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INTRODUCT ION

The writers of most elementary calculus books find
that they need many theorems whose proofs, they feel,
should be omitted since the average student would not
appreciate or understand such proofs., Some writers, In
their effort to give simple proofs of these theorems,
make statements that are false, Occasionally they fail
to acknowledge the necessity of certain assumptions,

The writer of the advanced calculus book feels that
these omitted proofs are either too elementary or else
not a true part of hils work and therefore he also omits
them., In this way we find omitted from elementary and
advanced calculus the proofs of many necessary theorems,
For example, we find that the subject of continuity is
mentioned in elementary calculus and discussed at. some
length in advanced calculus, but in nelther case do we
find any proof of the continuity of the elementary
functions, Agein, the derivations of the formulas for
derivatives are based on the assumption that the derivative
exists,

The purpose of this paper shall be to state and
prove those theorems that are important to the elementary
calculus and are not proven in most elementary or advanced

calculus texts, In doing this we shall assume those



theorems of real variable that are ordinarily assumed
in advanced calculus. An effort will be made to point
out some of the errors that are made in some of the
elementary calculus books, Also, numerous examples
will be given to 1llustrate other errors commonly made,
No effort will be made to include proofs or definitions
generally given correctly in the elementary or advanced

calculus book,



CHAPTER I

LIMITS AND CONTINUITY

l.1 Limits, Since the idea of the limit is basic
to the study of calculus it 1s important that its present-
ation be made with care, We define the limit of f(x) at
Xx=a as a number A such that if € 1s any positive
number we can find a number 7 such that if lx » a,</7
and x ¥ a then it follows that lf(x)-A|<€ o« We
write this as
(1) Lim f(x) = A
=a
The definition of the 1limit of a function of n wvariables
is very similar to that for one variable, We define the
limit of f(Xjeeessexy) at the point x5 2 81 , Xp= 83 , ceme
Xn ® 8, , 83 a number A such that if € 1s any positive
number, we can find a number 7 such that if ,xl- a1,</7,
|x2 - az'(/?, .....l‘xn- anl<t7 and the point
(xl ....xn)% (a:L ....an) then we have , f(xl ...xn) - A|<e .
If in definition (1) we interpret x as (xl...xn) ’
a as (8)e00 8,) and Ix - alas the maximum of lxi..ail
for 1 = 1,2,.s..en, then definition (1) becomes the definition
of the limit for n-variables.

3






Likewise we define the limit of f(x) at x=o0 as
a number A such that if € 1is any positive number, we can
f£ind a number # such that if |x|>%  then 1t follows
that lf(x) - Al( € . We write this as

(2) Lim £(x) = A
X=00

We define the limit of f(Xjee.exp) a8t X,=9% ,2,=99,~""
Zg=D ) Koy = Q1) Xypp=Rzy =" """ ) XK= Xm—pe 3
as a number A such that if € 1is any positive number we
can find & number m such that if 'x,l?ﬂ( ’ ,xz,>/7 »
.....lxkl>/7 and 'xk-l»l - a1|<-,£z—, ka+ o= a2'<-,%,
Y S—— <—},I- then 1t follows that [£(x).e.x)= a<e,
In this definition k may have any value from 1 to n.

In these definitions we have spoken of the limit

at X = a or at x w00 and used the notation Lim f(x)

Xu8
or Lim f(x) instead of the usual notation Lim f£f(x)
X300 p X

or Lim £f(x) . The latter suggests the question of
whe’é;e: X ever reaches a and if so when., The introduction
of the element of time in the definition of a limit 1is,
it seems, objectionable and unnecessary,
From these definitions it does not follow that a

number A, and therefore the limit, will always exist,



For example if we let

f(x) = sin—;—— when x ¥ O

20 when x = O

then Lim £(x) does not existe.
x=0

The 1imit of a sequence, { an} , 1s included in the
definition of Lim f(x) o To see this let f(n) = a, .

X= 00
Then Lim f(x) would give the usual 1limit of the
na 0o
sequence.,

We have noticed that most authors of elementary
calculus books start with a definition of a l1limit of a
variable. It is difficult to say just what they mean,
if anything. Some of their examples indicate that they
are concerned with the 1limit of a sequence. Again it
seems that they are talking about the limit point of a
set of points. On page 6 of Love!s Calculus we find the
definition: " When the successive values of a variable x
approach nearer and nearer a fixed number (a), in such a
way that the difference a = x becomes and remains
numerically less than any preassigned positive number

however smell, the constant (a) is called the 1limit of x,"
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If the time element is removed from this definition there
is nothing left., As an example he gives the sequence

9y 099, <999, eeeee 88 having the 1limit 1. Further

he states that no term of this sequence will ever equal 1.
This statement is true, However we can not say the limit
is never reached no matter how long the process continues,
If this sequence represents distance covered, and if it
takes one minute to go 9 of the distance, 1% minutes

to go .99 of the distance, 13 minutes to go .999 of the
distance, eceeseeey, then it is apparent that the limit is
reached after 2 minutes, However, if 1t takes 1 minute

to g0 «9, 2 minutes to go .99, 3 minutes to g0 ¢999,ce0e,
then obviously the limit 1s never reachede.

On page 9 in Slobin and Solt's book in calculus we
£ind the definition: " A constant L 1s said to be the limit
of a variable x, if the varisble changes in such a way that
the difference L-x, in absolute value, becomes and remains
less than any preassigned positive quantity,however small ",
Again the time element is the only part of the definition
that gives it any meaning.

In the calculus book by Granville, Smith, and Longley
we find a very similar definition on page 11l and a similar
criticism can be made. Likewise in Dalaker and Hartig's
book on page 4.






These authors would have done much better if they
had used instead a definition such as Neelley and Tracy

gives on page 78 of their book in elementary calculuse

l.2 Theorems on Limits, Having defined the 1limit

of a functlion we next prove some well known theorems on
limits. These theorems are usually stated in elementary
calculus books without proof, Most advanced calculus

texts fail also to prove them, The first theorem is

Theorem 1,1 If Lim f(x) = A and Lim F(x) = B,
= x=a — z=a

then we have ;Iiin)z [f(x)+F(x)] = A+B x,

Since %;1% f(x) = A, we have by definition (1) that
for €, >0 it follows that there exists an mp, such that
if |x - akoz,, then lf(x) - Al<€, o Likewise for €,;>0
it follows that there exlsts an 7, such that iflx - a‘('yz
then lF(x) - Al( €z« For any€rosuppose we choose e,:ez=—§-
and let % be the smaller of the 7, end 77, « Then we have
for ,x - a’( 7 that

k) Fol ~[7+8] | < |f0-A|+|Fo-Bl<ere =€ .

# Theorems l.1, 1.2, 1.3, 1.4 are true for a=o00 if
we make one ma jor éhange » namely, in selecting an s we will,
for a=o0 , pick the largest of the N> 7e> s instead of
the smallest,






Stated as a 1limit this statement becomes

}.{ir: [f(x) + F(x)]: A+B .

This proves the theorem,

Theorem 1.2 If Lim f(x)= A end Lim F(x)= B, then
=a

x=
we have Lim [f(x) - F(J:ﬁ: A =B,
x=a

The proof 1is similar to the proof of theorem 1,1l

except that we have
lﬁ‘(x) - F(x] - (A - B)ls ‘f(x) - A‘-o- '- F(x) + Bl<e,+ez=e.

The theorem for a product of functions is

Theorem 1,3 If Lim f(x)= A and Lim F(x) = B,
- x=a -— X=a

then we have Lim [f(x) . F(xﬂ:—" A°B
_— X=a

Since %i.gl f(x)=A , we have by definition that for
€,>0 1t follows that there exist an 4, such that if
|= - al<m, then |g(x) - A|<E, . Likewise for €,>0
1t follows that there exist an 4, such that if |x - a|<7%
then IF(x) - Bl< €ze



Also, since Lim F(x) = B it follows that there
exlsts a number C ;TSI such that 'F(x)|<C for lx-al(’z,.
This 1s true since given € >0 it follows that there
exists an 2, sucih that if ,x - al</7% it follows that
|F(x) - B|<€ . Therefore B - € <F(x)< B+€ .,

Since € is arbitrarily small we can take it so small
that F(x)<lB|+6 { C., For any €>0 suppose we
choose €=~  and 6"—'2%7[' and let # be thne smallest
of the o),,f,zz,,,za .

Then we have for lx - a‘(tq that
[£(x)-F(x)] - 4B = £(x)eF(x) = F(x)-A + F(x)4 - 4B =

=a[Fx) - g + Fx) [ £(x) - 4] ,

and therefore
letx) < m(x) - 28] €]t - 8l+lro)] [ 2t - 4] .
Now by substituting as indicated above,
. - < £ £ = £ £ =€ .
,f(x) F(x) AB,\ |A|aﬁ/+0 Z2C Z +Z
Stated as a limit we have

Lim [f(x) oF(x)] s AB ,
x2 a

This proves our theorem,
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The theorem for a quotient of functions 1is

Theorem 1.4 If 1lim f(x) = A and 1im F(x) =B ,

X=g Xmg
then we have Lim f&) =_f ir B¥o0 .
xma £(z) 8

Again since 1lim f(x) = A we have that for g, >0
x=8

it follows that there exists an #, such that if |x-a|<a,

then it follows that lf‘(x) - A l< €,. Likewise, for €,>0

it follows that there exists an m, such that for|x-a|<ap,

then it follows that 'F(x) - B|<€z . Also, since

Lim F(x) s B ¥ 0 it follows that there exists a

namber 0<¢<|B| such that |F(x)| > ¢ for|x - a|< 75 .

This statement can be verified by referring to the

corresponding statement of Theorem 1l.3. This number

C can be found by considering that since B3 O then

|B| >0 and so there exists a C such that 0<c< [B].
Now for any € >0 suppose we choose q:%g and ez=§%%q—c[

and let /7 be the smallest of the three quantitiles D1y e s »
Then we have for ,x - a,(/{ that

B-F(x) - A-F(x) _ [B-fix) - an)+[sB - a-F(x)]
B.F(x) - B-F(x)

- AEB - F(xél f(x) = A
- B.-F(x + F(x

)

iy
Ll L)

- A
5=
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and therefore,

43— 8| <oy [ - ol # bzl
< !AI IF(X) _Bl+!f(x) -A‘ __ ..2_._-_5,

This proves that
Lim 2(_x). - .‘5
xea | r(x)| B

1.5 Definition of Continuous and Discontinuous

Functions.
We next make use of the idea of a limit and the

theorems on limits to define continuity. Definition:
A function, f(x), is said to be continuous at a point
x = a if Lim f(x) = f(a)., If f(x) s defined at
aA=s thei.:e say f(x) is discontinuous at x = a if
it is not continuous at x = a . However, if f(x) is
not defined at x s a then we say f(x) is discontinuous
at that point if Lim f(x) does not exist. If the
1lim f£(x) does exizzawe will not say whether the function
?fi) is continuous or discontinuous.

For example consider f(x) = % at x = O, Here
f(x) 1s not defined at x = 0 and the 1lim f£(x) does
not exlst. Therefore, we say that f?;? is discontinuous

at x = a,.
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However, consider f£(x) = 212_5_ at x = O,
Again f(x) is not defined at x = O but the lzm £(x)
exlista and equals one., Therefore, we do notx;Zy whether
f(x) is continuous or discontinuous. If f(x) is defined
to be one at x = O then f(x) is continuous.

Many real variable and advanced calculus books
are not careful to polnt out whether a function 1is
discontinuous if it is undefined at the point in
cuestion. We believe that the above definition is a

convenient and logical one.

1.4 Continuity of the Elementary Functions.

In order for us to discuss continulty it will be
convenient for us to prove several lemmas.
Lemma 1.1 If 1im [f(x)%h(x)] = A and if 1im f£(x) = B,

then the 1im h(x) exists and equals AF B,

Lemma 1.2 If 1lim [f(x)-h(x)] = A and if 1lim f(x)= B0,

then the 1lim h(x) exists and equals ’Bé .

Lemma 1.3 If 1im f(X) = A % 0 and if 1im £(x) = B

then the 1im h(x) exists and equals % .

We have these three lemmas immedlately from theorems

l.1 to 1.4 of section 2,
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Lemma 1.4 If f(x) < h(x) € g(x) and if the
1lim £(x) = 1im g(x) = 4, then the 1lim h(x) = A,

For subtracting f(x) we get

(3) 0£n(x) - f(x) £ g(x) - £(x) .
Since

Lim [g(x) - f(x)] 2 1im g(x) - 1lim f(x)
; A -As=s0
we have that for any €>0 it follows that there exists
an m such that if [x - a,</7 then 1t follows that
'g(x) - f(x)l(é . By (3), then, 'h(x) - f(x)|<6
also, which is sufficlent to show that 1im [h(x) - f(x)] =0,

Since 1lim f(x) = A then by lemma 1.1l we have
Lim h(x) = A .

Lerma 1.5 If f(x) > O and if the 1lim f(x) =1

and if g 1s any rational number, then 1lim [f(x)] %1,
For let q -% where r and s are positive integers.

If f(x) < 1 then,
1
£(x) <[etx) ] 5 < 1.

Also if f(x) >1 then,
1
1 <[f(:v:)]s < f(x) .

In either case [f(x)] s lies between 1 and f(x).
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By lenma 1.4 we have,

w
L}
-

Lim [£(x)] 3 - .

r P
Since [f(x)]"’ = {[t‘(x)] S} ¥ taen by theorem 1.3 of
section 2 we have,

X
s

Lim [f(x)] Lim [f(x) 91 .
Lemma 1.6 If the 1im f(x) = A > O then the
1m [£(x)] @ = a2 .
Let us write [f(x)] q a5 2t [%L).Jq . Now by

theorem 1.4 of sectlon 2 we have,

f(x) -

Therefore, by lemma 1.5,
Lim A% [E%—)-]q = Lim A? = a9 ,

Lemma 1.7 If f(x) and g(x) are continuous &t x = s,

then f(x) * g(x), £f(x)-g(x), é%_;_} » if g(x) ¥ O,are
continuous at x = a.
Since f(x) and g(x) are continuous then by the
definition of continuous functions we have the 1lim f(x)= f(a)
x38

and the 1lim g(x) = g(a) .
x=a
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Now by theorems 1.1 and 1.2 of section 2 we have,
Lim [f(x) + g(x)] = f(a)tgla) .
x=a
In a similar manner f(x) e g(x) and £(x)  where g(x)%0

can be shown to be continuous at x =

Legma 1.8 If the 1lim F(x) = A, lim f[F(x)] = B,
x=a F(x)=A
and F(x) = A in the neighborhood of (a), then

1m £[F(x)] =B.
Xxs38a

Suppose a, A, B are finite. Since lim _ f[F(x)] s B
then we have that for €,>0 1t follows thﬂixzﬁgre exista
an m, >0 such that if |F(x) - A[ <4, then 1t follows
that If[F(x)] - B'(e,. Also, since 1lim F(x) = A,
then we have that for m, >0 it follows Jék::t there exists
an 77,>0 such that if |x - a|<#p,then it follows that
|F(x) - A|<f7, . Now by combining these statements
we have that for €,>0 1t follows that there exists an
nk>0 such that for |x - al(ﬂk it follows that
lf [F(x)] - BI< €, . Written as a limit tinis becones

lim f[F(x)] =B .
x=a
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Suppose a is infinite; A,B are finite. Since
lim  £[F(x)] = B then we have that §>0 1t follows
il(lzt);-there exists an >0 such that if lF(x) - AI <y
then it follows that lf[F(x)] - B‘( €, . Also, since
lirg.F(x) = A, then we have that for ” >0 it follows
Jér-xét there exists an ;>0 such that if ]x( >m, then 1t
follows that lF(x) - Al < f)z, . Now by combining these o
two statements we have that for €, > it follows that |
there exists an "Za>0 such that for 'xl >/73 it |

follows thsat f[F(x)] - Bl < €, . Written as a limit

this becomes

Lim f[F(x)]=B .

X =00

Lemma 1.9 If ul L Fl(xl.....xm), uz = Fg(xl'ooxm) »

cecee U SF‘m(xl...x ), 1im wu; = b, , limuy, = by ,

m

Xaa X=a
ee oo limumgbm,y’f(ul.......um), limyzA,
xsa u=b

and if u,%b; in the neighborhood of (a), then

lim y = 4.
x=g

If the interpretation suggested on page three be
applied to the proof of lemma 1.8 then we have the

proof for this leumma.
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Lemma 1,10 , }_f- u.=F|(x. oooox,), » %:Fz(]q oo..x'«n)’ (XY X}

Um=E{X, sseeXy), 8re continuous at x,=8, , X, 5 8,5 e000,Xm= 8y

and if u =D , W=Dg,eee; U, =Dy, 2t x;= 8 and ¥ = £(u; eeeuy,)

continaous at u,=1b, , W= Dy 5e0ee,u,= by, then y considered

is
as

& function of the x's is continuous et x,=48,, x,=a,,

ceeey Xp=8m o

For u,, continuous at x = a means that
&i.g Fl"sx, oooox”ﬁ = m(a' ooooam)
and y continuous et u =D means that Lin £(U; oo oy)=f(D, coebp) e

Then by lemma 1.9 we have

Lin r[F, (x, ...xm)...F,,,(x,....x,,,]-.'f[F, (8, eoottyy) eesFpyla, ...em].

Therefore y 1s continuous when considered as a function

of x at the point x=1a .
This lemma states that a continuous function of a

continuous function 1is continuous .

Lemma 1,11 . The function F(x)=x is everywhere

continuous .

8ince x=P(x) then a=F(a) and therefore for any
€>0 there will always exist enssuch that if |x - a‘<r7
then it follows that lF(x) - F(a)|<e. Anmless than or
equal to € will satisfy the above' condition ,
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Theorem 1.5 “he rational integral functlons are

everywhere continuous.

For let f(x) = xM where n is any positive integer.
Then by lemmas 1.6 and l.l1l, f(x) is continuous since
£f(x) = [F(x)],n = x™., Now by lemma 1,7
8, x™+ a, e it 8,,x t+ a8, 18 everywhere continuous,
This completes the proof for one varilable.

For the case of several variables let yzz.ﬂ.if'x:‘...x:“
where the s ,i=l,"‘/'l,are positive integers or zero. Now
let any term of y be designated by t = Axfx‘:l.....x,,s,'l"'.
We wish to show that t is continuous at an arbitrary
point x, ...x,, « Let u = x,” s W= x:‘ s seee U, = x:,’_"' H
then t = yu, Useee Y,,1s a continuous function of the
U, eees Y,by lemma 1.7, Each u; 1is, however, a continuous
function of the X;,, ¢s.e Xm « Therefore, t, considered
as a function of the Xx,, ¢... X, is continuous by

lemma 1.10. Therefore, y, which is the sum of terms of

type t,is also continuous by lemma 1.7,

Theorem 1.6 The rational functions are continuous

wherever they are defined.

n, Y3
The rational function, y= EAXE .....xg"": F_,
EB /.ooo.-x’»' Q

/
i1s defined everywhere except where the denominator is

Zero.,
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These undefined points are called the zeros of the
denominator, or the poles of y.
Since, by theorem 1.6, F and Q are everywhere
continuous, then, by lemma 1.7, y 1s everywhere

continuous except at the poles of y.

Lemma 1,12 If Lim f(x)=,6, and x = a+bu where
x=a
b%0, then Lim f£(x)= £ .
u=0

For as x ranges over a region D on the x-axis,

u ranges over some region A on the u-axis since the
equation x = a+bu causes the two axes to be in one
to one correspondence. To the point x=a corresponds
the point u=0. Now let f(x)= f(a+bu)=F(u). Then,
since x and u are corresponding points,f has the same
value at x as F has at u. Since Lim If(x)=,é then
for any €>0 it follows that therjec—:xist an 7 such
that if 'x - al</7 then it follows thatlé- f(x.)'<€.
Now if = —g- then for €>0 1t follows that there
exist an /7/ such that 1if lul<f7/ then it follows that
’,Z - F(u)l( € . Written as a limit we have Lim f£(x)=C.

u=0

Theorem 1,7 The trigonometric functions are

continuous at every point where they are defined.
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Due to tne definition of sin x and cos x it is

apparent that they are defined everywhere. The

sin x cos X - 1 PP
8 = = seC X=——_—_ ’
functions tan x cos x ° cot x sinx ’ o8 X

are defined everywhere except at those points where the
denominators are zero, We wilsh first to show that

Lim sin x=0 and Lim cos x=1 .

x=0 x=0

In figure 1 the line AB represents sin x.

However small we choose € > 0 1let f?: angle A'0C
and then for any € >0 it follows that there exist an /7
such that 1f|x'| <  then it follows that |sin xt|< € .

Therefore Lim sin x =0
x=0

Ll

|
!
1
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In figure 2 the line OD represents cos x,.

For any €>0, such as line BC, let /? = angle AOC.
Then for € >0 it follows that there exist an oZ such
that if lx|</7 then it follows that ll - cos x!(é .

Therefore Lim cos x=1 .
x=0

Next we wish to show that the function f(x)=sin x

is everywhere continuous.

For let x=a+u; then sin x = sin (a+u)=

sin a-.cos u 4+ cos a+-sin u. Now since Lim sin x=
x=a

Lim sin (a+u) by lemma 1.12 and since Lim sin u=0
u=0 u=0
and Lim cos u=1 then we have Lim sin x=Lim sin a=s8sin a.

u=0 x=a
In a similar way we see that f(x)=cos x is everywhere

continuous by writing cos x=cos (a+u)=cos a-cos u-sin a-sin u,
Since sin x and cos x are everywhere continuous then
it follows that tan x, cot x, sec x, ¢sc x are also

continuous by lemma 1,7 .
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Lemma 1,13 If y f(x) is en increasing function in

the linear neighborhood of x=a and if U Lim y=b,
x=a

then U Lim x=a . #
y=b

For suppose the function y 1is increasing so that
when x<a then y<b. Also, consider only values of x<a
so U in this cese will represent the left-hand limit.
Let € > O be arbitrarily small, and a - € < x'<a. Let

y' correspond to x' and let 7 >0 be such that b -m >yt
b

13

/

A

* iR

Fig. 3

®

Under these conditions while y remains in the
'7 -vicinity of b then x must remain in the € -vicinity of

a. This means that U Lim x=a.
y=b

# The U will, in general, mean either the right or
left hand limit. Throughout this proof [J will

represent the left-hand limit.
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Theorem 1.8 The one-valued functions sin™/ Vs

cos™ y, tan~'y, cot™y are continuous at every point

where they are defined.

By theorem 1,7 Lim sin x=sin a., Therefore, by

. x=a
lemma 1,13, Lim xX=a since sin x is an increasing
sin x=s8in a

function 1f single valued. Now let y=s8in x and b=sin a;

-/ -
then we have x=sin ¥y and a=sin /v ana therefore we

/b. In & similar manner the

Iy, tan-/y, cot—/y can

have Lim sin”y = sin”
y=b
continuity of the functions cos™

be shown.

Lemma l1.14 Cauchy's Condition. The neeessary

and sufficient condition for a sequence of numbers,{aq},

to have a limit A is that for any € >0 it follows that

there exists an (m) such that \a"‘- apl < e for all

n,p > m,

Since (a,.,} has a limit then,by definition,for any
€ >0 it follows that there exists an m sych that for
n>m then it follows that 'A - a,,,_l<-§-. Also for the
same € >0 and m 1t follows that for p>m then,
lA - api(-%— o Adding these Inequalities we have that
for €>0 it follows that la.,,- ap|<e for n,p.> m.

We next prove that the conditlon is sufficient,
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We wish to show that if for any.6>0 it follows that
there exists an m such that for n,p>m then it follows
that 'g,‘- Gp‘< €, then the sequence (a.,,} has a limit.

For e,=é—, by hypothes;s s there exists an 7,
such that for p >'7, then it follows that ‘a.,,l- ap|<e,.
Then there is an interval d/=2€, in length, which
contains all ap for p>m, . Double df so as to
obtain an interval 2d; in length, ¢ on eigher side
of a,, . Now for €z=?/g—there exlsts an m,>m,, such
that p >me then it follows that la,,,z- ap| < €;. Then
there is an intervel dz=Z€, in length which contains
all ap for p >z, . Now d; is not necessarily contained
in o but 2dz 1is always contained in 24, .

In general, for €= » set up a sequence of 2d;

L.
z&
by picking d;=4A<€: and each o will contain all
ap for p>m; . Then 24 contains 2dp contains 2dy
contains..... 24, contains 2d7 eeeeees o

Since the length of 2df 1is 73_"'/?- we have just one
point, A, inside all these intervals {2 dZ} ot

% C, Caratheodary, Vorlesungen uber Reelle Funktionen,p.54




25
We will show that A 1is the 1imit of the sequence {a,,,,}.

For any € >0 it follows that

if 1 1s chosen such that e;:—,f; end p >m, . That is,

if we take m =m;, then for p > m we have ]ap - A‘( € ,

Therefore Lim g, = A
n=oo

Lemma 1.15 If {%} is a sequence of positive

rational numbers whose 1imit is zero and if b >0,

then Lim ba'”: 1.

Let b>1} then  bB™>1 ,
Since a, > O and 1lim g, =0 then for = sufficiently
large 8, 1s as small as we please, 'We can take m so
L
large that Zn >? for n > m however large the
positive integer g be chosen,

By the binomial expansion
(1+e)g> l+ge .
For sufficiently large g we have
l+ge > b

and thnen

(1+€)8 > v,



26

Also

Z

(1+€)** >(1 +€)% .

To show this let/u,nz be two rationsl numbers such that
Yy

ﬂz>/u e Ve wish to show that (1+e)7>(1+e) .
Let nz:—t-ﬂ— and ,uz-g- where r,s,t are integers and r>s
and t> 0. Then

£

T
(4) (1L+€) > (1 + € )-é;L .

kaising both sides of equation (4) to thetthpower we

have

V.3 S
(L+e€e) > (1L + € ),

which 1s true since r and s are integers and r > s.
Therefore, (1 +6€ )2‘;> b for n >m. Then ve

have

™ 1 +€ )

That is for any € >0 we can find an m such that if

an
n>m then b < 1+€ , Thus we have proved that

Lim %=1 for b > 1.
n=ao
For the case b<1l let b-—-—-é-—- . Then ¢ >1 and,
&pplying the preceding case,we have
ca"< 1+€ .

A

}

~——

e




Ee
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Hence
C /] +€
and 1- 0™ < € ]
Ay
Therefore Lim b = 1 for b<1,
nsoo

Lemrma 1,16 If the sequence of rational numbers

{a,,,} has a limit and if b >0 , then the sequence

¥ ,5%,0%,... has a limit.

Q Qa, -
For let d, = p™ . b= b P (B £ 1). Then for M >0

it follows that there exists an € such that if Ia,,,- aP'<€

-4
then it follows that lb 2 1 <f7 if we apply lemmas
1,14 and 1.15. Also, since {a,n} has a 1imit,it follows
that there exists two numbers @ and R such that @< a,<R

when n=1,2,3,.¢... Therefore
R
Id.,,]( o' 7 if b>1 ,
and

'd"‘l< baxr( i1f <1,

If b>1, we take /7:36;?- » and,1f b<1l,we take 7=-Z)%
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In either case we have that for €>0 it follows
that there exists an m such that for n,p>m then it
follows that ’b‘"’ - bapl<€. Now by applying lemma l1l.14

our theorem 1is proved.

Lema 101'7 -I-f.:a-l 9 az’ o 00 and C, 9 03 o0 s 00

be two sequences of rational numbers having the same

@y, Co
limit and if >0, then the Lim b ™= Lim b .
n=s oo n=0co

By lemma 1,16 both limits exist., Let
Ay ba“ ba"' bd" - ba"-a". We must show that

Lim 4, = 0 . However, Lim (a, - e, )=0 and therefore
n=00 n=oo

the Lim (1 - bY ™=0 . Hence
n=00
Q.
Lim d, = Lim [b“( b“""ﬂ 0=Lim (b™-1v™).
n=09 n=e n‘ao

c
Therefore the Lim b= Lim b *by applying theorem 1.2,
n=co n=oo

We are now ready to define what 1is meant by an
irrational exponent. If c 1s any number and r, ,rp, ec.e.
is a sequence of rational numbers such that Lim r,=c,

n=eo
Am,

then a€ 1is defined to be Lim a™ .
n=co
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Lemma 1,18 1If ¢, ,C ,+... 1s 8 sequence whose

limit is ¢ and if a >0, then Lim 2= o,

n=eo
For let r, ,fp «..e, 804 8, ,8, ,¢.... D& two secuences
of rational numbers whose limits are ¢ and such that
T, <Cn<Sy » where n=1,2,3..... If a>1 then it follows
that a"“< ac"< as"‘ « However, by lemma 1.16 we have
Lim o™= Lim as"zac. Therefore, by applying lemma l.4,
n=o n=eo

we have
Lim ac"= ac .

The proof for a<1l 1s similar,

Theorem 1,9 The exponential functlons are everywhere

cont inuous,

We wish to prove that JI‘.._:_l% o = a):" or that for €>0
it follows that there exlsts an # such that if ,x - xol<'7
then 1t follows that 'a” - z‘l( €., Let us write

az - aza xO(al‘xo_ 1).

as a Let X, , X5 se00e Xy be a
decreasing sequence whose 1limit-1is xp , and x', , X}, eeceeX},
be an increasing sequence whose limit 1s also x4 &

Let # be less than the smaller of ka - xo' and lxp - x\o’
where p and q are picked so that for €>0 then lé"."&].l<z%

/
and la" x,_ 1| d% e Consider first the case where a>1l,
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F . &£ €
or X >X, within ans distance of x, we have -1 <21,

-z”< a* P %o « Therefore we have

lx ax°’< ax’ni =€ .

since x =~ X, < Xp= X, and a¥

Also, for x<x, within an % distance of x, we have

Vll%- 1’(7,since X = X,>Xg= X, end,then

ll - gF%e

<(1 - xgz.kzz}‘ Therefore we have
x l.l %, = €
a - 8 a - o
| <R
Now consider the case vhen a<1l, If x>X,, then we have,
since x - X, < Xp~- X,, that 1> oy g% %o qnen
laz %o 1I< ‘ax" e, l‘<a and we write

Iaz - ax‘l< az'z%- =€

Again, when x< X,, Wwe have, since x - x, > Xg= %o 5 that

Ty %o Therefore we have

| - < S =

The case when a =1 causes no difficulty.

Lemma 1.19 If (a,,,} 1s a seaquence whose 1imit is 1,
then Lim log a,=0.

For let b, the base of our logarithms, be greater

than one. Then for any € >0 we have b6 >1l. Let

17—- / >0, Since Lim an=1 we have for any 7 >0
n=eo

that there exists an m such that -¢<a, - 1<0( for n>m ,
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Hence we have

(5) 1-m< 8, <1+m .

But 1 -7:3’3, and therefore

(6) a,,,>z’z. :

Also r7=é¢b§—/-< be-'/ » and 1 +M < be.
Therefore

(7) 8y < p®

From equations (6) and (7) we have
-€ €
b < a,<b .
This may be written as
-€ Q, €
b <b? <b
since,by definition, b’&ye"= 8y ¢ Therefore,
-€< log 8, K € for n>nm .

Then lemma l.4 gives Lim log g,=0,
n=eo

Lemma 1,20 If the Lim a,=a >0 and s, >0, then the

Lim log a, =1log a,.
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a Q.
Since a, = a-‘—z'! » then log a, = log a + log Z* .
However, the 11m-%-‘=1 by theorem 1.4 of section 2,

Therefore Lim 1og—&—=0 by lemma 1.19 and hence

Lim log 8, = log a .

Lemma 1.21 The Lim log x = log a if a >0,
x=8a
This 1s lemma 1.20 stated in a different form.

Theorem 1.10 The logarithmic functions are everywhere

continuous where they are defined.

For if we let f(x)=1logp x then we must show that
Lim log,x =1logy,a. We will write, using lemma 2.3,
ﬁ-‘:) = -i'—g-é:-’fr and then f(x) will be continuous if
loge x is c_ontinuous. However, log e x is continuous
for every x >0 by lemma 1l.21. Therefore f(x) is
continuous which can be stated as

Lim 1ogbx =log, a .
x=a



CHAPTER II

DIFFERENTIAL CALCULUS

1,1 Formulas for Derivatives, The derivation of

the formulas for the derivatives of the elementary
functions will next be considered. MNany times the
existence of the derivative is assumed in the derivation.,

If y=£f(x) is defined over an interval (a,b) and
x=c¢ 1is a point of the Interval then the quotient

A7 f(x) - £(c)
QX X =-C

where x is in the interval,is called the difference

quotient at x=c¢., If x:c%h then

Ay  f(c+h) - f(c)
DX~ h

AY
Let the gﬁ%ﬁ =np and if ”7 exists then 4 is called
the derivative of f(x) at x=c¢ and is written f'(c)e.
Let D be the pointsof the interval for whichr? exists,
The values of /7 define a function of x called the first

derivative of f(x) and is written f£'(x) or y'.

Theorem 2,1 If the derivative f'(c) exists, then

f(x) is continuous at x=c.

33
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Since by definition the Lim f(°+h>h' fle)_fi(e)
=0
and since the limit does exlist and equals f'(c), then for

any € >0 it follows that there exlsts an 54 such that if
,h‘ <,)Z then it follows that

f(c+h) = £(c) _

T f'(c)-!-e’ where ‘€'I<6 .

Then f(c+h)=f(c)+ h|f'e)+ e’] and by taking the limit

of both sides we have

Lim f(c+h) = f(c) .
h=0

This shows that f(x) is continuous at x=c.

Theorem 2.2 If y :% » Where v¥0, and if u' and

v' exist in D, then y':."_u.:__:zl‘l_'. .
v

Since y =% then y +Ay = 1tAou
y=23 y +4y = 1t

and

Therefore

LY (1 \ou _ufl \Av
DX~ \Vv +Av, v \Vv+Av) Ax °
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But by theorem 2.1 we have kéglo(v+Av)=v and by
hypothesis the Lim Q% — u' and Lim Q¥ = v,

yp Ax;oAx Ax=0 Ax
Passing to the limit we have

1= 2 _uvl _ vul! - uv!
y' =3 vz < va °
It is permissible to divide by WAV since v+AvV O
if ADx is sufficiently small and since v is continuous
and not equal to zero,
This proof is sometimes‘given by writing vy =u
and then taking the derivative of a product and solving

the resulting equation for y!'. Such a proof assumes the

existence of the derivative y'.

Theorem 2,3 If y= f(x), x=g(t)yand £'(x) and

g'(t) exist and x,= g(t,), then %%:%}I{%% .

For some values of At we nmay have Ax=0, Let
V be the set of values of t,+At for which Ax=0 and
V! the set for which Ax=f0.

For t,+At in V! we have

AY - Ay Ax
M=4L X .
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Since the derivative g'(t,) and f'(x,) exist then

(8) Lim 4 —Lim QDY.Lim LX
At=0o At T At=0 AX At=o At

Lim%.Lim-‘é—x-: £1(x,) - g'(t,) .

This limit is teken for DAt's for which t,+A4A+%t is in V!,
If in every interval containing t, we have values

of t,+O8% for which Ax=0 then equation (8) does not

prove the theorem and we must consider t,+At in V.

) AX — 0 and therefore Lim £X =0,

Ne have that T | n g‘t m 2F

This limit is taken for just those Dt's for which t+At

1s in V. Since g'(t,) exists 1t must then be zero., For

+A4 A =
t, +4t in V we have also that 2—}.% O since the Ax
is zero. Then for t,+At in V we have

(9) - f'(x,) g lt,) =0 .

EE

Therefore, by equation (8) and (9), for € >0 it
follows that there exists a d such that if lAt‘< d

then
‘ﬁ - £(x,)-g'(t,)]< € .
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This means that
Aléﬁma%'g=f'(xr)'8'(t.) .

The usual proof of this theorem in elementary
calculus books fails to mention the possibility ofox
being equal to zero., If y = f(x) and x equals a constant
we would have a case of Ax=0 for all Dt's. A better
example is y=f(x) and x = tzsin% for t*0 and x=0
for t=0, Here, no matter how close we get to the
origin,we have At's for which Ax =0,

Before the formulas for the derivatives of the
exponential and logarithmilic functions can be derived the
constant € must be established and a few properties
of sequences proved.,

Lemma 2,1 If a>b=0 and n 1s a positive integer

-/ -
greater than one, then n(a = b)b<La™= b&n(a - b)a™ ! .

For &%= b=(a - b)(8 + 8 + &%+ .0uee. ™) .
In the last set of parenthesis replace a by b and,since

a >b,then we have
™= b™(a - b)(B 4+ 4+ ... n terms) ,

which shows that a®- bon(a - b)v™ " .
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If we replace b by a when a >b then
g™ bZ(a - b) (e %™ % ... n terms)

and

a”- ¥ (a - b) na™’ .

We note that we could have stated this lemnma as

b>a™’ [a - n(a - b)]

by treansposing and factoring.

Lemma 2.2 A bounded monotone sequence has a limit.

For let A =18,, 8, 8g..... D& an increasing

monotone sequence and 8,<G for n=1,2,3,¢cccc00000 =«
To show that A has a 1limit we must show that for any

€ >0 it follows that there exists an m such that if
n>m then it follows that 0<@g,- §,< € . Under these
conditions A will have a limit by lemma 1l.14. Since A

is monotone increasing then 0L 8n= Bume To Show gy= 8m < €
take an my « Now either there exists an infinite sequence

of indices,

(10) MMy € Ma< eveeose
sucia that
(11) 8.4.;" a,'.‘$€’ a,,,; a,.‘;e’ LI I N S )

or there does not,
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Suppose such a sequence exists, Then, however small €

is,there exists a p so large thut
(12) PE + 8m,>G .

Now adding the first p inequalities of equation (11)

we have
= %Zpe »

and substituting this value of p€ in equation (12)

we have

By > ©

which contradicts the hypothesis. Then there nmust
exist Dbut a finite number of indices m; such that
equation (12) holds. Therefore an m can be taken so

laerge that agq- am <€ for n>m,

L3
Lemma 2.3 The seguence a,,,=(1 +-h’— )y where n=1,2,3..09

has a limit.

First, we wish to show that {a,,,} i1s Increasing or

that g,>a,_, . By lemma 2.1 we have

b"}a'"" a - n(a - bﬂ

and,if we let a = l+;—"’;_-,- and b= l+-;{‘_- sthen we have

~” -
(1+) > +zEr [1+,,L, n(1rzkg - ,n]"(l
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This shows that {a., is increasing.
Second, we wish to show that the sequence {a,,,,}
is bounded. Let a=l+Z-L-m, b=1ljand n=m+1 and,
applying lemma 2.1, we have

m
1>-zL(l+zm-L for m=1,2,3,6000 =«
Now by squaring we have
=
4> (1+ 5

which snows that azm< 4, But by the first part of
this lemma we have & < 8, and since all positive
Integers are of the form 2m or 2m-1 then we have
an <4 for n=1,2,3,cc000

We have now shown the sequence {a,.,} to be increasing
and bounded and,by lemma 2.2,the limit then exlists.,

This 1limit is the constant called € .

UK .—L —
Lemma 2.4 The %5131310 (1+X- )Z (4

For consider x such that n< x <n+1.

1

L > £

and

X
(13) (1+-L7)" >(1+-—,’;—)>(1+M,) .



However

(14) (1+L™= (edrae LT

and

(15) (1+,,—,"+—,)'"=(1+;‘{,-,~)""'- — L.
m+/

Now equations (14) and (15) give,in (13),

) 4
(16) L+ (£ > (e L) > (1 0™

/
By lemma 2.3 we have

Ay Lyl
Lim (1"'0:.) = Lim (1+4H_/) = €

and also
Ly = [ -
Lin (1+) = Lin ——7 /.
m+/
So equation (16) bew mesyupon taking limits,
| X
€ > lim (l-ﬁ—x—'))e .

4
Therefore, Lim (1+t)=e , by lemma 1.
A=+00 X

Lemma 2,5 The Lim (1+4 =€ .

For let x= - u. Then

X 4l AU
(1+4= (1 -&) =1+ 5 »

v
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/ /
= (1+ )1+ )  vwhere u-l=v .



However

(14) (1+)™"= (1edra+e LT
and

(15) (1"'3{*_!)“: (1.,.”_"!;7.)”'*’, - /

+/
Now equations (14) and (15) give,in (13),

x
A _L.m _L. .l_.’n+’ /
ns+/
By lemma 2.3 we have
T L
Lim (1 +5) (1+“+/ = €
and also
Lin (1+-&) = Lim .._.L__-! =/ .
m=o [+ 51
So equation (16) bewmesyupon taking limits,
| x
‘ L ¥ _
Therefore, Lim (l+3-)=¢€ , by lemma 1.4,
X=+e0

Lemma 2.5 The Lin (1+4 =€ .

For let x= - u. Then

(1+5V= (1 -4 "= (a+ L

41
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However

(14) (1+~,—,,'—)""'= (144 )1+ 1"

and

(15) (142 "= (e g™ — 1%74 ,

Now equations (14) and (15) give,in (13),

X

/ [ m l 1 mt!

(16) L+ ET> k) > e ) —L
By lemma 2.3 we have

Ayt 1\t
Lim (1"'0;) = Lim (14-4”_/) = €

and also
{
Lim (1+-L) = Ll ——0—— =1/ .
m=c0 ( " n%sco /+—,§L;7
So equation (16) becmes,upon taking limits,

x
e > lim (1+-7"—) >e .

x
Therefore, Lim (1+7'L) =e , by lemma 1.4,
X=+ae0

Lomma 2.6 The Lim (1+ff=e .

For let x= - u. Then

(1+4 = (1 -4%= (e 7% s

/ 4
= (1+—V—)(l+'|§‘) where u-l=v ,
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‘"hen x=-00 then u=+o% and v=+90 , Since

4

Lim (1+4 )=1 and Lim (1+-%)=€
V=+e0 V=+e0

taen,if we take the 1limit in equation (17),we have

] * 1 \V_
%gi&(l-f-;—-) = %&5‘;,(1*7) =€ .
L
Lemma 2.6 The Lim (1 + x)*=¢€ .

x=0
Since Lim (l+-—— y*= € 1let x=z"— Then the right

hand limit of (1 + u)“ .
A
Also Lim (l+-—x Yy =e.
l:ﬁ

Again let x=-z!7- and the left-hand ]:‘jir_g%t (1 + u)zlz:: e .
Since both the left and right hand limits ecual € then

£
Lim (1 + x)*=¢€ .
x.—.a

Lemma 2.7 The Lim 10 (l*X) =1 .

L
The Lim 1O0% (1*"‘) = Lim log (1+x)% .
x=0 x=0

if )I‘_.gig f(x) =7 then,by lemma 1l.15,we have

Lim log f£(x) = 1og7 = log Lim f(x) .
x=a X=a

Therefore

L
Lim log (1+ x)-é;'- log Lim (1+x)*
x=0 x=0

= loge=1 |,
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Lemma 2,8 Suppose that y=f(x) is a monotone increasing

or decreasing and continuous function, Let x = g(y) be the

inverse function and let x and y be corresponding points.

If £'(x) exists and is different from zero, then g'(y)

exists and g'(y) = T%-(—x) .

Since f£(x) is monotone increasing or decreasing

then Ay and %‘:’Y{_ are not equal to zero, Hence

Lx L has no division by zero, Since y 1s continuous,

Ay 2%

then Lim &y =0. Taking the limit we have

Ar=0
/

Lim 2&X =7

oy=0 &Y Lim S

if we apply lemma l1l.8. Therefore

g'(y)::-i.—-r%-fr .

Theorem 2.4 If y=1log x then y'=

Nl\

For
Ay _ log (x+Ax) - log x _ log (1+1Ax) _ 1 105(1-‘-%) i
Ax AX - AX - x

Pay
By lemma 2.7 we have k}go log (14']5 ) = 1,

x
Thereforg, taking limits of both sides, we have

’—l .
V=3



Theorem 2.5 If y:ez then y'= e’f

Since y:ez then x=1log y. By theorem 2,4 we have

& =y=e”*
= y
since of is morfgone increasing or decreasing and continuous.

Theorem 2,6 If y= e“, vhere u=f(x) and is differentiable,

then y'= e¥du
laen y X

Since y=¢&% then %% = g% ., Also since u=f(x)
then % = f'(x)., Then by theorem 2.3 we have
dy -4y du _ g% du
dx ~ du dx ax

Theorem 2,7 1If y:a“ then y'= a“log a %KB .

¥Yor,by the definition of logarithms 4 we have
a= e'lqd' . Then

y= (o %)% = e“‘by“ .
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By applying tneorem 2,6 the derivative is

— gulrga d(u log a)
e T )

y‘
= o«432 105 o %_‘): ,
= a% 1o du .
a®™ log a =

It 1s to be noticed that in the proofs of theorems
2.4, 2.5, 2.6, and 2,7 that we require the existence of
the Lim (1+ 4 )™ where n ranges over all real values
m=oo
and not over just the positive integers. Also, we must

show that Lim (1 -l-—,,‘; )“ and Lim (1+m7 ﬁ are the same,
n=eo n=0
Another point to note 1s that we need to show that
L
Lim log (1+n)™= log Lim (1+ n)’gt
n=0 n=0
of these facts do not belong in a first year calculus

« Although the proofs

book it would seem desirable that the author should
point out the necessity of such proofs,

Smith, Salkover, Justice in their book and Love in
his book either assume or prove most of the necessary
material., However, both of these books fail to assume

L L
or prove that Lim log (1+n)™ = log Lim (1+n)™ and
n=0 n=0
that Lim (1+n)® =e .
n=0 . _
Dalaker and Hartlg as well as Neelley and Tracy

assume or prove all necessary material., The latter gives

references for all assumed statements.
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Vie proceed now to develop more formulas for de=-
rivatives. We will define the length of a curve, y=f(x),
as the c%igh:oé?(lengthsof chords) . In section 6 of

Chapter 4 we show from this definition that the length of

a curve is given by

.
(18) L"’q Vi + [#t)]” A

if £'(x) exists and 1s continuous for ag xgb.

) arc -
Lemma 2.9 The Lin‘lsom =1

Since by applying equation (18) and the meen value

theorem for integrals we have %

vax :
(19) Lim _8IC__ _ Lim[‘“if@ dz .
chord=e chord Axzo V—A_-_Z’*T?

where x 1lies between a and a+Ax . hewriting the

denominator, equation (19) becomnes

Lim V7 L [¥&U? ax = Lim*fl t'f
Ax=o yl + (ﬁ)TAl Ax=0 V/ + 62*)8

# W. B. Fite, Advanced Calculus, p. 97. (Hereafter

referred to as Fite,.)



Using the fact that f£'(x) is continuous we have

Lim arc _ _ V/fo ?4)72 iy
chordno cChord ] + fl(d ’

Lemma 2,10 The Lim 2LX - 1
x=0
For in figure 4 we have arc ABC=2x where x is

measured in radians, Also, chord AB=2 sin x.

A
3
x
X
C
Fig. 4
arc _ .
But, by lemma 2.9, Limzo “hors = l. Therefore we have
-—'PZE—-' = 1.

Lim
sinxso 8l X
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Since sin x is continuous and Lim sin x=0 we have

x=0
Lim __1__ =1 " by lemma 1.8,
x=0 X
sin x
Therefore

Lim sin x _ 3 .
x=0 X

Making use of the fact that Lim Si: X=1 we

x=0
derive the formulas for the derivatives of the trigonometric

functions,.

Theorem 2.8 If y=sin x 1s a function of x then

y'=cos x,
For Y+ Ay = sin (x+A0x)

and Ay=sin (x+ax) - sin x

=2 cos (x +%E) sm.‘%’-t.

since sin(x$Ax)- sin x= 2 cos-é—(x-rAx+x) sin-é—(x*-Ax “X)e

Then

D sinTx

LF pay

:x_cos(x-o—z) ——
<
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Since when Ax =0 then é%l also 1s zero then,by taking

the limit of each side,we have
y'=cos x , if we apply lemma 2,10 ,

By theorem 2.3, if u is a differentiable function of x,

—i — —— °

Since the formulas for the derivatives of the other
trigonometric functions use theorem 2.8 end are easily
obtained we will omit them.

The derivation of the formula for the derivative
of y=sin x is dependent upon the fact that Lim %‘_5=1.
The latter statement is arrived at in various ways in
different elementary calculus books., On page 65 in
Love's elementary calculus we find the statement that
}ﬂg% 2%%%2‘ = 1l. No effort is made to show that this
limit exists and equals 1 however., Assuming that
Lim ©HoPd _ 1 1% 1g not difficult to show that

arc=0 arc

Lim 332-5 =1l. On page 18 of McKelvey's elementary
x=0

calculus we find the statement, "By definition of the
arc length of the circle", certain relations exist,

Apparently arc length has not been defined previously.
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On this definition he bases his proof but he is not
prepared to define arc length at that stage in the book,
On page 98 in Granville, Smith, Longley's book we find
the statement, "From geometry the chord< arc MT + M'T "
Here MT and M'T are the tangents to the circle through
the ends of the chord. They fail to show how geometry
can be applied to obtain this result, however., In most
elementary calculus books we find one or more of the above
assumptions made,
In the derivation of the formula for derivatives
of the inverse trigonometric functlons it is necessary to
keep in mind that the functlions are multiple-valued and
that usually we are deriving a‘formula with the principal
braﬁch in mind. If this is true we should give the limits
on the values of the angle in each case., If it 1is
desirable to consider any angle between O and 2% then
it should be pointed out which sign should be used on
the radical in each of the guadrants. The existence of
y!' In theorems 2.9 to 2.14 inclusive is given by lemma 2.8,
Theorem 2,9 If y=sin_lu, then y'=2% / ’
- — V 7+« dx
(u1 <1,




ol
From y=sin"/u we have u=sin y. Therefore,by
theorem 2.8

du _ )
3 = (cos y)y and

(20) y'_—_ _.__1....._. _d_l& o

Since cos y= %Y1 - sin®y and sin y =u, equation (20)

becomes

The plus sign applies when y is in the first or fourth
quadrants and the minus sign applies when y is in the

second or third quadrants.

-/ /
Theorem 2,10 If =cos u, then y'= I———fﬁ
Iul(l.

From y=cos"u, we have u=cos y. Therefore

au _ (_ ' '

= = (- sin y)y and

d --.——...-l .(-ill- o
(21) 33%’ sin y dx
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Since sin y= /1 - cos?y and cos y=u, equation (21)
becomes
YT &
The plus sign applles when y is in the third or fourth
quadrants. 7The minus sign applies in the first and second
quadrants.

ud 1 du
Theorem 2,11 If y=tan u, then y'ze——__ —
— P — 1+ w? dx

Since yztan—lu we write u = tan y. Therefore

du __ 2 d
& = sec’y ﬁ and
(22) y'= 1 du .
seefy 4x

Making use of the fact that sec? y=1+tan? y y equation (22)

becomnes

y' = 1 _du
1+u® dx

The same si gn holds for all four quadrants,

Theorem 2,12 If y= cot-’u, then y'= = T-T}'E!‘ %—; .
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For,since y=cot‘/u,we can write u=cot y. Then

du _ _ 2 dy
m= CCseT ¥ gk and
(25) y': -____1.__.._ Q .

Substituting csc? y =1+ cot £y in equation (23), then

L 4u
1+ u? dx

y'= -

The minus slign holds for all four quadrants,

-/ / J
. = h '=t——-——_
Theorem 2,13 If y=sec u, theny Ui a2—] dy’
|u| > 1.

From y:sec'/u we have u=sec y. Therefore

g__.; =sec y tan ¥y

gle

and

(24) y'= 1

du |
sec y tan y dx

Since tan y= :tVsec z? -1 and u = sec y, equation (24)

becomes



54
Here the plus sl gn applies to the first and third quadrants

and the minus sign to the second and fourth quadrants,

Theorem 2,14 If y=csc “, then y'=7F
,ul > 1.

V'_t'_T 4;

Writing y= cse™/u as u=csc y, then

%3-“:— - csc y cot y %Jzt and
25 == 1 du
(25) V=% csc y cot y dax

Substituting cot y:.".'Vcsczﬁy -1 and u=csc y in

equation (25),we have

The plus sign holds for the second and fourth quadrants

and the minus sign for the first and third.

Writing y=u™ as y = e”"&’“ and letting v=n log u

we have

y=ev.
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From 4y — 4y, dv dy = eV and 4v — n, du
E% H% ax ? 3% ’ x _u I !

we get

v

y!l= &1 u? du m=/ du
u

—_— et =nu

u ax ax

&l

In tneorem 2,15 the derivation must not assume the
exlistence of the derivative. If such an assumption is
made the formula simply states that if there existsa
derivative it can be found in this way. This is a
common error in elementary calculus texts.

Smith, Salkover, and Justice on page 147 of thelir
book and Neelley and Tracy on page 108 assume the
existence of the derivative in their proof of theorem 2.15,

On page 47 of the text by Slobin and Solt and on
page 91 of Granville, Smith, and Longley we find the
existence of the derivative assumed in the proof of
theorem 2.7,

Some rather surprising results may be obtained if
you start with false assurptions. For example, suppose

we assume that

x° __A . B
x = 2)(x+1) X =2 X+ 1

where A and B are constants, If A and B are determined by
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3

writing x” = A(x+1)+B(x - 2) and substituting x= -1

and x=2 we obtain the obviously false result that

x? 8 1

x = 2)(x+1) - 3(x -72)+5(x 1) .

On page 36 of Slobin and Solt, after having proven
theorem 2.15 for the rational numbers, the authors meke
this statement, "This theorem is also true for n irrational.
This is evident since an irrational number nay be expressed
as the limit of a sequence of rational nuwbers and,
since the theorem 1s true for every rational number of the
sequence, it 1s true in the limit." This statement implies
that if a thing is true before the limit is taken it is
true after the 1limit is taken. This stetement is obviously

false,

2.2 Rolle's Theorem. Theorem 2.16 If f(x) is

continuous and single-valued in a reglon a<x<b, f(a)=

f(b)=0, and f'(x) exists for a<x <b, then there exists

& point aLc<b such that f'(c)=0,

Since f(x) is continuous on (a,b) it has a maximun

and a minimum.s*

* Fite’ p’ 250
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If f(x) is constant then the derivative at every point
is zero and the conclusion is satisfied. If f(x) is
not equal to zero for all points then 1t 1is positive
for some values of x or negative for some values of x,
If we have the former let u>0O Dbe the maximum of f(x),.
Since f(x) is continuous there is some value a<c<bd

80 that f(c)=u .% Now if h>O0 then

f(c+h) - £lc) €0,

and
f(c = h) = f(c)=< 0.
Then
(26) fle+h) = flc) 2 o
5 <
and
(27) f(c - h)h- f(C) =0 .

By equation (26) f'(c) < O and by (27) f'(c) =20 ,
Therefore

fr(c) =0 .

If the maximum 1s zero then there 1s a minimum that

is negative and a simller proof holds,

# Fite, p. 24
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Demonstrations resting upon the fact that the function
in passing from a to b must increase and then decrease
or decrease and then increase will be valid as long as
ve have only a finite number of oscillations of f£(x)
between a and b, If an infinite number of oscillations
exist then this need not be true. For example, Slobin and
Solt start their proof with the statement, "If f£(x) is not
identically zero, then it must increase from f(a)=70,
then decrease to f(b) = 0, or it must decrease from f(a)=0,
then increase to f£f(b) = 0." Their proof holds then only

when the number of oscillations are finite.

2.3 Law of the Mean, Theorem 2.17 If f£(x) is

continuous in (a,b) and if £'(x) exists for a<x<b,

then for some a<c<b we have £f(b) - f(a) = (b - a)f'(c) .

Form the auxiliary function

(28) g(x) = £(b) - £(x) - LBL=fe) (p G

Then g(a)=g(b) = 0 by substitution, Taking the derivative

of equation (28) we find

(29) g!(x)_—_ - £ (x) + f(b)b"-f(a&)
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Therefore g(x) is continuous. Applying Kolle's Theorem
there 1is some point a<c<b where g'(c)=0. Setting

x=c¢ in equation (29) we get

£1(c) = £(0) - fla)

or

f(p) - f(a) = (b - a) £'(c) .

2.4 Indeterminate Forms., If we have two functions

such as f(x) and g(x) and if there 1s a finite value a
of x such that f(a)=0 and g(a)=0, then the fraction

becomes 2 which has no meaning. If it is desirable to

o]
find the Lim I(X) it can be done as follows. Consider
x=a g(x)

the function

£0) = £a) [ gtx) - gla)] - [t(x) - £(a)

which vanishes at x=a and x=b.. If we apply Rolle's

Theorem then

£(b) - £(a) _ £(§)
(30) 25T = gla) = g FT where a < § < b ,



If in equation (30) 4 f(a) =0, g(a)=0, and b=x then

(31) f:x; = 2:§§§ » vwhere a £ <X,
g(x

From equation (31) we get

fix) _ £ f)
(52) Lin X7 =R €T

if the limit of the right hand side exists. Now, if
g'(a) is not zero and f'(x) and g'(x) are continuous at

X = a, we have

f(x) _£'(a)
(33) ii‘;’ 2] = §7(a)

If g'(a)¥%0 and £'(a)=0 then
Lim '(x) =0 .
x=a 1' (X
If £'(a) and g'(2) are both zero then equation (32)

is applied ggain so that

= pap £E) _£r(a)
Lin gta) = {80 “gmta)

X=8
In applying this method we assume the continuity of the

derivatives involved.,
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This proves

Theorem 2.18 If the derivatives of f(x) and g(x),

that are involved, exist in the neighborhood of x=a
- f(x)
and are continuous at x=a, and if the fraction a-i-)-

assumes the indeterminate farm —g-at x=a4a, then

~~

Lim £(x)
a

Xx=

B

will be equal to the first of the expressions

f1(a) £r1(a) friv1(a)
gl(aj b4 ggf(a) ] 8'||(a—)' g0ceoe

which _5;5 not indeterminate, provided this expression

existse,
Consider now the case Lim -f-éﬁ% where Lim f(x)=0
X=e0 g\x x_soo,
and Lim g(x)=0 . Let x:% and consider Lim ﬁ_%) .
X =0 t=0 g(%)

Then,by equation (33)

~~
I~

Lim
t=0 g

1

) —Lim %t__l_f'(%’-) — Lim £1{x)
=) t=0 Zzg' (%) T x=oo g'(x)

This result is given by

Theorem 2,19 If the derivatives of f(x) and g(x),

that are involved, exist for all values of x greater thsan

some number N end if the fraction g(i) assumes the
indeterminate form -—g-iig X =e , then
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will be equal to the first of the expressions

Lixgof'(x) JIg-iang £11(x) %313.1 fri1(x)

» » ’
;‘,.1;13, 8'(X) ;‘}E g"(x) %‘}3 gll!(x)

0

which is not indeterminate, provided the expression

exists.,
f(X) -— = oo
If 363 1s such that }zim f(x) =e0 and I_’,‘.’_L_m g(x) »

then if it is desirable to find the Lim f(x) 41t can
A8 STxT

be shown that tneorem 2,19 applies.®* By equation (30)

we have

f(x) = fle) _£1(F)
(34) g(x) - glc) —g'l§)

where ¢ < § < x and ¢ is large but finite,

s By Iiirg f(x)=eo we mean that for any € >0 we can

find en 4 such that if ,x - al <0Z then it follows

that f£(x) >€L e In a similar way Lim f(x)=eo means
: Z oo

that forany € >0 we can find an ”7>o0 such that if

x >~  then 1t follows that f(x) >—— .

~”, €
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L

Lim £ X)

X =oo

B

will be equal to the first of the expressions

L;gxof'(x) , ‘Ig.iarg £17(x) , }Ii__:_lg £ro1(x) ,
Lim g'(x) Lim g''(x) " Lim g'''(x)

x=00

which is not indeterminate, provided the expression

exlsts,
£(x) = = oo
If U7 is such that }‘.im f(x) =e0 and I.,.&_m g(x) ’

then if it is desirable to f£ind the Lim £{X) 1t can
Z=e0 g(x)

be shown that theorem 2,19 applies.* By equation (30)

we have

f(x) = flc) _£1(S5)
(34) g(x) - gle) —g'l§)

where ¢ < £ < x and ¢ is large but finite.

# By Ejs.:g f(x)=eo we mean that for any € >0 we can
find an 7 such that i1f [x - &/ <  then it follows
that £(x) >e—l- o In a similar way :Iz,;%f(xh-w means
that forany € >0 we can find an 2> o such that 1if

X >—'- then it follows that f(x) 7-—L- o

7 €
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Now by algebra

)
(35) f(x)zf'(f)‘l- .
glx) " g'(f) 1 - )
Assuming that %E_g_% has a 1limit at § =o0 and calling

£f1(c)
g'(c)

therefore also g:( f) s differs from A by less than €, .

that 1limit A, we can take ¢ so large that s and

By this method ¢ is now fixed and f(c) and g(c) are still

finite., Since x-may still vary, we can take x so large

C
that %_:.%. will differ from 1 by € . From

equation (35), then,

-a-g-)- = (A +m, )(1 +7) where ’7,l<e,and

£(x) _ 5 — £ () _ £1({x)
(560 8 o= ATHEL e THR gvm

Theorem 2,20 If the deriviatives of f(x) and gl(x),
that are involved, exist for all valueg of x grester thap

some number N and if the fraction é—&%— assunes the

indeterminate from -531- at x=e0 , then

f(x)
Lim
X =00 g(x)
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will be equal to the first of the expressions

Lig £'(x) Lim £''(x) Lim £111(x)

Lim g'(x) ’ Lim g 1(x) ’ Lin g1 (x)

which is not indeterminate, provided thls expression

exists.

The case where I,‘;je“é f(x)=e0 and Lim glx)=o0 1is

easily obtained from theorem 2.20. For, letting x=(a +-é_—),

we obtain
£(x) _ fla+=) _ Fly)
(57) g(xf—'g(a-q—%—m% ¢
Then
f(x) _ Fly) _ F'{y)
o) 728 00 = Z2R 5y = 22Ny

by theorem 2.20, Since
Fi(y)= £'(x) %=-§éf'<x>,

and
G'(y) =g'(x) %:-;ég'(x) )

equation (38) becomes
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This proves

Theorem 2,21 If the derivatives of f(x) and g(x),

that are involved, exist in the neighborhood of x =a

. — f(x)
and are continuous at x=a, and if the fraction 20T
assumes the indeterminate form ==~ when x=a, then

f(x)
Lim
x=g 8(X)

will be equal to the first of the expressions

£f1(a) f£1'(a) f£rv1(a)
g'l(a) ’ gntt(a)

9 oo

wnich is not indeterminate,provided this expression exists.

liost of the other indeterminate forms such as O-oco

»
° ’ oo’, 1” » can be transformed into the form-g-

c0-e0 » O
or;i.‘-?—- o The last three forms may be treated by the use
of logarithms., A function,sec x - tan x,which becomes

e -0c0 at x=%’- may be written

secx-tanx:!‘._:__s_i.&_}.{.

cos x
o 7
which becomes - when x =3~ . In general, if f(x) - g(x)

becomes e@-00 , then we can write

| 11
f(x) - glx)= &KX)I (x)

T(x), g(x)

which is of the form g o
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Also, if f(x).g(x)=0'e0,we set f(x)-g(x)= f(,x) .

This reduces to the form —g—- . 7=

An error that 1s often mede 1is the assumption that

f(x) £1({x)
}'c.i-'tg m). does not exist if }.érgm

The falseness of such an assumption can be shown by an

does not exlist,

example., Consider

£f(x) = x® sin-é-, g{x)=x 4 and a=0,

2 /
Then Lim f(;) — Lim ZE_E}.I}_Z;- Lim (x sin—-é-)::O .
x=0 & x=0 X x=0

At the same time
! /

Lim £YX) _ Lim (Zx sin¥ - cos—‘)
=0 g'(x] x=0

wnich does not exist at x=0,

It should be noticed that in order to say that

£1{x) _ f'(a)

Lin g'(x) = g'(a)

X=8a

we need the continuity of the derivatives at x=a,
Some other mistakes tnat of ten occur in the treatment
of indeterminate forms are tne following. If h(x)= £(x)
g(x)
and f£(x) and g(x) vanish at x=a, then the value of h(x)
at x=a 1s undefined. It is incorrect to speak of the

true value at x=a because there exists no such value.
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o transformation or limiting process will bring out a
true value when none exlists. Many times it 1s deslrable
to define h(x) at x=a and h(x) can be defined to be
anything you please. For the sake of continuity h(x) is
sometimes defined at x=a to Dbe iig-é%%% if this limit
is finite., Slobin and Solt are quite emphatic in
pointing out that we are discussing undetermined forms
and not indeterminate forms. That 1s, they say thatjg}
has a value which is found by means of a limit. Obviously
they are giving a definition.

To find the value of Lim h(x) some might write

Xx=a
fark) — f&)
(39) n(a+ k) = Slatk) -
— gla+ k) gat+k) - g(a)
K
: _f'(a)
and con&lude that iig h(X)_'ETTET e« This is true if

this limit exists and g'(a)¥0. If both f'(a) and g'(a)
vanish then it 1is impossible by this method to conclude

that

£f(x) _ £''(a)
I,;i‘;‘ glx] — g"'(a)] *

. fi(a)
ince tio 39) onl that Lim h = and
s equation (39) only says tha ng (x) Y]
not that Lim h(x) = Lim ZH{X)
x=a x=g & \X
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It is possible to find %gg'h(x) by writing f(x)
and g(x) in power series. However power series representing

such functions as sec x, ¢sc x, tan x, cot x, &*"¥

, are
seldom developed satisfactorily in elementary books,
Unless they are developed an author would have no right

to use them when they occur in finding Lim h(x).

x=a
In evaluating the form iE}-one might write
1
£(x)

'(x)
Lim h(x) = Lim 2(X)  _ Lim h"(x)%:_g_} .

= = v(x
x=a x=a X=8
f2(x)
Then dividing by Lim h(x), we get

=8

= Lim h(x) (x) R

X=a x
or that
f1(a)
Lim h(x) = Fay .

X~=a

Here tne error comes in assuming tne existence of

Lim h(x) which as far as we know does not exist until
x=a
its existence has been snown.
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) sin x
Consider the %%8 - Since both sin x and x
vanish at x=0 let us apply theorem 2.19, Then
Lim 8D X _ 14y COS X — 1
x=0 x x=0
This would be an easy way to dispose of this troublesome
limit of section 2,1 were it not for tnhe fact that we
used the Lim 33§_§ = 1 to develop a formula for the
x=0
derivative of sin x. Now we turn around and use the
derivative to evaluate the 1limit, thus forming the
customary vicious circle, IL.any of the elementary calculus

books have this example as one of their problems in

indeterminate forms.

In discussing Lim é%%% when it reduces to {% we

x=8a
find that both Love and McKelvey, In their books, use

a method that is incomplete in that it cannot be extended
to higher derivatives, ‘I'hls 1s true since tney write

f(x) - f(a) _ £'(x,)
g(x) = gla) = g'(=n,) *

In the calculus book by Granville, Smith and Longley
as well as in the calculus book by neelley and Tracy no
mention is made of the fact that the existence and continuity
of £'(x) and g'(x) 1s asmamed. Dalaker and Hartig's
book 1s the only one of these books that assumed existence

and continuity of f'(x) and g'(x).
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Smith, Salkover, and Justice as well as Slobin and

. . £1(x) .
Solt assume tnat if Lim do t ist ti
r=a m €8s Nov exi1s nen
Lim 2(2) does not exist. 'he former, on page 338 of
x=a
u f(x)
their text, state, "If the fraction 63 assumes the

[

indeterminate form —z~or ;-:; when x=a then

£f(x)

=8a

will be equal to the first of the expressions

fi(a) f''(a) f£'''(a)
g‘(ﬂ 4 g'l(a) ’ g!ll(a)

goeoe

winich 1is not indeterminate provided this expression exists;
and if it fails to exist, tne limit sought does likewise."

The last part 1s obviously not true.



CHAPTER III

THE DEFINITE INTEGRAL

3.1 Theorems on Continuity . In order to prove the

existence theorem for the definite integral we need two
theorems concerning continuity.

Lemma 3.1 If f(x) is continuous in the closed

interval (a,b) and € 1is an arbdtrary positive number,

then (a,b) can be divided into partial intervals such

that the difference between the values of f(x) at any

two points in the seame partial interval is less than €

in absolute value.

Divide the interval (a,, bp,) by a point cz:a_t’_g:_ble.. .
Unless the lemma is true, either (a,,c) or (c,bo) has
two points that do not satisfy the lemma. Suppose
(a, ,c) has two such points. Call 8, = &, and ¢ =D,
and divide tne interval (e, ,b,) as (a, ,b, ) was divided.
Continue thls process. Tnus we have two unlimited sequences
of points, 8y, 8, 8z,0c6¢ Buseeeess and b, , D,y Dyyecebyyeee
t'or every n, a8, < a,<b and a<b, £ hh,,. Let A be the
upper limit of the a, and B be tae lower limit of the b, .
Since the length of any interval is one-half the preceding

one, then

Lim (bm- a,n,) =0 .

N300
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Therefore A =B,
In each interval there are, however, two points,

x), and x'}, ,such that
(40) £(xt,) - f(x'},,)’ >e .

Now £(x) is continuous at x=A since A is in the interval
(a,b) or at one of the end points. Therefore there is

an h>0 such that
ESE f(A)‘<-%—

for all x's within (a,b) such that A - h< XA+ h, For
any two such values of x, say X, and xp , we have

|ex) - s <5
lf(A) - f(xz)]<—% ,

and hence

(41) ,f(x,) - f(x,)l< e .

But a, is, for a large enough n , in the interval

(A = h, A) and b 1is in the interval (A, A+h). Then
for the points x, and xg in (an, bm) we have from equation
(40) that

f(X[) -f(x;) ,>— € 9
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and, from equation (41), that
f(x,) - f(xz) < e .

1his contradicts our assumption that there was an

interval in which the lemma did not hold.

Theorem 3.1 If f(x) is continuous in the closed

interval (a,b) and € is greater than zero, tnen there is

an greater than zero such that the difference between

the values of f(x) at any two points whose distance apart

does not exceed # is less than € in absolute value.

Applying lemma 3.1 we find that if the difference
between two points x' and x'' of (a,b) is less than the
length of any of these partlal intervals, then these two
points must either lie in the same partial 1Interval or

in adjacent ones. "Then
]f(x’) - f(x")l< €

if x',x'' are in the same interval, and if x' %= in

(x,.,5Xn) 8nd x'' 1s in (%,Xn4) then

lf(x') - f(x,,,), < €
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and

lf(x,,,) - f(x")l < € .

ilence

lﬂxw'-ﬂx”)L<Ze .

'nerefore oz < 1length of any partlal interval that

satisfies lemma 3.1l.

Theorem 3.2 If f(x) 1s continuous in the closed

interval (a,b) thnen f(x) is bounded in (a,b).

For any €>0 we can, by lemma 3.1, subdivide (a,b)

into partial intervals such that

<€

f(x') = £(x')

if x' and x'' are in a partial intervel. low if x 1s

in the first partial interval (a,x,) we have
gx) - st < €

and

|ex)] < |eca)f +e .
If x is in the se®nd partial interval (x, ,xg) then

<€ ,

|f(x) - £(x,)
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and

‘f(x)'(lf(xl )'4"6 <]f(a) + 2€ ,

By continuing this process through the n partial intervals
we nave

f(a)] + ne

lf(x)l <
for any x in (2,b) .

3.2 Existence Theorem for the Definite Integrale.

Let the interval (a,b) be divided into a set D of n
sub-intervals wnhere the 1-th iInterval 1s denoted by
Ax;=x%x{ = X~ « Let § be any x such that x,_£§;<x;.
We denote by ND the maximum of the Ax; . Now form the

sSum

Sp = gf( §.)ADx .
=l

If the Lim S, exists it is called the definite integral
ND=0 b
of f(x) between a and b and 1is written /f(x) dx .
2

b
theorem 5,3 The Lim S, =ﬁ'(x) dx exists if f(x)
ND=0 2 -_—

is continuous.

Let f(x) be a continuous function in (a,b). Let

M; = maximum £(x) inAx; end m; = minimum £(x) in Ax,.
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Let

(42) -STD = ém; Ax;
]

and

(43) Sp= Zm.‘, DX .
]

Then

Sp Z Sp=Sp

Let Dp be composed of D, plus some additional points,
Then Eg_égé and 5_&2 50, since Ax; will be sub-divided
and the M; ofQx; will be replaced in some of the sub=-
divisions by M% < M; and therefore -S-D‘ < 5p o Likewise

_S_Q = ‘§'Dl . Let D and D be any two divisions., ‘hen

Speb $50 » Spup 28,0 oe8 <55+ Spu5 Z55 »

and since
-§'.D+5 .‘E.-S',_,,g ’
then _ -
S5 <SSy, 8,=< 55 .
Let
(44) 5,

=]
il
Ofew
o
o
o]
(o}
(=)
]
owl|
ko
0
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The greatest lower bound and the least upper bound
exist since S, = m(b - a) and Sp<MNb - a) where m and
M are the greatest lower and least upper bound respectively

of f(x) in (a,b). From equation (43) we have

T =1 .

Since f(x) is a continuous function we have by lemma 3,1

that
Then
Sp - S, <Z(M; - m; }OX, <€
and
Vo (50 = 8p) =0 -
But

S0 =8,=(5 -D+(T-1) +(L=-5,)

Since each term on the right 1s positive or zero then

0
NO=0 ’

E
=
'

th
I
(@]
[ ]
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Then

Lim Sp=T=1=Lin Sp .

Therefore

Lim Sy =Lim S/ =1
No=o P T No=o P ’

which proves the theorem.

Corollary 3.1 If £(x) is a function with at most

& finite number of finite discontinuities, then the

b
definite integral /f(x) dx exists,
2

Let the discontinuities be K in number and let
the sum of the Ax/ in which the discontinuities lie be
denoted by L. Then for any €>0 we can find a 4 such
that if ND<d then it follows that

Sp =Sy = €(b -a) +KN -md .

Therefore

Wl (50 = 80) =0 .

The rest of the proof 1s as in theorem 3.3 .

3.3 Duhamel's theorem. Theorem 3.4 If a,, 8gyee8n

1s & set of positive infinitesimals such that Lim Je/=A
o=

and if a;=Db,+6a, such that for any #>0 it follows

that there exists an m such that if n>m then 'e;[<x7

nt
for 1=1,2,... n, then }:ﬂibt=}\.
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For since ‘6,;'<7 end the a;, are positive then
-8, < €.8; é.aza,; .
Then -nzAsze,-a = mA ,

and therefore
Lim . €ea=0 .,

=90

Hence

5.4 0Osgood's theorem. Theorem 3.5 If &,,8g5¢e8m

is a set of positive infinitesimals such that la,;- f(x‘:)Ax"(éeé,

where the €/ are of higher order thanAx/, and the f(x)

1s continuous in a=x=<b and if for any #>0 it follows

that there exlsts an m such that if n>m then [6;]</7

for 1i=1,2,...n, then

b
Lim éa“ =/f(x) dx .
(3

m=oo

For let
a, = f(x/)Ax,+6¢Ax/

where ’&I(Oz e« Then

lZa" - 2f(x,’,)Ax['<'72Ax‘-=7(b -a) .
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Since f(x) is continuous the definite integral exists and

Zf(x; YAx; -ﬁc('x) dx
a

<U7 .

Therefore b
,éa;-ﬁ(x) d.x} pd 7(‘0 - a+1l)
a
and
b
LinZa;, = [£(x) dx .

On page 22 of Wood's Advenced Caleulus we find
Duhamel's theorem stated with the uniform approach to

zero omitted. 'his, of course, makes the proof impossible.

3.5 The Fundamental Theorem.2£ Calculus. Theorem 3.6

If a function f(x) is integrable and if f(x) has a primitive,
b
F(x), taen /f(x) dx =F(b) = F(a) *.

(-2

Instead of proving this theorem we will prove the

following, more elementary, theorem,

Theorem 3.7 If £(x) is a continuous function which

b
has a primitive, F(x), tnen _/ff(x) dx = F(b) - F(a) .
a

% By primitive we mean that F(x) is a function whose

derivative 1is f(x).
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Let
X
(45) g(x) =/r(x) ax .
2
‘‘hen
x+h X X+
g(x+h) - g(x)=[f(x) dx f(x) dx:-f‘.(x) dx ,
a 4 X
= hef( §) » wnere x<f=<x+h,
since 5

ﬁ(x) dx =(b - a) £(§)
a

for f(x) continuous. This snows that

g'(x)=Lim Elx+h)
h=0 h

= &%) _pim £(§) = £(x) .
§=x
'hen g'(x)=F'(x) . Letting h{x)=g(x) - F(x) we see that
h'(x)=g'(x) - F'(x) =0 ,
Therefore h(x)=C=constant, and

x
(46) g{x)=F(x)+¢C =ﬁ(x) dx
a

Since g(a)=0 4y we have 6= = F(a) and equation (48)

becomes
74

F(x) - F(a) = [f(x) dax .
23

Finally, letting x=b, we have

F(b) - F(a) =ﬁx) ax .
7 A



CHAPTER IV

APPLICATIONS OF THE DEFINITE INYTEGKAL

4,1 Introduction. In thls section we will attempt

to justify some of the integrals set up in the elementary
calculus. Instead of using Duhamel's theorem or Osgood's
theorem we shall proceed directly from the definition

of a definite integral. It would seem that there are

two ways in which these problems may be considered. One
would be that tnere is no such thing as an area or
volume until it is defined., Using thils view point we
would state the definition and from it derive the integral.
A second way of considering the problem is to think of
area, volure, and pressure as physical entities with our
problem one of giving definitions or methods suitable

£f6r evaluating these quantities, In this section we will

usually take the second viewpoint.

For a general definition of erea bounded by a curve

the reader 1s referred to Fine's Calculus.:

# He, B. Fine, Calculus, p. 136 .

82
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It would seem that such a definition and discussion as
given by Fine would be necessary to show that the area
found by rectangular coordinates is the same as that
found by poler coordinates. A similsr remark would
hold for volume found by the disc method and the shell

method .

4,2 Area Under a Curve . Let y=f(x) be a continuous

curve under which we are to find the area, A, between

the ordinates x=a and x=b and ebove the x-axls.

C/\-/ R

‘ a 1B % ¥x b

Fig. 5

Divide (a,b) into n sub-intervals Ax, , and erect
ordinates at the points of divislion. 'nis divides the

area A into n parts Ag .
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Let ﬁ‘ be the point in Axx at which the function 1is
a minimum and 5,: be the point in ADx, at which the
function is a maximum. % The area Ag will be less than
DXy 5/: and greater than Axgg . There will be some
x value , f/( » In Axx such that £( fx JAX = Ay o3

Then
A= éf( §k)AXK °
]

By the definition of the detinite integral and the

4.3 Area in Polar Coordinates. We wish to find the

area bounded by the continuous curve o =f(€) and two

radii vectors whose angles of inclination ere « and B .

# Filte, p. 25
#i Filte, pe. 24
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Divide that area A into parts A4 by dividing g-«
into n angles A6y. Let Z;;and izbe the angles in Aex
at which the radii vectors are a minimum and maximum
respectively. Form circular segments with these radii.

Then the true area hx lies between
2
FlreBo[aec
and
/ N
since the area of a circular segment 1is equal to one

half the central angle times the arc length., ‘hen there

exists an angle ( §x) such that

A= Te/—[}.‘( 5,()]26,( .

Therefore by the exlstence theorem we get

s= g2 A s a=t oo -

4,4 Volume by the Disc Method. Let V be the

volume of the solid generated by revolving the plane
surface ABCD about the x-axls, where the equation of

the continuous curve DC is y=f(x) .



7. 86
E T~
) > /_\_’
//\/ \/F
2 Cd
——% 75& - 5 *

Fig. 7

When the area PQEF 1s revolved about the x-axls it
generates a s0lid and the sum of all such volumes make

up the volume V., Now if K/ is the point in D x.

at which the function is a maximum and fk is the point
where the function is a minimum then the volume 77'[5;)21/(
is lerger than the actual volume and 77(73,()2):,( is
smaller than the actual volume., Therefore between

Xx-, 8and X, 1is a value §, for which the volume
2
n’[f( §,‘ﬂ A xp
equals the actual volume. Then

v= éﬂ[f( s Axe .
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Therefore, by the existence theorem, we have

v = %gmolgﬂ[i'( £ TA:;K = ﬁxﬂzu .

4.5 Volume by the Shell Method. Conslder the case

of finding the volume,V, of the solid generated by
revolving the area ABCD about the y-axis where y=1f(x)

is the equation of the continuous curve DC.

(4
D/VFV\/F/-\/Q\

d

2 g 5

Fig. 8

Divide (a,b) into intervals D x, and consider the volumes,
Vg , formed by revolving each piece of area, such as
PQEF, about the y-axis., The sum of all such volumes,

Vk , will be V. Let Bxbe a value of x for which £(x)

i1s a maximum in Dx, and let ZA{ be a value of x for

which £f(x) is a minimum in A x. . Then
/
21 x, £ By) Axg

will be smaller than Vg and
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2ITx, £ B JA X,

will be larger than Vx . Select a value of x=§
such that

RI(§1GAx4) £( $i)

/
will be equal to the volume Vx where 5;(<§;<b:, and
0=<&&=<1. Then

v=’£2n(§,(+ 8Ax) £( §k)Axe
=3 (26 £ ) Ox D (27O £ £ ) BXZ) o

Now

IZ(zzrekf(ff)ZSEi)’f Z’2ﬂ9xf( f/()&:l )

< 27N NDJ Axe
< 27M YD (b - a),

where M Zlf(x)’ « Therefore
X -
Lim > (27 @& £( §,)ADX,) = 0
ND=OZ e £( $i K

and,by the existence theorem of the definite integral ,

b
7%
V= %ranolZ(zrrf,,f( §)ox )= 27| x £(x) ax

(-]
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4.6 Length of a Curve., Let the curve whose length
is to be found be y=f£(x) where f'(x) exists and is

continuous at all points. The definition of the length

//\/‘%\f\\

% | #
# 4 At §¢ M b
Fig. 9

of a curve 1is

L =Lin 2(1engths of chords) .

rds=

Therefore

L= 3}%2»5‘+5§ ’
= Dk
Lin V 1+(A” Axk .

There exists, by the mean value theorem, a point & in

ADx, at which the slope of the curve equals the slope of the

chord; that 1s 2J& = £'( §).
ADXx
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Therefore

=)];.;52102V1 + [_f'( §k)]zAxK .

Applying the existence theorem for the definite integral,

Lzﬂl-r[;"(xﬂz dx .

we have

4.7 Surface of Revolution. Surface of revolution,

S, 1s defined to be

Lim > (surface of frustrums of cones).
chords=o

We shall require that f(x) have a continuous derivative,

Using figure 9,

s = o, Zom (g 1) VAT 5

since the surface of the frustrum of a cone equals the

average base times the slant height. Then

= g Zeret s+ Brosdan

s= Lin Semft( S+ w1 +Er (5T o4,

since the value of x which satisfles the mean value

and

theorem may not be the value of x so that f(§) will

represent the radius of the average base.
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Now
S = };3.9022771'( §k)l/ 1+Ef.“( fk)l AM+}/J3§2”WKVI +[f'(§‘)FAIK .

Call the first sum S,, and the second sum Sp. Since
f(x) is continuous in (a,b) we can for any €>0 find a
d such that if N D<Ld then

A< e , k=1,2,4.0.0 1 .

Therefore

|s,|< 2 et - 2)

where M is the maximum of Vl +E'(xﬂz in (a,b). This
shows that

Then
0
s=Lims =27/ t(x)})/ 1+ (x)] ax
ND=0 2

by making use of the existence theorem for definite

integrals.

4.8 Pressure on a Horizontal Submerged Area.

Pressure per unlt area 1s defined to be density, w, times
the depth, y. Let the plane surface, A, be submerged
vertically in the liquid.
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Take the x-axls In the surface and the y-axis downward.

We suppose that the bounding curve of A is continuous,

& x
at /—'\
[ lo#e L(y) ij:

Fig. 10

Divide A into horizontal stripsdOyx in width. Let 54—
and 5,; be the values of y inAyx for which the length,
[(y), is 2 maximum and minimum respectively. Now the
pressure, OP , on the stripAyx 1is less than .£( 5g)w T
and greater than [( ﬁ)w Y-1O¥x » There exists a value §w

of y for which the pressuredlQP on the Ayx strip is
L gow( G+ aon)Dyx -

/
This follows since §x is By < §x< B and,if § 1s picked
80 that Z( $x)ADyx 1s the area, the same § may not be

the proper depth to use to get the pressure on this area.
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As a result, we have,
” e
p=2> AP = Z/( £ (8 + GDyk) Dyk o
/

:éZf@ﬂ_jk)wéLﬁhna~+':E:?&.fkhﬂeﬂzsif] ’

= s, ¥ Se .

Now
|se| 45w & 801 any, -
< x wD | &5 :
<Xw ND:Echm4 .
<X wND (b -a) ,

where X 1s the maximum of.éﬁy) o Therefore

Lim Sz:=0 .
NO=0

Then by use of the existence theorem for definite integrals

we have that

b
P _'%%fbs’:=2£2&y) wydy .

4,9 Work. The work, W, is defined to be the force,
F, times the distance, d, when the force 1is constant,
Let f(x) be a continuous function of x representing a
varlable force acting on a particle, P, in the direction

0X., Let the particle, P, be moved from x=a to x=b,

-
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Divide (&,b) into intervals,Axc. Let Z and % be the
values of x indx, for which the force, f(x) is a maximum
and minimum respectively. Now the work, AW, done in
passing over Ax, 1is grester than f( '5;)62;,‘ and less than
£f( B¢)Ax,. Then there exists a §x, 5;(I< f‘,<5‘,,for
which

Al = £(§x)Dxg .

Then

=AW = if( §kldxg .
!

By applying the existence theorem for the definilte

integral,we get

b
W =Lim if( $elBxy = /f(x) ax .
Q

ND=@

4,10 YMoment of Inertia., Ilioment of inertia about a

line Z 1s defined to be mr? for a point mass, m, at a
distance r from j. Let a mass, m, be dilstributed along
the x=-axis from x = a >0 to x=b>a such that the linear
density , f(x), is a continuous function. We wish to find
the moment of inertia about the y-axis. Diwvide (a,b)

into sub-intervalsAx, = X, = X, « Let 5,(and ﬁ—’ be

the values of x where f.(x) has a maximum and minimum

respectively in Ax, .



95
Then the moment of inertia of Ax, 1s less than x:f(ékhﬁxx
and greater than.xzqf(lzdzlxx . Therefore there exists a

§x such that the moment of inertia of Ax, is

k4
(5 +QOx,) £(Si)AX, &
This gives the total moment of inertia as
L 4
Z(f,;f'e,‘Axg)zf(ﬁ)Ax« )
K=/
“:
= 3 6t EOAxc+ D260 + FAx) £ E) ARp
Denoting these sums by S, and S, respectively we have that
|se| £ (2b + ¥D) M-WD(D - &)
where 1 1is the maximum of f(x) in (a,b). This gives

Lim §,=0
woeo 2 )

and therefore

b
Noment of inertia =Lim S, = xzf(x) dx e
NO=0 ,

4,11 Criticism. It might well be asked why we
are so careful in showing that such quantities as aréa,
volume, and pressure can be found by certain definite

integrals,
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It probably seems evident that the approxiv.ations
ususally made are sufficidant to allow us to actually find
these quantities upon tsasking the limit. It 1is not,
however, always evident that these usual approxirations
are sufficient to give us the desired results. To
illustrate this fact consider the following example.,

Suppose we wish to find the surfeace of revolution,
S, formed by revolving the semi-circle, BCA, of figure 11

apout the x-axis,

Oy

4 4

< &

Fig. 11

Since ‘I.Simo(chord)::O we obtain an approximation to thne
x=

surface by suwming the lateral areas, 2myAQxg, of discs,
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Then we might assume that

~

]
=/.‘;Irydx=2/:‘ -x%2ax .
- 0

Letting x=4a sin®, dx =a cosede , we getl

r
S = anef 1+ cos 26 49 = 47a2| 8. + 8in 26]‘?
o 2 2 2 o ?

::4na€§; = 2z .

Obviously this is not the surface of a spiere of radius a,.
It 1s now apparent that our approximation was not good
enough. At the beginning of the discussion, however,

it is not apparent, at least to calculus students, that
our approximations are inadequate., This can be shown by

trying the example on a class,



CHAPTER V

SERIES

5,1 Positive Term Series, ''e will not attempt,

in this chapter, to give a development of series., The
definitlons and tests are usually given correctly in
elementary calculus books and tne advanced calculus
gives quite a tnorough treatment of the theoretical
aspects, ‘we shall limlt ourselves to a few remarks on
topics not usually discussed.

The usual comparison test is not always easy for
the student to apply. The following variation of it
can be used in most cases. Let u; + Upg + Uet ooetUptess
be a positive term series whése convergence is in question,
Let &y + 8, + g+ +yetant+... Dbe a positive term series
known to converge (or diverge). If };_i__% %:T:" =K >0,

then Zu,n converges (diverges); if Lim Ym = O and
M=O0 g,

> 8. converges, then Zu,,, does also; and if

un - E a, dive th z also.
,{::}__m v and » diverges, en u,, does al
For if Lim X% = KX then there is an N such that
Mm=e0 g,y
u
E,:""'éK*'l for n>N ,

98
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Since Za,,, is coavergent tnen Z(K +1) a, is also,
and Zu,,‘ is convergent by the comparison test. Also

there exists an N such that

U >X -4 >0 , where 0<d<K ,

84
and

umz (K - d)a” )

Therefore if Za,,, diverges so does Zu,,, . If

c

Lim =2, —= O
m=e0 8,
then
%?L-fél. y for n>N
n
and we have
u,, é_ 84 .

Hence 1if Za,,, is convergent then Eu,,‘ is also.
If Lim Y% =oo0 then
m=oo B
=~ 2 K>0 , for n>N »
~n

end

U, =K a, .
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Tnerefore since Za.,., diverges then Zu“ diverges.

9.2 Finding the nth Term of a Serles. lany books

make tne statement that by inspection of the first few
terms of a series we can find the nth term of the series,

Thnis is not always true., For example suppose

_ - =1L
u,—l’ ut——z-, u’"'a geeccee

and we wisn to find tae n ta term. Ve will show taat

a polynomial in —,,% » suci as
(47) £h) = b+ by () + be(-E) + by () o

will serve as an nta term if the b's are properly
determined. 1In fact there are infinitely many such

polynomials. e must have

for n=1,

1
(48) b +Lar py - L for n=2 ,

=L

o +‘?‘+‘$‘*‘z%" 3

for n=3 .

Solving equations (48) for b, ,bs,bs 1in terms of by

wve get
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Substituting these values in equation (48) we have

(49) P = TR+ (e by ) - LPh 4 v,h)

If in equation (49) we let by= 0y then f(;,'—,) =-,-,’-{' s which

is the nth term that we would expect by inspection of the
first few terms. iowever, by may take any value,

and therefore we have an infinite number of polynomials
any one of which would be satisfactory as an nth term of

this series., It is easily seen that if any finite number

of terms were given we could carry through a similar

discussion.,

5.3 Power Series, 'ie can make the statement that

every power series defines a function in its region of
convergence, To some of these functions we have given
names, On the other hand, we cannot say that every
function can be expanded in a power series. Consider a
function, f(x), which exists and has its first (n+1)
derivatives in the neighborhood of x=0, Then we may
write

£(x) = £0) + £1(0)x + £11dQx% L 4Oy g

% F. S. Woods, Advanced Calculus, p. 10 ,




102

et ! f g an.d 0 < <x °

Now if f(x) possessés all 1ts derivatives the above formula
for f(x) may be extended indefinitely. If at the same
time ’I;.&r& lR,,,l =0 then we have a ronvergent infinite
series representing f(x). For example, consider

sinx—x-3T+ eeee (-1 -(—2—.]2-;]-.—)-!-"' RZK*’ L

where
Kl (EK+S
Roxn = (-1 Togmgyr 088 -
Then

Tk

Roxsy < ‘!“2124-‘5"5‘,[!' »

and, whatever the value of lx' s We have the %%g Ropes =0 o
Hence we have found an infinlte seriles which represents
sin x for all values of x, In order for the above
statement to be true 1t is necessary that ;:_%n (R[ =0,

If Lim lRl =\= O for x=4a then the series may converge

but will not represent f(x) for x=a . Consider

/
flx) = ¢e® ., forx*0,

=0 s forx=0,
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This functlon 1s continuous and has derivatives of all
orders for all values of x. This 1s evident except at

x=0, For x=0 we have

A
£1(0)= Lim &7 — 1im B_ = o ,
o & h=0 g2&#*
-l
-2¢ A% _#
h=0 h =0 h
h = 249 = 0

= Lim = Lim =253 __ R
h=0 ez q=eo eq

where q= ;1]:; o« For £™(0) we have a finite number of

terms of the type
Lim Kl .

Therefore £f™(0) = O for all values of n . The series

£(0) + £1(0)x+ ..., +& ;9)::"4_

obviously converges for all values of x but does not
represent the function except at x=0 ., In fact, if

A
x¥0, R, = e for all values of n.
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Likewise let us consider

f(x) = sin x + e“ﬁ.

Then

--L 3 3 X ZK*l

x%— - XX "eeo - x R i
If szﬂ is left off and k allowed to become infinite

then we get a serles of the type

£00) + £9(0)x + £11(0)X% # evvened £HO)X™ 4+ 0uee
2] n!
H) 5 X L2K+1
= "'x X - o000 - X EEEEK)]
X =3 + Er +(-1) To=TT + 9

which converges for all values of X but represents

l
f(x) = sinx-'-e?

at no value of x,except at x = 0O,
Therefore we see, that to expand f(x) in a MacLaurin's
or Taylor's expansion, it 1s necessary to do more than

just show that

£la) + £1a)(x = @) ..o #fll0x = )T

converges.,
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