 4.‘ ‘ R.” ~ .3; - ‘Pi.’ “"st . ‘, _ 3... .-.es 1. I ,. ' I a J- ... . A' . ... . I.“ '4 ~' 1 If); ..' '34; a I I u- '0. \ .)'f'. ."r 0 "MI " " I.‘ ': . ”1.0.5 .5 lh-t - v9 1 ’ 4 f ; Q 1 2 ? ‘ / / y 2 ; ,.. . / / , 570/?55 13/. 06. ? 570255 5223’s. Z 370/?[5 13255. g / / , ~ / / .I l I Ill/ll ./ p . /’l4 /7- é a z/zééé/zé/Aé/Aéfl/ J. 744’ " " ’ ’ 77/4 #zZ4//é/z///7//4/744/7/ 741/744/7/74/7/ //7//7// CO; #4 /// /// ///// / / / J # H L"I'l‘ ' ‘\ COL 5' I "‘ ‘ ""' 171 H '\ €015 r0071}? 4“; I 1 A H ‘1 a)? 5‘“ M1, 3 . H 2 X R 351;: p . 155:4- .11. 5111/1____ § H ‘Q (046 FOOT.“ A COLZH ZfifAM#4' £5 ONE-WAY SLAB . fi = E ... , 34% = W ____§§{M__SZ_____- “0 Q Q‘.’ t ...] ‘ <0 _,_ _. ______________ .1- \' .Q ‘C ‘q~ ~' l3-é"‘ <0 ,1 a. K: .3 0~ L .. __ ________________ . \. :0 \. Q * in \ r— “ ‘” ‘K ______________ ‘I ~' “3 :3 \ Bid/”7f! *‘ L ...:_. —:_:::—_—'_—::::::'—' 4 55"” #2. a : “‘5 1"“ j “I n O a) 5.1 L _ _________________ | ‘. ~~ a “ I‘"__‘"‘__”__——__'—_I V} g, R HS -3 E: L.__._________ _____ .1 Q 3 "$9 l— _ ________________ H 5 $1 1 >3 ..1 . . ....L E _ __ 0‘ E E T P It A ‘ Q __ _ <3 In H \I “Q R r... K- \ \J . Q }\ (I; Q _ § L- .. Q ‘C V It ’1 F‘"‘ (6 L'" Q 31' L: [— ::_: - \J Le KS,» FT LK) :8 :(0 § F::.:;* H - I v 5;: n j ‘51 ‘0 L _ _3 .33 _MfIAf fi/Vf___1 r BEAM #2 =5? 1 , \ a [j :“E‘ 60.75 3053:}. .5 :3 =00 ‘ W— ... “J ._ 5.5/9727+ {F‘mg __________ ‘7 ~' < “J - L—-—— —-é ————————————— | S [ K') H F"—‘ ——————————— _ j T j 5 L.“ J1 I [t _n::::::::_-_:::::_ . T H L: E 1 Q :3 K : ::::: :: :_:: : :_:"___" I '3 $9 Q r— ' r H I 3., ‘L # L — -— ————————————— ~— / ~ 1; t-.. y .. ‘1 6042) __._______._.__/__.____, \ 501.7 .0 553 COL 52507-25»? L______éf_4fl__”§ _____l ‘3 H (Q h :j [—- _________________ .1 p?) 3. 3 L - ::: ———————————— ‘J ." n q H ‘\b I" ——————————— ‘1 ‘n E ‘3 :1 {\1 ,, L :_ :: :_":_—_::_:—_.—:_.—_—:_::‘: f q if ‘5 <5 I, H 7, as DEA/‘7 1 L’: : « 255mg “ .\ N :1 —:::—_—_‘“___———__‘:—— {g k ‘3‘“ . r“ ————— ‘1 54 H :1 P: ‘0 l‘: ::: : _: :: :2:—_:‘_—_::: ‘1 \cQ :3 K; ”4 ‘0'. x r‘ —' .. b v) - Q l ______________ __J t) k H '3 k \ \ f—.-—__—__————__::_ \ k \ 7 J “5 l_ _________________ __J H r— _______________ fl :3 l__ _______________ ___J I'— _________________ l I H ..- # # #- I— _________________ I ’ “J! . ':_ COLClT—OOTrICQCB (:0er r—‘—‘__‘“—‘“——‘__‘_ .1 WWW/#4242 74.1 ‘ Jazz/74144424445”, —’L ///////////////////////J M was L I u i l n , ' n I u ‘ u l o u /6I-é“ L‘" [0" é’3* 4'0‘” /5—0 ———i$'6—H L3.O|i 9-0" 7‘ /5’_0” '!‘5'é+l 1 u S OFF/CE FLOOR PLAN \ \1 a S 0 3L ‘5‘ K K (it E, ‘5 3£fiwcg GARAGE ‘ Q5 V. E 3 r; in GARAGE a? OFF/Cf ZLE VAT/0N P3“ 33 E OFF/(f I1 00/? FLA/V .. :3 59 DA TE: o///4o 55.4.45: 3/“ = 1’ N \9 _; =N I f . I \ I \ I Q 5 TOR/5'5 15 2‘02; s COL #5/ /' \ I FOOT. 2/14“x7'-9"\ I /5 ' /5 O” >'< /(5 ~ /é’_ 0” LI \\\I \\\\\\\\\\\\\\I_ \\\\\\\\\\\\X\I_ \II\\\\\\\\\\ \\\jL }\ \\\\\\\\\\\ u<\\\\\\\\\\\l\& \\X\\\ \\\\ \\\ _: —1 I I x I / I I I I I 1 I § \ I I 1 /I ' / I I I L_ I. n :LJI - L. __L __I:— :%l LfigJ / I :A/J, I I— _.I I ll._..II._I ET? | g # )1?- :N 4 I“ PM"? ”73"? P/f/i’ M ‘W2 ”D. 0‘»? 2512 22: 23/27? ”.22 2,021 002.. “44’0’ 52 if I I!) I ?I 7007'20520" FOOT 20920" F007“, ~20 I3) 7007: - gawgy’ FOOT-,I"'~//”I7'-9" F1} {-7/-1_+ I fl ____________ _A _ 2% COL :4“ : % I I / PI xfl FO0T—20"xz0" % I 3: WI 1 ' ”7° " '3: I l - 2 : I - I ‘ I \Q I % I ‘0? n-5-6"+I<————// - 5” I g I I NI/+— _______ 'I“—‘“*J E I |/' ‘Q I ? *A % I 2 I I I; . s / - 570.3205 | / . 2| - A .2 I I %+ ___________ a j , ,«2 r I I_ _. __I CI 7L_# / X/I— 4%J—j I?! ll 3,8 I FOALrOL : / I" Q : | 70-977 f 4? 1§I9H % I I /_I_ _____________ j; I l I I4; ‘0 I ¢% /8/ O” #61". 60:3" 73/441: TJ'OA/ IJQ/ "I" 71? “—"“ L— __I’-— —— — —‘ l— _ _ JJL 2' I f I m :04. , L/fof ‘ o. I ¢I w ._ _. __ __ __ I I0 I ; I I - I I : I : :I I I I E ‘0 I I I W \. IETIéI I____..__J I____I L_____I I______, \ j: 2‘ 4‘ I/ I 604’ fi/Z 5’94 f” 604. “/0 (‘02: ”“9 09 1 I g I 1,27 .IE.‘:’ ”I <1" .1 '14 Ni?” F307?- 4 ; 907.4 ~57” FOL/37‘ 4 I. inX 4C?” FODT 4 9";‘4’-9’l Q I I/I , F“—‘7 , _ I Q I II/I COAdZ‘WX/ I I COL#7/;/' I“ “la: I—I I F007.— 2’0' ,2qu II . 2002519" 5'4" I r35 (: I I I 1/ ///1 //// ///// ////////1////1////// //7 _‘tjf ILL :J I _I M441. 7‘007‘I/v6 2.:L % __I ._ —— — 7 /T 00 7'5/02' ma. 2' 2 5 f / ~ rm , 7, P/I/i’T/T/ONS - 42" I % I /Q. / /L—;.[R / / I WALL :1 CO; :3 I / I 1 I 0 I in ‘Q ‘ GARAGE 027/05 I % I ‘0; I ' I / I \ / I / I I % I 002; ““1 ~/’x/' 00/. ’55 _Lél ______ _ 7007—. 4’—7";-4’~?'_II_ F007? 4 9'94 :II— % “I __ __ .... __ _________________________________________________________ _ I LlL _ Ziggz/zgi/C/W//Z£////////////%///////////////////éé;//////////////// _/"_/‘_/‘///////////////F/2’- //////////////////V/ -+‘I- I -—————————————_*—-——-——-——— ——————————————— +-----—I ——————— -+ 1‘ 0 24731" >L /<3’-o" i ’— " 2L 1 " J4 . , l— —_I: , L _ Ir:— J T‘ /5 O I‘ /C3 0 /5 '0 7p /6 -.0 %I/o.‘—— “' //0’ 5" ' y g _ 5.52? was GARAG : g g {10” 5Hfi—E 7— NONI” 6 ¢ ' F 00 7101/0“ cf GROUND 2‘}; 00 R P4 ,4 N 5567 A74 £4 75 ' 6/1/40 30422“: 3202/ ... -.‘- .-‘ M'TITIi‘flLfiI'iILMHfillilljffl’fiilflflfliflfifllflflms