

AID CAS MET RRITIEG

Senior Troblem
IT. T: 473

Homer J. Fulton
ay 28, 1948

Table of Contents

Introduction 1
Conclusions 4
Senior Iroject IIon 5
Current oil Businoss in Brief 7
Eiscussion on Erilline of an Oil ..ell 11
 17
Report on Drillin: Vethods and Vochinory 18
Iictunosof Dril in~ Tools snd Equipment 24
Fresent Cost Anelysis 28
Introduction to Frovosed rilling Vethods 32
Pronosed Drillin: Zet'iods 34

```
Cil and Gas Nell Drillin:
```


Introduction:

Ty reason for selecting the above to vic is
because I have been brought up around drilling wells just like a boy who has been born and raised on a farm. $\because y$ father has ven drilling oil and as wells for the past 35 years. I scent much of my early pout: performing the simper tasks around a driziins rice as well as setting in the drilling mons road and asking questions. fy father and his associates were always wiling to answer my questions to the best of their knowledre. After I Gen olden I could see that the methods used in drilling $\boldsymbol{u}^{\text {th }}$ cable tools hat not been chan ed or improved.

During my sumer vacation from lichimen State ole e in 1947 I worked on a well ir central aicisan acting in the cenacity of tool dresser or second driller. I sent from 8 to 12 hours each dey working on that well. The well wa being drilled on a straight turkey contract basis. The only time that money is "eire" made on that basis is when the drill is donn wort and the mane ry is orating. Theme were nary delays, sone avoiabiee and sone unevoi iajle.
rue nation needs now oil fields, as lows as the cost
of drilling wells is high, ford row oil fields will be discovered because it requires so much capital to drill each well. The cost of loo and materials canc be controlled here, but if the met cols were improved the
contract mice wouldn't have to be so rreat, and more :rells could be drilled to locote mone naw fields.
\because intention is to introluce or sugest some ileas or rew rethois to he used to leop the drila worins in the hole loner and a.t tho saiee timy decrease the shut dom tine. This will reduce the cost por foct oi drillin-.

The cable tool method of árilline is avout 100 yeers old. Tery few of the reorie engaer in this occuratio: heve over written books or pegers on the methods ther use in drillins oil :rells. I haye been uneble to locate any moterial written on twis subiect in eitrer the achoan Btate Collene or Etate libraries. auch has boen writtea on the roductio and roolorical aspocts of the oil business but very littie on the cable tool arizine met:ous. the Cil and Gas Joumal ani othen iniustry neriojicals contain new troes oi tools and machinery to be used in drilling wells witr cable tools, ut I have not been able to locate any articles concerced with now ceble tocl driliins metrods.
a cren of two men is requirei to o era e aril.ing machin or ric. The driller is the ross and to ry estination rogures as much still as a die simen or tool macur. Le

 wh it isn't drinine yo end and nust mo: min to do to corroot this. In ddition to the anove the dialler aust be a silled iron womor, caronton, alectionan and moconic to erect a urillins machine. So must also be a roficio.t biacksuith to were grecial tools an shamen tools.

The tool dresser on seacna thriller is resile an apprentice driller. He must have haj st least 4 years and on the average of 7 years as a tool dresser won he can become a filar. Essentially the job of tool prese: is a handy man and hearer. Drilling tools and machinery ane very heavy and because of its location the better methods of material handing such as conveyors and cranes cannot be used on e riling rice economically. Therefore the ybyical en ort require i of a iriller or tool iresser is exceptionally fish. from my experience in the oil and other industries I would say that the fobs of grille: and tool dresser are as hard and
 and effort as that of a tool manor or die sin ':er.

X project is dedicatsi to those men mentioned above, who have sent their lives swearing, sweating and wrryirc about holes in the round so that we in other occupations cen enjoy the benefits on petroleum products.

1: tomanid m trods ucod by the vorious arialine crovs are non existent.
2. Tenotitive enements in tho drillin oromotion constitute such a swall nerceutare of drinlinc tima thet time study and motion anolusis ras not rroctica le and rossible.
3. An estimeted 1500 pon well could be saved by usin: now monosed motions irpart IY.
4. From the presewt cost anslysis it was ?ound that factor of 1.5 is used by drilinn controctors for allowing for unowectod trouble. This l.5 is multirliod by the estimeted cost to fix the contrect rice.

Senior Froblem EIAN

Title: Cil and Gas :iell iriling
Objective: To reduce the cost per foot of irilline a 4,000 foot oil or gas well in the state of Michion with cable tools.

泡解
I. Erocure reference material for data.
a. From exrerienced driling contractors
b. Books and manuals

1. Fetroleum Production Engineering
2. 40 conies of Cil ani Gas Journal
3. National Suprly Catalosue
4. Cil ※ell Supply Catalo
5. Walsworth Sunrly Catalocue
6. Drilling Equipment Directory
7. Text on time, cost and motion study
8. Fetroleum drillins incentives
9. Oil and Gas :ell plussing directions
10. Cil and Gas Field Labor Statistics
II. Nake a preliminery report on the drilling operation.
III. Renort on jrillins methods and machinery.
IV. Determine the present cost per foot of drilling
a well 4,000 feet deep.
a. Combine the following data taken from contractors' records in drilling five wells.
11. Labor costs

2. Taxes

3. Depreciation
4. Dvacuation
5. Moving (trucking)
6. Construction
7. Fuel
8. Casing
9. Iluscing
10. Interest on initial investment
V. From a time and motion study recommend new methods and machinery to reduce cost
a. Combine time and motion study for the following operations:
11. Driving pipe
12. Running and pulling casing $8^{\prime \prime}, 6^{\prime \prime}, 5^{\prime \prime}, 2^{\prime \prime}$
13. Drilling in $8^{\prime \prime}, 6^{\prime \prime}$, and $5^{\prime \prime}$ holes
14. Moving
15. Plugging
16. Construction of equipment
VI. Study theory for the design of an automatic driller a. Should such a mechanism be designed and constructed what would its save in cost per foot of drilling a well?

Conclusion: Discussion on new methods found to reduce costs. How much would the no is methods reduce costs? Comparison of present cost with reduced costs.

The United States needs new oil fielis. The gresent reserve is en ugh to last until arroximateiy 1980 at the present rate of consumption. Unless substitutes or synthetics and new oil fielis are discovered befone thet time the united States will hay to derend e tirely on imorts and we will have to ney uwards of 50% ner sallon for casoine.

The man oil comanies are co tinually deveionirs
new methods o: aiding geozosists i: locatine new oil fields. Sone of the new equirment inciules raiar sets and scesmarah machines to find ceoorical hiches. A seclosical high is an anticline formation ir the earths structure. (il or as is most likely to be found near or on these anticline formations. Efortuntely the major cil comanies seldom aril: a deen ildat well unless they are inorourgily corvinced from the resuits of their core test wells and ceological caiculations. They are not convinced that much veny oten.

At the rresent tire it is fortunate that there are localitles in toe estern United Ste亡es here oil and derosits can be fourd by rrizing a series of core test and, aiter considorabie expense, drill a deer test well and sotueluy find cil.

In the Eastern lnited States the reologicai formations are much more comax. As a result man deen wells must be drizled in order to find a favorable anticiine formetion. It is a very interesting exverienco to watc these wild cat wolis develo because one never knows witich one will roduce. Small
inderendert promoters usually sell stoc\% to successful business men after formin comenies in onder to finance these mildcat wells. These indenendent promoters usually have a good sales line awi mako the chences sound rood of discovering oil. Jemenen the these ola wildcet pronoters seldom loose money in dry holes as do the investors. then oil is discovered the promoters usually beconc moalthy along with the investors by holding out leases for temselves.
ost of the discoveries thot have been maje in ichican and othor narts of the Jastern Unitod States ha:e been drilled by these small indesendent rromoters. In tho other hand, most of the hunireus of dry holes have besn drizled by thea also. لany of these men clain to be ceolosists, and some of them ane sroduate scolowists but f oil men in the last aceet their eeoloricsl theories.

These havo been man wildoat :rlels drilied in the stat: of ichicgan for exarle. The State Denarteent of Conservation requires a log and condete set of samples from each well drilled. From these lows see mede mags to show where and when each well hes been drilled. The maps also indicote the rointivo derths of the gecionical formtins on a contour basis. This inforation is oron to rablic insection and if you should study these mers you would nonden were there wouli be roon for a oil field awoncet all of the dry holes. It is to the advantage of a nersective investcr in a wilacat well to ro to the Denertment and study those mans to determine the chances of findine a coological rich at the locstion.

The pronoter must secur the lenses from the lend cmers. It is common practice to acquire from 'r,oco to 7,000 ecres of leases around the location of too willcat :nll. The land omens do not invest money in the veli. Jeasiny is the term used mon the la d cher leases $7 / 8$ of his oil rights usually at rif rer acie rer rear in wildost turitory. After the promoter acquires the leases and has sold the stcch he lets out bids to contractors for the drinling of tee well. The cost of drininns tho :rol netursizy deoonds on the locelity and lerth to do drinled. At rresont to cost averages 4 ver foot to arill a wildat well in "ichiman. The promoter must sell enowh stoc: in the onterrize to cover the cost of leasing the land, driling too roll and pronotion costs. At present this cost is 20,000 rer well on the avenne in ich-
 their investment, and during the driliira ovenation can sell their stock if thoy so dasire.

These wilacet welis aro usually driliou throu-h all the formations trat are likely to produce oil or has in the urrer streta. Them ane huse rossibilitios of findine oil at de tris frme,oro to 12,00 feat in the state of incimen but tre cost a ounts to millions of dollews ard in ewnerent rowoters usuall: do not undertare the job of finanoint such an entomerae when the risis ane so rrest.

If no oil is discoverod in these vildeat reils te vell is

is found the stock holders ot togethor and he anconer to develor the: lenses. That is controline the prouction and drilline ta subsequont elis. The cil is soid to ipe line cornanjes wh trens ort tre oil to tro nerinin breas. The refinaries uncoso the oil fromtre vine line comany, refine the cil and sell ひ̈: petroleum rroiucts to distributors and so on to the consumer.

Usually the stociz holdersegt tocether and sell their interests to a major oil comany after they heve make a huce profit.

```
DRILIING CE A CII .BLL
    (aable Rathod)
```

Eince Colone Drake drilled the First oil well in 285° there have beon many immovoronts in arillin. methods. About 1915 the rotary method was de:elored for drilline in solt rock formations. the rrinciale involved in drillin" a hole in the eartin y rotary is similar to that of drilin- a hole in a riece of steel rith en crainery bit.

Ny revort is limitea to drilling with cable tools, or the fundomental principle used by Jolonel Drake on the firct oil well. This methoa of driliing a hole in the earth is similar to that of drilling a hole in a viece of cement with a star irill and hammor. It is necessary to start with some economic or eeolocicsl ressons for drilling a hole in the grouna, and much could io seiti on both, but mer nroject is releted onj: to toe hisical rrocess in drilline a hole in the ground. I will stant or ox lainiz: the different devezorments in the hole as it ots deerer and later in this rowort I will exlain about the macrery and tools used in ariming the hole.

In semeral, we can sa" that the saz of tho startin" bole is directie prowtional to the final derth that the sole is to be drilled. It is cownon vactice in icaican to start With an $8^{\prime \prime}$ hole for de"ths of 1800' and $20^{\prime \prime}$ hole to depths of $50,0^{\prime}$ and in the deever wells somet wos use up to 24 "ripe

In localities such as in ichican where the rehistoric claciers left a deosit of ioose earth ceilod drift over tio bed roct, it is recessary to bowin dailine by daving rive alore with drilinge. This surface levor colled drift, is loose and carries numerous when voins. To leen tho arift fron cavinf in the nole and also to keer tro wato: out, sire is driven into the hole. Mris camot ve acao as the hole is arilled, but the procoss alterretes by driming ebout 15^{\prime} or 20^{\prime} and then drivine pje to the botton of the hole, etc.

This so called drift formion denosited by the preristoric elanises is from 20' to 000^{\prime} thick in icaron and starts at the rinese teanth's surfoce to the bed roc': of the eartis prehistoric surfese. The comosition of the arift is mostir
 coal. We bod roci is distincuished from urift in thet it is firer ard ail stand ua winnt drivins yiv aiong win drillinc. The hardness of this bed rock vanies directiy as its derth. It mould is difficult to mention all of the various formations from the hed rock to tho eart's certer throurhout tre world or ever t'e \because. A. A. ho:ever, since my roort deals
 I will mertion sone o? tiv ror; imortart. 'rom tiee bed rock
 stone henpre minand woor and gray shalo. his Pomation

 formation cones up the rone, sowetwos ovenoonn ens dusing an artesion ine:al water .n.

The hict Censity of weter (rolative to air) causes the droping fone orented by tire tools to docrease so much that the awout of rola thet can be drilled in a 24 hour day decrease ard it is necesseny to shut of tris woter win 8" casins. The rater is rumed out of toe bole aster the pige is run to the bottom of the reviolisy nentioned water beering sand. The ell $^{\prime \prime}$ dril" ng tools ene used to drill from the botton of the $\varepsilon^{\prime \prime}$ rive to the derth 0 a hout 1250 feot.

The arifin: of tris 550 fegt o $\boldsymbol{i}^{\prime \prime}$ hole is co sidered quite hazericus in the state of achi an pocsuse of the iarshall sandston formoticn. The first 200 foet of this E" Vole is conrrisea oín shaie, lime shells and strears of sandstora rith littie or no water. The last 300 foet is arshall sunustono mica is divided intc two parts, the urnor arsinal or frey sembistone and lower arshall or red sandstone (sometimes rearred to as "rei rock"). Tre darser in the Marshall comes from the denser of striधing netural eas and vater at the sano time Siouli tis napoe, the hes pressure may cause a water gisher whic: would be very ex ensive to control ad to continue drillin..

Le arsiail formation is also full of crevices add acts similar to the drift forabion or the ator caries the send Into the role ard ray cover up the tools urine the ariline operati n. fhoula the tocle $\because e$ lost whle drilining in tis Uarshall formation duo to braades a tool joint or coble it
 should the 53 coven the tcols. there is also a dancer of the urili to crence its course sould it rit a crevioe in the arshall. Should eithon of the above evo te happen it is
often necessary to cull the $\varepsilon^{\prime \prime}$ casirs and $10^{\prime \prime}$ drive pire and start äュ over on Eaother hole.

The $6^{\prime \prime}$ casincis set about 30 poet below the hottom of
 the noxt 2,000 feet or 3,000 foet jemend ny on reter zonos confrreted. Froral,250 revto about 2,300 feet is alrost solid biue shale and is easily amilled. yrovidina ro nochanical difficultios are ercorntem 30 feet to ? 0 feet can be ariliod in at hours in this blue shaie fomatirn. Pre arill then rooeeds into a surir of a mixtume of sandstone and Iimestone abrut 200 20t tic: Tris stin is comarised of
 eolo ists cen preaict rossinilities of oil in loner zones G_{y} the distance boteon the ton of the bed roor to the tor of the eree sandstone. If there is a reneral onticine in the area where tho roll is beno irimica this distrono woun be
 ere. Acrmaticn. Il is usually found in areas whene the pe is ar articiane structure in tine arema fonation.

Cut of this samstone, the daliz cons into the brown shale which is about 400 eet thic. Mone Eonation joos not usuejiy carr any oten vains ard is solt Iike the bive shale inilled from I, 250 Eeet to ? , 300 feet, but takes loner to Irill tirrounh oocuse of the tome required to rencue the tools from the low:r iartras.

The the holo is arillu throwh twis rom shaiz prearations ane usuaily mede to cotron fine o oil trat mer be found in the fohlowins ininstone formations--rravorse end iundee. The sottrm $0=$ the brom on the to 0 the Iraverse ine
cones about 2,700 reet ani is usualiy hani and arilis u-
 is usually foung an tha finst 20 heed of this roc.. now salt water is Found to be wesurt, it is neceseny to drill to the botton of the mavense with the hole filled uith sent woter. Ihis is a sion rros:ss and costly bocause the in westone is ham and tio drivirs force of the aninl is deonersed so much that ony 30 eest to 50 eevt onn o drilled in 23 hour eriok. xt is rot co i reatice to cose the water oî because the Traverse iina is un to joo Ieet trick anả mey cerny tia or thee weten zones. Bhowld the first water zene be cased off anu tine hol: he drilled ?CO fot jeswer ard anothen water zone encountered it would be receswny to vull all of the $5^{\prime \prime}$ casing and rean the nole dow thinoum tone entime Traverse fonation. 'his ryanm onowation is ory erwensive than arilin. $\mathrm{an}_{\text {full }} 6^{\prime \prime}$ role.

In Iohian the Dundes lime formation is usually the cojoctive of lrillin becnuse it is mone likeiy to bea: oil tren any other fonmotion. -hシre is a shaie fommtion betreen the bottom of the ravense and the toy of the rundee. This is ony 50 to 150 foet tliore and is quite sode comared to the ravense and tundee 11 me. This shele is :nom as tre Beil Shnio.
inon Arinaine into the rincee Lime it Es desimblo to

 tho frabe iocuuse the vaicus shay formetirs will cave to
a certain evtent. Should the Jundee lime bear oil and those cavinas misht seal the oil formation and decrease production. After the $5^{\prime \prime}$ casine is set on to 0 the undee lime, a control valve is attached to the top joint for controing any oil flow that mey be encountered. The dril ins is then proceeded as before and should any indicetion of oil be found, driling is stoned and roduction tests ane wie. Should salt water be found and funther driline not desirabie, the welz is plumed ard abandrned.

Nell pluccirc roocedu:e is decided by the State oonservation Derartmert and preserted by them to the driller. It consists of pullin* the casing and placinc briaces at various
 are rut back in the hols at various derths to se crete ench water zone.

Michigan well With Formations
(APPBOXIMATE DEPTAS) Fig. I

The Driling Tools:
Pirst, I will explain the bit or the trol trat actually does the driling. As reviously explained, this tool drills the rock similer to the woy you would drill 3 hole in a piece of granite or conorəte with a star arill. The bit is about 8 feet lonz and has a tarered screw pin at the upper end. The point is shaned as a wedze and can be dressed to any level desired. There is a rroovel section on each side ci the bit known as a wer course - tri: ailows ron for the liouik or water and drillin:s during the drilling operation. The weight of the bit is nct sufficient to rowuce the desired force at the end of the bit during the reciprocatine. The hit is lifted and droned a distance that is variable but is usually about $3 \frac{1}{2}$ feet.

The stem, or cylindrical piece of steel armoximately 35 feet lons and $3 \frac{1}{2}$ " in diameter is used for two purposes. Cne is to rovide the necessary weitht or force to the bit and secondly to :ep the hole in alignment. An internal tapered thread is on the hit end of the stem and is known as a box. A tepered mile or extennal thread joint is at the tor oi tha stem and is known as a pin.

Uring the driling operation the tools gat stuck and it is desirable to have a means of freeint them. This is accomplished by the use of a tool known as a jar. These gars are essertielly
are essentiall: two chain lin:s intorlocko with a in joint at one end and a bow joint at the othon - thoy ane made on seel apnoxim tely 7 beet lon and weich about 300 younds. The stroke of to fors is about 2 eot and ip tie bit ls stuck, reciprocatin: motion cin continue :ith the steel cable stretching the remeining $1 \frac{1}{2}$ feet.

Thore an two mothod of tyins tho rire cables to the tools mentioned bove. The first and most common is tho suival socket. This socket is a hollo: cylindrical piece o? steel with a nor joint at the end thet fastens to the jers. The uper end is nected and hes a 1 inch I.D. The swivel is a separate viece m de of temnered metal steel $2^{\prime \prime} C . D$. Its I.D. is tanered from ly to one inoh theouh its lencth of 8 . . The and of tho wire cable is threaied trounh the ton enl or necked end of the socket to the bcy end then throuch tho suivel. The strend s at tree ed of tho coble ane tien un'wina about $10^{\prime \prime}$ and tucored beck

 of the socket and the socket cen be screwod onto the jurs. I mi hht add hore that tho ceblo reons quite fest at the sockot ond ard for e safety weasure tre sockot s rofilled aftor each 24 hours of cont: nuous drilinz.

Common ractice is to use $26 \times 10 \times 7 /$ " 10% stecl mire rere but cther sizes can be wsed. The wire rore is ususlly boucht in 5,000' lereths at a nesent cost of about 22% ror root. The
life of a wire rove in drivin- varies witi the amount of salt water and sur stne $-t$ cnes into cract vitk. Nen the rore breaks it can be salicel but this is not advissble.

DRILLING M:OHINERY

The drilling mon ne $\dot{\text { E }}$ m mechanism to produce the recirrocating motion during the drilling generation and a means of adrittin: a a naming ripe, tools and the bailer. power is usually sunolied to the mech nosy truth gaspe, bolts, friction and rope drives. rover requirements for a 4,000' hole would be 40 PP. The most economical over at resort is the one cylinder: horizontal diesel. For holes as shallow as l,500' gasoline engines are the best because they are faster and more zorterle.

Three tres 0^{-}drilling menenes cen ba used. The standard rim the as the livest orteble, hengist aud has heen used the honest. It consists of a "our laced derrick 80' high. - one is supine iron source to the band wheel which is in' in kiameter tr ouch 2 1?" belt. A crank is mounted on one and of the berra weal huh to reduce the moirocatine motion to the ualxinc bean. The tool: an raised and lowered by the carole wash roes over the rulloy on ton of the derrick end dom to the spool of bull wheel shaft $10^{\prime \prime}$ in diameter mounted between two lees of the derrick. A broke wheel and s. roe wheel each 10 ' in diameter are mounted at each end of the bull wheel shaft. Toner is supplied to these wheels by men o: a dou le crossed manila home rowe from the band wheel. Distance between counters of these two wheels is snout 30^{\prime}. Aivantars of the stan lard rig try drilling mech ne is the the tools can be mulled out of the hole
of the hole faster and casing arrangements are better. Lisadvartages are thot the gruding or nire driving ho-k up is slower ard the lack of rortability.

The National Kachine tyne has essentially the same rarts as the standard ris tyre machine. The main difference is that instead of a boited derricis it has a three section mast and the bul, wheels are located between the mast and engive and are driven from a friction wheel mounted on the arank shaft betweer the bend wheel and crank and is keye \mathfrak{i} to the same shaft. The sani reel is mounted or the steel machire frome a d driven off the friction wheal. Advanta ef the Natioral Tyre machine is thet it is more portable, lighter, more compact and requires less man hours to erect. Cther advantages that the National tyre driiling machine has over the standard ris tyre are that it is more handy for suding and driving pire, easier to skid while erected if necessory a d saves time in precaring to oull out of the role be ause no rores are involved.

Disadvartases of this tyre machire are that, it is samler and slower in pulling out of the hole, the mast will rot stand hish stresses and the initial cost is higher. If the ell produces oil and a rumint rizis necessery, it is more economial to use a standard rig and levve it at the well to de used as a umirs rig. I" a lational Machine is use to irill the well and oil is found, it would have to be removed and replaced by a buming riz. The bull wheels of a national Gachire will not holi as much wire rore as a standerd rig ard that is one limiting astor of the raximum de-th that car be drilled.

The standard rig cin drili to 7, 000 feet and maminum derth of
 the acst can't hanile such heavy casire loads.

Yantenance costs are righer for latio al achine tran for standanj riss, ut are lener tha that of suars wioh are chai and gear driven. Jare aust be taker in erectina a Naticna. "acrine becquse it is very ir"ortant, that the \%ood fourdation $\because i=1$ "ot be washed cut by weter used in the drilling oreration.

Type of engine Used With Cable Talls

-

CABLE TOOL DRILLING BITS

Part IV: Eresent Cost Analysis fon Drilin. a 4000^{\prime} Ela

Pron Lntervi us uth contractors the following ostinates are hased on izeal conditions. About 150.7 is adied fra unexnectel trounle.

1. 4 - 8 hour days ronimed for movine ond settromeniner Uith fiva men.
 egutrmint ay eisin an sottine mech mory or $4-8$ hour deys at lo ree hour rer truck $=$ o 540 .
2. 400^{\prime} - $10^{\prime \prime}$ öen hole $20 c^{\prime}$ ner 24 hour day.
3. 300' - lo" arive ripe, 5 mon reaired, eloo'/24 houn dy.
4. 8 rours "or settine $\varepsilon^{\prime \prime}$ ces ne eri hitchan: on.
б. 600^{\prime} - $0^{\prime \prime}$ oren hole a 150^{\prime} ger 24 hour dev.
5. 2 rours frr settine $5^{\prime \prime}$ ass.n, 7 men nequirea.
6. 1900 ' - 6" oron hole e 140^{\prime} ver 24 hour day.
Q. Ercurs for settine $5^{\prime \prime}$ cas an a a ce tere, e men required.
7. 800^{\prime} - $5^{\prime \prime}$ onen hola, E45' ar 24 hour day.
8. urne driling overation ans urivins ple onedrilier
 dar.
9. Sentinuous o erstion - 24 hours rer day, 3-8 hour
10. Comail dainin*, movin, ersctine and dismentling
 8.55 weeka.
11. Creration requires one swerintendert 460 rer wenth.

A．＂ovin＇\＆settins mech－				
1．Tool inessers 8 truct arivans	3	4	12.00	144.
2．riviers	2	4	14.00	112.
9．Ervin－pipe				
1．Toor dressers	3	3	12.00	108.
2．iniz＂ers	3	3	14.00	120.
c．Nin I Io＇Oen hole				
1．Tool dressers	3	2	12.00	72.
2．Miコロns	3	2	14.00	84.
D．Eet $\varepsilon^{\prime \prime}$ cas：r．： 2 hitch				
2．Tc－l Eresiens	5	1	12.00	60.
2．Drazars	1	1	14.00	14.
E．rill $3^{\prime \prime}$ nole				
1．Tonl dressens	3	4	12.00	14.
2．－ri．l＝に号	3	4	14．00	158.
\therefore－Set $0^{\prime \prime}$ cessn				
1．Mocl dressers	5	1	12.00	72.
2． Crillers	1	1	14.00	14.
ث．rivi 6＂onen role				
1．Cocl aressers	3	14	12.00	504.
2．nillers	3	14	14.0	503.
H．Set $5^{\prime \prime}$ cesine \＆coment				
1．Tool dressers	σ	2	12.00	84.
2．rillers	2	2	14.00	28.
I．crill $5^{\prime \prime}$ hole				
1．Fool dressers	3	18	12.00	684.
2．Drillers	3	18	14.80	755.
J．Dismantlin machirary				
\＆pluarinc hole				
1．Tool dressers	2	3	12.00	72.
2．Drillers	2	3	14.00	84.
K．Salary Sor Surerin－				
3 450 per morth	1		450.00	450.

Net Isbor cost 4218.00Workn's vomensation Insurance 0is41.18
Eocial Jecurity © 1% 41.18
Total Labor Cost 4200.25
II. erreciation
A. Vire Cable 900.00
2. Tools and achirery 500.00
Total jepreciation 12400.00
III. Excavation
A. Clovninc location 50.00
?. Sluzh "it $30^{\prime} \times 30^{\prime} \times \sigma^{\prime}$ 100.00
2. Dead man holes $7-2^{\prime} \times 5^{\prime} \times 4^{\prime}$ 25.00 Total excevation "155.00
IV. Truckins $\$ 540.00$
V. Fuel Cost
A. Tusl oil for encine © 18% ner eal.
35 callons ror day - 5? davs 335.60
3. On forse 400 gi ion 2 l2 \neq rer g-lion 48.00

- asoline Cor clectric senera"ine unit
500 -aizon 20t rer erlion 120.00
Total fu:l cost 9504.60
VI. Eine cost
A. 10 " trive ipe 100 loss
$300^{\prime}=3.50$ ner foot 150.00

3. inreeciation on $8^{\prime \prime}, 5^{\prime \prime}$, an? $5^{\prime \prime}$ casina 550.00
Total ire cost 1500.00

Sumary of cost on mian, i_{r}, coo feet

1. Labor
$: 4200.00$
2. aureciation
1400.00
3. Xexavation
155.00
4. 7moser
640.00
5. 301
$50 \% .50$
6. Iive
1600.00
7. Intavest on investment
900.00
Totel overal cost
89409.60

Intal cost per foot $=\frac{\frac{0}{4}+0 \cdot 60}{4000}=3.35$ per foot

こert V.

Introduction:


```
on: tio olemont t:me youn: be smmion. Wy moblem hone ls to
```



```
    a. an to rokuce the numer on c'ancos.
    D. #ow to char e thy hits fastar.
2. ツire seat boiunrg tha holo.
```



```
        clonin ioose in one zun.
```



```
    2. Torsinie cun=s m sockot desinn.
    4. retten mutols to mduce wom on wina rowo.
    5. Time lost in mudin: u` in the wavor hole.
    a. Ion to movent it.
    h. Hor to free the tools foster.
    c. How to detoct indications of thick mud.
```

6. Time lost in meshnomy hrook dom.
a. Eronen care of mac!nery.
b. ren to nenlace rorn mantnery.
7. Lost time in hole due to ineficient drilling.
a. Uull bit - proper mothods in bit dressing and tomoring.
b. Reduce run in as out time.
8. Settine or erect'n mach'nery.
a. Use wonch truc's sustematically.
b. Heve the rroner hand tools at the rinht rlace at the risht tine.
O. Time lost in pulise and runrine casins.
a. Use c antr schedules to preme for the castic overation.
b. Wys to reauce the cost of casing oneration.
c. Proper cane of c-sins (pipe).

Method:

A explanation of the various elements in the drilling operation rill be explained and a proposed new method will follow: Conclusions will follow each of the proposed new methods and will include comparison of each.
I. To reduce the time spent chancing bits, to sharpen and temper them.
a. The present method is to check the it for wear with the bit same each time the tools are removed from the hole in order to clean out the drillings. It is necessary that the bit does not wear to less than inch in diameter less then the nominal size. Two bits are used, that is while one is being used to drill, one is in reserve. After the bit is warn enough to chance the wrenches are placed near the tole and the circle jack is assembled in place as the tools are pulled out of the hole. wisen the bit joint comes right to the top of the hole the tools are scoped and the joint loosened with the large tool wrenches and circle jack. The tools and ioosened bit are then raised cut of the hole and the bailer is then placed in the hole. nile the bailer is being rum in the hols by the driller, the tooldressen removes the bit frow the tools. This is accomplished by completing the unscrewing of the bit from the stem br hand and drounzit on the deraicir floor in an unfit
rosition. The hit is then laid down on the anvil were it is cleaned fon the sharening overation.

After the drillen raises the bailer out of the role with the machine, the toolaresser mushes it arar from tho kole end steers it into a dume box where the irillincs and water is removed by rravity through the valve in the bottom of the bailer. The bailer is thea nlaced in the kole for ancther run. After the uriller has startad the bsilen bacr up the role with the macrinery he chains the bailer lever dow and soes to help the tooldressen ret the reserve bit from the bit rac: and rlace on the end of the stem. Erevious to tiris the tooldresser has cieaned the nin of the reserve hit and box of the siem to insure a rood tizht joint.

Uth the aid of te wive rreach and chain falis mounted on a swineine crant the reserve bit is scre:ad contr the stem. After the bailer is remo:ed from the role, entied and nlaced back in tis rac: the tools are
leced in the roie. The tools are then lowe ned to the proper position and the foint is tightened with the larce tool wrencies and circe jack.

After the tools ene lowered to the hotton of the role and started to drixl acain, the bit thet was removed is sharened. This is accomplishod by reating the beveled end to a forcire temerature and worise the meta, t the desirei shne with $i 6$ pound siedre hamers or a ram. Gron one to five heats are requirei to acconsish tris, devenair: uon the size of the bit and the omount of vors that has to de dona on it.

An adiitionni heat is reguipai to brine the sharenes end to a cherry rea color for tererir-. The iit sioniz ie temonej hari enours so it von'亡 bros: ofe or oinn ara

 Irm tre role.

b. rorosad methom:

 recomenzotion is trat the anizinr contrector rot
 Tron this inta the contractor sloculi wne un e sionle instruction shit"to he foInoel exacti. \because ner tie tooi dutsens wile tewerine the hats. It is my ounion thot the bit manufeoturon would miady onform
 de:sot the moner temorine temenatures $\because i t \mathrm{c}$ out the ail 0 ary hish riced instruments. If esc bit vere Cressed ronerly to eet the mximum near the number ci bit cinances rer ell would be reduced.

In chancing the bits, time coula e savei by rlaciry the bit in the celler lif foct frm the hoie ard to the fore side, sugitine a roner dusinna mong set un and aoinc ail the jooser.ne and tigoterin of the hit joint out of the hole. Tisis :ill increase machine time because the bailer could he operated iurinc this soved time.
C. Sonolusion:

Wh rooosed n thod of chrnan bits would roduce bit chancon time to 5 minutes wile drilline at deptrs below 2000 feet. At shallower dewths the time saved wound rence from 5 to 10 minutes rer chanre. This is due to the foct that it does not require so lone to ruil out the bailor end monine tire would be lost.
 2. Uresent mothod:

It is nocessory to wrove all of the anirinns after each drialine run: Thils drilisne in a cry hols it is nocossary thent thone is not excess rator in the holn. lomany firty aeet in rotor in the bottom of tho hore is sufficiont Pon drizanc.

To been the hoie iroe Iron excess dwil incs awa water, the toois an re ovol Prom the holownon the dripher detects te tools drecrine. Thet is tho sin thet the holo neods ciennine out. Afte: the trols are remored it is con on reatice fon the dril:er to mane tuo mins on mone \therefore ith the hailor bofo:e cnt nuine drilins.
b. ronosed metiod:
inon dircussion with many driilens, there is too in ch tim lost beilin excess water. Thes is duc o oor jubonnt on the mint of meny drinime suonetendents. ine or cosin: is zun $x t$ on tho hoie inn the rimey unose on shutting off waten zanos so two drillin" tools will crent no:e force. It is found thrit ment timas tho: is not 2 complote rator shut ofs. I roose thot oach dinline contrecton shoul : nstruct his drillin swomtondents to Grill at losst $4 C$ foot into mocosaine formotion and add thres barrels of mino cinu th tha holenoforo munine ons ns to incure a complete water shut off. This vill reduce tho numor of tires that the bailer must be run to rewove excess raton Irom the bnle for dry hole drilinc.
c. Corclusion

A comante vater shut off wil decrease the number of bailen runs. This decrease voun bo a varisole arount but shoun savo on the averae of 16 hours mer well.
3. Seduction of time sont rosettine vire rowe scciots. a. Zrosont rothoc:
 on ti: wonitu ot the viro rono a. 1 the varanoss of the rock boine irilied. Vny contracters ronuipe pesettine every 7 ? hours of drilline to reane the nuner o? fishens jobs. The rotioi of mesettin; tho soci=t wos iascribed in the asscussion on drinin. tools.
b. -ronozel netros:

Soch tine tho trols aro removed from the hcio the drallen shouid insect the rere coble for wear at tho ton of tho rone socist. Since most of the your on tiw whe roe cocurs in the fiffty feet jimotly above the tools, this Shound be ansoctod nIso each ti e tho toons are nemored Irow tho holo. voblo thet is rom to tra oint frove whes aro broken s'ould be cut off.
c. Conclusion:

If mons coblo and snctret insoction ane monorned the numer of lost tios or fichen jows wouk io rounced.
 onei \cdots hours.

a. nesent motiol:

Jur o t mosice s to cut to ano roe orias it Is rom on a bay re is foum in tha contor of tia zine.
 under nomal circumstnoss. Pny dmans wo thoir cood
 consemod col motico aso, but it ross soro time in conerng linos. Usually linas an wema fron tha but
 is fenished.
h. tronosei matno:

Ginco who ine inveriotion is a zro omone in

 wre at shollo: de the sh oid zin shour to urad. Ay
 cas.a cians should be dismissed bocsuse thoo moneticos te thoman cuse for wire contos or lines to reat and war e:cossivoly.
c. Sonclusion:

```
    Th2 ano:e monosed mothols shonla incr:ase :%ime
Inno voar by one-third. This shouli woduce timo soont
c'anc:m% wi:% lines awd reduce costs by you0 nen vell.
```

5. Revuction of loat time in anyoun in the un on hola. a. Iresent meto

In : Enaren the ne str tes jurt balo: tho drift that conton blue shole. This bue swa on intied
 Then oxcessive dral in s coliect in the ottom of the kole, tho mud foms in rins thet coliect around the sem and stick to tro sine ce the hole, inen the tools ere rimoved Prm the hon, the bit wen't cienr these mua rin"s an as a rosult cancht. It is thon nocesorr to arize ua thourh thos rerez to Proe tre toois. Tro rocess of
 ninutes due, net to tho budnoss of the wua re at beceuse oi the time smont ritheng on and unhichin: to ret the rocrrocetwemotion for dril:iñ.
b. ronosed mothod:

Wen tho cripion detects a slin i sion"iow of mud
 Zons to io t is bubse slint inde tio sorma a often Dotected aftor driniar only 2 or 3 Eeet on a run. Trom
 cut of those mul rines, it hes boon found thot too mony urileons tre to mull too much on the trols and En't drill un trou-h tho rin.s ferough.
c. Sonclusion:

It is aivisable to drill up throuin the mud rins until the tools are absclutely mroe before tringto rull

```
on them. labum\Iy,mory arilluss hositae to yull out
```

rhon mud rinou ano dotectod becau* tho sinne is soft and
Grilis so fest teet he n turaly has tra fesilne that he
\&s moxin: lots of hola, but in rainty is losine tiae.
6. Reduce time lost due to meciremy break down.
a. Eresent mothod:

It is the tool dnessens jon and the drill re resuonsinility to see that the men nemir is constertly monocted and roverly Iucricated. Cil an nos l anninomachinon is cosinned to etran hin strosses 2 ad shock lons Dut th se stresses are ofton orceeded. Won rerts of the mactrery j ock they as often rerleced by westift perts thot ane not roninly desimed and ad to mon twouble. Ali avines are of the babit tre and ane lubric ted frequently. The crillor na tool dresser constantly must be on the look out for loose turn buckios and bolts. b. Surasstions:

Youn mac inery shoula be roninced betore they broak to insume tre safety or ronters and the newted mecinery. Eroner cone an c-nstast ingroction shoula be givon to the guy wires or the wir: cenles thet hold the met up.
c. Cnnclusion:

It is imortant that drilling maninery bo ze in constant repair. All :orn machenom should be reworted to tho drilinn sumentendent erd remlaced imediatoly,
7. Reduce lost time due to inefficient driling. a. Iresent wetrod:

Oost drillirs swerinterlents are experienced
drillers ond can tell when the arillers aro using reover motion and artions of aril in'. No: that thene is a shorta ceoof driliers thene is a tex ency to overlook meny of the faults thet the drillers heve to keep them on the job. This fact has cost to contractors a lot of money and at presert there hosn't been much done to improve driliers. b. Erorosed nlen:

The drillin- superintendent shouli use sore tact and train the inexrerienced drillen by demonstrating the rronsr methods. The individual would benefit and more time and money could be saved. Any rerson not willing to learn and accept advice is nnt an asset to a contractor and shouid be dismissed. I rronose that an incentive plan be enected before the dri inz of each well. The criliin* suerintenient should set the stardards and mare an atterot to help each crew manticirate in incentive gay by training aids and prover arrancerents of crews.
8. Time saved by nroper erection of mochinery.
a. Present method:

Nost contractors fumish a $l^{\frac{1}{2}}$ ton winch truck :ith each drilling manine. This truck is very useful during the drillins to rerform such tasks as haulins clay, dasolire, cesine, tishtenins the belt and hanine hevy tools. Then the monene is to be dismontled and noved tho truck is used extensively, hen a full coev is availsble three wen ane uscl to dismantle the machine naj the obon down a. urad to prepare the noxt location by leveline of the fountstion site, aianins the dead mn oles ar? slush rits. any contractors cverlonk the imontance of lisine suf iciont footin for the founietion, beceuse the mul for it varies with the kind o? soil at the locstion.
b. Irowosez mettod:

Gue two oxtre trucks fror other gobs or trucking compant. The one truck should be used only as a role truck, that is, Leave the derrick mounted on che of the trucks Gurinc the ontine movirc creration. whe othor two tructs shoult b, loaded with the role trick and carry the bulky rorts of the machery. The smaller prots of tho mochine can be easily loaded on the dale truck ard qiickly unioaded to free the role truct to unlosd the other truces e.t the now location. The machinery rerts should be moved in such an orae: as to allow the vole truck to lift the mochery ofe tre two othen trucirs axa rece it in the rerer rositicn for erection at the rev location. The wothod may seem more
exnensive but it is believed that the cost of restine the trucks will seve enounh hond lobor to justify its ractice.
9. Reduce time lost in rullin: and runire casine.
a. Enosont metaou:

At toe resort tine tho moctice of ura hired casinc crows to run lonथ strines of cosim. an "niok ur crows ion the shont string is used. In worsm won* strines consist of tho j" casine a a varios firon 2oce' to 370' dowone-
 nired cosin: cars me trined seni-shialed nowers. "ick ur c قos" are usully not traned but rerfom tie simier jows. -nrt of the dril ine chow is used to verfon... tho sem-skilizd ions thon rick un cews are usok.

A social vire roo is vod as a curs line. This Uing rore is l" ir inoter. Ihe rincins of the block coitac:- a oter casin tools is necessery befon the u"e con be mun or wilad. ino interal and extemol thronds
 cos: onention. It is nrso nocessmy to inswoct the cosin benon \therefore it is run in tho hole.
fren the ossin: is uiled out of a hole, the casing equirment is rimed ar. a cas no crow is hirod. Usua ly 2.I of the casin' is uiled in two successivo days. b. Foncsed motiod:

Time cun be saved mon the numon of linos are increased on tre block anl therle to ulve a hicher mecterical advertare as moro cos're is run in tho hole. It tales armorimetely f've minutosto a or decrosse the nurgon of Iines. At the becinning of tha cesine owation, two lines shoura bo usod.
hreen 500 feot has been run in the hole, one mone line shruad bo added ard one lino aded esch 5o'thereaftor until the moximum of six limes ane holane tho rine.
c. Conclusion:

Too sbove mothol sould woduce cesing timo by $\frac{1}{2}$ becuace the tisher mechanicel savantames an used only When necessary. Tre lower mechanical auventare beinc used :iさ2 covecusy sed u the overation.
foun URE ORY

ACCOPRESS BINDER
BF 2507
Made By
ACCO PRODUCTS, INC.
Ogdensburg, N. Y., U.3.A

