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ABSTRACT 

DISCRIMINATIVE SPARSE REPRESENTATIONS FOR IMAGE CLASSIFICATION 

By 

Suhaily Cardona-Romero 

 Sparse representations and compressed sensing (CS) are two methods that have drawn the 

attention of the signal processing community due to their ability to reduce the dimensionality of 

signals while preserving enough information for signal representation. However, these compact 

representations do not necessarily preserve the most discriminative aspects of the signal. This 

thesis addresses this issue by developing a new discriminative framework to obtain a compact 

representation with high discriminative information for image classification applications.  

The first part of this thesis presents a greedy algorithm inspired by CoSaMP with the 

inclusion of a new cost function that quantifies the tradeoff between discrimination power and 

sparsity. The inclusion of this cost function helps to select a small number of atoms from an 

overcomplete dictionary that produces discriminative sparse representations of images from 

different classes. Through experiments, it was shown that such representations can be used as 

features to classify new sample images even under noisy environments or missing pixels. 

The second part of this thesis proposes a method to obtain discriminative measurements 

from CS and is motivated by the fact that the presence of irrelevant features may reduce the 

classification accuracy. To address this issue, a feature selection step was added to CS to 

eliminate irrelevant features from the measurements. As a result of the elimination of such 

features, an improvement in the classification accuracy is observed. In conclusion, it was 

demonstrated that a subset of incoherent projections with high discrimination power performs 

better than the whole set of CS measurements for classification purposes. 
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CHAPTER 1 

INTRODUCTION 

 

Through the years, the innovations in sensor technology have led to the collection of 

massive amounts of data with high dimensionality. The analysis of large amounts of high 

dimensional data can pose a problem in the computation time for many applications in the area 

of image processing such as texture classification, object detection, and recognition. This 

problem can be addressed by eliminating dimensions that seem to be redundant or irrelevant to 

the desired application. Dimensionality reduction is often used as a preprocessing technique that 

looks for a low dimensional representation from a high dimensional signal, using linear or 

nonlinear methods, such that the structure of the signal is preserved. The goal of this thesis is to 

address the dimensionality reduction problem to extract a low dimensional feature vector with 

high discrimination power for image classification applications. 

The most widely used linear methods for dimensionality reduction are Principal 

Component Analysis (PCA) and Linear Discriminative Analysis (LDA). The goal of PCA is to, 

citing Jolliffe [1]: 

“…reduce the dimensionality of a data set consisting of a large number of interrelated 

variables, while retaining as much as possible of the variation present in the data set. 

This is achieved by transforming to a new set of variables, the principal components 

(PCs), which are uncorrelated, and which are ordered so that the first few retain most of 

the variation present in all of the original variables.” 

The implementation of PCA results in orthogonal projections that represent the data set with a 

few components or dimensions, i.e. PCs, without taking into account the differences between the 
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classes making such a projection unsuitable for discrimination purposes. Contrary to PCA, LDA 

reduces the dimensionality by seeking the best projection that separates the different classes in 

the data set by maximizing the between-class scatter while at the same time minimizing the 

within-class scatter. However, LDA is known to be very sensitive to noise in the data. 

 Nonlinear methods used to reduce the dimensionality of a data set include isomaps, 

locally-linear embedding (LLE) and kernel mapping [2, 3]. Isomaps reduce the dimensionality 

by mapping high dimensional data into a lower dimensional space while it preserves the 

neighborhood distances and the geodesic distances between all pair of features. Similar to 

isomaps, LLE reduces the dimensionality by preserving the neighborhood distances; the 

difference is that LLE tries to minimize the least squares error of the geodesic distances [2]. 

Kernel methods map the data from the high dimensional space d  into a dot product space F  

via a nonlinear function, using methods such as Kernel Principal Component Analysis (KPCA) 

[3] which is a generalization of PCA.  

In recent years, sparse representations and compressed sensing have been used to reduce 

the dimensionality of data sets. Sparse representations reduce the dimensionality by projecting 

the data against a small number of elements (called atoms) from an overcomplete dictionary such 

that the reconstruction error is minimal. In this case, the atoms to obtain the low dimensional 

projection of the data can be selected through the implementation of greedy algorithms such as 

Matching Pursuit [30], Orthogonal Matching Pursuit [31], Compressive Sampling Matching 

Pursuit [32] and convex optimization methods such as the 1l -minimization problem and LASSO 

[27, 34]. On the other hand, compressed sensing represents a sparse signal with a small number 

of measurements through random projections. Using this method, the number of measurements 

obtained is much less than the number of samples required from the Nyquist sampling theorem 
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while still allowing the reconstruction of the original signal with no or little loss of information. 

These are two methods that have been widely used for signal representation and compression 

purposes.  

Recently, the signal processing community has been interested in expanding these 

methods to applications such as object detection, face recognition and image classification. In 

[4], a method based on sparse representation for text detection is proposed using a learned 

dictionary obtained using text-like edge features extracted from a database of text images. This 

dictionary in conjunction with OMP is used to obtain sparse representations of the edge features 

extracted from the test images using a 1616  window. The sparse representation obtained from 

the 1616  window is detected as text using a threshold based on the number of nonzero 

elements in the representation. A similar method for text detection can be found in [5], where 

two different dictionaries are learned (one from the text images and the other from the 

background) and the subimage within the 1616  window is projected using each dictionary 

resulting into two different projections. The subimage is detected as text or background 

depending on which projection produces the smaller reconstruction error. Sparse representations 

have also been used for the detection of humans in images [6] thanks to its multi-scale nature. In 

[32], Wright et al. proposed an algorithm for face recognition that use the training images as the 

atoms of the dictionary to solve the sparse representation problem and classify the test image to 

the class of the training image (atom) that minimizes the reconstruction error. In [7], it is shown 

that compressed sensing measurements can be used to subtract the background of test images. 

Given a background scene image bx  and a test image tx  of the same scene, any discrepancy 

present can be obtained by the pixel-wise subtraction of both images ( tb xx  ). However, if the 

images are available in the compressed space, Cevher et al. showed that the discrepancies can be 
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obtained by reconstructing the difference between the background measurements by  and the test 

measurements ty  )( tbtb xxyy  .  

 In this thesis, a new theoretical framework is developed for using sparse representations 

and compressed sensing for image classification applications. Currently, sparse representations 

are mostly limited to reconstructive representations of signal. For classification purposes, it is 

more important to obtain discriminative sparse representations instead of reconstructive ones, i.e. 

minimizing reconstruction error. To achieve this goal a new optimization cost function that 

combines discrimination power and sparsity is proposed along with a modified greedy pursuit 

algorithm. This cost function allows a tradeoff between discrimination and sparsity that helps 

with the selection of the smallest number of atoms from an overcomplete dictionary that best 

discriminate a set of training images. The indices of the atoms identified as the most 

discriminative in the training stage are used to obtain the discriminative sparse representation of 

the test images. The performance and robustness of the proposed method is evaluated by 

performing classification experiments with two different image databases under different levels 

of Gaussian noise and different sizes of occlusion. The first experiment is performed with a 

standard image database with low intra-class variability and objects in a black background. The 

results of this experiment are compared to a modified OMP algorithm. The proposed method 

selects multiple atoms per iteration as opposed to OMP which selects a single atom at each 

iteration. This modification enables the proposed algorithm to select features in a more 

computationally efficient way while at the same time achieving comparable or better 

classification accuracy than the modified OMP algorithm. The second experiment uses a more 

challenging database with high intra-class variability to show the effect of class variability on 

sparseness. In this experiment, a comparison with LDA is presented to illustrate the superior 
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performance of the proposed algorithm in terms of accuracy and sparsity over conventional 

methods. 

Similar to the sparse representation methods, compressed sensing has been mostly used 

for signal compression and reconstruction. Recently, Haupt et al. have shown that these 

measurements can also be used for signal classification purposes [63]. In addition, they presented 

and validated a theoretical misclassification bound that shows that the error probability decays 

exponentially as the number of measurements increase. In this thesis, this approach is extended 

to image classification by using a cost function based on the Fisher score to select the most 

relevant compressed sensing measurements (features) for classification purposes instead of using 

all the measurements. The cost function proposed will measure how well the compressed sensing 

measurements maximize the between-class scatter while at the same time minimize the within-

class scatter. The motivation to include this cost function comes from the study made in [46] 

where Almaullin and Dietterich showed through experiments that the presence of redundant or 

irrelevant features can drop the classification accuracy significantly. With the inclusion of this 

cost function, it is expected to obtain higher classification accuracy using only a small number of 

measurements rather than using the whole set of measurements. 

 The organization of this thesis is as follows. Chapter 2 briefly reviews some basic 

concepts on wavelets, overcomplete dictionaries, sparse representations, compressed sensing and 

some common greedy algorithms used to solve the sparse representation problem as well as 

some applications in these areas. Chapter 3 presents a new greedy algorithm to classify images 

using sparse representations. A new cost function combining discrimination power and sparsity 

to obtain discriminative sparse representations is proposed. The performance and the robustness 

of the proposed algorithm are evaluated through experiments and it was shown that the algorithm 
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can work under noisy and occluded environments and can perform better than existing 

dimensionality reduction methods. In addition, the performance of the proposed algorithm is 

compared with LDA and a modified version of OMP. Chapter 4 presents a feature selection 

method from compressed sensing samples to improve the classification accuracy without the 

presence of irrelevant or redundant features.  
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CHAPTER 2 

BACKGROUND 

 

This chapter presents basic concepts and current applications in the area of transform 

based image feature extraction and classification that will serve as background for the work 

presented in this thesis. First, a brief overview of wavelets and wavelet transforms with some 

applications in the area of image processing will be presented. After this overview, the extension 

of wavelets to sparse representations using overcomplete dictionaries will be introduced. Then, 

some of the optimization methods and greedy algorithms that have been proposed to solve the 

sparse representation problem will be described. Finally, some background information about 

compressed sensing will be presented as well as some applications in the area of signal/image 

processing. 

 

2.1  WAVELETS  

 An orthogonal family of wavelets is a collection of orthogonal basis functions created by 

dilating and translating a “mother wavelet” )(t [8]: 
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where j  defines the scale of the basis and n  defines its translation. In the same way, an 

orthogonal scaling family can be defined as: 
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where )(t  corresponds to the scaling function and  tnj,  is orthogonal to  tnj, . These two 

functions usually are used together to perform multiresolution analysis of signals where the 

representations obtained with scaling functions  tnj,  correspond to the low frequency 

information in the signal and the representations obtained with wavelet functions  tnj,  

correspond to the high frequency information. Some of the most common orthogonal wavelet 

families include Haar, Daubechies, Symlets and Coiflets. Examples of 1D wavelets and scaling 

functions can be seen in Figure 1. 

 

Haar Daubechies Coiflets

(a)

(b)

 

Figure 1. Scaling (a) and Wavelet (b) functions for Haar (left), Daubechies (middle) and 

Coiflets (right) wavelet families 

 

A decomposition of any finite energy signal f  can be obtained through the inner product 

of the signal and the scaling and wavelet families respectively as:  
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where )(nja  corresponds to the approximation coefficients (low frequency information) and 

)(njd  corresponds to the wavelet/detail coefficients (high frequency information). Therefore, an 

orthogonal expansion of )(tf  can be obtained as:  
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Since the set   },{ ,0
Zntnj   spans the same subspace as   },,{ 0, Znjjtnj   [9] this 

expansion can also be obtained as: 

                                                          )()()( , tndtf nj
j k

j                                                  (2.6) 

A fast implementation of the wavelet decomposition can be obtained by applying the 

filter bank theory.  Filter banks decompose a signal into approximation and details coefficients 

by convolving the signal with low-pass filters )(nh  and high-pass filters )(ng  and 

downsampling the output by two as: 
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where )(0 la  corresponds to the input signal or the approximation coefficients at the highest 

scale. Multiple levels of decomposition can be achieved by iterating the analysis stage on the 

approximation coefficients as shown in Figure 2. This decomposition provides a description of 
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the signal at different scales such that coarse and fine features can be obtained simultaneously to 

analyze the signal. 
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Figure 2. Analysis filter bank for 1D signals 

 

 This decomposition has been extended to two dimensional signals such as images using 

separable wavelets. The 1D scaling and wavelets functions are extended to 2D through the 

combination of products of these functions as follows: 
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where H , V  and D  correspond to wavelets in the horizontal, vertical and diagonal 

directions, respectively. Given 2D separable scaling and wavelet functions, respectively defined 

as: 
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An image ),( 21 xxF  of size NM   can be decomposed into the approximation and detail 

coefficients as: 
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respectively.  

Similar to the 1D case, a filter bank can be implemented to obtain the approximation and 

details coefficients of an image by applying high-pass ( g ) and low-pass ( h ) filters to the rows 

and the columns of the input image and dowsampling the outputs by two as shown in Figure 3. 

 

h
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↓2
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g
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↓2 dD
j+1

Columns

Rows

Rows

 

Figure 3. Analysis filter bank for 2D signals 

 

In this case, the results are subimages with the approximation and detail coefficients of the 

original image. To obtain multiple levels of decomposition, the same process can be applied to 

the approximation coefficients which results in four additional subimages (Figure 4). For N 

levels of decomposition, the image is decomposed into 3N + 1 subimages. 
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Figure 4. Subimages for one (left) and two (right) levels of decomposition 

   

Wavelet decomposition has been very popular in areas such as signal processing, 

computer vision, pattern recognition and medical applications, among others. This popularity is 

due to its ability to produce compact representations of signals/images at different resolution 

levels. Wavelet decomposition has been used in the area of signal processing for speech 

compression [10]. In [10], Joseph et al. analyze the performance of different wavelets for 

compression purposes using a threshold to drop the wavelet coefficients with small amplitudes 

which are considered to be insignificant. In the area of image processing, wavelets have been 

used for compression [11-13], watermarking [14, 15], denoising [16, 17], detection [19, 23, 24], 

object recognition [18], and image classification [14-22], among others. In [18] and [19], the 

wavelet coefficients obtained from the discrete wavelet transform are fed into a classifier as 

features for object recognition and airplane detection and tracking, respectively. Wavelets have 

also been used to classify texture images using either energy features computed directly from the 

DWT coefficients [20] or a combination of wavelet statistical features and wavelet co-occurrence 

features such as energy, entropy or homogeneity [21].  In [22], the dependence between wavelets 

features from different subbands is studied to select the best set of wavelets features for 

classification purposes. Other features that can be used for image classification are edges which 
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can be detected by identifying local maximum from the wavelet transform coefficients using a 

threshold to remove the noise that interfere with such identification [23]. Wavelets have also 

been used in medical imaging applications such as detection of microcalcifications in 

mammograms by applying wavelet filters to remove the background noise and enhance the 

microcalcifications present in the mammograms [24].  

 

2.2  OVERCOMPLETE DICTIONARY 

 A dictionary NM  is a collection of elementary signals called atoms, given by:  

                                                        



 ,    },...,2,1{ M                                          (2.11)                 

where the atoms   are discrete time signals of length N . A dictionary can be classified as 

undercomplete, complete or overcomplete depending on whether it spans the signal space or not. 

If the atoms of the dictionary entirely span the signal space forming a basis, the dictionary is 

called a complete dictionary. When the number of atoms is larger than the dimension of the 

signal space )( NM   and there is a subset in the dictionary that forms a basis, it is called an 

overcomplete dictionary. Otherwise, the dictionary is called an undercomplete dictionary. In this 

case, the number of atoms composing the dictionary is less than dimension of the signal space 

)( NM  . Overcomplete dictionaries are constructed using combinations of bases or adding 

basis functions to a complete dictionary. The most commonly used functions to construct 

dictionaries are Gabor [57], wavelets [10, 11], contourlets [25], curvelets [16], ridgelets or 

combinations of these. Overcomplete dictionaries have become an important tool in the signal 

processing area due to their capacity to generate sparse representations of signals [26, 27]. 
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A signal Ny  can be represented as a linear combination of the elements from a 

dictionary as follows:  

                                                                   





1

0

N

n

nn y                                                        (2.12) 

where n  are the expansion coefficients of the signal and   is the index of the atom  . 

However, for the case of overcomplete dictionaries, such a representation is not unique. This 

gives us the possibility to find the combination that works best for the desired problem. For the 

sparse representation problem, the goal is to find the most compact representation that 

reconstructs the signal with the minimum reconstruction error.  

 

2.3  SPARSE REPRESENTATION 

 Given an signal my , an overcomplete dictionary km  that contains k atoms 

and a vector kx  that contains the representation coefficients of the signal y, the sparse 

representation problem can be posed as follows: 

                                                          
0

min x
x

    ..ts     yx                                                 (2.13) 

where 
0

x  is the norml 0 , that counts the nonzero elements in the vector x . In order for the 

signal reconstruction to be robust to noise, equation (2.13) can be relaxed to: 

                                                   
0

min x
x

    ..ts     .
2

 xy                                            (2.14) 

where   is the permitted error in the reconstruction. The solution for the norml 0  has been 

shown to be NP-hard. Several algorithms have been studied to obtain an approximate solution to 

this problem [27-32]. The two most common methods are greedy algorithms and convex 

optimization methods.  
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The convex optimization methods solve the combinatorial problem by replacing the 

norml 0  with a convex function, usually with the norml 1 . In [27], Chen et al. proposed an 

algorithm called Basis Pursuit (BP) to solve the sparse representation problem in overcomplete 

dictionaries using a convex optimization method which finds the decomposition that minimizes 

the norml 1 : 

                                                          
1

min x
x

    ..ts     yx                                                 (2.15) 

One drawback with convex optimization methods is that they tend to be computationally 

extensive when the system to be solved is very large [33]. Least Absolute Shrinkage and 

Selection Operator (LASSO) is a method proposed by Tibshirani [34] to solve the                    

1l -minimization problem more efficiently. LASSO finds an estimate of x  by minimizing the 

least square error subject to a norml 1 constraint in the solution vector, formulated as: 

                                                           
1

2

22

1
min xxy

x
                                                 (2.16) 

where 0  is the parameter that controls the tradeoff between the least square error and the 

sparsity of x . This optimization problem converges to the solution of the 1l -minimization 

problem when the value of  approaches to zero. 

On the other hand, greedy algorithms try to find the “best” solution to the problem 

iteratively. Greedy algorithms may not find the optimal solution but find a local solution that 

approximates to the global solution. Some algorithms proposed to solve the sparse representation 

problem are Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), and Compressive 

Sampling Pursuit (CoSaMP). 
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2.3.1  Matching Pursuit 

Mallat and Zhang [30] introduced an algorithm, called Matching Pursuit, to represent a 

signal as a linear combination of elements from an overcomplete dictionary. These elements are 

chosen iteratively, one by one, such that they represent the structure of the signal.  

Given a dictionary  



  with unit norm, let nR  be the residual of an n term 

approximation of a given signal y . MP decomposes the residue nR  by projecting it onto the 

elements of   to find the element that is highly correlated with nR . For example, the first 

iteration of the algorithm will represent the signal as:  

                                                             100, Ryy                                                      (2.17) 

where 1R  is the residue after approximating y  in the direction of 0 . Since the norm of y  can 

be calculated as:  

                                                            
2

21
2

0
2

2
, Ryy   ,                                              (2.18) 

the atom n  to be chosen at the n
th

 iteration is the one that solves the following 

optimization problem:  

                                                          


  ,maxarg 1


 nn R .                                            (2.19) 

Then, using the atom that solved the optimization method, the approximation vector n  and the 

residue of the signal are updated as follows: 

                                                         nnnn  ,11   R  

                                                      nnnnn  ,11   RRR                                              (2.20) 
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respectively. This process is repeated until the stop criterion is met. A description of the MP 

algorithm can be found in Figure 5. 

 

Input: Signal my , dictionary km  

Output: Sparse approximation vector   

yR 0                                           (Residue Initialization) 

00                                             (Initial approximation) 

1n                                               

repeat 

    


  ,maxarg 1


 nn R          (Greedy selection) 

    nnnn  ,11   R           (Approximation update) 

    nnnnn  ,11   RRR      (Residue update) 

    1 nn                                       

until stop criterion 

Figure 5. Matching Pursuit Algorithm 

 

Depending on the problem to be solved, the algorithm can be stopped when one of the 

following stopping criteria is met: (i) after l fixed number of iterations, (ii) when the residue 

0nR  or (iii) when the residue nR  for some  . One shortcoming of the MP algorithm is 

that it requires a large number of iterations to converge, therefore it is computationally complex. 

Pati and Krishnaprasad [31] introduced a new algorithm called Orthogonal Matching Pursuit that 

overcomes this issue. 
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2.3.2  Orthogonal Matching Pursuit  

Orthogonal Matching Pursuit, a modified version of MP, is a recursive algorithm that 

computes representations of functions with respect to nonorthogal and overcomplete dictionaries 

[31]. MP was modified by adding a least-squares minimization to improve the convergence of 

the algorithm.  

The first step of the OMP algorithm is the same as the MP, which finds the index of the 

atom that is the most correlated with the residue. Then, this index is stored in the set   that will 

contain the indices of all the atoms selected through all the iterations. The third step, which is the 

part that is different from MP, finds the coefficient vector n  that solves the following least-

squares minimization: 

                                                                
2

|minarg xy
x

nn                                       (2.21) 

where the symbol 
n| represents the dictionary   with columns restricted to the indices in 

n . This step ensures the orthogonality between the residue and the atoms selected in the 

previous iterations. Therefore, the correlation of the residue with the atoms selected in the 

following iterations will be equal to zero avoiding the selection of the previously selected atoms, 

leading to a faster convergence of the algorithm. The last step updates the current residue by 

subtracting the projection of the signal, obtained using the restricted dictionary 
n| , from the 

original signal. These steps are repeated until the desired stopping criterion is met. The same 

stopping criteria mentioned in the previous section can be applied to the OMP algorithm. A 

mathematical description of the algorithm can be found in Figure 6. 
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Input: Signal my , dictionary km  

Output: Sparse coefficient vector   

yR n                                             (Residue Initialization) 

00                                               (Initial approximation) 

0  

1n                                                      

repeat 

    


 ,maxarg 1


 nn R               (Atom Index) 

    nnn 1                           (Atoms Index Merge) 

    
2

|minarg xy
x

nn            (Least square minimization) 

    nnn  |yR                        (Residue update) 

    1 nn                                       

until stop criterion 

Figure 6. Orthogonal Matching Pursuit Algorithm 

                                                                                                     

2.3.3  Compressive Sampling Matching Pursuit 

 Compressive Sampling Matching Pursuit [32] is one of the modern methods used to 

obtain sparse representations of signals based on OMP and the compressed sensing theory. One 

of the differences between this algorithm and the algorithms previously described is its ability to 

choose multiple atoms per iteration allowing a faster convergence. CoSaMP searches iteratively 

for the largest elements of the target signal using a proxy signal. Needell and Tropp state that, 

given an s-sparse signal kx  (where a signal is s-sparse if it has only ks   nonzero 

elements) and a dictionary km  whose transpose is t , a vector xp  t  can serve as a 

proxy signal for the signal x  due to the fact that the s  largest elements in p  will correspond to 
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the s  largest elements in x . Based on this, it is only necessary to apply t  to the sample 

measurements xy   to obtain the proxy signal.  

 Given a signal my , a dictionary km  that meets the restricted isometric 

property [see 32] and a residue r  initialized as y , CoSaMP uses an observation vector rp t , 

to select the indices of the s2  atoms that are the most correlated with the residue, where s is the 

desired sparsity level. Then, this set of indices is merged with the indices of the atoms used to 

obtain the previous s-sparse coefficient (or representation) vector 1j . This new set of indices 

is stored in T  and used to obtain the solution of the following least squares problem:  

                                                                      yb 
TT ||                                                         (2.22)        

where T|b  is the solution of the least square problem with nonzero values corresponding to the 

indices in T , T|  is the dictionary restricted to the set of indices T  and t
TT

t
TT |

1
|||

)(    

is its pseudoinverse. The new coefficient vector j  is obtained by retaining only the s largest 

elements in T|b . Finally, the residue is updated to be used in the proxy signal at the next 

iteration.  These steps are repeated until the desired stopping criterion is met. In [32], three 

different stopping criteria that depend on: (i) a fixed number of iterations, (ii) the norm of the 

residue 
2

r , and (iii) the maximum magnitude of the entries of the proxy 


p  were analyzed. 

A list of the assumptions made and variations of this algorithm can be found in [32]. Figure 7 

presents the mathematical description of the algorithm.  
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Input: Signal my , dictionary km , sparsity level s 

Output: s-sparse coefficient vector   

yr                                          (Residue initialization) 

00                                        (Initial approximation) 

1j                                                 

repeat 

    rp t                                 (Generate the proxy) 

     j supp )( 2sp                    (Index of 2s largest coeff.) 

    jT  supp )( 1j            (Update the set of indices) 

     yb 
TT ||                             (Least squares problem) 

    0
|

cT
b  

    sj b                                  (Pruning step) 

    j yr                          (Residue update) 

    1 jj                                       

until stop criterion 

Figure 7. Compressive Sampling Matching Pursuit Algorithm 

 

2.4  COMPRESSED SENSING 

 Nyquist sampling theorem states that a continuous time signal can be reconstructed from 

its samples if the sampling rate is greater than twice the signal bandwidth. In many applications 

such as bioinformatics, astronomy, machine learning, hyperspectral and medical imaging, the 

number of samples required by the Nyquist sampling theorem can be too high which leads to the 

problem of having to handle high dimensionality data. In recent years, it has been shown that a 

sparse signal can be reconstructed from a small number of random measurements less than the 

minimum number of samples required by the Nyquist sampling theorem, using compressed 

sensing framework [35].  
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 Given a signal my  that is s-sparse in a dictionary km  with representation 

coefficients contained in the s-sparse signal kx  and a sampling matrix mN , the 

signal y  can be recovered from its measurements: 

                                                                  xyz  ,                                                      (2.23) 

by solving the following optimization problem: 

                                    
0

minargˆ xx
y

     subject to    xyz                                    (2.24) 

where   satisfies the restricted isometry property (RIP) [36, 40]. It is said that a matrix   

satisfies the RIP of order s  if there exist a constant )1,0(s  such that  

                                                    
2

2

2

2

2

2
)1()1( xxx ss                                       (2.25) 

holds for all s -sparse vectors (with at most s  nonzero entries). This property ensures near 

optimal performance of reconstruction algorithms [38]. In [39], it has been proven that random 

matrices whose entries are independent and identically distributed (i.i.d) random variables, such 

as Gaussian, Bernoulli or related distributions, will satisfy the RIP. Therefore, if the sampling 

matrix   is chosen as one of these random matrices, there is no need to know the representation 

matrix   and it can be chosen arbitrarily [39, 40].  As mentioned, the solution to the norml 0  

in equation (2.24) it is known to be a NP-hard problem that can be solved either by greedy 

algorithms or convex optimization methods.  

 From equation (2.23), it can be seen that the sampling matrix  reduces the dimension of 

the signal y  by mapping the signal from the m-dimensional space to the N-dimensional space 

where N  is much smaller than m . This reduction is obtained through the inner product of the 

random vectors of the sampling matrix with the sparse signal producing a low dimensional signal 

z  of random measurement as shown in Figure 8. 
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Sparse signal

y

Measurements

z

Sampling Matrix

Ψ

 

Figure 8. Compressed sensing model (For interpretation of the references to color in this 

and all other figures, the reader is referred to the electronic version of this thesis.) 

 

 Compressed sensing has been used in the area of medical imaging to reduce the 

acquisition time of MRI images by reducing the number of measurements to be acquired for 

reconstruction purposes [41]. It has also been used to reduce the complexity of the framework of 

radars by eliminating the necessity of matched filtering in the radar receiver and reducing the 

sampling rate of the receiver [42]. The compressed sensing theory has lead to the design of the 

“single pixel” compressed sensing camera that computes random linear measurements (inner 

products between the scene and a set of test functions) of the scene under view instead of pixel 

samples [43]. This camera compresses the scene under view at the same time that it is acquired, 

thus, it has the ability to handle high-dimensional data set.  
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CHAPTER 3 

DISCRIMINATIVE SPARSE REPRESENTATIONS FOR IMAGE CLASSIFICATION 

USING PURSUIT ALGORITHMS  

 

Sparse representations have been actively used in areas such as noise removal [44], 

inpainting [45], compression [46], reconstruction [30-32], among other areas of signal processing 

due to the fact that many natural signals can be sparse with respect to the proper dictionary. 

Therefore, a signal can be represented with a small number of dictionary elements such that its 

reconstruction error is minimal. Recently, there has been an effort to expand sparse 

representation to the area of image classification (e.g., [47-49]).  In [47], Wright et al. uses the 

training images as the atoms of the dictionary to obtain the sparse representation of the test 

images for the purpose of face recognition. The classification is performed by assigning the test 

image to the class that minimizes the residual. This algorithm performs well when the objects to 

be classified have minimal pose variation. However, for objects with high intra-class variation, 

the representation may no longer be sparse. Also, it requires a large number of training images 

per class to be able to represent the test samples as a linear combination of only the training 

images from the same class. In [48], Huang and Aviyente proposed a framework that combines 

reconstruction error and discrimination power to obtain sparse and discriminative representation 

of signals using MP. A similar method can be found in [49], where a metric that includes both 

reconstruction and discrimination terms is proposed to learn adaptive dictionaries which leads to 

sparse discriminative and reconstructive image representation. This method learns one dictionary 

per class which can be computationally complex.  
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  The most widely used method to obtain discriminative representations of images from 

different classes is Linear Discriminative Analysis (LDA). However, as mentioned before, LDA 

is known to be highly sensitive to the noise in data. On the other hand, the sparse representation 

method is robust to noise but its main objective is to look for representations that are suitable for 

reconstruction. To be able to classify images with high classification accuracy, it is more 

important to obtain discriminative representations rather than reconstructive representations. To 

reach this goal, a robust algorithm is proposed based on greedy pursuit algorithms that instead of 

choosing atoms for reconstruction purposes, chooses the atoms that are suitable for image 

classification. 

 

3.1  DISCRIMINATIVE SPARSE REPRESENTATIONS  

In this chapter, an objective function that combines discrimination power and sparsity to 

obtain discriminative representations of images is introduced. To demonstrate the effectiveness 

of using discriminative representations instead of reconstructive representations, the original 

CoSaMP was modified so that classification results can be obtained using reconstructive features 

as well as discriminative features. Then, an algorithm derived from CoSaMP, in conjunction with 

the objective function, is proposed to select the smallest possible number of atoms that produce 

the best discriminative representation of a set of images. This algorithm was inspired by 

CoSaMP and the simultaneous sparse approximation algorithms described in [50, 51]. Finally, 

some classification experiments that demonstrate the effectiveness of the objective function and 

the robustness of the proposed algorithm is presented.    
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3.1.1 Objective Function 

 Given an overcomplete dictionary km  with k atoms of dimensionality m,  an 

input matrix ],...,,[ 21 cYYYY   where ciini  1]21 ,...,,[ yyyY  corresponds to the set of in  

vectorized training images from the thi  class given that there are },...,2,1{ cC   different classes 

and 




c

i

inn

1

 is the total number of images, the feature matrix ],...,,[ 21 nxxxX   can be 

obtained by projecting the training images against the atoms in the dictionary where jx  is the k-

dimensional feature vector that corresponds to the thj  training image. To measure how well 

each atom in the dictionary produce a discriminative representation of the n training images, the 

following discrimination measure is used: 
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w

b
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F

S

S
X  ,                                                     (3.1) 

where bS  and wS  are the between-class and the within-class scatter matrices, respectively 

defined as: 
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and   is the total mean vector defined as: 
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This measurement F(X) will produce a vector of size k1  that contains the 

discriminative power of each atom. The highest values in this vector correspond to the atoms that 

produce a discriminative representation of the training images by maximizing the between-class 

scatter and minimizing the within-class scatter. Given that nsX
~

 is a subset of nkX  

( ks  ), the combination of discrimination and sparsity measures is proposed to identify the 

atoms that discriminate and create a sparse representation of the training signals by maximizing 

the following objective function: 

                                                         

01

)(maxarg
~





n

i
iF xX

X
X                                            (3.6) 

where the rows of the subset matrix X
~

 are the most discriminative representations. The indices 

of the atoms that produce these discriminative representations will be stored in the set   to 

obtain the low dimensional features of the test images.  

 

3.1.2 Discriminative CoSaMP vs. Reconstructive CoSaMP 

In the literature, it has been shown that discriminative representations perform better than 

reconstructive representations for classification purposes [68, 69]. To illustrate that this is also 

true for the case of sparse representations, CoSaMP was used to evaluate the effect of selecting 

atoms that produce discriminative representations of the images versus atoms that produce 

reconstructive representations. The original CoSaMP algorithm was modified to be able to obtain 

the atoms that simultaneously produce a reconstructive representation of a set of images from 
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different classes. Then, the objective function (3.6) was introduced to the algorithm to obtain the 

atoms that produce a discriminative representation of the same set of images.   

Given a signal nmY  and a dictionary km  with k atoms, the reconstructive 

CoSaMP (RecCoSaMP) algorithm starts by initializing the residue R  as the input matrix Y  and 

the representation matrix nkA   as a matrix of zeros. Then, the algorithm obtains the set of 

indices of the atoms that produce a representative representation of the images in Y  by: 

(1) Generating a proxy matrix RP tcr ),(  where n}{1,2...,c   and k}{1,2...,r  .  

(2) Obtaining the largest coefficient from each row of the proxy matrix and storing it in 

the vector )(rp .  

(3) Identifying the indices of the 2s largest coefficients in the vector )(rp . 

(4) Merging the identified indices in step (3) with the set used to obtain the previous 

representation matrix A . At the first iteration, the set used to obtain the 

representation matrix is empty. 

(5) Solving the least squares problem by restricting the columns in the dictionary using 

the indices on the merged set. 

(6) Obtaining the largest coefficient from each row of the approximation matrix obtained 

in (5) and storing it in the vector )(rb .  

(7) Identifying the indices of the s largest coefficients in the vector )(rb . 

(8) Retaining only the dimensions of the approximation matrix obtained in step (5) using 

the indices identified in step (7) and setting all other dimensions to zero to obtain the 

s-sparse representation matrix A . 
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(9) Updating the residue by subtracting the part of the input matrix that has been already 

approximated from the input matrix. 

These steps are repeated until the stop criterion is met. For the Discriminative CoSaMP 

(DiscCoSaMP) algorithm, the first five steps (1)-(5) are similar to the RecCoSaMP algorithm. 

Then, the objective function (3.6) is introduced to identify the s indices of the atoms that produce 

a discriminative representation of the input images. This set of indices is used to retain only the 

most significant dimensions of the representation matrix B  and setting all other dimensions to 

zero. Finally, similar to the RecCoSaMP algorithm, the residue is updated. A mathematical 

description of these algorithms can be found in Figure 9. 

In the first four steps of the DiscCoSaMP, a set of 2s atoms are selected based on the 

magnitude of the coefficient of the proxy signal to obtain the result of the least squares problem. 

These steps, however, may be redundant since this set of atoms is pruned to obtain only the s 

indices of the most discriminative atoms. The indices of atoms that produce a discriminative 

representation of the images can be selected directly from the solution of the least squares 

problem while still obtaining sparse representations with high discrimination power for image 

classification.  
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Input: Signal nmY , dictionary km , sparsity level s 

Output: Set of indices   

Reconstructive CoSaMP Discriminative CoSaMP 

YR                                

00 A      

00                            

1j                                                 

repeat 

   RP tcr ),(                       

   ),(max)( crr Pp        

    ))((maxarg 2s
r

rp       

   T 1 j        

   YB 
T|

                   

    ),(max)( crr Bb   

    )(maxarg r
r

j b  

     |BA j                          

    jAYR                     

    1 jj                                       

until stop criterion 

YR                                  (Residue initialization) 

00 A                                 (Initial approximation) 

00   

1j                                                 

repeat 

   RP tcr ),(                   (Generate the proxy) 

   ),(max)( crr Pp             (Largest coeff. in each row) 

    ))((maxarg 2s
r

rp        (Index of 2s largest coeff.) 

   T 1 j                     (Update the set of indices) 

   YB 
T|

                         (Least squares problem) 

     j )(maxarg B
B

F  

     |BA j                          (Pruning step) 

    jAYR                    (Residue update) 

    1 jj                                       

until stop criterion 

Figure 9. Reconstructive CoSaMP and Discriminative CoSaMP algorithms 

 

3.1.3 Discriminative Sparse Representations Algorithm 

In this section, the proposed method derived from CoSaMP to obtain the indices of the 

atoms that produce a discriminative representation of a set of input images from different classes 

is presented [52]. As input, the proposed algorithm needs a matrix containing the m-dimensional 

vectorized training images nmY , the overcomple dictionary km  with k atoms, the stop 

criterion and the desired sparsity level s  (the number of atoms to obtain the discriminative 
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representation of the images). Similar to the greedy methods explained in Chapter 2, the residue 

R  is initialized as the input matrix Y . Then, the proposed algorithm selects the indices of the 

atoms that produce a discriminative sparse representation of the input matrix by: 

(1) Solving the least square problem, RX
 , to obtain the approximation matrix.   

(2) Getting the set   of s  indices of the atoms that solve the optimization problem (3.6) 

using the approximation matrix from step (1). 

(3) Pruning the approximation matrix by retaining only the rows produced by the atoms 

in the set of indices obtained in (2) and setting all other rows to zero.  

(4) Updating the residue through the subtraction between the input matrix and the part of 

the signal that has been approximated.   

These steps are repeated until the stopping criterion selected is met.  A mathematical description 

of the proposed algorithm can be found in Figure 10. 

 

Input: Matrix of images nm
Y , dictionary km , sparsity level s 

Output: Dictionary indices   

YR 0                                                    (Residue initialization) 

1l                                             

repeat 

     1
 lRX                                        (Least squares problem) 

    l )(maxarg X
X

F                            (Index of s largest values) 

    
ls  |XA                                          (Sparse Approximation) 

    sl AYR                                     (Residue update)   

    1 ll                                 

until stop criterion 

Figure 10. Discriminative Sparse Representations Algorithm 
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In the literature, several methods are described to solve the least squares problem. In [32], 

the use of Richardson’s iteration or conjugate gradient method is recommended to solve this 

problem. In this thesis, the biconjugate gradient stabilized method (BiCGStab) was used, which 

is a variant of the conjugate gradient method but have a smoother and faster convergence.  As 

stopping criterion, given that l  is the set of indices identified on the thl  iteration and 1l  the 

set of indices identified on the  th1-l  iteration, the cardinality of the intersection between l  

and 1l  was used. If the cardinality of the intersection is less than the pre-determined sparsity 

value s, the algorithm continues to the next iteration until the following criteria is met:  

                                                                 sll  1                                                        (3.7) 

 

3.2 EXPERIMENTS AND RESULTS 

 In this section, experimental results on two different databases are presented to evaluate 

the performance of the algorithm. The algorithm is implemented for the cases of noiseless 

images and images with different levels of noise and occlusion to demonstrate the robustness of 

the algorithm. The experiment in Section 3.2.3 uses a subset of the COIL database to evaluate 

the performance of the proposed algorithm with images with low intra-class variability. Also, a 

comparison between the results of the proposed algorithm with those of a modified version of 

OMP will be presented to evaluate if the number of atoms selected at each iteration affects on the 

classification results. The classification results were obtained using Support Vector Machine 

(SVM) as the classifier, where the accuracy of SVM depends on the model parameters chosen to 

classify the images. In the second experiment, to avoid the dependency of the classification 

results on the classifier parameters the performance of the proposed algorithm was evaluated 
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using a similarity metric based on correlation. The database used in this experiment contains 

images with high intra-class variability to prove that the proposed algorithm can handle class 

variability and the results compared with those of LDA. 

 

3.2.1  Databases and Experimental Setup 

The first database used to evaluate the algorithm is the Columbia Object Image Library 

(COIL-20) dataset. This database consists of 1440 grayscale images of 20 different objects as 

shown in Figure 11. Each object was placed in a motorized turntable against a black background 

and it was rotated through 360 degrees to obtain images every 5 degrees, for a total of 72 images 

per object [53]. Each image in the database was resized from 128128  pixels to 1616  pixels 

and rearranged into a vector of length 256. These vectors were divided into training and testing 

sets and the vectors of each set were concatenated in a matrix where the training matrix was used 

to obtain the atoms that simultaneously represent the images and the test matrix to obtain the 

classification accuracies. From this database only a subset of 423 images containing the first six 

objects was used, which is going to be called Coil-1.  
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Object 1 Object 2 Object 3 Object 4 Object 5

Object 6

Object 11

Object 16

Object 7 Object 8 Object 9 Object 10

Object 12 Object 13 Object 14 Object 15

Object 17 Object 18 Object 19 Object 20
 

Figure 11. Sample images from COIL-20 database (The images in this figure are for visual 

reference only, the text in the images are not meant to be readable) 

 

The second database is a more challenging database whose objects are against real world 

backgrounds, under different lightning conditions, with high intra-class variability and can even 

contain some occlusions. The database is the TU Darmstadt Database from the PASCAL Object 

Recognition Database Collection, formerly the ETHZ database [54]. This database consists of 

images from three different classes: side views of motorbikes, cows and cars. Samples of the 

images from this database can be seen in Figure 12. From this database a subset of 50 images per 

class was extracted for a total of 150 images. The objects in the images were extracted with the 
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segmentation mask provided and resized into 128128  images, whose pixels were rearranged 

into a vector of length 16,384. Similar to the previous database, the vectors were divided into 

training and testing sets and the vectors of each set were concatenated in a matrix where the 

training matrix was used to obtain the atoms that simultaneously represent the images and the 

test matrix to obtain the classification accuracies. 

 

 
Figure 12. Sample images from the ETHZ database 

 

The robustness of the algorithms was evaluated by applying different levels of noise and 

occlusion to the images. For both databases, the noisy images were generated using random 

Gaussian noise with signal-to-noise ratios (SNR) of 20dB, 15dB and 10dB. The occluded images 

from the Coil database contain black squares of size 33 , 55  and 77 . For the case of the 

images from the ETHZ database, the black squares are of size 1515 , 1919  and 3131 .  
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 In both cases, the features of the images were extracted by using an overcomplete 

dictionary formed by a combination of Haar atoms and Gabor functions. Haar wavelets have 

been used to detect/model discontinuities in images [55, 56]. On the other hand, Gabor functions 

are good for modeling continuous elements and directionality in images. Some advantages of the 

Gabor functions are their ability to save the neighborhood relation between pixels, its robustness 

against illumination and noise and its ability to represent images based on the way the human 

mind does [57]. The ability of these bases to model both continuities and discontinuities make 

them suitable to classify natural images that consist of continuous and discontinuous elements. 

The overcomplete dictionary used in the experiments contains 256 Haar atoms and 781 Gabor 

atoms for a total of 1037 atoms. The Haar atoms were generated using the scaling function 

corresponding to the length of the vectorized images and the wavelet functions for all shifts and 

eight scales. And the Gabor functions were generated as: 

                                                     ))(cos()()( 00 xxwxgxG                                                  (3.8) 

where 50 w is the center of support in the frequency domain and 

                                                



























 


2

exp
2

1
)(

2
0





xx

xg                                               (3.9) 

is a Gaussian function with scale 05.0  and center 0x .  

 

3.2.2 Reconstructive vs. Discriminative Representation 

 The first experiment evaluates the performance of the RecCoSaMP and DiscCoSaMP to 

illustrate how the inclusion of a cost function that quantifies separability between the images’ 

classes can improve the classification accuracy. This experiment was performed using Coil-1, 
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which contains 432 images from 6 different classes, was performed to evaluate the performance 

of the Reconstructive and Discriminative CoSaMP algorithms presented in Section 3.1.2. The 

experiment was performed using 396 images as training images and 36 as test images. For the 

classification stage, SVM was used as the classifier and the results are an average of a 12-fold 

cross-validation. 

SVM is a method that uses a kernel mapping function which transforms the input data to 

a higher dimensional plane seeking the optimal hyperplane that best separates the feature vectors 

from different classes. Some of the most commonly used kernel functions are lineal, polynomial, 

radial basis functions and sigmoids. SVM was implemented using the library LibSVM [58] and 

the radial basis function as the kernel function. The accuracy of the algorithm has a large 

dependency on the model parameters. If these parameters are not selected correctly, the accuracy 

results may not be optimal. In [59], it is recommended to use the grid search to find the optimal 

values of the parameters. This is a method that evaluates the performance of the algorithm trying 

different values of each parameter across a desired range. Then, the set of parameters with the 

“best” accuracy is picked. 

The goal of this work is to obtain the maximum classification accuracy with the smallest 

number of atoms. Therefore, the results are evaluated in terms of the optimal and maximum 

results using the following cost function:  

                                                                   )max( pSA                                                       (3.10) 

where A  is the percentage of classification, pS  is the percentage of sparsity (number of atoms 

selected to obtain the accuracy/total number of atoms in the dictionary) and  ,  are constants. 

When 1  and 1 , the optimal results which correspond to the point where there is an 

optimal tradeoff between the accuracy and the number of atoms used to classify the images can 
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be obtained. The maximum accuracy results correspond to 1  and 0  which is obtained 

when the maximum accuracy has occurred for the smallest number of atoms. 

From Table 1, it can be seen that there is not a big difference between the optimal 

accuracies of both algorithms but the optimal sparsity of the Discriminative CoSaMP 

(DiscCoSaMP) is much smaller than that of the Reconstructive CoSaMP (RecCoSaMP). This is 

because the first atoms selected using RecCoSaMP are suitable to reconstruct the images and not 

necessarily to classify them, making it necessary the use of more atoms to obtain high 

classification results. Comparing the two algorithms, there is a difference of 6.26% in sparsity 

which corresponds to 65 atoms more atoms needed to obtain similar results. These results prove 

that using the cost function (3.6), classification accuracies near the maximum results can be 

obtained using much less atoms than using a reconstructive cost function.  

 

Algorithm 
Opt. / Max. 

Results  

Noiseless 

(%) 

Reconstructive CoSaMP 

Opt. Spar. 13.91 

Opt. Max. 89.35 

Max. Spar. 21.33 

Max. Acc. 93.52 

Discriminative CoSaMP 

Opt. Spar. 7.65 

Opt. Max. 90.28 

Max. Spar. 21.48 

Max. Acc. 93.98 

Table 1. Classification results using DiscCoSaMP and RecCoSaMP from Coil-1 
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3.2.3 Robustness of the Discriminative Sparse Representations Algorithm  

In this section, an evaluation of the proposed algorithm using images with low intra-class 

variability is performed.  The robustness and sparsity of the algorithm are evaluated with images 

under different levels of Gaussian noise and occlusion. Also, a comparison between the 

classification results obtained using the atoms selected with OMP and the proposed algorithm 

will be presented. The image database used was Coil-1 which contains 432 images from 6 

classes with low intra-class variability. From the 432 images in the database, 396 images were 

used as training images to obtain the indices of the atoms that best discriminate between classes 

and the other 36 were used as testing images to evaluate the performance of the algorithm using 

SVM as the classifier. The results are the product of an average of a 12-fold cross-validation.  

To be able to compare the results of the proposed algorithm with OMP, it is necessary to 

modify OMP in a way that it selects the atoms that produce the most discriminative 

representation instead of a reconstructive one. The modification was done by replacing the 

identification step in the OMP algorithm with the cost function in equation (3.6). The original 

step selected the atoms most correlated with the residue. With the introduction of the cost 

function (3.6), the algorithm will select the atom that produces the most sparse and 

discriminative representation. The mathematical description of the modified OMP algorithm can 

be seen in Figure 13. 
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Input: Signal Y , dictionary   

Output: Set of indices   

YR 0                                             (Residue Initialization) 

00 A                                              (Initial approximation) 

0  

1n                                                      

repeat 

    ,
1 nRC  

    n )(maxarg CF


                      (Atom Selection) 

    nnn 1                           (Merging the indices of the selected atoms) 

    
2

|minarg XYA
X

nn           (Least square minimization) 

    nn
n AYR  |                       (Residue update) 

    1 nn                                       

until stop criterion 

Figure 13. A modified version of OMP by adding a cost function that quantifies 

discrimination power and level of sparsity 

 

Table 2 shows the optimal and maximum accuracy results obtained from the modified 

OMP and the proposed algorithm for the case of Gaussian noise. It can be seen that, when the 

SNR value is low (20dB and 15dB), the optimal accuracy results from the proposed method are 

slightly higher compared to the modified OMP results with a maximum difference in the optimal 

sparsity values of around 0.58% (which corresponds to a difference of 6 atoms). When the noise 

level is higher, in this case 10dB, the optimal accuracy result from the proposed method is higher 

than the modified OMP with a difference of 0.16% in the optimal sparsity values (which 

corresponds to a difference of 2 atoms). For the case of images with occlusion, from Table 3, it 

can be seen that the proposed method has better optimal and maximum accuracy results than the 
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modified OMP. For the case of images with occlusion of size 77 , the classification accuracies 

of the proposed method are achieved with a smaller amount of atoms than the modified OMP.  

In conclusion, even though the sparsity values of both algorithms are not very different, 

the proposed algorithm still obtains better accuracy results than the modified OMP. These results 

show the robustness of the algorithm under noisy conditions and missing data. In real problems, 

due to the fact that the amount of noise or missing data in the images is unknown, it is better to 

use the proposed algorithm since higher classification results can be obtained at the cost of using 

only a few more atoms than the modified OMP. Also, the ability of the proposed algorithm to 

select multiple atoms at each iteration makes the computational time to be much faster than the 

modified OMP.  

 

Method 
Opt. / Max. 

Results  

Noiseless 

(%) 

20dB  

(%) 

15dB 

(%) 

10dB 

(%) 

Modified 

OMP 

Opt. Sparsity 3.52 3.55 3.53 4.32 

Opt. Accuracy 90.74 86.40 84.55 77.96 

Max. Sparsity 5.95 7.53 8.79 11.35 

Max. Accuracy 92.59 88.24 86.65 81.50 

Proposed 

Algorithm 

Opt. Sparsity 3.42 3.94 4.11 4.48 

Opt. Accuracy 90.74 86.73 84.80 80.71 

Max. Sparsity 4.97 4.42 5.25 6.31 

Max. Accuracy 91.44 87.05 85.20 81.15 

Table 2. Classifications results using a modified OMP algorithm and the proposed greedy 

algorithm from Coil-1 with Gaussian noise 
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Method 
Opt. / Max. 

Results 

Noiseless 33  55  77  

Modified 

OMP 

Opt. Sparsity 3.52 3.79 3.37 3.53 

Opt. Accuracy 90.74 81.59 73.72 62.70 

Max. Sparsity 5.95 10.57 11.67 13.81 

Max. Accuracy 92.59 84.24 77.02 66.65 

Proposed 

Algorithm 

Opt. Sparsity 3.42 3.70 3.51 2.66 

Opt. Accuracy 90.74 84.31 76.87 68.75 

Max. Sparsity 4.97 5.49 5.72 4.11 

Max. Accuracy 91.44 84.92 77.58 68.12 

Table 3. Classification results using a modified OMP algorithm and the proposed greedy 

algorithm from Coil-1 with occlusion  

 

3.2.4 Comparison with LDA 

Since LDA is one of the most commonly used methods to obtain image representation in 

a lower dimensionality space, the results obtained using this method were compared with those 

of the proposed method. The comparison was done using the ETHZ database and 10-fold cross-

validation. From the 150 images, 135 were used as training images to obtain the indices of the 

atoms that best discriminate between classes and the other 15 images were used as test images to 

evaluate the performance of the algorithm. Given that the dimensionality of the images in this 

database is 16,383 ( 128128 ), to obtain a representation of the images, it is necessary to 

construct a dictionary with the same dimensionality of the images. To avoid the construction of 

such a high dimensional dictionary, which would increase the computational complexity of the 

algorithm, nonoverlapping patches of 1616  pixels were extracted from the images. This 
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produces a total of 64 nonoverlapping patches per images from which only 10, selected 

randomly, were used to extract the features. To have a fair comparison, the patches of the images 

were projected to the same dictionary used to obtain the representation of the images in the 

proposed algorithm. In that way, the features vectors are extracted from the same feature space. 

Due to the fact that the search of the SVM parameters can be computationally expensive 

and it could be that the range chosen is not the one that contains the optimal values, the 

evaluation for this experiment was performed using a metric based on correlation which is 

independent of the classifier. First, the features were extracted by projecting the extracted 

patches to the selected atoms. Then, the thl  test patch is assigned to the class of the training 

patch that maximizes the following cost function: 
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                                     (3.11) 

where  

 jib  is the feature vector extracted from the thj  patch that belongs to the thi  training 

image  

 jib  is the mean of jib  and 
jib  its standard deviation 

 ld  is the feature vector extracted from the thl  testing patch from the test image  

 ld  is the  mean of ld  and 
ld  its standard deviation 

 q  is the dimension of the feature vector  

After classifying all the patches, the test image is assigned to the class that has the maximum 

number of patches assigned to that class:  
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where )(ip  is the vector that contains the number of test patches assigned to the thi  class and î  

is the label assigned to the test image. Finally, the classification accuracy is defined as: 
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where z is the total number of test images and 1le  if the test image is misclassified and 

0le , otherwise. To avoid overfitting of the results, an n-fold cross-validation was performed 

for all the experiments and for the case of noisy images, the process of adding Gaussian noise to 

the test images on each cross-validation was performed 15 times.  

 The optimal and maximum accuracy results of the LDA and the proposed algorithm can 

be found in Table 4 and Table 5. These results show that the proposed algorithm always 

surpasses LDA. For the case where the images have Gaussian noise, as expected, LDA has a low 

performance due to its sensitivity to noise. On the other hand, the proposed method is robust to 

noise. Even when the images have SNR = 10 dB, the optimal classification accuracy does not get 

lower than 88% of accuracy with a sparsity level of, at most, 4.95% which corresponds to around 

52 atoms. This is a reduction of 80% in the dimensionality of the patches, which corresponds to a 

reduction of 96.82% in the dimensionality of the images (520 features per images/16,384). For 

the case of images with occlusion, the optimal accuracies do not get lower than 89% with, at 

most, 42 atoms.  These results show that even with images with high intra-class variability the 

algorithm is robust to noise and the sparsity level needed to obtain the optimal accuracy results 

do not get higher than 5% of the dimensionality of the images. 
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Method 
Opt. / Max. 

Results  

Noiseless 

(%) 

20dB 

(%) 

15dB 

(%) 

10dB 

(%) 

LDA 

Opt. Sparsity 4.61 6.38 6.01 6.37 

Opt. Accuracy 81.33 65.80 63.07 62.43 

Max. Sparsity 7.73 9.01 9.79 9.20 

Max. Accuracy 82.67 67.60 65.40 64.00 

Proposed 

Algorithm 

Opt. Sparsity 2.87 4.12 4.34 4.95 

Opt. Accuracy 90.67 89.27 89.20 88.00 

Max. Sparsity 7.40 15.14 13.87 14.94 

Max. Accuracy 91.33 91.33 92.40 91.13 

Table 4. Classifications results using LDA and the proposed greedy algorithm from the 

ETHZ database with Gaussian noise 

 

Method 
Opt. / Max. 

Results 

Noiseless 

(%) 

1515  

(%) 

1919  

(%) 

3131  

(%) 

LDA 

Opt. Sparsity 4.61 5.18 4.71 4.67 

Opt. Accuracy 81.33 79.87 78.87 78.13 

Max. Sparsity 7.73 7.70 7.11 7.05 

Max. Accuracy 82.67 81.33 80.27 79.47 

Proposed 

Algorithm 

Opt. Sparsity 2.87 3.16 3.49 4.05 

Opt. Accuracy 90.67 90.13 90.13 89.33 

Max. Sparsity 7.40 11.07 12.61 14.46 

Max. Accuracy 91.33 92.40 92.93 92.53 

Table 5. Classification results using LDA and the proposed greedy algorithm from the 

ETHZ database with occlusion  
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3.3 CONCLUSIONS 

 In this chapter, a modified cost function that achieves a tradeoff between discrimination 

power and the sparsity was proposed and a corresponding greedy algorithm based on CoSaMP 

was developed to obtain the atoms that produce a discriminative sparse representation of a set of 

images. The atoms selected from the overcomplete dictionary based on the training images were 

used to extract features and classify images from the testing set. It was shown that using a cost 

function to selects atoms that produce discriminative representations rather than reconstructive 

ones can reduce the number of atoms needed to obtain high classification accuracies.  

Two different experiments were performed to evaluate the performance and robustness of 

the proposed algorithm. To evaluate the robustness of the algorithm, different levels of Gaussian 

noise and occlusion were added to the test images. The experiments showed that the proposed 

algorithm can work under conditions where the images contain high level of noise and occlusion 

and still maintain a low sparsity level. Also, it was shown that the algorithm is able to handle 

image datasets with low intra-class variability as well as high intra-class variability. In addition, 

it was shown that the proposed algorithm can work with reduced dimensionality data, such as 

nonoverlapping random patches, instead of the whole images avoiding the construction of high 

dimensional dictionaries.  
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CHAPTER 4  

DISCRIMINATIVE FEATURE SELECTION FROM COMPRESSED SENSING 

MEASUREMENTS FOR IMAGE CLASSIFICATION 

  

In recent years, there has been a move in signal processing to sense signals using fewer 

samples than the Nyquist rate of samples, which is known as compressed sensing. Recently, this 

idea has been explored in the area of signal classification and detection where the high 

dimensionality of the data can increase the complexity of such applications. For example, the 

current methods to obtain images for MRI applications can be time-consuming due to the high 

dimensionality of the images. To solve this problem, compressed sensing has been used to 

improve the acquisition time of the images without degrading the image quality [60]. In [61], the 

use of random measurements from local patches is proposed to classify texture images using a 

single nearest neighbor classifier. First, a texton dictionary is learned from the compressed 

sensing measurements of the patches using K-means clustering and a histogram per class is 

learned by labeling each of the patches to the closest texton in the dictionary. Then, a new 

texture image is classified by finding the histogram that is closest to the new texture image 

histogram. In [62], compressed sensing has been used for signal detection by applying the MP 

algorithm to select fewer numbers of incoherent measurements than the necessary for 

reconstruction purposes. Compressed sensing has also been used for signal classification [63] by 

projecting the training signals and the test signal to be classified onto random vectors and 

classifying the signal to the class of the training signal with minimum distance between the 

compressed measurements of the test signal and the compressed measurements of the training 

signal.  
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In this thesis, the work of Haupt et al. [63] will be used as motivation for the work 

presented in this chapter. Given a test signal n
T f  and a sampling matrix nk

A
  where 

jA  corresponds to the element/row j in the matrix, Haupt et al. have shown that the compressed 

measurements of the signal Tf , besides being used for reconstruction purposes, can be used as 

features for classification purposes. The compressed measurements of the signal Tf  are 

obtained through the following inner product: 

                                                       )(,)( jj Tj wfAy          for kj ,...,2,1                     (4.1) 

where )( jw  is the vector that models the measurement noise with entries are i.i.d. ),0( 2N  

random variables and nk  . Given a set },...,,{ 21 mfffF   of m training signals, the 

classification is performed by assigning to the test signal the class of the training signal that 

solves the following minimization problem 

                                                          
2

minargˆ Afyf
Ff




k .                                                 (4.2) 

Haupt et al. performed several simulations using this method to validate the following theoretical 

classification error bound:  
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is the minimum Euclidean distance between every pair of training signals and   is used for 

the cases where the training signals in F  do not have unit norm. This method uses all of the 
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measurements obtained from compressed sensing without taking into account the presence of 

possible redundancy or irrelevant features in the measurements which may reduce the 

classification accuracy. This problem can be solved by applying a feature selection method in 

conjunction with compressed sensing to keep only the relevant features for classification 

purposes.   

Feature selection is an important step for the area of image classification that selects a 

subset of relevant features from an input set of images to construct a robust model for 

classification purposes. Given a set of features, the elimination of irrelevant features will help to 

improve the classification accuracy, rather than using the whole set of features. In [64], it is 

shown that classification accuracy can drop significantly in the presence of irrelevant features if 

the feature selection method used fails to identify them. This chapter proposes to include a cost 

function to select the most relevant features from the compressed sensing measurements.   

 

4.1 DISCRIMINATIVE COMPRESSED MEASUREMENTS   

 To select the set of measurements/features that are the most relevant for classification 

purposes, a metric that measures the discriminative power of each feature vector is proposed. 

This measurement will be used to sort the feature vectors from the random measurements and 

select the most discriminative features for classification purposes. Using this method, it is 

expected to obtain better classification accuracy using less feature vectors than using the whole 

set obtained with compressed sensing.  

 Given a set },...,,{ 21 mfffF   of m  training signals, where n
i f , and a sampling 

matrix nkA  with k random vectors, and random measurements obtained as: 
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       for kj ,...,2,1  and mi ,...,2,1              (4.5) 

the discrimination power of the measurements produced by each random vector is obtained using 

the Fisher discriminant ratio (explained in Section 3.1.1) as:  
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Based on this measurement, the features will be rank ordered and the first p  dimensions will be 

selected and stored in npM
~

, discarding the pk   dimensions with smaller discrimination 

values. The indices of the p  feature vectors selected will be stored in   to be used to restrict 

the rows of the sampling matrix A  and obtain the measurements of the test image and the 

training images. The test image y  will be classified to the thl  class if the training image that 

minimizes:  

                                                            fAy
Ff




 |minarg                                                          (4.7) 

also belong to that class. As before, the classification accuracy is defined as: 

                                                     1001 1 
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where z is the total number of test images and 1ie  if the test image is misclassified and 0ie  

otherwise. The mathematical description of this method can be found in Figure 14. 
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Input: Training signals mnF ,Test signal n
T f , sampling matrix nkA  

Output: Test image label l  

Haupt et al. Algorithm Proposed Algorithm 

 

 

 
  TfAy ,                                      

  Afy
Ff




minargl  

FAM ,                      (Training measurements) 

 ))((maxarg M
M

F        (Feature Selection) 

TfAy ,|                 (Test measurements) 

fA
Ff




 |minarg yl      (Test labeling)                                

Figure 14. Haupt et al algorithm (left) and the proposed algorithm (right) for image 

classification from compressive measurements 

 

4.2 EXPERIMENTS AND RESULTS 

In this section, the results obtained with the proposed algorithm will be compared to 

those of the Haupt et al. algorithm. The database used in this experiment is the ETHZ database 

explained in Section 3.2.1. In this case, to obtain the compressed sensing measurement, the 

original images of size 128128  were used instead of 1616  nonoverlapping patches. The 

elements of the sampling matrix were drawn from a Gaussian function with zero mean and 

unitary standard deviation. The results of this section are given for 100 simulations with a 10-

fold cross-validation.  

Figure 15 shows the results for (a) 20 measurements, (b) 40 measurements, (c) 60 

measurements, (d) 80 measurements, (e) 100 measurements and (f) 256 measurements as the size 

of the compressed samples from which the most relevant features will be extracted. The solid 

straight red line in the graphs corresponds to the result of Haupt et al. algorithm used as reference 

and the blue line with the asterisks corresponds to the results obtained with the proposed feature 

selection method.  
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Figure 15. Classification results of the proposed method using different number of 

measurements: (a) 20 measurements, (b) 40 measurements, (c) 60 measurements, (d) 80 

measurements, (e) 100 measurements and (f) 256 measurements.  
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For all the cases presented in Figure 15, the proposed algorithm obtains similar or better 

results with less number of measurements/features than using the whole set. When the number of 

measurements is less than 20, removing some features will degrade the classification accuracy 

because all the features available are important to be able to discriminate the images. Table 6 

presents the classification results obtained using different number of measurements and the size 

of the minimum subset of these measurements needed to obtain similar or better accuracy with 

the proposed method. It can be seen that as the number of compressed sensing measurements 

increases, the amount of reduction in the support of the feature set that also increases. Hence, 

when more number of features is available, there is more redundancy and a chance to improve 

classification by adding a feature selection step to compressed sensing.  

 

# of Measurements 

/ Features 

Accuracy using the 

whole set of 

measurements / 

features 

Smallest  

# of Measurements/Features  

to reach the same or better 

accuracy with the proposed 

method 

Maximum 

reduction that 

can be achieved 

20 Measurements 79.15% 13 35% 

40 Measurements 83.85% 21 47.5% 

60 Measurements 84.39% 19 68.33% 

80 Measurements 84.61% 15 81.25% 

100 Measurements 84.6% 13 87% 

256 Measurements 84.4% 9 96.48% 

Table 6. Number of measurements needed with the proposed method to achieve better 

results than using the whole set of measurements 
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4.3 CONCLUSIONS 

In this chapter, the inclusion of a discrimination measure for the selection of features 

from compressed sensing measurements was proposed. The motivation for this modification to 

compressed sensing is to remove redundant or irrelevant features from the original compressed 

features to increase the classification accuracy. The performance of the proposed algorithm was 

evaluated with noiseless images from the ETHZ database. It was found that using the Fisher 

discriminant ratio to select a subset of the compressed sensing samples improves the 

classification accuracy and decreases the sparsity of the feature set. As a result, the selection of a 

subset of the features produced similar or better results than using the whole set of features. With 

the proposed algorithm, it was obtained that the number of measurements can be reduced to at 

most by 35% from 20 measurements and by 96.48% from 256 measurements. In conclusion, it is 

possible to achieve better classification results using a subset of the features than the whole set.  
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

 

5.1 CONCLUSIONS 

This thesis discussed the problem of selecting a compact set of features with high 

discrimination power for image classification. The methods proposed to solve this problem are 

sparse representation and compressed sensing, two closely related and well-developed 

techniques for signal compression and reconstruction. The methods proposed in this thesis 

extend the framework for sparse signal representation and sensing to image classification 

applications such that the representations are sparse and discriminative at the same time. Both 

methods help to reduce the dimensionality of the features to avoid handling high dimensional 

images for classification purposes. The first method achieves this goal by projecting the sample 

images against a small number of elements from an overcomplete dictionary that produces a 

discriminative sparse representation of the data. The second method uses a feature selection 

measure to obtain, from random compressed sensing measurements, the most relevant 

measurements (features) such that the classification accuracy is equal or better than using all the 

measurements. 

In the first part of this thesis, a sparse representation method was proposed based on a 

greedy algorithm similar to CoSaMP to select a group of atoms from an overcomplete dictionary 

to produce a discriminative sparse representation of a set of images from different classes. This 

goal was achieved through the inclusion of a cost function that performs a tradeoff between 

discrimination power and sparsity. First, it was showed that discriminative representations 

perform better than reconstructive representations for classification purposes. Then, different 
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experiments were performed using two different image databases with different levels of 

Gaussian noise and occlusion. The results of these experiments showed that the inclusion of the 

cost function helps to select atoms that produce discriminative features and the classification 

accuracy of the proposed method is better than the accuracy obtained from the modified OMP. 

The proposed algorithm was also compared with LDA using 128128 images from the ETHZ 

database. In this case, random patches of size 1616  were extracted to avoid the construction of 

a high dimensional dictionary. It was shown that classification accuracies higher than those of 

LDA can be obtained using low dimensional features extracted from a set of random patches. For 

the worst case, the dimensionality of the patches was reduced from 256 to 52 which correspond 

to a reduction of 80%. In conclusion, it was showed that the proposed algorithm can handle 

images with high intra-class variability and high level of noise and occlusion.  

For the second part of this thesis, a feature selection method was proposed to select the 

most relevant features from the compressed sensing measurements for classification purposes. 

With the use of a cost function that measures the discrimination power of the set of random 

measurements, it was shown that a subset of the measurements produces better classification 

accuracy than the whole set. This is a result of eliminating irrelevant features present in the 

compressed sensing measurement. The greater the number of compressed sensing measurements 

available to choose from, the greater the number of irrelevant features that can be eliminated 

using the feature selection method proposed in Chapter 4.  

 

5.2 FUTURE WORK 

As future work, different methods could be evaluated to select the patches instead of 

using random patches from high dimensional images. The selection of patches with high 
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discrimination power would help to obtain higher classification accuracies. Some methods that 

have been used to extract discriminative patches for classification purposes are combinatorial 

and statistical methods [65] or methods that extract the patches around some interest points 

detected using operators such as the Förstner operator [66] or SIFT descriptor [67]. Also, future 

research can include determining the optimal size of the patches such that there is a tradeoff 

between the dimensionality of the patch and the classification accuracy to avoid computational 

complexity in the implementation of the algorithm. 

For the proposed method presented in Chapter 4, future work could consider different 

sampling matrices other than the Gaussian random matrix used in this thesis. The sampling 

matrix to obtain the measurements can be learned from the images such that only a small number 

of measurements contain higher discrimination information. Previously, it was mentioned that 

the construction of learned dictionaries can increase the computational complexity of the 

algorithm. To avoid this problem, only one sampling matrix with low dimensionality can be 

learned using a subset of patches instead of the whole images. 
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