A QUANTITY AND COST ESTIMATE OF THE ANATOMY AND RESEARCH BUILDING OF MICHIGAN STATE COLLEGE

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE
J. E. Blanchard

1942

$$
0.1
$$

A Quantity and Cost Estimate of the
 Anatony and Researoh Building of Michigan State College

A Thesis Subaitted to

The Paoulty of
MICHIGAN STATE COLLEGE of
AGRICULTURE ARD APPLIED SCIERCE
by

Candidate for the Degree of
Bathelor of soience

-1.1

The plans and specifioations of the Anatony and Researoh Building were acquired Prom Bowd \& Munson, Michigan State College architects. Using these plans and specifications, a quantity estimate was first made, checking from time to time with' the contractor of this job, Reniger Construction Company. Prom the quantity estimate the estimate of cost of materials and labor was made. The Engineering Nows-Record, Vol. 128 : Ho. 17: Pages 595-735, April 23, 1942, was used as referenoe for materials prioes as of December, 1941, and any reference made to this magarine will be indicated by "EnR". The union wage rates for oonstruction trades were acquired fron the Lansing Building and Construction Trade Conncil, an affiliate of the Building Trades Department of the American Pederation of Labor. Any reforence made to CONSTRUCTION ESTIMATES AND COSTS by H. B. Pulver, B.Se, C.B., University of Wisoonsin, MoGraw-Hill Book Company, Inc., 1940, will be indicated hereinafter as "text".

The period of $s i x$ months to complete the building was arrived at by the comparison of this building with one of comparable size that I followed through to completion.

In a number of instances the complete size of materials were omitted from Specifications and Drawings of the Arohitect. Due to my own inexperience at guessing what was moant, the sise of some of the materials I used may not be accurate.

$$
\begin{aligned}
& 1 \\
& \hdashline
\end{aligned}
$$

General Sumary

Genoral Expense \$8,413.Bxoavation926 .
Drains 143.
Foundations 4.563.
Reinforeed Concrete 7,356.
Reinforoing 3.779.
Cemont Mork 1,672.Kalman FloorsWaterproofing2,770.Brickwork114.
Interior Partitions
Cut Stone and Granite
Rough Carpentry
Finished Carpentry and Millwork6,836.
Structural Stoel
Structural Stoel
Miscellaneous Iron 682.11,530.
7,866.
1,405.
6,249.
Rough Hardware 225.
Finished Hardware 1,715.
Incinerator 5,630.
Roofing and Shoet Motal 4,167.
Motal Tindows 21.
Terrazzo and Karble 1,600.
Motal Partitions 140.
Lookers 395.
Mirror and Shelves 101.
Painting and Decorating 2,852.
Refrigerator 300.
Elevator and Elevator Enclosures 1,709.
Blackboard 135.
Glass and Glasing 1,060.
Linoleun463.
Caulking 295.
Lath and Plaster 2,656.
\$91,384.
Performanoe Bond 1\%
914.Maintenance Bond 1\%
Profit 15\%914.\$93,212.13,980.\$107,192.

Bxoavation

Unit
Cost Labor Mat. Total

Top Soil

$$
\begin{aligned}
& 105^{\prime 2} 0^{n} \times 48^{\prime \prime} 0^{n} \times 0^{\circ} 8^{n} \quad 3360 \mathrm{ft}^{3} \\
& 30 \cdot 0^{\prime \prime} \times 10^{\circ} 0^{\prime \prime} \times 0.8^{\prime \prime} 200 \\
& 360^{\prime \prime} \times 510^{\prime \prime} \times 0.8^{\prime \prime} 120 \\
& 38^{\circ} 0^{n \times 12} \times 10^{\prime \prime} \times 0^{\circ} 8^{\prime \prime} 304 \\
& 38^{\circ \prime} \times 1^{\prime \prime} \times 0^{\prime \prime} \times 8^{\prime \prime} \quad \frac{26}{4010 \mathrm{ft.}^{3}}
\end{aligned}
$$

Labor 148 $\frac{1}{2}$ ou. yd. $\quad 75111$.
*Toxt-Table 3-3, p. 54z
1 ou. yd. per labor hr.
Union wage, 75 per hr.
Goneral Excavation

Pan Room	$38^{\circ \prime \prime} \times$	$36^{\prime \prime}$	$\times 10^{\prime \prime} 0^{\prime \prime}$	13,680 ft. ${ }^{8}$
Areas 2	$9^{10} 0^{\prime \prime}$	$40^{\prime \prime}$	$x 6^{\circ \prime \prime}$	432
Gr. Anat.	$38^{\circ} 0^{\prime \prime \prime} \times$	$29^{\circ}{ }^{\prime \prime}$	$x 40^{\circ \prime \prime}$	4,408
Mortuary				
${ }_{\text {\& Plonum }}$	$3510{ }^{\prime \prime} \times$ $14^{\prime \prime} 0^{\prime \prime}$	36^{10}	$x \quad 400$ $\times 4.000$	5,040
Plenum	$14^{\circ} 0^{\prime \prime \prime} \times$	$320^{\prime \prime}$	$x 4^{\circ} 0^{\prime \prime}$	1,792
Pipe Esuce	$8{ }^{10} 0^{\prime \prime} \times$	$150{ }^{\circ}{ }^{\text {T }}$	$\times 3{ }^{100}$	3,600
Vate	$13^{10 \times 1}$	24'0"	$\times 5.3$ "	1,638

```
Labor 1130 ou. yd.
*Text--Table 3-5, p. 56:
    Transportation--
        3/4 c.y. shovel $ 30.00
    Assume shovel oap. 45 0.y.
    per hr. Therefore,
    1130/45 = 25.2 hr. req. to
    oomplete exoavation. Labor
    for shovel operator (1.50/hr 37.80
```

[^0]

Footing and Fronoh Excavation


```
204 sq. ft. \(x 8^{\prime \prime}\) thick (spec.)
```

 Material 5 cu. yd.
 Cost as per quotations of Ward
 Gravel Company, Lansing
 1.25
 6.
 Labor
 See Backfill for rate . 502 .
 Back Fill
Labor
See Footing and French Brcavation.
Surplus Material
Speoifications:"All surplus earth from excavationsshall be piled in a convenientplace or shall be carted away bythe contractors, as may be directed"
Tost Borings
Labor (estimatod) 14 9013.

* Computations

4" Tile Drains-Material $4900^{\prime \prime}$ Cost of tile from EHR, p. 158 Labor	.08 .10	49•
4" Bends-Mtaterial for 53 bends Labor	$\begin{aligned} & .27 \\ & .10 \end{aligned}$	5.
Tarpaper over Joints Material 540 joints Labor	. 01	
Cinder or Gravel Fill ```540'0Nx < 1'0'm x 0'3N 135 ft.* Material--Ward Gravel Co., Lansing 5 0.yo Labor for fill same as bofore```	$\begin{array}{r} 1.25 \\ .50 \end{array}$	2.
Broavation $540^{\circ \prime \prime} \times 1^{\prime \prime \prime} \times 1 \cdot 0^{\prime \prime}$		
*Text-Table 3-8, p. 608		
Bxcaration costs- $.75 \times .85 \times 20 \text { c.y. }=\$ 12.75$ Back Fill		
$.75 \times .425 \times 20$Equipment allowance \quad6.38 2.00		
$\frac{21.13}{20}=\$ 1.05 / 0 . y$		
Labor 20 cu. yd.	1.05	21.

Exoavation
$540^{\circ \prime \prime} \times 1^{\prime \prime \prime} \times 10^{\prime \prime}$
Text-Table 3-8, p. 60:
xcavation oosts-
$.75 \times .85 \times 20$ c.y. $=\$ 12.75$
ack Fill
$.75 \times .425 \times 20=6.38$
quipment allowanoe
1.05 21.

Foundations

Colum Pootings

		ft. ${ }^{3}$	$f t_{0}{ }^{2}$
1		88	28
3	$5{ }^{\prime \prime} 8^{\prime \prime} \times 5{ }^{\prime \prime} 8^{\prime \prime} \times 1.3{ }^{\prime \prime}$	120	85
3	$5{ }^{\prime \prime \prime} \times 5 \times{ }^{\prime \prime} \times 1^{\prime \prime} 2^{\prime \prime}$	88	70
3	$5{ }^{\prime \prime} 4^{\prime \prime} \times 5^{\prime \prime} 4^{\prime \prime} \times 1{ }^{\prime \prime}$	99	75
4		156	111
2	$3^{\prime \prime} 0^{\prime \prime} \times 3^{\prime \prime} 0^{\prime \prime} \times 1{ }^{\prime \prime}$	18	24
Caps.			
3	$2^{\prime \prime \prime} \times 22^{\prime \prime} \times 10^{\prime \prime}$	13	25
$11212^{\prime \prime} \times 2^{\prime \prime} 2^{\prime \prime} \times 1^{\prime \prime}$		61	113
		593	531

Proportion $1: 2 \frac{1}{2}: 4$ by woight
*Text-apage 13l--formulas:
1 cu. yd. of conorete assumod to woigh 4000\#
Sacks of cement/o.y. of concrete $=\frac{42.5 \times 1}{1+.8+2.5+4}$
$=4.84$ sacks/oubic yard
Lbs of water/ou. yd. of oonorete $\frac{4000 \times .8}{1+.8+2.5+4}$
= 364\# of $\mathrm{H}_{2} \mathrm{O}=\frac{364}{8.35}=43.6 \mathrm{gal} . / \mathrm{u} . \mathrm{yd}$.
Tons of Sand/cu. yd. of concrete $=\frac{2 \times 2.5}{1+.8+2.5+4}$
$=.602$ tons/ou. yd.
Tons of Gravel/cu. yd. of conce $=\frac{2 \times 4}{1+.8+2.5+4}$
$=.964$ tons/ou. Jd.
Cost of Materials from EKR, p. 164 as of December, 1941--

```
cement $2.14/bbl = .54/zack
sand - .91/ton
gravel e. l.31/ton
\begin{tabular}{lr}
4.84 sacks .54 & \(\$ 2.62\) \\
.602 tons .91 & .55 \\
.964 tons 1.31 & \(\underline{1.26}\) \\
Cost of Mat./ou. yd. & \(\$ 4.43\)
\end{tabular}
```

*Computations

```
                                    Unit
                                    Cost Iabor Mat. Total
Colum Footings (Con't)
Plant Costs--Conorete
*Text-mTable 5-12, p. 139&
    Storage and weighing $ .05
    Mixing -30
    Placing . 50
        Curing Total plant costs 
        Curing Iotal plant costs % .05
    Therefore,
    Total cost of conc. =.90 4.43= 5.33/c.y.
Labor - Conorete
*Text--Table 5-11, p. 137&
                    Labor-hr/0.7.
    Machine Mixing 1.0
    Placing in Pootings 2.0
    Curing in ordinary weather - .7
                Total
                        3.7
    Average hourly wage = 75%
    Therefore,
        Labor/0.y. = .75 x 3.7 = $2.78/civ.
    Porms - Material }531\mathrm{ ft.2
    *Text--Table 5-2, p. 119&
        Col. Footing takes 200 board feet for
        100 sq. ft. of surface, or 2 board
        foet for l sq. ft. of surfaco.
        EIR cost per 1000 ft.b.m. $46.00 on
        p. 160. Then by diagran 5-1 on p.
        570, text, and knowing cost per }100
        ft. bom. and number of board foet to
        cover l sq. ft. of surface, it was
        found that matorial per sq. ft. of
        surface is 9&.
    LaborneText-mable 5-3, p. 121:
                        Labor-hrs/100 ft.2 of surface
Ptgs &
Plor:
                    8
                                2
                                $
```

[^1]```
Forms-Labor (con't)
 Labor wage per hour \(=\$ 1.25\)
 Labor-hrs/100 ft. \({ }^{2}=8\)
 By Diagran 5-2, p. 571, text
 cost/ft. \({ }^{2}=\$.10\)
8umeary:
```

| Material 22 ou. yd. ) Conorete | 5.33 |  | 117. |
| :--- | :--- | :--- | :--- | :--- |
| Labor |  |  |  |

Katerial 531 sq. ft.
Labor $\quad$ Forms $\quad .09$ 48.

Wall Pootings


Proportion $1: 2 \frac{7}{2}: 4$
*In as mach as the proportion for conorete
for wall footings is the same as for
colum footings, the unit costs will be the same.

8umerary:


[^2]Nalls

|  |  |  | Conc. ft | Forme $\mathrm{ft}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 7 | 2'6" $\times 1{ }^{16}$ | $\times 13^{\circ \prime \prime}$ | 341 | 455 |
|  | $17^{\prime \prime} 0^{\prime \prime} \times 1{ }^{\prime \prime}$ | $\times 13^{\circ} 0^{\prime \prime}$ | 405 | 442 |
|  | $15^{\circ} 0^{\prime \prime} \times 1{ }^{\prime \prime} 6^{\prime \prime}$ | $\times 10^{\circ \prime}$ | 23 | 30 |
|  | $49^{\circ} 0^{\prime \prime} \times 15^{\prime \prime}$ | $\times 13^{\circ} 0^{\prime \prime}$ | 921 | 1299 |
|  | $1760^{\prime \prime} \times 15^{\prime \prime}$ | $\times 3^{\circ} 0^{\prime \prime}$ | 748 | 1056 |
|  | 54'6" $\times 1{ }^{\prime \prime} 5^{\prime \prime}$ | x $518^{\prime \prime}$ | 276 | 391 |
|  | $32^{\prime \prime} 6^{\prime \prime} \times 0^{\prime \prime}{ }^{\prime \prime}$ | x $4^{\prime \prime} 8^{\prime \prime}$ | 52 | - |
|  | $146^{\circ} 0^{\prime \prime} \times 0^{\circ} 8^{\prime \prime}$ | $x 40^{\prime \prime}$ | 389 | 1168 |
|  | $106^{\circ} 0^{\prime \prime} \times 0^{\circ} 8^{\prime \prime}$ | $x 5^{\circ} 0^{\prime \prime}$ | 353 | 1060 |
| 2 | $18^{\prime \prime} \times 0{ }^{\prime \prime}{ }^{\prime \prime}$ | $x 4^{\circ} 0^{\prime \prime}$ | 7 | 27 |
| 2 | $18^{\prime \prime} \times 0{ }^{\circ \prime \prime}$ | $x 4^{\prime \prime} 0^{\prime \prime}$ | 10 | 27 |
|  | $30^{\prime \prime \prime} \times 3100$ | $\times 5^{\circ} 0^{\prime \prime}$ | 45 | 30 |
|  | $910^{\prime \prime} \times 0^{\prime \prime} 8^{\prime \prime}$ | $\times 10^{\prime \prime}$ | 6 | 18 |
|  | $20^{\circ} 0^{\prime \prime} \times 0.8{ }^{\prime \prime}$ | $\times 510^{\prime \prime}$ | 67 | 200 |
|  | $510^{\prime \prime} \times 008^{\prime \prime}$ | $x 5^{1} 6^{\prime \prime}$ | 18 | 55 |
| 2 | $4^{\prime \prime} 0^{\prime \prime} \times 0^{\prime} 8^{\prime \prime}$ | x $5^{\circ} \underline{4}^{\prime \prime}$ | 29 | 85 |
| 2 | $40^{\prime \prime} \times 0.8{ }^{\prime \prime}$ | $x 4^{\prime} 4^{\prime \prime}$ | 23 | 69 |
| 2 | $40^{\prime \prime} \times 0^{\prime \prime} 8^{\prime \prime}$ | $x 3^{14}{ }^{\text {" }}$ | 19 | 58 |
|  | $16^{\prime \prime} 0^{\prime \prime} \times 0^{\prime \prime} 8^{\prime \prime}$ | $\times 11.3{ }^{\prime \prime}$ | 120 | 360 |
|  | $17^{\prime \prime} 0^{\prime \prime} \times 0{ }^{\prime \prime} 8^{\prime \prime}$ | x $6^{\prime \prime} 6^{\prime \prime}$ | 74 | 221 |
|  | $76^{\prime \prime} 0^{\prime \prime} \times 1^{\prime \prime} 5^{\prime \prime}$ | $\times 5 \mathrm{~mm}$ | 615 | 886 |
|  | $76^{\prime \prime} 0^{\prime \prime} \times 0^{\prime \prime \prime}$ | $x 4^{\prime \prime \prime}{ }^{\prime \prime}$ | - 118 | - |
| 2 |  | $\times 13{ }^{\circ \prime \prime}$ | 22 | 130 |
| 2 | 216" $\times 0^{\prime \prime} \underline{4 \prime \prime}^{\prime \prime}$ | = $570^{\prime \prime}$ | 10 | 58 |
|  | $22^{16 \prime \prime} \times 0{ }^{\prime \prime \prime}$ | $\times 10^{\prime \prime}{ }^{\prime \prime}$ | 157 | 478 |
|  | $32^{\prime \prime} 8^{\prime \prime} \times 0{ }^{\prime \prime} 8^{\prime \prime}$ | $x 6^{\prime \prime}$ | 137 | 412 |
|  | $67^{\circ} 0^{\prime \prime} \times 0{ }^{\prime \prime \prime}$ | x 5'2" | 115 | 692 |
|  | $67{ }^{10 \prime} \times 0^{\prime \prime} 6^{\prime \prime}$ | $\times 510{ }^{\circ \prime}$ | 168 | 670 |
|  | $67^{10} 0^{\prime \prime} \times 0^{\prime} 6^{\prime \prime}$ | x 3100 | 100 | 402 |
|  | $23^{\prime \prime} 4^{\prime \prime} \times 0{ }^{\circ} 8^{\prime \prime}$ | x $716^{\prime \prime}$ | 116 | 350 |
|  |  |  | 5312170 | 11119 |

*The proportion for the oonorete for the walls is the same as for wall and colum footings and labor for placing conorete in walls will be approximately the same as placing concrete in footings, hence the wit costs can be considered as the samo.

## Summary:




## Colume (Con't)

```
```

Labor Costs

```
```

Labor Costs
*Text--Table 5-1l, p. 137z

```
```

    *Text--Table 5-1l, p. 137z
    ```
```

	Labor-hr./c.y.
Machine Mix	1.0
Placing in columes	2.5
$\begin{array}{l}\text { Curing in ordinary } \\ \text { weather }\end{array}$	$\frac{.7}{4.2} \mathrm{hr} / 0 . \mathrm{y}$.


	Labor-hr./c.y.
Machine Mix	1.0
Placing in columes	2.5
$\begin{array}{l}\text { Curing in ordinary } \\ \text { weather }\end{array}$	$\frac{.7}{4.2} \mathrm{hr} / 0 . \mathrm{y}$.


	Labor-hr./c.y.
Machine Mix	1.0
Placing in columes	2.5
$\begin{array}{l}\text { Curing in ordinary } \\ \text { weather }\end{array}$	$\frac{.7}{4.2} \mathrm{hr} / 0 . \mathrm{y}$.


	Labor-hr./c.y.
Machine Mix	1.0
Placing in columes	2.5
$\begin{array}{l}\text { Curing in ordinary } \\ \text { weather }\end{array}$	$\frac{.7}{4.2} \mathrm{hr} / 0 . \mathrm{y}$.


	Labor-hr./c.y.
Machine Mix	1.0
Placing in columas	2.5
$\begin{array}{l}\text { Curing in ordinary } \\ \text { weather }\end{array}$	$\frac{.7}{4.2} \mathrm{hr} / 0 . \mathrm{y}$.

*Text-Table 5-15, p. 145:
Labor-hr/1 bar
Placing bars
10' to 20' long
$\frac{.2}{4.4} \mathrm{hr} / \mathrm{og}$.
Labor rate/hr is $\$ .75$
By text Diagram 5-6,
p. 575 it was found
that labor cost per
ou. yd. is $\$ \mathbf{3 . 5 0}$
Form Cost-Material $2760 \mathrm{ft}^{2}{ }^{2}$
*Text--Table 5-2, p. 119 s
It requires 190 ft . b.m. for $100 \mathrm{ft}^{2}$
of surface of 1.9 ft . b.m. for $1 \mathrm{ft}^{2}{ }^{2}$
of surface.
ERR Cost/ 1000 ft. b.I. is $\$ 46.00$
*Text--Diagran 5-1, p. 570
It was found that lumber cost per it. ${ }^{2}$
of surface is 8f.
Porm Cost-LLabor
*Text--Table 5-3, p. 121:
Labor-hr/100 ft. ${ }^{2}$
of surface
Columscoassembel
oreot
strip \& olean
Total

Colums-a assembel
oreot
strip \& olean Total
6.0
2.0
2.0
10.0

Colums (Con't)
Onit
Cost Labor Mat. Total

Labor rate is $\$ 1.25$ per hr .
*Text--Diagram 5-2, p. 5718 Forn labor cost was found to be .12/ft. ${ }^{2}$

## Sumary:



Beams
The quantities are to be the underside of the slabs.

b - bean thickness
b'- beam height
L - length of bean
a - total over all hoight
t - slab thickness

$\begin{aligned} & \text { Beara } \\ & \text { Ho. } \end{aligned}$	耳o. of	$\underline{b} \mathrm{~b}$ a $t$	$\underline{\mathrm{ft}}{ }^{\mathbf{3}}$	$f t_{\text {c }}{ }^{2}$	Bottom area
1	9	716" $8 / 168^{\prime \prime}$	30	89	45
2	2	$14^{\prime \prime} 8^{\prime \prime} 8 / 222^{\prime \prime}$	32	98	20
2		$14^{\prime \prime} 8^{\prime \prime} 8 / 242^{\prime \prime}$	18	54	10
3	6	$7{ }^{\prime \prime} 8^{\prime \prime} 8 / 168^{\prime \prime}$	20	61	32
4	9	$11^{\prime} 8^{\prime \prime} 8 / 188^{\prime \prime}$	58	175	70
5	6	$12^{\prime} 0^{\prime \prime} 8 / 208^{\prime \prime}$	48	144	48
6	6	$13^{1} 6^{\prime \prime} 8 / 208^{\prime \prime}$	54	162	54
7	6	$11^{\prime \prime} 8^{\prime \prime} 8 / 188^{\prime \prime}$	39	116	46
8		$15^{\circ} 0^{\prime \prime} 9 / 114^{\prime \prime}$	7	18	12
9	2	16'4" $8 / 1610^{\prime \prime}$	11	38	22
10	3	$8{ }^{\circ} 0^{\prime \prime} 10 / 10$ 4\%	10	22	20
11		15'0"12/16 ${ }^{\prime \prime}$	15	30	15
12	2	$16^{\prime} 4^{\prime \prime} 8 / 1410^{\prime \prime}$	7	21	22
13	4	$18^{\circ} 6^{\prime \prime} 12 / 1212{ }^{\prime \prime}$	--	--m	74
14	2	$10^{\circ} 0^{\prime \prime} 10 / 126^{\prime \prime}$	8	20	17
15	2	$4{ }^{\prime \prime} 8^{\prime \prime} 6 / 12-$	5	19	5
16	3	14'6" $8 / 202^{\prime \prime}$	43	130	29
17	2	$8^{\prime \prime} 0^{\prime \prime} 12 / 124^{\prime \prime}$	11	21	16
18		$8^{10} 0^{\prime \prime} 9 / 114^{\prime \prime}$	3	9	6
		8'0" 7/10 ${ }^{\prime \prime}$	3	10	4
		$8^{\prime \prime} 0^{\prime \prime} 9 / 12$ -	6	16	6
		$8^{10} 0^{\prime \prime} 6 / 14{ }^{\text {m }}$	4	16	4
		$8{ }^{10} 8 / 152^{\prime \prime}$	6	17	5
19	2	$18^{\prime \prime} 6^{\prime \prime} 10 / 20{ }^{\prime \prime \prime}$	21	49	30
20		$10^{\circ} 0^{\prime \prime} 8 / 200^{\prime \prime}$	8	23	7
21		$4^{18} 8^{\prime \prime} 6 / 20-$	4	16	2
22		$14^{1} 8^{\prime \prime} 8 / 242^{\prime \prime}$	18	54	10
23	3	$11^{\prime \prime} 8^{\prime \prime} 8 / 208^{\prime \prime}$	24	70	28
L 1\&2	2	$8^{\circ} 0^{\prime \prime} 8 / 162^{\prime \prime}$	13	37	11
L 3*5	3	$140^{\prime \prime} 8 / 161^{\prime \prime} 2^{\prime \prime}$	5	14	28
	6	$14^{10} 0^{\prime \prime} 6 / 161^{\prime \prime} 2^{\prime \prime}$	7	28	42
L 4	5	$9^{\circ} 6^{\prime \prime} 8 / 161^{\prime \prime} 0^{\prime \prime}$	10	29	19
	6	$9{ }^{\circ} 6^{\prime \prime} 6 / 1613^{\prime \prime}$	14	57	28
L 6	2	$10^{\prime} 0^{\prime \prime \prime} 8 / 1612^{\prime \prime}$	7	20	14
	4	10'0'm6/16 $12^{\prime \prime}$	10	40	20
	11	$5{ }^{\circ} 6^{\prime \prime} 8 / 1612^{\prime \prime}$	20	61	40
	22	$5{ }^{\prime \prime}{ }^{\prime \prime} 6 / 1612^{\prime \prime}$	30	121	60
L 7		$14^{\prime} 0^{\prime \prime} 8 / 1612^{\prime \prime}$	5	14	10
	2	$14^{\circ} 0^{\prime \prime} 6 / 1612^{\prime \prime}$	7	28	14
L 8	2	$18^{\circ} 0^{\prime \prime} 8 / 161^{\prime \prime} 2^{\prime \prime}$	4	12	24
	4	1810'6/16 1 ${ }^{\prime \prime}{ }^{\prime \prime}$	6	24	36
B-35		$15^{\circ} 0^{\prime \prime} 12 / 200^{\prime \prime}$	18	35	15
B-36	2	$10^{\circ} 0^{\prime \prime \prime} 8 / 14{ }^{\text {9* }}$	6	17	13
B-37	2	$514^{\prime \prime} 8 / 147^{\prime \prime}$	4	12	7
B-38		1610" 8/12	11	32	11
		Total:	656	1941	1046

Proportion $1=2: 4$ by weight
Conoretem24 cu. yd. of material
*Text--Page 131--formuless
lo.y. of concrete assumed to woigh 4000\#
sacks of coment/c.y. of conc. $=\frac{42.5 \times 1}{1+.4+2+4}$

- 5.75 sacks

Tons of sand/c. $y$. of concrete $=\frac{2 \times 2}{1+.4+2+4}$
-. .54 tons
Tons of gravel/c.y. of conc. $=\frac{2 \times 4}{1+.4+2+4}$
$=1.08$ tons
Costs of materials from ENR, p. 154, as of December, 1941


Plant cost-same as for $\begin{aligned} & \text { reinforeed conc. colums } \\ & \text { Total cost of conc./c.y. }\end{aligned}=\frac{.90}{\$ 5.92}$

Labor--Concrete
*Rccording to table 5-11, p. 137 in the text it requires the same amount of labor-hours/c.y. to mix, place and cure concrete for reinforced colume as for reinforced beams, therefore, the labor cost per coy. will be the cane.

Unit
Cost Labor Mat. Total

```
Forag-aMterial 2987 ft. }\mp@subsup{}{}{2
*Text--Table 5-2, p. 119&
 Beams and girders take 250 ft. bom. for
 100 ft. }2\mathrm{ of surface or 2.5 ft. b.l. for
 1 sq. ft. of surface.
 BNR, p. 160-000st per 1000 ft.b.m. is
 $46.00. Then by diagran 5-1 on p. }57
 of the text, and knowing cost per }100
 ft. b.n. and number of board foet to
 cover l sq. ft. of surface, it was
 found that material per sq. ft. of
 surface is 10&.
Porme--Iabor
 The form labor for beans will be the same
 2s was required for the reinforeed con-
 crote colwme--12& per sq. ft.
```

Surnary:


## Flat Slabs

			ft. ${ }^{3}$	$f t .2$
Corridor	$28616{ }^{\prime \prime}$	$\times 88^{\prime \prime} \times 4 \frac{1}{3 \prime \prime}$	570	1517
	$83^{\prime \prime}$	$\times 8^{18} 8^{\prime \prime} \times 4{ }^{\prime \prime}$	271	724
Plemam	$61^{\prime \prime}{ }^{\prime \prime}$	$\times 12^{\circ \prime \prime} \times 5^{\prime \prime}$	307	738
Tumel	$136{ }^{\prime \prime}$	$x 4^{1} 6^{\text {m }} \times 4^{\text {n }}$	204	612
Landinge	$316^{\prime \prime \prime}$	$\times 5^{\prime \prime} \times 4^{\prime \prime}$	80	240
	$26^{\prime \prime \prime}$	$\times 16^{\circ} 0^{\prime \prime} \times 6 \frac{108}{}$	104	192
	$38^{\prime \prime \prime}$	$\times 6^{\prime \prime} 0^{\prime \prime} \times 4^{\prime \prime}$	52	156
	$33^{10}$	$\times 9.0{ }^{\prime \prime} \times 4^{\prime \prime}$	99	297

Air \&
Elev shfts. $11^{\prime} 6^{\prime \prime} \times 6^{\prime \prime} 6^{\prime \prime} \times 4^{\prime \prime} \quad \frac{25}{1687} \frac{75}{4476}$

[^3]
## Flat Slabs (Con't)

Unit
Cost Labor Mat. Total

Concrete-material and Labor
*In as mach as the proportion for concrete for flat slabs is the same as for beans, the unit cost for conorete material will be the same, \$5.92. Also, acoording to the text-mable 5-1l it requires no more laborhours por ou. yd. for mixing, placing, and ouring oonorete for beams than it does for slabs, therefore the labor cost per cu. yd. of conorete for slabs will be the same as for beans, \$3.50.

Poras-Matorial, $4476 \mathrm{ft}^{2}$
*Text--Table 5-2, p. 1198
Floors require 180 ft . b. mo/ $100 \mathrm{ft}^{2}$ of surface which equals 1.8 ft . b.m. por ft. ${ }^{2}$

ERR, p. 160-00st of 1000 ft. b.m. is \$46.00.
Toxt--Diagran 5-1, p. 570z
Cost per sq. ft. is 9f.
Forms-Labor
*Text-Table 5-3
Labor-hr. $/ 100 \mathrm{ft} .{ }^{2}$ of surface

$$
\begin{aligned}
& \text { Ploors - assemble } \\
& \text { Labor rate per hour is } \$ 1.25 \\
& \text { *Fext--Diagram 5-2, p. } 5718 \\
& \text { Cost per sq. ft. is } 9 \ell /
\end{aligned}
$$32$\frac{2}{7}$ labor-hrs.


#### Abstract

Unit Cost Labor Mat. Total Flat Slabs (Con't)


## Sumary:



Steel Pan and Joist Construotion


First figure total height "h" as solid concrete then deduct space taken up by pan as indicated by diagonal lines. 4 $12^{\prime \prime}$ pan moans that $b=12^{\prime \prime}$. "an" of these pans is almays $1.8^{\prime \prime}$.

Unit
Cost Labor Mat. Total
Steel Pan and Joist Construction (Con't)


Deduct from form area the bottom area oomputed under beans, thus form arce $a$

$$
13332 \mathrm{ft}_{0}^{2}-1046 \mathrm{ft}_{0}^{2}=12286 \mathrm{ft} \mathrm{f}^{2}
$$

Deduct from Conorete:

Aotual amount of conorete $=13216-7325=$

$$
5891 \text { ft. }^{3} \text { or } 218 \text { ou. yds. }
$$



## Sumary:



[^4]
## Roinforcing

This part of the contract was sub－let． The information for this was procured from The Reniger Construction Company． This being the oase the bids of the sub－contractors are used．

Bars
Material including：
Base material Size of extras Binding extras Cutting Bundling and tagging Freight

Labor 29 tons
Cartage
Steel Tile
Material
Bid
Labor 12，286 sq．ft．
Attached Lath
Material 1400 sq．yd．Bid Labor
Cartage
Wire Mesh
Slabs on ground $6^{\prime \prime} \times 6^{\prime \prime}$ as apeo． Material 4635 sq．ft．Bid Labor Cartage
2995.
.05 70．
Unit
Cost Labor Mat．Total
15.00 435． 2.0058 ．

1起 184。

9 •

就 23.
5.

Pinished Floors on Ground
$4^{\prime \prime}$ thick and $1: 2=3$ mix groute. Top finish to be of 1 to 2 Portland cement, homogeneous with concrete groute as specified $1^{\prime \prime}$ thick.

Tunnel	$160^{\prime \prime} 0^{\prime \prime} \times 3^{\prime \prime \prime}$		560	$\mathrm{ft} .^{2}$
Plenum	$61^{\prime \prime} 6^{\prime \prime} \times 10^{\prime \prime} 8^{\prime \prime}$		655	
AnPboin	$32^{\circ} 0^{\prime \prime} \times 76^{\prime \prime}{ }^{\prime \prime}$		848	$\cdots$
	$18^{\circ \prime} 0^{\prime \prime} \times 4^{\circ \prime \prime}$		72	
	$5^{\prime} 6^{\prime \prime \prime} \times 5^{\prime \prime} 2^{\prime \prime}$		28	$\cdots$
	$4^{\prime \prime}$ thick	x	2163	$f t .{ }^{2}$

Concrete
Material--about 26.7 ou. yd. *Text--Page 131--formulass
Proportion 1 : $2: 3$ by weight
1 ou. yd. of concrete assumed to weigh 4000\#
Sacks of cement/c.y. of conc. $=\frac{42.5 \times 1}{1+.61+2+3}$
玉 6.37 sacks
Tons of sand/c.y. of conc. $=\frac{2 \times 2}{1+.6 y+2+5}$
a . 6 tons
Tons of gravel/c.y. of conc. $=\frac{2 \times 3}{1+.6 Y+2+3}$ $=.9$ tons
*Costs of materials from ENR, p. 154 as of December, 1941.

Cement e-54/sack x $6.37=\$ 3.44$
Sand e .91/ton x . 6 = . 55
Gravel $1.31 /$ ton $x \quad .9$ a 1.81
Cost of Mat./c.y. $\quad \$ 5.17$
Plant ooste as before . 90
Total cost of conc. \$6.07


	Labor-hr/o.y.
Maching mixing	1.0
Placing in Ploors \& Slabs	2.0
Curing in ordinary weather	$\frac{.7}{3.7} \mathrm{hrs}$.

Average wage per hour is \$.75
Therefore,
Labor/c.y. $=.75 \times 3.7$ E, $\$ 2.78$
Homogeneous Top Pinish-Material
2160 ft. $^{2}$ of $1^{\prime \prime}$ thick $=6.67$ cu. yds.
*Text--Page 131--formulass
Sacks of cement/o.y. $=\frac{42.5 \times 1}{1+2}=14.2$ sacks
Tons of sand/c.y. $=\frac{2 \times 2}{1+2}=1.33$ tons
Cost of Material from ERR, p. 154 as of
December, 1941
Cement © $\$ .54 /$ sack $\times 14.2=\$ 7.67$
SandPlant costs as beforeCost of concrete/c.y.$\mathbf{. 9 0}$
$\$ 9.78$
Homogeneous Top Finish--Labor
Assume labor cost to be about $\frac{2}{4}$ as muchas for the labor costs for groute asthere is about $\frac{7}{7}$ as much material. Costwill be $\$ 2.00 / \mathrm{c}$.y.

Onit
Comont Work (Con't)

Pinished Floors on Ground
Surmary:

Material Labor	26.7 cu. yd.	) Conerete	$\begin{aligned} & 6.07 \\ & 2.78 \end{aligned}$	74.
Material   Labor	6.67 cu. yd.	) Iop	$\begin{aligned} & 9.78 \\ & 2.00 \end{aligned}$	13.

Rough Conorete Slabs on Ground (4" concrete)
These slabs are to receive "Kalman Process" floors which is the same as terrazso.

## Plu: Minus

25 ${ }^{\prime \prime} 0^{\prime \prime} \times 20^{\prime \prime}{ }^{\prime \prime}$	513	---
$4^{\circ} 0^{\prime \prime \prime} \times 6.0^{\prime \prime}$	-	24
$21^{\prime \prime} 6^{\prime \prime} \times 36^{\prime \prime}$	774	--0
20'6" $\times 10^{\prime \prime \prime}$	-	205
$46^{\prime \prime} 0^{\prime \prime \prime} \times 11^{\prime \prime}$	506	--
32'0' $\times 28^{\prime \prime}{ }^{\prime \prime}$	912	---
	2705	229

$2476 \mathrm{ft}^{2}$ of $4^{\text {" }}$ slab $=30.6$ ou. yd.
Conorete-material
Same as for finished floors on ground 6.07186.
Concretom-Labor
Same as for finished floors on ground $2.78 \quad 85$.

Comont Finish on 8tructeral 8labs
1" top finish of 1 to 2 Portland cement


Unit
Cost Labor Mat. Total

Coment Pinish on 8tructural Slabs (Con't)
$5293 \mathrm{ft}^{2}$ of $1^{m}$ thiolcness $=16.3$ ou. yd.
Unit costs of cement finish on etructural slabs will be the sam as for top finish on ground Ploors.

8umeny:
$\begin{array}{lllll}\text { Material } 16.3 \text { cu. yd. }\{\text { Concrete } & 9.78 & \text { 159. } \\ \text { Labor } & & 2.00 & 33 .\end{array}$

Ramp 8lab
6克m of concrete with a $1 \frac{1}{8}$ top finish 2 epecified.
$12 \times 17$ = $204 \mathrm{ft}^{2}$ of $6 \frac{1}{2}$ conc. $=4.1$ c.y. $204 \mathrm{ft}^{2}$ of lin finfith F . $945 \mathrm{o.y}$.

Unit costs of ramp slab will be same as Por the preoceding slabs.

## 8umary:

Material   Labor	4.1 ou. yd.	) Concrete	$\begin{aligned} & 6.07 \\ & 2.78 \end{aligned}$	11.
Matorial   Labor	. 945 cu. yd.	) Pinish	$\begin{aligned} & 9.78 \\ & 2.00 \end{aligned}$	2.

Vat Floors

Unit costs samo as for above.
2 at $9^{\circ} 3^{\dagger} \times 8^{\circ} 8^{m}=160$ sq. ft.

## Sumary:

Material 1.97 coy . unfin. conc. Labor
$\begin{array}{lllll}\text { Material } 2.96 \text { on. yd. }\left\{6^{\text {m }} \text { slab conc. }\right. & 6.07 & 18 . \\ \text { Labor }\end{array}$
Material 5 ou. yd. Labor

6.07		12.
2.78	6.	
6.07		18.
2.78	8.	

9.78
2.001.
5.

Reinforced Slab, 6登 thick

## Concrete

2	$14^{\circ} 0^{\prime \prime} \times 4^{\circ} 0^{\prime \prime}$	112	$f t^{2}$
	$70^{\prime \prime} \times 7{ }^{\text {ºm }}$	49	
2	$13^{\circ} 0^{\prime \prime} \times 4^{\circ} 0^{\prime \prime}$	104	"
	$80^{\prime \prime} \times 7{ }^{\prime \prime}$	56	${ }^{\text {n }}$
	$14^{\circ} 0^{\prime \prime} \times 4{ }^{\prime \prime}$	56	*

Conorete Material-7.56 cu. yd.
As was proviously estimated under beams and flat slabs, the cost of concrete is $\$ 6.18$ per ou. yd. and the cost of labor is $\$ 2.78$ per ou. yd. which may also be used for the unit costs of oonorete for stairs.

Forn-alaterial
From Reniger Construction Company estimate- $754 \mathrm{ft}{ }^{2}$
*Text-Table 5-2, p. 119 :
Stairs-mumber of board feet per 100 sq. ft. is 300 which is 3 ft. b.e. per 1 sq. ft.

ENR, p. 160, cost per 1000 ft. b.r. is $\$ 46.00$

* Text-Diagram 5-1, p. 570 g
Cost per sq. ft. of surface is $14 \%$

Form-Labor
*Text-Table 5-3, p. 121:

Stairs	Labor-hours/100 ft. ${ }^{2}$
Assemble	6
Errect	$\frac{4}{3}$
Strip and clean	$\frac{3}{13} \mathrm{hrs} / 100 \mathrm{ft}{ }^{2}$

Concrete Stairs (Con't)
Labor rate per hour is \$1.25
*Text--Diagram 5-2, p. 571:
Cost per sq. ft. of surface is l6申 for finish

## Sumary 8

Material 7.56 cu. yd. , Conorete
Labor
Material 754 ft. ${ }^{2}$ Labor

Conorete Stairs--Reinforced Slab 4골"

48	$4{ }^{\prime \prime}$	E	192	$\mathrm{ft} .{ }^{2}$
4	- $3^{16} 6^{\prime \prime}$	E	14	ft . ${ }^{2}$
4	- 3100	=	12	ft .2
7	- 310"	=	51	ft. ${ }^{2}$
2	(3) 3'6"	-	7	$\mathrm{ft} .{ }^{2}$
			276	$\mathrm{ft} .{ }^{2}$

slabs $=3.86$ cu. yd.
Reniger Construction Company estimate for forme is $552 \mathrm{ft}^{2}$ for these stairs.

The unit costs of $4 \frac{1}{2}{ }^{n}$ slab conorete slabs will be the same as for $6 \frac{1}{2}{ }^{m}$ slabs,

Sumeary 8


$$
\begin{array}{lll}
6.18 & & 47 . \\
2.78 & 21 . & \\
& & \\
.14 & & 105 . \\
.16 & \text { 121. }
\end{array}
$$

## Stair Rail

Unit
Cost Labor Mat. Total
$180^{\circ} 0^{\prime \prime} \times 3^{\prime} 4^{\prime \prime} \times 4^{\prime \prime}=215 \mathrm{ft}^{3}$ of conorete or 8 cu. yd. of conorete and $1264 \mathrm{ft}^{2}{ }^{2}$
for forms.
Unit costs sam as flat slabs.

## Sumary:



Matorial $1264 \mathrm{ft}_{0}^{2}$				
Labor	) Forms	.08		101.

4" Concrete Table Top
Anatony Toohnical Laboratory
$3^{\prime} 6^{\prime \prime} \times 18^{\prime} 0^{\prime \prime}=63 \mathrm{aq}$. ft. for forms = 3/4 ou. yd. conorete

Same unit costs as above
Sumary:



Kalman Process Floors-Torrazzo


Finish on Stairs	$56 \mathrm{ft}_{0}{ }^{2}$
Finish on Landings	$20 \mathrm{ft}_{0}{ }^{2}$
Vat Wall Finish	$183 \mathrm{ft}_{0}{ }^{2}$
Table Top Finish	$63 \mathrm{ft}_{0}{ }^{2}$

This part of Bid was sub-let to Kalman Ploor Company at a bid price of $\$ 2770.00$ including labor. This information was procured from The Reniger Construction Company 2770.

## Natorproofing

Unit
Cost Labor Mat．Total

## Data from Reniger Construction Compeny

Integral waterproofing－a\＃\＃per sack
Material 220\＃
Labor

Surface waterproofing－－2 coats
Material $2265 \mathrm{ft}^{2}{ }^{2}$
Labor
1⿳亠口冋己心広 34.

Membrane Waterproofing

| Katorial $493 \mathrm{ft.}^{2}$ | .04 | 20. |
| :--- | :--- | :--- | :--- |
| Labor | .03 | 15. |

Unit
Cost Labor Nat. Total

Brickwork


## Miortor

In as much as mix is not given, I am assuming a mix of 1 part cement, 1 part lime, and 4 parts sand--Reference--Building Construction by W. C. Huntington, C. E., John Wiley and Son, Inc., 1929, p. 135.
*Text--Table 6-4, p. 172:
Materials required/c.y. of mortor by weights
Cement -- 6.4 sacks x $.54=\$ 3.46$
Lime -- 600 lbs . $x .01=6.00$
Sand -- 1.2 tons $x .91=1.09$
Cost per cu. yd. $\quad=\$ \overline{10.55}$
*Text--Table 6-3, p. 171:
It takes . 56 cu . yd. of mortor per 1000 standard brick with a $\frac{1}{2}$ joint, therefore mortor cost per 1000 brick is $\$ 10.55 \pi$ $.56=\$ 5.90$

Labor--Face Brick
*Text--Table 6-5, p. 174:
Hours per 1000 brick $=12.5$
Hourly wage of bricklayer $=\$ 1.65$
Hourly wage of helper $=\$ .85$
Therefore,
$12.5 \times 1.65+12.5 \times .85=\$ 31.23 / 1000$ brick.
Cleaning of 7505 sq. ft. of brick wall-assume
$1 \frac{1}{2} \not \subset$ per sq . ft. to clean brick.
Wall Ties
1 tie per 6 sq. ft., Therefore, about 8,000 ties at $\$ 3.00$ per thousand.

Unit
Cost Labor Mat. Total
Face Brick (Con't)

Summary 8


Coinbined Count

				ft. ${ }^{3}$	$-\mathrm{ft} .^{3}$
8	$20^{\prime \prime}$	$x$	$38^{\prime \prime} 0^{\prime \prime} \times{ }^{\prime \prime}$	203	
	$352{ }^{\text {ºn }}$	$x$	$1^{\prime \prime} 4^{\prime \prime} \times 12^{\prime \prime}$	5632	
39	3'8'	x	$1^{\prime \prime} 4^{\prime \prime} \times 7^{\prime \prime}$		1430
2	$1{ }^{\prime \prime \prime}$	$x$	$1^{\prime \prime} 4^{\prime \prime} \times 4^{\prime \prime}$		18
	$6^{10}{ }^{\prime \prime}$	$x$	1'4" $\times$ 7 ${ }^{\prime \prime}$		56
	$7{ }^{\prime \prime}$	$x$	$1^{\prime \prime} 4^{\prime \prime} \times 2^{\prime \prime}$		23
	5'6"	x	$1^{\prime \prime \prime} 4^{\prime \prime} \times 10^{\prime \prime} 6^{\prime \prime}$		77
	$8{ }^{\circ \prime \prime}$	$x$	$1^{\prime \prime \prime} 4^{\prime \prime} \times 100^{\prime \prime}$		107
3	$352{ }^{\prime \prime}$	$x$	$0 \cdot 8^{\prime \prime} \times 1.0{ }^{\prime \prime}$		704
7	2'6"	$x$	$1^{\prime \prime \prime} 6^{\prime \prime} \times 12{ }^{\prime \prime}$	315	
	$352^{\prime \prime}$	$x$	$1^{\prime \prime \prime} \times 24^{\prime \prime}$	8624	
85	$318{ }^{\prime \prime}$	$x$	1 $0^{\prime \prime} \times 7{ }^{\prime \prime}$		2337
3	$3{ }^{\prime \prime}$	x	$10^{\prime \prime} \times 4.0{ }^{\prime \prime}$		44
	3'8'	x	$1^{\prime \prime \prime} \times 7{ }^{\prime \prime}$		26
	22'6"	$x$	$08^{\prime \prime} \times 1100$	165	
2	2'6"	x	$1^{\prime \prime \prime} \times 5^{\prime \prime} 6^{\prime \prime}$		27
	4'8"	x	$10^{\prime \prime} \times 7{ }^{\prime \prime}$		36
3	$20^{\prime \prime}$	x	$10^{\prime \prime} \times 4^{\prime \prime}$		27
7	$1{ }^{1} 10{ }^{\prime \prime}$	x	$10^{\prime \prime} \times 4.0{ }^{\prime \prime}$	41	
7	1'10"	x	$08^{\prime \prime} \times 120^{\prime \prime}$	103	
4	1'4"	$x$	$0^{\prime \prime} 8^{\prime \prime} \times 120^{\prime \prime}$	43	
2	$34^{\prime \prime}$	x	$1^{\prime \prime \prime} \times 2{ }^{\prime \prime}$	170	
2	$30^{\prime \prime}$	x	$1^{10} 0^{\prime \prime} \times 4^{\prime \prime} 6^{\prime \prime}$	270	
	21'4"	x	$10^{\prime \prime} \times 106^{\prime \prime}$	224	
	26'0"	$x$	$10^{\prime \prime} \times 2.6{ }^{\prime \prime}$	65	
$\frac{1}{2}$	$21^{\prime \prime}{ }^{\prime \prime}$	x	$10^{\prime \prime} \times 110^{\prime \prime}$	118	
	$32^{\prime \prime}$	x	$10^{\prime \prime} \times 2.6{ }^{\prime \prime}$	80	
	28'0"	x	$10^{\prime \prime} \times 4.6{ }^{\prime \prime}$	126	
$\frac{1}{2}$	170"	$x$	$1^{10 \prime} \times{ }^{\prime \prime} 6^{\prime \prime}$	81	
4	11'6"	$x$	$0^{\prime \prime} 8^{\prime \prime} \times 4^{\prime \prime}$	123	
4	2'6"	x	0'8' $\times 59{ }^{\prime \prime}$	393	

## Combined Count (Con't)

Deduct Face Brick
2502 ft. $^{3}$
n Cut Stone
1435
" Backup Tile
4639
" Glazed Tile
2048
" Fire Brick
67
*Text--Table 6-2, p. 169 :
Number of bricks per cu. ft. is 19

Therefore,
$19 \times 1173=22 \frac{1}{2}$ thousand

Cost per 100 is K 13.50 from ERR

Nator
Same as Face bricis mortor $\$ 5.90 / 1000$

## Labor

Assume $1 / 3$ cost of labor for face brick because this back up brick does not require the care of face brick laying, which is \$12.00

Unload Brick
*Text-TTable 2-1, P. 19 :
Pick up and pile 1000 brick is $21 / 3 \mathrm{hrs}$. Therefore, it takes $21 / 3 \times \$ .85=\$ 1.98$ per 1000 bricks to unload.

## Summary:

Material	$22_{0}^{7}$ thousand bricks	13.50	304.
Mortor	$n$	$n$	5.90
Labor		12.00	270.
Unload		1.98	45.

$8^{\text {n }}$ Backup Tile ( $5^{n} \times 8^{n} \times 12^{n}$ )

	- ft	- $\mathrm{ft} .^{2}$
$870^{\prime \prime} \times 110^{\prime \prime}$	957	
$2170^{\prime \prime \prime} \times 8{ }^{\text {m }}$		272
$418^{\prime \prime} 0^{\prime \prime} \times 8{ }^{\circ} 0^{\prime \prime}$		416
$74^{\prime \prime} 0^{\prime \prime} \times 8{ }^{\text {an }}$		224
$97{ }^{10 \prime \prime} \times 11^{\prime \prime}$	1087	
$90^{\prime \prime \prime} \times 3{ }^{\prime \prime}$		27
$74^{\circ} 0^{\prime \prime} \times 11^{\prime \prime}$	814	
$62900^{\text {¢ }} \times 10^{\circ \prime \prime}$	120	
$39^{\prime \prime \prime} 0^{\prime \prime \prime} \times 8{ }^{\prime \prime \prime}$		216
$77^{\circ \prime \prime} \times 110^{\prime \prime}$	847	
$67^{10 \times 1} \times 11^{\circ \prime \prime}$	737	
$74^{\prime} 0^{\prime \prime} \times 8^{\prime \prime \prime}$		224
6,0" $\times 8{ }^{\circ \prime \prime}$		48
$13^{\circ} 0^{\prime \prime} \times 13{ }^{\circ \prime \prime}$		169
		144
1410" $\times 30{ }^{\prime \prime}$	420	
$12^{\circ} 0^{\prime \prime} \times 24^{\circ} 0^{\prime \prime}$	288	
$14^{\circ} 0^{\prime \prime} \times 28^{\circ}{ }^{\prime \prime}$	392	
$140^{\prime \prime} \times 7$ \% ${ }^{\prime \prime}$		98
$411^{\prime \prime} 6^{\prime \prime} \times 16^{\prime \prime}{ }^{\prime \prime}$	736	
	6378	1838

## Material

1 tile $=5 \times 12-144=.417 \mathrm{ft}^{2}$
Therefore,
4628 -. $417=11,100$ tile
*EVR cost, p. 162: Cost per 1000 tile is $\$ 74.50$ is $\$ .0745$ per tile.
So, . $0745 \times 11,100=\$ 827$
Mortor
*Text-apage 191
"Average mount of mortor is about .2-. 25 o.y. per 100 tile". I will assume . 23 coy. per 100 tile
*Fext-Table 6-10, p. 191s
Assure a mix of 1 : 3 then,
cemont (sacks) $=9 \times \$ .54=\$ 4.86$ lime (ton) $=.045 \times \$ 16.50=.74$ sand (ton) = $1.25 \times .91=1.14$

Cost/1 c.j./100 tile $\$ 6.74$

## Briokwork (Con't)

```
Material
 Cost-mERR, p. 154-moment and sand;
 p. 162--limo
 Therofore, 11,100 tile/100 is 111
 in lots of 100 tile. But it re-
 quires only .23 c.y. por }100\mathrm{ tile
 So $6.74 x . 23 1s $1.55 per 100
 tile in this case. Total cost is
 1.55 x lll is $172.00
Labor
 *Fext--Table 6-11, p. 192:
 Mason 2.5 hr. per 100 tile
 Helper 3.5 hr. per }100\mathrm{ tile
 or a total of 6 hr/100 tile
 Mason, $1.65 per hr.
 Helper, . 85 per hr.
 Total $2.50 por hr.
 *Text--Diagram 6-12, p. 591%
 Cost per black = $.15
 Total cost = . 15 x 11100 = $1665.
```

Sumary:

Material	11,100 pieces	.0745	827.
Motor	per 100 tile	1.55	172.
Labor	per piece	.15	1665.



## Glazed File Furring

Glazed Tile
Extorior Walls

Gross Anat. $726^{\prime \prime} \times 15^{\prime \prime} 4^{n} 1112$
$2120^{\prime \prime} \times 77^{\prime \prime} \quad 180$
$770^{\circ} \times 716^{\prime \prime} 59$
$23^{18} 8^{\text {m }} \times 7{ }^{10} \quad 55$
Mortuary
35 ${ }^{\circ} 0^{\prime \prime} \times 15^{\circ}$ 4" $^{\prime \prime} 537$
$2710^{\text {n }} \times 7^{100} 117$

Gross Anat. $610^{\prime \prime \prime} \times 10^{\prime \prime} 8^{\prime \prime} 651$
12.0 $\times 76^{\prime \prime} \quad 90$
$23^{18} 8^{\prime \prime} \times 718^{\prime \prime} \quad 55$
$16^{\prime 2} \times$ 7' $^{\prime \prime} \quad 121$
Autopsy $844^{\prime \prime} \times 10^{\prime \prime} 8^{\prime \prime} 956$
$16^{\circ \prime} 2^{\prime \prime} \times 716^{\prime \prime} 121$
$74^{\prime \prime} \times 3$ 30" 22
$120^{\prime \prime} \times$ 7' $^{\prime \prime} \quad 90$
318 $\times 716^{\text {N }} \quad 28$
$30^{\prime \prime} \times 30^{\prime \prime} 9$
Locker
$20^{\circ \prime \prime} \times 10^{\prime \prime \prime} 8^{\text {m }} 213$
$23^{\prime \prime} 8^{\prime \prime} \times 76^{\prime \prime} \quad 55$
2nd Fl.
$267^{\circ} 0^{\prime \prime} \times 10^{\circ} 8^{\prime \prime} 2848$
$\leq 120^{\circ \prime \prime} \times 76^{\prime \prime} \quad 360$
$216^{\circ} 2^{\prime \prime} \times 7$ 7" $^{\prime \prime} \quad 242$
47 D" $^{\prime \prime} \times 76^{\text {N }} 234$
$73^{\prime \prime} 8^{\prime \prime} \times 7{ }^{10 \prime} 193$
3rd. Fl.
$278^{\circ} 0^{\text {N }} \times 10^{\circ} 8^{\text {N }} 2965$
$42^{\circ} 0^{\prime \prime} \times 7{ }^{\prime \prime} 6^{\prime \prime} \quad 360$
$216^{\circ} 2^{\prime \prime} \times 7{ }^{\prime \prime}{ }^{\prime \prime} \quad 242$
$4710^{m} \times 76^{\prime \prime} \quad 234$
$85^{18} 8^{\text {m }} \times 76^{\prime \prime} \quad 220$
lst Pl.
$1620^{\prime \prime} \times 10^{\circ} 8^{\prime \prime} 1728$
$570^{\prime \prime} \times 5^{\circ} 0^{\prime \prime} 285$
20'0" $\times 70^{\prime \prime} 140$
$20^{\circ} 0^{\prime \prime} \times 5^{\circ} 0^{\prime \prime} 100$
$35^{\circ} 0^{\prime \prime} \times 10^{\circ} 8^{\prime \prime} \quad 374$
42
165
2nd Fl. $15^{\prime \prime} 6^{\prime \prime} \times 10^{\circ \prime \prime}$

1755
$38^{\circ} 0^{\prime \prime} \times 40^{\prime \prime} 152$
22'0" $\times 710^{\prime \prime} 154$
$110^{\prime \prime} \times 4^{\circ} 0^{n}$
44
$49^{\circ} 6^{\prime \prime} \times 10^{\circ} 8^{n} \quad$.. 522
310" $\times 70^{\prime \prime}$
$156^{\circ} 6^{\prime \prime} \times 10^{\prime} 8^{\prime \prime} 1669$
$9 \quad 3{ }^{\circ} 0^{\text {n }} \times \quad 7^{10} 189$


$$
\begin{aligned}
& 10^{\prime} 0^{\prime \prime} \times 40^{\prime \prime \prime} \quad 40 \\
& 18^{\circ} 8^{\prime \prime} \times 10^{\circ} 8^{\prime \prime} 197 \\
& 3^{10^{\prime \prime}} \times 70^{\circ n} 21 \\
& 20^{\prime} 0^{\prime \prime \prime} \times 10^{\prime \prime} 8^{\prime \prime} \quad 215 \quad 213 \\
& 149325151571128 \\
& \frac{-3813}{11119} \quad \frac{-128}{1443} \\
& f t^{2} \quad{ }^{2} t_{0}{ }^{2}
\end{aligned}
$$

It requires about $31 / 3$ tile of the $4^{\prime \prime}$ and the $2^{n}$ tile used to make 1 sq. ft. as epeoified.

```
Therofore, 3 1/3 x 11,119 = 37,060 pieces
of s"'tile, and 3 1/3 x 1445 = 4,800 pieces
of 2" til.
```

Material-a4" starke glazed briaktile
37,060 pie0es
BMR, p. 162 : Cost per 1000 tile is $\$ 81.60$
which will be \$.0816 per piece. Total cost
is \$3024.
Mortor
It will require approximately $1 / 2$ as mach
mortor for a $4^{\prime \prime}$ tile as for the proceed-
ing $8^{\prime \prime}$ tile, so the cost will be $1 / 2$ as
mach or 78\& per 100 tile. Total cost is
$370.60 \times \$ .78=\$ 289$.
Labor
*Text--Table 6-11, p. 192:
Due to tile being smaller than those
found in table, I will assume values
a little saller than those listed.

Mason(hrs. por 100 tile) $=$| 1.25 |
| :--- |
| Helper (m |$=\frac{1.75}{3.00}$

Total hrs $/ 100$ tile
*Toxt--Diagram 6-12, p. 591:
Labor rate-Kason $\$ 1.65$ per hr.
Helper . 85 per hr.
Totel \$2.50 per hr.
Cost per tile is $\$ .07$ or $\$ 70$ per 1000 tile
or a total of \$2594.

```
Glezed F11e (Con't)
Cleaning ll,120 ft. }\mp@subsup{}{}{2
 Mason--Hours per 100 ft. }\mp@subsup{}{}{2}\mathrm{ is }1.2
 Labor rate/hour for kason is $1.65
 *Text--Table 6-12, p. }192\mathrm{ for above.
 *Text--Table 6-12, p. 591:
 Cost per sq. Pt. is l龍
 Total cost, 11120 ft.2 x l部 is $167.
Material--2" stark glazed brictile
 4 8 0 0 ~ p i e c e s ~
 Cost samo as 4" tile is $81.60 per
 1000, Total cost is $81.60 x 4.8 is
 $392.
Mortor
 A 2" tile will require half as moch
 mortor as a 4" tile, so cost will be
 half as mach or $.39 per 100 tile
 Total cost is . 39 x 48 = $19.00
Labor
 Same as 4" tile or $70 per 1000 tile
 Total cost is 4.8 x 70 = $336.
```


## Clean

```
 Same as &" tile or l瓡 per sq. Pt.
 Total cost is l443 x l
```

Sumary：

4＂tilo－－Material	37060 pieces	8.16		3024．
Mortor 3	370.6 pieces	． 78		289 ．
Labor 3	37080 pieces	． 07	2594．	
Clean 1	11119 sq．ft	1 $\frac{1}{8}$	167.	
$2^{\prime \prime}$ tile－－Material	4800 pieces	8.16		392.
Mortor	48 pieoes	． 39		19.
Labor 4	4.8 pioces	70.00	336.	
Clean	1443 sq．ft	$1 \frac{1}{2} 2$	22.	

```
 Unit
 Cost Iabor Mat. Total
By recomendation of Mr. Reniger of Reniger Construction Company the Speoial Shapes will be figured by taking \(25 \%\) of the total cost of ordinary shapes. Therefore \(25 \%\) of \(\$ 6843\) is \(\$ 1710\)
4" Glazod File (Paced both sides)
3rd Fl. \(\quad 120^{\circ} 8^{\prime \prime} \times 10^{\circ} 8^{\prime \prime}=1287 \mathrm{ft}^{2}\)
2nd Fl. \(55^{\circ} 0^{\prime \prime} \times 10^{\prime \prime}=587{ }^{\prime \prime}\)
\(3 \quad 3^{\circ} 0^{\prime \prime} \times 7^{\prime \prime} 0^{\prime \prime}=\) \(63 \mathrm{It}^{2}\)
1st F1. \(13^{\circ} 9^{\prime \prime} \times 10^{\prime \prime} 8^{\prime \prime}\) \(\frac{147}{2021}-63=\) \(1958 \mathrm{ft} .{ }^{2}\)
Number of tile is \(1958 \times 31 / 3=6527\)
Material-6527 pieces
ENR, p. 162: Cost per 1000 tile is
\$86.60 or \$.0866 per piece.
Total cost \(6527 \times\). 0866 = \(\$ 565\).
Mortor
Same amount as for \(4^{\prime \prime}\) starke glazed bricktile. Cost 78\& per 100 tile. Total cost is \(65.27 \times .78=\$ 51\).
Labor
Will be approximately the sane as labor for glazed bricktile. Cost is \$70. per 1000 tile. Total cost is \(6.527 \times 70\) E \(\$ 457\).
Cloan
Faced on both sides and cleaned on both sides. Total area to clean is \(2 \times 1958\) - 3916 ft. \({ }^{2}\) Cost is also same as glased bricktile. Cost per sq. ft. is lif. Total cost is \(3916 \times\) l碞 \(=\$ 59\) 。
```

Stumarys

Material	$\cdots$	6527	00		8.66		565.
Mortor		65.27	100	pioces	. 78		51.
Labor		6.527	1000	pieces	70.00	457.	
Clean	-	3918	$t .2$		138	59.	

Onit
Cost Labor Mat. Total

Interior Partitions
lst Floor

$3314^{n \prime} \times 10^{\prime \prime} 4^{n} \quad 344$
$16^{\prime \prime} 6^{\prime \prime} \times 10^{\circ} 6^{\prime \prime} \quad 174$
$16^{\circ \prime} 0^{\prime \prime} \times 11^{\circ \prime} \quad 176$
$13^{\circ} 0^{\prime \prime} \times 11^{\circ} 0^{\prime \prime} 145$

$30^{\prime \prime} 6^{\prime \prime} \times 11^{\circ} 0^{\prime \prime}$
335
$177^{\circ} 0^{\prime \prime} \times 10^{\circ} 6^{\prime \prime} 1859$
$12^{\prime \prime} 0^{\prime \prime} \times 7^{\prime \prime} 0^{\prime \prime}$
$16^{\circ} 0^{\prime \prime} \times 10^{\circ} 6^{\prime \prime}$
160
$29^{\circ} 0^{\prime \prime} \times 10^{\circ} 0^{\prime \prime} \quad 319$
2nd Floor
$38^{\circ} 0^{n \prime} \times 4^{\prime} 0^{\text {m }} 152$
$12^{\prime} 6^{\prime \prime} \times 11^{\prime \prime} 6^{\prime \prime} \quad 131$
$2526^{\circ \prime} \times 10^{\circ} 6^{\prime \prime}$
$63^{10 n} \times 70^{n}$
$84 \begin{array}{r} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} 652$

3rd Ploor
$201^{10} \times 10^{\prime \prime} 8^{\text {m }}$
$63^{10} 0^{\text {M }} \times 70^{10}$
$10^{\circ} 0^{\prime \prime} \times 118^{\prime \prime}$
$21^{\circ} 0^{\prime \prime} \times 10^{\prime \prime}{ }^{\prime \prime}$
$\frac{220}{1667} \overline{7251} 441$
$\frac{-84}{1583} \mathrm{ft} .{ }^{2} \frac{-441}{6810} \mathrm{ft} .{ }^{2}$
Attio
$254^{10 n} \times 310^{n}$
300
$34^{\circ} 0^{\prime \prime} \times 15^{\circ \prime \prime}$
$6^{\boldsymbol{\prime}}$ tile $-12^{\boldsymbol{n}} \times 12^{\boldsymbol{N}}$ face
Material $1583 \mathrm{ft}^{2}{ }^{2}$
*Text-Table 6-12, p. 196 z $6^{\prime \prime}$ tile cost per tile is lof which is also $16 \%$ per sq. ft. Total cost is $1583 \times .16$ 2253.

## Mortor

*Text-Table 6-14, p. 198: Cu. Jds. of mortor por 100 sq . ft. is . 14 coy., oost per coy. for back up tile was $\$ 6.74 ; 80$ oost per 100 sq. ft. is . 14 x

Interior Partitions (Con't)
Cost Labor Mat. Total
Labor
*Text-Table 6-15, p. 199:
Mason labor for $100,12^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$ tile
is 4 hr . Labor rate, mason plus helpor
is $\$ 2.50$.
*Text-Diagram 6-12, p. 591:
Cost per sq. ft. is lof
Therefore, total cost is $1583 \times .10=\$ 158$.
$4^{\prime \prime}$ tile $--12^{n} \times 12^{\prime \prime}$ face
Material--7620 sq. ft.
Cost is approximately $2 / 3$ that of $6^{\prime \prime}$ tile as
there is a reduction of $1 / 3$ amount of materi-
al. Therefore, cost per sq. ft. is llf
Total oost is $7620 x$.ll is $\$ 838$.
Labor
Same mothod as for material ocmputation.
Cost per sq. ft. is 7f
Total cost is $7620 \times .07$ is $\$ 533$.

## Mortor

Same method as before
Cost per 100 sq. ft. is $\$ .63$
Total cost is $7620 \times .63=\$ 48$.

## Eumary:



[^5]Unit
Cost Labor Mat. Total

This part of the bid was sub-let by the contractor. These figures were procured from Reniger Construction Company.
These figures are totals 1950. 5916.

[^6]|  | Onit <br> Cost | Labor | Mat. |
| :---: | :---: | :---: | :---: |
| Rough Carpontry |  |  |  |
| Hailers on roof purlins ( $2^{\prime \prime} \times 4^{\prime \prime}$ ) 1764' of purlins--see structural steel |  |  |  |
| ```Material--1280 B. P. ENR, P. 160-cost $46.00 per M ft. b.m. or $.046 per ft. b.mo Total cost 1280 x . 046 = $59.``` |  |  |  |
|  | 4.6¢ |  | 59. |
| Labor-ol764 ft. |  |  |  |
| Estimate using text table 8-10, p. 239 and Diagram 807 and 808 |  |  |  |
| Result-5 $5 \neq$ per ft. <br> Therefore, the total oost is $1764 \times .05=\$ 88$. | . 05 | 88. |  |
| Bolts-Material 240 | . 05 |  | 12. |
| Plank Cap on Vats |  |  |  |
| Material-7 of $2^{\prime \prime} \times 8^{n} \times 10^{\prime}$ is approximately 100 B. F. |  |  |  |
| ERR, p. 160, cost \$ $\$ \mathbf{6 . 0 0}$ per M ft. b.m. Total cost is $100 \times \$ .046=\$ 4.60$ | 4.6¢ |  | 5. |
| Labor |  | 5. |  |
| Plank Seats in Locker Room |  |  |  |
| $12^{\prime \prime} \times 12^{\prime \prime} \times 16^{\circ}{ }^{\prime \prime}$ |  |  |  |
| Material--32 B. F. | 4.6¢ |  | 2. |
| Labor |  | 10. |  |
| Stair Rail |  |  |  |
| $2^{\prime \prime} \times 4^{\prime \prime} \times 90^{\circ}$ bolted on top |  |  |  |
| Labor 90 ft . | . 05 | 4. |  |
| Wood Deck |  |  |  |
| $670^{\prime \prime} \times 20^{\circ \prime} 01340$ |  |  |  |
| $22^{\circ \prime \prime} \times 50^{\circ \prime} 0^{\prime \prime} 1100$ |  |  |  |
| $22^{\prime \prime} \times 54^{\prime \prime} 0^{\prime \prime} 1188$ |  |  |  |
| $22^{\circ} 0^{\prime \prime} \times 26^{\circ} 6^{\prime \prime} 583$ |  |  |  |
| $22^{\prime \prime} 0^{\prime \prime} \times 596^{\prime \prime} 1309$ |  |  |  |
| $20^{\circ \prime \prime} \times 39{ }^{\prime \prime}$ |  |  |  |
| 24*0" $\times 49^{\circ \prime \prime} \quad 1176$ 7486 2.35 |  |  |  |

Onit
Cost Labor Mat. Total

Iabor-ol 1764 ft.
stimate using text table 8-10, p. 239
Result-5 $5 \neq$ per ft.
Therefore, the total oost is $1764 \times .05=\$ 88$.

Bolts-Material 240
5.
10.

Rough Carpentry (Con't)
Unit
Cost Labor Mat. Total

Door Buaks

Material   Labor		) Double Doors	$\begin{aligned} & 1.00 \\ & 2.00 \end{aligned}$	6.
Material   Labor	48	) Single Doors	$\begin{array}{r} .75 \\ 1.50 \end{array}$	72.

Framing Dormors

| Material | 9 | 5.00 |  |
| :--- | :--- | :--- | :--- | :--- |
| Labor | 9 | 5.00 | 45. |

Grounds-Esstimate approximate
5000 ft.
Material
.0150. Labor
.04200.
\$571. \$884. \$1405

## Finished Carpentry and Millwork

Unit
Cost Labor Mat. Total

## Exterior Door

```
Iabor
 *Text--Table 8-17, p. 2548
 l pr ontrance doors " &" and
 frame.
 3.0' < 7'0N = 2%-12 Lt. 12.50 13.
 2 pre rear entrance doors and
 Irame "D"-
 3'6" = 7'0" = 2**12 Lt.
 12.50 25.
```


## Labor-hr for ext. finsh

```
Doorserdouble 10 hr . Labor rateo-1.25
Therefore, cost per set is \(1.25 \times 10\) or \(\$ 12.0\)
1 pr entrance doors \({ }^{(G W}\) and Prame and transole
\[
2^{\circ} 6^{m} \times 7^{\circ} 0^{n} \times 2 \frac{1}{2} 6 \text { Lt. } \quad 15.60 \quad 16
\]
*Labor-atable 8-17, p. 2548
Doors and transomen-12t labor-hr. Therefore, cost per set is 1.25 x 12.5 : 15.60
```

Interior Doors

Computation in ame maner as above using Table 8-18 instead.

1 pr vestibule doors and frame "B" $3^{\prime} 0^{\prime \prime} \times 7^{\prime} 0^{\prime \prime} \times 13 / 4-12$ Lt.
12.5013.

1 sot interior doors and frame "p $4^{\prime} 0^{\prime \prime} \times 7^{\circ} 0^{\prime \prime} \times 2 \frac{1}{2}$ ) 4 doors Prame 14 'high) Labor 20.00 20.

1 pr interior doors and frame ${ }^{\prime} \mathrm{B}^{\prime \prime}$ $2^{\circ} 0^{\prime \prime} \times 7^{10} \times 13 / 4-\infty$

	Onit   Cost	Labor
Interior Doorsecon't		
" $G^{\prime \prime}$ doors $30^{\prime \prime} \times 70^{\prime \prime} \times 2 \frac{2}{4}-6 \mathrm{Lt}$ 。 25 doors	6.00	150.
4 doors	6.00	24.
"I" doors $2^{\prime \prime} 8^{\prime \prime} \times 70^{\prime \prime} \times 13 / 4$ and frame 5 doors	6.00	30.
"J" doors $26^{\prime \prime} \times 70^{\prime \prime} \times 13 / 4$ and frame 12 doors	6.00	72.
Windows   Plank frames - Pulman pulley   " $A^{\prime \prime} 3^{\prime \prime} 8^{\prime \prime} \times 7^{\prime} 6 \frac{t^{\prime \prime}}{n^{\prime}}$ double hund 6 lt sash   *Text--Table 8-17, p. 254s   Findow DH-a 6 labor-hr. req.   Therefore, oost per window is $6 \times 1.25=\$ 7.50$		
125 "A" Eindows	7.50	938.
Windowe-		
Labor-hrs. x 4-Table 8-17:   Cost per window is $4 \times 1.25=\$ 5.00$ 6 windows	5.00	30.
$\begin{gathered} { }^{\text {H }} \mathrm{H}^{\prime \prime}-1^{\prime} 8^{\prime \prime} \times 4^{\prime} 2^{\prime \prime} \text { D.I. - Lt sash } \\ 2 \text { windows } \end{gathered}$	5.00	10.
"L"--L89" $x$ 4'4" D. H. 1 Lt. sash 3 windows	5.00	15.
Picture Mould (Corridors and offices)   *Toxt-Table 8-18, p. 2558   Labor-hr per 100 ft. is 4 hr .   Cost per 100 ft . is $1.25 x=\$ 5.00$ 520 linear feet	. 05	26.
Cupboard (in Research Lab Srd Fl.)		
*Text-Table 8-18, p. 255s   Installing ready made oabinets ote 8 labor-hrmea cost for one cabinot is $1.25 \times 8$	10.00	10.


\$1634. \$4615. \$6249.
*Computations

Unit
Cost Labor Mat. Total
(l shop and 1 field ooat of paint as specified.)

Roof



## Matorial

011 structural shapes were sub-let for material only. Material cost for 32 tons
2755.

Labor
*Fext--Fable 9-6, p. 275s Labor-hrs. per ton of steel is 15 hr . Labor rate per hour is $\$ 1.25$
Cost per ton is $\$ 1.25 \times 15=\$ 18.75$ Total cost is $32 \times \$ 18.75=\$ 600$.

Pield Painting
32 tons of steel
Labor
"Toxt--Table 9-7, p. 2788
Labor-hrs. per ton $=2 \mathrm{hr}$.
Labor rate per hr is \$1.50
Cost per ton is $\$ 1.50 \times 2$ is $\$ 3.00$
Total cost is $52 \times 5=\$ 96.00$

$$
1
$$

Unit

```
Structural 8tec(Con't)
Cartage of 32 tons
 *Text--Table 9-6, p. 275z
 Labor-hrs per ton is 2 hrs
 Labor rate is $l.00 per hr.
 Cost per ton is $2.00
 Total cost is 32 x 2 = $64.00
```

Sunmary:

| Material 32 tons $-\infty$ see page before |  |  |
| :--- | :--- | ---: | ---: |
| Labor 32 tons | 18.75 | 600 . |
| Pield Painting 32 tons | 3.00 | 96. |
| Cartage 32 tons | 2.00 | 64. |

Steel Grill
( $\frac{1}{2} \times 1 \frac{1}{3}$ Frama $\frac{1}{2} n$ sq. bars horisontal mombers $13 / 4 \times 1 / 2$ )
$4^{\circ} 8^{\prime \prime} \times 78^{\prime \prime}=26 \mathrm{ft}^{2}$

Material $26 \mathrm{ft}$. 2	1.00		26.
Labor	5.00	5.00	

Unit
Cost Labor Mat. Total
Miscellaneous Iron
as per Reniger Construction Company ..... 682.
The following parts of the generalestimate were sub-let. Information wasprocured from The Reniger ConstructionCompany:
Rough Hardware ..... 225.
Pinished Hardware ..... 1715.
Incinerator ..... 5630.
Roofing and Sheot Metal ..... 4167 .
Motal Windows ..... 21.
Torraszo and Marble ..... 1600.
Motal Partitions ..... 140.
Lockers ..... 395.
Mirror and Shelves ..... 101.
Painting and Decorating ..... 2852.
Refrigerator ..... 300.
Elevator and Elevator Enclosures ..... 1709.

Blackboard


## Material and Labor <br> $284 \mathrm{ft}^{2}$ of Blackboard <br> Cost as of Reniger Construction Co.

Matorial $284 \mathrm{ft}^{2}{ }^{2} .40$
113.

Labor
22.

	Unit Cost	Labor	Mat.
Glass and Glazing			
Material			
Sub-let			800.
Set glase in wood sash			
Labor- 1640 lts.   *Text-Table-15-8, p. 426 :   Labor-hrs per 100 panes is 7   Labor rate per hr is $\$ 1.25$   Cost per 100 panes is $1.25 \times 7 \approx \$ 8.85$			
Total cost is $16.4 \times 8.85=\$ 145.00$	8.85	145.	
Putty			
```#Text--Table 15-7, p. 426: Pounds per }100\mathrm{ panes is }9 Cost per pound is 4& Cost per 100 panos is 93 x . 04 $3.72```			
Total cost is $16.4 \times 3.72=\$ 61.00$	3.72		61.
Sot glass in steel sash			
Same as above, only consider cost per pane instead of per 100 panes Labor 18 lts	. 09	2.	
Putty	. 04		1.
Set glass in Doors			
Labor 258 lts	. 09	26.	
Cartage and Breakage		25.	

```
Unit
Cost Labor Mat. Total
\(3 / 16^{\prime \prime}\) thick and shall be of
Armstrong or Nairn Company manufacture as specified.
\begin{tabular}{|c|c|}
\hline \(6^{10 n} \times 79{ }^{\prime \prime}\) & \(474 \mathrm{ft}^{2}{ }^{2}\) \\
\hline \(5^{\prime \prime} 0^{\prime \prime} \times 12^{\prime \prime}\) & 60 \\
\hline  & 21 \\
\hline \(6^{\prime \prime} 0^{\prime \prime} \times 76{ }^{\prime \prime}\) & 456 \\
\hline 510 \({ }^{\prime \prime} \times 5{ }^{\prime \prime \prime}\) & 28 \\
\hline \(6^{\prime \prime} 0^{\prime \prime} \times 75{ }^{\prime \prime}\) & 454 \\
\hline \(5^{\prime \prime} 0^{\prime \prime} \times 13^{\circ \prime}\) & 65 \\
\hline \(5^{\prime \prime} 8^{\prime \prime} \times 14^{\circ \prime \prime}\) & 80 \\
\hline \(3^{\prime \prime} 6^{\prime \prime} \times 4^{\prime \prime}\) & 16 \\
\hline & 1654 ft. \({ }^{2}\) \\
\hline
\end{tabular}
```

This part of bid was sub-lot by Reniger Construotion Company Unit cost inoluding Material, Labor and Felt base is 28\& per sq. ft.

$$
1654 \mathrm{ft}^{2}
$$

Caulking

Windows

A	124	- $22^{\prime \prime}{ }^{\prime \prime}$	2728
B	1	(3) $15^{\prime} 4^{\prime \prime}$	15
C	1	- $15.4{ }^{\prime \prime}$	15
-	1	(8) $15{ }^{\prime \prime}{ }^{\prime \prime}$	16
E	1	($21.4{ }^{\prime \prime}$	21
\mathbf{F}	1	- $16^{\circ} 0^{\prime \prime}$	16
0	1	- $16{ }^{\circ}$	16
H	2	- 12\% ${ }^{\prime \prime}$	24
K	1	- $25^{\circ} 0^{\prime \prime}$	25
L	3	- $13{ }^{\circ}{ }^{\text {ºm}}$	39
-	2	- 18 ${ }^{\circ}{ }^{\prime \prime}$	36

Material and Labor Cost as of Reniger Construction Co.

Lath and Plaster

Lath

Suspended Coiling

8'0' $\times 94.0{ }^{\prime \prime}$	$752 \mathrm{ft} .{ }^{2}$
$15^{\circ} 0^{\prime \prime} \times 18^{\prime \prime}$	270
$80^{\prime \prime} \times 19^{\circ \prime \prime}$	152
$80^{\prime \prime} \times 3{ }^{\prime \prime \prime}$	28
$10^{\prime \prime} 0^{\prime \prime} \times 15^{\prime \prime}$	150

Material- 150 yd. ${ }^{2}$
ENR cost per $100 \mathrm{yd}^{2}$ of expanded metal lath is $\$ 30.00$

Total cost is $1.5 \times 30=\$ 4500$
$150 \mathrm{yd}^{2}{ }^{2}$. 30 3045.

Labor-e 150 yd. ${ }^{2}$
Labor rate per hr is $\$ 1.50$
Labor-hr per 100 sq. yd. is 18 Cost per 100 sq. yd is $18 \times 1.5 \approx \$ 27$.

Total cost is $27 \times 1.5=\$ 41$.
150 yd. $^{2}$. 27
41.

Furring (over doors along corridors)

| Material 26 yd. $^{2}$ | .40 | |
| :--- | :--- | :--- | :--- |
| Labor | .60 | 16. |

Lath Stripping

$$
\begin{aligned}
& 22 \times 4 \cdot 0^{n} \\
& 2 \times 18 \times 11^{\prime} 0^{n} \begin{array}{r}
88^{\circ} 0^{n} \\
396 \cdot 0^{n} \\
484 \cdot 0^{n}
\end{array}
\end{aligned}
$$Labor05

Lath and Plaster (Con't)
Plaster on Masonry (con't)

[^7]CONCLUSIOH

Using the Engineering Hews Record Building Cost Index (1918:100), page 124, the index for May 1930, was 187.9 and for December, 1941, was 216.4. Then the building oost for 1941 equals 216.4 divided by 187.9 times the oost of the building in 1930. Since the cost of The Anatomy and Research Building in 1930 was $\$ 82,000$, according to Reniger Construction Company, the cost to reproduce this building in 1941 should bes

$$
82,000 \times \frac{216.4}{187.9}=\$ 94,800
$$

My oost estimate is $\$ 93,212$. These figures do not inolude profit.

ROOM USE ONLY

[^0]: * Computations

[^1]: Total 8 Iabor-hours

[^2]: * Computations

[^3]: * Computations

[^4]: \$3293. \$4043. \$7336.

[^5]: \$4326. \$5494. \$1530.

[^6]: \$1950. \$5916. \$7866

[^7]: \$1816. \$840. \$2656.

