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INTRODUCTION

The writers of most elementary calculus books find

that they need many theorems whose proofs, they feel,

should be omitted since the average student would not

appreciate or understand such proofs. Some writers, in

their effort to give simple proofs of these theorems,

make statements that are false. Occasionally they fail

to acknowledge the necessity of certain assumptions.

The writer of the advanced calculus book feels that

these omitted proofs are either too elementary or else

not a true part of his work and therefore he also omits

them. In this way we find omitted from elementary and

advanced calculus the proofs of many necessary theorems.

For example, we find that the subject of continuity is

mentioned in elementary calculus and discussed at.some

length in advanced calculus, but in neither case do we

find any proof of the continuity of the elementary

functions. Again, the derivations of the formulas for

.derivatives are based on the assumption that the derivative

exists.

The purpose of this paper shall be to state and

prove those theorems that are important to the elementary

calculus and are not proven in most elementary or advanced

calculus texts. In deing this we shall assume those



theorems of real variable that are ordinarily assumed

in advanced calculus. An effort will be made to point

out some of the errors that are made in some of the

elementary calculus books. Also, numerous examples

will be given to illustrate other errors commonly made.

No effort will be made to include proofs or definitions

generally given correctly in the elementary or advanced

calculus book.



CHAPTER I

LIMITS AND CONT INUITY

1.1 Limits. Since the idea of the limit is basic

to the study of calculus it is important that its present-

ation be made with care. We define the limit of f(x) at

x=a as a number A such that if 6 is any positive

number we can find a number I7 such that if Ix n al<flz

and x *a then it follows that lf(x)-A’<6 . We

write this as

(1) Lim f(x) : A

x=a

The definition of the limit of a function of n variables

is very similar to that for one variable. We define the

limit of f(x1......xn) at the point x1 : al , x2: a2 , .....

1:11 I an , as a number A such that if 6 is any positive

number, we can find a number r7 such that if lxl- a1'</7,

'12 " 32k?! .....l‘xn- anl<17 and the point

(xl ....xn) =1"- (al ....an) then we have I f(x1 ...xn) -. like .

If in definition (1) we interpret x as (x1...151) ,

a as (a1... an) and Ix - alas the maximum of [x1..a1|

for i a l,2,.....n, then definition (1) becomes the definition

of the limit for n-variables.





Likewise we define the limit of f(x) at x=oo as

a number A such that if e is any positive number, we can

find a number ’7 such that if le >07 then it follows

that lf(x) - A|< 6 . We write this as

(2) Lim f(x) 3A

x=oo

We define the limit of f(xl....xn) at x,=°o,x,=°°,---,

7‘4"” : “Kw: “I ) 35mm: ‘22, """ I 797: “At-K 1

as a number A such that if e is any positive number we

can find a number n? such that if Ix,]>nz , '14)”? ,

"”an - an-k' <7}?- then it follows that ‘f(xl"'xn)' Al<6,

In this definition 1: may have any value from 1 to n.

In these definitions we have spoken of the limit

at x a a or at x a co and used the notation Lim f(x)

x-a

or Lim f(x) instead of the usual notation Lim f(x)

xsoo xea

or Lim f(x) . The latter suggests the question of

x—no

whether x ever reaches a and if so when. The introduction

of the element of time in the definition of a limit is,

it seems, objectionable and unnecessary.

From these definitions it does not follow that a

number A, and therefore the limit, will always exist.



For example if we let

f(x) : sin-:1?— when xz’I; O

a 0 when x a 0

then Lim f(x) does not exist.

x=O

The limit of a sequence, {an} , is included in the

definition of Lim f(x) . To see this let f(n) : an .

1:100

Then Lim f(x) would give the usual limit of the

runes

sequence.

We have noticed that most authors of elementary

calculus books start with a definition of a limit of a

variable. It is difficult to say just what they mean,

if anything. Some of their examples indicate that they

are concerned with the limit of a sequence. Again it

seems that they are talking about the limit point of a

set of points. On page 6 of Love's Calculus we find the

definition: " When the successive values of a variable x

approach nearer and nearer a fixed number (a), in such a

way that the difference a - x becomes and remains

numerically less than any preassigned positive number

however small, the constant (a) is called the limit of x."



6

If the time element is removed from this definition there

is nothing left. As an example he gives the sequence

.9, .99, .999, ..... as having the limit 1. Further

he states that no term of this sequence will ever equal 1.

This statement is true. However we can not say the limit

is never reached no matter how long the process continues.

If this sequence represents distance covered, and if it

takes one minute to go .9 of the distance, 1% minutes

to go .99 of the distance, 1% minutes to go .999 of the

distance, ......., then it is apparent that the limit is

reached after 2 minutes. However, if it takes 1 minute

to go .9, 2 minutes to go .99, 3 minutes to go .999,....,

then obviously the limit is never reached.

On page 9 in Slobin and Solt's book in calculus we

find the definition: " A constant L is said to be the limit

of a variable x, if the variable changes in suCh a way that

the difference L98, in absolute value, becomes and remains

less than any preassigned positive quantity,however small ".

Again the time element is the only part of the definition

that gives it any meaning.

In the calculus book by Granville, Smith, and Longley

we find a very similar definition on page 11 and a similar

criticism can be made. Likewise in Dalaker and Hartig's

book on page 4.





These authors would have done much better if they

had used instead a definition such as Neelley and Tracy

gives on page '78 of their book in elementary calculus.

1.2 Theorems 2g Limits. Having defined the limit

of a function we next prove some well known theorems on

limits. These theorems are usually stated in elementary i

calculus books without proof. Most advanced calculus

texts fail also to prove them. The first theorem is

Theorem 1.1 If Lim f(x) -A and Lim F(x) :B,

then we have Lim [f(x)+F(x)] = A+B 4e.

Since Lim! f(x) - A, we have by definition (1) that

for 6, >0 it follows that there exists a117, such that

if '1: - aka?" then lf(x) - Al<€, . Likewise for 63>0

it follows that there exists m%such that if‘x - ”(’72

then 'F(x) - 111(63. For anyewsuppose we choose 3568:;-

and let 7 be the smaller of the 7, and I7; . Then we have

for 'x - al< ’7 that

[Farm] ~ffl+BJl5 IF(X>"7'+IF®‘BI<€W€2=€ .
 

a Theorems 1.1, 1.2, 1.3, 1.4 are true for a=oo if

l
i
l
t
.
-
.
fl
'
.
.

S
i
’

we make one major change, namely, in selecting an»! we will,

for ease , pick the largest of the 7,“?qu instead of

the smallest.





Stated as a limit this statement becomes

:3: [f(x) + Hm]: A+B .

This proves the theorem.

Theorem 1.2 _2_[_f_ Lim f(x) = A and Lim F(x)= B, then

=a
 

x:

we have Lim [f(x) - F(x§= A - B .

x=a

The proof is similar to the proof of theorem 1.1

except that we have

Wu) - F(x] - (A - B)lé ‘f(x) - A‘ + ’. F(x) 4.. Bl<eI+ez=e,

The theorem for a product of functions is

Theorem 1.3 If Lim f(x): A and Lim F(x) = B,

‘— x=a """"' x=a

then we have Lim [f(x) . FucflonB .

Since £1.13 f(x)=A , we have by definition that for

€,>0 it follows that there exist an ’7, such that if

Ix - skull, then lf(x) - Al<e, . Likewise for 6:70

it follows that there exist an 7, such that if 'x - al<0lz

then lF(x) - Bl< 3:.



Also, since Lim F(x) I B it follows that there

exists a number C :33] such that ‘F(x)|<C for lx-a'<’73.

This is true since given €>O it follows that there

exists an 073 such that if 'x - a'</73 it follows that

|F(x) - B|<€ . Therefore B - €<F(x) < B+€ .

Since Gris arbitrarily small we can take it so small

that F(x)<lBI+6 < C. For any 6>0 suppose we

choose 6'=2% , and 62:?an and let/7 be the smallest

of the 07,,nzz,p73 ,

Then we have for 'x - al<¢7 that

[f(xbflxi‘ - AB a f(x)oF(x) - F(x)-A + F(x)-A - AB '-

== affix) - g + F(x) [ f(x) - A] ,

and therefore

[f(x) «F(x) - ABléIAHic) - Bl+lF(x)‘ [f(x) - AI .

Now by substituting as indicated above,

°F -AB'£A¢6+O-§-=-§-+—€—:€'1mm (x) HEW/C 20 Z Z

Stated as a limit we have

Lim [f(x)oF(x)] IAB .

x3 a

This proves our theorem.
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The theorem for a quotient of functions is

Theorem 1.4 _1_[_f_ lim f(x) - A and lim F(x) I B ,
 

  

x-a x-a

then we have Lim fl. 3 .5. if B 39 O .

_ x-a FIX) 3

Again since lim f(x) = A we have that for e,>0

x-fi

it follows that there exists an r7, such that if 'x-al</IZ,

then it follows that [f(x) - A l< 6,. Likewise, for ez>o

it follows that there exists an n7, such that forlx-a'<0zz

then it follows that 'F(x) - Bl<€2 . Also, since

Lim F(x) I B -‘\= 0 it follows that there exists a

finger O<C<IBI such that 'F(x)l > C forlx - “(’73 .

This statement can be verified by referring to the

corresponding statement of Theorem 1.3. This number

C can be found by considering that since 8:? 0 then

IBI>0 and so there exists a C such that 0<C< ‘8'.

Now for any 6>0 suppose we choose 65% and €8=i£lfi

and let I? be the smallest of the three quantities 7,,l7"/73 .

Then we have for Ix - al<r7 that

P x B BoF(x) _ B-FTx)

._ ALB -F(xil+fgx) -A

—' B°Fx Fx

r x) _ A ___ B-F(x) - A-F(x) __ light) - ABJ‘I-LXB - A'F(x)]
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and therefore,

f ) A -

TF(:7 " B I Sls'hlrfrx5] 'Fh‘) " 5‘ +lf(j}%(x)f|

< Al [19(x) _ Bl+’f(X) -' A‘<_§.+.§_: 6 ,

'[érT ““0"" z 2

This proves that

he an]. e. ,
x-a F(x) 3

 

 

1.3 Definition 2: Continuous; and Discontinuous
 

Functions.
 

We next make use of the idea of a limit and the

theorems on limits to define continuity. Definition:

A function, f(x), is said to be continuous at a point

x I a if Lim f(x) I f(a). If f(x) is defined at

x-a

I.I a then we say f(x) is discontinuous at x I a if

it is not continuous at x I a . However, if f(x) is

not defined at x I a then we say f(x) is discontinuous

at that point if Lim f(x) does not exist. If the

lim f(x) does exigtawe will not say whether the function

:;:) is continuous or discontinuous.

For example consider f(x) =.% at x I 0. Here

f(x) is not defined at x = O and the lim f(x) does

not exist. Therefore, we say that f?;§ is discontinuous

at x = a.
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However, consider f(x) I .§l%_§_ at x I 0.

Again f(x) is not defined at x I 0 but the lim f(x)

exists and equals one. Therefore, we do notx;:y whether

f(x) is continuous or discontinuous. If f(x) is defined

to be one at x = 0 then f(x) is continuous.

Many real variable and advanced calculus books

are not careful to point out whether a function is

discontinuous if it is undefined at the point in

question. We believe that the above definition is a

convenient and logical one.

1.4 Continuity of the Elementary Functions.
  

In order for us to discuss continuity it will be

convenient for us to prove several lemmas.

 

Lemma 1.1 _:_[_i; lim [f(x):':h(x)] . A and If. lim f(x) - s,

then the lim h(x) exists and equals AJIB.
 

Lemma 1.2 If lim [f(x)-h(x)] = A and _;_i_f_ lim f(x)I BtO,

then the lim h(x) exists and equals .% .
 

 

Lemma 1.3 If lim f(x) BA 0 and if lim 1' x = B

then the lim h(x) exists and equals .% .
  

We have these three lemmas immediately from theorems

1.1 to 1.4 of section 2.
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Lemma 1.4 If f(x) s h(x) é g(x) and _i_£ the

11m f(x) = lim g(x) I A, then the lim h(x) I A.

For subtracting f(x) we get

(3) O£h(x) - f(x) s eh!) - f(x) .

Since

Lim [g(x) - f(x)] = lim g(x) - lim f(x)

:3 A .. A a O

we have that for any €>O it follows that there exists

an»? such that if [x - a'<0[ then it follows that

|g(x) - f(x)|(6 . By (3), then, [h(x) - f(x)|<6

also, which is Sufficient to show that lim [h(x) - f(x)]: 0,

Since lim f(x) I A then by lemma 1.1 we have

Lim h(x) = A .

Lemma 1.5 _I_f_ f(x) > O and _i_f_ the lim f(x) = 1

and _:_I_i_‘_ 3 is any rational number, then lim [f(x)] q_ 1.

For let q I3;- where r and s are positive integers.

If f(x) < 1 then,

1

f(x) <[r<x)] 3< 1.

Also if f(X)>1 then,

1

1 <[f(x)]8 < f(x) .

In either case [f(x)] 3' lies between 1 and f(x).
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By lemma 1.4 we have,

m
u
d

Lim [f(x)} = l .

e .1. I.
Since [f(x)]? = 900] 3 then by theorem 1.3 of

section 2 we have,

Lim [f(x)] 3 = Lim [f(x)] q I l .

Lemma 1.6 .3: the lim f(x) = A >'O then the

lim [f(x)] q = Aq .

Let us write [f(x)] q as Aq [Lgigq . Now by

 

theorem 1.4 of section 2 we have,

f x) =
Lim '—A—' 1 .

Therefore, by lemma 1.5,

Lim Aq [£%]q = Lim Aq = Aq .

Lemma 1):] _I_§ f(x) and g(x) are continuous at x = a,

thenfxi x fxv x f(x) if x Oare

continuous 33; x I 3.

Since f(x) and g(x) are continuous then by the

definition of continuous functions we have the lim f(x)= f(a)

1:8.

and the lim g(x) = g(a) .

xIa
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Now by theorems 1.1 and 1.2 of section 2 we have,

Lim [f(x) 1'. g(x)] = f(a)ig(a) .

x=a

V

In a similar manner f(x) - g(x) and flat where g(x)=’pO

9
0
0 H

can be shown to be continuous at x =

lemma 1.8 y; the 11m F(x) - A, 11m f[F(x)] :- B,

xIa F(x)IA

and F(x) 4: A _i_5_1 the neighborhood _o_f_'_ (a), then

lim f[F(x)] =B.
x=a

Suppose a, A, B are finite. Since lim ‘ fEthfl I13

then we have that for 6, >0 it follows thistxthgre exists

an r7,>0 such that if lF(x) - Al</7, then it follows

that 'f[F(x)] - skew Also, since 11h F(x) a A,

then we have that for 07,>0 it follows 3:521; there exists

an ”72’” such that if |x - al<I72 then it follows that

|F(x) - Al<11fl . ZNow by combining these statements

we have that for 6,70 it follows that there exists an

7")0 such that for Ix - al (”[3 it follows that

|f[F(x)] — BIC 5, . Written as a limit this becomes

lim f[F(x)]= B .

x=a
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Suppose a is infinite; A,B are finite. Since

lim _ f[F(x)] = B then we have that e,>o it follows

gist—there exists an (7,70 such that if lF(x) - A‘ < ’7,

then it follows that lf[F(x)] - eke, . Also, since

litiflx) = A, then we have that for 02, >0 it follows

Jthat there exists an r73)0 such that if lx‘ >72 then it

follows that lF(x) - A] < 0?, . Now by combining these 1

two statements we have that for 6, >0 it follows that !

there exists an "73>0 such that for 'xl >072 it ‘

follows that f[F(x)] - B‘ < 6/ . Written as a limit

 

this becomes

Lim f[F(x)]='-B .

x-oo

Lemma 1.9 If 1.11 3 F1(xl.....Xm), 112 : F2(Xl...xm) ,

..... um I Fm(xl...xm), lim u:L 3 b1 , lim uz '-"- b2 ,

xIa x=a

..... lim um I bm , y I f(ul.......um), lim y = A,

xIa uIb

and _:_|._f_ uiz’sbi _i__n the neighborhood _o_l_‘.’_ (a), then

lim y = A.

xIa

If the interpretation suggested on page three be

applied to the proof of lemma 1.8 then we have the

proof for this lemma.
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Lemma 1.10 . y; u.=F,(x, ....x), , %=Fz(x, ....xm), ....

um=1‘,‘.,(x,..uxm), _§._I_‘__6_ continuous at x'=a| , xz=az,...o,xm=%,

Egg 1.1.: 1),, uz=bz.,."’ um=bm, _a_t_ xi: 8L 2.1.1.51. y =f(u. ...um)

_i_s_ continuous _a_1_:_ u,=b. , “:2 b2.....,um= bm, than y considered

as a function of the 1's is continuous at x,= a, , xz=az,

0..., x'"=am O

For um continuous at x = a means that

k}? FAX, 0.00%) = "1(3, 0000a,")

and y continuous at u =.- b means that 52% f(uI ...um):f(b, ...bm).

Then by lemma 1.9 we have

£19 :1}, (x, ...xm)...F,,,(x,....x,,,]=r[F, (a, ...am> ...Fm(a, ....am]

Therefore y is continuous when considered as a function

of x at the point x=a .

This lemma states that a continuous function of a

continuous function is continuous 0

Lemma 1.11 . EEW F(x)=x isW

continuous .

811360 1:7(3’ then 8=F(a) and therefore for any

€>O there will always exist anqsuch that if Ix - a‘<’7

then it follows that [F(x) - F(a)‘(e. An7less than or

equal to s will satisfy the above condition .
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Theorem 1.5 The rational integral functions are
  

everywhere continuous.

For let f(x):= xn where n is any positive integer.

Then by lemmas 1.6 and 1.11, f(x) is continuous since

0‘ 4c
f(x): [F(x)] = x . Now by lemma 1.7

q,x¢%-a,xmfl' + ......+a,,Hx + a,,.,, is everywhere continuous.

This completes the proof for one variable.

For the case of several variables let y==2EAX?x:K..x:?'

where the s;,i=L'“Wgare positive integers or zero. Now

let any term of y be designated by t = Aflx?.....x:’:’.

We wish to show that t is continuous at an arbitrary

point x, ...xm . Let u,= xf’ , ”2: x? , .... um: xi” ;

then t:= u,uz... unis a continuous function of the

u,.... umby lemma 1.7. Each uL is, however, a continuous

function of the x,, .... x”.. Therefore, t, considered

as a function of the x,, .... xm,is continuous by

lemma 1.10. Therefore, y, which is the sum of terms of

type t,is also continuous by lemma 1.7.

Theorem 1.6 The rational functions are continuous
 

wherever they are defined.

  

ZAx/z’ o o o o oX/‘M E' ’

,I......x4"m — Q

is defined everywhere except Where the denominator is

The rational function,'y=

 

zero 0
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These undefined points are called the zeros of the

denominator, or the poles of y.

Since, by theorem 1.6, F and Q are everywhere

continuous, then, by lemma 1.7, y is everywhere

continuous except at the poles of y.

Lemma 1.12 g; Lim f(x)-=1, _a__r;g_ x = a+bu where

bago,__t_h_e_m_ Lim uni-Tie .

u=0

For as x ranges over a region D on the x-axis,

u ranges over some region A on the u-axis since the

equation x = a+bu causes the two axes to be in one

to one correspondence. To the point xza corresponds

the point u=O. Now let f(x) = f(a+bu)=F(u). Then,

since x and u are corresponding points,f has the same

value at x as F has at u. Since Lim f(x)==Ag then

for any €>O it follows that thsrfi—gxist an 0? such

that if Ix - al</7 then it follows that lZ- f(x)‘<6 .

Now 11' f7,:% then for e>o it follows. that there

exist an 7, such that if I ul<r7l then it follows that

’16 - F(u)‘< e . Written as a limit we have L18 f(X)-‘=ago

u=

Theorem 1.7 The trigonometric functions are
 

continuous __a_t_ every point where they are defined;
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Due to the definition of sin x and cos x it is

apparent that they are defined everyWhere. The

sin x cos x __ l
o :——-—-— sec x._——-_———-

cosx ,ctx sinx’ cosx

are defined everywhere except at those points where the

30000,

functions tan x:
 

denominators are zero. We wish first to show that

Lim sin x=O and Lim cos x=l .

x=O 2:20

In figure 1 the line AB represents sin x.

  

 

However small we choose 6 > 0 let 7:: angle A'OC

and then for any 6 >0 it follows that there exist an 7

such that if [x'l < 42 then it follows that [sin x"< e .

Therefore Lim sin 1: = O

x==0

O

 
!

I

1
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In figure 2 the line 0D represents cos x.

i

la 5   
 

Fig. 2

For any €>O, such as line BC, let I? =-.. angle AOC.

Then for €>0 it follows that there exist an I7 such

that if [xl 403 then it follows that [1 - cos xI<6 .

Therefore Lim cos x=l .

x=0

Next we wish to show that the function f(x): sin x

3.3 everywhere continuous.

For let x=a-kn; then sin x = sin (a+u)=

sin a-cos u + cos a-sin 11. Now since Lim sin x=-

x=a

Lim sin (a-l- u) by lemma 1.12 and since Lim sin u=0

u=0 u=0

and Lim cos u==1 then we have Lim sin x==Lim sin a=sin a.

u=0 x=a

In a similar way we see that f(x)=cos x is everywhere

continuous by writing cos xz=cos (a+u)=cos a-cos u-sin aasin u.

Since sin x and cos x are everywhere continuous then

it follows that tan 1:, cot x, sec x, csc x are also

continuous by lemma 1.7 .
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Lemma 1.13 if y f(x) is _a_r_1 increasirg function in
 

 

the linear neighborhood 2?. x=a and _i_f_ULim yzb,
—- x=a
 

then ULimxza . 41'

"“" y=b

For suppose the function y is increasing so that

when x<a then y<b. Also, consider only values of x<a

so U in this case will represent the left-hand limit.

Let 6 > 0 be arbitrarily small, and a - € <x'<a. Let

y' correspond to x' and let 7>O be such that b -r7>y'.

b 

 ”Z 

I

#
 

 
  w

Fig. 3

m   
 

Under these conditions while y remains in the

I? -vicinity of b then x must remain in thee-vicinity of

a. This means that U Lim x=a.

y=b

 

* The [I will, in general, mean either the right or

left hand limit. Throughout this proof [I will

represent the left-hand limit.
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Theorem 1.8 The one-valued functions sin" y,
 

cos" y, tandy, cot-’y are continuous _a_t_ every point
  

WhQEQ they are definedg
 

By theorem 1.7 Lim sin x==sin a. Therefore, by

. x=a

lemma 1.15, Lim x=a since sin x is an increasing

sin x=sin a ‘

function if single valued. Now let y== sin x and b== sin a;

—/ -

then we have x=sin y and a: sin lb and therefore we

have Lim sin-4y = sin-4b. In a similar manner the

37““ -/ -/ -/
continuity of the functions cos y, tan y, cot y can

be shown.

Lemma 1.14 Cauchy's Condition. The necessary
   

and sufficient condition for aW93 W9{aq},

  

 

there exists a (m) such that \a‘"- apl 4 e _f_o_r_-_ all

n,p > m.

Since {84,} has a limit then,by definition,for any

6 >0 it follows that there exists an m such that for

n>m then it! follows that {A - am‘<%. Also for the

same €>O and m it follows that for p>m then,

’A - Bp‘<-§— . Adding these inequalities we have that

for 6>O it follows that 'a,,- ap‘<e for n,p,> m.

We next prove that the condition is sufficient.
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We wish to show that if for any‘6>0 it follows that

there exists an m such that for n,p)m then it follows

that 'a”- apl<e,then the sequence {an} has a limit.

For €,=é—, by hypothesis , there exists an oz,

such that for p >7, then it follows that ‘an,’- ap‘<6,.

Then there is an interval d;=2€, in length, which

contains all ap for p >0z, . Double I, so as to

'obtain an interval 247 in length, 05‘ on either side

of am, . Now for 62:215—there exists an m,>oz, such

that p )4: then it follows that iamz- ap < 62. Then

there is an interval J2:- Zez in length which contains

all ap for p >0»: . Now 4 is not necessarily contained

in J; but 24} is always contained in 2d; .

In general, for saz—Z-IZ- , set up a sequence of 2d;

by picking 43:26,; and each d; will contain all

ap for p >014 . Then 24‘ contains 2d} contains 2J3

contains..... 2d‘7_,e contains.2d2 ....... .

Since the length of 2d}; is 21,12- we have just one

point, A, inside all these intervals {2&1} .w

 

* C. Caratheodary, Vorlesungen uber Reelle Funktionen,p.54
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We will show that A is the limit of the sequence {an}.

For any €>O it follows that

Iap -A‘ 5. 'ap- an" +Ia...,;-A‘<€

if i is chosen such that 65-1-5;- and p >014; . That is,

if we take mzfm', then for p >m we have 1ap - A‘4 e .

Therefore Lim 9m: A

n:@

 

Lemma 1.15 _I_f_ {an} is a sequence of positive

rational numbers whose limit is zero and _i_f_ b>O,

then Lim be“: 1.

 

 

Let b>1; then b“) 1 .

Since an > O and lim a”: 0 then for or, sufficiently

large a,» is as small as we please. We can take m so

large that 21;)? forn >m however large the

positive integer g be chosen.

By the binomial expansion

(1+e)g> 1+ge .

For sufficiently large g we have

1+-ge'>'b

and then

(1+e)3>b.
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Also

a';
(1+6) >(1+e)g .

To show this let/11,0? be two rational numbers such that

’7 fl

oz)” . We wish to show that (1+6) >(1+6) ._

Let 02:741— and ,u=-§- where r,s,t are integers and r>s

and t>0. Then

.4.

(4) (1+é)t>(l+€)% .

I

-
-
.
.
.

Raising both sides of equation (4) to thet—thpower we

have

A. 5

(1+6) >(1+6).

which is true since r and s are integers and r > 3.

Therefore, (1 + 6 #3) b for n > m. Then we

have

b“"< 1 +6 .

That is for any 6 >0 we can find an m such that if

a...

n>m then b 4 1+6 . Thus we have proved that

 Lim be": 1 for b > 1. 1

n=00

For the case b< 1 let bz-é- . Then c >1 and,

8Lpplying the preceding case,we have

0&4 l +3 .

‘
r
‘ 





Hence

and

Therefore
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as

C“ [+5

1-b“"< e .

a»:

Lim b = 1 for b<1.

n3”

Lemma 1.16 if the sequence 9_f_ rational numbers
 

{an} 3323, 2 limit and __1_f_’. b >0 , then the seguence
 

b" ,b"2,b"’.... has 2 limit.

a a -

For let an: b‘“- b P= Mn?" (3 1). Then for ”(>0

it follows that there exists an e such that if Iam- 3P’<€

4..

then it follows that ‘b - l

-a

P <0? if we apply lemmas

 

1.14 and 1.15. Also, since {am} has a limit,it follows

that ‘there exists two numbers Q and R such that Q<a.,,_<R

when n =l,2,3, . . . . . Therefore

and

If b>1, we take 7:753- ,and,if b<1,we take 17:?

|d«]< b3»? if b>l .

'd..'< be? 11‘ b<1.

e



28

In either case we have that for 6>O it follows

that there exists an m such that for n,p >m then it

follows that [.044 - bapl<€. Now by applying lemma 1.14

our theorem is proved.

Lema- 1017 E a, , az ’ 0000 and C, , C: 00000

be‘two sequences 23‘ rational numbers having the same
 

 

62». c4. T
limit and}; b>0, then the Lim b = Lim b . '

By lemma 1.16 both limits exist. Let " 7

d .-

do: = ba'f- ban-1b ”(l - be" 47. We must show that

Lim d4: 0 . However, Lim (a,,I - 3,, )=0 and therefore

nsoo ' bk" nzoo

the Lim (1 - ("i=0 . Hence

11:00

a

Limd,,,=Lim [b((l-bc'mil-:20 Lim (ba“-bc"‘).

n=°° n8” n=ao

c

Therefore the Lim .04.: Lim b”by applying theorem 1.2.

11:” n=ao

We are now ready to define what is meant by an

irrational exponent. If 0 is any number and r, ,r, ....

is a sequence of rational numbers such that Lim nn=:c,

Iruo
an

then ac is defined to be Lim a .

nzao
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Lemma 1.18 _I_f_ c, ,0? ,.... is _a_ sequence whose

limit .53 c and _:_i_f_ a>O, then Lim ac“: ac.

n=-o

  

For let r, ,r, ...., and s, ,3: ,..... be two sequences

of rational numbers whose limits are c and such that

ra< c,,,<s,,z , where n=1,2,5..... If a>l then it follows

that a’“"< aC‘“< as" . However, by lemma 1.16 we have

Lim am“: Lim 35,: ac. Therefore, by applying lemma 1.4,

nan n=co

we have
c

Lim ac“: a o

The proof for aél is similar.

Theorem 1.9- The exponential functions are everywhere
 

continuous.
 

we wish to prove that gm. a”: ax," or that for e>o

it follows that there exists an 7 such that if I x - x,[<’7

then it follows that (ax - azal< 6 . Let us write

ax’ - at” az"(az'x‘- 1).as Let x, ,xz ,....x,,,bea

decreasing sequence whose 11mit~is x, , and x', , x}, ....xyn

be an increasing sequence whose limit is also x0 .

Let ’7 be less than the smaller of (x5, - x0! and [xp - 110,

where p and q are picked so that for €>O then lé’.)&1(<_d§15

’-

and ‘a” z..- 1' 2% . Consider first the case where a>1.
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For x>xo within an? distance of x0 we have ‘J'k- 1‘<Z§z,

since x - x, < xp- x0 and ear-z? exp-I" . Therefore we have

x 1., to____e ..

i 2“

Also, for x<xo within an 7 distance of x0 we have

_ lax'h- 1‘<-%,since x - x,> x5- x, and,then

l1 - axx"<[l — axfz'léfi}. Therefore we have

2 1. toe _
‘8 - a ‘4 821; - 6 0

Now consider the case when a<l. If x>x,, then we have,

since x - x,< x,- x, , that l>aza°> az‘”‘. Then

‘a1‘10_ 1|<     

- 1kg; and we write

’81 - ahi<a 3:6.

Again, when x<xa, we have, since x - x0 > xfi- x0, that

al<2’ az’x: Therefore we have

lax - ale

 

The case when a=1 causes no difficulty.

Lemma 1.19 if {an} _.’_L_s_ a sequence whose limit _i_s_ 1,

then Lim log aq=0.

For let b, the base of our logarithms, be greater

than one. Then for any 6>O we have b6 >1. Let

7:16] >0. Since Lim a4=l we have for any ”(>0

n=¢o

that there exists an m such that —»l<a,.z - 1<0z for n>m .

 



Hence we have

(5) l-nz< am<l+0z

But 1 -r7=3/g, and therefore

(6) an)? .

Also 7=égéL< be-J , and

Therefore

('7) a, < be

From equations (6) and ('7) we have

-€ €

b < afl<b .

This may be written as

-e a e
b (b ”<b

1+"(<b€.

since ,by definition , baa”: am, . Therefore,

-€ <1og afl< e for n>m .

Then lemma 1.4 gives Lim log amzo.

n=oo

51

Lemma 1.20 g; the Lim any-a >0 and am>0, then the

Lim log a,” =log a.
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d 4
Since a”: a2”!- , then log a“ = log a + log-51"- .

However, the lira—245:1 by theorem 1.4 'of section 2.

Therefore Lim log-Z—zo by lemma 1.19 and hence

Lim log am .1: log a .

Lemma 1.2.11 The Lim log x = log a _i_f_ a>0.

x=a

This is lemma 1.20 stated in a different form.

 

Theorem 1.10 The logarithmic functions are everywhere
 
 

continuous where they are defined.
 

For if we let f(x)=logb x then we must show that

Lim logbx =1ogb a. We will write, using lemma 2.3,

x=a

f(x) :7. SILTg-gfi—E- and then f(x) will be continuous if

e

logex is continuous. However, lOgex is continuous

for every x>O by lemma 1.21. Therefore f(x) is

continuous which can be stated as

Lim logbx =log6a .

x=a



CHAPTER II

DIFFERENTIAL CALCULUS

1.1 Formulas for Derivatives. The derivation of
 

the formulas for the derivatives of the elementary

functions will next be considered. Many times the

existence of the derivative is assumed in the derivation.

If y::f(x) is defined over an interval (a,b) and‘

x==c is a point of the interval then the quotient

Aly._ f(x) - f(cl

Ale— x - c

where x is in the interval,is called the difference

quotient at x=c. If xzct-h then

aé;y_ f(cdth) - f(c)

43x" h

Let the gix’ién‘l’fialc =0? and if 7 exists then ,7 is called

the derivative of f(x) at x==c and is written f'(c).

Let D be the points of the interval for which? exists.

The values of ’7 define a function of x called the first

derivative of f(x) and is written f'(x) or y'.

Theorem 2.1 If the derivative f'(c) exists, then
  

f(x) _i_s_ continuous at x=c.
 

33
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 Since by definition the Lim f<°+h)h‘ f(CL);-:_f'(c)

and since the limit does exisg-gnd equals f'(c), then for

any é>0 it follows that there exists an ’7 such that if

lhl (4? then it follows that -

f(c+h) - f(c) __

h f'(c)+6’ where I€II<6 .

Then f(c+h)=f(c)+ h[f'©)+ 6’] and by taking the limit

of both sides we have

Lim f(c+h)=f(c) .

1130

This shows that f(x) is continuous at x=c.

Theorem 2.2 if y z % , where V360, and_i_f u' and
 

 v' exist_i_n D, then y': vu' -zuv' .

v

Since y z 1.1 then y +Ay _-.= __u+1411

v

 

v +Av

and

Ay_u+Au _ .2 __ vAu- DAV- 1 _ u l

-V+AV v "" v(v+Av5 __ 1+Av v v+Av

Therefore

Az—_l__éll.-11. 1 4.!
Ax-v-i-AVAK v v+Zv Ax '
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But by theorem 2.1 we have 3390(V+Av)=v and by

h othesis the Lim 4.3.1 : u' and Lim 4.1 = v' .

yp AX’OAx 41:0 AX

Passing to the limit we have

y,____u_1__uv'__vu' -uvj_
_v —

V2 V3

 

It is permissible to divide by \H-Av since v+4v=k= 0

if 43x is sufficiently small and since v is continuous

and not equal to zero.

This proof is sometimes given by writing vy'==u

and then taking the derivative of a product and solving

the resulting equation for y'. Such a proof assumes the

existence of the derivative y'.

Theorem 2.5 _I_§ y: f(x), x = g(t),and f'(x,) and

_ d d dx8'(t’) 3131113 and x,.. g(t,), then ‘%=dxzd_€ .
 

For some values of Alt we may have Alx==0. Let

V be the set of values of t,+43t for which Alx==0 and

v' the set for which Axaeo.

For trrzit in V' we have

Al ._ 41 mix

2%“Z‘E'EE '
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Since the derivative g'(t,) and f'(x,) exist then

s Lim 91:11:11 ALLim AE

( ) At=o At At=0 AXAt=a0A 1
+
3

which ,by lemma 1.8,becomes

All-
1““ At-Atzo Hfi'L-i.a 9'5: f'Hx/ '8'(tl) .

d
n
"

ALt‘O

This limit is taken for At's for which t,+At is in V'.

If in every interval containing t, we have values

of t,+-At for which Ax =0 then equation (8) does not

prove the theorem and we must consider t,+At in V.

‘ AX ...
Ne have that t .. O and therefore LtimA02.5 =

This limit -is taken for just those At's for which t,+At

is in V. Since g'(t,) exists it must then be zero. For

+43 43 ::t, t in V we have also that fl 0 since the Ax

is zero. Then for t,+At in V we have

(9) - f'(x,)vg'(t,)==0 .

1
3
1
2

Therefore, by equation (8) and (9), for 6>O it

follows that there exists a d such that if [Atk d

ifi-fwa
m'tm < e .

then
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This means that

saggy: tux.) tut.) .

The usual proof of this theorem in elementary

calculus books fails to mention the possibility olex

being equal to zero. If y ::f(x) and x equals a constant

we would have a case of 43x==0 for alltzlt's. A better

example is y=f(x) and x = tzsin% for t:\=0 and x=0

for t==0. Here, no matter how close we get to the

origin,we have At's for which Ax =0.

Before the formulas for the derivatives of the

exponential and logarithmic functions can be derived the

constant 6 must be established and a few properties

of sequences proved.

Lemma 2.1 if a>b20 and n is a positive integer
 

-1 ..

greater than one, then n(a - b)6z<a”- 52:n(a - b)a"’ .

For a”- b“=(a - b)(a"’+ at + s'tz+.......+b“")

In the last set of parenthesis replace a by b and,since

a>b,then we have

a’"- b'">(a - bub”!!- bad-i- ... n terms) ,

which shows that a“- b">n(a - b)b”‘" .
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If we replace b by a when a>b then

a“-- bm<(a - b)(a""-41-a”"{i- ... n terms)

and

a“- b’"<(a - b) nan", .

We note that we could have stated this lemma as

bfi>a’"" [a - n(a - b):’

by transposing and factoring.

Lemma 2.2 ‘A bounded monotone sequence has a limit.
 

 

For let A =-a,, at, as..... be an increasing

monotone sequence and a¢<G for n==l,2,5,......... .

To show that A has a limit we must show that for any

€ >0 it follows that there exists an m such that if

n>m then it follows that O<am~ %< e . Under these

conditions A will have a limit by lemma 1.14. Since A

is monotone increasing then 0< afl- am. To show a,,- am<€

take an m, . Now either there exists an infinite sequence

of indices,

(10) mo<m'<mz<ooooooo,

such that

(11) av“;- aymoseg 8.3!; a..‘;€, 0000000

or there does not.
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Suppose such a sequence exists. Then, however small a

is,there exists a p so large that

(12) p6 + %>G .

Now adding the first p inequalities of equation (11)

we have

84"; - aMQZPe ’

and substituting this value of pa. in equation (12)

we have

8...,>G

which contradicts the hypothesis. Then there must

exist but a finite number of indices m; such that

equation (12) holds. Therefore an m can be taken so

large that aq- am<e for n>m.

  

m.

Lemma 2.5 The sequence %=(1+';,{)1 where n=1,2,3...,

has a limit.

First, we wish to show that {ea} is increasing or

that a£>awq . By lemma 2.1 we have

.1

b”>a”' [a - n(a - b)?

and,if we let a = 1+;t—{n- and b: 1+7{f ,then we have

fit «4
an

(“7”?) ””717 [kfi'ér‘nmz’n-l "Isiah-rin-
-l
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This shows that {an} is increasing.

Second, we wish to show that the sequence {an}

is bounded. Let a=l+-—-al, h=l,and n=m+l and,

applying lemma 2.1, we have

I on

1>—zL’(]-+2;) for m=1,2,5,oooo '

Now by squaring we have

4> (1+an- )z"

which shows that 32m< 4. But by the first part of

this lemma we have 62M_l< azmand since all positive

integers are of the form 2m or 2m-l then we have

a... < 4 for n=l,2,5,.....

We have now shown the sequence {an} to be increasing

and bounded and,by lemma 2.2,the limit then exists.

This limit is the constant called e .

F7 ‘L = .

Lemma 2.4 lhe 71.:me (1+; f e .

For consider x. such that n .5 x s n+1.

_L.> ...!— ......L...
NOW 1+m/l+x>1+nfl

and

(15) (l+-,,'7,')ml> <1+-,’;-)”>(1+;,—,4—,->’" .
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However

(14) (l+—-)""' =(1+7,L€.)(1+.J_)”‘

and

(15) (1+ 31—“)= (14.0”,)m’. 7+ L574, ,

Now equations (14) and (15) give,in (13).

J... J.“ ‘LZ __(_.. 411" /

(16) (l+,,,)(1+ a) >(l+ x)>(1"’oz+/) .7+a&7 _‘

By lemma 2.3 we have

/

Lim (l+-;{-;-)"‘= Lim (1+ 6
nu-

+0t+/)

and also

Lim <l+-L-)..- Lim ...—L? =/ .

m: ""Q /+ "n'f'l

So equation (16) becomes,upon taking limits,

I Z

€t>-1im (l+-i‘) >*55 -

1

Therefore, Lim (l+—L) =c , by lemma 1.4.
x=a-ea 1

Lemma 2.5 The £3.92. (1+-§)’z=c .

For let x: - 11. Then

I I- ,‘u‘ a“

(1+7) _ (l we) -—-(1+;,-l;7)

__ / I V

— (1+7)(1+V’) where u-l=v .
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However

(14) (1+;L—f‘“: (1+7lr>(1+—,£,— Y"

and

(15) (1+‘ic'lTrr-‘(1i'aiflml' 7 + ./_._L. l

”Inf!

Now equations (14) and (15) give,in (13),

 

z
I I 0‘ I I 41'”

(l6) (1+n)(1+-;,-;) >(l+ ;) > (1+m———+,) .7+ 1 .

41+]

By lemma 2.5 we have

Lim (1+0!) .— Lim (l‘l‘m .- C

and also

Lim (l+-,é,—) = Lim ...—L7— =/ .
«=00 mace /+-;,-;-;;

So equation (16) bea>mes,upon taking limits,

I Z

8 > 11m (1+7) > 6 -

r
.1— z- ' 'Therefore, Lim (1+ ) - C , by lemma 1.4.

z=+ca 1

Lemma 2.5 The £3133, (l+-f-)’¢=C .

For let x=- 11. Then

1 ea

(1+3?) = (l 71—) == <l+-—’-) ,

/ V

:: (1+7)(l+‘é‘) where u-l=v .
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However

(14) (l+-’-)"" =(l+7£,-)(l+—L-)”‘

and

I 011', I #_.

(15) (1+ 01-7)=(1+m-;-,) - 7+ ”Hz, .

Now equations (14) and (15) give,in (15),

 

x
J_ .1.“ __,_ I 41+! /

(16) (1+“)(14' 01.) >(1+ I) > (11.02.74) 07+ I

n+1

By lemma 2.5 we have

.i-“—- n+1

Lim (1+“) — Lim (1++4317) 5

and also

Lim (1+-L): Lim “—LT =/ .

A" “3° /+ 021-!

So equation (16) becomes,upon taking limits,

I Z

e>lim (1+-7) >6 -

1

Therefore, Lim (1+-f) =6 , by lemma 1.4.

J‘s-m

Lemma 2,5 The £32. (1+-’é'ft=e .

For let x: - 11. Then

(1+-,9)‘= (l -717)”: (1+51-7)

/ V

3 (1+7)(1+T5‘) where u-1=v .
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'Nhen xz-co then u=+aa and v=+°o . Since

Lim (1+-{,— ):1 and Lim (1+-L)V=8

V=+¢ Val-to V

then,if we take the limit in equation (l7),we have

V

Lim (1+—L) = Lim (1+—{7) = e .
gas-Q Yaw-co

3’.-
Lemma 2.6 The Lim (l + x) = 3 -

x=0

Since Lgim (1+-7’40x: 3 let 3:21" Then the right

 

hand limit of (1 + u)“:.€ .

I I

A180 Lim (1+7 ) = e .
x=a-co

Again let x=a-L and the left-hand limit (1 + u)£= e .

Since both the left and right hand limits equal 6 then

..L

Lim (1 + x)z= e .
x=a

 Lemma 2,7 The Litton log(l+-x) : 1 .

..L.

The Lim 103 (1+“) :: Lim log (1+x)‘ .

x=0 x=0

 

If L321. f(x) =7 , then,by lemma l.15,we have

Lim 10g f(x) = log/7 =: log Lim f(x) .

x=a x=a

Therefore

..L

Lim log (1+x)%=1og Lim (1+-x)”

x=0 x=0

=- loge =1 .
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Lemma 2.8 Suppose _that y::f(x) is; _a_ monotone increasirg
 

gr decreasirg and continuous function. Let x = g(y) Lee the
 

inverse function and let x and y _be corresponding points.
 

13 f'(x) exists and _i_§_ different _fgom zero, then g'(y)

1I ...
exists and g (y)- m) .

Since f(x) is monotone increasing or decreasing

then Ay and £33.76. are not equal to zero. Hence

_a—y-z-ZL— has no division by zero. Since y is continuous,

12

then Lim Ay =0. Taking the limit we have

Air-*0

.. " ' A

ear—0 43’ gigs?

if we apply lemma 1.8. Therefore

3"Y’=r7%xr .

 

Theorem 2.4 _I_f_‘_ y=log x then y'z'ili— .

  

For

All A

él— 1°a<x+Ax)- loex _ 10a (1+7) ___ l log(1+i).
Ax“ Ax “" Ax x éz

x

Ag:

By lemma 2.7 we have Lim l°&(1+ ) .—.-_ l.

Axso )6

Therefore, taking limits of both sides, we have

'-—l O

y_x
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Theorem 2.5 if. yzez then y'=ez.:
 

1
Since y=e then x=log y. By theorem 2.4 we have

Therefore, by lemma 2.8, we can write

91: ___,exdx Y

since at is morflzone increasing or decreasing and continuous.

Theorem 2 6 _If y=e“, where u=f(x) and _i__s_ differentiable,

 

then '= O“Q .
___—y 6.):

Since y=e“ than £111 = e“ . Also since u=f(x)

then % = f'(x). Then by theorem 2.5 we have

Theorem 2.7 If; y=e“ then y': aalog a % .

For,by the definition of logarithms , we have

aze‘b’d' . Then

if: Raga)“: 6443.2. .
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By applying theorem 2.6 the derivative is

yize‘d'?“ d(u log a) ,

L

_»4w47¢- du
—-e lo a ...

8 3 9

c4 du
:. 10 a ... .a g dx

It is to be noticed that in the proofs of theorems

2.4, 2.5, 2.6, and 2.7 that we require the existence of

the Lim (1+ 7% )m' where n ranges over all real values
m=co

and not over just the positive integers. Also, we must

In JL

show that Lim (1 +7}; ) and Lim (1+-07. Y” are the same.

n=O° n=0

Another point to note is that we need to show that

AL

Lim log (1+ n)“: log Lim (1+n)_k . Although the proofs

n=0 n=0

of these facts do not belong in a first year calculus

book it would seem desirable that the author should

point out the necessity of such proofs.

Smith, Salkover, Justice in their book and Love in

his book either assume or prove most of the necessary

material. However, both of these books fail to assume

J. J.

or prove that Lim log (l+n)’” = log Lim (1+-n)“ and

hip n=0

that Lim (1+n)0v=e .

n=0 .

Dalaker and Hartig as well as Neelley and.Tracy

assume or prove all necessary material. The latter gives

references for all assumed statements.
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We proceed now to develop more formulas for de-

rivatives. We will define the length of a curve, y::f(x),

as the 0%;3.‘O$( lengthsof chords) . In section 6 of

Chapter 4 we show from this definition that the length of

a curve is given by

b .

(18’ L =[V/+[¥w]ralx

if f'(x) exists and is continuous for ag xgb.

 

1 arc __

Lama 2.9 lhe Limgom .— 1 .

Since by applying equation (18) and the mean value

theorem for integrals we have *

MI '

(19) Lim £9... = Limfvliffid] 1" Q
and... chord Ax“W

where x lies between a and a+¢xx . Rewriting the

denominator, equation (19) becomes

 

Lim W + [£5472- Ax :.-: Limt I Lf

47‘“ l + (fifyax AX‘OV/+ (2f)?

 

 

 

 

* W. B. Fite, Advanced Calculus, p. 97. (Hereafter
 

referred to as Fite.)
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Using the fact that f'(x) is continuous we have

 

Lim arc _ VI flick”?— = /

chord-som- [1" f@

 

Lemma 2.19 The Lim £23 =. l .

x=0

For in figure 4 we have are ABC=2x where x is

measured in radians. Also, chord AB=2 sin x.

 

  

H

1

1

X

C

Fig. 4:

But, by lemma 2.9, Lim“ $375 = 1. Therefore we have

X

Lim --.-—--— = 1

sin1.0 8 1n X .
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Since sin x is continuous and Lim sin x=0 we have

 

x=0

Lim ___}... = 1 ' by lemma 1.8.

x=0 X

sin x

Therefore

Lim Sin x = 1 .

x=0 x

Making use of the fact that Lim 812x = l we

x=0

derive the formulas for the derivatives of the trigonometric

functions.

Theorem 2.8 if; y=sin x _i_e 3 function 9_f_‘_ x then
  

y': cos x.

For y+Ay=sin (xi-Ax)

and Ayzsin (xi-Ax) - sin x ,

:2 cos (x +—AZ£) 3111!};

since sin(x+Ax)- sin x: 2 cos-2L(x+Ax+x) sin-é—(xrAx -x).

Then

A sin-A55
J- AJ:x_cos(x+z) ...—52....

Z
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Since when Ax =0 then 92!. also is zero then,by taking

the limit of each side,we have

y': cos x , if we apply lemma 2.10 .

By theorem 2.5, if u is a differentiable function of x,

then

.9— (sin u) = cos ugll ,

dx dx

Since the formulas for the derivatives of the other

trigonometric functions use theorem 2.8 and are easily

obtained we will omit them.

The derivation of the formula for the derivative

of y=sin x is dependent upon the fact that Lim fl§l=1.

The latter statement is arrived at in various ways in

different elementary calculus books. On page 65 in

Love's elementary calculus we find the statement that

Lim .22329— =:l. No effort is made to show that this

arc-=0 arc

limit exists and equals 1 however. Assuming that

Lim 229.1291 = 1 it is not difficult to show that
arc=a arc

Lim -§l£—§ =:l. On page 18 of McKelvey's elementary

x=0

calculus we find the statement, "By definition of the

arc length of the circle", certain relations exist.

Apparently arc length has not been defined previously.
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On this definition he bases his proof but he is not

prepared to define arc length at that stage in the book.

On page 98 in Granville, Smith, Longley's book we find

the statement, "From geometry the chord<arc<MT+M'T "

Here MT and M'T are the tangents to the circle through

the ends of the chord. They fail to show how geometry

can be applied to obtain this result, however. In most

elementary calculus books we find one or more of the above

assumptions made.

In the derivation of the formula for derivatives

of the inverse trigonometric functions it is necessary to

keep in mind that the functions are multiple-valued and

that usually we are deriving a formula with the principal

branch in mind. If this is true we should give the limits

on the values of the angle in each case. If it is

desirable to consider any angle between 0 and 2fl' then

it should be pointed out Which sign should be used on

the radical in each of the quadrants. The existence of

y' in theorems 2.9 to 2.14 inclusive is given by lemma 2.8.

Theorem 2.9 If y=sin-Iu, then y'=i: I 3

"' "“’ f’ [1blbi—A clfi

[11“<11.

 



51

From y::sin-Iu we have u=sin y. Therefore ,by

theorem 2.8

as - |dy__.(cos y)y and

(20) 37': 1 5-13 . 

 

Since cos y: i 1 - sin‘y and sin y =u, equation (20)

becomes

The plus sign applies when y is in the first or fourth

quadrants and the minus sign applies when y is in the

second or third quadrants.

 

../ /

'u‘ < 10

From y=cos-Iu, we have u=cos y. Therefore

Q “" a ' -dx" ( sin y)y and

d -.. 1' .g-E'. o(21) al- --——-
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Since sin y= i l - coszy and cos y::u, equation (21)

becomes

'=:i 1 ‘QE .

y 1-11! (11

The plus sign applies when y is in the third or fourth

quadrants. The minus sign applies in the first and second

quadrants.

‘/ l du
Theorem 2.11 If y: tan u then y'=.___.... .... .

"" ' *— 1 + u2 <13

Since y=tan‘lu we write u =tan y. Therefore

 

du ... 2 d
'd'i .. sec y & and

(22) y': 1 Q .

seci y ‘1"

Making use of the fact that secz y=l+ tan: y , equation (22)

becomes

y' z: #93

1+u‘ dx

The same sign holds for all four quadrants.

Theorem 2.12 l: y: COL-Ill, then y': - FLU?- '3‘; o
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For,since y=cot‘lu,we can write u=cot y. Then

du__ _ z _d_y
333— csc ydx and

(25) y': -____:.L..___.. .93: .

csczy dx

Substituting cscz y = l + cot zy in equation (25) , then

1 du

y‘=- #- .

l+uz dx

The minus sign holds for all four quadrants.

-/ / d
eorem 15 y sec u, en 17 :r _/ 3%

In, > 1.

I
From y=sec" u we have u=sec y. Therefore

 

du = a:a sec y tan y dx and

(24) Y': 1 2L1 ,
sec y tan y dx

 

Since tan y: IVsec 3?, - 1 and u = sec y, equation (24)

becomes

y,1. 1 du .

uVuz-l E
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Here the plus Sign applies to the first and third quadrants

and the minus sign to the second and fourth quadrants.

"’ / dd

[11' > 10

Writing y=csc-lu as u=csc y, then

 

'31:: - csc y cot y '3‘; and

25 L-—- 1 5.1.1.1 .
( ) y""“"csc y cot y dx

Substituting cot y::it Vcsczy - l and u=csc y in

equation (25),we have

1 du

uI/uz-lfi .

 

y'= 4'7

The plus sign holds for the second and fourth quadrants

and the minus sign for the first and third.

Theorem 2.15 __If y=u“ , then y'znua-IEE
 

Writing y=u”" as y = oak,“ and letting vzn log 11 ,

we have

yzev o
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v dx

we get

v n
u_eu du._nu du ot-Idu

In theorem 2.15 the derivation must not assume the

existence of the derivative. If such an assumption is

made the formula simply states that if there existsa

derivative it can be found in this way. This is a

common error in elementary calculus texts.

Smith, Salkover, and Justice on page 147 of their

book and Neelley and Tracy on page 108 assume the

existence of the derivative in their proof of theorem.2.l5.

On page 47 of the text by Slobin and Solt and on

page 91 of Granville, Smith, and Longley we find the

existence of the derivative assumed in the proof of

theorem 2.7.

Some rather surprising results may be obtained if

you start with false assumptions. For example, suppose

we assume that

x3 A

(x - 2)(x+l)= 37-7 W

where A and B are constants. If A and B are determined by
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.3

writing x = A(x+~l)+B(x - 2) and substituting = -1

and x==2 we obtain the obviously false result that

33 s 1

(x - ENE-#17: '15—‘72:- )"‘3T““Tx1 °
 

On page 36 of Slobin and Solt, after having proven

theorem 2.15 for the rational numbers, the authors make

this statement, "This theorem is also true for n irrational.

This is evident since an irrational number may be expressed

as the limit of a sequence of rationa1 numbers and,

since the theorem is true for every rational number of the

sequence, it is true in the limit." This statement implies

that if a thing is true before the limit is taken it is

true after the limit is taken. This statement is obviously

false.

2.2 Rolle's Theorem. Theorem 2.16 '1: f(x) is

continuous and single-valued _i2 2 region aéxéb, f(a)=

f(b)=0, and f'(x) exists for a<x<b, then there exists
 

 

_a point a<c<b such that f'(c)==0.
 

Since f(x) is continuous on (a,b) it has a maximum

and a minimum.*

 

* Fite, p, 25.



57

If f(x) is constant then the derivative at every point

is zero and the conclusion is satisfied. If f(x) is

not equal to zero for all points then it is positive

for some values of x or negative for some values of x.

If we have the former let u2>O be the maximum of f(x).

Since f(x) is continuous there is some value a<c<b

so that f(c)=u .-::- Now if h>O then

f(C‘Ph) - f(c) £:O ,

 

 

and

f(c -h) -f(c)éO .

Then

(25) f(c+h) - f(c_) 4 o
h —' ’

and

(27) f(c - h)h- f(C) z 0 .

By equation (26) f'(c) £ 0 and by (27) f'(c) 2.0 .

Therefore

f'(c) = O .

If the maximum is zero then there is a minimum that

is negative and a similar proof holds.

 

'3' F1136, P. 24
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Demonstrations resting upon the fact that the function ‘

in passing from a to b must increase and then decrease

or decrease and then increase will be valid as long as

we have only a finite number of oscillations of f(x)

between a and b. If an infinite number of oscillations

exist then this need not be true. For example, Slobin and

Solt start their proof with the statement, "If f(x) is not

identically zero, then it must increase from f(a)=r0,

then decrease to f(b) = O, or it must decrease from f(a)=0,

then increase to f(b)== 0." Their proof holds then only

when the number of oscillations are finite.

2.3 Law of the Mean. Theorem 2.17 .lf f(x) is
 

continuous in (a,b) and if f'(x) exists for a<x<b,
 

then for some a<c<b we have f(b) - f(a) = (b - a)f'(c) .

Form the auxiliary function

(28) g(x) = f(b) - f(x) - “b; 3:“) (b -""§;> . 

Then g(a)==g(b) ==O by substitution. Taking the derivative

of equation (28) we find

 

(29) 8'(X)= - f'(x) + flb)b--f;a)
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Therefore g(x) is continuous. Applying Rolle's Theorem

there is some point a<c<b where g'(c)=O. Setting

x=c in equation (29) we get

ft(c) = f(B‘t); ::(a)

01"

f(b) - f(a)= (b - a) f'(c) .

2.4 Indeterminate Forms. If we have two functions

such as f(x) and g(x) and if there is a finite value a

of x such that f(a)=0 and g(a)-=0, then the fraction

becomes —9- which has no meaning. If it is desirable to

0

find the Lim g(i) it can be done as follows. Consider

x=a

the function

 

gag; : :81)? [ 8(X) - g(a)] - [f(x) - f(a)?

which vanishes at x=a and x.-::-b.. If we apply Rolle's

Theorem then

f(b) - r( )__ f’(§)
(50) g(b) _ 81% - +811?)- where a < f < b .
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If in equation (:50) .f(a) =0, g(a)—=0, and b=x then

(31) “’0 - f‘(f) where a <f<x .

g(x) ~ 8'(§5 ’

 

From equation (51) we get

f(X) —L f'(f)

(52) if: BTW—i=2???

if the limit of the right hand side exists. Now, if

g'(a) is not zero and f'(x) and g'(x) are continuous at

x = a, we have

f(x) _. f'(a)(35)
firm-m

‘

If g'(a):k:0 and f'(a):::0 then

Lim '(x) =0 .

x=a ' x

If f'(a) and g'(a) are both zero then equation (52)

is applied again so that

In applying this method we assume the continuity of the

derivatives involved.
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This proves

  

Theorem 2.18 if the derivatives _o_f_ f(x) and g(x),

 —_~~——————-—-

  

  

__ fl:
and are continuous at x-a, and _i_f the fraction €55)

assumes the indeterminate form -g-_a_t_ x: a, then

f(x)
Lim

x=a g(x)

will Be equal to the first _<_>_f the expressions
 
 
 

f!(a) fl!(a) f"'(a)

’00..

which _i_s_ not indeterminate, provided this expression
 

9X1St80

f(x) ..
Consider now the case Lim -—(-—)- where Lim f(x)-

x=a: x

and Lim g(x)=0 . Let x=-E and consider Lim xii). .

3“" 19:0 8(a)

Then,by equation (55) 3

/ I

r(--> Jam?) f'(x)
Lim ——fz_—___—--Lim = Lim

t=0 g( t) t=o it swit)‘ xzoo 84x5

This result is given by

Theorem 2.19 if the derivatives _o_f_ f(x) and g(x),
 

 

that are involved, exist for all values 9: x greater than

393112W N and _i_f the fraction g(i) assumes the

indeterminate form ‘73-‘33}. x =00 , then
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will b egual _o_ the first 9_f_ the expressions
 
 

Limof'u) £133 f' '(x) £33 f"'(X)

’ 1'

£$ggl(x) £313 g1!(x) %}£g|l1(x)

  

, O...

which _i_s_ not indeterminate, provided the expression
 

exists.

f(X) :: =60If m is such that T‘Jim f(x) no and Iii-m g(X) a

then if it is desirable to find the Lim f(X) it can
mom

be shown that theorem 2.19 applies.* By equation (50)

we have

- g(xf- g(c) g'Kf)

where c <f < x and c is large - but finite.

 

-:t- By Lim f(x)=-o we mean that for any 5 >0 we can

x=a

find an ’7 such that if Ix - a|<nz then it follows

that f(x) >-é- . In a similar way Lim f(x)-'00 means
. 1:“,

that forany €>0 we can find an ’7) 0 such that if

x >-'—- then it follows that f(x) 7-i- .
”L 6
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f

A x)

aLim

x=a:

will be equal _1_:_o_ the first 9: the expressions
  

Limof'u) , 230m f"(X) ’ £33; f"'(x)

giggqx) £33 8"(3‘) 729331; gtn(x)

  

, 0000

which _i_s_ not indeterminate, provided the expression
  

exists.

f(x) ... e...
If EGU is such that ;._i_m f(x) 0'0 and 1555;!“ g(x) a

then if it is desirable to find the Lim 2‘:) it can
=00

be shown that theorem 2.19 applies.* By equation (30)

we have

where c (f < x and c is large - but finite.

 

a:- By 2:132 f(x)=-o we mean that for any 5 >0 we can

find an '7 such that if Ix - al <7 then it follows

that f(x) >é— . In a similar way £13.31; f(x)=-°O means

that forany €>0 we can find an ,7) 0 such that if

x >-’—- then it follows that f(x) 7-i- .
"L 6
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Now by algebra

‘ (a)

(35) f(x)_ PM“) 1 - .

g(x)- g'(§?) 1 - 3

f'H’) ..
Assumin that has a limit at -—°0 and callins __T—‘Ts'f f 13(0) 8

that limit A, we can take 0 so large that'ETFET , and

therefore also% , differs from A by less than 5, .

By this method c is now fixed and f(c) and g(c) are still

finite. Since x'may still vary, we can take x so large

c

that i_‘_%_ will differ from 1 by 63 . From

equation (55), then,

EGCT — (A +7, )(l+%) where I7,‘<e, and

Theorem 2.20 .2; the derivatives-g; f(x)_and g(x),

that are involved, exist for__l_.1_1g§§.g£ x.gneate2.than

_a_ome numbe_______1: N _a_ILdif Lbs iii—ation é—E—Eg— assumes the

indeterminate from {33- at x =00 , than
 

f(x)
Lim

x=a g(x)
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will be equal to the first of the expressions
 

 
 

aim f'(x) 53m f"(x) gigf"'(x) ....

£4353 8'(X) ’ Iiggg 8"(x) ’ £931, g"'(x)

which is not indeterminate, provided this expression
  

exists.

The case where Iii-fl f(x) =°O and Ethyl}; g(x)-=- 00 is

easily obtained from theorem 2.20. For, letting x==(a +3%),

we obtain

fu)_fia+’)_m-)

”’7’ m-an‘ir-m‘fr -

Then

f x) _. F( )._ F' )

‘58) tetgmt§iinam§7~§é$w y

by theorem 2.20. Since

dx -/
F'( ):= f'(x) ::——-f'(X)

3’ Ex? 33 ’

and

G'(y)'==g'(x)-%§=ré%ég'(x) ,

equation (58) becomes
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This proves

Theorem 2.21 _I_f the derivativee 3f: f(x) and g(x),
  

   

that are involved, exist _i_._r_1_ the neighborhood _9_I_‘_ x=a

and are continuous 9.13 x=a, and _i_f_ the fraction .388.
  

   

assumes the indeterminate form {3- when x=a, then

f(x)
Lim

x=a g(x)

will be equal to the first of the expressions
  

fi(a) , ft1(a) f!!!(a)

g'(a) g"(a) ’gH‘Ia)
, coo

wnich _i_e not indeterminate,provided this expression exists.
 

Most of the other indeterminate forms such as 0-69 ,

«9..., , 00 , 000, l” , can be transtrmed into the form—g-

org- . The last three forms may be treated by the use

of logarithms. A function,sec x - tan x,which becomes

60-00 at x=%r- may be written

l-sinx
sec x - tan x .-.-.

cosx

 

0

becomes 00-00 , then we can write

which becomes ~9- when xz-g- . In general, if f(x) - g(x)

1 __ 1

f(x) - g(x): EL! )1 f(x)

f'(x)-six)
 

Which is of the form ...Q...

0
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 Also, if f(x).g(x)=0'00,we set f(x)-g(x): f(IX) '

This reduces to the form 7-0,— . f2!)

An error that is often made is the assumption that

1&1; 5.8% does not exist if £1.13 £4163- does not exist.

The falseness of such an assumption can be shown by an

example. Consider

f(x) = xz sin—£- , g(x):::x , and a=0.

2 I

Then Lim f(:) = Lim W=L1m(x sin—XL)=O .

x=0 g x=O x x=0

At the same time

1 I

£112 fl(:) = L m (2x sin? cos‘f’)

= SII 5 x=0

 

wnich does not exist at x=0.

It should be noticed that in order to say that

Lim f'(x) _ f'(a)

g'lx) "" g'Ia)

x=a

we need the continuity of the derivatives at x=a.

Some other mistakes that often occur in the treatment

of indeterminate forms are the following. If h(x): f(x)

am

and f(x) and g(x) vanish at x=a, then the value of h(x)

at x=a is undefined. It is incorrect to speak of the

true value at x=a because there exists no such value.
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No transformation or limiting process will bring out a

true value when none exists. Many times it is desirable

to define h(x) at x::a and h(x) can be defined to be

anything you please. For the sake of continuity h(x) is

f(x)
sometimes defined at x==a to be Lim if this limit

is finite. Slobin and Solt are qfiiie emphatic in

pointing out that we are discussing undetermined forms

and not indeterminate forms. That is, they say that-f;-

has a value which is found by means of a limit. Obviously

they are giving a definition.

To find the value of Lim h(x) some might write

 

 

=a

fikrkf-ffiv

.. NEH-k) _ Jc _
(59) h(a+k) -—m - :4*!2" ZdZ

K

‘ _f'(a)
and conclude that 2:2‘h(x)'”§TTE) . This is true if

this limit exists and g'(a)3EO. If both f'(a) and g'(a)

vanish then it is impossible by this method to conclude

that

Lim f(X) .. f”(a)

x=a g(x) ” 8"(85 ’

. f'(a)
since e ation 59 onl s s that Li h x =: andqu ( ) Y :Y( ) 11:1: ( ) m

not that Lim h(x) ...-e Lim ' X

x=a x=a g'Ix)
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It is possible to find Iiixg h(x) by writing f(x)

and g(x) in power series. However power series representing

such functions as sec x, csc x, tan x, cot x, 69w; , are

seldom developed satisfactorily in elementary books.

Unless they are developed an author would have no right

to use them when they occur in finding Lim h(x).

x=a

 

In evaluating the form g:- one might write

1

f "(x)

11"" = 3%"; = b 1 ’ '
f(x)

Using theorem 2.20 we would obtain

g'(x)

Lim h(x) = Lim x : Lim hZUE) gz—E—{S o

_ - '(x
x-a x—a x=a

lex)

Then dividing by Lim h(x), we get

x=a

é'm

x=a x

or that

f'(a)
Lim h(x) = my" .

xze

Here the error comes in assuming the existence of

Lim h(x) which as far as we know does not exist until

x=a

its existence has been shown.
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. sin x i
Consider tne %;8 '—7E—' . Since both sin x and x

vanish at x==0 let us apply theorem 2.19. Then

Lim Sinszim “(’5le .

x=0 x x=0

 

This would be an easy way to dispose of this troublesome

limit of section 2.1 were it not for the fact that we

used the Lim 3.39% = 1 to develop a formula for the

derivativg—gf sin x. Now we turn around and use the

derivative to evaluate the limit, thus forming the

customary vicious circle. many of the elementary calculus

books have this example as one of their problems in

indeterminate forms.

In discussing Lim -§%§% when it reduces to f; we

x=a

find that both Love and McKelvey, in their books, use

a method that is incomplete in that it cannot be extended

to higher derivatives. This is true since they write

f(x) -£(a)___ f'(x,)

STX) - 8(a)'— Sitlzj

 

In the calculus book by Granville, Smith and Longley

as well as in the calculus book by meelley and Tracy no

mention is made of the fact that the existence and continuity

of f'(x) and g'(x) is asslmed. Dalaker and Hartig's

book is the only one of these books that assumed existence

and continuity of f'(x) and g'tx).
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Smith, Salkover, and Justice as well as Slobin and

s . f‘(x) .
Solt assume that if Lim do not exi t tre“a m es 8 .1 n

Lim f(x) does not exist. The former, on page 358 of

x=a g x

their text, state, "If the fraction -§%%% assumes the

{0

indeterminate form Tor age-- when x = a then

f(x)

LS: Em

will be equal to the first of the expressions

ft(a) fvlga) flit(a)

’00.

which is not indeterminate provided this expression exists;

and if it fails to exist, the limit sought does likewise."

The last part is obviously not true.



CHAPTER III

THE DEFINITE INTEGRAL

3.1 Theoreme 92 Continuity . In order to prove the
 

 

existence theorem for the definite integral we need two

theorems concerning continuity.

Lemma 5.1 I; f(x) _i_e continuous _i_e the cloesee
 

 

interval (a,b) and 6 _ie ere arbitrary pesitive number,
 

then (a,b) can be divided into partial intervals such
 

thee the difference between the values e; f(x) e3 e91

.332 points ie the same partial interval ie less thee e

.ie‘eesolute.yelge.

Divide the interval (a0, be) by a point 0:32.21'39... .

Unless the lemma is true, either (a,,c) or (c,ba) has

two points that do not satisfy the lemma. Suppose

(a, ,c) has two such points. Call a, = a, and cab,

and divide the interval (a, ,b,) as (a, ,b, ) was divided.

Continue this process. Thus we have two unlimited sequences

of points, a,, a,, a,,.... am,...... and b,, b,, b,,...b“,...

For every n, saw 5 am<b and aéb“ 5 b,,.“ Let A be the

'upper limit of the am_ and B be the lower limit of the bfl,.

Since the length of any interval is one-half the preceding

one, then

Lim (hm: am) :30 .

anmw
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Therefore A = B .

In each interval there are, however, two points,

x!
at and x' ',,,,such that

(40) . f(x'”) - f(x'h)’ ,>_. 6 .

Now f(x) is continuous at x=A since A is in the interval

(a,b) or at one of the end points. Therefore there is

an h>0 such that

f(x) - f(A)‘«<-§§-

for all x's within (a,b) suCh that A - h<x<A+h. For

any two such values of x, say x, and x2 , we have

11131.) -f(A)’<‘%—’ :

 
run - f(xz)l<—% .

and hence

(41) f(XI) " f(X‘)l< e 0

But a," is, for a large enough n , in the interval

(A - h, A) and b,,; is in the interval (A, A+h). Then

for the points x, and x; in (an, b,,.) we have from equation

040) that

f(XI) 'fixz) 2 e p
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and, from equation (41), that

f(xl) "’ f(XZ) < e o

This contradicts our assumption that there was an

interval in Which the lemma did not hold.

Theorem 5.1 “if f(x) ie continuoue 13 the closee
 

 

interval (a,b) and 5.22 greater than zero, then there 33
 

‘eel7_ggeater than zero such that the difference betweeg
 

the values 2; f(x) 3} any two points whose distance epart

does not exceed»? _ie less than a _i_n absolute value.

Applying lemma 3.1 we find that if the difference

between two points x' and x1' of (a,b) is less than the

length of any of these partial intervals, then these two

points must either lie in the same partial interval or

in adjacent ones. Then

[f(x’) - f(x”) < e

 

if x1,x" are in the same interval, and if x' in in

(xn.,,x,,.) and x" is in 0.,X4H) then

f(x') - f(xm) < e ,
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and

'f(x,,,_) - f(x")l < 5 .

hence

£1110) - f(x")i< Ze .

Therefore oz 5 length of any partial interval that

satisfies lemma 5.1.

Theorem 5.2 .2: f(x) le continuous $3 the closed
  

eigterval (a,b) then f(x) is bounded lg (a,b).
 

 

For any 6>0 we can, by lemma 5.1, subdivide (a,b)

into partial intervals such that

f(x') - f(x") <15:

 

if x' and xH are in a partial interval. Now if x is

in the first partial interval (a,x,) we have

{f(x) - f(a)|< 6 ,

and

F(x)! 4 lf(a)}+e .

If x is in the sedand partial interval (x,,x3) then

<e,

 

F(x) - f(x.)
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and

 
‘f(x)‘<lf(x,)'+6 <lf(a) + 26 .

By continuing this process through the n partial intervals

we have

f(a) 1’ n6
 

 

[f(x)| <1

for any x in (a,b) .

5.2 Existence Theorem for the Definite Integral.
  

Let the interval (a,b) be divided into a set D of n

sub-intervals where the i-th interval is denoted by

Axgzx; - x;-, . Let §,; be any x such that x‘-_,$§‘-£x‘;.

We denote by ND the maximum of the.£lx; . Now form the

sum

L=l

If the Lim so exists it is called the definite integral
N080 b

of f(x) between a and b and is written ‘/ff(x) dx .

a.

5

Theorem 5.5 The Lim $0:=>/;(X) dx exists if f(x)
___.Mpu, a. ______.__.

'le continuous.
 

Let f(x) be a continuous function in (a,b). Let

Mi. = maximum f(x) inAx,’ and m; = minimum f(x) in Axg.
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Let

(42) so = in; Ax,-
l

and

(43) e0 = 2m; Ax; .

I

Then

Let Dz be composed of D, plus some additional points.

Then 89.4. Ed and 10:2 50’ since Ax; will be sub-divided

and the M; olex; will be replaced in some of the sub-

divisions by M}: S M; and therefore 80‘ .4. '85] . Likewise

i0: 2 £0, . Let D and D be any two divisions. Then

SDHS éygo ’-§pfi5 2L§£|"§Lfi3 =55¥7:vifiyfi5;ZiL5 a»

.§-D+D- 6" 30*5 3

then

Let

44 '1': "" dI==§ .() go an __ 0&0
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The greatest lower bound and the least upper bound

exist since SD 2:. m(b - a) and Soéhub - a) where m and

M are the greatest lower and least upper bound respectively

Of f(X) in (a,b).

T2,; .

From equation (45) we have

Since f(x) is a continuous function we have by lemma 5.1

that

Then

and

But

Since each term on the right is

%3-30 (80 " I)

t
" E“ C
.

I m

H

' " m" )Ax‘é 6

THE-l) +(l-so) .

positive or zero then
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Then

Li S :1." =L .

ADE; 5’ 1; ~33; jLO

Therefore

Lim s =Lim ‘3' =1
ngo C) ND=O £3 1

which proves the theorem.

Corollary 5.1 if f(x) 3.3 e function with e}; most
  

_a_ finite number _c_>_f_ finite discontinuities, then the

 

definite integral [g(x) dx exists.

Let the discontifiuities be K in number and let

the sum of the Aixg in.which the discontinuities lie be

denoted by L. Then for any 6J>0 we can find a d such

that if ND<<d then it follows that

SO '5'!) 5. 6(b - a) + K(Ifl - m)d .

Therefore

Lim ‘S - == 0 .
N020 ( D .§0)

The rest of the proof is as in theorem 5.5 .

5.5 Duhamel's theorem. Theorem 5.4 .33 a,, az,..am,
 

 

_i_._s 3. set pf positive infinitesimals such that 01;;Ig a,'=A
_- (,3

 
 

and if a,'=b,°+e,~a¢’ such that for any f7>0 _i_._t follows

that there exieps _a_n mangatllsifl n>m 2.1192 l6£l<01
M

for i=1,2,... n, then ££éb,=a.
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For since ’egl<n( and the a; are positive then

-7a,; 5 age; saga; .

Then -7A£Z€,'a 502A ,

and therefore

Lim 16£a=0 o

m=°°

Hence

é‘Lim a =Lim gb =A
“:00 I L 01:”: ‘ .

5.4 Osgood's theorem. Theorem 5.5 _I_f_ a,,az,...a.,.,
 

_ie _e set _o__f positive infinitesimals such that ‘a;- f(xJAL-léec',

where the 6" are pf higher order thanAx" , and the f(x)
 

_i_e eentinuous _i_p aéxéb and if for any/Iz>0 _i_t follows

that there exists g m such that _i_f n>m then '€;]<oz

for i=l,2,...n, then

b

Lim ag=/f(x)dx .
«=00 I a

a; = f(xL‘ )Ax,‘+€,‘A x,’

For let

where [64402 . Then

léag - 2f(x£)Ax['<7éAx"-‘=7(b - a) .
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Since f(x) is cantinuous the definite integral exists and

ZflxflAx“ -/f‘(x) dx

a.

 

-<Az.

 

Therefore b

'éag-fiu) dx) 4 7(b - a+1)

a.

and

b

Lim éa“ : f(X) (3.x- 0

On page 22 of Wood's Advanced Calculus we find

Duhamel's theorem stated with the uniform approach to

zero omitted. This, of course, makes the proof impossible.

5.5 The Fundamental Theorem 22 Calculus. (Theorem 5.6
  

.22.& function f(x) ie integrable and if f(x) has e primitive,

b

F(x), then [f(x) dx =F(b) - F(a) *.

a

   

Instead of proving this theorem we will prove the

following, more elementary, theorem.

Theorem 5.7 [If f(x)-ie e continuoue_function which
 

 

 

b

has eprimitive, F(x), then ‘//f(x) dx == F(b) - F(a) .

d

 

a By primitive we mean that F(x) is a function whose

derivative is f(x).
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Let

z

(45) g(x) =/f(X) dx .

a

Then

14-h x 14-19

g(x+h) - g(x): f(x) dx f(x) dxz-flx) dx ,

a a z

= h-f( 5') , Where x£féx+h,

since 5

fins) dx =(b - a) mg)

a

for f(x) continuous. This snows that

" 8(")_-.--.L1m ft 5): f(x) .t , =L1 g(x+h)

g (h) m h 5:;
h=0

Then g'(x)=F'(x) . Letting h(x)=g(x) - F(x) we see that

h'(x)=g'(x) - F'(x) =0 .

Therefore h(x)=C=constant, and

I

(46) g(x)=F(x)+C 2: f(x) dx .

4

Since g(a)=0 , we have G: - F(a) and equation (46)

becomes

1'

F(x) - F(a) = f(x) dx .

4.

Finally, letting x=b, we have

F(b) - F(a) Sfiix) dx .

a



CHAPTER IV

APPLICATIONS OF THE DEFINITE INTEGRAL

4.1 Introduction. In this section we will attempt
 

to justify some of the integrals set up in the elementary

calculus. Instead of using Duhamel's theorem or Osgood's

theorem we shall proceed directly from the definition

of a definite integral. It would seem that there are

two ways in which these problems may be considered. One

would be that there is n0* such thing as an area or

volume until it is defined. Using this view point we

would state the definition and from it derive the integral.

A second way of considering the problem is to think of

area, volume, and pressure as physical entities with our

problem one of giving definitions or methods suitable

fdr evaluating these quantities. In this section we will

usually take the second viewpoint.

For a general definition of area bounded by a curve

the reader is referred to Fine's Calculus.*

 

a H. B. Fine, Calculus, p. 156 .

82
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It would seem that such a definition and discussion as

given by Fine would be necessary to show that the area

found by rectangular coordinates is the same as that

found by polar coordinates. A similar remark would

hold for volume found by the disc method and the shell

methOd o

4.2 Area Undep e Curve . Let y::f(x) be a continuous
 

curve under which we are to find the area, A, between

the ordinates x=a and x=b and above the x-axis.

Cfl~/\r/\[%

      
“ $73—$11. b

Fig. 5

\
V

 
  

Divide (a,b) into n sub-intervals.dkxx , and erect

ordinates at the points of division. This divides the

area A into n parts AK'.
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Let a be the point in AxK at which the function is

a minimum and 5," be the point in Axx at which the

function is a maximum. at The area AK will be less than

AXK 5k, and greater than AIL/(5K . There will be some

x value , {K , in Axk such that f( fK)AxK=AK.-x-sz-

Then

A =3 §f( fk )AXK o

I

By the definition of. the definite integral and the

existence theorem we have

A=L013éfl g,‘ )Axkzfia) dx .

I.

4.5 Area _ir_i_ Polar Coordinates. We wish to find the

area bounded by the continuous curve p=f( 9) and two

radii vectors whose angles of inclination are o< and fl .

  
 

a Fits, p. 25

we:- Fite, p. 24
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Divide that area A into parts AK by dividing ,6-°<

into n angles A6,. Let grand abs the angles inAex

at which the radii vectors are a minimum and maximum

respectively. Form circular segments with these radii.

Then the true area AK lies between

2
I

‘2'[“ 5449*

and

I I 2

since the area of a circular segment is equal to one

half the central angle times the arc length. Then there

exists an angle ( gg) such that

AK: é-[fi §K )ier” .

Therefore by the existence theorem we get

=Limé—Lfi‘t f {129 —-~L- ‘19 .. ”0:0, 3 x K-z /0

4.4 Volume py the Disc Method. Let V be the

volume of the solid generated by revolving the plane

surface ABCD about the x-axis, Where the equation of

the continuous curve DC is y==f(x) .



      
  —%;‘h x‘”£ Ké‘ g XF’

Fig. 7

When the area PQEF is revolved about the x-axis it

generates a solid and the sum of all such volumes make

up the volume V. Now if 5,: is the point in AxK

at which the function is a maximum and Ziris the point

where the function is a minimum then the volume 7T{§,J)2XK

is larger than the actual volume and 7T(73,J2x,< is

smaller than the actual volume. Therefore between

xK-, and xK is a value f“ for which the volume

2

”[f( §K fl AXK

equals the actual volume. Then

V= $7761 fxflzAxK .
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Therefore, by the existence theorem, we have

v = Bali-noiflfi‘ 5. 82A xx = ”fixflzdx .

4.5 Volume _b_y the Shell Method. Consider the case

of finding the volume ,V, of the solid generated by

revolving the area ABCD about the y-axis where y::f(x)

is the equation of the continuous curve DC.

7i

DNFM\/Mk

/

       
 

fl rats J5:
F.8

Divide (a,b) into intervals AxK and consider the volumes,

VK , formed by revolving each piece of area, such as

PQEF, about the y-axis. The sum of all such volumes,

Vg , will be V. Let ggbe a value of x for which f(x)

is a maximum inAxg and let 5,: be a value of x for

which f(x) is a minimum in AxK . Then

27TXK_If( 6;") AXK

will be smaller than VK and
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2 77fo( a, )A xK

will be larger than VK . Select a value of x=§K

such that

277(fK‘f‘QAxx)‘f( {(1)

I

will be equal to the volume VK where boxéfi<$ and

O S. Q61. Then

V=':2n(§,}+ BKAxK)‘f( fK)AxK ,

=Z(2”f\’f( §K)AXK)+Z(2779Kf(fx)5-ii) '

Now

(52779,. N maxi)! .4. 2,2779.“ @525] ,

(
A

277M NDZAxK a

g 277M ND-(b - a) .

Where hi _>_;|f(x)l . Therefore

4‘ .....z

Lim Zara” f( §K)AxK) = o
ND=0 I

and,by the existence theorem of the definite integral,

at b

V: kgglozl:(2fl'fxf( fk)AX/()= 277 x f(X) dx

4
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4.6 Length e£.e Curve. Let the curve whose length

is to be found be y::f(x) where f'(x) exists and is

continuous at all points. The definition of the length

/

   
   €E J Awiw ‘9 b 

of a curve is

L==-Lim

choc!f3.

”22(1engths of chords) .

Therefore

L = £3362b52+3§ 9

==Lim. Vrl.+(%§§: Azlk' .

”0:0

 

There exists, by the mean value theorem, a point g; in

13:“ at which the slope of the curve equals the lepe of the

chord; that is 9.25: f'( fir)-

£31K
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Therefore

 

14:29.31 + 8'" 5* 83AM .

Applying the existence theorem for the definite integral,

Lzfll‘PEfWJSJ? dx .

we have

 

4.7 Surface 22 Revolution. Surface of revolution,
 

3, is defined to be

Lim.‘2E(surface of frustrums of cones).

chords-=0

We shall require that f(x) have a continuous derivative.

Using figure 9,

 

s =53th227-WWIS-PE:

since the surface of the frustrum of a cone equals the

average base times the slant height. Then

s = £39,102an V1 + [m sigma .

maztseemsa as,

 

and

 

since the value of x which satisfies the mean value

theorem may not be the value of x so that f(§}) will

represent the radius of the average base.
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Now

 

 

s = £33022rrfi gs) V1+Tf'( fgjzAxx+lI¢ggbz2fl§AyKV1+ff'(§x)fi3xx .

Call the first sum 8,, and the second sum Se. Since

f(x) is continuous in (a,b) we can for any 6:>0 find a

d such that if N D<d then

[Ayxke , k==l,2,..... n .

Therefore

Iszlé 21reL:(b - a)

 

where M is the maximum of V1 +E"(x)z in (a,b). This

shows that

Then

 

6

= [163.2108] = 2774/f(x)l/1+[f'(x.)r dx

by making use of the existence theorem for definite

integrals.

4.8 Pressure ee'e Horizontal Submerged Area.

Pressure per unit area is defined to be density, w, times

the depth, y. Let the plane surface, A, be submerged

vertically in the liquid.
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Take the x-axis in the surface and the y-axis downward.

We suppose that the bounding curve of A is continuous.

as x 

 

  xx”

Fig. 10

Divide A into horizontal stripsASyK in width. Let 3;

and 5,: be the values of y inAyK for which the length,

.[(y), is a maximum and minimum respectively. Now the

pressure,£3P , on the stripifiyx is less thansZ(ZaJw ywdyx

and greater than 1(a)“! yquyx. There exists a value 5?

of y for which the pressureAP on the Ayx strip is

Z(§.)w<e+aAyK>Ay/c -

I

This follows since 5*} is 5K<§K< f}, and,if 5. is picked

’ so that Z( QUAyK is the area, the same 5‘ may not be

the proper depth to use to get the pressure on this area.
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As a result, we have,

M M

r =ZAP = 2A was. + 94AM )Ayg .
I I

=Z[!( 3‘.) gang + 2% 3})w e555] .W

s, + s, .

 

Now

lszréizjw.e(§k)€%z3yk

:éfix wLE]ZS§§[

£EX.W'ND2EV3y4

éXwND (b—a) 9
J

6
i
.

where X.is the maximum of.£ky) . Therefore

Lim Sz==0 .

sto

Then by use of the existence theorem for definite integrals

we have that

b

P—£3%S,=a/Z(V)Wydy .

4.9 .flBEE: The work, W, is defined to be the force,

F, times the distance, d, when the force is constant.

Let f(x) be a continuous function of x representing a

variable force acting on a particle, P, in the direction

0X. Let the particle, P, be moved from x=a to x=b.

...
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Divide (a,b) into intervals,AxK. Let gland abe the

values of x inAQxK for which the force, f(x) is a maximum

and minimum respectively. Now the work,13w, done in

passing overzlxk is greater than f(szdxg and less than

f(gxklxk. Then there exists a f“, $I<fi<é,for

which

13W ==f(§})zkxx .

Then

w=ZAw =5“ {KWK .

I

By applying the existence theorem for the definite

integral,we get

a .

w =Lim imam“: flu) dx .
ND=0 1 a

4.10 Moment of Inertia. Moment of inertia about a

line 1? is defined to be mrz for a point mass, m, at a

distance r from.4g. Let a mass, m, be distributed along

the x-axis from x = a )0 to x=b>a such that the linear

density , f(x), is a continuous function. We wish to find

the moment of inertia about the y-axis. Divide (a,b)

into sub-intervalsAxK = Xx - X”, . Let fiend 3; be

the values of x where fix) has a maximum and minimum

respectively in Axx .
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Then the moment of inertia of43x* is less than x:f(la%flxg

and greater than fizqf(2;5£3xg'. Therefore there exists a

f} such that the moment of inertia of Axg is

2

(ix +QAXK) f( {[AAXK o

This gives the total moment of inertia as

a

ZUx'f-anx)’: f( 5‘)AXK a

K=I

...:

= 25:“ 59(me 325.9. + #42:.) r( mm, .

Denoting these sums by S, and S: respectively we have that

[32‘s (2b + ND) 1.1-wa - a)

where M is the maximum of f(x) in (a,b). This gives

Lim S ==O

ND=0 z ’

and therefore

b

Moment of inertia = Lim S, = xzf(x) dx. .

.M0=0 a .

4.11 Criticism. It might well be asked why we
 

are so careful in showing that such quantities as area,

volume, and pressure can be found by certain definite

integrals.
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It probably seems evident that the approximations

usually made are sufficient to allow us to actually find

these quantities upon taking the limit. It is not,

however, always evident that these usual approximations

are sufficient to give us the desired results. To

illustrate this fact consider the following example.

Suppose we wish to find the surface of revolution,

S, formed by revolving the semi-circle, BOA, of figure 11

about the x-axis.

 

5%

M

  
  

i5 4,

Fig. 11

 

Since gimo(chord)=0 we obtain an approximation to the

1‘

surface by summing the lateral areas, 2nyz3xk, of discs.
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Then we might assume that

n

I

i=‘//;;y'dxu==2//fl:‘ - x2 dx .

-a a

Letting x=a sine, dx =a cosede , we get

IE

2

3:47"; 14-00329 d9=4fia2£+aia££1 ,
‘0 2 2 2 0

:4naz_§ 277:4? .

 

Obviously this is not the surface of a sphere of radius a.

It is now apparent that our approximation was not good

enough. At the beginning of the discussion, however,

it is not apparent, at least to calculus students, that

our approximations are inadequate. This can be shown by

trying the example on a class.



CHAPTER V

SERIES

5.1 Positive Term Series. ‘fle will not attempt,
 

in this chapter, to give a develOpment of series. The

definitions and tests are usually given correctly in

elementary calculus books and the advanced calculus

gives quite a thorough treatment of the theoretical

aspects. We shall limit ourselves to a few remarks on

topics not usually discussed.

The usual comparison test is not always easy for

the student to apply. The following variation of it

can be used in most cases. Let U4 + uz + u,+- ...fu,+...

be a positive term series whose convergence is in question.

Let a,-+ az-+ a3+- ...+am f... be a positive term series

known to converge (or diverge). If 31330 11:; =K>O,

an

then Zum converges (diverges); if Lim 11.21... = O and

4‘3” 34.

Zaa converges, then Zn,” does also; and if

u»: _,
[2:12. 3:... and :8“ diverges, then Zu," does also.

For if Lim 3.1.5.. = K then there is an N such that
m“ a,”

u’” éK+l forn>N,
an
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and

Since :8", is convergent then Z(K 1" l) a,,, is also,

and Zn," is convergent by the comparison test. Also

there exists an N such that

Ez—zK-d>o , where O<d4K 9

an:

and

1.142(K - d)aog 0

Therefore if :8“ diverges so does Zn," . If

S

L m._2; :: O

’33:” 8.0;

then

4!.

and we have

ungé an .

Hence if Z8“ is convergent then 2:11,, is also.

If Lim 3.1.3.. = no then

mg” a».

au-LZK>O , forn>N 9
fl

and
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Therefore since 2a,... diverges then E u... diverges.

5.2 Finding the nth Term.g§ E Series. Lany books
 

make the statement that by inspection of the first few

terms of a series we can find the nth term of the series.

This is not always true. For example suppose

.. ...I __l.
11,—1, Liz-‘2', 11"": ’00....

and we wish to find the n th term. We will show that

a polynomial in jét', such as

J

(47) 11-59 = b,+ b860,?) + b3(-n’;-)’+ b,,(-;,L,) .

will serve as an nth term if the b's are properly

determined. In fact there are infinitely many such

polynomials. ‘He must have

b,+b,+b,+b,,=1 for n=1,

(48) b, +-%‘+-?f-+%~L=2’- for n=2 ,

b, +-%‘+-$"+‘2é7£=‘é' for n=3 .

Solving equations (48) for b,,bz,b5 in terms of by

we get
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Substituting these values in equation (48) we have

I _ I I z a

(49) f(fi): -—gfi’—+(l+b//)(7;) - ___ilgb (-,,-.-) + bet-5;) .

If in equation (49) we let b,,="-O 9 then f(‘A-g) =71",- 3 which

is the nth term that we would expect by inspection of the

first few terms. dowever,‘bq may take any value,

and therefore we have an infinite number of polynomials

any one of which would be satisfactory as an nth term of

this series. It is easily seen that if any finite number

 

of terms were given we could carry through a similar

discussion.

5.5 Power Series. We can make the statement that
 

every power series defines a function in its region of

convergence. To some of these functions we have given

names. On the other hand, we cannot say that every

function can be expanded in a power series. Consider a

function, f(x), which exists and has its first (n-kl)

derivatives in the neighborhood of x==0. Then we may

write *

f(x) = f(O) + f'(O)x + rui§.}.§‘+...+f”5.§f}3‘:+an,
O

 

* F. S. Woods, Advanced Calculus, p. 10 .
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X." I Emil! J i :

Now if f(x) possesses all its derivatives the above formula

for f(x) may be extended indefinitely. If at the same

time aim, IR”! =0 then we have a nonvergent infinite

series representing f(x). For example, consider

Krx2 I
3 )k

.... x + .. +

 

where

m»! {”18

RZK*I -— ( '1) m 003 f 0

Then

tray

RZMH":L§ I(2k+5)! ’

and, whatever the value of [x] , we have the Lim szfl=0 .

Hence we have found an infinite series which represents

sin x for all values of x. In order for the above

statement to be true it is necessary that khan [R‘ =0 .

If Lim IR) 4: O for x==a then the series may converge

but will not represent f(x) for x==a . Consider

I

f(x) = e79 ., for x=i=0 ,

:0 , forx=oo
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This function is continuous and has derivatives of all

orders for all values of x. This is evident except at

x=0. For x20 we have

__I

f'(O):Lim 2373—1: Lim £17.: 0 ,

 

 

h=0 h=O 2e”

_ l

-2971} _-

f"(O)= Lim hi ___ Lim _ae ,

h=O h h=O h

= Lim H :: Lim ___..2q -.-: O ,

11:0 3%, q=¢ eq

where q: i? . For f”(O) we have a finite number of

terms of the type

L 1m 32— o

(1:... 6‘1

Therefore f“(0) = O for all values of n . The series

a at

f(O) + Mom-.... +L§21£+ .00...

obviously converges for all values of x but does not

represent the function except at x=O . In fact, if

_ I

x:\:0, R = e? for all values of n.
4!.
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Likewise let us consider

f(x) ='- sin x + e-fi. .

Then

1’: - L ——x— ‘0‘. 9; x R 0

If fiflfid is left off and k allowed to become infinite

then we get a series of the type

 
f(O) + f'(O)x+ f"(0)xz+ ......+f”(0)x“+.... ,

2! n!

a 5 x zx+l

: -X x --.... -1 x .0000

x 3T +3? +( ) (216-1)! + ’

which converges for all values of x but represents

I

f(x) = sin x +- e. I.

at no value of x,except at x.==O.

Therefore we see, that to expand f(x) in a MacLaurin's

or Taylor's expansion, it is necessary to do more than

just show that

 f(a) + f'(a)(x - a)+ ....+f”(a)£"‘ " a)“ ....

converges.
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