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INTRODUCTION
Temperature Control

In order to design a controller, it i s necessary to
know the dyneamical characteristics of the system to be eon-
trolled. In a thermal system, this means to know the tem-
rerature-time response of the controlled medium, as the heat
supply is varied,

The dynamical characteristics of a thermal system can
be expressed mathematically in terms of a transfer function
in Laplace transform. Such a transfer function - G is used
in the theory of servomechanisms and regulating systems.

(L, 3, 7). Tor a thermal system, it would contain a certain
number of negasive real roots.

If the transfer funoction of the system is known, a pro-
per controller can be applied and the resulting equation in-
vestigated as to the expected error and stability under dif-
ferent load and reference input variations.

An alternate method, used in temperature control, is to
obtain a graph which represents the temperature-time varia-
tion of the medium as heat is suddenly epplied. This graph
is called "process reaction curve" (9). |

In general, all natural processes are capable of repre-
sentation by an exponential curve. If the transfer func tion
has more than one root, a so called "transfer lag" would ex-

ist as a result of superimposed exponential funoctions.



Fig. 1 Process Reaction
- Curve without
Transfer Lag
(1 root)

Fig. 2

Process Reaction
Curve with Transfer
Lag (more than one
root)

A large transfer lag maekes the control problem diffiocult,

whereas it is quite simple if no transfer lag exists.

Therefore, to decide what type what type of controller

should be used, the transfer function or process reaotion

curve should be determined.

transfer function is known,

The latter may be plotted if the



METHODS FOR OBTAINING TRANSTER FUNCTIONS

To obtain a transfer function or process reaction curve
for a tkermal process, an experiment may be performed on the
system, thus determining the reaction curve by actual measure-
ments of the temperature at certain time intervals.

Sometimes, however, this can not be done and other me-
thods have to be employed.

If the thermal characteristics of the materials in the
system as well as the dimensions and operating conditions
are known, an analytical solution may be attempted. Thermal
conductivities as well as specific heats would have to be eon-
sidered since a transient solution is required. The calcula-
tion is extremely involved, however, and has been developed
for only very simple cases.

Besides the mathematical-analytical method, three other
methods of analysis are known,

l). A gresphical method, first devised by Schmidt (24).
It 18 suitable only for very simple cases and only after mak-
ing a number of simplifying assumptions. Even then, it's
use is rather cumbersome.

2). A numerical method, known as Southwell's relaxation
method and applied to heat flow problems by Emmons (1ll).

The method is easy to learn @&nd « within its range of

applicability - is very useful. It becomes quite involved
in case of changing thermal properties and if applied to

oyclic heating.

3)e An electric analogy method, which is very versatile
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and gsubject to fewer limitations than the other methods. It's
main drawback is its' rather expensive equipment (available
at the Department of Mechanical Engineering, Columbia Univer-

sity).



THE ELECTRIC ANALOGY METHOD

The method has been first devised by Beuken (2), and in-
trodueced into the United States by Paschkis (20, 21, 22),

The method rests on the fundamental similarity between
the flow of heat within a rigid body and that of a charge in
a noninductive electric circuit. Conservation of the scalar
quantity, charge, ocorresponds to conservation of heat. The
socalar point funoction, electric potential, corresponds to the
scalar point function, temperature. The concept "™eleoctrie
capacity of a conductor", corresponds to the concept "ther-
mal capacity of a portion of mass".

There is a direct identity in form between the defining
equatidns for thermal and electrical resistance and thermal
and eleotrical capacity.

The temperature distribution in a body, at any time, is
given by Pourier's general law of heat conduction, which is
a partial differential equation derived by the usual methods
considering an infinitely small cube, Schlack (23, p. 29).

It is:

20« (2*e, 216+‘a’e)
Dt PC \Ox* oyt 9=z
where

e

temperature at any point given by the eoordinates x,
Y, 2

“2 time

~

K = coefficient of thermal gonductivity
= specific heat of unit mass

- mass per unit volume

o
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The distribution of conductivity and specific heat in space
is assumed to be uniform and continuous.

The solutions of this equation are very complex. They
.may be found in books on advanced caloculus and heat transfer.
Carslaw (5) in his work, which probably is the most compre-
hensive development of the analytical approach, gives three-
dimensional solutions for rectangular parallelepiped, oylin-
der, sphere and cone., Even after the solutions of this equa-
tion have been obtained, it is necessary to be extremely
careful in selecting the proper solution to fit the condi-
tions of the problen,

It is possible, however, to represent a three-dimension-
al problem by a combination of one-dimensional systems, Such
a method is indicated by Paschkis (20) where the thermal-elec-
trical analogy is developed on one-dimensional basis which
then could be used to represent two or three-dimensional sys-
tems if necessary.

For one~dimensional heat flow the Tourier's equation re-

duces to:

206 K =2*'e
¢t PC o x*

One dimensional heat flow would take place, for instanoce,

along an insulated rod or across an infinite plate.

The analogous electrical system would be a conductor
wi th resistance and capacitance uniformly distributed along

it's length and having negligible leakage and inductanoce.
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Fig. 3 Distributed R-C Line

Tne differential equation describing the potential at

various points of the conductor at different times is:

'avg / DV
9t RC Dx*

where:

V S potential at distance x and time t

R = distributed resistance ohms/unit length

C = distributed capacitance farads/unit length

Comparing the two equations, it is recognized that if the ten-
perature is considered to be analbgous to potential, the qua -

Jtityp/: is analogous to the quantity -,—- in the electrical

RC

system,

The analogous quantity for heat flow,g;. can be estab-
lished considering the defining equation for heat conductivi-
ty.

The heat flow across a unit surface per unit time at any

point x 1is:
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where:
K = thermal conductivity

26 =t t dient at int
=x - emperature gradient at point x

The current density at a point x in a conductor is:

- 2V
r-- 2%
o X
where:
6 - specific conductivity of the material

=2V
=2

For one dimensional systems where C is uniform and the dis-

= potential gradient at point x

tribution of 6’13 uniform and continuous

;e 2V
R 22X
|
If K is analogous to ii-then heat flow per unit time.C’. is

the analogous quantity to current 1.

K
The antity ——— was analogous to =— , Therefore the
analogue for capacitance per unit distance C would be the
specific heat per unit volume PC.

The analogous quantities thus established are given be-

low:
V - potential volts O - teaperature [°F ]
I - ourrent amps. G - heat flow 15;%;]
- . Yolume Bt
C - Capacitance farads/meterfc specific heat [—;Y_’%T'
G - oonductance mhosf/meter |- heat conductivity ;:“‘F /fr]
]

R - resistance ohms/meter -—- inverse conductivity

K

- _ surface coefficient Btu
Gp- load conductance mhos h of heat transfer I%ZZFQF;;]

ohms [ inverse surface

RL- load resistance coefficient
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Now an electrical analogue can be drawn for the one-dimen-

sional heat tlow problem,

Tor the case of the insulated rod (Fig. 4)

beal taken

way

Tig. 4 Insulated Rod with Outflow Conductance
the electrical analégue would be an R C cable terminated in

a load resistance (Fig. 5).

]P '[' z?doaa(

Fig. S R C Line Terminated in RL

Two essentially different cases will be considered:

1), The temperature of the heated end of the rod is a
known function of time,

2), The heat input at the heated end of the rod is a
known function of time,

The problem in both cases would be to find the tempera-

ture of the far end as a function of time,

In the first case in the electrical analogue, a poten-

tial V(t) should be applied and the potential aocross the
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load resistance measured. TFor the second problem, a current
I(t) would have to be applied and the potential on the load
resistarce measured.

The second case is of much greater importance in con-
trol problems wherever electrical heating is used because the
heat input would be known. It could be directly derived fron
the power input in the heating elements.

To obtain a process reaction curve, which gives the ten-
rerature response at a certain point to a sudden application
of heat, from the electrical analogue, an unit step current
should be applied on the input terminals and the potential
across the load resistance measured and plotted versus time.

If it is preferable to use voltage as the input function,
en alternative method, as suggested by Brown (3), may be used.

This method utilizes the dual of a R C cable.

Fig. 6 Dual for R C Cable

The unit step heat input in this case would be analogous
to unit step voltage on the input terminals, and the tempera-
ture at the outer surface to the current through load induc-

tance,



-ll-

This way Brown (3) avoids the necessity to apply constant
current, It is of advantage if the problem is solved analy-
tically, as Brown (3) does, because almost all of the solu-
tions in electrical circuit theory are on this basis. If a
laboratory model is to be used, however, this method seems to
have the disadvantage, that inductances usually would not be
available with such accuracies as capacitors, and a certain
resistance in them would not be avoidable.

It is proposed, therefore, to use the R C analogue and
apply a unit step current.

Paschkis (20) describes such a constant current device
used in the permanent electric model at Columbia University.
This device provides, by means of electron tubes, any cure-
rent value between O.lmia and 30mi which can be set and main-
tained constant throughout the experiment, regardless of ap-
rarent changes in resistance resulting from the loading of
the condensers. The voltages are measured by recording milli-
voltmeters fed by two stage amplifiers. This way the current
drawn from the circuit by the amplifier is less than 10-°
amperes, which may be neglected as compared with the leakage

currents through the insulation and other parts of the model.



REPLACING DISTRIBUTED FARAMETERS

This far the distributed one-dimensional heat flow has
been represented by a distributed electrical system - a R C
cable,

For an actual problem in laboratory, it would be diffi-
cult to construct a cable for each problem. The parameters
could not be easily varied and interconnections to represent
a two or three dimensional heat flow could not be readily meade,

The natural suggzestion would be to replace the distribu-
ted R C line by a cascade of lumped R C circuits. This is
what actually is done in all the models described in litera-
ture (10, 12, 18, 20, 21, 22, 26).

S 0 0 A 0 0 A
T T TTTTTTTTT

r 1 1

Fig. 7 Distributed and Lumped R C Circuits

The question may arise as to how many lumped sections
should be used to represent a certain distributed system.,

Paschkis (20) states that the smaller the "lumps" the
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the more perfect will be th: rerresentation of the actual ca-
ble by lumped cable and that a feasible compromise is usually
possible in practice. In the experiment described (20) the
analogue representing pipe insulatiorn, is divided in five sec-
tions, so chosen as to conforin to the positions of the ther-
mocouples in an experiment performed on the same insulation
by Ferry and Eerggren at the University of California

MecCann (18) indicates that the size of elements into which
the distributed system should be divided would be governed by
the configuration of the body, boundary conditions, and the
required accuracy of the solution.

Tribus (26) investigatinz the ice protection problem di-
vides the‘guide venz of an airplane in eight sections and the
proreller in five sections, and uses a lumped R C network for
each section, interconnecting the scparate networks in such a
way as to represent a two-dimensional heat flow. This work is
interesting because he uses non-linear networks to represent
parameters that are not constant hut varies with temperature.
Such as the convection from an exposed surface.

Eokmran (10) is investigating automatic control problems
by electrical analozy and using three R C networks in cascade
to represent a multiple capaecity process. Lach capacitor is

shunted by a resistor to represent tae demand.

—~AAAAA

8 O

Fig. 8 Lumped R C Network with Kesistors Representing Deniznd
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An equivalent netvork is used to represent the thermocouple
and well,

Hornfeck (17) states that a thin thermometer socket could
be represented by a single lumped R C section, whereas for a
heavy socket it would not be permissible., He suggests that
two sections be used. The differential equation of such a sys=
tem is easlily handled anaslytically, and accordirg to the author
(17), éives reasonably good correlation between the experiment-
al and calculated resgponse.

'In the discussion of the article (17) Faschkis questions
the validity of usingz only two sections and indicates that it
probably would be necessary to use several sections for the
protecting socket as well as for the internal element. Since
the resulting equations would not be manageable mathematically,
the electric-analogy method (20) is suzgested.

In the authors closure (l17) Hornfeck states that if a di-
mensionless parameter m (ratio of the socket film resistance
to the internal resistance) is either much smaller or much
larger than unity, the response reduces to the simple exponen-
tial function.

It should be noted here that the circuit used to repre-
sent the thermorieter is essentially different from that used
for heat conduction throuzh a wall.

v -Ngfawv-ilf%
Qb To TL T T
Fig. 9 R C Circuit to Re- 7ig.l0 R C Circuit to Represent

present Heat Flow through Heat Tlow to a Wall with Out-
a Thick Thermometer Wall flow Resistance
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Ahrdent (1) indicates that the analysis of a thermal sys-
tem may be simplified assuming that certain elements are es-
sentially either resistive or capacitative, and that a distri-
buted R C system. the determinantal equation of which would
have infinite number of poles on the negative real axis, could
be represented by a lumped system neglecting the poles at real
high values of S, because the value of residues at these high
values of S diminishes,

Eyres (12) have solved a heat conduction problem replac-
ing the distributed system by six lumped sections, and solv-
ing the resulting differential equation on a differential an-
alyzer. The same problem was solved analytically for the ds-
tributed system and the maximum deviation of the two solutions
found to be 0.4%. Since six lumped sections result in a
differential equation of the sixth order which requires quite
an elaborate set up on the differential analyzer and rather
long time to carry the solution through, another solution was
performed using only three lumped sections. The increase in
the maximum error was slight (from 0.4% to l1.5%). It was con-
cluded that probably using only two lumped sections, the error
would be within acceptable limits. It was indicated that the
error is approximately proportional to the inverse of the

square of number of sections.



STATEMENT OF FROBLEM

The question may arise, whether it would be possible
to obtain a criteria for the different factors that govern
the error if certain numbers of lumped sections are used to
represent a distributed system.

Since, using the already established analoglies, a con=
version from an electrical to a thermal system can be readi-
ly made, it is proposed to attempt a solution for the eleo-
trical circuit, because there is not a true lumped parame-
ter in a thermal system. Taking the simple example of one
dimensional heat flow in an insulated rod for the case more
important to control problems, where the heat input 1s varied,

the problem in the electrical system may be stated as follows:

?llho Q) e

( TTTTT T 5%

Fig. 11 The Distributed R C Line
s

K Rs
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Fig. 12 The Lumped Line
If a line of finite length, having distributed resi s-
tance and capacitance and terminated in a load resistance,
is to be replaced by a number of equal lumped sections, such
that the total resistance and capacitance of the lumped seo-
tions is the same as the total resistance and capacitance of
the line, what is the smallest number of sections that sh ould

be used to have the voltage response on the output terminals
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of the lumped line to a unit step current input within a

prescribed error of that of the distributed line. Stated in

mathematical terms:

Rload (o) = Broaa (¢)
Riine () = Bline (¢) = (n - 1)Rg
Ciine (o) = Cline (() = (n - 2)Cg
Rg, = Rg, = Bgrp _ 1)
Csy = Cqp = Cs(n - 2)
For 1(t) = u(t) the response for the distributed line is
ed(t) and for the lumped line e', (t). Find ng,, such that
€4 (t) - e((z‘} < J Where the subsoript o designates
the distributed line; ¢ - the lumped line; s - parameter
value of one section; n - the number of nodes; (n-1) the
number of equal resistors; (n - 2) the number of equal oca-
pacitors in the lumped line; cf - the maximum allowable er-
ror.,
The unit step input is chosen because it is very common
in discontinuous control problems and response to any ot her

function can be derived from the unit step response, apply-

ing the principle of superposition. (L4)



SOLUTION FOR CHARACTERISTIC TERMINATION

A similar problem is discussed by Guillemin (16). He
states the problem as follows: 1if an artificial line repre-
senting the long line is to be constructed, one should be able
to determine the number of sections and the parameter values
of each for a given finite length of line, frequency range,
and maximum allowable error. Guillemin shows that such an
artificial line is physically realizable and that if the nuxa-
ber of structures becomes infinite, the artificial line leads
to the uniform line itself. An expression for the decimal

error in transfer impedance and propagation function is de-

§, 738§ @) (RejLa)a+ice)

These errors increase with frequency being smallest at zero

veloped.

frequency, while for a given frequency they increase as the
square of the line length and decrease as the reciprocal of
the square of the number of cascaded sections. When the maxi -
mum errors in Zp and are specified of the same magnitude,
then the error of ZT will govern the design.

The expression is derived on a steady state basis far a
given frequency range. It could be extended to a transient
case if a unit step function is applied by means of Tourier's
integral.

Unfortunately, however, it can not be used for the pro-
blem at hand. Guillemin does not consider the terminal con-
ditions which, it is believed, would have considerable effect
upon the error if the line is terminated in an impedance much

different from the characteristic impedance.
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In communication networks it would not usually be the

case, A thermal analogue, however, would have to be termina-

ted in various impedances depending upon the convection and

radiation conditions on the surface.



INTRODUCTION OF DITToRu.IT TERMIWAL CCHDITIONS
General

To investigate the problem for different terminal condi-
tions a method is proposed where the transfer admittance for
the R C cable terminated in a pure resistance is found and
compared to the transfer admittance of m-section lumped net-
work terminated in the same resistance. If the two transfer
admittances could be expressed in essentially the same form,
conditions probably could be derived under which the response
of the two systems would not differ by more than the allowable
error.

The R C lines under transient oonditions have been treat-
ed originally by Lord Kelvin in ord:r to determine the prac-
ticabllity of a transoceanic cable. Lord Kelvin used the
classical methods of solving partial differential equations.

A treatment of the same problem by transtormation calculus is
given by Carson (6) and Cohen (3).

Cohen (3) first gives a solution for an infinite line and
a line terminated in an open or short circuit. ¥or the pro-
blem of different termination the author states that the pro-
blem is by far more ditticult and that it is only in special
cases that it is at all possible to obtain a completely de-
veloped solution. A solution ror a special case where a
general RLCG line is terminated in a coil with time coms tant
L/R,is given. The solution is in terms ot propagation con-
stants. Goldman (15) states, however, that there is no dis-

tinct velocity of propagation along the R C cable and that

the signals are said to be "diffused" rather than "propagated"®
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along the line, It is doubtful, therefore, if the solution
for a "propagating" RLCG line could be applied to a R C cable.

Carson (6) makes the statement that if the line is closed
by arbitrary impedances instead of open or shnort circuits, the
case 1s quite different, and the location of roots becomes, ex-
cept for simple impedances, and then only in the case of non-
inductive cable, practically impossible. VWhile, therefore, the
expansion theorem solution can be formally written down, its
actual numerical evaluation is a practical impossibility, ex-
cept in a few cases. TFor this reason, the a thor would not
consider it further in his work.

Prox Carson's staterient, one could conclude that while a
general solution would be impractical, a solution for the spe-
cial case - R C cable terminated in a pure resistance could be
possible. Unfortunately, such a solution is not given in Car-

son's work.



SOLUTICH TOR THE DISTRIEUTLD LINE

Investigating further it was found that a solution for
the differential equation that describes the problem at hand
is given without proof by Carslaw (5, pg. 1l04) and an indica-
tion of the method it is derived by Newmen (l9). 4 formal
proof is not given there. It is solved by clessical methods
and 1t was shown by Dr, Frame (13) that the functions involved
result from the btoundary conditions of the problem.

The differential equation is written for a prcblem in
heat conduction with the same boundary conditions as thege in

the rod, for which the electrical analogue was drewn. It 1s

obvious, therefore, that the solution applies equally well to
the R C cable with terminal resistance and urnit step current
input.

In Newman's (19) work it is given in a dimensionless
form and therefore readily rewritten for the R C cable.

The differential equation, boundary comd itions and solu-
is given below. A formsl proof, however, shall not be given,
because it is not essential for the problem.

The Problem:
8 Ca
A

e——— X

- X
Fig. 13 The Insulated Eod
A rod of homogenous materisl is subjected to a heat in-

rut at constant rate into one face x = 0, while the other
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face x = a is exposed to a fluid medium., The length of the
rod is a. It is assumed that the heat travels only in the
x direction. The surface coefficient of heat transfer h,
may be considered to be a function of the nature of the fluid
and its velocity, but this analysis does not permit considera-
tion of its variation with temperature.

Tind the temperature-time relationship at the surface
X = a.

The following quentities are used in the development:

X = distance in the x direction }“ﬂ
t = time :’9"]
K = thermal conductivity of the solid -fzf,“—,,ff;]
o = specific heat of the solid ;é%ﬁL;;r]
P = density of the solid r_f/_:_s__]
k = thermal diffusivity )égr [—aft:—]
h = surface coefficient of heat transfer r;::zﬂvﬁ
g = constant heating rate at x = 0 -—7¥f%;]
© = temperature ["F‘]
From these certain dimensionless quantities are formed:
N, = %E— a modified Nusselt Number

%g a dimensionless quantity involving time

= §%§ a dimensionless temperature response

The differential equation describing the heat flow is

the Fourier's equation in one dimension.

P X=) - A.'ZB‘ o
= x*



The boundary conditioans.

1) The rate of heat flow across the surface x = 0

Ze " el /_8?7?)0

2) The rate of heat flow at the surface x = g

901”’46‘;"/((;,‘8“

3) The initial temperature of the solid is uniform and e-

qual to the temperature of the fluid (assumed zero here as re-
ference), when t = 0 69 2 0
4) After a lonz time steady state will be reached and the

temperature gradient through the rod will be constant

when t = ©O GP
és;d"-ir-
and >0 ___ <
D X A

©) The total gain in heat conteut by the rod at any time

must equal the difference betweea the total heat input up to

faecf)dx - crf— j;eq A6

An eguation satisfying all of these conditions is:

that time.

o2 ﬁ?z o
/ n ¥ /74 — co
Zgl’/-'g%'f7v2"£2 ﬁ%ﬁ[}h"0&(7ﬂMQ] 36én
/

N=

)<

X
o

where B, is defined by

B
cuof}34=;aa:
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Since the temperature zt x = a 1is of primary interest.

-B°P

/ C,G’A?z + M <
£a =7y}"22 B B Mu (1) ] cosfor
s/

The equation can be rewritten for the R C oable if cor-

responding dimensionless quantities are employed.

for N, Lsline = y

Rload
for P Rlinzbline = :%r {T = time constant of the cable)
for E IRf?;e = o 'lRline (Y = transfer admittance)
v €
T T T T TTT™
rig. 14 Pistributed R C Line

Rijpne = total resistance of the line
Cline = total capacitance of the line

then
— ) 8

(.
| Rloocd AZf'*‘A/z fi—ﬁ%"§=
= - ”

—_— = COS

Y(r?(,." R tine 2’"/ ﬁ»‘[N[/ﬁy’]




The quantity:

is a pure nuuber and function of %%%%% = N only. It can be
computed for different values of N up to any desired n if
tables for the roots of cof/gr-%g— are available,
Newman (19) and Carslaw (5) give such tables for By
(n =1 ton= 7) and for values of N from 0,001 to 100, If
the values for Bp (n > 7) or different N's are desired they
can be found graphically as shown by Cohen (8, pg. 88) (sece
graph 1) or they could be calculated to a greater accuracy
by.approximation methods as indicated by Dr. Frame (13).
Actually in the regions where N~» 0, 0r N -» oo a d
the functions: sin x, cos x, tan x, cot X, may be assumed e=
qual to the arguments, the calculation of Bp and the total
numerical coefficient becomes quite simple as it will be shown

later,

Once the numerical values for

. ﬁgnz e cos B,
ﬂ,, 2 ﬂ,,’[,e,,ﬂN(/mﬂ /g

are computed, the dimensionless equation for the transfer ad-

mittance assumes the form:

z-r. at ﬂl?"

/ ?oaJ - T iy -z
. Y T +/4315 4'tl_/45<5 3 1'*:..

Yfr ?(ipe ?(ine B A' €
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SOLUTION WCR THE LULTED LINE
The next step would be to derive an expression for the
lumped line of m elements and to investigate under what conditions
it ocould be considered equivalent to the equation of the distn -

buted line, within an allowable error.

N
N
\4

7 .4 x r L Rr
? AAAA%

L

b
0
IL
1]
0
3
Q
Q

Fig. 15 The Lumped K C Network
Consider a network having n nodes, the mutual resistance be-
tween each node being R, and the admittance of each node except
the first and last
Y =224C
g7 °p

nn
The admittances of the first and last nodes would be:
=1 = R R
Yy, = fend ¥y, 'ﬁ"-t’ﬁiggg
The total resistsnce of the line would be
= R(n-1)

Riine
and the total capacitance
Cline - C(n"'Z)

The mutual and node admittances can be written in teris of

» N, and n only, si nce N = R)ine

]
I‘].oatl

Rline’ line



Replacing
R by Rline
n-
C by Ciine
(n=2)
and R # Rygad by N n-1
R e Rload R].ine

The determinant for the network can be written:



‘line

n=-2

2

n-1

I

e €2 €3 ®(n-2) ®(n-1)
n-1 - %:L
Riine line
n-1 agn-lzICQE - n-1
Rline Fiine T | Rline l
- n-1 2(n-1) Cgp
Rline F1ine 7(n-z
2(n-l)/c - o-1
Riine 0- line
n-1 ( )y |
P — 2 n"l C‘g -
| Rline Rline D=<
N ! o
i - n-1 N
i line )
t l |
]
Dividing each column by & o -1
line
and calling Cline * Rijne =T
el e 85 en..z en-l
I_~, : , !
1l -1
-1 : -
{In-Z)(n- 1)
-1
/In-Z)(n-l)
24_ TP -1
(n-2)(n-1)
: :- TP ~
; =1 32¥(n-2)!n-I)
\ ! '
B!
i
{
H

e

e e e

e
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If the ceterminaunt is opened, it would result in a poly-

nomial inTP of the (n-2) order, the coefficients consisting
of combinations of Ryyhe and N.

If it 1s solved for en the numerator would be

(n-1) n-1
n-1 a(-1) - qy(e-1) o e
(ﬁifn R11

n
1t could be cancelled by the facto %:l in the denominator
lin
n-1

Rline
The coefficient of the highest power in'CP should be made

leaving =— in the denominator.
unity and the polinomial factored in its' roots.
If a unit step function is gpplied, the o lution for the

dimensi onless quantity ——2X __ would be the following:
Yer*Riine

-1
/

! - /
Y(.,,-’Runc () A 3(5-._5')(5_%3)(5-%(_’)”.(S—d;.zj

is the coefficient at the highest power of Z}D .

?here Kl

From physical reasoning one can conclude that for any

finite values of Ry, a4 (/)’4:0 q&do) » the roots will be sall

negative and reel and tlierefore the solution

-, -ty T ¢ '“"‘3{-
-A.-A,€ : +A €T - A€

Y(? P(mc

The first term -a,, is the steady state term and can be

easily determined.

!
h t 4 A g



Fig, 1€ Steady State Circuit

= Rload = 1
Illine N

ey = 1 Rioaa § 20

The steady stute coefficient 1s the same as that for the
distributed line, which should be expected.

The determination of t.e coefficients at TDO —-K,;/\_’z---in
general terms is difficult for e determimnt of a rank higher
than 4, Lven after they are found, & factoring in general
terms would be impossible for eny equation of higher order
than two., It was done for a determinant of the 4th rank which
results in a quadratic equation. Solving this equation in
general terms the square root can not be eliminated, which
makes the general solution cumbersome and relationships are
not easily recognized.

A simple =0 lution in general terms cen be obtained, how-

ever, for a 3rd rank determinant.



SCLUTION ™OK ONE LUMFED SECTION

Ae Solution by Laplace Transform

Fig. 17 One Lurped Section

1 -1 0
. i 2 ‘
The determinant: Riine | -1 2{1%2 -1
0o -1 Nf2
)
-t Rure
e. { £
¢ N2 N
5(514 +3
-/
e 2 (N2 /
c.?(/ .2_':‘.3’:-—
Thne S(s+ +2 )
2Ny
R e 2N T
“Qr‘7?Zbe %4 N



CONDITIONS FOR REFLACELENT BY CuLE SECTICN
The result derived is very useful to determine the con-
d tions when a distributed line can be rerlaced by a single
lumped section.

Returning to the equation for a distributed line,
9“‘ £
A=

__2
T
'...

!
Yt Riine

n —» o0

/ 8L
~ ~A€ T+ A€

and comparing it with the equation for a single lumped section,

278 €

\ﬂh-ﬁEZbe N

it is recognized that the two equations would be equivalent if
‘2
ﬂ:—‘- ano/ 2”
(A 4 ¢ T Z+N
$within the allowable error, and that all hisher terms in the
distributed line eqguation:

AL-/ AQ <nal /éL ) ﬁga

-are negligible as compared to aq and Bl'

Al can be calculated for cdifferent values of N from the

Bl 1* cosd
A= 2 gatgmnrmg] =~

The quantity N(Al-%)ré.b. -'-'J;‘may be called the % error in first
[}

expression:

coefficient. It has been calculated for different values of

N and are given in table 1 and graph 2.

For N = 0,01, is less than 0.0001%.

K,
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The quantity (B'z-f%)-‘%—é—g-a&'may be called the % error
in first exponent. It, too, has been calculated for cifferet
valu:ss of N and are given in table 2 and graph 2.

It is found that both errors Cﬁq and <S;’decrease for
decreasing N.

That the hizher coefficients will be negligible if the
error in the first coefficient, cﬁq s 1s within acceptable

limits can be shown if the instant t = 0 is occnsidered.

Tor this condition all the exronentials become unity ané the
1

sum of all coefficients must beequal to X
. . 1
Al#Az/A:I)fooo An/ ...-'ﬁ if n-»oo

and since the coefficlents are periodically changing sign
and steadily decreasing in absolute value

|8 >|42) >[ag] ee >|og).es
none of the higher coefficients (n=2) can be greater than
the difference (Al-%) which was not greater than the allow-
able error.

The exponents at the higher coefficients would have ne-
gligible effect becauseAthe coefficiénts themselves are ne-
gligible.

From the data obtzined the conclusion mey be drawn that
if the maximum error is to be = 1.6%, for instance, any d s-
tributed system having N € O.1 can be rerresented by a singlec

lumped section if & unit ster function is applied.



Table 1
VALUZ3 OF THE % ERRORS IN THE FIRST COEFFICIENTS

v Se% dx %
100 27.685 0.9 11.066
80 27.340 0.8 10.168
60 27.300 0.7 9.171
40 27.240 0.6 8.121
30 27.079 0.5 7.004
20 27.046 0.4 5.814
15 26.919 0.3 4,496
10 26,162 0.2 3.128
9 25,9S 0.1 1.581
38 25,715 0.03 1.305
7 20.331 0.06 0.997
(o} 24,755 0.04 0.620
5 24,047 0.02 0.246
4 22,867 0.01 0.007
3 20.998 0,008 0.002
2 17.83¢ 0,006 0.0014
1.5 15.387 0.004 0,001
1l 11.972 0.002 0.0001

0.001 0.0001



Table 2
% ERRORS IN THE FIRST EXTONENTS Je,

2N 2
N 27 N By é;h75

100 1.96078 2.4186 23,348
30 1.87500 2,3110 23.253
15 1.76470 2.1694 22,933
10 1.66666 2,0418 22,508

S 1.42857 1.7261  20.827
2 1.00000 1.,1597 15.970
1 0.66666 0,740l 9.930

0.5 0.40000 0.4269  6.970

0.2 0.18181 0.1873 3,019

0.1 0.09524 0.0968 1.650

0.06 0.05825 0,0588 0.944
0.01 0.00995 0.01 0.502
0.004 0.00399 0.004 0,220
0.001  0.,00099 0.001 0.050
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EXAMFLES IV HEAT TRANSTER
In a heat conduction problem N, would be less than 0.1
for a good conductor, with slight thickness and poor convec-
tion or radiation from the surface.
An example shall illustrate this,
Heat is suddenly applied

iKe226 | 4= 385 infinite copper plate

7 B - £ | B« (K = 226)., The outer
hr. 4 °F Arechr

to one side of 1" thick

surface is exposed to

al r and has a total sur-

"face transfer coefficient
h = 3.85 (an aversge value taken from an actual problem).

Find the dimensionless number Nu.

- hOa - 3085 -
Ny = X - 12.256 - 0.001415

The number N, thus found is about six times smaller than
0.01 for which the errors were § = 0.0001% and Se= 0.5%.
Obviously an analogue having only one lumped section can be
used for this case.

The conditions are quite different, however, for insulat-
ing materials and thick walls. A one foot thick cork wall
having the same surfacelconditions would give a value for
Ny = 154 and could not be represented by a single lumped sec-

tion.



CONDITICIIS TOR EEFLACZLENT BY "M"™ SECTIONS
General

To investigate the cases where more than one section 1is
necessary, the logical method would be to solve the determi-
nant for n's higher than three and to compare the coefficients
and exponents. As it was indicated previously, such solutions
are extremely complicated for higher ranks and would not yield
manageable coefficients in general terms. It would be possi-
ble, however, to solve for all numerical values of n's and
N's of interest., Tor a wide range of values this would be e
tremendous task.

Some other properties of the transient solution of the

lumped networ«, however, can help to solve the problem.,



ECUALITY OF RESIDUELS

In the transient solution of the distributed system,

i SN S
\Q"1abad' 24 ”

all the coefficients A, should add up to %
-

AI{A2¥A3¥QQQ¥An{QQQ—’§ifn SO

If the aifference
7 =/

AAS A -5)dnn

n=y

is called % error in m coefficients then such a smallest num-
ber m could be found for which the error|é;%}s equal or less
than the allowable error.

The coefficients An(n)'m) would then have negligible
e€ffect for the sane reason as in ore section solution, and
the distributed system could be truly expressecd by a finite
nunmber (m) of coefficients.

The errorJK'gan be computed for any desired m, and if it
is prescribed a "necessary number of terms" can be found whid
wWould truly represent the distributed line.

A transient solution for a lumped networx having m ca-
Facitors (rank of determinant = myf2) would have a solution
Of exactly the same form and with the same numnber of terms.

If the roots Sl. Sz. 83 eees &re arranged in increasing
order $,< Sz< Sz ...(Sn_1<Sn. the residues or coefficients
Would be decreasing in absolute value and periodicsal 1y chang-
ing sign, if all the roots are positive (this was assumed by

Physical reasoning).



-40=-

The steaay state term for both solutions is the same

and the m coefficlients in both solutions should add up to
the same value - the steady state term.

Since for the two solutions

nzm ' n=rm ‘ ___’_"_J. ./00
D An=yy  ond 2 Ay £y tox,
M1ey =/

and  [ag] > Jag] > Jag] +-->)l

it can be said that for each corresponding coefficient
4, distributed -4, lumped £ JK} 100
Thereforeé-krepresents the maximum error in residues for m
”m

terms.,

The error Jk,l,ms been computed for several values of N
and m and are given in table 3 and graph 3.
From these tables a necessary number of sections can be

selected for a given maximum error d;and N value.
»



Table 3

MAXIMUL % ERRORS IN RE3SIDULS TOR M SECTIONS

N/m 100
27,685
14,631
10.879

6.795

1

2

3

4 7.800
5

6 5.800
7

5.200

10
26.162
13,183

7.893
5.193
3.627
2,643
1,993

24.047
10,352
5.522
3.242
2,196
1,459
1.191

1
11.972
3.241
1.420
0,748
0.491
0,303
0.249

1.5919
0.,3739
0.1288
0.0952
0.0312
0.0200
0.0064



Gra,o/7 3

NMax. % ELrrors in Residues

I

/or ’77 Secf/'ons

7 2 3 4 5 6 7

m - number of seclions



EQUALITY OF RCOTS

Even if the coefficients or residues can be considered
equivalent for the two systems, it is not obvious that the
exponents or roots would be the same.

Since the roots S3, Sy Sz .ee Sy 1n the lumped re twork
equation can not be calculated in generel terms for higher
values of n and a direct comparison is not possible, an al=-
ternative method of investigation is proposed.

In the transient solution for a lumped R-C network hav-
ing m different, negative and real roots, certain relations
between the roots and residues must hold.

The residues for a transform:

) K
[ S(s+ec)(s +o<,)(5+¢g3) .. (5+o(,,,)

are determined as follows:




X can be eliminated if it is realized that in the dimension-

less system used

i T

Then the first coefficient Al is given by

- °(2 o<y o<y << m

e cx,)éx, o{i).u (T "Claa)

where o, /°¢J.,°<3 v Sy are the exponents at the

coefficients Al' Az. As"'Am'

If this same relation would hold for the distributed sys-
tem with n = m (m terms considered) to a desired accuracy,
then since the coefficients have already been considered equi-
valent, 1t could be said that the exponents are equivalent
too.

The error

A - e e 7| [%]
P = /00
- _
A,

has been. computed for different values of m and N and are
given in table 4 and graph 4.

It is recognized that the two errors&(mand J;,Mare es~
sentially the same for the same values of m and N. From the
tables the necessary number of sections can be selected if
the error is specified, or for a given number of sections the
error determined.

For cases where N-» O or N-» oo certain simplifications
can be made and an-. analytical relation between the number of

sections and error found.



<N oo 0k v

100
27,685
11.893

8.223

6,311

S5.141

4,351

3.782

10
26,162
10,797

7.218
0.386
4,280
3940

5.022

24.047
9.818
6,435
4,755
3.761
3.109
2,649

1
11.972
4.642
2,903
2.111
1.657
1.364
l.161

O.l
1.881
077
« 348
246
.189
152

127
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SIMFLIFIED CASE WHERE N+ O
For the case N-» 0 in the defining relation for '8

Blanf=r  Boso=  twmB=B ;sinf-B
ﬁ,,-\r;’- +3l'(n-l) cosﬂ,, - \J 1-1y* (‘)”-/

The coeffl cient 4, now can be expressed in ter.s of N only.

The first coefficient

- N # N2
i = eypiAnz e

for N-» 0 the following is true:
1 /N-=2>1; N2« N; (1 = N2)—»>1

Tor the limiting case, the expression becomes

e ﬁ%—y% as N+ 0
as should be expected.

These cases N-»0 are the ones where the distributed sys-

tem can be represented by a single lumped section.



SIMPLIFILD Cu3E WHERE N—ump <>
For the case where N-s=©othe following assumptions may
be made
=N /o,/Y—roé c,ofﬁ—;-(%-ﬂ)

/
,Bzfz"z”)’r /z; i and C<>$/g“ Z TN

" <:cn73

The first coefficient Al can now be written in terms of N

[<,. 20| F 7
/*/Y) [(2- /+/v "”(/”’9]

for N—» e 1l # N»N

only

A2

And for the limiting case

Al‘—i-—-r- a8 N —o e

TN
It can be ‘investigated now if the value of A] thus found
for the di stributed system fulfills the condition for lumped

system,

A=

°‘1.‘3 N4 oo °< /

(S = a)(oc-0¢g) .. (B¢,~0x) N

—— 2
a Y
VS MM — oD

The values for o<, ) a2 /°‘3, are q/vcn_b)/

oy 222 (—,%)]2

Substituting

2.14-) (52 TN

[<,.,,,, ez 2)]- [@ 2 (2t 2]

] 32. 5272 .. (25-)% A ﬁ (2n- )
(33__/,,)(5:._/:.) es [&”_l)z_/z] 24 (Zn-) /3]

.zn-/ : ad z
: 1+




=47=

Expanding the product

oo (,'Z.n—l)z
‘]_]- [CZn—[) -/ ]

h=2
it can be shown that its value actually converges to % as

n-»o&®. Computing the values for different n's and calculat-

ing the error

T

4 _ (2-1)" X oo [% 3
S [3- T ] .

it could be said thatén represents the maximum error for the
m

most unfavoravle conditions N-»O®
The values ofJ have been calculated for m (2 to 15)
MTm
and are given in teble 5 and graph 5.
They compare quite closely with those calculated for

N = 100.



Table 5
% ERROR S,, FOR THE CASE WHERE N —= ©O
m

S %

27.324
11.643
7.961
6.044
4.869
4,077
3506
3.076

© ® 9 o U pw» B o +~ B

2,739

[
o

2,470

|
M=

2.249

[=]
[AV]

2.064

-
[}

1.907

H
'S

L.773

[
o

1.656

o ——————
. '
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CONCLUSIONS
It was shown that if the number of equal lumped sections |
representing a distributed line is increased to infinity, the
lumped line becomes the distributed line itself. This could
be assumed on a heuristic basis from the beginning.
It was also shown that if after adding certain nuwrbers

of terms 1in the distrituted line equation, the remaining terms

A BT RAE R AL WAL A 4w

have negligible effect upon the total result, the equation for

the distributed line with a finite number of terus is equal in

form and numerical values to an equation for a lumped line with
the same number of terms., .

Thus, if the nuuber of significant terms in the distri-
buted line equation is found, it can be said that the distri-
buted line can be truly represented by such a lumped system
that would have the same number of terms in its characteristic
equation,

In the particular case considered, it means that the num-
ber of capacitors to be used is determined by the number of
significant terss in the distributed line equation.

The nunber of sigaificaat ter.s in turn depends upon the
value of N, The calculation for the error for aay number of
terms and different values of N 1is quite simple if N=0 or
No»eo

It is more elaborate for intermediate values of N, but
once it is done and tables or graphs prepared, they can be
applied to any case for the given configuration equally well

in thermal and electrical systems since all calculations are



«50=
done in a dimensionless form.

Something should be said asbout the time constaat T of
the system. It may appear that it should be a siganificant
factor in determining the error.

It is recoznized, however, that the maximum error would
occur when t+0 and as t increases the error would cdecrease
reaching zero at steady state.

Now if the response curve is reploted from a dimension-
less abscissa %1n a time abscissa it is obvious that dif-
ferent values of T would only stretch or contract the curve
but would not chunze its general shape.

Theretore the value of T would determine the absolute
time for which the greatest error would exist but would not
have any effect on its value.

In some cases, indeed, the error would last for such a
short time that it would not even be possible to measure it.

In a thermal system, that would be the case for good
conductors having high thermal diffusivity such as sl lver or
copper.

The rarameters K, C, and h in the thermal system have
been assumed to be constant to rermit an analysis. In prac-
tice, however, they vary with temperature.

In a control problem, usually the variation of tempera-
ture around the reference point small since 1t is the purpose
of the controller to keep the tempersture ccnstant and the

rarameters can be assumed constant.



If th: chanse of temperature is large and the variation
of constants not neglizgibie, an electrical anslogue with non-

linear parameters can be used as it was done by Tribus (26).
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