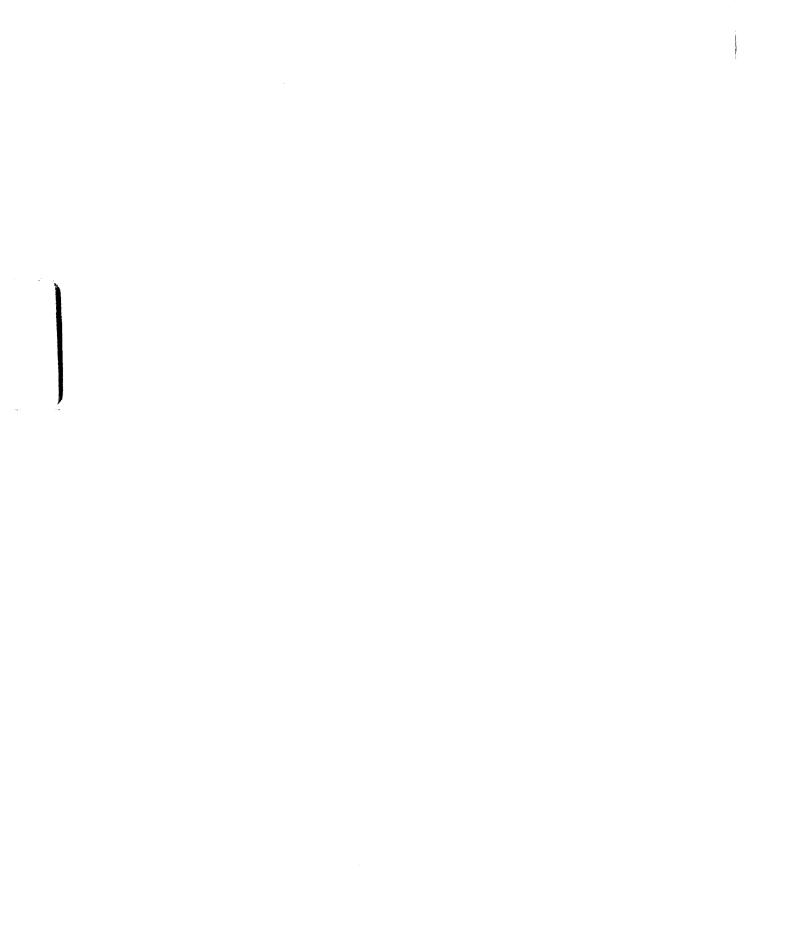
OPTIMUM FEED PLATE LOCATION IN MULTICOMPONENT DISTILLATION

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY!


Russell Howard Foy

1959!

THESIS

RCOM USE CALY

OPTIMUM FEED PLATE LOCATION IN MULTICOMPONENT DISTILLATION

by

RUSSELL HOWARD FOY

A THESIS

Submitted to the College of Engineering Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemical Engineering

To my win

DEDICATION

To my wife, Janet, and daughter, Beth, for their patience and understanding.

OPTIMUM FEED PLATE LOCATION IN MULTICOMPONENT DISTILLATION

by

RUSBELL HOWARD FOY

AN ABSTRACT

Submitted to the College of Engineering Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemical Engineering

1959

Approved

Ambre and segment and the formation of the second s

•

ABSTRACT

In a multiple component distillation design, it is evident that there exists an optimum feed plate location somewhere between the inoperative conditions of top or bottom plate, except in the case of an abbreviated column such as a stripper.

The two most commonly used methods for locating the optimum feed plate are those of Gilliland and Montrose-Scheibel.

Gilliland's method consists of choosing the feed plate so that the ratio of the key components on the feed plate is equal to the ratio of the key components in the feed.

The method has been checked by far too few problems because of the long and tedious plate to plate calculations required. Several problems involving eleven plates have been checked by Gilliland's method and agree fairly well with the correlation developed in this investigation.

The method of Montrose and Scheibel is based on an empirical equation which involves the use of the ratio of the key components on the feed plate at total and minimum reflux. The equation appears to be based on only semi-rigorous calculations since the simplifying assumptions of constant relative volatility and latent heats were made to

 reduce the labor of calculation. This empirical equation also makes use of the less than rigorous terms of minimum reflux and minimum number of plates. No attempt was made to check if the method agreed with the results of this investigation, as the Montrose and Scheibel assumptions are too general.

It was the purpose of this work to obtain an empirical multicomponent optimum feed plate location relation based upon a considerable number of truly rigorous plate to plate calculations. A rigorous plate to plate calculation is one which takes into consideration both the variation of equilibrium constant with temperature and an enthalpy or heat balance about each plate. To perform these rigorous calculations, a method of solution suited for a high speed computer was developed and programmed. The electronic digital computer used was the Michigan State University 40 cathode ray tube, single address machine.

The computer was used to solve several hundred problems rigorously. The results of these problems were then used to study the effect of certain variables such as reflux ratio, feed composition, and number of plates upon the relative optimum feed plate location. It was found that reflux

ntio, number
little effect
I function of
various feed of
based on relat

function was a

Although

tion, so claim

feed compositi

relative volat

location as for

tomercial appr

that when non
feed plate loc

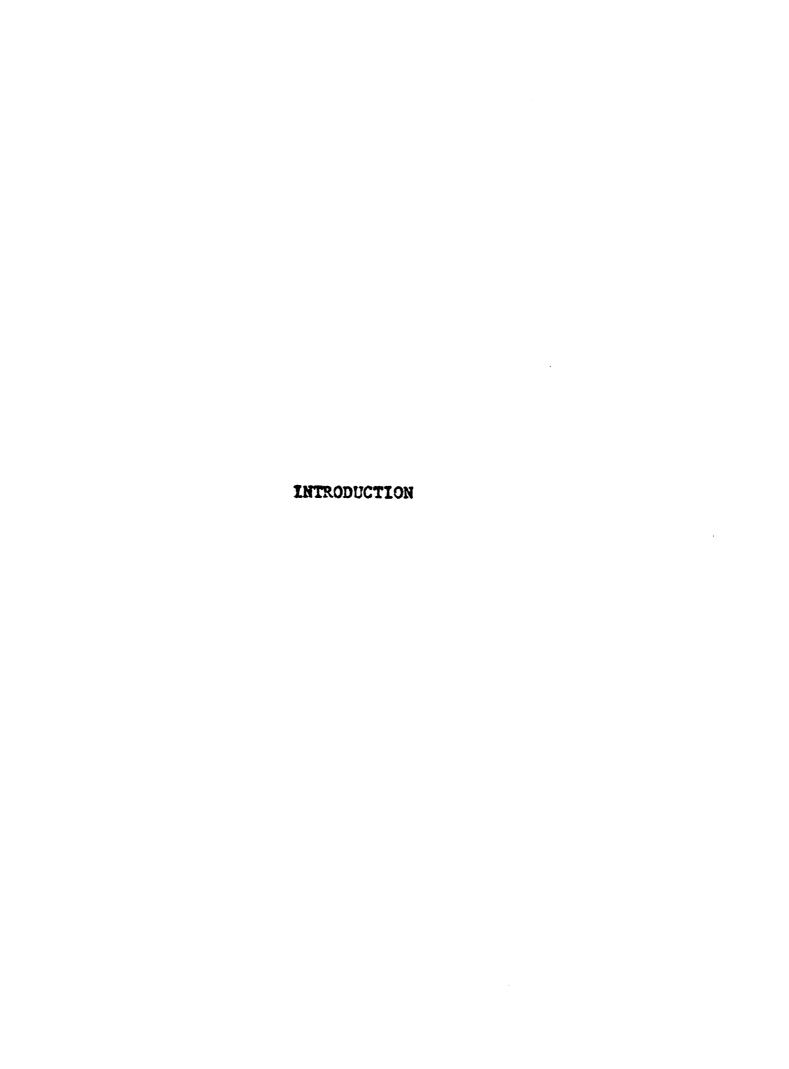
adjacent keys.

Ma-edjacent }

to use the cor

ratio, number of plates, and feed temperature had very little effect on the location of the optimum feed plate. A function of $\frac{X_{ij} X_{ij} X_{ij$

Although many problems were solved in this investigation, no claim is made that all possible combinations of
feed composition, as well as types of components, i.e.,
relative volatilities, will have the optimum feed plate
location as found using this correlation. However, most
commercial applications will be covered. It is probable
that when non-adjacent key components are used the optimum
feed plate location is more sensitive than when employing
adjacent keys. Since this investigation did not cover
non-adjacent keys, care should be exercised when attempting
to use the correlation for such systems.


TABLE OF CONTENTS

Acknowledgement	5
Introduction	6
Statement of the Problem	22
Heed for High Speed Computer	25
Derivation of Equations	29
Computer Used	47
Detailed Coding Procedure	50
Data and Discussion of Results	90
Conclusions	99
Appendix	100
Nomenclature	123
Bibliography	125

ACKNOWLEDGEMENT

The author wishes to take this opportunity to thank Professor J. W. Donnell for his helpful guidance and advice on the many problems which arose during this investigation.

Thanks are also extended to the Computer Laboratory staff of Michigan State University for their cooperation in making the MISTIC and the auxiliary equipment available for use in this investigation.

INTRODUCTION

The unit operation of distillation is an old one, dating back to the early days of the alcohol stills. Through the years, the use of distillation as a means of separating a mixture of liquids into desired products has been growing steadily. The petroleum industry, perhaps, has been the largest contributor in the expansion of distillation techniques and applications. It has been estimated that two-thirds of the total investment in petroleum refineries is in distillation equipment.

The solution of binary distillation problems was first analyzed and organized into a systematic approach by Sorel (15) in 1893. His solution consisted of making energy and material balances around each plate and assuming that equilibrium is attained or each plate.

Practically all distillation calculations today use the theoretical plate concept; that is, the assumption that equilibrium is attained on each calculated plate. Then one applies the theoretical calculations to actual design by using an efficiency factor to obtain the number of physical plates to use. For example, if a plate of certain design is known to give fifty per cent efficiency on the liquid-vapor

system in que theoretical of discussions in tical plate ap Sorel's 1 end of the dis (obtained by to calculate the other end of the liquid equilibrium d the vapor ent calculated by tray in ques assuing a co latent and s

Ponchon
which can be

see if this

usual to e

is seen to i

tedious proc

system in question, then two plates must be used for each theoretical one. Henceforth then, subsequent distillation discussions in this paper will be confined to the theoretical plate approach.

Sorel's rigorous method involves starting at either end of the distillation tower and using end products (obtained by a material balance and product specification) to calculate downward (or upward) plate by plate until the other end of the tower is reached. The composition of the liquid on a tray is obtained from vapor-liquid equilibrium data. Then the amount and composition of the vapor entering this tray from the tray below is calculated by a material and heat balance around the tray in question. This last calculation is made by assuming a certain vapor rate and checking from known latent and specific heat data for each component to see if this heat data will allow the amount of vapor assumed to enter the plate in question. This, then, is seen to involve a trial and error procedure - a tedious process.

Ponchon (14) however, developed a graphical method which can be used to execute the Sorel plate to plate

 $\Phi_{i}^{*}(x) = \{x_{i}, x_{i}, x_{i}, x_{i}\} \cup \{x_{i}, x_{i}\}\}$ the first of the control of the cont and the second of the second o $v_{ij} = v_{ij} + v$ the second of the second of

in a relative ling an enthal wight fraction sturated vapor equilibrium retails with method tak

McCabe an come the most tures; in fact as many others simplifying as

mthod accompl

the primary as multiple such a

- 1. Hegli
- 2. Laten
- 3. Meglig

with 1

4. No hea

calculation for binary systems in a rigorous fashion in a relatively short time. The method involves plotting an enthalpy versus composition (mole fraction or weight fraction) diagram for both saturated liquid and saturated vapor. This diagram is then used to satisfy equilibrium relationships and to make material balances. The method takes into account the change in liquid and vapor rates from plate to plate, which is what the Sorel method accomplishes.

McCabe and Thiele's (13) graphical method has become the most popular method of solution for binary mixtures; in fact, it has become a classic. This method, as many others before and after it, makes certain simplifying assumptions to handle problems more easily. The primary assumptions one must make when applying a solution such as this are:

- Megligible sensible heat effects of liquids and vapors as compared to latent heats.
- Latent heats of vaporisation per mole of both components are equal and do not vary with temperature.
- 3. Hegligible heat losses to surroundings.
- 4. No heats of mixing.

The latter two assumptions are two which are standard assumptions to nearly all methods of solution; and well they might be, for both effects are very small in comparison to the large amounts of heat being considered in a column. The first assumption is usually a good one to make. However, the second assumption is the one that could be greatly in error, and thus cause incorrect results. For most mixtures of two components which are members of the same homologous series, the assumption of equal molal heats of vaporisation is a reasonable one, and the McCabe-Thiele method provides a very quick and accurate method of solution. The McCabe-Thisle method can also be modified to handle cases where the heats of vaporisation are unequal. In this case, the method is slower but still gives good results.

The mechanics of the McCabe-Thiele method consist of plotting the equilibrium diagram for the components in question on a vapor-liquid composition graph.

Plotted on the same graph are the operating lines, i.e., the upper operating line starts with the top product

composition and has a slope equal to the ratio of liquid to vapor rates in the top of the tower, while the bottom operating line starts with the composition of the bottom product and has a slope equal to the ratio of liquid to vapor rates below the feed plate. The lines represent material belance equations and relate the composition of the vapor leaving a plate to the composition of the liquid leaving the plate above it. The number of plates required can be determined by alternately moving from the operating line horizontally to the equilibrium line, and from the equilibrium line vertically downward to the operating line, and so on until the bottom composition is reached. The procedure may be reversed and, starting with the bottom product, take vertical and horisontal steps until the top product composition is reached. Rither way, each pair of horisontal and vertical steps represent a plate. If constant heats of vaporisation are assumed, the operating lines referred to above are straight lines. If the heats of vaporisation are not assumed to be equal, then the operating lines will not be straight, but curved. One method of plotting the curved operating lines would be

to make use of a Ponchon diagram in conjunction with the McCabe-Thiele diagram. But rather than do that, one might just as well use a Ponchon diagram by itself, which accomplishes the same purpose in a simpler fashion.

The solution of multicomponent distillation problems is closely related to the solution of binary distillation problems, in that they are both based on theoretical plates, material balances, and heat balances. The procedure for the solution of a multicomponent problem is different, however, because the boiling points of the liquids are no longer a function of one component composition as was the case in binary mixtures. In multicomponent mixtures (three or more components) the liquid on a given plate may have an infinite number of boiling points corresponding to a certain composition for one component, depending upon the composition of the other components in the mixture.

In the previous discussion of binary distillation, the McCabe-Thiele graphical method was referred to as a classic because it gives rigorous (if curved operating lines are used) yet rapid and clear solutions to most

method which is simple enough for multicomponent calculations. Plate to plate calculations are therefore
widely recognized as the standard method for multicomponent systems. The other methods of solution may
be roughly broken down into the categories of

- 1) graphical solutions, 2) overall equations, and
- 3) empirical solutions. Several examples of each category will now be outlined briefly.

The two most common plate to plate methods used are the Lewis-Matheson (12) which makes the major assumption of constant liquid and vapor rates, and the Thiele-Geddes (16) which uses heat balances as a major calculating tool.

The Lewis-Matheson method consists of starting with the desired end products and calculating the number of theoretical plates required. Plate to plate calculations from both extremes of the column to the feed plate are carried out by using material balances and equilibrium relationships and by making successive approximations as to the temperature on each plate.

The reflux ratio must also be found by trial and error.

The calculations in detail are carried out as follows. The reflux ratio is first approximated and the composition of the vapor leaving the top tray is calculated. For a total condenser this step would not be necessary. since the composition of the vapor would be the same as that of the top product. By using some sort of equilibrium relationship such as Raoult's law, relative volatility, or K values (where y = K x and equilibrium is attained when $\sum y = 1$, K = f(T,P)) the liquid composition and the temperature on the top plate are found by assuming values for the temperature until the sum of the mole fractions, as calculated from the equilibrium relationship, is unity. Similarly, the temperature of the still and the composition of the vapors rising from it are calculated. Reflux is assumed not to change from one end of the column to the other, except at the feed plate where the reflux is increased by the amount of liquid in the feed. By use of a material balance and the dew point equation, the temperatures and compositions on each plate are calculated plate by plate.

By studying the composition determined by working up from the bottom, a suitable feed plate is chosen.

one composition

ponent which do

the feed plate

continued until

which does not

head product)

compositions to

with those det

the problem is

feed plate muse

The most
was to demonst

calculations r

that used for

because in bottoms composite mixtures to in both produ

that there ar

the exact pro

Plates. This

The composition of the light key (highest boiling component which does not come out in bottom product) on the feed plate is calculated. The computation is continued until the heavy key (lowest boiling component which does not appear in appreciable amounts in the overhead product) is of negligible concentration. If the compositions thus determined correspond substantially with those determined by calculating down the column, the problem is solved. If not, the composition on the feed plate must be re-estimated and the last series of calculations repeated.

The most important contribution of Lewis and Matheson was to demonstrate that multicomponent systems could be solved by using a plate to plate calculation similar to that used for binary mixtures.

Because the method starts with the distillate and bettoms composition, the method is not readily applicable to mixtures that have two or three components which appear in both product streams. It will be pointed out later that there are not enough degrees of freedom to specify the exact product composition together with the number of plates. This is the most serious disadvantage of the

rigorous by taking into consideration the changing liquid and vapor rates by applying the principles used by Sorel, i.e., heat balances.

The method introduced by Thiele and Geddes in 1933 is a rigorous plate to plate calculation in which it is not necessary to know or assume the products. It is, however, necessary to start with the number of equilibrium plates and the reflux ratio. These constitute the primary assumptions. The secondary assumptions are the temperatures on each plate. The method makes use of mole fraction ratios; that is, the ratio of the mole fraction of a component in either the liquid or vapor phase to the mole fraction of the same component in the end product stream. Above the feed the ratios are with respect to the distillate, below the feed with respect to the bottom product.

Calculations are performed from both extremes of the tower toward the feed plate, making use of the previously mentioned mole fraction ratios. When the feed plate is reached, these ratios are meshed to find the composition of the products. After the feed plate mesh is accomplished, one must go back and calculate the compositions on each plate, which in turn are used to calculate the corresponding temperatures. If the calculated temperatures do not agree with those assumed, the process is repeated using the new assumptions, until the temperatures for all the plates agree on two successive trials. It should be stressed that all temperatures must agree, since an incorrect temperature at any point will invalidate all of the calculations.

The Thiele-Geddes method is a very good method for multicomponent systems. Its main advantage over the Lewis-Matheson method is the manner in which the unequal molal overflow is taken into account, as well as not having to start with the composition of the products.

In 1935, Gilliland (7) published a shortcut method for solution of multicomponent problems by using relative volatility, as well as a new function of relative operability. Equilibrium relationships are written for the two key components in terms of relative volatility. By writing component material balances around a plate for each key component, and by dividing one component balance by the other, Gilliland uses the resulting

.

equation to define relative operability. He then combines the relative operability with relative volatility to give the relative changes in composition for one complete equilibrium stage, i.e., from liquid on one plate to liquid on the next. By expanding the above relationship for total plates in each section, he obtains relative composition changes across both the enriching and stripping sections. The method is a rapid approximation that can be used with a fair degree of accuracy for sharp separations. However, using this method, it is necessary to know the composition on the feed plate.

The limitations of the method are that there are too many simplifying assumptions. For instance, if the relative volatility or operability varies from one end of the column to the other, an arithmetic average is used. It is, nevertheless, a good method for giving quick approximations, which could be used as a first estimate in a more rigorous method.

Some investigators, such as Lewis and Cope (11) and Jenny (10), developed graphical solutions comparable to the McCabe-Thiele method.

The Lewis and Cope method consists of constructing a separate plot of y vs. x for each component. Assuming an equilibrium relationship of y : Kx, with K dependent on temperature only, equilibrium lines are plotted for several temperatures, and the correct temperature determined by trial and error. This process is repeated for each plate. The method is very cumbersome and also requires a knowledge of the composition of the products.

vs. y diagram similar to the McCabe-Thiele diagram, which involves constructing a modified equilibrium line, which is supposed to allow for the non-volatile lighter than key and heavier than key components. The equilibrium line is plotted by making a few plate to plate calculations. Separate diagrams are used for both the stripping and enriching sections, using the light key for the enriching section and the heavy key for the stripping section. The operating lines are assumed to be straight. This method requires knowing the composition on the feed plate.

A method based on overall equations for both sections of the tower was proposed by Edmister (5). The equations are based on the use of absorption and stripping factors

inilar to those
lations. After
are meshed at th
Hany so-call

ped, based on a

In 1939, Bro

for a given separate a given separate the method is battle variables places with the variables places.

if rigorous calc

lystems.

About the a their method, Graithough develor the actual minus

similar to those used by Kremser in absorption calculations. After evaluation of these equations, the results are meshed at the feed plate.

Many so-called empirical solutions have been proposed, based on various correlations of past calculations. Several of these correlations will now be discussed.

In 1939, Brown and Martin (1) proposed a method for obtaining the number of equilibrium plates required for a given separation at a specified reflux ratio.

The method is based upon an empirical correlation and the variables plotted are actual reflux divided by minimum reflux versus the actual plates divided by the minimum plates. Key components and pinch-point concepts are used. The correlation was developed from the results of rigorous calculations for a number of separations.

Nost of the systems were binary, with some multicomponent systems.

About the same time that Brown and Martin published their method, Gilliland (8) proposed a method very similar, although developed independently. This correlation plotted the actual minus the minimum plates divided by one plus

the actual pla nflux divides wriables are Gilliland rigorous calcu The correlation component syst a little simp! In 1950, lation which plates to min ntio of actua tions of Fensi values for the he of the mos is that the ar of minimum re htim condi hflux. Thus proph easily,

Several .

lailer to th

reflux divided by one plus the actual reflux. The variables are plotted on log-log scales.

Gilliland's correlation was also the result of rigorous calculations for a number of binary mixtures. The correlation was also checked for a few multi-component systems. The correlation of Gilliland is a little simpler to use than that of Brown and Martin.

In 1950, Donnell and Cooper (4) proposed a correlation which involved plotting the ratio of actual
plates to minimum plates versus the logarithm of the
ratio of actual boil up to minimum boil up. The equations of Fenske (6) and Underwood (17) are used to obtain
values for the minimum plates and minimum vapor load.
One of the most important advantages of this correlation
is that the curve approaches a straight line in the region
of minimum reflux. This is of importance since most
eptimum conditions lie in this range near the minimum
reflux. Thus, it is desirable to be able to read the
graph easily, or even interpolate if necessary.

Several other investigators made correlations
similar to those already discussed. Included is the group

re correlation

In, 1740,

determining the method consists ratio of the mother feed is be to

the plate above

feed is partial

Montrose a

for optimum fee on an empirical

atio of the lo

and minimum res

only semi-rigory

heats were made

and empirical

Macrous terms

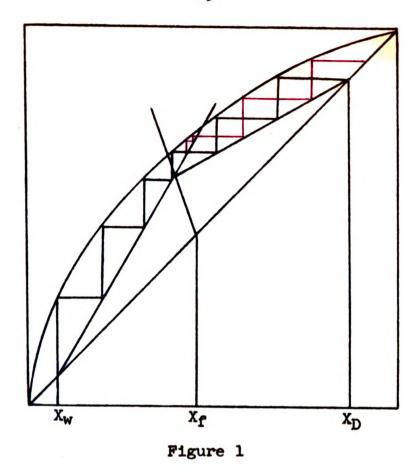
Pates. Po atto

maters and 3c

are correlations presented by Colburn (3) and by Harbert (9).

In, 1940, Gilliland (8) published a method for determining the optimum feed plate location. This method consists of placing the feed plate so that the ratio of the mole fractions of the key components in the feed is between the ratio of the key components on the plate above and below the feed plate. According to Gilliland's method, there is a slight variation if the feed is partially vaporized or all vapor.

Montrose and Scheibel in 1946 (3a) offer a method for optimum feed plate location. This method is based on an empirical equation which involves the use of the ratio of the key components on the feed plate at total and minimum reflux. The equation appears to be based on only semi-rigorous calculations since the simplifying assumptions of constant relative volatility and latent heats were made to reduce the labor of calculation. This empirical equation also makes use of the less than rigorous terms of minimum reflux and minimum number of plates. No attempt was made to check if the method agreed with the results of this invostigation, as the Montrose and Scheibel assumptions are too general.


STATEMENT OF THE PROBLEM

STATEMENT OF THE PROBLEM

The need of a rigorous solution to multicomponent distillation problems is not a new idea. It was stated some years back by Colburn (2) that what the engineering profession needs in multicomponent calculations is "either an exact solution, even though it is difficult, or an approximate solution, if it is easy." With the advent of high speed computers, the challenge to see who could develop an exact solution first has grown considerably. This investigation was undertaken to: 1) develop an exact solution using a high speed computer as a tool to perform the calculations, and 2) use the exact solution to study the effect of feed tray location on the degree of separation in multicomponent mixtures.

When a distillation column is designed and built, it is desired that for a given number of plates, reflux ratio, and feed composition, the maximum separation be obtained. It is desirable, then, to locate the feed plate so that the optimum separation is obtained.

To illustrate the necessity for the optimum feed plate location, consider the following binary problem.

If the feed plate were not located on the fourth plate from the bottom, but higher up, it would require more plates to do the same job of separation, or a worse separation would be obtained, if the same number of plates were used.

The red line in Figure 1 illustrates the case where the feed plate is not the fourth but the sixth plate from the bottom. In this case, it would take two more plates to do the same job of separation. Similarly, if the feed plate were located lower than the fourth plate from the bottom, the same situation would arise.

Multicomponent systems are not so easy to illustrate as the foregoing binary one, but the same type of relationship exists. That is, there exists an optimum feed plate location, or series of locations, so that a maximum separation is obtainable.

In attempting to study the effect of feed tray location, it becomes necessary to work out many problems to see how the optimum varies with number of plates, reflux ratio, and feed composition. In a study such as this, a rigorous solution should be used in order to get a more accurate picture of the variables involved. Thus, this investigation utilized a high speed computer to solve many problems in a rigorous fashion (that is, taking into account changing vapor and liquid rates and perfect matching at the feed plate.)

NEED FOR HIGH SPEED COMPUTER

NEED FOR HIGH SPEED COMPUTER

The importance of greater and greater accuracy has been brought out as one reason why more rigorous methods of solution must be employed. The more rigorous a problem, the more trial and error calculations are required, until finally it is conceivable that an engineer working a rigorous multicomponent distillation problem might take weeks to solve the problem. Most of that time would be spent doing the rather routine trial and error calculations to make sure that all compositions, amounts, and temperatures were consistent with the material balances, heat balances, and equilibrium data. The answer to the engineer's dream is a high speed electronic computer. Of course, the engineer would still be required to set the problem up, but the computer would do all the calculations in a very short period of time.

The same problem that might take an engineer a week to solve could be solved using a computer in a few hours or less.

The great speed at which computers operate is also important from an economic standpoint. Once a program has been written for a problem, it can be used over and over for the solution of many similar problems. Although

the cost of buying or renting a computer is quite high (rentals run on the order of \$200 per hour) the cost is still substantially lower than paying the salary of an engineer for the time necessary to work out the problem by hand.

As was pointed out previously, the study of the effect of feed tray location on the separation obtained is one which requires many problems to be solved. This lends itself to computer application very nicely, since the computer can perform a rigorous solution in a short period of time.

Not only does the computer provide a means of studying the effect of feed tray location, but also it affords a detailed study of other variables which enter into the problem. One of the variables now being studied is the effect of condition of feed, i.e., pre-heated or cold, on the tower performance. Another important study is being made on the relationship between number of plates and reflux ratio to obtain a desired separation.

Another important advantage of the use of computers is their reliability. Although some might argue this to

be a trivial point, it is nevertheless an important one. The reliability of computers is certainly better than an engineer running a slide rule or desk calculator. It must be admitted that computers do occasionally make a mistake. However, when a mistake is made, it is almost always so obvious that it is immediately noticed. On the other hand, an engineer could easily carry a mistake on and on without it being noticed.

In the discussion of previous methods used in solving multicomponent distillation problems, it was mentioned that some methods use the ratio of the so-called key components as a criterion for convergence of the feed plate mesh. This, of course, is only an approximation and serves to shorten the calculations. Once again, the computer can perform these calculations exactly and thus eliminate the need for the assumption. It may be argued that this advantage of the computer is merely due to the speed at which the machine operates. However, there is more to a computer than speed and accuracy. It enables one to solve lengthy and complex problems that could not be worked without the use of such a computer. Many of these seemingly

ispossible so laicely by comp

There are
blem of applying problems. The
one of the well
presented by or
alternative work
particularly as
latter alterna
home of the ex
to automatic c
itself or beca
which the meth

to make.

impossible solutions are now being handled very nicely by computers.

There are two alternative approaches to the problem of applying computers to solve distillation problems. The first alternative would be to adapt one of the well-known and accepted calculation methods presented by other authors to a computer. The second alternative would be to develop a calculation method particularly suited to automatic calculation. The latter alternative was chosen since it is felt that mone of the existing calculation methods are suitable to automatic computation, either because of the method itself or because of certain simplifying assumptions which the method required, which were felt unnecessary to make.

The solution u one of trial the simplifying in not made. Th obtain a solution 1) mterial balar At this poin firm feed, the different in a mo eleture. In a b fixed by specify: the composition fixed. However, umnot be specif the composition The situati with fact tha limitaneous equ thal and error itestive proces

white through

Mitions until

DERIVATION OF EQUATIONS

The solution of a multicomponent distillation problem is one of trial and error. This is even more pronounced if the simplifying assumptions of constant liquid and vapor rates are not made. The three tools with which we are armed to obtain a solution are: 1) Vapor-liquid equilibrium conditions, 2) material balances, and 3) energy balances.

At this point, it is well to point out that from any given feed, the problem of product specification is quite different in a multicomponent mixture than it is in a binary mixture. In a binary mixture, the product desired may be fixed by specifying the composition of one component, since the composition of the other component will then also be fixed. However, in a multicomponent mixture the product cannot be specified for all the components. Instead, only the composition with respect to one component may be specified.

The situation of not being able to specify the products and the fact that computers are limited as to the number of simultaneous equations they can solve, leads directly to a trial and error solution. The solution becomes, then, an iterative process of assuming the composition of the products, working through the problem, and correcting the product compositions until the assumptions prove correct.

The primary variables which must be known before starting the solution of a problem are: 1) Feed composition and condition of the feed, 2) Reflux ratio, L/D,

- 3) number of plates above and below the feed plate, and
- 4) tower pressure. The latter is necessary for equilibrium and eathalpy data.

There are two types of problems which may arise. The first would be the problem of designing a new column with the proper number of plates to give a desired separation. The desired separation, of course, must be in accordance with the foregoing discussion on product specification.

The second type of problem would be the utilization of an existing column and the desire to determine the products obtainable with a given feed. Actually, both types of problems would be solved utilizing the same method of solution. The problem of determining the number of plates necessary to obtain a desired product requires an estimate of the number of plates, working through the problem, and checking the results with the desired products. If the results agree, then the number of plates assumed will be sufficient. If the results do not agree, then a new estimate of the number of plates must be made, and the problem reworked until the

products obtained are acceptable. The problem with the number of plates already known and the products unknown is solved using the same method of solution as for the above type problem, except that the number of plates need not be assumed since it is already known. Therefore, the solution of both types of problems will be handled as one, and the number of plates in the column will be taken as a known variable.

one of the product compositions and quantities (the top product in this solution) and calculate from both extremities of the tower toward the middle until the feed plate is reached from both directions. At this point a mesh, or comparison, of the compositions obtained from both directions is made. If the compositions are equal, to a specified degree of accuracy, then the products assumed are correct and the solution is complete. If the compositions do not mesh, then the assumed product is modified in proportion to the variation of the mesh, and the calculations are carried out again until the feed plate mesh is satisfactory.

In the development of the method, frequent reference to previous equations already developed will occur, and so are numbered to help identify them. A diagram is provided to help picture the problem and also to refer to as to nomenclature.

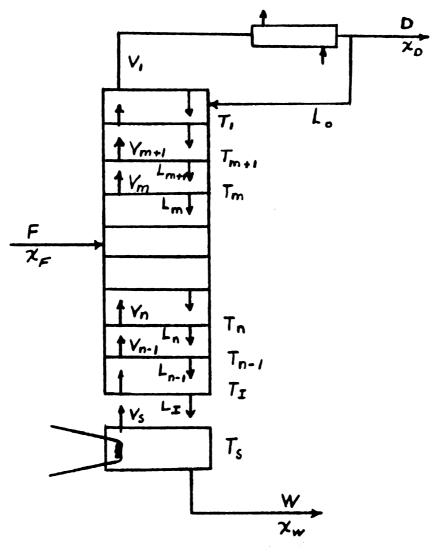


Figure 2

For simplification purposes, a basis of one mole of feed is chosen. This allows the composition of the feed, expressed in mole fractions, to be the moles of each component in the feed. It also provides an easy, quick estimate of the amount and composition of the top product by estimating

the number of moles of each component which will be produced overhead. The first estimate of top product, as well as estimates of the top temperature, bottom temperature, and amount of vapor in the bottom section, are read into the computer as data. In the section on the actual computer programming, the entire list of data necessary to work a problem will be outlined.

The statement and derivation of the algebraic procedure used in the problem follows:

1) Calculate the amount of overhead product.

For the first iteration this step is unnecessary, since the top product has been assumed. However, in later iterations the top product will be altered, making it necessary to perform this calculation.

2) Calculate the amount of bottom product.

$$W = P - D = 1 - D$$

3) Calculate the bottom composition.

4) Using the assumed moles (DX_{D1}) of each component and the D from step 1, calculate the overhead composition. $X_{D1} = \frac{DX_{D1}}{D}$

5) Calculate V, and L. from given reflux ratio and D calculated in 1.

$$V_i = D(R+1)$$

 $L_a = R \cdot D$

6) Determine the temperature on the top and bottom plate, using the bubble point and dew point calculations as shown below.

T, at top when
$$\xi \frac{x_{0i}}{Ki} = 1$$

Ts at bottom when $\xi Ki \times wi = 1$

The values of K_1 are obtained from a third degree polynomial in temperature. The K values are assumed to be dependent on temperature and pressure only. When the correct temperatures are found, then $K_1X_{w1} = Y_{w1}$ and each Y_{w1} is saved for later calculations.

7) Determine the dew point of the overhead product as follows:

8) Calculate heat flux in top of column by subtracting enthalpy of reflux from enthalpy of top wapor, thusly:

$$h_0 = L_0 \sum_i \overline{h}_{oi} \times_{oi} \quad at \quad T_0$$
 $H_1 = V_1 \sum_i \overline{H}_{ii} \times_{oi} \quad at \quad T_1$
 $Q_0 = H_1 - h_0$

Note that It would have to prtial condense

 $Q_{\mathbf{r}}$ from of the

9) Assumin

the san

enthal;

produc

ponent

celcul

temper

Make a

A heat bal

Top se

•

lottom se

Note that this solution is for a total condenser. It would have to be modified slightly for the use of a partial condenser.

9) Assuming no heat losses to surroundings, calculate Q_r from enthalpy of the feed and Q_a . The enthalpy of the feed is read in as data and is calculated in the same manner as all other enthalpies, i.e., the enthalpy of a mixture is the sum of the individual products of mole fraction and enthalpy of pure component. The enthalpy of each pure component is calculated from a third degree polynomial in temperature.

Make a heat balance around the entire column?

$$h_{\overline{Y}} \neq h_{S} = h_{C} \neq h_{\overline{D}} \neq h_{W}$$

$$h_{\overline{Y}} = (h_{W} - H_{S}) \neq (h_{C} \neq h_{\overline{D}})$$

$$(h_{S} - h_{W}) = (h_{C} \neq h_{\overline{D}}) - h_{\overline{Y}}$$

A heat balance around the top and bottom section separately gives:

Top section
$$H = h_D \neq h_C \neq h$$

or $H - h = h_D \neq h_C = Q_A$

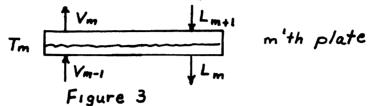
Bottom section $H \neq h_W = h \neq h_S$

or $H - h = h_S - h_W = Q_T$

Thus $Q_T = Q_A - h_T$

Plate to from the conder

The genera looking at the usy to see jus see will apply The composition Ymi, Tm , Lo Vn-1, Tn-1, an musideration posets preser The equations mterial balan i) i componen tower, 3) he the tower, 4


quetions. I

limitaneous

weld involve

ber of pla

Plate to plate calculations are now ready to be made from the condenser down to the feed plate.

The general case of plate m will be illustrated. By looking at the second plate from the top in Figure 2, it is easy to see just what is known and what is unknown. The same will apply to the m'th plate as one works downward. The composition and temperature of L_{m+1} are known, while V_m y_{mi} , T_m , $L_{(m+i)}$, and x_{mi} are all unknown. Actually, V_{m-1} , T_{m-1} , and y_{m-1} ; are unknown also, but come into consideration on the next plate. If there are i components present, then there are 2i+3 unknowns to solve for. The equations available for their solution are: 1) total material balance above m'th plate and around top of tower, 2) i component material balances around same portion of tower, 3) heat balance around above mentioned section of the tower, 4) dew point equation, and 5) i equilibrium equations. It is well to point out that if a set of simultaneous equations were set up for the whole tower, it would involve equations which would number (2i+3) times the number of plates in the column. It is conceivable to have

a column with fifty plates and ten components, which would require the solution of 1150 equations and 1150 unknowns. Very few, if any, computers even approach a capacity large enough to handle such a problem except by an iterative process. Even if a computer were large enough to handle the 1150 equations, it is doubtful if a solution could be obtained, since it is unlikely that all the equations would have constant coefficients.

The procedure used here to solve the (2i+3) equations, one plate at a time, is a trial and error method based on assuming values for T_m and L_{m+1} and using Newton's method to arrive at better values for the assumed variables. This is done until the correction factor for T_m and L_{m+1} becomes arbitrarily close to zero.

10) Choose a temperature T_m and a liquid rate L_{m+1} .

A good first estimate is to use the values obtained as answers to the previous plate. After the first iteration through the solumn this step will be altered by using the temperature and liquid rate for the previous iteration as the first guess, since they will be a better approximation than the temperature and liquid rate for the preceeding plate.

11) Calculate V_m from D and the assumed L_{m+1} by an overall material balance around top of tower.

$$V_m = L_{m+1} + D$$

12) Calculate y_m ; from a component material balance around top of tower.

$$y_{mi} = \frac{L_{m+1} \times_{(m+1)i} + D \times_{oi}}{V_m}$$

13) Calculate ϕ using assumed T_m . This also gives the values of X_{mi} .

Note that ϕ will approach zero as the correct temperature is found.

14) Using assumed T_m , y_{mi} , and x_{mi} as calculated in 12 and 13, find H_m .

15) Calculate h_{m+1} from temperature of plate above, T_{m+1} .

16) Making a neat balance around top of column, find ϕ' .

$$\phi' = 1 - \frac{V_m H_m - L_{m+1} h_{m+1}}{\varphi_a}$$

 ϕ must also tend to zero as the proper T_m and L_{m+1} are obtained.

terations considerivatives of the new variable must be substitutes to improve the new testinates the new testina

17) 3

the derivatives

9

9

0/0

The Newton technique for quick convergence of iterations consists of substituting the slopes, or derivatives of the function at the point in question, for the new variables. A correction factor is calculated which must be subtracted from the previous T_m and L_{m+1} estimates to improve their accuracy. The equations for the derivatives are:

17)
$$\frac{\partial \Phi}{\partial T_{m}} = \rho_{1} = \frac{\partial}{\partial T_{m}} \left(\sum Y^{m}/K_{m} \right)$$

$$= \sum \frac{X_{m}}{K_{m}} \left(b_{K} + 2 c_{K} T_{m} + 3 d_{K} T_{m}^{2} \right)$$

$$\frac{\partial \Phi}{\partial L_{m+1}} = \rho_{2} = \frac{\partial}{\partial L_{m+1}} \left(\sum Y^{m}/K_{m} \right)$$

$$= -\frac{1}{V_{m}} \sum \frac{X_{m+1} - Y_{m}}{K_{m}}$$

$$\frac{\partial \Phi'}{\partial T_{m}} = \rho_{3} = \frac{\partial}{\partial T_{m}} \left(1 - \frac{V_{m} H_{m} - L_{m+1} h_{m+1}}{Q_{a}} \right)$$

$$= -\frac{V_{m}}{Q_{a}} \sum \left(b_{h} + 2 c_{h} T_{m} + 3 d_{h} T_{m}^{2} \right) y_{m}$$

$$\frac{\partial \Phi'}{\partial L_{m+1}} = \rho_{4} = \frac{\partial}{\partial L_{m+1}} \left(1 - \frac{V_{m} H_{m} - L_{m+1} h_{m+1}}{Q_{a}} \right)$$

$$= -\frac{1}{Q_{n}} \sum \overline{H_{m}} x_{m+1} - \sum \overline{h_{m+1}} x_{m+1}$$

18) The cor

P,

 ρ_3

rewriti

۱ ۱ ۵

Δ

19) The nev

by sub-

hrea T

These new steps 11 - 19 a

After step

a'th plate is c

through the col

liquid leaving

ired for the fe

The calcula

town in much th

18) The correction equations are:

$$P_1 \Delta T_m + P_2 \Delta L_{m+1} = \phi$$

$$P_3 \Delta T_m + P_4 \Delta L_{m+1} = \phi'$$

rewriting and solving for ΔT_m and ΔL_{m+1} :

$$\Delta T_{m} = \frac{\phi \rho_{4} - \rho_{2} \phi'}{\rho_{4} \rho_{1} - \rho_{2} \rho_{3}}$$

$$\Delta L_{m+1} = \frac{\phi - \rho_{3} \Delta T_{m}}{\rho_{4}}$$


19) The new estimates for T_m and L_{m+1} are obtained by subtracting the correction factor from the previous estimates:

$$T_m(new) = T_m(old) - \Delta T_m$$

 $L_{m+1}(new) = L_{m+1}(old) - \Delta L_{m+1}$

These new values for T_m and L_{m+1} are used to go through steps 11 - 19 again until they satisfy all the equations.

After steps 11 - 19 are solved, the solution for the m'th plate is complete, at least for the first iteration through the column. Steps 10 - 19 are repeated M times until the feed plate is reached. The composition of the liquid leaving the feed plate as calculated above is then saved for the feed plate mesh later.

The calculations are now performed on the bottom of the tower in much the same manner as for the top of the tower.

By looking at the reboiler of Figure 2 and considering it a theoretical plate, one can see that the known quantities for the solution of the n'th plate will be the composition and temperature of the vapor entering the plate from below, i.e., plate n-1. The unknown quantities are V_{n-1} , L_n , X_{ni} , T_n , and $Y_{(n-1)i}$. Once again, there are actually more unknowns in $L_{(n/1)}$, $T_{(n/1)}$, and $X_{(n/1)i}$ but they will be solved for on the (n/1)th plate. The same equations as used for the section above the feed plate are used in this section below the feed plate, except that the bubble point equation is substituted for the dew point equation. The Newton method is used here also, with the alteration that T_n and V_{n-1} are the two variables which are estimated.

20) Choose a first estimate of the temperature, T_n , and the vapor rate, V_{n-1} . Use as a first estimate the temperature and vapor rate from the solution of the previous plate. After the first iteration through the tower, this step will be altered the same as was step 10 in the other section of the column.

For the first plate above the reboiler, the original estimate cannot be obtained from the plate calculated below it, and so must be a good, qualified approximation. The vapor rate can be approximated quite well by considering the reflux ratio and the condition of the feed, i.e., liquid or vapor, superheated or supercooled.

21) Find K_{ni} using assumed T_n :

$$K_{ni} = a_{Ki} + b_{Ki}T_n + c_{Ki}T_n^2 + d_{Ki}T_n^3$$

22) Calculate the liquid rate from a material balance:

$$L_n = V_{n-1} + W$$

23) Calculate the composition of liquid on the n'th plate using a component material balance:

$$\chi_{ni} = \frac{W \times_{wi} + V_{n-1} \cdot Y_{(n-1)i}}{L_n}$$

For the first plate $y_{(n-l)}i$ was calculated in step 6 when $\sum K_n \chi_w = l$. For succeeding plates $y_{(n-l)}i$ will be calculated in step 24 of the previous plate.

24) Calculate \to (bubble point equation.)

$$\theta = 1 - \sum K_n \chi_n$$

25) From the assumed T_n , and the temperature of the plate below, calculate H_{n-1} and h_n .

$$H_{n-1} = \sum \overline{H}_{n-1} y_{n-1}$$

$$h_n = \sum \overline{h}_n x_n$$

- 26) Calculate Θ' (heat balance.) $\Theta' = / + \frac{L_n h_n V_{n-1} H_{n-1}}{\Omega_n}$
- 27) The Newton method is used in the same manner here as for section above the feed plate and the equations for the slopes will not be derived.

Find
$$q_1 - q_4$$

 $q_1 = -\sum y_n (b_K + 2c_K T_n + 3d_K T_n^2)$
 $q_2 = -\frac{1}{L_n} \sum K_n (y_{n-1} - x_n)$
 $q_3 = -\frac{1}{L_n} [\sum H_{n-1} y_{n-1} - \sum \overline{h_n} y_n]$

28) Determine the correction factors ΔT_n and ΔV_{n-1} .

$$\Delta T_n = \frac{\theta g_{\gamma} - g_2 \theta'}{9 \cdot 9_{\gamma} - 9 \cdot 9_3}$$

$$\Delta V_{n-1} = \frac{\theta' - 9s\Delta T_n}{94}$$

29) Determine the new values of T_n and V_{n-1} to put back into step 21. Steps 21 - 29 are repeated until the correction factors become arbitrarily close to zero.

steps 20
so must be repea

the compositions

as calculated from

the feed pl

composition of the

from the condens

the reboiler up.

This ratio
convenient proper
or not one has the size and di
should be made.

of that compone

pat component

$$T_n$$
 (new) * T_n (old) - ΔT_n
 V_{n-1} (new) * V_{n-1} (old) - ΔV_{n-1}

Steps 20 - 29 represent the solution of one plate, and so must be repeated M times. When the feed plate is reached, the compositions of the liquid stream leaving the feed plate, as calculated from the condenser down and the reboiler up, are compared to see if convergence has been attained.

The feed plate mesh consists of taking the ratio of the composition of the liquid leaving the feed plate as calculated from the condenser down to the composition calculated from the reboiler up. This is done for all components.

$$r_i = \frac{x_{fi} \text{ (down)}}{x_{fi} \text{ (up)}}$$

This ratio r_i should, of course, approach unity. The convenient property of r is that it not only tells whether or not one has convergence but also gives an indication of the size and direction the correction on the assumed products should be made. If r is greater than unity, then the amount of that component coming out overhead has been assumed too great. Conversely, if r is less than one, the quantity of that component in the overhead has been assumed too small.

The magnitude of r also indicates the magnitude of the error in the assumed products.

The important thing is that the ratios be used to correct the products in such a manner so as to conform with the overall material balance. In order to be able to apply the ratios to all components, it is very important that some quantity of each component be assumed going out in each product. This can be illustrated by taking the case where one component was assumed to come out in only one product, i.e., top or bottom product. If this were so, then when the assumed product for that particular component was multiplied (or divided) by the feed mesh ratio, the amount of product would still be zero, and thus unchanged. It should be pointed out that the components will always be corrected in the product stream where their composition is the smaller. The product stream containing the larger composition of the component is then corrected using an overall material balance.

For the components which tend to leave in the overhead, the following equations are used for correcting the assumed products:

$$W \chi_{wi}$$
 (revised) = $Y_i \cdot W \chi_{wi}$ (previous)
 $D \chi_{pi}$ (revised) = $F \chi_{fi} - W \chi_{wi}$ (revised)

For components which tend to leave in the bottom product the following correction equation is used:

$$Dx_{oi}(revised) = \frac{1}{r_i} Dx_{oi}(previous)$$

The fact that the revised $W_{X_{W_i}}$ is not calculated here for the components which tend to leave in the bottoms is explained by pointing out that when re-iterating through the entire problem, one must go all the way back to step 1. It can be seen that in steps 2 and 3 the new W and X_{W_i} are calculated, and thus need not be calculated here.

If the feed plate mesh ratio is arbitrarily close to one for all components, the solution is complete, at least for the number of plates used. However, if the problem is of the type where one wants to determine the number of plates necessary to obtain a desired separation, then the solution may not be complete. That is if the products do not meet the desired specifications, then a new number of plates must be chosen, and the problem worked through again.

This is the advantage of using a computer, since it can calculate the new conditions very quickly, while without such a machine one must be satisfied with trying to set approximate specifications.

Throughout

y Michigan Stat

suputer is name

letter known as

suber system ar

IM card input

und in this in

the capacity of 1024 storage 1024 to well over 10

The storag

MISTIC is urries only o

and the letter

thile the numb

the operation

COMPUTER USED

Throughout this investigation, the computer owned by Michigan State University was used exclusively. The computer is named "The Michigan State Integral Computer," better known as MISTIC. The computer operates in the binary number system and makes use of punch tape input and output. IBM card input and output are also available but were not used in this investigation.

The storage or memory consists of forty cathode ray tubes and the associated circuitry. At the present time, the capacity of the computer is rather limited, with only 1024 storage locations. However, this will soon be altered to well over 16,000 locations, when the new magnetic core memory is installed.

MISTIC is a single address machine, i.e., each instruction carries only one address. Orders for the MISTIC contain two symbols from the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters K, S, W, J, F, L, and one decimal number between 0 and 1023. The two symbols form the operation code, while the number is an identification number (address) for one of the 1024 electrostatic memory locations. In essence, the operation code tells the computer what to do and the

the address tell
for instance, the
of smory locati

Two orders
morder pair.

order in each wo
left to right.

Since the M
such order must
this would requirement; and, for
able to convert

When using paration code, ution symbol.

intomatically.

M L

because of the distillatio Mint subroutin

the computer to

the address tells it what to do it with or where to go.

For instance, the order F5 135 says, "Bring in the contents

of memory location 135 to the accumulator and add one to it."

Two orders constitute one word and are referred to as an order pair. There is a lefthand order and a righthand order in each word. The orders are obeyed in sequence left to right.

since the MISTIC is a binary machine, the address in each order must be in binary form before entering the machine. This would require a tremendous amount of work by the programmer; and, fortunately, there is an input program available to convert the decimal addresses to sexadecimal automatically. This program is known as the Decimal Order Input (DOI) and is used in all problems.

When using the DOI, each order must contain a two digit operation code, an address between 0 and 1023, and a termination symbol. The termination symbols are K, S, N, J, F, and L.

Because of the complexity of the method of solution of the distillation problem, it was decided to use the floating point subroutine even though the subroutine actually causes the computer to perform the calculations at a much slower speed. However, by using the floating point routine, hereafter referred to as A,, the tedious task of scaling the numbers was bypassed, since this subroutine keeps track of the decimal point automatically. To use ordinary MISTIC orders would require that all numbers be scaled so that they are between plus one and minus one. This scaling must also consider all numbers which will be calculated, making sure that they, too, would lie in the proper range.

Almost the entire distillation program is written in A₁, with a few orders being in ordinary MISTIC language. For any questions that arise concerning the few MISTIC orders, reference should be made to the MISTIC Programming Manual. In the appendix of this thesis is an outline of the orders encountered in using the A₁, subroutine. This may prove helpful as a reference when reading through the program.

DETAILED CODING PROCEDURE

DETAILED CODING PROCEDURE

This section will be devoted to outlining the problems of programming a problem for use on a high speed computer, as well as the detailed coding of the main program used. It is intended that such a detailed coding of the program might aid the reader in visualizing the method of calculation used.

Liquid vapor equilibrium data used throughout this investigation was of the type y * Kx. It was assumed that K depended only on temperature and pressure. In order to quickly calculate a desired K value at a given temperature, third degree polynomials of the form K * $a_k \neq b_k T \neq c_k T^2 \neq d_k T^3$ were used to describe the variation of K with temperature. The four constants were evaluated for various components, using the method of least squares on the data of Cooper and Donnell, and Maxwell. These polynomials were prepared at various pressures within the range of operation for a distillation column.

Enthalpy of liquids and vapors of each component were also represented by third order polynomials in temperature.

The data used was from Maxwell. The enthalpy of a mixture was assumed to be the sum of the individual products of mole fraction and enthalpy of pure product.

Before one reads through the detailed coding of any program, it is well to point out that in many cases, calculations are set up in a far different manner and order for a computer than would be done if a person were to do the same calculations by hand or with a desk calculator. It should also be pointed out that in programming such a problem for a computer, there are quite often several choices of orders one could use. Thus, a person reading this program might well find places where orders could be changed or possibly even left out. This is especially true in the program illustrated here. Due to the complexity of the problem, there were many changes to be made after the program was put together. In order to conserve time, the program was altered in sort of a piecemeal affair. However, this in no way affects the principles involved, nor the calculations which are being carried out.

Before getting into the main program, it should be pointed out that the enthalpy polynomial subroutine (HSR) and the equilibrium constant subroutine (KSR) will not be outlined. They simply involve the calculation of the K values and the enthalpy values for a given compound from a third degree polynomial. The factored form of the

polynomial is used to decrease the number of orders required. For instance, $K = [(d_K T + c_K)T + b_K]T + a_K$. This way, the constants for the polynomials must be input in reverse order; that is, in the order d, c, b, and a for each component. The constants must be changed for each different tower pressure as well as for when different components are in the feed.

whenever control is transferred to HSR or KSR from the main program, the K values or enthalpy values are calculated, then control is transferred automatically back to the next order in the main program. In other words, both HSR and KSR are closed subroutines.

The outline of the program shall be broken down into three sections: 1) Specification of Parameters, 2) Outline of Data, and 3) Main Program.

Specification of Parameters

This involves specifying various parameters before the problem can be worked. These parameters are essential to the solution of the problem. The parameters are used in conjunction with the 8 termination symbol to specify certain eddresses within the program. The parameters which must be specified and stored in locations 3 - 11 are:

- 3) Specifies floating register for floating point subroutine
- 4) Number of components
- 5) Plates above feed plate
- 6) Plates below feed plate
- 7) Number of components x 4
- 8) Number of components x 8
- 9) Total number of plates less feed plate
- 10) Number of components expected in overhead product in appreciable amount
- 11) Number of components expected in bottom product in appreciable amount

For this program, location 3 is always the same and specifies location 28 as the floating register. All the other parameters may vary with the particular problem being worked. Perhaps the parameters specified in locations 10 and 11 should be made a little clearer. An example will be given to illustrate their use. In a given problem, there are eight components in the feed, and it is to be split in two products, the top product containing essentially the three most volatile components and the bottom product containing essentially the other five components. It is evident

product and some of the heavy components will appear in the top product, but in small amounts. In this case, location 10 will specify three components in overhead product and location 11 will specify five components in bottom product. The sum of locations 10 and 11 must always be equal to the total number of components in the feed. In the case of a component which will appear in both products in appreciable amounts, it won't matter where it is assumed to be in the greater amount.

The parameters are used primarily for the reading in of the program to the computer; and many of them are destroyed by storing other results in the same locations, once the program has been read in.

Outline of Data

There are certain bits of data that are necessary to work a problem, such as feed composition, feed condition, as well as initial estimates of certain variables which are to be determined by trial and error. Following is a list of essential data and the locations in which it is stored.

647-654	Assumed moles of each component leaving in
	overhead product
655	Initial estimate of still temperature
656	Integer one
657	Constant for bubble point and dew point
	convergence tests
658	Constant for temperature convergence
659	Reflux ratio (L/D)
660	Initial estimate of top temperature
661-663	Any other constants which are necessary when
	program alterations are made
664	Initial estimate of wapor rate in stripping
	section
66 5-672	Mole fraction of each component in feed
673	Enthalpy of feed (BTU per mole)
674	Constant for ratio r convergence
675	Same as 661-663

The maximum number of components this program will handle is eight. If more memory space were available, the program could easily be altered to handle as many components as desired. The constants which must be specified for various convergence tests will depend on just how accurate an

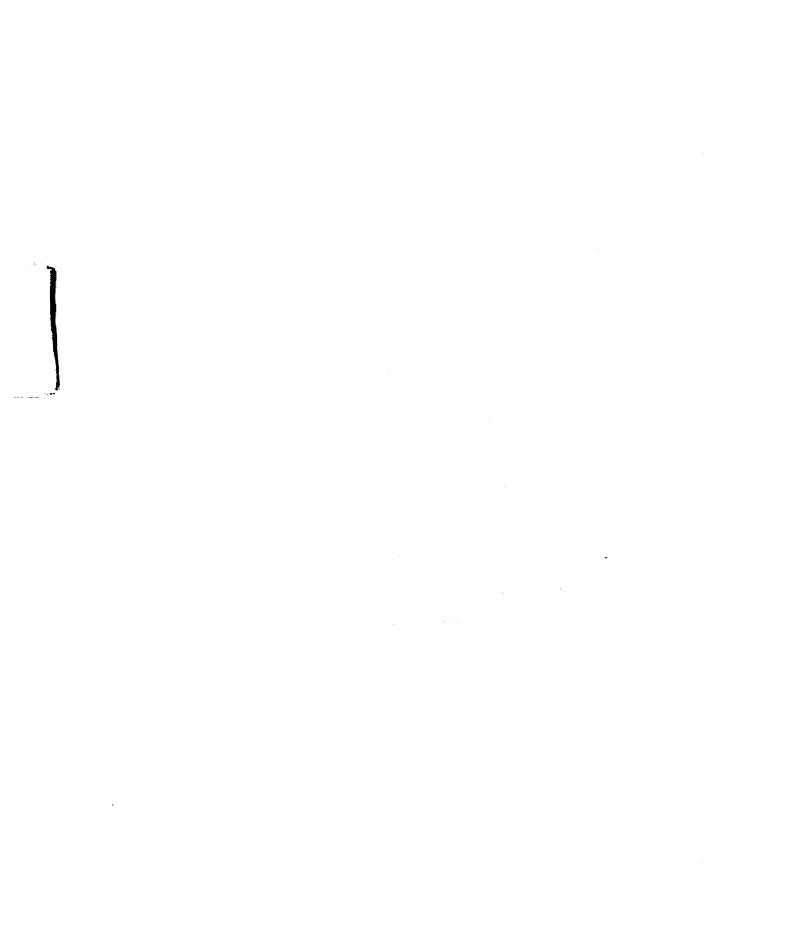
on a certain plate, the temperature is changed until the sum of the mole fractions is unity. However, to actually obtain unity might require very much time when a value of 1 ± .001 would serve just as well. In this case, then, the constant in location 657 would be .001.

When a feed is used which contains less than eight components, the remaining memory locations must be filled with some arbitrary constants. The reason being that the computer, in reading in the data, stores it consecutively. Thus, if the blank locations are not filled, the data following will be stored in a different location than specified. For the same reason, all data locations must be filled. It is also essential that in the feed composition, assumed $D \times_{D}$, and in the KSR and HSR the components are always in the same order.

Main Program

Outline of Storage Space

- 0, 1, 2 Temporary storage
- 3-11* Parameter specification
- Temperature storage for equilibrium and enthalpy subroutines


11-18	Storage	of	K	and	H	values
20-27	Storage	of	h	val	10 (B

*The parameters specified in locations 10 and 11 are destroyed after program is read in.

Outline of Answer Storage

300 D
301 W
302
$$(\Sigma^{\times 0}/K)^{-1}$$
, $(\Sigma^{\times 1}K_{\times 1})^{-1}$
303 Qa
304 Qr
305 $-\emptyset$, $\Delta^{\times 1}T_m$, $-\theta$, $\Delta^{\times 1}T_n$

306
$$\Sigma h_{m+1} L_{m+1}, -\emptyset', \Delta L_{m+1}, \Sigma V_{n-1} H_{n-1}, \Theta', \Delta V_{n-1}$$


```
Temperature storage in calculating p_1 - p_4, q_1 - q_4
307
          E Hm xm+1 , E Hn-1 yn-1
308
          Ehm+1 xm+1, Ehn yn
309
          P. , - 9.
310
          -\rho_2 , -q_1
311
312
          ^{-}P_{3} , ^{-}Q_{3}
313
          P_{4}, q_{4}
314
          Constant for testing iterations through top
          of column
315
          Used over and over for various sums
316
          Constant for testing iterations through bottom
          of column
317-324
          X
325-332
          X ....
333-340
           Xf as calculated from condenser downward
341-348
           46-11i
           Xm:
349-356
720-808
          Temperature on various plates
813-905
          Vapor rates from each plate
906-998
          Liquid rates from each plate
999-1007
          K values, r values
1008-1015 ymi, yni
```

1016-1023 $\chi_{(m+1)}$ χ_{n}

0030K

- 0) 41 314F Put a zero in location 314
 - 50 L Standard entry to subroutine
- 1) 26 479F Enter floating point subroutine
 - 1K 29F Set box 1 counter at 29
- 2) 88 F Read in floating point fraction
 - 1S 647F Store fraction in location 647
- 3) 13 2L Loop to left side of location 2L
 - 85 660F Bring in T.
- 4) 88 7207 Store T, in location 720
 - 85 655F Bring in Ts
- 5) 88 72185 Store T₅ in location 72185
 - 85 664F Bring in Vs
- 6) 88 81385 Store V_s in location 81385
 - 5K F Waste order (change for program alteration)
- 7) 8K ? Put zero in accumulator
 - 88 316F Store zero in location 316
- 8) OK S5 Set box 0 for number of plates above feed
 - 1K S4 Set box 1 for number of components
- 9) 8K ? Put sero in accumulator
 - 14 6477 Add Dxoi to accumulator
- 10) 12 9L Loop to right side 9L
 - **88** 300**F** Place $\Sigma O \times_0$ in location 300

,

8S 906F Place DR : Lo in location 906

12) 84 300F Add D to DR

8S 813F Place D(R + 1) = V, in location 813

13) 85 656F Bring in integer 1

80 300F Subtract D

14) 8S 301F Store 1-D = W in location 301

1K S4 Set box 1 counter at S4

15) 15 665F Bring in ×_f

10 647F Subtract Dxo

16) 86 301F Divide by W

18 325F Store $\frac{x_f - Dx_o}{W} = x_w$ in location 325

17) 13 15F Loop to left side of location 15L

1K S4 Set box 1 at S4

18) 15 647F Bring in $O \times_{O}$

86 300F Divide by D

19) 18 317F Store $D \times_D / D = \times_D$ in location 317

13 18L Loop to left side of location 18L

20) 85 720F Bring in T,

8S 10F Place T, in location 10 for KSR

21) 1K S4 Set box 1 at S4

8J 22L Leave A, go to left side of location 22L

22)	41 315F	Put zero in location 315
	50 22L	Standard entry to KSR
23)	26 357F	Transfer control to KSR
	15 317F	Bring in X 0 (equals 9,)
24)	16 11 F	Divide by K
	1S 1016F	Store $y_i/K = X_i$ in location 1016
25)	84 315 F	Add contents of location 315
	88 315 F	Store sum back in location 315
26)	12 23L	Loop to right side of location 23L
	80 656 F	Subtract 1 from $\Sigma \times_i$
27)	88 302F	Store $\Sigma \times_i - i$ in location 302
	85 657 F	Bring in convergence test constant
28)	8n 302 F	Subtract absolute value of $(\Sigma \times_i - I)$
	83 34L	If positive (convergence) go to left side
		of 34L; if minus, go on
29)	85 302F	Bring in $(\Sigma x, -1)$
	83 32L	If positive (temperature too low) go to left
		side 32L
30)	85 720 F	(Temperature too high) bring in T,
	80 658F	Subtract temperature convergence constant
31)	85 720 T	Store new T, in location 720
	82 20L	T, always positive, so transfer to right side
		20L

- 32) 85 720F Bring in T₁ (temperature too low)
 - 84 658F Add temperature convergence constant
- 33) 8S 720F Store new T, in location 720
 - 82 20L Transfer control to right side 20L
- 34) 85 72185 Bring in T_S
 - 8S 10F Place in location 10 for KSR
- 35) 1K S4 Set box 1 counter at S4
 - 8J 36L Leave A, transfer to left side location 36L
- 36) 41 315F Place sero in location 315
 - 50 36L Standard entry to KSR
- 37) 26 357F Transfer control to KSR
 - 15 325F Bring in X.
- 38) 17 11F Multiply by K
 - 18 341F Place $X_w \cdot K = Y_s$ in location 341
- 39) 84 315F Add contents of location 315
 - 8S 315F Store sum in location 315
- 40) 12 37L Loop to right side location 37L
 - 80 656F Subtract 1 from Z ys
- 41) 85 3027 Store- $(1 \sum y_5)$ in location 302
 - 85 6577 Bring in convergence test constant
- 42) 8N 302F Subtract absolute of-(1 ∑ys)
 - 83 48L If positive (convergence) go to left side 48L

- 43) 85 302F Bring in- $(1 \xi y_s)$
 - 83 46L If plus (temperature too high) go to
 - left side 48L
- 44) 85 721S5 Bring in T_S
 - 84 658F Add temperature convergence constant
- 45) 8S 721S5 Store new T. in location 721S5
 - 82 34L Transfer to right side of 34L
- 46) 85 72185 Bring in Ts
 - 80 658F Subtract temperature convergence constant
- 47) 8S 721S5 Store new Ts in location 721S5
 - 82 34L Transfer to right side 34L
- 48) 85 660F Bring in initial estimate of T.
 - 8S 10F Place in location 10 for KSR
- 49) 1K S4 Set box 1 counter at S4
 - 8J 50L Leave A, and go to left side of 50L
- 50) 41 3157 Store sero in location 315
 - 50 50L Standard entry to KSR
- 51) 26 357F Transfer control to KSR
 - 15 llF Bring in K;
- 52) 17 317F Multiply by X oc
 - 84 3157 Add contents of location 315
- 53) 8S 315F Place sum in location 315
 - 12 51L Loop to right side of 51L

```
54) 80 656F
                Subtract 1 from Z K XD
                Store-(1 - \Sigma K \times_{\Omega} ) in location 302
     83 302F
55) 85 657F
                Bring in convergence test constant
     8N 302F
                Subtract absolute of -(1 - \sum K \times_D)
56) 82 61L
                If plus (convergence) transfer to right
                side 61L
                Bring in-(1 - \sum K \times_0)
     85 302F
57) 82 59L
                If plus (temperature too high) go to
                right side 59L
     85 660F
                Bring in T.
58) 84 658F
                Add temperature convergence constant
     88 660F
                Store new T<sub>c</sub> in location 660
59) 82 48L
                Transfer to right side of 48L
     85 660F
                Sting in T.
60) 80 658F
                Subtract temperature convergence constant
     8S 660F
                Store new T<sub>c</sub> in 660
61) 82 48L
                Transfer to right side of 48L
     85 660F
                Bring in T.
62) 83 10F
                Store in location 10 for HSR
     8J 63L
                Leave A, , transfer to right side 63L
63) 41 315F
                Place zero in location 315
     50 63L
                Standard entry to HSR
```

64) 26 399F Transfer control to HSR 1K S4 Set box 1 at S4 Bring in h 65) 15 20F 17 317F Multiply by X p 66) 84 31**5F** Add contents of location 315 88 315F Place sum in location 315 67) 13 65L Loop to left side location 65L Multiply he by L. 87 906**F** 68) 8S 315F Store heLo in location 315 8K 2F Place interger 2 in accumulator Transfer control to left side 687 69) 83 687**F** Waste order 8K F 70) 05 721**F** Bring in Tm 8S 10F Place in location 10 for KSR 71) 1K S4 Set box 1 counter at S4 Leave A, , transfer to left side 72L 8J 72L 72) 41 315F Place zero in location 315 50 72L Standard entry to KSR Transfer control to KSR 73) 26 357F 15 11F Bring in K; Store K; in location 999 74) 1S 999F 12 73L Loop to right side of location 73L

```
75) 05 907F Bring in L<sub>m+1</sub>
```

84 300F Add D

76) 0S 814F Store $L_{m+1} + D = V_m$ in location 814

1K S4 Set box 1 counter at S4

77) 05 907F Bring in L_{m+1}

17 1016 Multiply by X_{m+1}

78) 14 647F Add X₀

06 8147 Divide by V_m

79) 13 1008F Store Ym in location 1008

13 77L Loop to left side location 77L

80) 1K S4 Set box 1 counter at S4

15 1008F Bring in Ym

81) 16 999F Divide by K

18 349F Store $\frac{y_m}{K_m} = x_m$ in location 349

82) 84 315F Add contents of location 315

8S 315F Store sum in location 315

83) 12 80L Loop to right side of location 80L

80 656F Subtract 1 from ≥ ×m

05 720F Bring in T_{m+1}

85) 8S 10F Place T_{m+1} in location 10 for HSR

8J 86L Leave A, transfer to left side of 86L

86)	41 309F	Place zero in location 309
	50 86L	Standard entry to HSK
87)	26 399F	Transfer control to HSR
	4K S4	Set box 4 counter at S4
88)	45 20F	Bring in \overline{h}
	47 1016F	Multiply by X _{m+1}
89)	84 309F	Add contents of location 309
	8S 309F	Store sum in location 309
90)	43 88L	Loop to left side of location 88L
	07 907 F	Multiply by Lm+1
91)	8S 306F	Store L m+1 h m+1 in location 306
	05 721F	Bring in T _m
92)	8S 10F	Place T _m in location 10 for HSR
	8J 93L	Leave A, , transfer to left side of 93L
93)	41 315F	Place zero in location 315
	50 93L	Standard entry to HSR
94)	26 399 F	Transfer control to HSR
	4K 84	Set box 4 counter at S4
95)	8K F	Bring in zero
	8S 308F	Store zero in location 308
96)	45 11F	Bring in \widetilde{H}_m
	47 1016 F	Multiply by X m+/

97)	84 308F	Add contents of location 308
	8S 308F	Place sum in location 308
98)	45 11F	Being in h _m
	47 1008F	Multiply by Ym
99)	84 315F	Add contents of location 315
	8S 315F	Place sum in location 315
100)	43 96L	Loop to left side of location 96L
	07 814F	Multiply by V _m
101)	80 306F	Subtract Lm+1 hm+1
	86 303F	Divide by Qa
102)	80 656 F	Subtract integer 1
	8S 306F	Store-ø'in location 306
103)	1K 4F	Set box 1 counter at 4
	8K y	Place zero in accumulator
104)	18 310 7	Place zero in location 310
	13 104L	Loop to left side of 104L
105)	1K P	Set box 1 counter at zero
	2K S4	Set box 2 counter at 34
106)	8K 3F	Bring in integer 3
	17 367F	Multiply by $\mathbf{d}_{\mathcal{K}}$
107)	07 721F	Multiply by Tm
	8S 307F	Store 3dkTm in location 307

108)	8K 2F	Bring in integer 2
	17 368 F	Multiply by CK
109)	84 307F	Add 3d _K Tm
	07 721F	Multiply by Tm
110)	14 369F	Add b _K
	27 349F	Multiply by X _m
111)	84 310F	Add contents of location 310
	8S 310F	Store sum in location 310
112)	1L 4F	Increase increment of box 1 by 4
	23 106L	Loop to left side of location 106L
113)	1K S4	Set box 1 counter at S4
	15 1016F	Bring in X _{m+1}
114)	10 1008F	Subtract Ym
	16 99 97	Divide by K _m
115)	84 311F	Add contents of location 311
	8S 311F	Store sum in location 311
116)	12 113L	Loop to right side of 113L
	06 814F	Divide by V _m
117)	8S 311F	Store $-p_2$ in location 311
	1K F	Set box 1 counter at zero
118)	2K S4	Set box 2 counter at S4
	8K 3F	Bring in integer 3

```
119) 17 416F Multiply by dh
                Multiply by Tm
      07 721F
120) 8S 307F Store in location 307
      8K 2F
                 Bring in integer 2
               Multiply by ch
121) 17 417F
      84 307F
                 Add 3dh Tm
                Multiply by Tm
122)
     07 721F
      14 418F
               Add bh
123) 27 1008F Multiply by Ym
      84 312F
               Add contents of location 312
124) 88 312F Store sum in location 312
                 Increase increment of box 1 by 4
      IL 4F
                 Loop to right side of location 118L
125) 22 118L
      07 814F
                 Multiply by Vm
126) 86 303F
                 Divide by Qa
                 Store -p<sub>3</sub> in location 312
      8S 312F
                 Bring in \( \bar{b}_{m+1} \times_{m+1} \)
     85 309F
127)
                 Subtract \Sigma \overline{H}_m \times_{m+1}
      80 308F
128) 86 303F
                 Divide by Qa
                 Store p, in location 313
      88 313F
129)
     85 311F
                 Bring in -p2
                 Multiply by -p3
```

87 312F

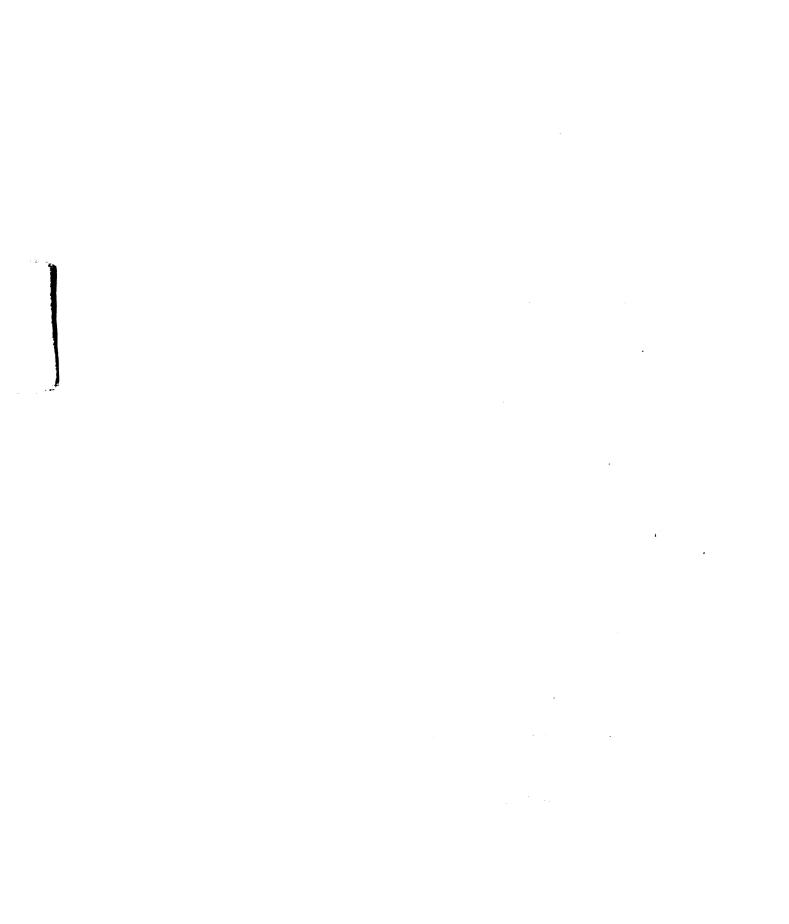
```
130) 8S 308F Store p<sub>2</sub> p<sub>3</sub> in location 308
      85 313F Bring in p4
131) 87 310F Multiply by p,
      80 308F Subtract p. p.
132) 88 308F Store p_4 p_1 - p_2 p_3 in location 308
      85 311F Bring in -p<sub>2</sub>
133) 87 306F Multiply by - \phi'
      8S 309F Store p_2 \phi' in location 309
134) 81 3057 Bring in \phi
      87 313F Multiply by p.
135) 80 309F Subtract p<sub>2</sub> $\phi'$
      86 308F Divide by p, p, - p, p,
136) 88 305F Store \Delta T_m in location 305
      85 3127
                 Bring in -p,
137) 87 305F Multiply by \Delta T_m
      80 306F Subtract - \phi'
138) 86 313F Divide by p.
      8S 306F Store \Delta L_{m+1} in location 306
139) 05 721F Bring in old T_m
      80 305F Subtract \Delta Tm
140) OS 721F Store new T<sub>m</sub> in location 721
```

05 907F Bring on old L_{m+1}

141)	80 306F	Subtract Δ L m+1
	0S 907F	Store new L _{m+1} in location 907
142)	85 3 05 F	Bring in A Tm
	8n 658 F	Subtract absolute of temperature
		convergence constant
143)	82 69L	If plus not convergence, transfer to right
		side 69L
	85 306F	Bring in ΔL_{m+1}
144)	8n 657 f	Subtract absolute of temperature convergence
		constant
	82 69L	If plus not convergence, go to right side 69L
145)	1K S4	Set box 1 counter at S4
	15 349F	Bring in X _m
146)	1S 1016F	Store X_m in 1016 (now becomes X_{m+1})
	12 145L	Loop to right side 145L
147)	02 695 F	Next plate, loop to right side 695
	1K S4	Set box 1 counter at S4
148)	15 349F	Bring in X _m (feed plate composition)
	1S 333F	Store in location 333
149)	13 148L	Loop to left side 148L
	8K 2F	Bring in integer 2
150)	83 181 F	Transfer to left side location 181

83 181F Waste order

00181K


- 0) OK S6 Set box 0 counter at S6
 - 8J 1L Leave A, , transfer to left side 1L
- 1) L5 316F Bring in loop counter constant
 - LO 6F Subtract number of plates below feed
- 2) 36 7L If plus, go to left side 7L
 - F5 316F Bring in loop constant and add 1 to it
- 3) 40 316F Store new loop constant at 316
 - 50 3L Standard entry to A,
- 4) 26 479F Transfer control to A,
 - 05 72185 Bring in Ts
- 5) 08 72285 Store T_n in location 72285
 - 05 81385 Bring in V_{n-1}
- 6) OS 814S5 Store V_{n-/} in 814S5
 - 82 7L Transfer control to right side 7L
- 7) 22 704F (MISTIC) transfer to right side 704
 - 05 81484 Bring in V_{n-1}
- 8) 84 301F Add W
 - OS 90785 Store $V_{n-1} + W = L$ in location 90785
- 9) 1K S4 Set box 1 counter at S4
 - 15 341F Bring in Yn-1
- 10) 07 81485 Multiply by V_{n-1}
 - 15 1016F Store in 1016

- 11) 85 301F Bring in W
 - 17 325F Multiply by Xw
- 12) 14 1018F Add Vn-1 yn-1
 - 06 907S5 Divide by Ln
- 13) 1S 1016F Store Xn; in location 1016
 - 12 9L Loop to right side of 9L
- 14) 05 72285 Bring in Tn
 - 8S 10F Place T_n in location 10 for KSR
- 15) 1K S4 Set box 1 counter at S4
 - 8J 16L Leave A, , go to right side of 16L
- 16) 41 315F Place zero in 315
 - 50 16L Standard entry to KSR
- 17) 26 357F Transfer control to KSR
 - 15 11F Bring in K
- 18) 1S 999F Store K at location 999
 - 17 1016 Multiply by χ_n
- 19) 15 1008F Store Yn in location 1008
 - 84 315F Add contents of location 315
- 20) 8S 315F Place sum in location 315
 - 12 17L Loop to right side of 17L
- 21) 80 656F Subtract 1
 - 8S 305F Store $(\sum y_n 1) = \Theta$ in location 305

- 22) 05 72185 Bring in T_{n-1}
 - 8S 10F Store T_{n-1} in location 10 for HSR
- 23) 1K S4 Set box 1 counter at S4
 - 8J 24L Leave A, go to left side 24L
- 24) 41 308F Place zero in location 308
 - 50 24L Standard entry to HSR
- 25) 26 399F Transfer control to HSR
 - 15 11F Bring in H
- 26) 17 341F Multiply by Yn-1
 - 84 308F Add contents of location 308
- 27) 8S 308F Store sum in location 308
 - 12 25L Loop to right side of location 25L
- 28) 07 81485 Multiply by V_{n-1}
 - 8S 306F Store H_{n-1} · V_{n-1} in location 306
- 29) 05 722S5 Bring in T_n
 - 8S 10F Store T_n in location 10 for HSR
- 30) 1K S4 Set box 1 counter at S4
 - 8J 31L Leave A, transfer to left side 31L
- 31) 41 315F Store zero in location 315
 - 50 31L Standard entry to HSR
- 32) 26 399F Transfer control to HSR
 - 8K F Put zero in accumulator

- 33) 8S 309F Store zero in location 309
 - 15 20F Bring in h
- 34) 17 1008F Multiply by yn
 - 84 309F Add contents of location 309
- 35) 8S 309F Store sum in location 309
 - 15 20F Bring in h
- 36) 17 1016F Multiply by Xn
 - 84 315F Add contents of location 315
- 37) 88 315F Store sum in location 315
 - 12 33L Loop to right side of location 33L
- 38) **Q7** 907S5 Multiply by L n
 - 80 306F Subtract Vn-/ Hn-/
- 39) 86 304F Divide by Qr
 - 84 656F Add integer 1
- 40) 88 306F Store 8' in location 306
 - 1K 4F Set box 1 counter at 4
- 41) 8K F Bring in zero
 - 18 310F Store sero in location 310
- 42) 12 41L Loop to right side location 41L
 - 1K F Set box 1 counter at zero
- 43) 2K S4 Set box 2 counter at S4
 - 8K 3F Bring in integer 3

- 44) 17 367F Multiply by dk
 - 07 722S5 Multiply by Tn
- 45) 88 307F Store $3d_KT_n$ in location 307
 - 8K 2F Bring in integer 2
- 46) 17 368F Multiply by ck
 - 84 307F Add 3 dxTn
- 47) 07 722S5 Multiply by Tn
 - 14 369F Add bk
- 48) 27 1008F Multiply by Yn
 - 84 310F Add contents of location 310
- 49) 8S 310F Store sum in location 310 (-q.)
 - 11. 4F Increase box 1 counter by 4
- 50) 22 43L Loop to right side of location 43L
 - 1K S4 Set box 1 counter at S4
- 51) 15 341F Bring in Y_{n-1}
 - 10 1016F Subtract Xn
- 52) 17 999F Multiply by Kn
 - 84 311F Add contents of location 311
- 53) 85 311F Store sum in location 311
 - 13 51L Loop to left side of location 51L
- 54) 06 90785 Divide by Ln
 - 8S 311F Store -q 2 in location 311

55) 1K F Set box 1 counter at zero 2K S4 Set box 2 counter at S4 Bring in integer 3 **56)** 8K 3F Multiply by dh 17 416**P** 07 722S5 Multiply by Tn 57) Store 3dh Tn in location 307 8S 307F 58) Bring in integer 2 8K 2F 17 417F Multiply by ch 59) 84 307F Add 3dhTn 07 722S5 Multiply by Tn 60) 14 418**F** Add bh 27 1016F Multiply by Xn 61) 84 312F Add contents of location 312 8S 312F Store sum in location 312 62) 1L 4F Increase box 1 counter by 4 23 56L Loop to left side of location 56L **63)** Divide by Qr 86 304F Multiply by Ln 07 90785 Store -q₃ in location 312 64) 8S 312F 85 309F Bring in h, Yn

Subtract H n-1 Y n-1

Divide by Qr

65) 80 308F

86 304F

- 66) 8S 313F Store q, in location 313
 - 85 3117 Bring in q.
- 67) 87 312F Multiply by $-q_3$
 - 88 307F Store q,q, in location 307
- 68) 81 310F Bring in q,
 - 87 313F Multiply by qu
- 69) 80 307F Subtract q,q,
 - 88 3077 Store in location 307
- 70) 81 3057 Bring in Θ
 - 87 313F Multiply by q₄
- 71) 8S 305F Store Θq_{y} in location 305
 - 85 311F Bring in $-q_2$
- 72) 87 306¥ Multiply by ⊖'
 - 84 305F Add 9 q 4
- 73) 86 307F Divide by $q_1q_4 q_2q_3$
 - 8S 305F Store ΔT_n in location 305
- 74) 85 312F Bring in q₃
 - 87 305F Multiply by ΔT_n
- 75) 84 306F Add ⊖'
 - 86 313F Divide by qu
- 76) 88 306F Store ΔV_{n-1} in location 306
 - 05 72285 Bring in T_n (old)
- 77) 80 305F Subtract ΔT_n
 - 08 72285 Store new T_n in location 72285

- 78) 05 814S5 Bring in old V_{n-1}
 - 80 306F Subtract ΔV_{n-1}
- 79) 08 81485 Store new V_{n-1} in location 81485
 - 85 305F Bring in ΔT_n
- 80) 8N 658F Subtract temperature convergence constant
 - 82 7L If plus (not convergence) loop to right side
 7L
- 81) 85 306F Bring in ΔV_{n-1}
 - 8N 657F Subtract convergence test constant
- 82) 82 7L If plus (not convergence) loop to right side
 7L
 - 1K S4 Convergence, so set box 1 counter at S4
- 83) 1% 1008F Bring in yn
 - 1S 341F Store yn in location 341 (now becomes Yn-1)
- 84) 13 83L Loop to left side of location 83L
 - 02 181F Next plate, loop to right side location 181
- 85) 1K SK Set box 1 counter at SK
 - 15 333F Bring in X_f as calculated from condenser downward
- 86) 16 1016F Divide by X_f as calculated from reboiler upward
 - 18 9997 Store r in location 999

- 87) 87 301F Multiply by W
 - 17 325F Multiply by X.
- 88) 8S 302F Store $\gamma W \chi_{m}$ in location 302
 - 81 302F Bring in YWXw
- 89) 14 665F Add x_{ϵ} (also equals F x_{ϵ})
 - 1S 647F Store revised D x_0 in location 647
- 90) 12 85L Loop to right side of location 85L
 - 1K SS Set box 1 counter at SS
- 91) 15 3338K Bring in X_f as calculated from top down
 - 16 1016SK Divide by X_f as calculated from bottom up
- 92) 18 9998K Store r in location 9998K
 - 15 647SK Bring in previous $D \times_D$
- 93) 16 999SK Divide by r
 - 1S 647SK Store D x_D revised in location 647SK
- 94) 13 91L Loop to left side of location 91L
 - 1K S4 Set box 1 counter at S4
- 95) 15 999F Bring in r
 - 80 656F Subtract integer one
- 96) 8N 674F Subtract absolute of convergence constant
 - 82 98L If plus must beiterate, transfer to right side 98L
- 97) 13 95L If above minus component converged, test next component
 - 8K 2F Bring in integer 2 to make plus

98) 82 99L Transfer control to right side location 99L 8K 2F Make plus for next order to be obeyed 99) 83 38F Reiterate through entire tower 8K F Bring in sero 100) 8S 314F Store zero in location 314 (for additional reflux ratios) 8K F Waste order 101) 1K 1S5 Set box 1 counter at 185 15 720F Bring in temperatures above feed plate 102) 8 96F Output temperature 12 101L Loop to right side of location 101L 103) 1K S6 Set box 1 counter at \$6 **15** 72059 Bring in temperatures below feed (in reverse order) 104) 89 6F Output temperature 1L 1022F Used to output temperatures in forward order 105) 12 103L Loop to right side of location 103L Set box 1 counter at 185 1K 1S5 106) 15 906F Bring in liquid rates above feed plate Output liquid rates 89 6F 13 106L Loop to left side of location 106L 107) 1K S6 Set box 1 counter at S6

108) 15 906S9 Bring in liquid rates below feed (reverse order) 89 6F Output liquid rate 109) 1L 1022F Used to output liquid rates in forward order Loop to left side of location 108L 13 108L 110) 1K 135 Set box 1 counter at 185 15 813F Bring in vapor rates above feed Output vapor rate 111) 89 6F Loop to right side of location 110L 12 110L 112) 1K S6 Set box 1 counter at S6 15 81389 Bring in vapor rates below feed (reverse order) Output wapor rates 113) 89 6F Used to output vapor rates in forward 1L 1022F order Loop to right side of location 112L 114) 12 112L 1K 16F Set box 1 counter at 16 115) 15 317F Bring in X and X w Output X and X w 89 6**F** 116) 13 115L Loop to left side of location 115L

Bring in D

85 300F

- 117) 89 6F Output D
 - 8J 118L Leave A, , transfer to location 118L
- 118) OF F Shuts machine off
 - OF F Waste order

00 687K

- 0) 85 720F Bring in T,
 - 8S 10F Store T, in location 10 for HSR
- 1) 1K S4 Set box 1 counter at S4
 - 8J 2L Leave A, , transfer to left side 2L
- 2) 41 303F Store zero in location 303
 - 50 2L Standard entry to HSR
- 3) 26 399 Transfer control to HSR
 - 15 11F Bring in H,
- 4) 17 317F Multiply by X₀
 - 84 303F Add contents of location 303
- 5) 8S 303F Store sum in location 303
 - 12 3L Loop to right side of location 3L
- 6) 87 813F Multiply by L.
 - 80 315F Subtract ho
- 7) 8S 303F Store Q in location 303
 - 80 673F Subtract H.
- 8) 8S 304F Store Q_{F} in location 304
 - 8J 9L Leave A, , transfer to 9L

9)	1 5 314F	(MISTIC) Bring in loop counter
	LO SF	Subtract contents of location 5
10)	32 15L	If plus go to right side of 15L
	F5 314F	Bring in contents of 314 and add one
11)	40 314 F	Store in location 314
	50 11L	Standard entry to A,
12)	26 479 F	Enter A
	05 900 F	Bring in V _n
13)	03 907 P	Store in location 907
	05 720F	Bring in T _n
14)	OS 721F	Store in location 721
	8K 2F	Bring in integer 2
15)	82 16L	Transfer to right side 16L
	50 15L	Standard entry to A,
16)	26 479F	Transfer control to A,
	8K 2F	Bring in integer 2 (makes plus)
17)	83 100 F	Trunsfer to left side location 100
	50 17L	Standard entry to A,
18)	26 479F	Enter A,
	8K 2F	Bring in integer 2
19)	82 188F	Transfer to Location 188
	82 188F	Waste order

There are many ways in which the foregoing program may be altered to perform a desired calculation. Several of the possible desirable alterations which have been made shall now be discussed.

In an investigation such as this where many problems must be solved, the program as it stands would only allow one problem to be worked, then the computer would shut off. If more problems were desired to be run, the new problem would then have to be read into the computer. It is desirable, then, to be able to put five, ten, or even twenty problems on one tape, and let the computer solve them all one after the other. The only major change which must be made is to remove the order which instructs the machine to shut off and to replace it by a transfer of control order to some location where the program alterations are to be stored.

If one desires a given problem to be worked for various values of reflux ratio, holding everything else constant, this may be accomplished very simply by changing the right hand order in location 36 to be SK(n)F, where (n) is the number of various reflux ratios to be run. Then it would only require a few new orders which would change the reflux

ratio as desired and start the problem over using the new reflux ratio. This could be accomplished by either instructing the computer to read in more tape (on which the new reflux ratio would be) or by changing R in a stepwise manner, such as by increasing it by five each time.

As mentioned in the section on the MISTIC computer itself, it is necessary to use DOI when reading in more tape. Because of the limited storage space in the computer, the DOI has been overwritten and thus destroyed. Before anything can be read in again, DOI must be read once again and stored in its proper locations. Thus, whenever the main program is altered to read in more data instead of shutting off, the DOI must be the first thing on the tape. The computer may be instructed to read the DOI by writing a bootstrap start in the program alteration. Even though the BOI, when read in again, will destroy some of the stored answers, nothing is hurt since the solution was already completed and the new problem will simply store its answers overtop the new DOI just read in.

Other variables which can be changed by slight program alterations are: 1) number of plates in the column, or simply the location of the feed plate, and 2) the feed

composition. If any changes are desired in the data to the program, such as feed composition or reflux ratio, the entire set of data must be made up, even though many of the things remain the same.

If it is desired to change the number of plates or the feed plate location, then only the orders which use the 8 termination symbol followed by a 5, 6, or 9 must be repeated. This is because they are the only orders which will be changed in this case. Because this change in number of plates was a common occurrence in this investigation, a special tape containing only the orders which would change (S5, S6, and S9 orders) was made up and used frequently.

Another program alteration which was used mainly at first to see if the program was working was to instruct the computer to punch out the composition of liquid on each plate for each iteration. By doing this, one can see how fast the problem is converging and also see how many iterations are required.

Through the cooperation of the computer laboratory staff, problems for this investigation were many times run off at night. In these instances, the foregoing program alterations were made use of to prepare problems which would run all night and require no watching. Many times, tapes were prepared

which contained several combinations of feed composition, reflux ratio, number of plates, and feed plate location.

One improvement which could be made in this program, if more storage space were available, would be to include various tests and checks to make sure certain physical laws are not broken, such as negative equilibrium constants. The computer could be instructed to shut off if such a thing occurred, or could go on to the next problem, if a program alteration were used to run a series of problems.

DATA AND DISCUSSION OF RESULTS

At first glance at the data, the reaction one might have is that it does not matter much where the feed plate is located. This, in a majority of cases, results in overdesign if the optimum feed location is not used and the column still carries out the desired separation.

Of course, only in special cases such as stripping columns, will the optimum location be near either extreme of the column.

The variables which were studied to see if optimum location changed were: 1) feed composition, 2) reflux ratio, 3) number of plates, 4) condition of feed, and 5) tower pressure.

It was generally found that for most feed compositions, the optimum location for the feed plate varied from 55-75% of the way from the bottom of the column upward. If either extreme of mostly all light key or heavy key in the feed were approached, the optimum would be near the top of the column for high heavy key concentrations and near the bottom for high light key concentrations.

The method of determining the degree of separation in a multicomponent problem may take on different forms depending

upon what is being attempted in the column. The criterion for separation used in this investigation was concerned with: 1) the highest purity of light key in the overhead product (with particular attention paid to the amount of heavy key there also) and 2) the maximum recovery of light key in the overhead and the heavy key in the residue. The maximum recovery was taken as the maximum of the sums of the recovery of light key out the overhead and the recovery of heavy key out in the residue. This criterion was found to agree very well with the criterion of purity of products. The various variables involved will now be discussed individually.

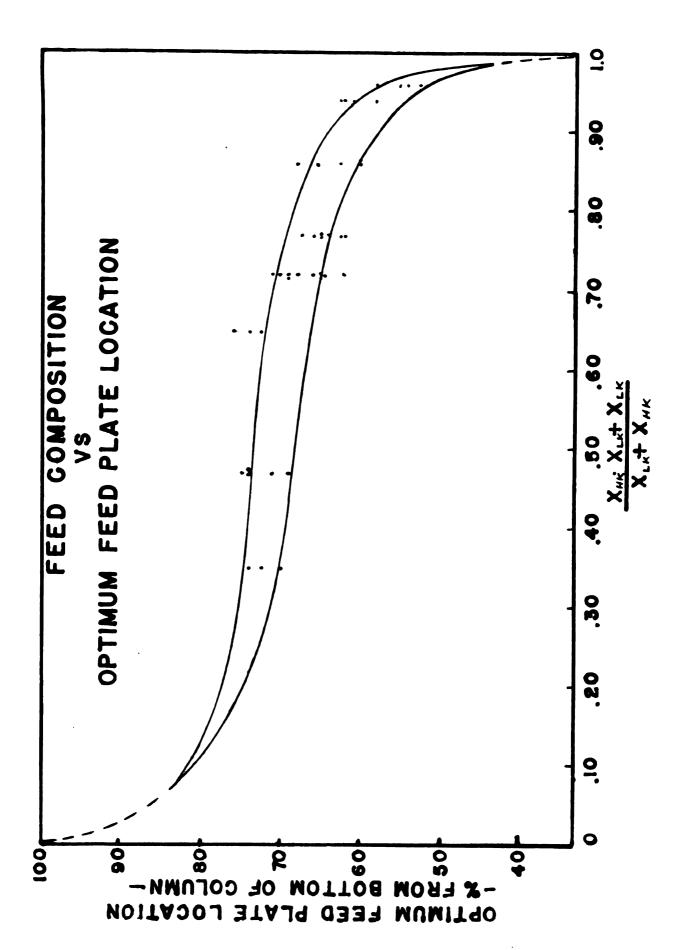
Composition of Feed

This was without a doubt the most studied variable of those involved. Many different feed compositions were tested to see how the optimum feed plate location might change with composition.

Key components are those components between which the actual separation is made, and not the components which may be specified in attempting to obtain a desired product. The key components depend upon pressure, condenser duty, and top and bottom temperatures. Upon fixing these variables, the key components are fixed and one has no choice but to take

what separation is obtained for a given number of plates.

The key components in all the calculations made were butane and isopentane.


Table I

	Feed Composition Temp Op 1-But. n-But. 1-Pent.n-Pent.Hex.					XHKXLK # XLK	
	Temp Oy	i-But.	n-But.	i-Pent	.n-Pent	.Hex.	XLK / XHK
Feed A	126	. 20	.25	.15	.20	. 20	.72
Feed B	128	.10	.30	.30	.20	.10	.65
Feed C	125	.10	.50	.20	.10	.10	.86
Feed D	117	.10	.60	.10	.10	.10	.94
Food E	109	.05	.70	.10	.10	.05	.96
Feed F	137	.30	.30	.15	.15	.10	.77
Food G	113	.10	. 20	.40	.20	.10	.47
Feed H	123	.10	.15	.50	.15	. 10	.35
Food I	100	.30	.30	.15	.15	.10	.77
Feed J*	137	. 30	.30	.15	.15	.10	.77

*Feed J at 150 psi, all others at 100 psi.

It has been previously mentioned that for the extreme cases of nearly all light key or heavy key in the feed, the optimum location of feed plate would approach the bottom or the top of the column. To take advantage of this, the function $\frac{X_{HK}X_{LK} \neq X_{LK}}{X_{HK} \neq X_{LK}}$ was used as the means of defining the composition of the feed in terms of the key

DATA AND DISCUSSION OF RESULTS

components. Figure 5 shows the results of plotting this function versus optimum feed plate location expressed in percentages from the bottom of the column. The data does not cover the entire range of feed composition; but does, however, cover most cases which will normally be met (see Table I). The ends of the curve are dotted since they are strictly empirical. By examining the abscissa of Figure 5, it can be seen that when the feed is all light key ($X_{HK} = 0$) then the function goes to 1 and the optimum location of feed plate should approach the bottom of the column. When the feed is all heavy key ($X_{LK} = 0$) then the function goes to zero and the optimum feed plate location approaches the top of the column.

Figure 5 was determined using the data of Table II

(see Appendix). The maximum separation, and thus the

optimum location of feed plate, was determined by plotting

the average of the per cent light key recovered out the

overhead and the per cent heavy key recovered out the

bottom, versus feed plate location. Typical plots are shown

in Figure 6. The optimum feed plate location was then plotted

versus the function describing the feed composition in Figure

5. The band was drawn in to include the points scattered, due

to changes in reflux ratio, feed condition, and column pressure, as well as to include the "band" of optimum locations observed for several columns.

It is felt that the most important variable not investigated was that of variation of relative volatility between the key components. Although some problems were solved using a six-component feed, nearly all the problems solved in this investigation had a feed composed of the same five hydrocarbons. Any future work in this field should include this variable, as well as including components other than aliphatic hydrocarbons.

Reflux Ratio

By examining Table II for cases 1-81 and cases 82-155, which illustrate variation of reflux ratio, it can be seen that the degree of separation increases with reflux ratio. This is true up to a high value of reflux ratio, and then the products obtained remain the same with increasing reflux ratio. From plots of the type shown in Figure 6, it was found that the optimum feed plate location remained nearly the same for various reflux ratios. There is only a slight shift of the optimum feed plate location upward in the column with increased reflux ratio.

Number of Plates

Once again, the number of plates in a column has very little effect on the relative optimum feed plate location, that is, the feed plate location expressed as a percentage, such as used in Figure 5. In towers with a small number of plates (11) the optimum location sometimes resulted in a specific location, rather than a band of feed plate locations, which occurred in many columns with more plates. This band occurred due to the flat shape of the separation versus feed plate location curve (Figure 6.)

The columns with 21 and 31 plates which were calculated often had pinch points where the composition and temperatures did not change from one plate to the next. One set of problems was solved using 41 plates and the same relative optimum feed plate location was obtained as for columns with 21 and 31 plates. However, because of the increased number of plates in the pinch region, the optimum location band was slightly widened.

Condition of Feed

To determine if the optimum feed plate location changed with the condition of feed, that is, hot or cold feed, the same feed composition was used at two different temperatures. Feed F was at 137°F and Feed I at 100°F. Cases 211-222 and 254-268


optimum location was not affected by the change of feed condition. It seems safe to generalize that, at least for all liquid feed, the condition of the feed will not affect the relative optimum feed plate location. However, caution should be used in extending this generalization to include vapor feeds.

Tower Pressure

Since the tower pressure is not an independent variable in commercial design but must be competible with condenser temperature and product specifications, it is difficult to determine the effect of pressure on the optimum feed plate location.

The only check was the comparison of Feed F with Feed J (cases 211-222 and 269-282.) Feed J was used in a column at 150 psi pressure while the column for Feed F and all other cases were at 100 psi.

Although slightly different products were obtained, no appreciable change in optimum feed plate location was found.

CONCLUSIONS

- A rigorous method for the solution of multicomponent distillation problems has been developed and programmed for a high speed digital computer.
- 2. Several hundred problems have been solved rigorously to use in making a correlation of optimum feed plate location.
- 3. From these numerous solutions, a correlation between the optimum feed plate location and the feed composition has been made. The function $\frac{X_{HK}X_{LK} \neq X_{LK}}{X_{HK} \neq X_{LK}} \text{ was found to give a good correlation of feed composition.}$
- 4. The effects of other variables such as reflux ratio, tower pressure, feed condition, and number of plates, upon relative optimum feed plate location, have also been studied and found to be very small.

APPENDIX

		RATIO	ABOVE	BELOW	8년 전투						
CASE	FEED	REFLUX	ATES ED PL	Ha		Mole	Fraction	n of Di	stillat	e	
<u> </u>	E	RE		PICE	1 C ₄	C 4	i C	^C 5	с ₆	D	
1	A	2	3	7	.4525	.5095	.0263	.0111	.0007	.4261	
2	A	2	4	6	.4397	.5194	.0307	.0099	.0003	.4441	
3	A	2	5	5	.4257	.5130	.0476	.0136	.0002	.4604	
4	A	2	6	4	.4065	.4935	.0763	.0236	.0002	.4812	
5	A	2	7	3	.3813	.4639	.1106	.0440	.0002	.5100	
6	A	6	3	7	.4532	.5345	.0095	.0027	.0001	.4359	
7	A	6	4	6	.4418	.5394	.0157	.0031	.0000	.4499	
8	A	6	5	5	.4297	.5327	.0319	.0056	.0000	.4642	
9	A	6	6	4	.4094	.5075	.0680	.0151	.0000	.4861	
10	A	6	7	3	.3805	.4719	.1130	.0345	.0001	.5220	
11	A	10	3	7	.4534	.5385	.0065	.0016	.0001	.4370	
12	A	10	4	6	.4422	.5424	.0131	.0023	.0000	.4504	
13	A	10	5	5	.4297	.5327	.0319	.0056	.0000	.4642	
14	A	10	6	4	.4098	.5095	.0067	.0140	.0000	.4867	
15	A	10	7	3	.3803	.4731	.1137	.0328	.0001	.5239	
16	A	14	3	7	.4534	.5401	.0053	.0011	.0000	.4374	
17	A	14	4	6	.4424	.5437	.0120	.0019	.0000	.4506	
18	A	14	5	5	.4299	.53 36	.0312	.0053	.0000	.4643	
19	A	14	6	4	.4100	.5103	.0662	.0136	.0000	.4869	

20	A	14	7	3	.3801	.4735	.1141	.0323	.0000	.5247
21	A	18	3	7	.4535	.5409	.0047	.0009	.0000	.4376
22	A	18	4	6	.4425	.5443	.0115	.0017	.0000	.45 06
23	A	18	5	5	.4300	.5341	.0309	.0051	.0000	.4644
24	A	18	6	4	.4100	.5106	.0660	.0134	.0000	.4871
25	A	18	7	3	.3800	.4736	.1143	.0321	.0000	.5253
2 6	A	2	4	16	.5337	.4592	.0054	.0017	.0001	.3672
27	A	2	6	14	.4438	.5464	.0082	.0015	.0000	.4501
28	A	2	8	12	.4375	.5453	.0156	.0016	.0000	.4569
29	A	2	10	10	.4178	.5209	.0156	.00 5 7 ·	.0000	.4785
30	A	2	12	8	.3842	.4790	.1158	.0210	.0000	.5201
31	A	2	14	6	.3661	.4554	.1403	.0383	.0000	.5450
32	A	6	4	16	.5230	.4750	.0016	.0004	.0000	.3790
33	A	6	6	14	.4450	.5541	.0009	.0001	.0000	.4494
34	A	6	8	12	.4421	.5525	.0051	.0003	.0000	.4524
35	A	6	10	10	.4267	.5332	.0383	.0019	.0000	.4687
36	A	6	12	8	.3829	.4784	.1279	.0108	.0000	.5223
37	A	10	4	16	.5225	.4763	.0009	.0002	.0000	.3801
38	A	10	6	14	.4450	.5545	.0004	.0000	.0000	.4494
39	A	10	8	12	.4425	.5531	.0043	.0002	.0000	.4520
40	A	10	10	10	.4274	.5342	.0369	.0015	.0000	.4679
41	A	10	12	8	.3821	.4775	.1308	.0097	.0000	.5235

42	A	14	4	16	.5227	.4764	.0007	.0002	.0000	.3802
43	A	14	6	14	.4451	.554 6	.0003	.0000	.0000	.4493
44	A	14	8	12	.4426	.5532	.0040	.0001	.0000	.4519
45	A	14	10	10	.4275	.5343	.0369	.0014	.0000	.4679
46	A	14	12	8	.3814	.4767	.1326	.0093	.0000	.5243
47	A	18	4	16	.5228	.4766	.0005	.0001	.0000	.3804
48	A	18	6	14	.4451	.5547	.0002	.0000	.0000	.4493
49	A	18	8	12	.4427	.55 33	.0039	.0001	.0000	.4518
50	A	18	10	10	.4274	.5342	.0371	.0013	.0000	.4680
51	A	18	12	8	.3808	.4760	.1343	.0090	.0000	.5252
52	A	2	5	25	.4644	.5225	.0104	.0026	.0000	.4300
53	A	2	6	24	.4501	.5412	.0074	.0014	.0000	.4442
54	A	2	7	23	.4448	.5493	.0051	.0007	.0000	.4496
55	A	2	9	21	.4435	.5537	.0026	.0002	.0000	.4510
56	A	2	12	18	.4403	.5503	.0091	.0003	.0000	.4542
57	A	2	15	15	.4161	.5200	.0614	.0025	.0000	.4807
58	A	2	18	12	.3753	.4690	.1367	.0190	.0000	.5329
59	A	6	5	25	.45 48	.5437	.0013	.0003	.0000	.4397
60	A	6	6	24	.4469	.5524	.0007	.0001	.0000	.4475
61	A	6	9	21	.4444	.5555	.0001	.0000	.0000	.4500
62	A	6	12	18	.4435	.5544	.0020	.0000	.0000	.4509
63	A	6	15	15	.4272	.5339	.0384	.0005	.0000	.4682

64	A	10	5	25	.4541	.5451	.0006	.0001	.0000	.4404
65	A	10	6	24	.4467	.5529	.0003	.0000	.0000	.4477
66	A	10	9	21	.4444	.5555	.0000	.0000	.0000	.4500
67	A	10	12	18	.4437	.5546	.0017	.0000	.0000	.4508
6 8	A	10	15	15	.4282	.5352	.0362	.0004	.0000	.4671
69	A	14	5	25	.4539	.5456	.0004	.0001	.0000	.4405
70	A	14	6	24	.4467	.5531	.0002	.0000	.0000	.4477
71	A	14	9	21	.4445	.5555	.0000	.0000	.0000	.4500
72	A	14	12	18	.4437	.5546	.0017	.0000	.0000	.4508
73	A	14	1.5	15	.4282	.5353	.0362	.0003	.0000	.4671
74	A	18	5	25	.4538	.5458	.0003	.0001	.0000	.4406
75	A	18	6	24	.4467	.5532	.0001	.0000	.0000	.4477
76	A	18	9	21	.4445	.5555	.0000	.0000	.0000	.4500
77	A	18	12	18	.4437	.5546	.0017	.0000	.0000	.4508
78	A	18	15	15	.4281	.5351	.0365	.0003	.0000	.4672
79	A	2	8	32	.4451	.5510	.0035	.0004	.0000	.4493
03	A	2	12	28	.4441	.5551	.0007	.0000	.0000	.4503
81	A	2	16	24	.4421	.5526	.0052	.0001	.0000	.4524
82	В	2	2	8	.2202	.6386	.1092	.0302	.0018	.4498
83	B	2	3	7	.2204	.6406	.1125	.0259	.0008	.4486
84	В	2	4	6	.2137	.6245	.1340	.0273	.0004	.4624
85	B	2	5	5	.2030	.5951	.1682	.0335	.0003	.4861

•

86	B	2	6	4	.883	.5532	.2122	.0460	.0002	.5225
87	B	6	2	8	.2353	.6917	.0608	.0117	.0005	.4231
88	B	6	3	7	.2318	.6859	.0716	.0105	.0002	.4298
89	B	6	4	6	.2230	.6626	.1014	.0130	.0001	.4471
90	B	6	5	5	.2095	.6237	.1479	.0189	.0001	.4757
91	B	6	6	4	.1915	.5706	.2073	.0305	.0001	.5200
92	3	6	7	3	.1723	.5135	.2628	.0514	.0001	.5770
93	B	10	3	7	.2345	.6960	.0619	.0075	.0001	.4255
94	B	10	4	6	.2248	.6700	.0947	.0105	.0001	.4440
95	B	10	5	5	.2108	.6294	.1433	.0164	.0000	.4734
96	B	10	6	4	.1921	.5740	.2060	.0278	.0000	.5192
97	B	10	7	3	.1721	.5142	.2658	.0479	.0000	.5792
98	B	14	3	7	.2356	.7004	.0577	.0062	.0001	.4236
99	3	14	4	6	.2255	.6729	.0922	.0094	.0000	.4428
100	B	14	5	5	.2113	.6314	.1419	.0154	.0000	.4726
101	B	14	7	3	.1924	.5752	.2058	.0266	.0000	.5190
102	3	14	7	3	.1718	.5139	.2680	.0462	.0000	.5807
103	8	18	3	7	.2363	.7029	.0552	.0055	.0001	.4225
104	3	18	4	6	.2259	.6743	.0910	.0088	.0000	.4422
105	B	18	5	5	.2115	.6323	.1414	.0148	.0000	.4724
106	B	18	6	4	.1924	.5758	.2057	.0261	.0000	.5190
107	B	18	7	3	.1717	.5140	.2687	.0455	.0000	.5812
108	3	2	4	16	.2382	.7028	.0497	.0091	.0002	.4193

109	3	2	6	14	.2356	.7031	.0550	.0064	.0000	.4243
110	B	2	8	12	.2224	.6653	.1024	.0 098	.0000	.4494
111	3	2	10	10	.2023	.6054	.1740	.0182	.0000	.4949
112	3	2	12	8	.1791	.5359	.2492	.0358	.0000	.5580
113	B	2	14	6	.1634	.4884	.2867	.0615	.0000	.6112
114	B	6	4	16	.2484	.7420	.0084	.0011	.0000	.4024
115	3	6	6	14	.2468	.7399	.0126	.0007	.0000	.4052
116	B	6	8	12	.2362	.7084	.0532	.0021	.0000	.4233
117	B	6	10	10	.2111	.6330	.1500	.0060	.0000	.4738
118	3	6	12	8	.1761	.5280	.2788	.0172	.0000	.5679
119	B	10	4	16	.2495	.7459	.0041	.0005	•0000	.4007
120	B	10	6	14	.2480	.7437	.0081	.0003	.0000	.4033
121	3	10	8	12	.2379	.7135	.0472	.0015	.0000	.4204
122	B	10	10	10	.2122	.6365	.1468	.0045	.0000	.4713
123	3	10	12	8	.1750	.5249	.2858	.0143	.0000	.5714
124	3	14	4	16	.2499	.7471	.0027	.0003	.0000	.4002
125	3	14	6	14	. 2484	.7449	.0065	.0002	.0000	.4026
126	3	14	8	12	.2383	.7148	.0458	.0012	.0000	.4197
127	B	14	10	10	.2124	.6371	.1466	.0039	.0000	.4708
128	B	14	12	8	.1742	.5224	.2903	.0013	.0000	.5741
129	B	18	4	16	.2500	.7477	.0020	.0002	.0000	.3999
130	3	18	6	14	.2486	. 7455	.0057	.0002	.0000	.4023

131	В	18	8	12	.2384	.7151	.0454	.0011	.0000	.4195
132	В	18	10	10	.2123	.6370	.1471	.0036	.0000	.4709
133	B	18	12	8	.1737	.5210	.2928	.0125	.0000	.5757
134	В	2	6	24	.2425	.7226	.0314	.0035	.0000	.4124
135	В	2	9	21	.2421	.7259	.0304	.0016	.0000	.4130
136	В	2	12	18	.2292	.6875	.0799	.0034	.0000	.4362
137	В	2	15	15	.2067	.6120	.1641	.0095	.0000	.4839
138	B	2	18	12	.1774	.5320	.2614	.0292	•0000	.5637
139	В	6	6	24	.2496	.7481	.0022	.0002	.0000	.4007
140	B	6	9	21	.2 494	.7482	.0024	.0001	.0000	.4010
141	В	6	12	18	.2435	.7306	.0255	.0044	.0000	.4106
142	B	6	15	15	.2170	.6510	.1303	.0017	.0000	.4608
143	В	6	18	12	.1665	.4994	.3253	. 008 8	.0000	.6007
144	B	10	6	24	.2 49 9	.7491	.0009	.0001	.0000	.4002
145	B	10	9	21	.2497	.7491	.0012	.0000	.0000	.4005
146	B	10	12	18	.2448	.7344	.0206	.0002	.0000	.4085
147	B	10	15	15	.2189	.6568	.1232	.0011	.0000	.4568
148	В	14	6	24	.2499	.7494	.0006	.0000	.0000	.4000
149	8	14	9	21	.2498	.7493	.0009	.0000	.0000	.4003
150	B	14	12	18	.2450	.7351	.0197	.0002	.0000	.4081
151	B	14	15	15	.2192	.6576	.1223	.0009	.0000	.4562
152	В	18	6	24	.2500	.7496	.0004	.0000	.0000	.4000
153	B	18	9	21	.2498	.7495	.0007	.0000	.0000	.4003

154	3	18	12	18	.2451	.7353	.0194	.0001	.0000	.4080
155	B	18	15	15	.2192	.6575	.1225	.0008	.0000	.4563
156	C	2	3	7	.1689	.7972	.0293	.0043	.0003	.5822
157	C	2	4	6	.1681	.8010	.0278	.0031	.0001	.5846
158	C	2	5	5	.1656	.7974	.0340	.0030	.0000	.5932
159	C	2	6	4	.1611	.7823	.0525	.0041	.0000	.6092
160	C	2	7	3	.1540	.7512	.0871	.0077	.0000	.6346
161	C	6	3	7	.1703	.8176	.0110	.0011	.0001	.5826
162	С	6	4	6	.1686	.8192	.0114	.0008	.0000	.5890
163	C	6	5	5	.1661	.8159	.0171	.0009	.0000	.5987
164	C	6	6	4	.1622	.8021	.0339	.0018	.0000	.6134
165	C	6	7	3	. 1555	.7711	.0690	.0044	.0000	.6388
166	C	6	5	15	.1689	.8293	.0017	.0001	.0000	.5917
167	C	6	6	14	.1673	.8317	.0010	.0001	.0000	.5977
168	C	6	8	12	.1664	.8315	.0021	.0000	.0000	.6011
169	C	6	10	10	.1631	.8153	.0213	.0003	.0000	.6131
170	C	6	8	22	.1588	.7940	.0465	.0007	.0000	.6297
171	C	6	10	20	.1667	.8332	.0001	.0000	.0000	.6001
172	C	6	11	19	.1666	.8332	.0002	.0000	.0000	.6001
173	C	6	13	17	.1664	.8318	.0019	.0000	.0000	.6011
174	C	6	15	15	.1669	.8331	.0000	.0000	.0000	.5991
175	Ð	6	3	7	.1474	.8381	.0111	.0032	.0002	.6690
176	D	6	4	6	.1467	.8413	.0101	.0020	,0001	.6731

177	D	6	5	5	.1447	.8414	.0121	.0018	.0000	.6821
178	D	6	6	4	.1422	.8446	.0121	.0011	.0000	.7006
179	D	6	7	3	.1388	.8277	.0300	.0035	.0000	.7174
180	D	6	5	15	.1456	.8536	.0007	.0001	.0000	.6865
181	D	6	6	14	.1438	.8557	.0004	.0000	.0000	.6951
182	D	6	8	12	.1429	.8567	.0004	.0000	.0000	.6998
183	D	6	10	10	.1422	.8533	.0044	.0001	.0000	.7031
184	D	6	12	8	.1375	.8251	.0366	.0008	.0000	.7271
185	D	6	10	20	.1429	.8571	.0000	.0000	.0000	.7000
186	D	6	11	19	.1429	.8571	.0000	.0000	.0000	.7000
187	Ð	6	13	17	.1428	.8571	.0001	.0000	.0000	.7000
188	D	6	15	15	.1425	.85 48	.0027	.0000	.0000	.7019
189	E	2	3	7	.0708	.9166	.0097	.0028	.0001	.6915
190	E	2	4	6	.0704	.9201	.0079	.0017	.0000	.6952
191	E	2	5	5	.0698	.9217	.0074	.0011	.0000	.7003
192	E	2	6	4	.0690	.9214	.0086	.0010	.0000	.70 66
193	E	2	7	3	.0681	.9176	.0130	.0013	.0000	.7141
194	E	6	3	7	.0708	.9252	.0032	.0007	.0000	.6977
195	E	6	4	6	.0700	.9271	.0025	.0004	.0000	.7059
196	E	6	5	5	.0692	.9281	.0025	.0002	.0000	.7151
197	E	6	6	4	.0682	.9281	.0034	.0003	.0000	.7258
198	E	6	7	3	.0673	.9258	.0064	.0005	.0000	.7368

199	E	6	5	15	.0739	.9252	.0007	.0001	.0000	.6743
200	E	6	6	14	.0705	.9290	.0004	.0000	.0000	.7074
201	E	6	8	12	.0673	.9326	.0001	.0000	.0000	.7431
202	K	6	10	10	.0667	.9330	0002	.0000	.0000	.7495
203	E	6	12	8	.0664	.9294	.0042	.0000	.0000	.7530
204	E	6	14	6	.0639	.894 2	.0410	.0008	.0000	.7823
205	E	6	10	20	.0669	.9331	.0000	.0000	.0000	.7474
206	E	6	11	19	.0667	.9333	.0000	.0000	.0000	.7493
207	E	6	13	17	.0667	.9333	.0000	.0000	.0000	.7499
208	E	6	15	15	.0667	.9333	.0001	.0000	.0000	.7500
209	E	6	17	13	.0666	.9322	.0012	.0000	.0000	.7509
210	E	6	19	11	.0656	.9184	.0160	.0000	.0000	.7622
211	7	6	3	7	.5022	.4732	.0190	.0054	.0002	.5875
212	7	6	4	6	.4934	.4876	.0169	.0022	.0000	.6063
213	7	6	6	14	.5008	.4986	.0005	.0001	.0000	.5989
214	7	6	8	12	.4990	.4989	.0020	.0001	.0000	.6011
215	r	6	10	10	.4889	.4888	.0218	.0005	.0000	.6136
216	7	6	12	8	.4489	.4488	.0980	.4043	.0000	.6682
217	7	6	7	23	.5092	.4905	.0002	.0000	.0000	.5890
218	. 7	6	9	21	.5039	.4961	.0001	.0000	.0000	.5953
219	7	6	11	19	.5000	.5000	.0001	.0000	.0000	.6000
220	F	6	13	17	.4994	.4994	.0011	.0000	.0000	.6007

221	r	6	15	15	.4937	.4937	.0125	.0001	.0000	.6077
222	7	6	17	13	.4608	.4608	.0078	.0006	.0000	.6510
223	G	6	2	8	.3044	.5876	.0925	.0148	.0007	.3258
224	G	6	3	7	.3022	.5881	.0974	.0122	.0003	.3258
225	G	6	4	6	.2983	.5828	.1077	.0111	.0001	.3325
226	G	6	5	5	.2936	.5738	.1218	.0107	.0001	.3370
227	C	6	6	4	.2890	.5632	.1367	.0110	.0000	.3405
228	G	6	4	16	.3275	.6520	.0186	.0018	.0000	.3053
229	C	6	6	14	.3269	.6528	.0193	.0010	.0000	.3058
230	G	6	8	12	.3240	.6470	.0281	.0009	.0000	.3086
231	G	6	10	10	.3199	.6380	.0412	.0009	.0000	.3125
232	G	6	12	8	.3143	.6254	.0593	.0010	.0000	.3177
233	G	6	6	24	.3318	.6634	.0045	.0003	.0000	.3014
234	G	6	8	22	.3323	.6644	.0032	.0001	.0000	.3010
235	G	6	9	21	.3322	.6643	.0035	.0001	.0000	.3011
236	G	6	10	20	.3320	.6639	.0041	.0001	.0000	.3012
237	G	6	11	19	.2962	.5923	.1091	.0025	.0000	.3377
238	H	6	2	8	.3681	.5103	.1094	.0115	.0008	.2663
239	H	6	3	7	.3643	.5173	.1092	.0088	.0003	.2702
240	H	6	4	6	.3591	.5153	.1178	.0077	.0001	.2741
241	H	6	5	5	.3531	.5086	.1310	.0072	.0001	.2777
242	Ħ	6	6	4	.3470	.4989	.1469	.0071	.0000	.2803

243	H	6	4	16	.3895	.5781	.0304	.0019	.0000	.2566
244	H	6	6	14	.3876	.5793	.0319	.0011	.0000	.2579
245	H	6	8	12	.3825	.5718	.0447	.0010	.0000	.2613
246	H	6	10	10	.3754	.5601	.0634	.0010	.0000	.2661
247	H	6	12	8	.3662	.5443	.0884	.0010	.0000	.2723
248	H	6	6	24	.3957	.5933	.0107	.0004	.0000	.2527
249	H	6	7	23	.3959	.5938	.0100	.0003	.0000	.2526
250	H	6	8	22	.3956	.5933	.0109	.0002	.0000	.2528
251	H	6	9	21	.3942	.5911	.0145	.0002	.0000	.2537
252	H	6	10	20	.3942	.5911	.0145	.0002	.0000	.2537
253	H	6	11	19	.3426	.5138	.1413	.0023	.0000	.2919
254	I	6	3	7	.5056	.4860	.0068	.0013	.0000	.5885
255	I	6	4	6	.5041	.4883	.0067	.0009	.0000	.5909
256	I	6	5	5	.5024	.4893	.0075	.0008	.0000	.5928
257	I	6	6	4	.5010	.4894	.0088	.0008	.0000	.5937
258	1	6	7	3	.5001	.4887	.0104	.0009	.0000	.5926
259	I	6	5	15	.5044	.4946	.0008	.0001	.0000	.5944
260	1	6	6	14	.5009	.4986	.0005	.0000	.0000	.5988
261	I	6	8	12	.4992	.4990	.0018	.0000	.0000	.6010
262	I	6	10	10	.4897	.4896	.0203	.0005	.0000	.6127
263	I	6	7	23	.5012	.49 86	.0002	.0000	.0000	.59 86
264	I	6	11	19	.5000	.5000	.0001	.0000	.0000	.6000

265	I	6	13	17	.4999	.4999	.0001	.0000	.0000	.6001
266	1	6	15	15	.4999	.4999	.0002	.0000	.0000	.6001
267	I	6	17	13	.4999	.4999	.0003	.0000	.0000	.6002
268	I	6	19	11	.4998	.4998	.0004	.0000	.0000	.6002
269	J	6	3	7	.4920	.4872	.0154	.0053	.0001	.6079
270	J	6	4	6	.4907	.4864	.0174	.0055	.0000	.6094
271	J	6	5	5	.4893	.4851	.0196	.0059	.0000	.6107
272	J	6	6	4	.4878	.4834	.0223	.0066	.0000	.6115
273	J	6	7	3	. 486 3	.4811	.0253	.0073	.0000	.6109
274	J	6	6	14	.5012	.4984	.0003	.0001	.0000	.5984
275	J	6	8	12	.4996	.4994	.0009	.0001	.0000	.6004
276	J	6	10	10	.4950	.4949	.0089	.0011	.0000	.6060
277	J	6	12	8	.4981	.4977	.0038	.0004	.0000	.6022
278	J	6	11	19	.5001	.4999	.0000	.0000	.0000	.5998
279	J	6	13	17	.5001	.4999	.0000	.0000	.0000	.5999
280	J	6	15	15	.5000	.5000	.0000	.0000	.0000	.6000
281	J	6	17	13	.5000	.5000	.0000	.0000	.0000	.6000
282	J	6	19	11	.5000	.5000	.0000	.0000	.0000	.5999

COMPUTER LABORATORY

LIBRARY ROUTINE A 1 - 63

TITLE Floating Decimal Arithmetic Routine

TYPE Interpretive routine with 18 interpretive

orders, entered as a closed routine, left

by an 8J interpretive order.

NUMBER OF WORDS 168

floating decimal form, that is, numbers which are represented as A x 10^p. It is of the interpretive type. This means that it selects parameters called <u>interpretive orders</u> which are written by the user one at a time and performs a calculation corresponding to each interpretive order. Interpretive orders carry out normal arithmetic operations such as addition and multiplication and some red tape operations such as counting and address changing.

In general, one will use this routine to do computations which do not require the full speed of the computer but which are too time-consuming to be done by hand. It is especially effective for problems with scaling difficulties. In a sense, one may think of the floating decimal routine as converting the MISTIC to a medium speed floating

decimal computer having a very convenient order code.

ACCURACY About 9 decimals

TEMPORARY STORAGE 9. 1. 2

PRESET PARAMETERS S3 is used to specify two locations of non-temporary storage, S3 and 1S3, which are used for the floating decimal accumulator.

METHOD OF USE The floating decimal routine is entered as a standard subroutine. Following the entry, i.e., after the transfer of control to the subroutine, one begins writing interpretive orders. These orders each occupy one-half word and consist of a pair of function digits followed by a single address. They, therefore, have the same form as standard machine orders and may be read by the Decimal Order Input with full use of the conventional terminating symbols.

The first of the two function digits of an interpretive order describes the group characteristics of the order and may take values 0, 1, ..., 8. Normal arithmetic interpretive orders have this digit equal to 8. The second of the two function digits describes the type of interpretive order.

INTERPRETIVE ORDER LIST WITH FIRST FUNCTION DIGIT b = 8

Let F be the floating decimal number in the floating accumulator and let F(n) be the floating decimal number in location n.

- 80 M Replace F by F F(n).
- 81 n Replace F by -F(n).
- 82 n Transfer control to the right hand interpretive order in n if F≥0.
- 83 n Transfer control to the left hand interpretive order is n if F > 0.
- 84 n Replace F by F + F(n).
- 85 n Replace F by F(n).
- 86 n Replace F by F/F(n).
- 87 n Replace F by F x F(n).
- Replace F by one number read from the input tape punched as sign, any number of decimal digits, sign, and two decimal digits to represent the exponent.

 For example, .8971 x 10 10 would be punched as + 8971 + 10.
- 89 n Punch or print F as a sign, n decimal digits, sign, two decimal digits to represent the exponent and two spaces. This print out may be reread by this routine. After F has been punched or printed, it may not remain in the floating accumulator unmodified. a can take values 2 to 9.
- 8K n Replace F by n if $0 \le n \le 200$.

- 88 n Replace F(n) by F.
- SN m Replace F by |F| |F(n)|.
- \$J n Transfer control to the ordinary Illiac order on the left hand side of n. This used to escape from the floating decimal subroutine.
- SF n Give a carriage return and line feed and start a new block of printing having n columns. This order is only obeyed <u>once</u> for a particular block of printing. At this time, a counter is set up which will cause a carriage return and line feed to occur automatically from then on after every set of numbers that is printed.

INTERPRETIVE ORDERS WITH b # 8.

If the first function digit of an interpretive order is 0, 1, ..., 7, it will refer to one of a set of control registers or b- registers in the floating decimal routine which are similarly numbered. These registers are used for counting the number of passages through loops or cycles and for advancing addresses on successive passages. For this purpose, a particular b- register which may be used in a particular cycle contains two counting indices \mathbf{g}_b and \mathbf{c}_b . These are both intergers in the range 0 to 1023. The index

c_b is used for counting purposes to determine the number of passages through a loop. The index g_b is used for advancing the addresses of interpretive arithmetic orders. Although the interpretive order with first function digit b is not actually altered in the memory, it is obeyed as if g_b is increased by one upon each passage through the cycle. The multiplicity of b- registers allows one to program many loops within loops.

ORDER LIST WITH n # 8

b0 n Replace F by F - F(n+gb).

bl n Replace F by -F(n+gb).

b2 m Replace $\mathbf{g_b}$, $\mathbf{c_b}$ by $\mathbf{g_b} + 1$, $\mathbf{c_b} + 1$.

Then transfer control to the right hand (if b2 m) or left hand interpretive (if b3 m) order is m if $c_b + 1$

b3 n is negative. This transfer is used at the end of a loop.

b4 n Replace F by F + F(n + g_b).

b5 n Replace F by F(n + gb).

b6 n Replace F by F/F(n+gb).

b7 n Replace F by F x $F(n+g_b)$.

bK n Replace g_b, c_b by 0, -n. This interpretive order is used for preparing to cycle around a loop n times.

bS n Replace $F(n + g_h)$ by F.

- bN n Replace F by $|F| |F(n+g_b)|$.
- bL n Replace g_b, c_bby g_b + n, c_b. This interpretive order is used when one wishes to step addresses by some increment other than +1 in a loop. If one places bL 1022 in a loop, the effect will be to decrease addresses by one on each passage. bL 1 will increase them by 2, etc.
- 8L n Replace g_b c_b by n, c_b, where b is the last b-register referred to by some previous interpretive order.

DURATION OF INDIVIDUAL INTERPRETIVE ORDERS

- SM 5 milliseconds + m x (3/2). Where m is the number of 80
- 84 shifts required to convert A, p back to standard form.
- 81 2 milliseconds

85

82 3 milliseconds

83

- 87 5 milliseconds
- 86 6 milliseconds
- 8K 3 milliseconds
- 8S 3 milliseconds
- 8F 3 milliseconds
- 8L 2 milliseconds
- 8J 3 milliseconds

When an interpretive order is preceded by b # 8, add one millisecond to the above times.

when one wishes to repeat a cycle of interpretive orders n times, the interpretive order bK n may be written before entering the loop to set the counter c_b to -n. The interpretive orders in the loop will be obeyed n times if the loop is terminated by b2 or b3 interpretive order to transfer control to the beginning of the loop. This transfer of control interpretive order will be obeyed n-1 times and disobeyed the nth time.

Use of Auxiliary Routines. It is often convenient to be able to leave the floating decimal routine so as to modify interpretive orders or to perform calculations which may be done more effectively outside of floating point. To leave the floating decimal routine one uses an 8J n order. (All standard floating decimal auxiliaries are entered in this way.) To return to floating decimal, one should transfer control to the left hand side of word 29 of the floating decimal routine. The interpretive order following the 8J n order which was last obeyed will then be obeyed and so on. In this way, it is not necessary to plant a link in auxiliary subroutines.

One may, in fact, think of the 8J n order as a subroutine

order. In case any changes are made in the floating decimal accumulator while outside the floating decimal routine, control should be returned to the left hand side of word 19 rather than 29 so that this number may be standardized before re-entry.

Handling of Numbers. Each number is represented in the form A x 10^p where 1 > |A| > 1/10, and 64 > p > -64. In a single register of the memory, the number A is placed in the 33 most significant binary digits $(a_0, a_1, \ldots, a_{32})$ in the same way as an ordinary fraction is placed in the entire register. An accuracy of between 8 and 9 decimal digits is therefore achieved. The exponent p is stored as the interger p + 64 in the 7 least significant digits of the same register. For convenience, the floating decimal accumulator uses two registers 83 and 183 for holding the number A x 10^p . The fraction a/2 is in S3 and the interger p + 64 is in 183.

The only exception to the above rules is the number zero which cannot, of course, be represented as A x 10^p with |A| > 10. For this reason, zero is handled in a special way. It is represented as a number with A = 0 and p = -64. This representation happens to correspond exactly with the ordinary machine representation of zero.

After each arithmetic interpretive order is obeyed, the number in the floating decimal accumulator is standardized, i.e., the number in S3 representing A/2 is adjusted so 1 $|A| \ge 1/10$ and p is changed accordingly. To accomplish this, control is transferred to word 19 in the floating decimal routine after each arithmetic order.

If an interpretive store order is attempted when F has an exponent greater than 63, the machine will stop on the order 34 p at location p, where p is word 72 of the routine.

Important Words in the Routine. Word 2 in the floating decimal routine determines the location of the current interpretive order. When obeying the left hand interpretive order in location n, this word is 50 nF 85 20F and when obeying the right hand interpretive order in location n, it is L5 nF 00 20F. Other words of interest are the b-registers which start at word 158 (for s₀ and c₀) and go to 165 (s₇ and c₇.) These registers hold s_b and c_b in the form 80 s_bF 00 (2048 f c_b) F.

Warning. When the same number is continually added to a sum, such as when an argument is being increased, the error can be quite large, because it is additive over a decade. For example, if we increase 10 to 100 by units, we can get a maximum error of 90×2^{-33} because the errors all have the

same sign. If we increase 10^3 to 10^4 , we can have a maximum error of 9000 x 2^{-33} . This can easily be prevented by writing an auxiliary subroutine to stabilize the fractional part of F, i.e., to replace it by the nearest multiple of say 10^{-7} .

NOMENCLATURE

- D Moles of overhead product
- F Moles of feed
- H Enthalpy of vapor stream
- H or h Enthalpy of pure component as vapor or liquid
- K Equilibrium constant (y/x)
- L Moles of liquid
- M Plates above feed
- M Plates below feed
- Q Heat flux, enthalpy of vapor minus enthalpy of liquid in passing streams
- R Reflux ratio (L/p)
- T Temperature of
- W Moles of vapor
- W Moles of bottom product
- a,b,c,d Constants
- h Enthalpy of liquid stream
- p Partial derivatives used in rectifying section
- q Partial derivatives used in stripping section
- r Ratio of composition of particular component on feed plate as calculated from opposite directions
- x Mole fraction in liquid
- y Mole fraction in vapor

SUBSCRIPTS

- a Rectifying section
- c Condenser
- D Distillate
- f Feed or feed plate
- h Constant of enthalpy polynomial
- i Particular component
- k Constant of equilibrium constant polynomial
- m Plate number in rectifying section, numbered in Arabic numerals from condenser to feed plate
- n Plate number in stripping section, numbered in Roman numerals from reboiler to feed plate
- s Reboiler
- r Stripping section

BIBLIOGRAPHY

- 1) Brown, G. G., and Martin, H. A., <u>Transactions of American</u>

 Institute of Chemical Engineers, 35, 679, (1939).
- 2) Colburn, A. P., <u>Transactions of American Institute of</u>

 <u>Chemical Engineers</u>, <u>37</u>, 355, (1941).
- 3) Colburn, A. P., <u>Transactions of American Institute of Chemical Engineers</u>, 37, 805, (1941).
- 4) Bonnell, J. W., and Cooper, C. M., Chemical Engineering, 57, 121, (1950).
- 5) Edmister, W. C., <u>Transactions of American Institute of</u>
 Chemical Engineers, 42, 15, (1946).
- 6) Fenske, M. R., <u>Industrial Engineering Chemistry</u>, <u>24</u>, 482, (1932).
- 7) Gilliland, E. R., <u>Industrial and Engineering Chemistry</u>, 27, 260, (1935).
- 8) Gilliland, E. R., <u>Industrial and Engineering Chemistry</u>, 32, 918, 1101, and 1220, (1940).
- 9) Harbert, W. D., <u>Industrial Engineering Chemistry</u>, <u>24</u>, 482, (1932).
- 10) Jenny, F. J., <u>Transactions of American Institute of Chemical</u>
 Engineers, 35, 635, (1939).
- 11) Lewis, W. K., and Cope, J. Q., <u>Industrial and Engineering</u>

 Chemistry, 24, 498, (1932).

- 12) Lewis, W. K., and Matheson, G. L., <u>Industrial and</u>
 <u>Engineering Chemistry</u>, 24, 494, (1932).
- 13) McGabe, W. L., and Thiele, E. W., <u>Industrial and</u>
 Engineering Chemistry, 17, 605, (1925).
- 14) Ponchon, Tech. Moderne, 13, 20, (1921).
- 15) Sorel, E., "La Rectification de l'Achol," Paris, 1893.
- 16) Thiele, E. W., and Geddes, R. L., <u>Industrial and</u>
 Engineering Chemistry, 25, 289, (1933).
- 17) Underwood, A. J. U., <u>Journal of Institute of Petroleum</u>
 (London) 32, 614, (1946).
- 8a) Montrose, C.F., and Scheibel, E.G., <u>Industrial and</u>
 Engineering Chemistry, 38, 268, (1946).

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03056 6404