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INTRODUCTION

Temperature Control

In order to design a controller. it is necessary to

know the dynamical characteristics of the system to be con-

trolled. In a thermal.system. this means to know the ten-

perature-time response of the controlled medium. as the heat

supply is varied.

The dynamical characteristics of a thermal system can

be expressed mathematically in terms of a transfer function

in Laplace transform. Such a transfer function - G is used

in the theory of servomechanisms and regulating systems.

(1. 3. 7). For a thermal system. it would contain a certain

number of negative real roots.

If the transfer function of the system is known. a pro-

per ccntroller can be applied and the resulting equation in-

vestigated as to the expected error and stability under dif-

ferent load and reference input variations.

An alternate method. used in temperature control. is to

obtain a graph which represents the temperature—time varia-

tion of the medium as heat is suddenly applied. This graph

is called "process reaction curve" (9). '

In general. all natural processes are capable of repre-

sentation by an exponential curve. If_the transfer fuuation

has more than one root. a so called "transfer lag" would ex-

ist as a result of superimposed echnential functions.



 

 
 

Fig. 1 Process Reaction

' Curve without

Transfer Lac

(1 root)

 

 
 

Fig. 2 Process Reaction

Curve with Transfer

Lag (more than one

root)

A large transfer lag makes the control problem difficult.

whereas it is quite simple if no transfer lag exists.

Therefore. to decide what type what type of controller

should be used. the transfer function or process reaction

curve should be determined.

transfer function is known.

The latter may be plotted if the



METHODS FOR OBTAINING TRANSFER FUNCTIONS

To obtain a transfer function or process reaction curve

for a thermal process. an experiment may be performed on the

system. thus determining the reaction curve by actual measure-

ments of the temperature at certain time intervals.

Sometimes. however. this can not be done and other mes

thods have to be employed.

If the thermal characteristics of the materials in the

system as well as the dimensions and operating conditions

are known. an analytical solution may be attempted. Thermal

conductivities as well as specific heats would have to be cone

sidered since a transient solution is required. The calcula-

tion is extremely involved. however. and has been developed

for only very simple cases.

Besides the mathematical-analytical method. three other

methods of analysis are known.

1). A graphical method. first devised by Schmidt (24).

It is suitable only for very simple cases and only after mak-

ing a number of simplifying assumptions. Even then. it's

use is rather cumbersome.

2). A numerical method. known as Southwell's relaxation

method and applied to heat flow problems by Emmons (11).

The method is easy to learnzand - within its range of

applicability - is very useful. It becomes quite involved

in case of changing thermal properties and if applied to

cyclic heating.

3). An electric analogy method. which is very versatile
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and subject to fewer limitations than the other methods. It's

main drawback is its' rather expensive equipment (available

at the Department of Mechanical Engineering. Columbia Univer-

sity).



THE ELECTRIC ANALOGY METHOD

The method has been first devised by Beuken (2). and in-

troduced into the United States by Paschkis (20. 21. 22).

The method rests on the fundamental similarity between

the flow of heat within a rigid body and that of a charge in

a noninductive electric circuit. Conservation of the scalar

quantity. charge. corresponds to conservation of heat: The

scalar point function. electric potential. corresponds to the

scalar point function. temperature. The concept "electric

capacity of a conductor". corresponds to the concept "ther-

mal capacity of a portion of mass".

There is a direct identity in form between the defining

equations for thermal and electrical resistance and thermal

and electrical capacity.

The temperature distribution in a body. at any time. is

given by Fourier's general law of heat conduction. which is

a partial differential equation derived by the usual methods

considering an infinitely small cube. Schlack (23. p. 29).

It is:

so K a___e__ 3:9 24s)

31‘ pc ‘bx‘ By‘ ‘32“

where

temperature at any point given by the coordinates x.

’03

time

coefficient of thermal conductivity

specific heat of unit mass

‘
a
n
k
x

C
D

mass per unit volume



-5-

The distribution of conductivity and specific heat in space

is assumed to be uniform and continuous.

The solutions of this equation are very complex. They

.may be found in books on advanced calculus and heat transfer.

Carslaw (5) in his work. which probably is the most compre-

hensive development of the analytical approach. gives three-

dimensional solutions for rectangular parallelepiped. cylin-

der. sphere and cone. Even after the solutions of this equa-

tion have been obtained. it is necessary to be extremely

careful in selecting the proper solution to fit the condi-

tions of the problem.

It is possible. however. to represent a three-dimension-

al problem by a combination of one-dimensional systems. Such

a method is indicated by Paschkis (20) where the thermal-elec-

trical analogy is developed on one-dimensional basis which

then could be used to represent two or three-dimensional sys-

tems if necessary.

For one-dimensional heat flow the Fourier's equation re-

duces to:

‘36 K ‘3‘9

32‘ /°C 'BX‘

 

One dimensional heat flow would take place. for instance.

along an insulated rod or across an infinite plate.

The analogous electrical system would be a conductor

with resistance and capacitance uniformly distributed along

it's length and having negligible leakage and inductance.
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Fig. 3 Distributed R-C Line

The differential equation describing the potential at

various points of the conductor at different times is:

av_ / 2w
~.*

31‘ RC 'ax‘

 

where:

V potential at distance x and time t

R = distributed resistance ohms/unit length

C : distributed capacitance farads/unit length

Comparing the two equations. it is recognized that if the ten-

perature is considered to be analogous to potential. the qual-

__,tityP/: is analogous to the quantity --’-- in the 'electrical

'RC

 

system.

The analogous quantity for heat flow.$g. can be estab-

lished considering the defining equation for heat conductivi-

ty.

The heat flow across a unit surface per unit time at any

point x is:



-8-

where:

thermal conductivityK

.256; " t t d1 t t i t2" - empera ure gra en a pon x
 

The current density at a point x in a conductor is:

 

-- 3V

1. -- - 6 ——
“ax

where:

6 : specific conductivity of the material

3V ’ otential radiant at oint I

2x " P 3 P

For one dimensional systems where Z- is uniform and the dis-

tribution of 61s uniform and continuous

 

[sun—LEV

’R ex

I

If K is analogous to '27- then heat flow per unit time. (3'. is

the analogous quantity to current i.

K D
The antit -- was analo cue to—— . Therefore the

analogue for capacitance per unit distance C would be the

specific heat per unit volume PC.

The analogous quantities thus established are given be-

low:

V - potential volts 9- temperatu're [0F ]

I - current amps. q- heat flow [-54%]

_ _ volume 1w
C Capacitance farads/meterfc specific heat [fl

G - conductance mhos/meter K- heat conductivity

R - resistance ohms/meter -'-- inverse conductivity

K

GL" load conductance mhos h- surface coefficient 1' 3f“ J

13h“ f

)7“ °F /)r

of heat transfer ff“. 0;»,

ohms _l__ inverse surface
R - tL load resis ance coefficient
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Now an electrical analogue can be drawn for the one-dimen-

sional heat flow problem.

For the case of the insulated rod (Fig. 4)

   

     

, fl 1

. \ s ‘- Q , ,’ ~

--“ ’8», -‘_-‘\ -Q‘A“\

 

./“‘ .z ;    
5 7‘

A 6941‘ («1‘90

¢§EWOH1- ’Kinob ‘: c. <2un;y

fear

Fig. 4 Insulated Rod with Outflow Conductance

the electrical analogue would be an R C cable terminated in

a load resistance (Fig. 5).

T T T T 791...;

Fig. 5 R C Line Terminated in RL

Two essentially different cases will be considered:

l).The temperature of the heated end of the rod is a

known function of time.

2).The heat input at the heated end of the rod is a

known function of time.

The problem in both cases would be to find the tempera-

ture of the far end as a function of time.

In the first case in the electrical analogue. a poten-

tial V(t) should be applied and the potential across the
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load resistance measured. For the second problem. a current

I(t) would have to be applied and the potential on the load

resistance measured.

The second case is of much greater importance in con-

trol problems wherever electrical heating is used because the

heat input would be known. It could be directly derived from

the power input in the heating elements.

To obtain a process reaction curve. which gives the tan-

perature response.at a certain point to a sudden application

of heat. from the electrical analogue. an unit step current

should be applied on the input terminals and the potential

across the load resistance measured and plotted versus time.

If it is preferable to use voltage as the input function.

an alternative method. as suggested by Brown (3). may be used.

This method utilizes the dual of a R G cable.

. I 1 a o No I o o ' I o 0'; I o o 1 b o'c’u. o I'I'IVI 0 mm o o'o’o'o o" a" . I

.1- 0 e ‘. "J 4/“!

 

Fig. 6 Dual for R C Cable

The unit step heat input in this case would be analogous

to unit step voltage on the input terminals. and the tempera-

ture at the outer surface to the current through load induc-

tance.
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This way Brown (3) avoids the necessity to apply constant

current. It is of advantage if the problem is solved analy-

tically. as Brown (3) does. because almost all of the solu-

tions in electrical circuit theory are on this basis. If a

laboratory model is to be used. however. this method seems to

have thedisadvantage. that inductances usually would not be

available with such accuracies as capacitors. and a certain

resistance in them would not be avoidable.

It is proposed. therefore. to use the R 0 analogue and

apply a unit step current.

Paschkis (20) describes such a constant current device

used in the permanent electric model at Columbia University.

This device provides. by means of electron tubes. any cur-

rent value between O.lmA and SOmA which can be set and main-

tained constant throughout the experiment. regardless of ap-

parent changes in resistance resulting from the loading of

the condensers. The voltages are measured by recording milli-

voltmeters fed by two stage amplifiers. This way the current

drawn from the circuit by the amplifier is less than 10"9

amperes. which may be neglected as compared with the leakage

currents through the insulation and other parts of the model.



REPLACING DISTRIBUTED PARAMETERS

This far the distributed one-dimensional heat flow has

been represented by a distributed electrical system - a R C

cable.

For an actual problem in laboratory. it would be diffi-

cult to construct a cable for each problem. The parameters

could not be easily varied and interconnections to represent

a two or three dimensional heat flow could not be readily made.

The natural suggestion would be to replace the distribu-

ted R C line by a cascade of lumped R C circuits. This is

what actually is done in all the models described in litera-

ture (10. 12. 18. 20. 21. 22. 26).

TTTTITITTTT

T T T

Fig. 7 Distributed and Lumped R C Circuits

The question may arise as to how many lumped sections

should be used to represent a certain distributed system.

Paschkis (20) states that the smaller the "lumps" the
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the more perfect will be the representation of the actual ca-

ble by lumped cable and that a feasible compromise is usually

possible in practice. In the experiment described (20) the

analogue representing pipe insulation. is divided in five sec-

tions. so chosen as to conform to the positions of the there

mocouples in an experiment performed on the same insulation

by Perry and Berggren at the University of California

McCann (18) indicates that the size of elements into which

the distributed system should be divided would be governed by

the configuration of the body. boundary conditions. and the

required accuracy of the solution.

Tribus (26) investigating the ice protection problem di-

vides the guide vane of an airplane in eight sections and the

propeller in five sections. and uses a lumped R C network for

each section. interconnecting the separate networks in such a

way as to represent a two-dimensional heat flow. This work is

interesting because he uses non-linear networks to represent

parameters that are not constant but varies with temperature.

Such as the convection from an exposed surface.

Eckman (10) is investigating automatic control problems

by electrical analogy and using three R C networks in cascade

to represent a multiple capacity process. Each capacitor h:

shunted by a resistor to represent the demand.

 

 

 

Fig. 8 Lumped R C Network with Resistors Representing Demand
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An equivalent network is used to represent the thermocouple

and well.

Hornfeck (17) states that a thin thermometer socket could

be represented by a single lumped R C section. whereas for a

heavy socket it would not be permissible. He suggests that

two sections be used. The differential equation of such a sys-

tem is easily handled analytically. and according to the author

(17). gives reasonably good correlation between the experiment-

al and calculated response.

(In the discussion of the article (17) Paschkis questions

the validity of using only two sections and indicates that it

probably would be necessary to use several sections for the

protecting socket as well as for the internal element. Since

the resulting equations would not be manageable mathematically.

the electric-analOgy method (20) is suggested.

In the authors closure (17) Hornfeck states that if a di-

mensionless parameter m (ratio of the socket film resistance

to the internal resistance) is either much smaller or much

larger than unity. the response reduces to the simple exponen-

tial function.

It should be noted here that the circuit used to repre-

sent the thermometer is essentially different from that used

for heat conduction through a wall.

 
 

. 4? 9.. e

I 9

«919 T4 I62 I T T
Fig. 9 R 0 Circuit to Re- Fig.10 R C Circuit to Represent

present Heat Flow through Heat Flow to a Wall with Out-

a Thick Thermometer Wall flow Resistance
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Ahrdent (1) indicates that the analysis of a thermal sys-

tem.may be simplified assuming that certain elements are es-

sentially either resistive or capacitative, and that a distri-

buted R 0 system, the determinantal equation of which would

have infinite number of poles on the negative real axis. could

be represented by a lumped system neglecting the poles at real

high values of S. because the value of residues at these high

values of S diminishes.

Eyres (12) have solved a heat conduction problem replac-

ing the distributed system by six lumped sections. and solv—

ing the resulting differential equation on a differential an-

alyzer. The same problem was solved analytically for the db-

tributed system and the maximum deviation of the two solutions

found to be 0.4%. Since six lumped sections result in a

differential equation of the sixth order which requires quite

an elaborate set up on the differential analyzer and rather

long time to carry the solution through, another solution was

performed using only three lumped sections. The increase in

the maximum error was slight (from 0.4% to 1.5%). It was con-

cluded that probably using only two lumped sections. the ernor

would be within acceptable limits. It was indicated that the

error is approximately proportional to the inverse of the

square of number of sections.



STATEMENT OF PROBLEM

The question may arise. whether it would be possible

to obtain a criteria for the different factors that govern

the error if certain numbers of lumped sections are used to

represent a distributed system.

Since. using the already established analogies. a con-

version from an electrical to a thermal system can be readi-

ly made. it is pr0posed to attempt a solution for the elec-

trical circuit. because there is not a true lumped parame-

ter in a thermal system. Taking the simple example of one

dimensional heat flow in an insulated rod for the case more

important to control problems. where the heat input is varied.

the problem in the electrical system.may be stated as follows:

«(the A) e

I“ T TITTT T a“.

Fig. 11 The Distributed R C Line

72, 7?. 1’:

   

 

  

Q—I— 5T

Fig. 12 The Lumped Line

  : E {odd

   

If a line of finite length. having distributed resis-

tance and capacitance and terminated in a load resistance.

is to be replaced by a number of equal lumped sections. such

that the total resistance and capacitance of the lumped sec-

tions is the same as the total resistance and capacitance of

the line. what is the smallest number of sections that diould

be used to have the voltage response on the output terminals
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of the lumped line to a unit step current input within a

prescribed error of that of the distributed line. Stated in

mathematical terms:

Rload (d) " Blend (1)

Bline (C1) Rline ((')= (n ' 1)Rs

‘Cline (d) : Cline (I) g (n ' 2)08

R81 3 R82 2 R3(n - 1)

Cal = Caz g Cs(n - 2)

For 1(t) = u(t) the response for the distributed line is

edm and for the lumped line 6" (t). Find nmin such that

64(1)- 9M0 é J Where the subscript 0/ designates

the distributed line; I’ - the lumped line; 3 - parameter

value of one section; n - the number of nodes; (n-l) the

number of equal resistors; (n - 2) the number of equal ca-

pacitors in the lumped line; cf - the maximum allowable er-

ror.

The unit step input is chosen because it is very common

in discontinuous control problems and response to any other

function can be derived from the unit step response. apply-

ing the principle of superposition. (L4)



SOLUTION FOR CHARACTERISTIC TERMINATION

A similar problem is discussed by Guillemin (16). He

states the problem as follows: if an artificial line repre-

senting the long line is to be constructed. one should be able

to determine the number of sections and the parameter values

of each for a given finite length of line. frequency range.

and maximum allowable error. Guillemin shows that such an

artificial line is physically realizable and that if the num-

ber of structures becomes infinite. the artificial line heads

to the uniform line itself. An expression for the decimal

error in transfer impedance and propagation function is de-

J, ”33v 2';- (»'-)‘ (12 +JLwXG*J'C“')
These errors increase with frequency being smallest at zero

veloped.

frequency. while for a given frequency they increase as the

square of the line length and decrease as the reciprocal of

the square of the number of cascaded sections. When the maxi-

.mum errors in ZT and are specified of the same magnitude.

than the error of ZT will govern the design.

The expression is derived on a steady state basis for a

given frequency range. It could be extended to a transiait

case if a unit step function is applied by means of Fourier's

integral.

Unfortunately. however. it can not be used for the pro-

blem at hand. Guillemin does not consider the terminal con-

ditions which. it is believed. would have considerable effect

upon the error if the line is terminated in an impedance much

different from the characteristic impedance.
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In communication networks it would not usually be the

case. A thermal analogue. however. would have to be termina-

ted in various impedances depending upon the convection and

radiation conditions on the surface.



INTRODUCTION OF BITTERENT TERMINAL CONDITIONS

General

To investigate the problem for different terminal condi-

tions a method is proposed where the transfer admittance for

the R C cable terminated in a pure resistance is found and

compared to the transfer admittance of m-section lumped net-

work terminated in the same resistance. If the two transfer

admittances could be expressed in essentially the same form.

conditions probably could be derived under Which the response

of the two systems would not differ by more than the allowable

error.

The R C lines under transient conditions have been treat-

ed originally by Lord Kelvin in order to determine the prac-

ticability of a transoceanic cable. Lord Kelvin used the

classical methods of solving partial differential equations.

A treatment of the same problem by transformation calculus a;

given by Carson (6) and Cohen (6).

Cohen (a) first gives a solution for an infinite line and

a line terminated in an open or short circuit. For the pro-

blem of different termination the author states that the pro-

blem is by far more difficult and that it is only in special

cases that it is at all possible to obtain a completely de-

veloped solution. A solution for a special case where a

general RLCG line is terminated in a coil with time constant

L/R,is given. The solution is in terms of propagation con-

stants. Goldman (15) states. however. that there is no dis-

tinct velocity of propagation along the R C cable and that

the signals are said to be "diffused" rather than "propagated"
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along the line. It is doubtful. therefore. if the solution

for a "propagating" RLCG line could be applied to a R C cable.

Carson (6) makes the statement that if the line is clased

by arbitrary impedances instead of open or short circuits. the

case is quite different. and the location of roots becomes. ex-

cept for simple impedances. and then only in the case of non-

inductive cable. practically impossible. While. therefore. the

expansion theorem solution can be formally written down. its

actual numerical evaluation is a practical impossibility. ex-

cept in a few cases. For this reason. the althor would not

consider it further in his work.

From Carson's statement. one could conclude that While a

general solution would be impractical. a solution for the spe-

cial case - R C cable terminated in a pure resistance could be

possible. Unfortunately. such a solution is not given in Car-

son's work.



SOLUTION FOR THE DISTRIBUTED LINE

Investigating further it was found that a solution for

the differential equation that describes the problem at hand

is given without proof by Carslaw (5. pg. 104) and an indica-

tion of the method it is derived by Newman (19). a formal

proof is not given there. It is solved by classical methods

and it was shown by Dr. Frame (13) that the functions involved

result from the boundary conditions of the problem.

The differential equation is written for a problem in

heat conduction with the same boundary conditions as these in

the rod. for which the electrical analogue was drawn. It is

obvious. therefore. that the solution applies equally well to

the R C cable with terminal resistance and unit step mirrent

input.

In Newman's (19) work it is given in a dimensionless

form and therefore readily rewritten for the R 0 cable.

The differential equation. boundary coniitions and solu-

is given below. A formal proof. however. shall not be given.

because it is not essential for the problem.

The Problem:

5!.

 

 

 

, p a ,1

_px

 

Fig. 13 The Insulated Rod

A rod of homogenous material is subjected to a heat in-

put at constant rate into one face I = 0. while the other
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face I = a is exposed to a fluid medium. The length of the

rod is a. It is assumed that the heat travels only in the

x direction. The surface coefficient of heat transfer h.

may be considered to be a function of the nature of the fluid

and its velocity. but this analysis does not permit considera-

tion of its variation with temperature.

Find the temperature-time relationship at the surface

I = a.

The following quantities are used in the develOpment:

 

x : distance in the x direction ?”1

t = time :fir]

K : thermal conductivity of the solid Eggfif3%%

o : specific heat of the solid 4%;5377]

P: density of the solid [—%—1

k : thermal diffusivity )égr -‘€$;—-

h = surface coefficient of heat transfer Pigfiggrj

q: constant heating rate at x = 0 [7%]

9: temperature
[or]

From these certain dimensionless quantities are formed:

: %2—. a modified Nusselt Number

= E; a dimensionless quantity involving time

: EEK a dimensionless temperature response

The differential equation describing the heat flow is

the Fourier's equation in one dimension.

 

beak'aze

f 'ax‘
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The boundary conditions.

1) The rate of heat flow across the surface x = 0

2569
s-/K’ ____.

9° (8x23

2) The rate of heat flow at the surface x I a

9a=I58q'-K(§f)a

3) The initial temperature of the solid is uniform and e-

 

qual to the temperature of the fluid (assumed zero here as re-

ference). when t = 0 e a 0

4) After a long time steady state will be reached and the

temperature gradient through the rod will be constant

whent=°<> 4,

ea‘ 5

and Egg—2—

%x K

5) The total gain in heat content by the rod at any time

must equal the difference between the total heat input up to

faecpdx - crt- J29... 0/9

An equation satisfying all of these conditions is:

that time.

 

94 1 2 gp

Z€;,/_H§L-f—£—--£Z figfi:wna¢ _"C°5oanl%)4é16n

a Na '3’, [5: o m. (Ii/V9] d

03/

where Bn is defined by #3

cofflarm
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Since the temperature at x = a is of primary interest.

..3.1?

 

[ 3 —-—l —2 fl”; * ”“2 “ COSfln ‘6

a Na [8031:301'm.(14m9]

ha]

The equation can be rewritten for the R C cable if cor-

responding dimensionless quantities are employed.

for Nu R1139 = N

 

 

 

 

31—033

for P HIinzcline = '7%? PT’8 time constant of the cable)

for E ifRf?;e : YE} °1Rline (Y : transfer admittance)

_- e(

I“ TT TT TT 7.0,.

Fig. 14 Distributed R 0 Line

Rline = total resistance of the line

Cline = total capacitance of the line

then

x 3 f’

I g 7E7beu¥_ fiqu+4Afz ”(g-f%"ir
 

—‘ COS

Y),’Pa" ’30“ 2 fla‘INfiv‘IV]

.

k
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The quantity:

a? + N“

a.“ [at . ”(1+ny “5/6”

is a pure number and function of %%%3% = N only. It can be

computed for different values of N up to any desired n if

A?
tables for the roots of 601288? N are available.

 

Newman (19) and Carslaw (5) give sich tables for Bn

(n = 1 to n = 7) and for values of N from 0.001 to 100. If

the values for Bn (n1) 7) or different N's are desired they

can be found graphically as shown by Cohen (8. pg. 88) (see

graph 1) or they could be calculated to a greater accuracy

by approximation methods as indicated by Dr. Frame (13).

Actually in the regions where N» O. or N-u-oo and

the functions: sin x. cos 1. tan 1, cot x. may be assumed e-

qual to the arguments. the calculation of Bn and the total

numerical coefficient becomes quite simple as it will be shown

later.

Once the numerical values for

c fl”2+/y‘ ~— COS ,2
l4!) 2 flnz[£nz*N(th-7 fl

are computed. the dimensionless equation for the transfer ad—

 

mittance assumes the form:

1

I g 2231!- “fl: “lg: ’5" We: ‘1'"

X» ”(in Q0“ A’6 T +Az€ " A56 4’.-
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SOLUTION FOR THE LUMPED LINE

The next stqp would be to derive an expression for the

lumped line of m elements and to investigate under what conditions

it could be considered equivalent to the equation d? the distfl.-

buted line. within an allowable error.

if ’72 If ’7? ‘77 ’733 L2? 1:? j?-

0" TC TC I

Fig. 15 The Lumped R C Network

Consider a network having n nodes. the mutual resistance be-

tween each node being R. and the admittance of each node except

the first and last

nn

The admittances of the first and last nodes would be:

: 1 : R RY1.1 .R. and Yum fi‘é-Ififig

The total resistance of the line would be

Rline ' R(n-l)

and the total capacitance

Cline : C(n-Z)

The mutual and node admittances can be written in terms of

. N. and n only. m.nce N = RlineC

“load

Rline’ line
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Replacing

R by Rline

n-

C by Cline

(n-2)

and R / Bload by Ni (n-l)

R . Rload Rline

The determinant for the network can be written:



el e2 es 1 e(n-2) _ e(n-l) . en

3

l n-l -.2:_ 1

Rline R1133

2 n-l 2 n-l C _ n-l

Rline Rline - line I

'
1

5 _ n-l 2(n-l)/C¢ 3

32(n-l)/01£ - 2:;
n-2

gRline n- line

: - -1 1 _

n-l ‘ 9 i: %;£EQLL%%ES%E. %%"

 

 
n 1 - 2:1 N / (n-ll

line - Rline

Dividing each column bynn1

Rline

e1 e2 e3 e

 

 

 

  

_ n-2 n-1 en

!“‘ 1' 1 ’ 1

1 1 i -1 ;

-1 ‘ -

2 {(n-2)(n-l)

n 5

-1

(£1 3“ ”In-21ml)
line .

-3 . 2,1 Tp A -1

A (n-2)(h-l)

3* . . f

2 2-1 g2¥(n-2)(n-I)

E i. -1 .N / (rm-m
‘1 E‘ i : (n—l)

1 .i 3
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If the determinant is opened. it would result in a poly-

nomial inTp of the (n-2) order. the coefficients consisting

of combinations of Rline and N.

If it is solved for en the numerator would be

(his-13 .‘1(-1)3n'l)(-1)3n'13-= {$13.1

Rlin Eli

n

it could be cancelled by the factor £2}. in the denominator

lin

1 in the denominator.

ine

n-

].anng fi-f-

The coefficient of the highest power in'L'P should be made

unity and the polinomial factored in its' roots.

If a unit step function is applied. the salution for the

dimensionless quantity 1 would be the following:

Ytr'Rline

 

-l

I I

Yeahs-(”'9 K, :5-“__.)($__9_<_z)(5_95,)” .(5_ol__»__.2.

Where K

 

l is the coefficient at the highest power of Z79 .

From physical reasoning one can conclude that for any

finite values of Rload (”ghoqeao) . the roots will be all

negative and real and therefore the solution

1‘
-04».1-i:

 

t

-,Ae"°";+Ae “ff—- -é

Y;P(lll: A0 ”2

The first term “A0: is the steady state term and can be

easily determined.

 h co A —— s

W en 2’. Y4; 'plinc A0



 

Fig. 16 Steady State Circuit

- - R
e - i R ' a - load : 1

n load ) o H...— -

line N

The steady state coefficient is the same as that for the

distributed line. which should be expected.

The determination of the coefficients at rp —-/(,;/|2min

general terms is difficult for a determinant of a rank higher

than 4. Even after they are found. a factoring in general

terms would be impossible for any equation of higher order

than two. It was done for a determinant of the 4th rank which

results in a quadratic equation. Solving this equation in

general terms the square root can not be eliminated. which

makes the general solution cumbersome and relationships are

not easily recognized.

A simple s31ution in general terms can be obtained. how-

ever. for a 3rd rank determinant.



SOLUTION FOR ONE LIDEPED SECTION

.A. Solution by Laplace Transform

R -
‘line - N

E(add t‘loud

 

 

Fig. 17 One Lumped Section
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The determinant: lene _1 Zflflg _1

2

-1 702;.

.e... C - 2

‘ 5(51’-———/:2 +£1-

-I

e2(/Y+2) / i

c Q” f 2”“:

“ SG+IN+2

.. 2” 1.
__l ' =__[_______/__€ 2+” 1-

‘65‘7QZbe' ‘ly' [Y



CONDITIONS FOR REPLACEMENT BY ONE SECTION

The result derived is very useful to determine the con-

ditions when a distributed line can be replaced by a single

lumped section.

Returning to the equation for a distributed line.

J _ ,_I___ -—/9,-1Q:=.—t- fl};

VQ+’13».. ’Y qufa T-+'/qz£5 /9<5 T+I”

H-roc

and comparing it with the equation for a single lumped section.

5210’ 1‘

l I / “"'"""
;-______ 21-” T-

Y1e.- ” ”6

it is recognized that the two equations would be equivalent if

 

,2“;- cmo/ , =2”,

5“within the allowable error. and that all higher terms in the

distributed line equation:

‘AL" fa, H. cwna/ /Q;: #392

-are negligible as compared to A12and El.

Al can be calculated for different values of N from the

expression:

 fi’ +‘fyz- (as:

4Z a[amen/)1 ”6’

~ ' -1 1 - ' 1' - -
The qlantity N(A1 N)fi0 -J;‘.may be called the 70 error in first

coefficient. It has been calculated for different values of

N and are given in table 1 and graph 2.

For N = 0.01. is less than 0.0001%.

K.
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24” too

in first eXponent. It. too. has been calculated for different

2N

The quantity (Bf—2N)£Lsé;may be called the 95 error

I

values of N and are given in table 2 and graph 2.

It is found that both errors cf,“ and 59‘ decrease for

decreasing N.

That the higher coefficients will be negligible if the

error in the first coefficient. (Sq . is within acceptable

limits can be shown if the instant t = 0 is considered.

For this condition all the exponentials become unity and the

sum of all coefficients must beequal to l.

N

Alfxz/ag .1 An71m4-Ili-ifn-9-oo

and since the coefficients are periodically changing sign

and steadily decreasing in absolute value

(All #12) #333 flan]

none of the higher coefficients (n22) can be greater than

the difference (Al-%) which was not greater than the allow-

able error.

The exponents at the higher coefficients would have ne-

gligible effect because the coefficients themselves are ne-

gligible.

From the data obtained the concluSion may be drawn that

if the maximum error is to be.z 1.6%. for instance. any $.3-

tributed system having N‘< 0.1 can be represented by a single

lumped section if a unit step function is applied.



Table 1

VALUES 0? THE % ERRORS IN THE FIRST COEFFICIENTS

N <5};7% N iswg 76

100 27.685 0.9 11.066

80 27.340 0.8 10.168

60 27.300 0.7 9.171

40 27.240 0.6 8.121

30 27.079 0.5 7.004

20 27.046 0.4 5.814

15 26.919 0.3 4.496

10 26.162 0.2 3.128

9 25.950 0.1 1.581

8 25.715 0.08 1.305

7 25.331 0.06 0.997

6 24.755 0.04 0.620

5 24.047 0.02 0.246

4 22.867 0.01 0.007

3 20.998 0.008 0.002

2 17.836 0.006 0.0014

1.5 15.387 0.004 0.001

1 11.972 0.002 0.0001

0.001 0.0001



100

zég’n

1.96078

1.87500

1.76470

1.66666

1.42857

1.00000

0.66666

0.40000

0.18181

0.09524

0.05825

0.00995

0.00599

0.00099

Table 2

% ERRORS IN THE FIRST

B12

2.4186

2.5110

2.1694

2.0418

1.7261

1.1597

0.7401

0.4269

0.1873

0.0968

0.0588

0.01

0.004

0.001

EXFOI‘CENTS

Se, 94

23.348

23.253

22.933

22.508

20.827

15.970

9.930

~6.970

-3.019

1.650

0.944

0.502

0.250

0.050

Je,
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EKAMFLES IN HEAT TRANSRER

In a heat conduction problem Nu would be less than 0.1

for a good conductor. with slight thickness and poor convec-

tion or radiation from the surface.

An example shall illustrate this.

Heat is suddenly applied

‘_‘_"’-_—W to one side of 1" thick

K-226' )5“ 5 85 infinite copper plate

gap/7‘ 3f“ (K I 226). The outer

O 1 o

""/"' F ff'o’t”, surface is exposed to

air and has a total sur-  
iface transfer coefficient

h = 3.85 (an average value taken from an actual problem).

Find the dimensionless number Nu.

‘ hoa - 5085 -

Nu . ”K'— - T271226 - 0.001415

The number Nu thus found is about six times smaller than

0.01 for which the errors were 6K1. 0.000192 and ($9.: 0.5%.

Obviously an analogue having only one lumped section can be

used for this case.

The conditions are quite different. however. for insulat-

ing materials and thick walls. A one foot thick cork wall

having the same surface conditions would give a value for

Nu : 154 and could not be represented by a single lumped sec-

tion.



CONDITIONS FOR REPLACEKENT BY "M" SECTIONS

General

To investigate the cases where more than one section is

necessary. the logical method would be to solve the determi-

nant for n's higher than three and to compare the coefficients

and exponents. As it was indicated previously. such solutions

are extremely complicated for higher ranks and would not yield

manageable coefficients in general terms. It would be possi-

ble. however. to solve for all numerical values of n's and

N's of interest. For a wide range of values this would be a

tremendous task.

Some other properties of the transient solution of the

lumped network. however. can help to solve the problem.



EQUALITY 0F RESIDUES

In the transient solution of the distributed system.

I fi=_'___ ZOOA €213.11;-

‘Qr'zabad' [Y n
n-/

all the «Jefficients An should add up to %

fir»

 

A1{A2{As/ooo {An/...9%ifn 0°

If the difference

at»:

7”;— 24:7;- «£1.
02/

is called % error in m coefficients then such a smallest num-

ber m could be found for which the error kais equal or less

than the allowable error.

The coefficients An(n)m) would then have negligible

effect for the same reason as in one section solution. and

‘the distributed system could be truly eXpressed by a finite

trumber (m) of coefficients.

The errorgxncan be computed for any desired m. and if it

is prescribed a "necessary number of terms" can be found whidi

‘Would truly represent the distributed line.

A transient solution for a lumped network having m ca-

pacitors (rank of determinant = m/2) would have a solution

or exactly the same form and with the same number of terms.

If the roots 31. 32. S3 ... are arranged in increasing

order 81( 82(85 ...(Sn_1{sn, the residues or coefficients

Would be decreasing in absolute value and periodicd.ly chang-

ing sign. if all the roots are positive (this was assumed by

Physical reasoning).
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The steady state term for both solutions is the same

and the m coefficients in both solutions should add up to

the same value - the steady state term.

Since for the two solutions

as»; | fl=ln z .__’_ J . /oo

:EE:/Qn "jaf C’"°{ :EE:4/L7 “’ [y 4. ’0»

he] 03/

and 1415142014.) ~~>Ial

it can be said that for each corresponding coefficient

An distributed "An lumpedé J": 100

Thereforegkrepresents the maximum error in residues for m

In

terms.

The error (grhas been computed for several values of N

In

and m and are given in table 3 and graph 3.

From these tables a necessary number of sections can be

selected for a given maximum error¢£;and N value.

a»



Table 3

imnnm % ERRORS IN RESIDUES FOR 14 SECTIOLJS

N/m 100 10 5 l

1 27.685 26.162 24.047 11.972 1.5919

2 14.631 13.153 10.352 3.241 0.3739

3 10.879 7.893 5.522 1.420 0.1288

4 7.800 5.193 3.242 0.748 0.0952

5 6.795 3.627 2.196 0.491 0.0312

6 5.800 2.643 1.459 0.308 0.0200

7 5.200 1.993 1.191 0.249 0.0064
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EQUALITY 0F ROOTS

Even if the coefficients or residues can be considered

equivalent for the two systems. it is not obvious that the

exponents or roots would be the same.

Since the roots 81. 82. 83 ... Sm in the lumped network

equation can not be calculated in general terms for higher

values of n and a direct comparison is not possible. an al-

ternative method of investigation is proposed.

In the transient solution for a lumped R-C network hav-

ing m different. negative and real roots. certain relations

between the roots and residues must hold.

The residues for a transform:

 

[4—— K ‘7
.S(S+c‘J(3+aggK3+oLJ).u.

(5+1xLQ)

are determined as follows:
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K can be eliminated if it is realized that in the dimension-

less system used

 

s - 1

“o n

Then the first coefficient A1 is given by

I. = .... «.04. «I» ~41.
(“I-«1)(dI-d3)... (“I-d”)

where 94, [dz/“3 0‘” are the exponents at the

coefficients Al. A2. A3...Am.

If this same relation would hold for the distributed sys-

tem with n = m (m terms considered) to a desired accuracy.

then since the coefficients have already been considered equi-

valent. it could be said that the exponents are equivalent

too.

The error

"‘ 0‘1“! "‘°<’fi h)_|_

J a me Hi ‘(ewa-olz)Z°‘I’°‘!J"'(°"-°"”) . ”‘— [o/O]

rm

L A' ' J  

has beam computed for different values of m and N and are

given in table 4 and graph 4.

It is recognized that the two errorsgxmand 663.81% es-

sentially the same for the same values of m and N. From the

tables the necessary number of sections can be selected if

the error is specified. or for a given number of sections the

error determined.

For cases where N90 or Nooo certain simplifications

can be made and an: analytical relation between the number of

sections and error found.
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Table 4 043.“! '7 .1

f AI ..(otp-cta 281’“1)"'6“-d”) H

2 Error (Sr = 100

m A,

100 10 5 1 0.1

27.685 26.162 24.047 11.972 1.581

11.895 10.797 9.818 4.642 .577

8.225 7.218 6.455 2.905 .548

6.311 5.586 4.755 2.111 .246

5.141 4.280 5.761 1.657 .189

4.551 5.545 5.109 1.564 .152

3.782 5.022 2.649 1.161 .127
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SIMPLIFIED CASE WHERE N-yO

For the case N-t'O in the defining relation for #3

I3 *mfl" ” flew ...,g =/9 ,- 507979

fins-r7 mow) case-1 I—"xvz 69””

The coefficient An now can be expressed in terms of N only.

The first coefficient

. _ N N2

A1 1' ZWFWJWZ

for N—fi-O the following is true:

1 ,1 N-*1;N2<< N; (1 - N2)—r1

For the limiting case, the expression becomes

Al—y fiqfi- as N’O

as should be expected.

These cases NA-O are the ones where the distributed sys-

tem can be represented by a single lumped section.



SIMPLIFIED Oil-3E WHERE N—y-oe

For the case where N-s>c>othe following assumptions may

be made

I", 25;;— =/y / for ”—v- 6‘9 coflg —a- (—E-_fl)

/

The first coefficient Al can now be written in terms of N

only

 

I”

17.11. 1 .1"—
ZI-r/Y +N ] 2 1+”1

,‘Z

A 23-H”) Kin/+17))2+”(’+I9:1

forJN-9-=‘= l { N4>N

 

 

And for the limiting case

Ala-3A.! as N—, M

yr 11

It can be investigated now if the value of Al thus found

for the distributed system fulfills the condition for lumped

system.

A"

at“: 84 ... °<m

(N,-—o<1)(o<, 0(3)," 6,9..040’)
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The values for (x, ’04; 1°‘3, are given?)

«"19"? " (73-1-7112
Substituting
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Expanding the product

<34: (22’7-()21

‘I—I- E@Zn-£)1-/1]

 

”.2

it can be shown that its value actually converges to 3%? as

n-v-oe. Computing the values for different n's and calculat-

ing the error

 

.... _ (2”")2 .31 /oo °oa; 3118”,),1 4 m

it could be said thatgn represents the maximum error for the

M

 

most unfavorable conditions N->°?

The values ofér have been calculated for m (2 to 15)

“hp

and are given in table 5 and graph 5.

They compare quite closely with those calculated for

N 3 100.
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Table 5

‘75 ERROR 3‘" FOR THE CASE WHERE N —’ 00
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6‘1!... °/.
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CONCLUSIONS

It was shown that if the number of equal lumped sections

representing a distributed line is increased to infinity. the

lumped line becomes the distributed line itself. This could

be assumed on a heuristic basis from the beginning.

It was also shown that if after adding certain numbers

of terms in the distributed line equation, the remaining terms

have negligible effect upon the total result. the equation for

the distributed line with a finite number of terms is emial in

form and numerical values to an equation for a lumped line with

the same number of terms. .

Thus. if the number of significant terms in the distri-

buted line equation is found. it can be said that the distri-

buted line can be truly represented by such a lumped system

that would have the same number of terms in its characteristic

equation.

In the particular case considered, it means that the num-

ber of capacitors to be used is determined by the number of

significant terms in the distributed line equation.

The number of significant terns in turn depends upon the

value of N. The calculation for the error for any number of

terms and different values of H is quite simple if Na'O or

Nay-.4

It is more elaborate for intermediate values of N, but

once it is done and tables or graphs prepared, they can be

applied to any case for the given configuration equally well

in thermal and electrical systems since all calculations are
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done in a dimensionless form.

Something should be said about the time constant‘f'of

the system. It may appear that it should be a significant

factor in determining the error.

It is recognized, however. that the maximum error would

occur when t4-0 and as t increases the error would decrease

reaching zero at steady state.

Now if the response curve is reploted from a dimension-

less abscissa “Erin a time abscissa it is obvious that dif-

ferent values of’t would only stretch or contract the curve

but would not change its general shape.

Therefore the value of‘t'would determine the absolute

time for which the greatest error would exist but would not

have any effect on its value.

In some cases, indeed, the error would last for such a

short time that it would not even be possible to measure it.

In a thermal system, that would be the case for good

conductors having high thermal diffusivity such as silver or

copper.

The parameters K. C. and h in the thermal system have

been assumed to be constant to permit an analysis. In prac-

tice, however. they vary with temperature.

In a control problem, usually the Variation of tempera-

ture around the reference point small since it is the purpose

of the controller to Keep the temperature constant and the

parameters can be assumed constant.



If the change of temperature is large and the variation

of constants not negligible, an electrical analogue with none

linear parameters can be used as it was done by Tribus (26).
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