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ABSTRACT

TESTING OF REGRESSION FUNCTIONS WHEN
RESPONSES ARE MISSING AT RANDOM

By

Xiaoyu Li

This thesis consists two chapters. The first chapter proposes a class of minimum dis-
tance tests for fitting a parametric regression model to a regression function when some
responses are missing at random. These tests are based on a class of minimum integrated
square distances between a kernel type estimator of a regression function and the parametric
regression function being fitted. The estimators of the regression function are based on two
completed data sets constructed by imputation and inverse probability weighting methods.
The corresponding test statistics are shown to have asymptotic normal distributions under
null hypothesis. Some simulation results are also presented.

The second chapter considers the problem of testing the equality of two nonparametric
regression curves against a one-sided alternatives based on two samples with possibly distinct
design and error densities, when responses are missing at random. This chapter proposes
a class of tests using imputation and covariate matching. The asymptotic distributions of
these test statistics are shown to be Gaussian under null hypothesis and a class of local
nonparametric alternatives. The consistency of these tests against a large class of fixed
alternatives is also established. This chapter also includes a simulation study, which assesses

the finite sample behavior of a member of this class of tests.
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Chapter 1

Minimum Distance Regression Model

Checking when Responses are Missing

At Random

1.1 Introduction

In this chapter, we discuss a class of minimum distance tests for fitting a parametric model
to the regression function based on imputation and inverse probability weighting method,
when responses are missing at random. To be specific, let X be an explanatory variable of
dimension d with d > 1, Y be a response variable of dimension 1 with F|Y| < oo, § be an
indicator for whether the response is missing or observed, i.e. § = 1 if Y is observed, and
0 =0 if Y is missing. The missing mechanism of the data is missing at random, in which
and Y are conditionally independent, given X, ie. P(d = 1Y, X) = P(6 = 1|X), a.s.; see
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Little and Rubin (1987). Let

pz) = E(Y|X =), «eRY,

denote the regression function. Consider the regression model

Y =pu(X)+¢ (1.1)

with response missing at random. Let {my(:) : § € ©}, © C RY, be a given parametric

model and Z be a compact subset of R?. The problem of interest is to test the hypothesis

Hp : p(x) = mg, (x) for some 6y € ©, and for all x € Z,

Hj : Hp is not true,

based on the random sample {(X;,6;Y;): i =1,2,---  n} from the distribution of (X, JY’)
in model (1.1). One is also interested in finding the parameter § € © that best fits the data

under the null hypothesis.

Regression model checking when data are completely observed is a classical problem in
statistics. Many interesting results are available, see, e.g., Eubank and Spiegelman (1990),
Eubank and Hart (1992, 1993), Hérdle and Mammen (1993), Zheng (1996), Hart (1997),
Stute et al. (1998), Koul and Ni (2004), Koul and Song (2009), Koul (2011), among others.
Hart (1997) summarized numerous testing procedures. Koul and Ni (2004) (K-N) proposed
a class of tests based on certain minimized L9 distances between a nonparametric estimator

of the regression function and the parametric model being fitted. They proved asymptotic
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normality of the minimum distance estimators and the proposed test statistics under the
fitted model, and consistency of the proposed tests against a class of fixed alternatives. Koul
and Song (2009) extended this minimum distance methodology to the regression model with
Berkson measurement errors. They also obtained the asymptotic power of the proposed
tests against a class of local alternatives. Koul (2011) implemented the minimum distance
methodology on classical regression model with design non-random and uniform on [0, 1].
Sun and Wang (2009) considered the model checking problem when data are missing at ran-
dom. They constructed complete data sets by imputation and inverse probability weighting
methods, and proposed two score-type and two empirical process based test statistics. The
asymptotic behaviors of these test statistics were investigated under the null hypothesis and

local alternatives.

In this chapter we focus on adapting the minimum distance testing method of K-N to
missing data at random setup when the data are completed by the imputation and inverse
probability weighting methods. To describe the testing procedure, we need to estimate p(x).
Since, under Hy, u is parametric, we only need to estimate 6 at y/n-consistent rate. Let dy,
be such an estimator of f based on the random sample. A suggested choice of &, is given in
Theorem 1.4.1, Section 1.4 below. Let K be a symmetric kernel function on [—1,1]%, b = b,
be a bandwidth sequence of positive numbers, Kp(y) := b, K (y/bn), y € R%; and let for

xeRd,

A >t 0iy(r — X;)
A(x) =P =1|X =), and Ap(x) = - )
(z) = P(6 =1] ) (x) S R(r— X0)

Note that A, (z) is the Nadaraya-Watson kernel estimator of A(z). We construct two com-
plete data sets {(Xi,ffij),z' = 1,---,n}, j = 1,2, by imputation and inverse probability
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weighting methods, respectively, where

To proceed further, let K and K* be kernel functions on [—1, 1]d, h = hy and w = wy be

window width sequences of positive numbers, G' be a o-finite measure on RY with Lebesgue

density g. Assume the design variable X has a uniformly continuous Lebesgue density f

that is bounded from below on Z. Define

A~ ~

fu@) =" Kyr-X;),  ful@)=n"') Ki(z-X;), zeR?
i=1 i=1

where by, ~ n~® with 0 < a < min(1/(2d),4/(d(d + 4))), and w, ~ (logn/n)}/ @+,

Adaptive versions of the Lo distances proposed in K-N in the current setup are

A

and the corresponding minimum distance estimators are

énj = argminfnj(e), j=1,2.
0cO

The proposed tests of Hy are to be based on Tnj(énj), j=1,2.
To proceed further, we need more notation. Let

Eij = Y55 — mgnj(Xz% j=12,

4

T (9) = /I [0S Ko = X0) (Vg — mp(X0)] L)) 2dGHw). 0 € Y,
1=1



~

Crpj =2 ; /I Ko — X2 { ful2)}2dG(2),

“ ~ 2

Foy o= 2002 Y ([ Kl = X0 Kl = X205 {n(a)}2d6(0))
i+k

2A)nj = nhd/2(Tnj (énj) - én])/f‘}lfa

j=12.

For each 7 = 1, 2, the proposed test rejects Hy whenever |25n]| is large. Asymptotic normality
of nl/z(énj —0p) and ﬁnj, j = 1,2, under Hy are established in Section 1.4 and Section 1.5,
respectively. Consistency of énj, j = 1,2, under Hy is given in Section 1.3. Assumptions and
preliminary lemmas needed to prove all these results are stated in Section 1.2, while Section
1.6 is devoted to simulation studies.

In the sequel, we write h for h,, w for wy,, and b for by,; the integrals with respect to
the G-measure are understood to be over the set Z; all limits are taken as n — oo, unless
specified otherwise; for any two sequences of real numbers a, and by, notation a, ~ by
means that ay /b, — 1; the convergence in probability is denoted by —, in distribution, by
—4, and almost surely, by —4.s.; the r-dimension normal distribution with mean vector a
and covariance matrix B is denoted by N (a, B), and N (a, B) = Nj(a, B). Denoted by ®

the standard normal cumulative distribution function, and z, the (1 — a))-quantile.

1.2 Assumptions
Here we shall state the needed assumptions.

(el) (X;,0;Y5); X; € RYY; eR,6; =0o0r1,i=1,2,---,n, are i.i.d. random vectors
with 6 = 1, if Y is observed, and 6 = 0, if Y is missing; § and ¢ are conditionally

independent, given X.



(e2) E(e|X = z) = 0, Ee? < co. The function o?(z) := E(e?|X = z) is a.e. in (G)
continuous on Z, and A(x) := E(6|X) = P(6 = 1|X = z) is positive and Lipschitz-

continuous of order 1 on an open interval containing Z.
(e3) Ele|*19 < oo, for some dy > 0.
(e4) Ee* < oo.

(f1) The design variable X has a uniformly continuous Lebesgue density f that is

bounded from below on an open interval containing 7.
(f2) The density f is twice continuously differentiable with a compact support.
(g) G is a o-finite measure on R? and has a continuous Lebesgue density g.

(k1) The kernels K and K* are positive symmetric square integrable densities on

-1, 1]d. In addition, K™ satisfies Lipschitz-continuity of order 1.

(k2) The kernel K is positive symmetric square integrable density on [—1, 1]%, satisfying

Lipschitz-continuity of order v, v > 0. K (u) attains its maximum at u = 0.
(m1) For each 6, my(x) is a.s. continuous in z w.r.t. integrating measure G.

(m2) The parametric family of models my(z) is identifiable w.r.t. 6, i.e., if mg, (z) =

my, (x), for almost all x(G), then 61 = 6.

(m3) For some positive continuous function ¢ on Z and for some § > 0,

oy (x) — mg, ()] < [[02 = 01]17C(x), V02,01 €O, z€T.

(m4) The true parameter 6 is an inner point of ©. For every x, my(x) is differentiable

in € in a neighborhood of 6y with the vector of derivatives rg(z), such that for every

6



>0, k< oo,

mg(X;) — mg, (X;) — (0 — 00)T gy (X;) N 6)

limsupP( sup 10— ol

" 1<i<n,Vnhd)|0—0y| <k

= 0.
(m5) The vector function = +— Ty, (x) is continuous in x € Z and for every ¢ > 0,

there is an N < oo such that for every 0 < k < oo,

P max W= ling (X;) = 1gy (Xi)]| 2 €) <. V> Ne.
1<i<n, (nhh) /206y | <k

(m6) n= L3, 0iring, (Xi)mgO(Xi), n > q, and E[émgo(X)mg;) (X)] are positive defi-

nite.

(a) The estimator &y, is y/n-consistent for 6y under Hy).

(b1) nbd — oo, nbdtl — 0.

(b2) by ~n~", where 1/(d+1) <r < 1/d.

(h1) Ay — 0.

(h2) nh2? = co.

(h3) hp ~n~% where 0 < a < min(1/(2d),4/(d(d + 4))).

(h4) hp ~n~% where 0 < a < 1/d —r, with  in (b2).

(w) wp = an(logn/n)Y @+ q, — ay > 0.
Note that (h3) implies (h1) and (h2), (h4) implies (h3), and (b2) implies (b1). Among these
assumptions, (e3), (e4), (f1), (f2), (g), (k1), (m1)-(m5), (h1)-(h3), (w), and part of (el) and

(€2), are similar as in K-N when no data are missing; conditions on § and A in (el) and (e2)
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are for the missing data at random setup; (m6) and (a) are used for the imputation method,
while (k2), (a), (b1), (b2), and (h4) are for the inverse probability weighting method. An

example of 7 in (b2) and a in (h4) is 7= (2d+1)/(2d(d + 1)), a = 1/(2d(d + 1)).

We need the following notation in the proofs later. For i =1,--- n, 7 =1,2, x € ]Rd,
define
e = 0i&;, Eig 1= A(é)i(-)gi’ (1.5)
(3
Vit = mgy (Xi) +efy,  Yia := mgy (Xi) + ey,
Kpi(z) == Kp(z — X;), KZ}@ = K’ZZ(‘T - Xi), Kyilr):= ( X;),
n n n
fu(e) =071 Kpi(w), fuw(@)=n"' Y K@), Z
i=1 1=1 =1
dip(x) == {f(2)}2dG(z),  dip(x) = {fu(2)} ?dC(z), dipw(z) = {f ()} 2dG(x),
n
=01 Kpi(@)mg(X),  fin(x,0) :=n"" ZKm
=1

Zn(x,0) :=n""! Z Kpi(2)(mg(X;) —mg, (X)),

fin(x) := Epn(z,0p) = EKp(x — X)rmg, (X),

,Un5 z, (9 1ZKhz H(X)
fins(T) = Euna(iﬂ 90) = EKj(z — X)(1 = 6)rmg (X)),
Unj _1ZKm Yij —mp(Xi)),

Upj(@,0) :=n"1 Z Kpi(2) (Y5 — mp(X;)),

Un]( ) —Un](x 60 =n 1ZK}LZ Zj’
=1

T5(0) 1= [ [27 Y Knala)(35 — mol(i))] o), 0 € R,
1=1



Tus )= [ [27 3 Kni(o) 3y = mgX0)] tdula), 0 € R,

1=1
Onj = aragergin T;(0), Eij = Yj — mgn] (Xi),
- e . - 92
Augim [ [0 Kt (Vs Yip)| oo
1=1
n
Cug =12 [ KR 01Ty — (X0 2.
1=1
1 1
. — o P (X
P () An() Az) i = Tn(X;),

The following lemmas are found useful in proofs later. Lemma 1.2.1 is facilitated by Mack
and Silverman (1982), and Lemma 1.2.3 is derived by Theorem 3 of Collomb and Hérdle

(1936).

Lemma 1.2.1. Under the conditions (f1), (k1), (h1), and (h2), the following hold.

sup | f(z) — f(x)| = op(1), (1.6)
el
sup | fu(z) — f(x)| = 0p(1), (1.7)
el
sup ff;((lz) - 1’ = op(1). (1.8)

Lemma 1.2.2. (Theorem 2.2 part (2), Bosq (1998)) Under the assumptions (f2), (k1), and

(w), we have for Vk > 0, and k € N,

(logg; n) " (n/ log n)2/(d+4) sup | fuw(z) — f(z)] = 0, a.s. (1.9)
xel



Lemma 1.2.3. Suppose (e2), (f2), (k2), and (b1) hold, then

sup | fy(x) — f(x)| = 0p(1), (1.10)
zel
sup |An(w) — A)] = 0p(1), (1.11)
zel

1 1
sup |—= — = op(1), 1.12
zel | Ap(z) A(SC)‘ p(1) (1.12)

nt/2pd/2 log n)_1/2 sup
xel

1 1
WO = 0,(1). (1.13)

1.3 Consistency of the minimum distance estimators

In this section we prove the consistency of the minimum distance estimators énj, 7 =1,2,
under Hpy. To state the results, we need Lemma 3.1 in K-N as a preliminary reproduced
here for the sake of completeness. Let Lo(G) denote a class of square integrable real valued

functions on R? with respect to GG. Define

p(v1,v2) = / (r1(x) — ra(0))2dG(x), 1.0 € Lo(C),
and the map

M(v) ;= argmin p(v,my), v € Lo(G).
0cO

Lemma 1.3.1. (Koul and Ni (2004)) Let m satisfy conditions (m1)-(m3). Then the following

hold.

(a) M(v) always exists, Vv € Lo(G).
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(b) If M(v) is unique, then M is continuous at v in the sense that for any sequence

of {vn} € Lo(G) converging to v in Lo(G), M(vy) = M(v), i.e.,

p(vp,v) =0 implies M(vy) = M(v) asn — oo.

(c) M(my(-)) =0, uniquely for V6 € ©.
We now proceed to state and prove the consistency of énj, jg=172.

Theorem 1.3.1. Under Hy, (el1), (e2), (f1), (k1), (m1)-(m4), (a), (h1), and (h2),

A

Onj —p b0, J=1,2.

Proof. The basic idea of the proof is the same as in K-N, Theorem 3.1; Only details
with respect to Yij — ffij, i=1,---,n, are different. By part (c¢) in Lemma 1.3.1, one has
énj =M(m ),j=12andfy = M<m90)' Then it suffices to prove p(m .,mgo) = op(1),

nj nj

j =1,2, by part (bl) in Lemma 1.3.1. Define

(o) i= 1 S Kpao) i/ Fula), (@) =Y Kyala) V)l
1=1 1=1

Rog(0) = [na) = mo()2G). 0 € BRI, Gy = gmin By (0),

C(6) = | un(z,0) = Fula)moldi(z).

By the fact that

ymgy) < 2[p(my 1) + p(ing,mgy)] = 2[R (0n) + Brj(00)],

m A~
p( Oy, nj



it suffices to show

Rpj(60) = op(1), j=1.2, (1.14)

Ryj(0ng) = op(1), j=1,2. (1.15)

If we can prove (1.14) and the following result

~

sup [T, (0) — Ry (0)] = 0p(1), j=1,2, (1.16)
fcO

we can obtain (1.15). This is because the definition of an and (1.14) lead to the result
an(an) = 0p(1), which together with (1.16) leads to Tn](ﬁn]) = 0p(1); by the definition of
énj, one has Tnj (ém) = op(1); this result and (1.16) bring the claim (1.15). Therefore, we

only need to prove (1.14) and (1.16).

Recall Anj from (1.5). To prove (1.14), note that

Ruj(00) = [ o)t (5) = i 2) + Uy )
(. 00) = Fu(x)mgy (2) ()
< 3 [ bingla) = sy @)PdG@) +3 [ U2 (@il
+3 [lnal.00) = Fuwym, @)Pdi(z)

< 3(+sup @)/ () = 1) An +3T0(60) + 3Cu(b0), T =12
xre

By Fubini, the continuity of f, 62, and A, assured by (e2) and (f1), and by (k1) and (h2),

we have

12



B [ U@ =0t [ ER}e - X)AX)6A00() = 0l(nt) ),
B [ y@io) =t [ BRRw - B0 1R (X)au) = 0f(ant )

so that T5,;(0p) = f Op((nhd) 1), j =1,2. Together by (1.8), we have

Ty(60) < Slég|f( 2)/ fuw(@)Tyj(00) = Op((nh®) ™), j=1,2.

The claim Cj,(0y) = op(1) can be derived by the same argument as that of proving (3.5) in

K-N. Note that fori=1,--- ,n,

Yio =Y = (1= 0)(ma, (X;) —mgy(Xy)), (1.17)

L ) 5
Vo= Yo = fwidie + (1= 5057 ) 0 (X0) =y (X))
2

~Tnidi (M, (Xi) = mgy (X5)).

Recall uy, and d,; from (1.5). By calculation in (3.9) in K-N, (m4), and (a), we have

A < 2ual? max |‘,d’”|’|2 [ @it
+2unl? [ [ 12% 50 ringy (X))
= op(1), (1.18)
Apy < 3/[71lzn:Khi(x)fnz'(Sz’&i]zdw(ﬂf)
1=1

+3/ [n_liKhi@)(l_ A((S;(,Q(man(Xi) —myg,(Xi))| di(x)
i=1 !

13



13 / [nlzn: K () idi(me,, (X;) — mgy (X '))} dy(z)

1=1

3/ [n_l iKhi(x)fm@%]dem)

=1

2 .
#0llu* x o55 [ [o —12Km )1+ AfX))]Zdwx)
+6unl? [ [ *ZKM (1= i) ey (X0

d2
+6||u max —™%_ sup r /[ -1 Kp,i()d;
|| TLH 1<z<n HunH2 1<Z<n Z h?, 1

IA

46unl® sup 2, [ [n 12% 2)ilngy (X)] ()

1<i<n

= op(1), (1.19)

Therefore, together with (1.8) and (1.12), we obtain (1.14). To prove (1.16), write

= / {mnj(x)—MfdG(x)— / [ () — mg()]dG (x)

fuw(z)
_ / [“}}(2(;) —mg(:c)rdG(:c)
—2/ [mn](x) — M}L(f;?} [M}}(?x? — mg(x)}dG(x), j=12.

By Cauchy-Schwarz (C-S) inequality, we have
~1/2 1/2 .
sup |T,(0) — Ryj(0)] < sup Cp(0) + 2sup T,/ Z0)c*0), j=1.2

USC) Ao 0O

Hence it suffices to prove

14



sup Cp(0) = op(1), sup Tnj(e) =0p(1), j=12. (1.20)
0co 0cO

One can prove the first claim in (1.20) by the same argument as in proving (3.14) in K-N.
To prove the second part of (1.20), note that by adding and subtracting ffij to the i-th

summand in Tnj(O), we obtain

Tj(0) < 200+ supl @)/ Fi (o) = 1D (Ans + [10i(@) = Zutw. )P av o))
< 21+ sup |2 (@)/ 3 (w) — 1)
el

X(Am- +2 / U2, (2)di(z) + 2 / Z,%(x,e)d¢(x)).

From (3.16) in K-N, one obtains supgeg [ Z2(z, 0)dy(x) = Op(1). By (1.8) and A;,; = op(1),
fUTQLj(x)dw(x) = 0p(1) in the argument above, we have supgpcg Tnj(ﬁ) =0p(1), j =1,2.

Thus the proof of the theorem is complete.
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1.4 Asymptotic distribution of the minimum distance

estimators under Hj

This section states and proves the asymptotic normality of énj, 7 =1,2. To proceed further,

we need the following notation. Let

Sy = / gy (@i (@)g(z)d, (1.21)

Theorem 1.4.1. Suppose Hy, (el), (e2), (e3), (f1), (f2), (9), (k1), (m1)-(m5), (a), and

(h3) hold. Then,
02001 — 00) = X5 021 + S (an — 60)} + 0p(1), (1.22)
where ay, is in (1.2), and

n'/2(01 — 09) = Op(1). (1.23)
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If under Hy, my, () is a linear function of Oy, i.e. my, (x) = HOTZ(:E), for all x € I, where

I(x) satisfies (m1)-(m3) and (m6), we can take éy, = By Hn 1304 0;Yjrg,, (X;)}, which

is the least square estimator and satisfies condition (a), and we obtain
nl/Q(énl —0p) = Ealnl/Q{Snl + E(’Sf}glgn} + op(1).
If (k2), (b2), and (h4) hold, one has
0209 — 0p) = S5 10289 + 0p(1).
Consequently, (1.24) and (1.25) lead to
020, — 00) —a Ny(0, 55 5,25 Y, =12

Here Yy, X, 0, Zns Sn, Spj, and %, j=1,2, are in (1.21).

(1.24)

(1.25)

(1.26)

Proof. We prove the theorem in two steps, following the routine to prove Theorem 4.1

in K-N.

Step 1. The first step is to show that
nh?(|0,; — 00l* = Op(1), j=1,2

Let Dy (0) := [ Z2(x,0)di(z). Note that

A

Dn(enj)

mw%@wznmwm—%w@——gﬁ,
nj — Y0

17

j=12.

(1.27)



It suffices to prove
nh®Dy(0,5) = Op(1), j=1,2, (1.28)

because the rest follows the a similar argument used in proving (4.4) in K-N, if the corre-

sponding O, is changed to énj, j =1,2. Observe that

nhd Dy (0,7)
= [ Oy ,60y) U 80) 2 (2)
2nh(1+ sup |fi(@)/ £ () = 1))
/U2 2, 0 )dihy (2 / (2, 60) dibu ( )}

IN

< 4nh’(1 +ilép\fw( z)/ f*(x) = 1)T5;(60)
< 8nh'(1 +Slép\fw( )/fg(w)—1\)(1+Slélz>!f2($)/f@%($)—1!){Tnj(90)+glnj}'

By (1.7), (1.8), and T},;(0y) = Op((nhd)_l), j = 1,2, it suffices to prove nhdflnj = Op(1),
j = 1,2. This result hold for j = 1 because of (1.18). When j = 2, by (a), (1.12), and

calculation in (1.19), it suffices to show the following results:

nh? / [n_lthi(m)f’méiei 2d¢(m) = 0p(1). (1.29)
=1

To prove (1.29), we have

n 2
nh'E / [n_lthi(m)fméisi dyp(z) = _1hdZE Pidie? / K2, (x)di(x
=1
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= th 5rn /Khas— )i (x

— 1iE / / K2 (2 — 2)/W) ()} g(w)f(Z){A(Z)}_102(Z)
«[(BE) - DE K(0) + Zia(Ale) - 5~>ffb¢<z>fdzdx

K< ) 0 01K (2)
_ / / K2 () f(= + uh)}2g(z + ul) F)AR)T 02 (2)
[ A(z) —

{1z
DR(O) + SLyOC) = )Rul)]2,
R(0) + 37 01 (2) |

where the last equality is derived by Fubini’s theorem. Let

(A2) — PK?(0) + SiL1(A(2) — )’ KGi(2)
[K(0) + 35 0 Ki(2) 2 |

Bu(z) = E zeR?

Let Z, be the by-neighborhood of compact set Z. By (e2), (f1), and (k1), it is sufficient

to show super, Bu(2) = O(1). Let In(z) := K(0) + 3.7 1 6;Kyi(2), 2 € Ty, n > 1, and

Ip(z) = K(0). For any z € I, write By (z) = Bp1(2) + Bop(2) + 2Bp3(2) — 2Bp4(2), where

Observe that
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Bpa(2) < nE(A(2) = 6,)2K2 (2)E[L,_1(2)]

< nbE[l,_1(2)] 72 / {A%(2) — 2A(2) A(z — bv) + Az — bv) K2 (v)dw,

hence it is vital to analyze E[I;(z)]72, z € Zj. To proceed further, we shall calculate the
marginal probability mass function of § and conditional probability density function of X
given 0 based on the joint distribution of (X, ). Let fx 5 be the joint p.d.f. of X and d, fx
be the marginal p.d.f. of X, f5 be the marginal p.m.f. of 9§, fX|5 be the conditional p.d.f. of

X given 0, f5x be the conditional p.m.f. of 6 given X. For k € {0,1} and z € R%, by (e2)

and (f1),
Fax (ko) = AF@) 1= A@)F, fx(@) = (o),
thus
Frs(elk) = Fxs(@ k) _ f51x (klz) fx (x) _ AF(2)(1 = A@) 7 f(2)
”5 f5(F) B0 AR A@) Ffa)dr
Let

X, = (X1, Xo,--+, Xpn), 8, = (01,02, ,0n), p = /A(:L‘)f(x)dx,
) )

i) = Fygptelt) = Sy o gty - BT,
pi(z,b) ;== sup pi(z —bu), pre(z,b):= inf dpl(z — bu), z €Ty

ue[-1,1)4 u€[—1,1]

Write the conditional expectation E[-|X,,,d,] as Ey[-]. For z € Ty, if E[I,(2)]72 can be

bounded by an expression of E[I,_1(z)] 72, then E[I,,_1(2)] 72 can be bounded by the ex-
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pression of E[In,k,l(z)]_Q, k= 0,1,---.,n — 1, and we can finally obtain a bound of

E[I,(2)]72. Note that

ElIn(2)]

IN

IN

B(B{In-1(2) + 60K ()] X 1,801, X}
B E{ln1(2)) X0 1,801 X} (1L = A(Xn))
+E{[Tn-1(2) + Ky (2)] 721X 1,81, Xn JA(X) )
B( [ Buallaa ()20 - M) f (@)
+pd / Bo1lln_1(2) + K (w)] 2A(z — bu) f( — bu)du)
B((1-9) [ Buallaa(2) Zpola)ds
+pb / B 1ln_1(2) + K ()]~ pl(z—bu)du>
E((l— (2)] 2 + pb o Ln_1 + K(w)]2p1(2 — bu)du
ol ()21 -0 /[-1,1]d o1z — bu)du})
{1 /[—171161 p1(z — bu)du} E[1,y (2)]
o E /[—1,1161[["1 + R(w)] 2p1 (= — bu)du
(L= @ OBl (24 0B [ s+ B ()

[—1L.1]
{1 = p(20)p14(2,0)} E[Ln1(2)] 2 + p(2b)pf (2, D) El Ly 1(2) + o] 2, (1.30)

where ¢y = min{Z*(‘HQ) 9~ (d+2)/2 fK2 du)l/Q} To obtain the last inequality above,

we used the following fact. For any a > K (0) > 0,
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/[_1 l]d(a +¢g) 2du — /[_1 1]d(a + K(u)) 2du

/ K?(u) + 2aK (u) — ¢ — 2acod
pu— ~ u
F1d (et c)*(at K(u))?

_ K2(u) — ¢ K(u) —ec
= (a+cp) 2{ /[_1’1]d —(a n f((u))% du + 2a /[_171]d —(a n f((u)?Q du}
2 u B 62
> (a+ 60)2{</[_171]d l((2a()2) du — a2 /[_1,1]0{ a—gdu>

K (u) <0
+2a</[_171]d (2@)2du B /[_171]d a_2du>}

> (a+ep) 2] (20)7( / R (uydu — 22 + (20) 71 (1 - 246, )}

> 0,
thus,
B / Inoy + K(w)]%du)
[_171]d
= BB / ey + K ()] 2du})
[7171]d
-2 __od -2
< E/ 1,1+ co]l “du =2°FE[l, 1+ co]™ ~.
[~1,1]
By a similar argument used in proving (1.30), we have k,j =0,1,--- | n,

BlL, _1(2) +jco) 2 < {1 —p(20)?p1.(2, D)} E[L, p_1(2) + jeo) >

+p(20)p7 (2, D) BTy p—1(2) + (j + 1)) 2. (1.31)

Therefore, by (1.30) and (1.31), the following hold:
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ElIn(2)] 2
< {1= () p1a(5, )} ({1 = p(20) o1 (2, D)} BI L 2(2)] 72
+p(26)03 (2, 6) Bl a(2) + co] 2)
+{p(20)%07 (2,6} ({1 = p(20) o102, )} B L 2(2) + ]

+p(20)0 0% (2, ) B[ L (z)-+—2c0]*2)
2

= Z (Z){l —p(Qb)dpl*(z,b)}ka{p@b)dp’{(z, b)}kE[In,Q(z) + k60]72
k=0

IA

{1 p(20) 1. (2, ) ({1 = p(20) 1. (2, b)}ELLy ()] 2
+p(26) i (2, B) Bl 3(2) + o] )
+2{1 = p(25)p1. (2. b)Hp(26) i (2, )} ({1 = p(2) o1 (2, b))
X B[Ly-3(2) + co) 7+ p(2) pf (2, 0) ElL3(2) + 260] %)
+{p(20)"07 (2,6} ({1 = p(26) p1a (2, )} LI —3(2) + 260)

+p(26)p3 (2, ) El3(2) + 3c0] 2)

3. /3
=§:()ﬂ—<mpuuwﬁk@m» e )V Bl g(2) + ko) 2
k=0

<
= Z <k>{1 - (2b) p14(2,0) """ k{p(Qb) 1(z, b)}k ElIy(z )—i—kco]*?
k=0
< {1= (@) 12, YK (0))
o 23() K721 = p(2) pra(e, b)Y (p(20) 0 (2, b)) (1.32)

By (e2) and (f1), for large enough n, f(z) and A(z) are bounded and bounded below from

zero, and Lipschitz-continuous on Z;,. Let £y and £z denote the Lipschitz constants of f and
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A, respectively. Define

cp = min pra(z,0) >0,  cg:=({y sup A(z) +La sup f(z)),
z€1] b ZEIQb ZEIQZ)

p(2b)"pi (2,0)
L+p(2b)4(p7(2,0) — p14(2,0))

p(2,b) =
By (1.30) and the fact that SUpzeT, (p1(2,b) = p14(2,0)) < 2bd'/2cy, we have

Elln(2)] 7 < {1 =p(20) e} [K(0)] 7% + 5 {1 + p(2b) 1" 2en}"

() ent. 0

Hence,

nb B[l ()72 < nb[R(0)) ({1 - (2b)dc1}(P(2b)d01)1)_”(2b)dpcl

(2 d+1oa1/2,
tog ({1+p(2b)d+1d1/2c} p(2)T1dl/2eq) ><2b) pd’/ ey

xnb? Z (Z) K2{1 — p(z, b)Y R (2, ) }E

k=1

Note that n!(k!) = ((n — k)) =11 — p(z, )} *{p(z, b)}¥ is the probability mass function of
the Binomial(n, p(z,b)) distribution. Recall the Chernoff’s bound for a r.v. { ~ B(n,pg),

and a constant n € (0,1),

P(¢ < (1 —n)npg) < exp(—npon?/2).

Using this bound, with n = 1/2, we obtain that for any z € Zp,
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a3 ()20 ) 0

k=1
[np(2,0)/2] n
SCAGD SRS SR [ (4 e B B eI
k=1 k=|np(z,b)/2|+1
lnp(20)/2)
<Y () e DR ) b e, 2)
k=1
< bt exp(—np(z,b)/8) + nbd{nﬁ(z, b)/2} 2

= nb%exp(—nb¥27 3pey (1 + p(2b)d+1d1/202)_1)

+(nbd)_141_dp_201_2(1 + p(2b>d+1d1/202)2 _ O((’I’Lbd)_l)7
by condition (bl). Together with the fact that

{1 — p(b)dey )@ D™ 1),

d+1d1/202)_1

{1+ p(2b)4+1q1/2¢5) (P(2D) — exp(1),

we have
nb Bl (2)] 2 = 0((nb") 1), zeT,
sup nbE[1,, ()72 = O((nbh)~1).
ZGIb

Hence

sup Bui1(z) = O((nb?)™2),  sup Bya(z) = O((nb?) ™).
2€TLy 2€T1y
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Observe that

Bp3(2)
(A(z) = dn—1)(A(z) — 5n)f(b(n—1)(2)f(bn(z)>

= =D [n—2(2) + On—1 Kp(n—1)(2) + 6 K (2))2

= n(n— 1)b2dE// {fjﬁ)ﬁg}}g A2(2)(1 = Alz — bu))(1 — Az — b))

K@K ()
[Tn—2(2) + K (u)]?

A(2)(1 = A(2))

XAz —bu)(1 — Az — b))
Rk
[In—2(2) + K(u) + K (v)]?

XA(z — bu)A(z — bv)}

+ (A(z) — 1)2

X f(z —bu) f(z — bv)dudv,

thus we have

[ Bn3(2)]

< nn— 1)5%3// {fjﬁligg [A2(2)(1 — A(z — bu))(1 — Alz — bv))

< n(n— 1)b2dE// { [Iﬁli(;]’z) [IA(2) = A(z — bu)||A(2) — Alz — bo)]



2 Uu { v
AR - AE)AG - )1 - G- )}
X f(z —bu) f(z — bv)dudv

< b2 () E(1,_o(2)] 24

< [ [ R@R@al 017 = bupf(z = bo)dudo
+nb T (nb?) E[1, o (2)] 2A(2) (1 — A(2))lA
//K = vl f(z — bu) f(z — bv)dudy
+4(nb")2E[L,—9(2)] P A(2)(1 - A(2))
//K2 (2 — bu) (1 — Az — b)) f(= — bu) f(= — bv)dudo.
By a similar argument used in proving (1.33), for = € T, and j = 3,4,---, one has

Elln(2)] 7 < {1—p(2b)%er}"[K(0)]

t+eg {1+ p(2b) T d ey S (Z) E{L = (=, )" M b(=, b)),

k=1

hence by (bl) and Chernoft’s bound, we obtain that

n2b* B[, ()] 3
< nAPK(0)] 731 - p(2b)7er )"
+eg 3 {1 4 p(20) L d 2e9)7 x n2p2d zn: <Z) k31 — plz, b)Y R Bz, b) R

k=1
dcl)—1> —n(2b)%pey

IN

R0 R (0)] 7 ({1 = p(2b) ey} ¢
d+1 172,
+ey ({1 + p(2b)dﬂd1/2cz}(P(Qb)d+1d1/202)1>n(2b) pd! 2y

X <n21)2d{nﬁ(2, b)/2} 3 + n26% exp(—np(z, b) /8))
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~ 22K (0)]73 exp(—n(2b)pey)
+063 exp(n(2b)d+1pdl/202) ((nbd)_181_dp_301_3(1 + p(2b)d+1d1/202)3
+n2b2d exp(—nbde_Spcl(l + p(Qb)d+1dl/202)_1)>

= O((mh)™h),

for any z € Zj, and sup,e7, |B,3(2)| = O((nb®)~1). With the fact that

Bpa(z) = 2n(1 - A(2))K(0)E

[In(2))?
= 2% (1 — A(2))K(0)
% A(2)(1 — A(z — bu))
< / R(w)f(z ~ bu)] e
(A= AR)A(z -~ bU)}du
[Ln—1(2) + K (u)]?
we have
| Bna(2)]
< 2nb?(1 - A(2))K(0)
o K(u) A — Al — b
o [ {aior (P A1)~ Ak =
K (u) K(u)
+<[In 1P [T ()+K( 2 5) (1= AGDAG = bu) | (= — bu)du
= 2mb™ (1 = A(2))K(0)E[], 2£A/K Vel f (= — bu)du
Hanbl(1 — A(2))%K /Kz (2 bu)f(z — bu)du}

= O™ + O((nb") %) = O((nb")~?),

and sup,e7, |Bpa(z)| = O((nb%)~2). Thus we have SUp e, |By(2)] = O((nb%)~1), and
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ah [ [ > Kol “dy(z) = Op((nbh) ).

Moreover, one obtains

/ [n—l > Kpi(@)inidie; de(m) = Op((nhh)~Lnp®)~1)) = op(n ™). (1.34)
=1

This completes the proof of (1.29), and hence we obtain (1.27).
Step 2. In this part, we shall prove (1.22)-(1.26) in two steps, (2.a) and (2.b).

(2.a) We will prove (1.22), (1.24) and (1.25) by similar arguments used in proving the

asymptotic normality of the minimum distance estimator when data is complete in K-N. Let

fnj(e) = _2/Unj(%e)ﬂn(l'a&)d@zw(x), 7=1,2,

be the derivative of 7] nj () with respect to 6. Since ) is an interior point of © by condition
(m4), and énj is consistent for 6,; by Theorem 1.3.1, énj will be in the interior of © and
Tnj(én]) = 0 with arbitrarily large probability for all sufficient large n. The equation
Tnj(e) = 0 is equivalent to

/( Anj (z, én]) Unj (z én]))ﬂn(xv éng)diﬁw(l") + / Unj () fin(z, énj)d@zw(m)

:/Zn(aj,énj)[zn(x,énj)d@@w(x), j=1,2. (1.35)

By similar proof as that of (4.16) in K-N, the right-hand side of (1.35) equals Rn(énj —tp)

for all n > 1, with Ry, = ¥+ 0p(1); while for the second term on the left-hand side, one has

29



S Unj () fin(z, Gn])dww( x) = Sp; + op(n_l/Q) by similar proofs as those of Lemma 4.1 and
Lemma 4.2 in K-N, with Uy, and ¢; replaced by Uy,; and 52} in (1.5), respectively. Recall uy,

and d,; from (1.5). For the first term on the left-hand side with j = 1, note that

/ (O, 0n1) — Un1 (2, 601 o (2, Byt o ()

_ -1 B d s (x
— fuall [ [n ZK,M 69 ot B )

+U£/ [ 121% moo(Xi)}ﬂn(x,énl)d%(%) 1= Jn1 + Jn2.

By (m4), (m5), (a), and result (1.8), we obtain

d
Wl < 0l e [ ol Ou) ()
il
< 02| maxe 12 [ o)l 00) ()
+ max iy, (%)~ g, (C6)| [ i)} = op(1).
Moreover, observe that
A e R AC e

ant2ul [ (o) ik 2, 00) = i ()} o)
2l [ g 08 0, 6un) — o 80) b
a2l [ (e, 00) = g ) ()i )
2l [ 5o, 00) = unga)} ik 2. 00) = i ()} o)

/2T / {itns (2, 00) — fins (@) Hih (2, 0n1) — it (2, 00) b (x).
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On the right-hand side of last equality, the last five terms are o,(1), because of (m5), (a),

(1.8), C-S inequality and the fact that

B [Giale.00) = jn(a) Hik . 00) — i ()} o)
= [ Var(e.00)du(z) = 0,k ),
[ Bu) = o, 80) Mk o Bn) — i o 0) o)
= [ F@pdvta) max (g | () = gy (X (] (X5) i (X0) = o (h).

B [insl00) = s () Hiky(z. ) = ish ()} v (o)
[ Vartins(e,60)dv() = Oyl (n ).

For the first term, by (m4), (m5), (a), (1.8), and C-S inequality, one has

[ ettt () = 5+ 0p(1)

Hence (1.22) holds. If under Hy), m90<I> is a linear function of 6y, and &, is the least square

estimator, we have uy, = iglén and result (1.24).

To prove (1.25), it suffices to show that when j = 2, the first term in the left-hand side

of (1.35) multiplied by nl/2 is op(1). Note that by C-S inequality,

H / (z 9712 Un?(xvén?))ﬂn(xaénﬁd@zw(m)‘f

< (1 sup|2(w)/ (@)~ 1) Ao [ (o, )P ().

xel

By the fact that [ ||fin(z,0,0)|%d(z) = Op(1), and supyez |f2(x)/f2(x) — 1] = op(1)

derived by (1.8), and it suffices to prove A,9 = 0p(n~1), which in turn follows (a), (1.12),
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(1.19), and (1.34).

(2.b) We shall prove (1.26) in this step. Based on (1.24) and (1.25), it suffices to prove

that

12 {81 + S555 1 Sn} —a Ny(0,31), (1.36)

n1/28n2 —d Nq(o,zg). (1.37)

The proof of (1.37) is similar as that of Lemma 4.1 (a) in K-N, if ¢;, 02 and X there are
replaced by d;5;/A(X;), 02/A, and ¥y in (1.5), respectively. To prove (1.36), note that
nl/25, = Op(1) by the Central Limit Theorem, and 3,1 = ial + op(1) by Law of Large

Numbers and routine calculations. Thus we have

nt2{8,1 + 255180 = nl2(S,, + 55518 + 5 (S — S (n1/28))
0 040 0 0

= n1/2{5n1 + 262615'”} + 0p(1),
and it suffices to show n!/2{S,; + Eaialgn} —q Ng(0,%1). Write

n1/2{5n1 + E(’Siglsnl}

w23 ([ Kuatalin@)dute) + S5 ing, (X0) )i
=1

n
= n_l/QZSm, say.
1=1

Note that by (el) and (e2), {sy;,7 = 1,--- ,n} are i.i.d. centered r.v.’s for each n. By the

Lindeberg-Feller C.L.T., it suffices to prove that as n — oo,
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Es?| = %y, (1.38)

E{spiI(lsm| > n'/*n)} -0 ¥y >o0. (1.39)
By the continuity of 02, A, f, and g, we obtain

Bty = B / Kp(x — X) oy (x)d () +23251m90(X))2A(X)02<X)
= £ [ [ Ko = X)Kly - )2 (X))o (1)) ()
‘B / Ko = X)o? OAX )iy ()i (X)) 5515
+o55E / Ep(x — X)o? (X)A(X g, (X) iy, (a)dip ()
+EGEG ! Elring (X )ring, (X)o?(X)AX)]Eg '
[ @)Dy )i (o)) g ) ds
+2( / 0% (2) Aa)ring, ()i (2)g(2)dz ) 5 155

—i—ZSial ( / az(x)A(x)mgo (x)mgo (a:)f(a:)dx) 26126 =¥,

Hence (1.38) is proved. Note that by the Hélder’s inequality, the L.H.S. of (1.39) with n = &g

in (e3) is bounded by

—6n/2 1 2+9
Cn—%/ Es i 0
- 249,
— on2p|{ / Kyl = X (@)d() + S555 gy (X)) oe]*+0

< cnho2g{> / Kh(gg—X)/lh(x)dw(x)}2+60|65|2+50}

+Cn00/2 B[{2555 g (X)}2100] e [20]
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2+9,

< Cn00 92 { /(zch(x_X),;Lh(x))ﬁrodlp(x)}?{/d¢(x)}50|55|2+50]
+Cn 02 B{2555g gy (X)} 00 el 0]

= Op((nh®)~"0/2).
Therefore the proof is complete.

Remark 1.4.1. (Choice of G). Assuming f = 0 implies g = 0. When ¢ = 1 and 02(z) = 02,

a constant, the asymptotic variance of énl satisfies

ne = o554 oky [/ ()mgo(:c)(f( )P (o)

-( / A(xyid (2)f / Ay (x dw)Q]

02251,

v

because, by C-S inequality,

( / A(g;)mgo(x)g<x)dx)2
([ A2 @ying )11/ 82 g 02 g (o))
[ A @) @)de [ Ay @7l g w)da,

IN

with equality if and only if g o f; and the asymptotic variance of éng satisfies

vy = 02/(A(x)) lmgo( 2) g% () (f(x) 1dx /me 2
_ 02201’
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because

</mgo(a:)g(x)dx>2

([ (@) 2y )g(a) F@) (A @) iy (o) () 2d)
= / (A(2)) ™ Hring (1) (2) (f (2)) " / Alw)ing, (x) f(x)da,

2

with equality if and only if g oc fA. This implies that both lower bounds on the asymptotic
variances of énj, j = 1,2, are at that of the least square estimator’s when the regression

function is linear.

1.5 Asymptotic distribution of the test statistics under
Hy
In this section we shall discuss the asymptotic null distribution of ﬁnj in Theorem 1.5.1.

Theorem 1.5.1. Assume that Hy, (el), (e2), (e3), (e4), (f1), (f2), (9), (k1), (m1)-(m5),

(a), and (h3) hold. Then,

A

D1 —d N(O, 1).
If, in addition, (k2), (b2), and (h4) hold, then,

Dng —d N(O, 1).

Consequently, for each j = 1,2, the test that rejects Hy whenever ]15m| > 2q/2) is of the
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asymptotic size a.

The proof of Theorem 1.5.1 is facilitated by Lemma 1.5.2-1.5.7. The idea of the proof is

similar to that of Theorem 5.1 in K-N. Lemma 1.5.1 is applied to prove Lemma 1.5.2.

Lemma 1.5.1. (Theorem 1 of Hall (1984)) Let X;, 1 < i < n, be i.i.d. random vectors, and

let
Un = Z Hn(Xz;Xj)7 Gn<x7y) :EHH(Xlax)Hn(X17y)7
where Hy, is a sequence of measurable functions symmetric under permutation, with

E(Hp(X1,X9)|X1) =0, a.s., and

EH%(XLXQ) < oo, foreachn > 1.
If
[EG; (X1, X2) +n~ ' EHy (X1, X))/ [EHA(X1, X3)]? — 0,

then, Uy, is asymptotically normally distributed with mean zero and variance equal to

n?EH; (X1, X3)/2.
To proceed further, we need the following notation:

Ko (v) ::/K(u)K(u—i—v)du, | K| ::/Kg(v)dv, (1.40)

e [ RO@C@PPW s [ (P@) P
My =2l | o s, 1y 2y / s,
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Loy = 20 / / BE (2 — X)Kn(y — X)AX)o? (X)2di () d (1),

Loz = 20 / / BE) (1 — X) K (y — X)(AC)) Lo (X) 2 () di ().

Recall the definitions of C’nj, f‘nj, T)nj from (1.4), and Tnj, Ty, Cpj from (1.5).

Lemma 1.5.2. Suppose Hy, (el), (e2), (e4), (f1), (9), (k1), (h1), and (h2) hold. Then,
nh2(T,;(00) — Cj) =g N(0.Tj), j=1,2.

The proof of Lemma 1.5.2 follows the same routine as that of Lemma 5.1 in K-N, but
with the following changes: for j = 1, replace &;, 02(33), 04(1’), Iy, and T' in K-N by §;¢;,
A(z)o?(x), A(:U)a4(x), T'p1, and ', respectively; for j = 2, replace ¢;, 0%(z), 04(x), Iy,
and T in K-N by (A(X;))"16;ei, (A(z))"Lo?(z), (A(x))30%(z), [)yo, and Ty, respectively.

The following results will be used in the proofs later:
Lpj —as. Ty, =12 (1.41)
Remark 1.5.1. Similar as Remark 5.1 in K-N, one has
nh(Ty,5(00) — ETn;(60)) —q N(0,T),  j=1,2.
Lemma 1.5.3. Under Hy, (el), (e2), (f1), (f2), (k1), and (h3),
nh2|T,5(80) — Toj(60)] = op(1), j=1,2

The proof of Lemma 1.5.3 is similar to that of Lemma 5.3 in K-N where now Uy, (z) would
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be changed to Uy(r), j = 1,2.

Lemma 1.5.4. Under Hy, (el), (e2), (e3), (f1), (k1), (m1)-(mb5), (a), (h1), and (h2),
nh®2| Ty (0n1) = To1 (00)] = 0p(1).

If, in addition, (k2), (b2), and (h4) hold, then,

nhd/2‘fn2(én2) - TnQ(QO)‘ = Op(l)'

Proof. Observe that

Tnj(OO) - Tnj(énj) = 2/Unj(x)Zn(w>énj)d¢w<$> - /Z%<x,énj>d¢w($)

If we follow similar routine as proof of Lemma 5.2 in K-N, with 6, and Uy, in K-N changed

to énj and U, ;, respectively, we can find that it suffices to show

b2 (6; — 00)T [ Un@it (. Onj) (o) = 0p(1), =12,
Note that the integral is the same as the second term in the left-hand side of (1.35). Thus,

LHS. = ”hd/Q(énj—90)T/Zn($,énj)/ln($,9nj)d¢w($)

—nhd/Q(énj - 00>T /(Um(Q% Onj) — Unj(@,0nj))fin(z, énj)dz[}w(x)

= Q?’Ll] - Qn2j7 J=12, say.

We have @Q,,1; = op(1) for j = 1,2, by the same argument as used in proving (5.10) in K-N.
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By the proof of step (2.a) of Theorem 1.4.1, one obtains that

~ ~

n1/2 /(071](5”’ 9nj) - Unj(%9nj))ﬂn($>énj>d@2w($) = Op(l)a Jj=12,
hence Q05 = nhd/QOp(n_l/Q)Op(n_l/Q) = Op(hd/Q), and the proof is completed.

Lemma 1.5.5. If Hy, (el), (e2), (e3), (f1), (k), (m1)-(m5), (a), (h1), and (h2) hold, then

nhd/2’Tnl (énl) — Th1 (én1)| = Op(l)’

If, in addition, (k2), (b2), (h3), and (h4) hold, then,

nhd/Qlj}Q(énZ) - Tn2(én2)| = Op(l)’
Proof. Observe that

|Tnj (énj) - Tnj (énj)|
= | [ 00 .80) = a2 = Uy .60) = Zuo g )
< (Ut swp 2@/ F3w) ~ ] [ Gyl o) = U, 00) o)

+2{ /(Unj(a:,eo) — Unj(%@o))de(;,;)}l/Z

< [ Wnsas00) = 2t g vt} ).

by the C-S inequality. The results in (1.18), (1.19), and (1.34) lead to the fact

[ @ja.00) = U 00) Pata) = o),
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Let for j = 1,2,
nj = Oy =00, dnij = my (X)) — mgy(X;) — g jring (X5)-

Then,

/ (U, 80) — Zn(e, 0 2di(a)
< 2 / Up;(,60)dii(x) + 2 / Z%(xvénj)d¢(x>

< 2 [ U2 00)a00) + i s 5 [ Ryt

|Unj||

g [ [n 12}% ) g ->H] e

= Op((nhd)_1)+0p(n )+ 0p(n™1) = Op((nhH) ™), j=1,2.

by (m4) and Theorem 1.4.1. This completes the proof of Lemma 1.5.5.

(1.42)

Lemma 1.5.6. If Hy, (e1), (e2), (e3), (f1), (f2), (k), (m1)-(m5), (a), and (h3) hold, then

nh®2|Cp1 — Cpa| = 0p(1).
If, in addition, (k2), (b2), and (h4) hold, then,
nh/2|Cpy — Cpal = 0p(1).
Proof. Letfor j=1,2,i=1,---,n,

v (@) = f2(2)/ fa@) =1, tij=my (X)) —mgy(X5),
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Note that from result (1.17), for i =1,--- | n,

~ A ~

gin = (Ya —mgy (X)) + (Yir — Yir) — (mgnj (X3) —mg, (Xi))

*
= & s — i,

A ~

in = (Yig—mgy (X)) + (Yia = Yia) = (my (X;) — mgy (X))

nj
= epl+a)+o+aq—t,
and hence,
énl - Cn
= Y [ KR~ @) Y [ e i)
i=1 i=1
= 0y [ KRl + ) - )b
i=1
-2 . 2 * \2
0723 [ KR @) i),
i=1
én? —Cn2
=ty / Kji(@)[e5 = (e52) Jdbu(x) + 072 ) / K2(2)(€5) vwdi(z)
=1 i=1
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n? Z / Khz 12 (1+a;)+ w12)2 — (E%F]dzﬁw(x)

‘22 / K7i(2) () vudi(z).

By (a), (m4), (1.9), (1.13), (1.27), one has

n 1= SUP [vu(#)| = Op((logy; ) (log n/n)?/ (), (1.44)
tj = max [t = Op((nh®)~1%), j=1.2,

sn = max [si| = Op(n™"/2), an = max Jaj] = Op((nb") ™/ (logn)'?),

en = max [ei| = Op(n™2), o= max |gi] = Op((n™ 126~ (logn)'/?),

wnt = max |wi| < sy + tp1 = Op((nh®)~1/?),
1<i<n

Wy 1= 12182( lwio| < cn+qn +th = Op((n_1/2b_d/2(log n)1/2).

These facts together with the following facts that

Spjz=n"2>  Ki(x)(e};) di(x) = Op((nh?) ™),
1= 1

n] 1= n_2ZKhz |€zg’d¢ ) Op((nhd)_l)v

S0 —n—2ZKhZ Yy (z) = Op((nh®) ™Y, j=1,2,
=1

we obtain

nh2{(|Cr1 = Ca)} < nh2 (1 4 ) {201 9011 + w21 St 0}

+unSp1 2] = op(1),
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nh2{(|Chag — Cral)} < nh¥2[(1 4+ v3) {2w2S02.1 (1 + an) + w25 Sna0

+(2an + a2)Sn2.2} + vnSn1.2] = op(1),

by (b2) and (h4). This completes the proof.

Lemma 1.5.7. Under Hy, (el), (e2), (e3), (f1), (k1), (m1)-(mb5), (a), (h1), and (h2),

A

Ppp—T1= Op(l)'

If in addition, (f2), (k2), (b2), and (h4) hold, then,

A

Ipo—To = Op(l)'

Consequently, I'; > 0 implies \fnij_l — 1] =o0p(1), j=1,2.

Proof. The proof of Lemma 1.5.7 is similar to that of Lemma 5.5 in K-N. Recall vy,
Li1s 32y Siy Q45 Gy G4 from (143)7 and Uns tnls tn2, Sns Ansy Cny Gny, Wil, W2 from (144> Let

for k =1,2,
~ 2
T = 202 (/Khi(x)Khj(Jf)gfkgjkdl/J(@) -
i#]
From result (1.41), it suffices to show

Ppg —Tnk = Op(l)a fnk — o = Op(l)a k=12 (1'45)

The first claim in (1.45) is proved similarly as (5.13) in K-N. For the second claim, note that
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fnl - f‘nl
= 23 ([ Kyl K@) G+ win) G + i) (v )db(a))
i#]
_thn—2z (/Khz(x)Khj(x)gflsjldlb(m))Z
i#]
= 223 ([ Kyl Ko o) ey + o) €51 + w)de@)
i#]
santn =2 3 ([ i) g + )€y + o) (@)d(a))
i#]
w23 ([ Ko@) + ) e+ ) dvie)
i#]
<( [ Kl K@)y + wia)(€y + i) () o))
—2n'n 72y (/Khi(x)Khj($)5f15§1d¢($)>27
i#]
fn? - fnZ
= 22 Y ([ Kiala) K@) (et + a0+ wi)
i#]
x{ejg(l + aj) +wjz}(1 + vw(x))dw(x)>2
ot 2 3 ([ Bt i)t ()
i#]
= 22 Y ([ Knala) K@) (et + )+ wio)
i#]
x{ejg(l + aj) + wjg}dz/z(x)>2
22 37 ([ Kpalo) Kigo) (<51 + a0) + i)
i#]
X{&?Q(l + aj) + wjg}vw(x)d¢(x))2
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+4h%n 2 > </Km'(93)Khj(93){532(1 +a;) + win}

ot 23 ([ Ko Ky (o)zinpdi(o)

i#]
x{eja(1l+aj) + ij}d?/f(x))
([ Knala) K@) {eial1 + a0+ wio)

x {51+ aj) + wja v (2)dy ()
2

i#j

By Fubini’s theorem and taking the expected value, one obtains

Wik = 2hen
Wko.1 = 2h'n
Wk, := 2h%n
Wok11 = 2hen
Wik 1,0 = 2htn

Wokoo =202 5 ([ Ky i(adia)” = 0,(0),

Hence, we have

|fn1 - 1:‘n1| <

Y P ([ K@ K@de@) = oy,

i#j

- Z(s;'kk)%;k’(/Khi(x)Khj(x)d¢($)>2 — 0p(1),

i#]

_9 Z(g;kk)2</Khi(x)Khj(x)dw(x)>2 _ Op(l),

i#]

Y lend |€§k|(/Khi(x)Khj(w)dl/J(x))Q — 0p(1),

i#]

> |5;'kk|(/Khi(x)Khj(x)d¢(x)>2 = Op(1),
i#J

k=1,2.
i#j

(14 vn) 2 {202 Wi 2.0 + Wiy Wa1.0,0 + 4wt Wy1 2.1
2 3 P
4wy Wit 11 + 4wy Wit 10} + (2un +vp) Wit 2.2

op(1),
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Tz —Tnal < (1 +v0)?{(2an + a2)Wn1 2.2 + 2wy (1 + a2)*Wya2.2,0
FwhoWio.0.0 + 4wz (1 + an)3Wpa o1
FAwZo(1 4+ an)* Wy 1.1 + 4wie(1 + an) W10}
+(20n + v2) W1.2.2

= op(1).

Therefore the second claim of (1.45) is proved, and so is Lemma 1.5.7.

1.6 Simulations

In this section two simulation studies are reported. The first investigates behavior of the
empirical size and power of the test I(|Dp1| > 1.96) with g(z) = 1 on [—1,1]? at 4 alter-
natives under different designs and data missing probabilities. The second lists the mean
and standard deviation of the minimum distance parameter estimator énl- In both studies,
d = 2, and the completed data set are constructed using imputation method. All simulations

are based on 1000 replications.

In the first study, we compare the empirical size and power of the test at 4 alternatives,
on 2 designs X, and 3 data missing probabilities A(X). More precisely, the design variables

X; = (X1, X9;)T, i =1,--- ,n, are i.i.d bivariate normal N'(0,V},), k = 1,2, with

V= L V= ’ . (1.46)
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The three choices of A(x), x = (x1, xQ)T, are as follows:

Al(ﬂf) — (1 + 6—0.8—0.5$1—0.5x2)—1’ (147)
AQ(I‘) _ (1 + 6—0.2—0.31‘1—0.31‘2)—1’

A3 =1, the complete data.

These choices are similar to those in Sun and Wang (2009). They use the data missing

probabilities {1+exp(—0.3—0.3z)} 1, {14exp(—1.0—0.82)} 71, and 1—0.4 exp(—5(z—0.4)?)

when d = 1. The error distribution is A(0, (0.3)2). The regression function under the null

hypothesis is p(z) = Hgl(x), where 6y = (0.5,0.8)7, I(z) = 2 = (x1,29)T. The regression

models are as follows:

Model 0.

Model 1.

Model 2.

Model 3.

Model 4.

0;Y; = 0ip(X;) + diei,

6;Y; = 0;p(X;) + 0.50;(X1; — 0.2)(Xo; — 0.4) + ;¢

0;Y; = 0ipu(X;) + 0.50;(X1;X9; — 1) + 6,

5;Y; = 0ipu(X;) + 20;{exp(—0.4X%) — exp(0.6X3)} + d;¢;,

6;Y; = 0;X1;1(Xg; > 0.2) + d;e5,

The nominal level is @ = 0.05. The sample sizes considered are n = 50,100,200. The

first 2 tables describe empirical sizes and powers in models 0-4. Model 0 is the null model

while model 1-4 are the alternatives. These empirical levels and powers are computed by

the relative frequency of the event {|D,1| > 1.96} in corresponding models. Bandwidths

h =n"1/45 and w = (logn/n)!/® are chosen because of (h3) and (1.9). The kernels are
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K(u,v) = KN (u)K(v) and K* = K, with K!(u) := 3(1 — u?)I(Ju|] < 1).

Table 1.1: Empirical sizes and powers for model 0 vs. models 1-4 with X ~ A/(0,V}) and
e~ N(0,(.3)%)
n n=>50 n=100 n=200
A A1 Ay Aj A1 Ay Aj A1 Ay Aj
Model 0 020 .027 .031 029 .029 .036 033 .034 .042
Model 1 103 .079 224 278 176 .586 633 513 935

Model 2 993 941 1 1999 1 1 1 1
Model 3 S15 0 .203 999 351 270 1 375 338 1
Model 4 241 159 484 671 497 905 980 920 1

Table 1.1 gives the empirical sizes and powers for testing model 0 against models 1-4
with design X ~ N(0,V7), when the data are randomly missing with either of the 2 missing
data probabilities or with no missing data. In the simulation, the empirical sizes of the test
for model 0 keep less than 0.05. When the sample size increases, it gradually approaches
the asymptotic level and becomes quite close at the sample size 200. On the other hand,
the empirical powers of the test are greater than 0.05 against each alternative 1-4 for all the
sample sizes we take, and become closer to 1 as the sample size increases; especially against
alternative 2, the power is above 0.94 even at sample size 50. From the comparison among
the 3 data missing probabilities, we observe that the level behavior is affected by the data

missing probability, while the power is affected much more.

Table 1.2: Empirical sizes and powers for model 0 vs. models 1-4 with X ~ N(0,V3) and
e~ N(0,(.3)%)
n n=>50 n=100 n=200
A Ar Ay Ag Ar Ay Ag Ar Ay Ag
Model 0 025 .027 .030 029 .031 .036 035 .037 .043
Model 1 115,103 .371 199 164 .677 A79 373 952
Model 2 965 831 1 999 991 1 1 1 1
Model 3 237 187 1 272209 1 2740227 1
Model 4 203 144 529 D96 471 927 957 .892 1

Table 1.2 lists empirical sizes and powers with design X ~ A(0,V3). In addition to
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obtaining similar conclusion as the first table, we can also find that the power and the
level behaviors are affected by the dependence between the design variable coordinates,
although they are not affected that much. Results for model 4 in both tables show that the
discontinuity of regression function has an effect on the power of the test, because the power

is dramatically changed as the sample size increases.

Table 1.3: Mean and s.d. of 6,,; under model 0 with X ~ A(0,V}), e ~ N(0,(.3)2), and
E(0|X =2) = Aq(2)
n n = 50 n = 100 n = 200
Moan | (494, .804) | (503, .800) | (.499, .800)
Std dev | (.110,.084) | (.078,.061) | (.052,.043)

The second study gives the mean and standard deviation of each component of énl
under the null hypothesis model 0 with normal error ¢ ~ N(0, (0.3)2) when d = ¢ = 2.
The variance of design and data missing probability are chosen to be V7 in (1.46) and Aq in
(1.47), respectively. The regression function and parameter are the same as in the first study.
Results listed in Table 1.3 show that the minimum distance estimator of the parameter is

very close to the true parameter and the standard deviation is quite small.
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Chapter 2

Testing for Superiority of Two
Regression Curves when Responses

are Missing At Random

2.1 Introduction

This chapter considers a class of tests using covariate matching for comparing the equality
of two nonparametric regression curves against a one-sided alternative, when responses are
missing at random. More precisely, let (X}, 0,.Y}.), k = 1,2, be the two groups of random
variables, where X}, is a one-dimensional explanatory variable, Y}, is a one-dimensional re-
sponse variable, d;. is an indicator for whether the response is missing or observed, i.e. d;, = 1,
if Y}, is observed, and d;, = 0, if Y}, is missing, kK = 1,2. We say Y}. is missing at random, if
0 and Y}, are conditionally independent, given X, i.e. P(0p = 1|Yy, X)) = P(6, = 1| X}),
a.s., k = 1,2; see Little and Rubin (1987).
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Now, let

pp(x) = E(Yi| X =2), z€R, k=12,

be the two regression functions so that

Vi = (Xg) + e, E(eg|Xp=2)=0, VzeR, k=12

Let Z be a compact interval in R. The problem of interest is to test the hypothesis

Hp : pi(z) = po(z), forall xz € Z,

Hy @ pp(x) > po(x), for all z € T with strict inequality for at least one x € Z,

based on independent samples {(X}, ;, 6 ;Y3 ;) : @ = 1,--- ,ny} from the distributions of
(Xp, 01.Y2), k = 1,2, respectively. Moreover, let ¢ be a non-negative continuous function on

R. One is interested in the asymptotic power of a given test against the local alternatives

ning

. _ —1/2 _
HiN :pi(e) = po(x) + N™7%¢(x), N = .

, forall z eZ. (2.1)

When we observe complete data, this testing problem has been addressed by many re-
searchers. In particular, Hall et. al (1997) proposed a class of tests based on the covariate-
matching, and the local averaging interpolation rule. They proved the asymptotic normality
of the proposed statistics under general alternatives, allowing design and error densities to
be different. They also proposed an adaptive version of their test that achieves the opti-

mal power against a sequence of local alternatives. Koul and Schick (1997) proposed four
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classes of tests under the assumption of possibly distinct design but common error densities.
They gave a general asymptotic optimality theory against a sequence of local alternatives.
One of these classes of covariate-matched tests is shown to have desirable asymptotic power
properties against several alternatives. Koul and Schick (2003) (K-S) developed this class
of test further and derive their asymptotic power for the local alternatives, under the het-
eroscedastic setting with possibly distinct error and design densities in the two regression
models. They obtained an upper bound on the asymptotic power of all tests against a given
sequence of local alternatives using a semiparametric approach, and showed that a member

of this class of tests achieves this upper bound.

This chapter discusses the above one-sided testing problem when responses are missing
at random. We construct a complete data set by imputing kernel-type estimates for the
regression functions, and investigate the asymptotic properties of the modified version for
missing at random setup of the covariate-matched test statistic proposed in K-S under null
hypothesis and local alternatives. The consistency of the tests based on these statistics is
also discussed. To set up the analysis, let U be the set of all non-negative functions that are
continuous on Z and vanish off Z. Assume that X} has a density g;. that is bounded away
from zero on Z, k = 1,2. Let K be a symmetric Lipschitz continuous kernel density with
compact support [—1,1], a = ap, by = Oknys €k = Chy» and dy = dy . be bandwidth
sequences. Let Kp,(y) := K(y/h)/h, y € R, h = a,by, ¢, d.. The estimators of regression

functions and the constructed responses are, respectively,

n
) i O Vi i Kby — X )
i O, iy (2 — X )

Yii =0k Vi + (1= 0p ) i(Xp,), 1<i<ng, k=12

Y
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For each k = 1,2, let 05, be a non-negative estimate of v; := y/u/g; which vanishes off Z.
The covariate-matched statistic and the adaptive version with responses missing at random,

respectively, are

and

The needed assumptions and conditions to state the main results are given in Section 2.2.
Section 2.3 states the asymptotic normality of T under Hp and Hqy, and the consistency of
the test based on 7'. The optimal u to maximize the asymptotic power against Hyy is also
discussed. Section 2.4 gives the estimates needed to construct T and the corresponding test.

Simulation studies are set in Section 2.5.

2.2 Assumptions

In this section we shall state the needed assumptions. The following assumptions are similar

to those in K-S. For each k = 1.2

(el) (Xpi»OpiYii) Xpi €ERYy; €R 6y =0o0r 1,i=1,2,--- ,ny, are iid. ran-
dom vectors with o ; = 1, if Y} ; is observed, and dp; = 0, if Y} ; is missing;
pp(x) = E(Yy1| Xk = @), v € R, ep; = Vi — u(Xpy), 0p; and eg; are con-
ditionally independent, given Xj, ;. {(Xl,m(sl,iyl,i)}?:ll and {(X27j752,jY2,j)}?il are
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independent.

(e2) Ef%,l < 00, 0]%(33) = E(5%71|Xk,1 = z) and Ag(x) = E(d1 = 1| X1 = z) are
continuous and positive on Z.

(e3) V%(x) = E(Ei’1|Xk71), x € R, is bounded on an open interval containing Z.

(ed) UI% and Ay, are twice continuously differentiable on Z.

(g1) The design variable X}, 1 has a bounded Lebesgue density g;, which is continuous

and positive on Z.
(g2) The density g is twice continuously differentiable on Z.

(k) The kernel w is symmetric square integrable continuous density with compact
support [—1, 1]. In addition, w satisfies Lipschitz-continuity of order 1.

(m) pq is continuous. pg is Lipschitz-continuous of order 1 with Lipschitz constant
Cpuo -
(p) ¢ is a non-negative continuous function.

(q) ¢ is a non-negative continuous function with &(x) > 0 for at least one = € Z.

(u) U is the set of all non-negative functions that vanish off Z and whose restrictions
to Z are continuous.

(wl) a®?N — 0, aN — oo, for some 71 € (1/2,1).

(w2) b%nk — 0, ban2 — 00, for some 79 € (1/2,1).

(w3) ¢, — 0, dp, — 0, (ck+dk)nz3 — oo for some n3 € (0,1/2), (ci—i—di)nk(lognk)_l <
C for some C' < oo.

(2) {Ip1, ’Ik7Bk} partitions Z into disjoint intervals of equal length 7., with 7. — 0
1/2

and n,'“m — 00.

o4



Note that (e2) and (gl) imply that for each k = 1,2, the functions gy, 0]%, and Ay, are
bounded and uniformly continuous on the compact interval Z, and bounded away from zero

onZ.

Rewrite H; into the form:
Hy:pg = po +&, where ¢ satisfies (¢) and /u(x){(:z:)dx >0, uel. (2.2)

To state the main results, we need the following set of additional conditions on estimators.
They are motivated by Schick (1987), and proposed in K-S as Definition 2.1, Assumption
2.3, and Lemma 2.4, for the case of complete responses. These conditions are reproduced as
follows, only with changes from the case of complete responses to data missing at random
setup. We need these conditions not only under Hy and Hyy in (2.1), but also under Hj in

(2.2). Let

>

A= (X1,1’ e ’XLnl’XQal? N ,X2’n2)7 (23)

0:= (01,1, 01,ny, 02,15+, 02,my)

X:: (Yl,la"' 7Y1,n17Y2,1a"' 7Y2,n2)7

re(z) = u(x)/gp(z), z €L

and Y, ; be the vector obtained from Y by removing Yy, ;, j =1, ,ng, k=1,2.

Definition 2.2.1. The estimator 7 of r;. is said to be consistent and cross-validated on T

for the function 1y, (short CCV on T for 1) if the following two conditions hold:
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ng
% D 12X ) B (X ) — ri(Xi) 21X, 8] = 0p(1), (2.4)
k=1

N max sup E[{ig(x) — Elig(2)X, 8, Yy, ;117X 8] = op(1). (2.5)
1<j<np xez

We say 71 is a modification of 7y if P(sup,e7 |Tr(x) — 7r(x)] > 0) — 0. We say 7 is

essentially CCV on I for ry, if there exists a modification of 7, which is CCV on Z for ry..
Assumption 2.2.1. The estimate 7}, is essentially CCV on Z for r, for k =1, 2.

Lemma 2.2.1. Suppose there are modifications vy of Uy, such that, fork=1,2 andl =1,2,
0<di(z) <M, ze€T, (2.6)

for some finite constant M, and such that

"

=3 Bl((%) ~ v VI 8] = (1), 27)
1=1

N max sup B[{og(z) — Elog(2)|X, 8, Y;,]}|X. 8] = op(1). (2:8)
SUSN) el

Then Assumption 2.2.1 holds.

The proof of Lemma 2.2.1 follows that of Lemma 2.4 in K-S, only with changes from X
to (X, 0). Since this proof does not involve the responses Y but only the designs (X, ¢), the

above lemma holds under Hy, Hyy, and Hj.

Remark 2.2.1. Suppose modifications v, of v exist and satisfy (2.6)-(2.8), k = 1,2. K-S
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show in their proof of Lemma 2.4 that the estimators

n9

. N 1 N

r1(x) : vl(az)n—Q E 09(Xg j) Ko(r — Xo ), and (2.9)
j=1

1
. . 1 .
Fo(x) : 02(1‘)”—1 > " 01(X1 ) Koz — X15), z€R,
=1

are essentially CCV on Z for rq, and r9, respectively, and their respective modifications can

be chosen as

ng
1 -
n—QZU2(X2,j)Ka($ - Xa5), (2.10)
=1
1
(
=1

(z) = 1(x)
J
ra(x) = 172(96)”% > 51Xy ) Kalr — X1).

We also need the following notation and results in the proofs later. Let

hi(z) == Ap(x)gp(z), A = infzhk(x), k=1,2. (2.11)
HAS
g g,
hi () : = Z%szk(l’—sz) Jr(z) : = ZKbk (x — Xp)-
=1 I=1

Lemma 2.2.2. Letty = tn, , k = 1,2, be bandwidths satisfying tj, — 0 and nktZ(log ng) ! <

C for some C < co. Assume (€2), (e4), (91), and (g2) hold. Then the following hold.

n,
sup |— » Kp (v — Xp ;) — gi(z ’—0 1). (2.12)
el nk Z i ! P
sup |[— S 64 1 Ky, (x — X ‘)—hk(x)‘ = op(1). (2.13)
0 o Z il (¢ = Xy »
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"k

1
sup |— €k '5k 'Kt (I—Xk ) =0 (1) (2.14)
"k
1
sup —Zgi,i(Sk,iKtk(ﬂ?—Xﬂcz) Eej, 1651 Kty (€ — Xp1)| = 0p(1).  (2.15)
1
O i Ky, (v — Xi )
1 kit t k,
sup |k imL R ! —Ak(x)‘zop(l). (2.16)

vel| e Sk Ky (o — X )

This lemma is obtained from Theorem 3 of Collomb and Hérdle (1986).

2.3 Asymptotic distribution of the test statistic under

Ho, Hin, and H;

In this section we discuss the asymptotic distribution of 7" against Hyyn in Theorem 2.3.1.
The asymptotic null distribution is included because the choice ¢ = 0 corresponds to the
null hypothesis. The asymptotic behavior of T against Hy is given in Theorem 2.3.2, while

consistency of the corresponding test against Hy is stated in Remark 2.3.1.

K-S propose an optimal u to test Hy against H{n when data is complete. When responses
are missing at random, a similar optimal v can be derived. This result is given in Remark

2.3.1.

The following definitions are used in the theorems and remarks below.

N m _N_ m
a-= n1 ni + ng’ - n9 ni + ng’ (2'17)
b (z) = i) Po(x) = —02( ) zeR
Aq(x)gr(x)’ - Ag(x)go ’
7= [ @l () + anads, D= / — ().
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Theorem 2.3.1. Assume that (el), (e2), (e4), (91), (92), (k), (m), (p), (v), (w1), (w2),

and Assumption 2.2.1 hold. Then under Hyn of (2.1),

N1/2(T—D— i% U(Xl’i> 0145614
n = A (X i) (X))

u(Xo ;)
: 09 i€9 5 ) = op(1),
ZA2 (Xa.7)92(X2.5) 2. 27]> p(1)

as both sample sizes n1 and ng tend to infinity. Consequently, under Hyy,

Nl/Q(T—D) —>d./\f(0,72), as niy Ang — 00.

Proof. Recall r from (2.3), 7, from (2.9), g5 and hy, from (2.11), k = 1,2. For z € R,

k.m=1,2, let

ny,
ke () = Zﬂm (X 1)0k 1y, (2 — X, D)/ (),
k1=
n,
Eg(x) : = Z% 10 Ky (= X ) /g (),
=1
or(7) : kZ¢ Xp )01y, (& = Xpo 1)/ ().
=1

Suppose Hin holds. With definitions above, write T= A1+ By —By+C; —Co+ Ry + Ro,

where
Lo
Ay = @ZZM Xlz)UZ(X2j)<N2(Xlz) M2(X27j)>Ka(X17i_X2J)’
1=1j=1
1 &
By = aZfl(Xl,i)(l—51,2')(#1,2()(1,@')—M2(X1,i>)’
1=
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By = n% Z@(ij)(l — 09,5) <ﬂ2,2(X2,j) - N2(X2,j))7

nq
1 . _
O = n—12r1(X1,¢)(51,¢81,¢+(1—517081()(1,1'))’
1 2
Cy = n—Qng(Xz,j)((Sz,jEzj+(1—52,j)€2(X2,j))7
=1
N2 L
Ry = o Zrl(Xl,i)¢(Xl,i)v
i=1
N-1/21 A _
Ry = - Zrl(Xl’Z')(l—51J)<¢1(X1,i>_¢(X1,i)>'
i—1

In the following, we shall show that

NY24, = op(1); N1/2Bk =op(l), k=12

NY2Ry = nl/2D + 0,(1); (2.18)
N1/2 Uk (X

N12¢, = Z ’“ ’“ 2 5k i Fop(l), k=12 (2.19)

N'2Ry = 0,(1). (2.20)

Among them, (2.18) is derived by similar proof as that of Theorem 2.6 in K-S, while some
details proof of (2.19) are also inspired by those of Theorem 2.6 in K-S. Recall the Lipschitz
constant £, of pig in condition (m). By (gl), (m), (), (w1), Assumption 2.2.1, and routine

calculation, one has
1
1/2 1/2 N
NY2|4, < NV %an—1§ P1(X14) = op(1).

i=1

From (gl), (m), (u), (w2), Assumption 2.2.1, and the fact
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n
oK) x| < % SR lpe(Xyy) — 12( X )10k 1 Ky (X i — X 1)
fig 2(Xp i) — (X 4)| < -

< by, k=12,

one obtains NY/2|By| < N1/2£u25k# Z;l“l Pe(Xki) = op(1), k = 1,2. For each k = 1,2,

note that
Z { Zk (X 1) (1 = 05.1) 0 i Ky (X i — X 1) b6 (X )}
£ - ki (Xki) -
nk "y, & he(Xg1) Z Z

Write C}. = Ck,l + Ck,2 + Ck,3 + Ok,éb where

. 1 %’C: { 1 %’“: 71 (X 1) (1= 0,0) 0 i Kp, (X i — X 1)
= — ) Epil—
STy My, & he (X 1)
0 (1 = Ap( X)) (X i) }
A(X.) ’

1 "k 1 71( Xkl rk(Xk,l>
Chp = nk; '{n_;(ﬁ (Xp1) hk;(Xk;l>>

n
Crg=— ka i0k,i (P (X i) — (X i),
=1

1 Z €k,i0k,i"k (Xk,i)
nk Ap(Xgi)

Foreo,l=1,--- ng, k=12 let

oo T ERD T 0)Ohi Ky (Xiei = Xied)
kﬂal T hk(XkJ) )
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o O (= AN )k (X )
e Ap(Xki) '

By (el), (e2), (gl), (u), (w2), and routine calculation, one has E(Nl/QC’k’l) =0 and

Var(N1/2C'k 1)

_ _E[gkl{ ka,l,l—‘]kl}}

N ng 1 (ng. — 1)(ng, — 2)
= —E[éi;{—g Tiiz+ Te120k13

1, 9
" " Uy

2(nk - 1)

Jk11k12+Jk1H
_ ”k_l// o) A()gi(2)) (rF o+ bu) (1~ gl + bu))
X(Ak(x—l—bu))_2(gk(x+bu))_1>K2(u)duda:

+(nk — 17)152:11@ —-2) /// (Uz(I)Ak("L‘)gk(l‘)> <rk(x + bu)

X (1= Ag(w 4+ bu)) (Al + b)) (re(e + bo)

(1= Mgz + b)) (Ap(z + bv))~ 1)K(u)K(v)dudvdm
=D [ (@it - Aua)on(o) (e + 00

(1= Az + bu))(Ap(x + b))~ ))K(u)dudm

)
20020 (1 — A 207 -1 d
+ [ op(@)ry(z)( k()" (Ag(2)) " gp(@)de
Hence Nl/QC'k’l = op(1), k = 1,2. Recall the modification 7 of 7} defined in (2.10) which
is CCV on Z for ry. Let for ¢, j,m=1,--- ;ng, k=1,2,

fk,z(x) = Elig(z)|X, éazk,i]a rk,z,g( z) == E[Fy, z( X, 0, Yy, ]]
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nk R
y 1 P X)) me(Xpy)
M ;= — (A o J )(1_5k‘l>6kz'Kb (Xk'_Xk;l),
50 nk =1 hk(Xk,l) hk(Xk,l) 5 ,0 k J 7
nk ~
y 1 T Xe)  (Xgy)
M. ;= — (A b ’ >(1_5kl)5k'Kb (Xpi — Xpp),
ok (X)) e (Xk) ) Okt th b ki :
My o= EINGIX 8, Yy, Mg = Elbyi51X,8. Y ).
Then we have
1 nr ~ 1 ng ) i . np, A )
T 2 cuilMss ¢ ny, > ehi(Myi = My i) + nh > eni(My; — My)

= Cg21+Croo+Crog, say.

For each k = 1,2, let Qi ; = E[(Fg /(Xg ) — i (Xp)?IX, 8], L,i,j = 1,--+ ,my. By

C-S inequality, one has

N - -
Sk1t = E[(My(y; — My i.)° 1%, 0]
kel j—1
n n n ~ ~
N iE[{ 1 f:(?“k,z’(Xk,z) Tk,z',j(Xk,z)>
- 5 = L _ Tk
i o e M he(Xg) o e(Xeg)
2
X (1 = 0 1) 0k Kp, (X i — Xk,l)} ’X, é]
nk nk nk - -
N 1 T (X T (X 2
) E[_ (Zm( kl) ]i’w( kJ)) Ky (Xpi —Xk,z)‘&é]
ngio o T o (X hi( Xk 1)
1 &
X {”_k; > - Ok, 1) 0k, Ky (X i — Xk:,l)}
=1
n n n ~ ~
< supflk(:v)ﬁ Y {i : E[(rk7i<Xk’l) — Tk’i’j(Xk’l)>2‘X 5]
T ower mp i he(Xa)  hae(Xig) 7 0

X Kp, (X, _Xk,l)}
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R le

= Supgk 3222

kllzlyl

o Kbk (Xpi — Xk 1)

A
= sup g(z ﬂ {hg (X ) > 5 k)
€L

nk: "k Tk le

ZZZ

i8] Kbk Xpi— Xi1)

k I=111=1j= 1
nk )\
N o k
+ sup gy, (v)1] U {1 (Xiem) < 7}]
xel m—1

ng ng N
kkakl

ZZZ

kl 1i=1j= 1l
= Sk11+ Sk12 say.

”j Kbk Xii = Xpj1)

By Assumption 2.2.1, (2.5), (el), and C-S inequality, one obtains

sup Z Qk,l,z,]

1< l<nk k

"k
N _ - 2
= sup — Y E[(Fi(Xpy) — 750 (Xp ) ?IX, 0]
1<il<ng "k 55
N
< sup ZZE ({P(Xk) — P (X5 ) F21X, 8, Yy ) IX, 6]
I<i<ny nk i=1j=1

N max sup Bl{7y(x) - (1) 121X, 8] = 0p(1). (2.21)

IN

(2.12) in Remark 2.2.2 shows sup,c7 gi(z) = op(1). Together with (2.11) and (2.21), we

have

1 ng ny N Tk )
< Kb (Xk.i sz){ sup — Y Qi ‘}/(%/2)
g
X sup g, (z ﬂ {he (X m) > /23]
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< (swar(){ sw %nzk@k,l;i,j}/uk/zﬂ=op<1>.
j=1

el 1§i7l§nk

(2.13) in Remark 2.2.2 leads to the result

g
P((J{he(Xk) < A/2}) < P(lgi}fzk (X i) — P (X )| > A/2)
i=1 ==

< P(sup |fy(x) = hy ()] > A/2) = 0.
x€l

Together with the fact that U?ﬁl{ﬁk(X;m) < \/2} € 0(X,9), one has Sy 1 9 = op(1). Thus,

we have Sp. 1 = op(1), k =1,2. Let

Di = El,iMl,i;ia Di,j = E[Dz‘X7 é’XLj]’ i,j = 1, e ,Nng.

Note that by (61), Di,z’ = O, and E[DZD]’X, é] = E[(DZ - DZ7])(D] - Dj7z>|X7 é] From (82),

one has

ng N
N
2 2
E[(N'Y2Cron)?IX.8] = = >3 ElD; = Dij)(Dj — Dj)X, ]
ki=1j=1
N T T ,
n_QZZE[(Di_Di,j) X, d]
ki=1j=1
N & 2 - 2
= n—QZZE[€1,¢(M1,i;i—Ml,z';z‘,j) X, 4]
ki=1j=1
Sk,1sup O'%(LU) =op(l), k=1,2.
el

IN

IN

Thus N1/20k72’1 = op(1), k = 1,2. By similar routine in proving Sy ; = 0p(1), one has
n ~ ~ : :
Sk = % ijl E[(M}, ; — Mk,i;i)2|X»é] = 0p(1), k = 1,2. This together with (e2) and C-S

inequality leads to the following result:
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g

(N1/2Ck72’2)2§(%2(]\~4k7i— ki) )( Z%]) op(1), k=12

1=1

Because of P(\N1/20k72’3| > 0) < P(supgez |7p(2) — 75 (z)| > 0) — 0, we have N1/20k72’3 =
op(1), k = 1,2. Therefore one obtains N1/2C'k72 = 0p(1), k = 1,2. By similar proof as that

of Theorem 2.6 in K-S, N1/2C’k73 = 0p(1) can be derived. Then one has

N2 (X )

NY2¢c, =
M — Ak (Xpi)

5]{;25]62—}-0])(1) k= 1,2.

Furthermore, by Assumption 2.2.1, (2.4), (p), C-S inequality, and Law of Large Numbers,

one obtains

1 &
N'2R, = — Z?"l X1,0)0(X1,) + . ;(fl (X714) —71(X14)6(X1,4)
1 "1
o 21X = L (X1)6(X ) = N'2D + 0,(1),
i=1
1/2 < (1 - %) 12,1 & - o\ 1/2
NY%Ry < (TL—I;H(XM)) <n_1 ;(@(Xu) — o(X1,)) )
Together by the result as follows:
n—lz $1(X13) — ¢(X1,))?
nl . 9
- n—lz( > (6(X10) = 6(X1,0))014 Ky (X1 = X10) /b (X1))
=1 z 1

IN

—Z Z S(X1,0) — G(X1,))201 1 Ky (X1, — X10)/h1(X1)
ny = n =
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ny
1 R
= <n2 > (e(Xyy) - X17¢))251,1Kb1(X1,¢—X1,z)/h1(X1,z‘)>
1 i=11=1
n ny
(1) A (X1m) = Aa/28] + 1T O (Xam) < M/2})
m=1 m=1
= op(1) +0p(1) = 0p(1),
we have N1/2Ry = op(1). Therefore, one obtains
ri(X 2 (X
1/24 _ Arl/2 1 1z 2(Xo
N/T—N/< Z 5lz €14 — — ZA2X2J 52]52,]>+0p(1)

Thus the proof is complete.

Theorem 2.3.2. Suppose (el), (e2), (e4), (91), (92), (k), (m), (p), (uv), (wl), (w2), and

Assumption 2.2.1 hold. Then under Hy in (2.2), one has NL/2p —>p 00.

The proof of Theorem 2.3.2 is similar to that of Theorem 2.3.1, only with difference that

N1/2(R1 + Ry) —p oo under Hj.

Remark 2.3.1. Let v = [u(z)¢(z)dz/7. Assume that under Hp, Hy, and Hjy, the
assumptions of Theorem 2.3.1 hold, and there exists an estimate 72 of 72 which satisfies

#2 = 72 4 0)(1). Then, one has

NY27 /7 -, N(0,1),  under Hy,
NY2T/# -, N(y,1),  under Hyy,
Nl/ZT/f —p 00, under Hj.
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Consequently, the asymptotic level of the test
V = {NYV2T/7 > 2.}, (2.22)

is a. The asymptotic power of this test under Hyy is 1 — ®(z4 — 7). An application of the
Cauchy-Schwarz (C-S) inequality shows that v and the asymptotic power are maximized by

the choice

o1z

Uu=uy.— —.
O i1 + i

The maximal asymptotic power is 1 — ®(zq — 7y), where

B ¢*(x)17() )2
o= </ a1 (x) +Q21/J2($)d )

is the maximal value of . This result is similar to that of the complete responses data

discussed in Remark 2.8 and Remark 2.9 of K-S. The only difference in the missing data at
random structure is reflected in having Ay (x) appear in the denominator of ¢y, k = 1,2.

The result is exactly the same as that of complete responses data when A, =1, k= 1,2.

2.4 Some suggested estimators

In this section we shall consider estimates of v;. and 2. K-S give these estimates for a given
u and the (unknown) optimal u when responses are complete, and discuss their properties.
When responses are missing at random, similar estimates and properties are still valid. They

are listed as follows for the sake of completeness.
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The following discussion gives an estimate of vy, k = 1,2. Recall §; and hy from (2.11).

When u is known, consider

O = Vu/Gr, O = Vu/(gr V), (2.23)

where 7 is a positive number satisfying g;.(x) > 4n for all x € Z, v}, is a modification of 0y,

which satisfies assumption of Lemma 2.2.1. This implies that Assumption 2.2.1 holds.

When u = ugy with a known non-negative continuous function ¢, let ¢ and dj be band-

widths satisfy (w3), and consider

n
Zjil Vi Ok, j Koy (2 = X 5)

figo(x) = 7 : (2.24)
Zjil 5k,chk($ - Xk,j)
n ~
5 S (Vg = e e (X )0k Kay (¢ — X )
O'k,($) = nk‘ 3 T e R?
Zj:l 5k,jde (z — Xk,j)
A9 —
hy Q11 + @2 9k

Arguing as in the estimation of v;, when u = ug in section 3 of K-S, we can find a modification
U of 0y, which satisfies the assumptions of Lemma 2.2.1, such that Assumption 2.2.1 holds.

The following lemma gives the needed properties of 6]%.

Lemma 2.4.1. Suppose (el), (e2), (e3), (e4), (91), (92), (k), (m), (p), (u), (v), and (w3)

hold. Then for each k = 1,2,

sup |&,%,(9c) - a,%(x)\ =o0p(1), wunder Hy,Hy, and Hyy, (2.25)
x€l

and 6]% is essentially CCV on T for az, under Ho, Hy, and Hiy.
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Proof. First we give the proof of (2.25) under Hyy. The case ¢ = 0 corresponds to the

result under Hy. For £ = 1,2 and = € Z, define

g

. 1

i e(x) == P > Ok (x = X)),
=1

n
é S e (Xi )0k 1 Kep (2 — X )

ﬂk7c($) = i (CL’) )
k,c
n
) # S ek bk Key (v — X )
6]€,C<I) = B (LE) ’
k.c

while ﬁk,d(x), fi,d(x), and & g(z) can be defined similarly when the bandwidth d, is used

instead of ¢;. One can write &,%(x) — 0,%(:5) into the sum of the following terms:

n _
+ Zjil(#k(Xk,j) - Mk,c(Xk,j))25k,lek (z — Xg5)

n
Zpi(x) = K 2 ,
hy.a(x)
n _
Ziole) = # i (Xi )0 Kay (= Xy 5)
w2 hi.q(z)
n _
% > iE ) ek ke (Xe )0k, Kay (v — X )
hi.a(x)
1 % 2
A
- — 0},
hy a(z)
= Zpo1— Zk22+ Zk23: say,

n _ _
% Zjil(uk(Xk,j) = ke, e( Xk i) (€ j — €, (X )0k Ky (2 — X 5)
Zy3(w) = - :
hy.a(x)

By (m), (p), and (u), we have sup,c7 Zj, 1(7) < 6320% +op(n™1) = 0p(1). (2.13) and (2.14)

in Lemma 2.2.2 leads to the result
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sup Z91(z) < max 5kc(XkJ>

n 2
. ) 2 lnr Lok endn K, (v — Xi )| "
< - su =0 )
x€T hk’c<$) x€T hQ(x) P

From (2.13) and (2.15) in Lemma 2.2.2, one obtains

|% 2y et 0k jKay (= Xy j) — of(2)hy. ()]

SUP!Zk:Q?,( )| < sup
x€el el hk( )
X sup Ahk@) —i—supok( x) () —1‘
el hk,d(x) el el hk d( )

= 0p(1)op(1) + 0p(1)op(1) = 0p(1).

By C-S inequality, we have sup,c7 [Z), 2 2(7)| = 0p(1) and sup ez |Z) 3(z)| = op(1). There-

fore, sup ez |[7,%(x) - 0]%(510)| = 0p(1) holds under Hyy.

Under Hy of (2.2), the above proof remain the same except that of Z1 1(x). By (m), (q),

(u), and compactness of Z,

sup Z11(x)
x€el
< sup  (p1(z) — pa (o +1))?
2€Z,0<t<cq
< sup  2(pa(x) —pa(r )2+ sup 2(E(x) — E(x +ta))?
2€Z,0<t1<q 2€L,0<t9<cq
< 25+ sup 2(E(w) =&z +12)7 = op(1).

2€L,0<t9<cq

Therefore one has (2.25) under Hy. The rest of the results in this lemma can be proved in a

routine fashion. Thus the proof is complete.
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To estimate 72, let Ui, afk,Bk} and 7 be as in assumption (z). Define

A Sk Oy i EKey (= X, )
Ak(ﬁl}) — ]7n1k ] CE 5] , = R,
Zj:l Koy (v = Xp j)
1 &
gk(l’) = nk;ﬂ-k; . 1{Xk,jelk,l}, YIS Ik',iJ k = 172
7=1

By Remark 3.2 in K-S, the function gp(z) is a simple bin-estimate, which is uniformly
consistent for gj(z) for z € Z under condition (z). Recall 7, from (2.9). Because 72 from

(2.17) can be expressed as

2 2 2 2
ri(z)oi(z)g1(v) / r3(w)oy(z)g2(x)
= d d
T ‘-’1/ Ay T Ao(z)
_, /vﬂx)a%(x)g%( detq /v%<x>o%<x>g§<x>dx
! Ay () 2 Ao(z) ’
we consider two estimators of 72:
1 <X 72(Xq)62(X1 ) 1 <2 72(Xy )62(Xy ;)
%zqu_z 1\41,0)91\ A1 QQ_Z 2\22,5)92 2])
i Ap(Xyy) ne = Aa(Xaj)
. _qlii@1<X1@>al<xl,z->a%<xl,z> i”iaaxgy)a—%(x?d)g%(&p
’ n Ay(Xy,) n2 5 Ag(Xa,5)

These estimators have the following properties, which can be proved in a routine fashion.
Lemma 2.4.2. Suppose the assumptions of Lemma 2.4.1, (wl), and (z) hold. Then

2

2 =724 op(1), and 72 =124 op(1)

hold under Hy, Hy, and Hyy.
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2.5 Simulations

In this section we investigate the behavior of the empirical size and power of the test V defined
in (2.22) against local alternatives and fixed alternatives. To be specific, let Z = [0, 1], Z1 and
Z9 be independent standard normal random variables, and independent of { X1, X2, 41,2}
Recall 44 defined in (2.24). Design and error distributions and functions including ¢, &, u,

o, A, 1 =1,2, are chosen as follows:

X1 ~ N(0, (0.7)2), Xo ~N(0,1), Xjand X5 are independent;

A
el = ——1 ey = Zy(1+ X3);

where  Dq(z) = {1 +exp(=0.5 — 0.52)} ", Dy(x) = {1+ exp(—2 — 22)} 1,
or Az)=1, [=1,2, for complete responses;

o(z) = ¢j(x), j=0,1,23,

where ¢o(z) =0, ¢1(z) = (z+1)%, ¢o(x) =2¢", ¢3(x) = 4cos(x);

{(x) =¢j(x), j=1,2,3, where &j(v)=¢;(z);

w(z) =uj(z), j=1,2,3 where uj(z)=1p;(x)¢;(z),

or u(e) =uf(z), j=1,2,3, where uj(z)= iy, (v);

po(x) = log (z? + 0.5).

The kernel is chosen to be K (u) := %(1 —u?)I{|u| < 1}, with bandwidths @ = p; N~2/3,
b —2/3 ~1/4 ‘
g = pony ', and ¢p = d = p3n, ', k= 1,2, where p;, i = 1,2,3, are constants. The
sample sizes are chosen to be ny = ng = 50, 100, 200. All simulations are based on 2000
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replications. The nominal level is @ = 0.05. The empirical sizes and powers are computed

by the relative frequency of the event {N1/27/# > 1.645}.

Table 2.1: Empirical sizes of V, with coefficients p1, P2, p3, and Ay = Dy, 1 =1,2.

(pl,pg,p3) ny = ng = 50 ny = ng = 100 ny = ng = 200
u (5,.2,.8) .066 057 .050
u; (5,.2,.8) 071 .059 052
uy (8,5,.8) 077 .053 051
s (2,5, 8) .066 062 .052
us (2,.2,.5) 072 058 .050
s (2,5,.8) 1068 055 049

Table 2.2: Empirical sizes of V, with coefficients p1, p2, p3, and A;=1,1=1,2.

(pl,pg,pg) ny = ng = 50 ny = ng = 100 ny = ng = 200
u (.8,.5,.8) 073 .066 052
ul (8,.8,.8) 085 079 052
Us (2,.2,.8) 072 .065 .049
u; (5,.8,.8) .084 074 051
us (:2,.2,.8) 071 061 .052
ub (:2,.2,.8) 063 073 .050

Before we calculate the empirical powers, we choose suitable coefficients (p1, p2, p3) in
bandwidths for each u and the corresponding test, in order to make the empirical size close
to 0.05 when ny = n9 = 200. To find such coefficients, we compare the empirical sizes
among all choices of p; € {0.2,0.5,0.8}, i = 1,2,3, and pick the one which is closest to
0.05 at n; = ng = 200. For each wu, empirical sizes with the best choice of (p1,p2, p3) at
n = 50 and 100 are also listed. These results of data with responses missing at random,
ie. Ay = Dy, Il = 1,2, are put in Table 2.1; while results of complete data set, A; = 1,
[ =1,2, are reported in Table 2.2. Notice that these choices of p;s are just fairly good ones
among many others. There doesn’t really exist best choices. The behavior of V under null
hypothesis will not be affected by the choices of these coefficients for large sample sizes ng

and no.
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Table 2.3: Empirical powers of V with p1, p2, p3 in Table 2.1, and A; = Dy, [ =1, 2.

¢ ny = N9 U= Uy u=uj U = Usy U= uj U = us U= uj
50 .268 .183 .281 .230 .242 .210
o1 100 .238 .230 .265 .255 .233 228
200 .238 .308 .269 341 .215 .282
50 420 .268 .436 318 .356 .308
P2 100 .384 281 .388 .339 .370 .324
200 379 .357 .389 .399 .351 411
50 431 .292 472 .344 .436 371
b3 100 402 .303 403 .368 427 .395
200 410 .379 .388 421 444 .464

Table 2.4: Empirical powers of V with p1, p2, p3 in Table 2.2, and A; =1,1=1,2.

¢ ny = N9 U= Uy u=uj U = Us U= uj U = us U = u3
50 .339 .345 .238 .325 .234 .207
o1 100 295 .302 .247 .308 215 .185
200 .280 .303 .236 .282 237 .201
50 519 .509 .382 503 .360 314
103 100 472 .503 .353 ATT .376 310
200 .429 .468 373 494 373 .329
50 .495 .b41 1401 .542 .448 .405
o3 100 434 .490 .380 .507 .445 420
200 404 483 376 503 .455 .404

Table 2.5: Empirical sizes and powers of V with pr=pa=p3=land A;=D;, 1 =1,2.

¢ ny = N9 U =u u=uj U = U U= uj U = U3 U = u3
50 .070 .070 .068 .080 .065 .065
do 100 .055 .060 .060 .052 .058 .058
200 .056 .056 .054 .054 .060 .059
50 .280 .293 .292 .299 .281 .252
03] 100 .262 .288 .264 273 .258 .241
200 .243 .275 .244 .280 .242 .230
50 .439 .459 .450 457 .439 412
103 100 .405 448 419 434 418 .394
200 .394 .440 374 .458 .396 411
50 410 .463 417 474 .503 521
o3 100 .362 .439 391 .489 488 .508
200 .332 454 .361 490 476 .516
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Table 2.6: Empirical sizes and powers of V with pr=pa=p3=1land A;=1,1=1,2.

10} ny = N9 U= Uy u=uj U = Usy U= uj U = us u = uj
50 .068 .073 .076 .088 .063 .078
oo 100 .061 .074 .056 .061 .052 .054
200 .060 .059 .045 .066 .041 .062
50 .305 .331 315 .340 .301 274
o1 100 .294 .307 .290 315 .266 .288
200 .263 317 281 .320 .265 .253
50 AT7 .525 .494 525 .500 .488
103 100 .452 .524 .456 514 470 467
200 .439 472 463 .509 474 471
50 .449 537 474 b7l .553 .611
o3 100 .394 .537 412 .557 .541 .601
200 .364 .533 .392 541 .535 .610

Table 2.3 and 2.4 give the empirical powers of V against Hin of (2.1), with respect to
missing data and complete data, respectively. These empirical powers of each test with
corresponding u are calculated with the coefficients (p1, p2, p3) in bandwidths given in Table

2.1 and 2.2.

Table 2.5 and 2.6 compare the empirical powers of V with different u's against Hyy, by
choosing common coefficients p; = po = p3 = 1 in bandwidths, with respect to missing
data and complete data, respectively. In each table, one can see that the empirical sizes are
getting closer to 0.05 as the sample sizes increase. For each ¢ = ¢;, j = 1,2,3, the test 1%

with u = u’; has the largest, or one of several largest, empirical power among all choices of

*

u. This is consistent with the result in Remark 2.3.1. Moreover, for each j =1,2,3, u = u;

has larger empirical powers than u = w; for all choices of ¢. From comparison between
two tables, one can see that empirical powers of all these tests at three sample sizes of the
complete data’s are larger than those of the missing data’s, while their empirical sizes don’t

show much difference. It means that data missing probability affects the power of the test.

All of the empirical powers of V with above choices of u are 1, against Hy in (2.2) with
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§=¢&;, 7 =1,2,3, for both of the missing data and the complete data, and for all three

sample sizes. This result in turn shows the consistency of V.
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