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ABSTRACT

TESTING OF REGRESSION FUNCTIONS WHEN
RESPONSES ARE MISSING AT RANDOM

By

Xiaoyu Li

This thesis consists two chapters. The first chapter proposes a class of minimum dis-

tance tests for fitting a parametric regression model to a regression function when some

responses are missing at random. These tests are based on a class of minimum integrated

square distances between a kernel type estimator of a regression function and the parametric

regression function being fitted. The estimators of the regression function are based on two

completed data sets constructed by imputation and inverse probability weighting methods.

The corresponding test statistics are shown to have asymptotic normal distributions under

null hypothesis. Some simulation results are also presented.

The second chapter considers the problem of testing the equality of two nonparametric

regression curves against a one-sided alternatives based on two samples with possibly distinct

design and error densities, when responses are missing at random. This chapter proposes

a class of tests using imputation and covariate matching. The asymptotic distributions of

these test statistics are shown to be Gaussian under null hypothesis and a class of local

nonparametric alternatives. The consistency of these tests against a large class of fixed

alternatives is also established. This chapter also includes a simulation study, which assesses

the finite sample behavior of a member of this class of tests.
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Chapter 1

Minimum Distance Regression Model

Checking when Responses are Missing

At Random

1.1 Introduction

In this chapter, we discuss a class of minimum distance tests for fitting a parametric model

to the regression function based on imputation and inverse probability weighting method,

when responses are missing at random. To be specific, let X be an explanatory variable of

dimension d with d ≥ 1, Y be a response variable of dimension 1 with E|Y | < ∞, δ be an

indicator for whether the response is missing or observed, i.e. δ = 1 if Y is observed, and

δ = 0 if Y is missing. The missing mechanism of the data is missing at random, in which δ

and Y are conditionally independent, given X, i.e. P (δ = 1|Y,X) = P (δ = 1|X), a.s.; see
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Little and Rubin (1987). Let

µ(x) = E(Y |X = x), x ∈ Rd,

denote the regression function. Consider the regression model

Y = µ(X) + ε (1.1)

with response missing at random. Let {mθ(·) : θ ∈ Θ}, Θ ⊂ Rq, be a given parametric

model and I be a compact subset of Rd. The problem of interest is to test the hypothesis

H0 : µ(x) = mθ0
(x) for some θ0 ∈ Θ, and for all x ∈ I,

H1 : H0 is not true,

based on the random sample {(Xi, δiYi) : i = 1, 2, · · · , n} from the distribution of (X, δY )

in model (1.1). One is also interested in finding the parameter θ ∈ Θ that best fits the data

under the null hypothesis.

Regression model checking when data are completely observed is a classical problem in

statistics. Many interesting results are available, see, e.g., Eubank and Spiegelman (1990),

Eubank and Hart (1992, 1993), Härdle and Mammen (1993), Zheng (1996), Hart (1997),

Stute et al. (1998), Koul and Ni (2004), Koul and Song (2009), Koul (2011), among others.

Hart (1997) summarized numerous testing procedures. Koul and Ni (2004) (K-N) proposed

a class of tests based on certain minimized L2 distances between a nonparametric estimator

of the regression function and the parametric model being fitted. They proved asymptotic
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normality of the minimum distance estimators and the proposed test statistics under the

fitted model, and consistency of the proposed tests against a class of fixed alternatives. Koul

and Song (2009) extended this minimum distance methodology to the regression model with

Berkson measurement errors. They also obtained the asymptotic power of the proposed

tests against a class of local alternatives. Koul (2011) implemented the minimum distance

methodology on classical regression model with design non-random and uniform on [0, 1].

Sun and Wang (2009) considered the model checking problem when data are missing at ran-

dom. They constructed complete data sets by imputation and inverse probability weighting

methods, and proposed two score-type and two empirical process based test statistics. The

asymptotic behaviors of these test statistics were investigated under the null hypothesis and

local alternatives.

In this chapter we focus on adapting the minimum distance testing method of K-N to

missing data at random setup when the data are completed by the imputation and inverse

probability weighting methods. To describe the testing procedure, we need to estimate µ(x).

Since, under H0, µ is parametric, we only need to estimate θ0 at
√
n-consistent rate. Let α̂n

be such an estimator of θ0 based on the random sample. A suggested choice of α̂n is given in

Theorem 1.4.1, Section 1.4 below. Let K̃ be a symmetric kernel function on [−1, 1]d, b = bn

be a bandwidth sequence of positive numbers, K̃b(y) := b−dn K̃(y/bn), y ∈ Rd; and let for

x ∈ Rd,

∆(x) = P (δ = 1|X = x), and ∆̂n(x) =

∑n
i=1 δiK̃b(x−Xi)∑n
i=1 K̃b(x−Xi)

.

Note that ∆̂n(x) is the Nadaraya-Watson kernel estimator of ∆(x). We construct two com-

plete data sets {(Xi, Ŷij), i = 1, · · · , n}, j = 1, 2, by imputation and inverse probability
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weighting methods, respectively, where

Ŷi1 = δiYi + (1− δi)mα̂n(Xi), i = 1, · · · , n; (1.2)

Ŷi2 =
δi

∆̂n(Xi)
Yi +

(
1− δi

∆̂n(Xi)

)
mα̂n(Xi), i = 1, · · · , n. (1.3)

To proceed further, let K and K∗ be kernel functions on [−1, 1]d, h = hn and w = wn be

window width sequences of positive numbers, G be a σ-finite measure on Rd with Lebesgue

density g. Assume the design variable X has a uniformly continuous Lebesgue density f

that is bounded from below on I. Define

f̂h(x) = n−1
n∑
i=1

Kh(x−Xi), f̂w(x) = n−1
n∑
i=1

K∗w(x−Xi), x ∈ Rd,

where hn ∼ n−a with 0 < a < min(1/(2d), 4/(d(d + 4))), and wn ∼ (log n/n)1/(d+4).

Adaptive versions of the L2 distances proposed in K-N in the current setup are

T̂nj(θ) =

∫
I

[
n−1

n∑
i=1

Kh(x−Xi)(Ŷij −mθ(Xi))
]2
{f̂w(x)}−2dG(x), θ ∈ Rq,

and the corresponding minimum distance estimators are

θ̂nj := arg min
θ∈Θ

T̂nj(θ), j = 1, 2.

The proposed tests of H0 are to be based on T̂nj(θ̂nj), j = 1, 2.

To proceed further, we need more notation. Let

ε̂ij := Ŷij −mθ̂nj
(Xi), j = 1, 2, (1.4)
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Ĉnj := n−2
n∑
i=1

∫
I
K2
h(x−Xi)ε̂2

ij{f̂w(x)}−2dG(x),

Γ̂nj := 2hdn−2
∑
i6=k

(∫
I
Kh(x−Xi)Kh(x−Xk)ε̂ij ε̂kj{f̂h(x)}−2dG(x)

)2
,

D̂nj := nhd/2(T̂nj(θ̂nj)− Ĉnj)/Γ̂
1/2
nj , j = 1, 2.

For each j = 1, 2, the proposed test rejects H0 whenever |D̂nj | is large. Asymptotic normality

of n1/2(θ̂nj − θ0) and D̂nj , j = 1, 2, under H0 are established in Section 1.4 and Section 1.5,

respectively. Consistency of θ̂nj , j = 1, 2, under H0 is given in Section 1.3. Assumptions and

preliminary lemmas needed to prove all these results are stated in Section 1.2, while Section

1.6 is devoted to simulation studies.

In the sequel, we write h for hn, w for wn, and b for bn; the integrals with respect to

the G-measure are understood to be over the set I; all limits are taken as n → ∞, unless

specified otherwise; for any two sequences of real numbers an and bn, notation an ∼ bn

means that an/bn → 1; the convergence in probability is denoted by →p, in distribution, by

→d, and almost surely, by →a.s.; the r-dimension normal distribution with mean vector a

and covariance matrix B is denoted by Nr(a,B), and N (a,B) = N1(a,B). Denoted by Φ

the standard normal cumulative distribution function, and zα the (1− α)-quantile.

1.2 Assumptions

Here we shall state the needed assumptions.

(e1) (Xi, δiYi);Xi ∈ Rd, Yi ∈ R, δi = 0 or 1, i = 1, 2, · · · , n, are i.i.d. random vectors

with δ = 1, if Y is observed, and δ = 0, if Y is missing; δ and ε are conditionally

independent, given X.
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(e2) E(ε|X = x) = 0, Eε2 < ∞. The function σ2(x) := E(ε2|X = x) is a.e. in (G)

continuous on I, and ∆(x) := E(δ|X) = P (δ = 1|X = x) is positive and Lipschitz-

continuous of order 1 on an open interval containing I.

(e3) E|ε|2+δ0 <∞, for some δ0 > 0.

(e4) Eε4 <∞.

(f1) The design variable X has a uniformly continuous Lebesgue density f that is

bounded from below on an open interval containing I.

(f2) The density f is twice continuously differentiable with a compact support.

(g) G is a σ-finite measure on Rd and has a continuous Lebesgue density g.

(k1) The kernels K and K∗ are positive symmetric square integrable densities on

[−1, 1]d. In addition, K∗ satisfies Lipschitz-continuity of order 1.

(k2) The kernel K̃ is positive symmetric square integrable density on [−1, 1]d, satisfying

Lipschitz-continuity of order γ, γ > 0. K̃(u) attains its maximum at u = 0.

(m1) For each θ, mθ(x) is a.s. continuous in x w.r.t. integrating measure G.

(m2) The parametric family of models mθ(x) is identifiable w.r.t. θ, i.e., if mθ1
(x) =

mθ2
(x), for almost all x(G), then θ1 = θ2.

(m3) For some positive continuous function ` on I and for some β > 0,

|mθ2
(x)−mθ1

(x)| ≤ ‖θ2 − θ1‖β`(x), ∀θ2, θ1 ∈ Θ, x ∈ I.

(m4) The true parameter θ0 is an inner point of Θ. For every x, mθ(x) is differentiable

in θ in a neighborhood of θ0 with the vector of derivatives ṁθ(x), such that for every
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ε > 0, k <∞,

lim sup
n

P
(

sup

1≤i≤n,
√
nhd‖θ−θ0‖≤k

mθ(Xi)−mθ0
(Xi)− (θ − θ0)T ṁθ0

(Xi)

‖θ − θ0‖
> ε
)

= 0.

(m5) The vector function x 7→ ṁθ0
(x) is continuous in x ∈ I and for every ε > 0,

there is an Nε <∞ such that for every 0 < k <∞,

P
(

max
1≤i≤n,(nhd)1/2‖θ−θ0‖≤k

h−d/2‖ṁθ(Xi)− ṁθ0
(Xi)‖ ≥ ε

)
≤ ε, ∀n > Nε.

(m6) n−1∑n
i=1 δiṁθ0

(Xi)ṁ
T
θ0

(Xi), n ≥ q, and E[δṁθ0
(X)ṁT

θ0
(X)] are positive defi-

nite.

(a) The estimator α̂n is
√
n-consistent for θ0 under H0.

(b1) nbdn →∞, nbd+1
n → 0.

(b2) bn ∼ n−r, where 1/(d+ 1) < r < 1/d.

(h1) hn → 0.

(h2) nh2d
n →∞.

(h3) hn ∼ n−a, where 0 < a < min(1/(2d), 4/(d(d+ 4))).

(h4) hn ∼ n−a, where 0 < a < 1/d− r, with r in (b2).

(w) wn = an(log n/n)1/(d+4), an → a0 > 0.

Note that (h3) implies (h1) and (h2), (h4) implies (h3), and (b2) implies (b1). Among these

assumptions, (e3), (e4), (f1), (f2), (g), (k1), (m1)-(m5), (h1)-(h3), (w), and part of (e1) and

(e2), are similar as in K-N when no data are missing; conditions on δ and ∆ in (e1) and (e2)
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are for the missing data at random setup; (m6) and (a) are used for the imputation method,

while (k2), (a), (b1), (b2), and (h4) are for the inverse probability weighting method. An

example of r in (b2) and a in (h4) is r = (2d+ 1)/(2d(d+ 1)), a = 1/(2d(d+ 1)).

We need the following notation in the proofs later. For i = 1, · · · , n, j = 1, 2, x ∈ Rd,

define

ε∗i1 := δiεi, ε∗i2 :=
δi

∆(Xi)
εi, (1.5)

Ỹi1 := mθ0
(Xi) + ε∗i1, Ỹi2 := mθ0

(Xi) + ε∗i2,

Khi(x) := Kh(x−Xi), K∗wi := K∗w(x−Xi), K̃bi(x) := K̃b(x−Xi),

f̂h(x) := n−1
n∑
i=1

Khi(x), f̂w(x) := n−1
n∑
i=1

K∗wi(x), f̂b(x) := n−1
n∑
i=1

K̃bi(x),

dψ(x) := {f(x)}−2dG(x), dψ̂h(x) := {f̂h(x)}−2dG(x), dψ̂w(x) := {f̂w(x)}−2dG(x),

µn(x, θ) := n−1
n∑
i=1

Khi(x)mθ(Xi), µ̇n(x, θ) := n−1
n∑
i=1

Khi(x)ṁθ(Xi),

Zn(x, θ) := n−1
n∑
i=1

Khi(x)(mθ(Xi)−mθ0
(Xi)),

µ̇h(x) := Eµ̇n(x, θ0) = EKh(x−X)ṁθ0
(X),

µ̇nδ(x, θ) := n−1
n∑
i=1

Khi(x)(1− δi)ṁθ(Xi),

µ̇hδ(x) := Eµ̇nδ(x, θ0) = EKh(x−X)(1− δ)ṁθ0
(X),

Unj(x, θ) := n−1
n∑
i=1

Khi(x)(Ỹij −mθ(Xi)),

Ûnj(x, θ) := n−1
n∑
i=1

Khi(x)(Ŷij −mθ(Xi)),

Unj(x) := Unj(x, θ0) = n−1
n∑
i=1

Khi(x)ε∗ij ,

Tnj(θ) :=

∫ [
n−1

n∑
i=1

Khi(x)(Ỹij −mθ(Xi))
]2
dψ(x), θ ∈ Rq,

8



T̃nj(θ) :=

∫ [
n−1

n∑
i=1

Khi(x)(Ỹij −mθ(Xi))
]2
dψ̂w(x), θ ∈ Rq,

θ̃nj := arg min
θ∈Θ

T̃nj(θ), ε̃ij := Ỹij −mθ̃nj
(Xi),

Ãnj :=

∫ [
n−1

n∑
i=1

Khi(x)(Ŷij − Ỹij)
]2
dψ(x),

Cnj := n−2
n∑
i=1

∫
K2
hi(x)(Ỹij −mθ0

(Xi))
2dψ(x),

r̂n(x) :=
1

∆̂n(x)
− 1

∆(x)
, r̂ni := r̂n(Xi),

un := α̂n − θ0, dni := mα̂n(Xi)−mθ0
(Xi)− uTn ṁθ0

(Xi).

The following lemmas are found useful in proofs later. Lemma 1.2.1 is facilitated by Mack

and Silverman (1982), and Lemma 1.2.3 is derived by Theorem 3 of Collomb and Härdle

(1986).

Lemma 1.2.1. Under the conditions (f1), (k1), (h1), and (h2), the following hold.

sup
x∈I
|f̂h(x)− f(x)| = op(1), (1.6)

sup
x∈I
|f̂w(x)− f(x)| = op(1), (1.7)

sup
x∈I

∣∣∣ f(x)

f̂w(x)
− 1
∣∣∣ = op(1). (1.8)

Lemma 1.2.2. (Theorem 2.2 part (2), Bosq (1998)) Under the assumptions (f2), (k1), and

(w), we have for ∀k > 0, and k ∈ N,

(logk n)−1(n/ log n)2/(d+4) sup
x∈I

∣∣∣f̂w(x)− f(x)
∣∣∣→ 0, a.s. (1.9)
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Lemma 1.2.3. Suppose (e2), (f2), (k2), and (b1) hold, then

sup
x∈I
|f̂b(x)− f(x)| = op(1), (1.10)

sup
x∈I
|∆̂n(x)−∆(x)| = op(1), (1.11)

sup
x∈I

∣∣∣ 1

∆̂n(x)
− 1

∆(x)

∣∣∣ = op(1), (1.12)

n1/2bd/2(log n)−1/2 sup
x∈I

∣∣∣ 1

∆̂n(x)
− 1

∆(x)

∣∣∣ = Op(1). (1.13)

1.3 Consistency of the minimum distance estimators

In this section we prove the consistency of the minimum distance estimators θ̂nj , j = 1, 2,

under H0. To state the results, we need Lemma 3.1 in K-N as a preliminary reproduced

here for the sake of completeness. Let L2(G) denote a class of square integrable real valued

functions on Rd with respect to G. Define

ρ(ν1, ν2) :=

∫
(ν1(x)− ν2(x))2dG(x), ν1, ν2 ∈ L2(G),

and the map

M(ν) := arg min
θ∈Θ

ρ(ν,mθ), ν ∈ L2(G).

Lemma 1.3.1. (Koul and Ni (2004)) Let m satisfy conditions (m1)-(m3). Then the following

hold.

(a) M(ν) always exists, ∀ν ∈ L2(G).
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(b) If M(ν) is unique, then M is continuous at ν in the sense that for any sequence

of {νn} ∈ L2(G) converging to ν in L2(G), M(νn)→M(ν), i.e.,

ρ(νn, ν)→ 0 implies M(νn)→M(ν) as n→∞.

(c) M(mθ(·)) = θ, uniquely for ∀θ ∈ Θ.

We now proceed to state and prove the consistency of θ̂nj , j = 1, 2.

Theorem 1.3.1. Under H0, (e1), (e2), (f1), (k1), (m1)-(m4), (a), (h1), and (h2),

θ̂nj →p θ0, j = 1, 2.

Proof. The basic idea of the proof is the same as in K-N, Theorem 3.1; Only details

with respect to Ŷij − Ỹij , i = 1, · · · , n, are different. By part (c) in Lemma 1.3.1, one has

θ̂nj =M(m
θ̂nj

), j = 1, 2, and θ0 =M(mθ0
). Then it suffices to prove ρ(m

θ̂nj
,mθ0

) = op(1),

j = 1, 2, by part (b1) in Lemma 1.3.1. Define

m̃nj(x) := n−1
n∑
i=1

Khi(x)Ỹij/f̂w(x), m̂nj(x) := n−1
n∑
i=1

Khi(x)Ŷij/f̂w(x),

R̂nj(θ) =

∫
[m̂nj(x)−mθ(x)]2dG(x), θ ∈ Rq, β̂nj := arg min

θ∈Θ
R̂nj(θ),

Cn(θ) :=

∫
[µn(x, θ)− f̂w(x)mθ]

2dψ̂w(x).

By the fact that

ρ(m
θ̂nj

,mθ0
) ≤ 2[ρ(m

θ̂nj
, m̂nj) + ρ(m̂nj ,mθ0

)] = 2[R̂nj(θ̂nj) + R̂nj(θ0)],
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it suffices to show

R̂nj(θ0) = op(1), j = 1, 2, (1.14)

R̂nj(θ̂nj) = op(1), j = 1, 2. (1.15)

If we can prove (1.14) and the following result

sup
θ∈Θ
|T̂nj(θ)− R̂nj(θ)| = op(1), j = 1, 2, (1.16)

we can obtain (1.15). This is because the definition of β̂nj and (1.14) lead to the result

R̂nj(β̂nj) = op(1), which together with (1.16) leads to T̂nj(β̂nj) = op(1); by the definition of

θ̂nj , one has T̂nj(θ̂nj) = op(1); this result and (1.16) bring the claim (1.15). Therefore, we

only need to prove (1.14) and (1.16).

Recall Ãnj from (1.5). To prove (1.14), note that

R̂nj(θ0) =

∫
[f̂w(x)(m̂nj(x)− m̃nj(x)) + Unj(x)

+µn(x, θ0)− f̂w(x)mθ0
(x)]2dψ̂w(x)

≤ 3

∫
[m̂nj(x)− m̃nj(x)]2dG(x) + 3

∫
U2
nj(x)dψ̂w(x)

+3

∫
[µn(x, θ0)− f̂w(x)mθ0

(x)]2dψ̂w(x)

≤ 3(1 + sup
x∈I
|f2(x)/f̂2

w(x)− 1|)Ãnj + 3T̃nj(θ0) + 3Cn(θ0), j = 1, 2,

By Fubini, the continuity of f , σ2, and ∆, assured by (e2) and (f1), and by (k1) and (h2),

we have
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E

∫
U2
n1(x)dψ(x) = n−1

∫
EK2

h(x−X)∆(X)σ2(X)dψ(x) = O((nhd)−1),

E

∫
U2
n2(x)dψ(x) = n−1

∫
EK2

h(x−X){∆(X)}−1σ2(X)dψ(x) = O((nhd)−1),

so that Tnj(θ0) =
∫
U2
nj(x)dψ(x) = Op((nh

d)−1), j = 1, 2. Together by (1.8), we have

T̃nj(θ0) ≤ sup
x∈I
|f(x)/f̂w(x)|2Tnj(θ0) = Op((nh

d)−1), j = 1, 2.

The claim Cn(θ0) = op(1) can be derived by the same argument as that of proving (3.5) in

K-N. Note that for i = 1, · · · , n,

Ŷi1 − Ỹi1 = (1− δi)(mα̂n(Xi)−mθ0
(Xi)), (1.17)

Ŷi2 − Ỹi2 = r̂niδiεi +
(

1− δi
∆(Xi)

)
(mα̂n(Xi)−mθ0

(Xi))

−r̂niδi(mα̂n(Xi)−mθ0
(Xi)).

Recall un and dni from (1.5). By calculation in (3.9) in K-N, (m4), and (a), we have

Ãn1 ≤ 2‖un‖2 max
1≤i≤n

|dni|2

‖un‖2

∫
f̂2
h(x)dψ(x)

+2‖un‖2
∫ [

n−1
n∑
i=1

Khi(x)(1− δi)‖ṁθ0
(Xi)‖

]2
dψ(x)

= op(1), (1.18)

Ãn2 ≤ 3

∫ [
n−1

n∑
i=1

Khi(x)r̂niδiεi

]2
dψ(x)

+3

∫ [
n−1

n∑
i=1

Khi(x)
(

1− δi
∆(Xi)

)
(mα̂n(Xi)−mθ0

(Xi))
]2
dψ(x)
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+3

∫ [
n−1

n∑
i=1

Khi(x)r̂niδi(mα̂n(Xi)−mθ0
(Xi))

]2
dψ(x)

≤ 3

∫ [
n−1

n∑
i=1

Khi(x)r̂niδiεi

]2
dψ(x)

+6‖un‖2 max
1≤i≤n

d2
ni

‖un‖2

∫ [
n−1

n∑
i=1

Khi(x)
(

1 +
δi

∆(Xi)

)]2
dψ(x)

+6‖un‖2
∫ [

n−1
n∑
i=1

Khi(x)
(

1− δi
∆(Xi)

)
‖ṁθ0

(Xi)‖
]2
dψ(x)

+6‖un‖2 max
1≤i≤n

d2
ni

‖un‖2
sup

1≤i≤n
r̂2
ni

∫ [
n−1

n∑
i=1

Khi(x)δi

]2
dψ(x)

+6‖un‖2 sup
1≤i≤n

r̂2
ni

∫ [
n−1

n∑
i=1

Khi(x)δi‖ṁθ0
(Xi)‖

]2
dψ(x)

= op(1), (1.19)

Therefore, together with (1.8) and (1.12), we obtain (1.14). To prove (1.16), write

T̂nj(θ)− R̂nj(θ)

=

∫ [
m̂nj(x)− µn(x, θ)

f̂w(x)

]2
dG(x)−

∫
[m̂nj(x)−mθ(x)]2dG(x)

= −
∫ [µn(x, θ)

f̂w(x)
−mθ(x)

]2
dG(x)

−2

∫ [
m̂nj(x)− µn(x, θ)

f̂w(x)

][µn(x, θ)

f̂w(x)
−mθ(x)

]
dG(x), j = 1, 2.

By Cauchy-Schwarz (C-S) inequality, we have

sup
θ∈Θ
|T̂nj(θ)− R̂nj(θ)| ≤ sup

θ∈Θ
Cn(θ) + 2 sup

θ∈Θ
T̂

1/2
nj (θ)C

1/2
n (θ), j = 1, 2.

Hence it suffices to prove
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sup
θ∈Θ

Cn(θ) = op(1), sup
θ∈Θ

T̂nj(θ) = Op(1), j = 1, 2. (1.20)

One can prove the first claim in (1.20) by the same argument as in proving (3.14) in K-N.

To prove the second part of (1.20), note that by adding and subtracting Ỹij to the i-th

summand in T̂nj(θ), we obtain

T̂nj(θ) ≤ 2(1 + sup
x∈I
|f2(x)/f̂2

w(x)− 1|)
(
Ãnj +

∫
[Unj(x)− Zn(x, θ)]2dψ(x)

)
≤ 2(1 + sup

x∈I
|f2(x)/f̂2

w(x)− 1|)

×
(
Ãnj + 2

∫
U2
nj(x)dψ(x) + 2

∫
Z2
n(x, θ)dψ(x)

)
.

From (3.16) in K-N, one obtains supθ∈Θ

∫
Z2
n(x, θ)dψ(x) = Op(1). By (1.8) and Anj = op(1),∫

U2
nj(x)dψ(x) = op(1) in the argument above, we have supθ∈Θ T̂nj(θ) = Op(1), j = 1, 2.

Thus the proof of the theorem is complete.
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1.4 Asymptotic distribution of the minimum distance

estimators under H0

This section states and proves the asymptotic normality of θ̂nj , j = 1, 2. To proceed further,

we need the following notation. Let

Σ0 :=

∫
ṁθ0

(x)ṁT
θ0

(x)g(x)dx, (1.21)

Σ∗0 :=

∫
(1−∆(x))ṁθ0

(x)ṁT
θ0

(x)g(x)dx,

Σ1 :=

∫
σ2(x)∆(x)ṁθ0

(x)ṁT
θ0

(x)g2(x)(f(x))−1dx

Σ∗1 + 2
(∫

σ2(x)∆(x)ṁθ0
(x)ṁT

θ0
(x)g(x)dx

)
Σ̃−1

0 Σ∗0

+Σ∗0Σ̃−1
0

(∫
σ2(x)∆(x)ṁθ0

(x)ṁT
θ0

(x)f(x)dx
)

Σ̃−1
0 Σ∗0,

Σ2 :=

∫
σ2(x)ṁθ0

(x)ṁT
θ0

(x)g2(x)(∆(x)f(x))−1dx,

Σ̃0 :=

∫
∆(x)ṁθ0

(x)ṁT
θ0

(x)f(x)dx, Σ̃n := n−1
n∑
i=1

δiṁθ0
(Xi)ṁ

T
θ0

(Xi),

S̃n := n−1
n∑
i=1

δiεiṁθ0
(Xi), Snj :=

∫
Unj(x)µ̇h(x)dψ(x), j = 1, 2.

Theorem 1.4.1. Suppose H0, (e1), (e2), (e3), (f1), (f2), (g), (k1), (m1)-(m5), (a), and

(h3) hold. Then,

n1/2(θ̂n1 − θ0) = Σ−1
0 n1/2{Sn1 + Σ∗0(α̂n − θ0)}+ op(1), (1.22)

where α̂n is in (1.2), and

n1/2(θ̂n1 − θ0) = Op(1). (1.23)
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If under H0, mθ0
(x) is a linear function of θ0, i.e. mθ0

(x) = θT0 l(x), for all x ∈ I, where

l(x) satisfies (m1)-(m3) and (m6), we can take α̂n = Σ̃−1
n {n−1∑n

i=1 δiYiṁθ0
(Xi)}, which

is the least square estimator and satisfies condition (a), and we obtain

n1/2(θ̂n1 − θ0) = Σ−1
0 n1/2{Sn1 + Σ∗0Σ̃−1

n S̃n}+ op(1). (1.24)

If (k2), (b2), and (h4) hold, one has

n1/2(θ̂n2 − θ0) = Σ−1
0 n1/2Sn2 + op(1). (1.25)

Consequently, (1.24) and (1.25) lead to

n1/2(θ̂nj − θ0)→d Nq(0,Σ−1
0 ΣjΣ

−1
0 ), j = 1, 2. (1.26)

Here Σ0, Σ∗0, Σ̃0, Σ̃n, S̃n, Snj, and Σj, j = 1, 2, are in (1.21).

Proof. We prove the theorem in two steps, following the routine to prove Theorem 4.1

in K-N.

Step 1. The first step is to show that

nhd‖θ̂nj − θ0‖2 = Op(1), j = 1, 2. (1.27)

Let Dn(θ) :=
∫
Z2
n(x, θ)dψ(x). Note that

nhdDn(θ̂nj) = nhd‖θ̂nj − θ0‖2
Dn(θ̂nj)

‖θ̂nj − θ0‖2
, j = 1, 2.
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It suffices to prove

nhdDn(θ̂nj) = Op(1), j = 1, 2, (1.28)

because the rest follows the a similar argument used in proving (4.4) in K-N, if the corre-

sponding θ̂n is changed to θ̂nj , j = 1, 2. Observe that

nhdDn(θ̂nj)

= nhd
∫

[Ûnj(x, θ̂nj)− Ûnj(x, θ0)]2dψ(x)

≤ 2nhd(1 + sup
x∈I
|f̂2
w(x)/f2(x)− 1|)

×
{∫

Û2
nj(x, θ̂nj)dψ̂w(x) +

∫
Û2
nj(x, θ0)dψ̂w(x)

}
≤ 4nhd(1 + sup

x∈I
|f̂2
w(x)/f2(x)− 1|)T̂nj(θ0)

≤ 8nhd(1 + sup
x∈I
|f̂2
w(x)/f2(x)− 1|)(1 + sup

x∈I
|f2(x)/f̂2

w(x)− 1|){Tnj(θ0) + Ãnj}.

By (1.7), (1.8), and Tnj(θ0) = Op((nh
d)−1), j = 1, 2, it suffices to prove nhdÃnj = Op(1),

j = 1, 2. This result hold for j = 1 because of (1.18). When j = 2, by (a), (1.12), and

calculation in (1.19), it suffices to show the following results:

nhd
∫ [

n−1
n∑
i=1

Khi(x)r̂niδiεi

]2
dψ(x) = Op(1). (1.29)

To prove (1.29), we have

nhdE

∫ [
n−1

n∑
i=1

Khi(x)r̂niδiεi

]2
dψ(x) = n−1hd

n∑
i=1

E
(
r̂niδ

2
i ε

2
i

∫
K2
hi(x)dψ(x)

)
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= hdE
(
δr̂2
n(X)ε2

∫
K2
h(x−X)dψ(x)

)
= h−dE

∫ ∫
K2((x− z)/h){f(x)}−2g(x)f(z){∆(z)}−1σ2(z)

×
[(∆(z)− 1)K̃(0) +

∑n
i=2(∆(z)− δi)K̃bi(z)

K̃(0) +
∑n
i=2 δiK̃bi(z)

]2
dzdx

=

∫ ∫
K2(u){f(z + uh)}−2g(z + uh)f(z){∆(z)}−1σ2(z)

×E
[(∆(z)− 1)K̃(0) +

∑n
i=2(∆(z)− δi)K̃bi(z)

K̃(0) +
∑n
i=2 δiK̃bi(z))

]2
dzdu,

where the last equality is derived by Fubini’s theorem. Let

Bn(z) := E
(∆(z)− 1)2K̃2(0) +

∑n
i=1(∆(z)− δi)2K̃2

bi(z)

[K̃(0) +
∑n
i=1 δiK̃bi(z))]2

, z ∈ Rd.

Let Ib be the bn-neighborhood of compact set I. By (e2), (f1), and (k1), it is sufficient

to show supz∈Ib Bn(z) = O(1). Let In(z) := K̃(0) +
∑n
i=1 δiK̃bi(z), z ∈ Ib, n ≥ 1, and

I0(z) ≡ K̃(0). For any z ∈ Ib, write Bn(z) = Bn1(z) +B2n(z) + 2Bn3(z)− 2Bn4(z), where

Bn1(z) := E
{

[In(z)]−2(∆(z)− 1)2K̃2(0)
}
,

Bn2(z) := E
{

[In(z)]−2
n∑
i=1

(∆(z)− δi)2K̃2
bi(z)

}
,

Bn3(z) := E
{

[In(z)]−2
∑

1≤i<j≤n
(∆(z)− δi)(∆(z)− δj)K̃bi(z)K̃bj(z)

}
,

Bn4(z) := E
{

[In(z)]−2(1−∆(z))K̃(0)
n∑
i=1

(∆(z)− δi)K̃bi(z)
}
.

Observe that

Bn1(z) ≤ (∆(z)− 1)2(K̃(0))2E[In(z)]−2,
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Bn2(z) ≤ nE(∆(z)− δn)2K̃2
bn(z)E[In−1(z)]−2

≤ nbdE[In−1(z)]−2
∫
{∆2(z)− 2∆(z)∆(z − bv) + ∆(z − bv)}K̃2(v)dv,

hence it is vital to analyze E[In(z)]−2, z ∈ Ib. To proceed further, we shall calculate the

marginal probability mass function of δ and conditional probability density function of X

given δ based on the joint distribution of (X, δ). Let fX,δ be the joint p.d.f. of X and δ, fX

be the marginal p.d.f. of X, fδ be the marginal p.m.f. of δ, fX|δ be the conditional p.d.f. of

X given δ, fδ|X be the conditional p.m.f. of δ given X. For k ∈ {0, 1} and x ∈ Rd, by (e2)

and (f1),

fδ|X(k|x) = ∆k(x)(1−∆(x))1−k, fX(x) = f(x),

thus

fX|δ(x|k) =
fX,δ(x, k)

fδ(k)
=
fδ|X(k|x)fX(x)

fδ(k)
=

∆k(x)(1−∆(x))1−kf(x)∫
∆k(x)(1−∆(x))1−kf(x)dx

.

Let

Xn := (X1, X2, · · · , Xn), δn := (δ1, δ2, · · · , δn), p :=

∫
∆(x)f(x)dx,

ρ1(x) := fX|δ(x|1) =
∆(x)f(x)

p
, ρ0(x) := fX|δ(x|0) =

(1−∆(x))f(x)

1− p
,

ρ∗1(z, b) := sup
u∈[−1,1]d

ρ1(z − bu), ρ1∗(z, b) := inf
u∈[−1,1]d

ρ1(z − bu), z ∈ Ib.

Write the conditional expectation E[·|Xn, δn] as En[·]. For z ∈ Ib, if E[In(z)]−2 can be

bounded by an expression of E[In−1(z)]−2, then E[In−k(z)]−2 can be bounded by the ex-
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pression of E[In−k−1(z)]−2, k = 0, 1, · · · , n − 1, and we can finally obtain a bound of

E[In(z)]−2. Note that

E[In(z)]−2

= E
(
E
{

[In−1(z) + δnK̃bn(z)]−2|Xn−1, δn−1, Xn
})

= E
(
E
{

[In−1(z)]−2|Xn−1, δn−1, Xn
}

(1−∆(Xn))

+E
{

[In−1(z) + K̃bn(z)]−2|Xn−1, δn−1, Xn
}

∆(Xn)
)

= E
(∫

En−1[In−1(z)]−2(1−∆(x))f(x)dx

+bd
∫
En−1[In−1(z) + K̃(u)]−2∆(z − bu)f(z − bu)du

)
= E

(
(1− p)

∫
En−1[In−1(z)]−2ρ0(x)dx

+pbd
∫
En−1[In−1(z) + K̃(u)]−2ρ1(z − bu)du

)
= E

(
(1− p)[In−1(z)]−2 + pbd

∫
[−1,1]d

[In−1 + K̃(u)]−2ρ1(z − bu)du

+p[In−1(z)]−2
{

1− bd
∫

[−1,1]d
ρ1(z − bu)du

})
=

{
1− pbd

∫
[−1,1]d

ρ1(z − bu)du
}
E[In−1(z)]−2

+pbdE

∫
[−1,1]d

[In−1 + K̃(u)]−2ρ1(z − bu)du

≤ {1− pbd(2dρ1∗(z, b))}E[In−1(z)]−2 + pbdρ∗1(z, b)E

∫
[−1,1]d

[In−1 + K̃(u)]−2du

≤ {1− p(2b)dρ1∗(z, b)}E[In−1(z)]−2 + p(2b)dρ∗1(z, b)E[In−1(z) + c0]−2, (1.30)

where c0 = min{2−(d+2), 2−(d+2)/2(
∫
K̃2(u)du)1/2}. To obtain the last inequality above,

we used the following fact. For any a ≥ K̃(0) > 0,
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∫
[−1,1]d

(a+ c0)−2du−
∫

[−1,1]d
(a+ K̃(u))−2du

=

∫
[−1,1]d

K̃2(u) + 2aK̃(u)− c20 − 2ac0

(a+ c0)2(a+ K̃(u))2
du

= (a+ c0)−2
{∫

[−1,1]d

K̃2(u)− c20
(a+ K̃(u))2

du+ 2a

∫
[−1,1]d

K̃(u)− c0
(a+ K̃(u))2

du
}

≥ (a+ c0)−2
{(∫

[−1,1]d

K̃2(u)

(2a)2
du− a−2

∫
[−1,1]d

c20
a2
du
)

+2a
(∫

[−1,1]d

K̃(u)

(2a)2
du−

∫
[−1,1]d

c0
a2
du
)}

≥ (a+ c0)−2
{

(2a)−2
(∫

K̃2(u)du− 2d+2c20

)
+ (2a)−1

(
1− 2d+2c0

)}
≥ 0,

thus,

E
(∫

[−1,1]d
[In−1 + K̃(u)]−2du

)
= E

(
En−1

{∫
[−1,1]d

[In−1 + K̃(u)]−2du
})

≤ E

∫
[−1,1]d

[In−1 + c0]−2du = 2dE[In−1 + c0]−2.

By a similar argument used in proving (1.30), we have k, j = 0, 1, · · · , n,

E[In−k(z) + jc0]−2 ≤ {1− p(2b)dρ1∗(z, b)}E[In−k−1(z) + jc0]−2

+p(2b)dρ∗1(z, b)E[In−k−1(z) + (j + 1)c0]−2. (1.31)

Therefore, by (1.30) and (1.31), the following hold:
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E[In(z)]−2

≤ {1− p(2b)dρ1∗(z, b)}
(
{1− p(2b)dρ1∗(z, b)}E[In−2(z)]−2

+p(2b)dρ∗1(z, b)E[In−2(z) + c0]−2
)

+{p(2b)dρ∗1(z, b)}
(
{1− p(2b)dρ1∗(z, b)}E[In−2(z) + c0]−2

+p(2b)dρ∗1(z, b)E[In−2(z) + 2c0]−2
)

=
2∑

k=0

(
2

k

)
{1− p(2b)dρ1∗(z, b)}2−k{p(2b)dρ∗1(z, b)}kE[In−2(z) + kc0]−2

≤ {1− p(2b)dρ1∗(z, b)}2
(
{1− p(2b)dρ1∗(z, b)}E[In−3(z)]−2

+p(2b)dρ∗1(z, b)E[In−3(z) + c0]−2
)

+2{1− p(2b)dρ1∗(z, b)}{p(2b)dρ∗1(z, b)}
(
{1− p(2b)dρ1∗(z, b)}

×E[In−3(z) + c0]−2 + p(2b)dρ∗1(z, b)E[In−3(z) + 2c0]−2
)

+{p(2b)dρ∗1(z, b)}2
(
{1− p(2b)dρ1∗(z, b)}E[In−3(z) + 2c0]−2

+p(2b)dρ∗1(z, b)E[In−3(z) + 3c0]−2
)

=
3∑

k=0

(
3

k

)
{1− p(2b)dρ1∗(z, b)}3−k{p(2b)dρ∗1(z, b)}kE[In−3(z) + kc0]−2

≤ · · ·

≤
n∑
k=0

(
n

k

)
{1− p(2b)dρ1∗(z, b)}n−k{p(2b)dρ∗1(z, b)}kE[I0(z) + kc0]−2

≤ {1− p(2b)dρ1∗(z, b)}n[K̃(0)]−2

+c−2
0

n∑
k=1

(
n

k

)
k−2{1− p(2b)dρ1∗(z, b)}n−k{p(2b)dρ∗1(z, b)}k. (1.32)

By (e2) and (f1), for large enough n, f(x) and ∆(x) are bounded and bounded below from

zero, and Lipschitz-continuous on Ib. Let `f and `∆ denote the Lipschitz constants of f and
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∆, respectively. Define

c1 := min
z∈Ib

ρ1∗(z, b) > 0, c2 := (`f sup
z∈I2b

∆(z) + `∆ sup
z∈I2b

f(z)),

p̃(z, b) :=
p(2b)dρ∗1(z, b)

1 + p(2b)d(ρ∗1(z, b)− ρ1∗(z, b))
.

By (1.30) and the fact that supz∈Ib(ρ
∗
1(z, b)− ρ1∗(z, b)) ≤ 2bd1/2c2, we have

E[In(z)]−2 ≤ {1− p(2b)dc1}n[K̃(0)]−2 + c−2
0 {1 + p(2b)d+1d1/2c2}n

×
n∑
k=1

(
n

k

)
k−2{1− p̃(z, b)}n−k{p̃(z, b)}k. (1.33)

Hence,

nbdE[In(z)]−2 ≤ nbd[K̃(0)]−2
(
{1− p(2b)dc1}−(p(2b)dc1)−1)−n(2b)dpc1

+c−2
0

(
{1 + p(2b)d+1d1/2c2}(p(2b)

d+1d1/2c2)−1)n(2b)d+1pd1/2c2

×nbd
n∑
k=1

(
n

k

)
k−2{1− p̃(z, b)}n−k{p̃(z, b)}k.

Note that n!(k!)−1((n− k)!)−1{1− p̃(z, b)}n−k{p̃(z, b)}k is the probability mass function of

the Binomial(n, p̃(z, b)) distribution. Recall the Chernoff’s bound for a r.v. ζ ∼ B(n, p0),

and a constant η ∈ (0, 1),

P (ζ < (1− η)np0) < exp(−np0η
2/2).

Using this bound, with η = 1/2, we obtain that for any z ∈ Ib,
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nbd
n∑
k=1

(
n

k

)
k−2{1− p̃(z, b)}n−k{p̃(z, b)}k

= nbd
( bnp̃(z,b)/2c∑

k=1

+
n∑

k=bnp̃(z,b)/2c+1

)(n
k

)
k−2{1− p̃(z, b)}n−k{p̃(z, b)}k

≤ nbd
bnp̃(z,b)/2c∑

k=1

(
n

k

)
{1− p̃(z, b)}n−k{p̃(z, b)}k + nbd{np̃(z, b)/2}−2

≤ nbd exp(−np̃(z, b)/8) + nbd{np̃(z, b)/2}−2

= nbd exp(−nbd2d−3pc1(1 + p(2b)d+1d1/2c2)−1)

+(nbd)−141−dp−2c−2
1 (1 + p(2b)d+1d1/2c2)2 = O((nbd)−1),

by condition (b1). Together with the fact that

{1− p(2b)dc1}−(p(2b)dc1)−1
→ exp(1),

{1 + p(2b)d+1d1/2c2}(p(2b)
d+1d1/2c2)−1

→ exp(1),

we have

nbdE[In(z)]−2 = O((nbd)−1), z ∈ Ib,

sup
z∈Ib

nbdE[In(z)]−2 = O((nbd)−1).

Hence

sup
z∈Ib

Bn1(z) = O((nbd)−2), sup
z∈Ib

Bn2(z) = O((nbd)−1).
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Observe that

Bn3(z)

= n(n− 1)E
((∆(z)− δn−1)(∆(z)− δn)K̃b(n−1)(z)K̃bn(z)

[In−2(z) + δn−1K̃b(n−1)(z) + δnK̃bn(z)]2

)
= n(n− 1)b2dE

∫ ∫ {K̃(u)K̃(v)

[In−2(z)]2
∆2(z)(1−∆(z − bu))(1−∆(z − bv))

−2
K̃(u)K̃(v)

[In−2(z) + K̃(u)]2
∆(z)(1−∆(z))

×∆(z − bu)(1−∆(z − bv))

+
K̃(u)K̃(v)

[In−2(z) + K̃(u) + K̃(v)]2
(∆(z)− 1)2

×∆(z − bu)∆(z − bv)
}

×f(z − bu)f(z − bv)dudv,

thus we have

|Bn3(z)|

≤ n(n− 1)b2dE

∫ ∫ {K̃(u)K̃(v)

[In−2(z)]2
[∆2(z)(1−∆(z − bu))(1−∆(z − bv))

−2∆(z)(1−∆(z))∆(z − bu)(1−∆(z − bv))

+(∆(z)− 1)2∆(z − bu)∆(z − bv)]

+2
(K̃(u)K̃(v)

[In−2(z)]2
− K̃(u)K̃(v)

[In−2(z) + K̃(u)]2

)
×∆(z)(1−∆(z))∆(z − bu)(1−∆(z − bv))

}
×f(z − bu)f(z − bv)dudv

≤ n(n− 1)b2dE

∫ ∫ {K̃(u)K̃(v)

[In−2(z)]2
[ |∆(z)−∆(z − bu)||∆(z)−∆(z − bv)|

+∆(z)(1−∆(z))|∆(z − bv)−∆(z − bu)| ]
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+4
K̃2(u)K̃(v)

[In−2(z)]3
∆(z)(1−∆(z))∆(z − bu)(1−∆(z − bv))

}
×f(z − bu)f(z − bv)dudv

≤ nbd+2(nbd)E[In−2(z)]−2`2∆

×
∫ ∫

K̃(u)K̃(v)‖u‖ ‖v‖f(z − bu)f(z − bv)dudv

+nbd+1(nbd)E[In−2(z)]−2∆(z)(1−∆(z))`∆

×
∫ ∫

K̃(u)K̃(v)‖u− v‖f(z − bu)f(z − bv)dudv

+4(nbd)2E[In−2(z)]−3∆(z)(1−∆(z))

×
∫ ∫

K̃2(u)K̃(v)∆(z − bu)(1−∆(z − bv))f(z − bu)f(z − bv)dudv.

By a similar argument used in proving (1.33), for z ∈ Ib and j = 3, 4, · · · , one has

E[In(z)]−j ≤ {1− p(2b)dc1}n[K̃(0)]−j

+c
−j
0 {1 + p(2b)d+1d1/2c2}n

n∑
k=1

(
n

k

)
k−j{1− p̃(z, b)}n−k{p̃(z, b)}k,

hence by (b1) and Chernoff’s bound, we obtain that

n2b2dE[In(z)]−3

≤ n2b2d[K̃(0)]−3{1− p(2b)dc1}n

+c−3
0 {1 + p(2b)d+1d1/2c2}n × n2b2d

n∑
k=1

(
n

k

)
k−3{1− p̃(z, b)}n−k{p̃(z, b)}k

≤ n2b2d[K̃(0)]−3
(
{1− p(2b)dc1}−(p(2b)dc1)−1)−n(2b)dpc1

+c−3
0

(
{1 + p(2b)d+1d1/2c2}(p(2b)

d+1d1/2c2)−1)n(2b)d+1pd1/2c2

×
(
n2b2d{np̃(z, b)/2}−3 + n2b2d exp(−np̃(z, b)/8)

)
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∼ n2b2d[K̃(0)]−3 exp(−n(2b)dpc1)

+c−3
0 exp(n(2b)d+1pd1/2c2)

(
(nbd)−181−dp−3c−3

1 (1 + p(2b)d+1d1/2c2)3

+n2b2d exp(−nbd2d−3pc1(1 + p(2b)d+1d1/2c2)−1)
)

= O((nbd)−1),

for any z ∈ Ib, and supz∈Ib |Bn3(z)| = O((nbd)−1). With the fact that

Bn4(z) = 2n(1−∆(z))K̃(0)E
(∆(z)− δn)K̃bn(z)

[In(z)]2

= 2nbd(1−∆(z))K̃(0)

×E
∫
K̃(u)f(z − bu)

{∆(z)(1−∆(z − bu))

[In−1(z)]2

−(1−∆(z))∆(z − bu)

[In−1(z) + K̃(u)]2

}
du,

we have

|Bn4(z)|

≤ 2nbd(1−∆(z))K̃(0)

×E
∫ { K̃(u)

[In−1(z)]2
|∆(z)−∆(z − bu)|

+
( K̃(u)

[In−1(z)]2
− K̃(u)

[In−1(z) + K̃(u)]2

)
(1−∆(z))∆(z − bu)

}
f(z − bu)du

= 2nbd+1(1−∆(z))K̃(0)E[In−1(z)]−2`∆

∫
K̃(u)‖u‖f(z − bu)du

+4nbd(1−∆(z))2K̃(0)E[In−1(z)]−3
∫
K̃2(u)∆(z − bu)f(z − bu)du

}
= O(b(nbd)−1) +O((nbd)−2) = O((nbd)−2),

and supz∈Ib |Bn4(z)| = O((nbd)−2). Thus we have supz∈Ib |Bn(z)| = O((nbd)−1), and
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nhd
∫ [

n−1
n∑
i=1

Khi(x)r̂niδiεi

]2
dψ(x) = Op((nb

d)−1).

Moreover, one obtains

∫ [
n−1

n∑
i=1

Khi(x)r̂niδiεi

]2
dψ(x) = Op((nh

d)−1(nbd)−1)) = op(n
−1). (1.34)

This completes the proof of (1.29), and hence we obtain (1.27).

Step 2. In this part, we shall prove (1.22)-(1.26) in two steps, (2.a) and (2.b).

(2.a) We will prove (1.22), (1.24) and (1.25) by similar arguments used in proving the

asymptotic normality of the minimum distance estimator when data is complete in K-N. Let

˙̂
Tnj(θ) := −2

∫
Ûnj(x, θ)µ̇n(x, θ)dψ̂w(x), j = 1, 2,

be the derivative of T̂nj(θ) with respect to θ. Since θ0 is an interior point of Θ by condition

(m4), and θ̂nj is consistent for θnj by Theorem 1.3.1, θ̂nj will be in the interior of Θ and

˙̂
Tnj(θ̂nj) = 0 with arbitrarily large probability for all sufficient large n. The equation

˙̂
Tnj(θ) = 0 is equivalent to

∫
(Ûnj(x, θ̂nj)− Unj(x, θ̂nj))µ̇n(x, θ̂nj)dψ̂w(x) +

∫
Unj(x)µ̇n(x, θ̂nj)dψ̂w(x)

=

∫
Zn(x, θ̂nj)µ̇n(x, θ̂nj)dψ̂w(x), j = 1, 2. (1.35)

By similar proof as that of (4.16) in K-N, the right-hand side of (1.35) equals Rn(θ̂nj − θ0)

for all n ≥ 1, with Rn = Σ0 + op(1); while for the second term on the left-hand side, one has
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∫
Unj(x)µ̇n(x, θ̂nj)dψ̂w(x) = Snj + op(n

−1/2) by similar proofs as those of Lemma 4.1 and

Lemma 4.2 in K-N, with Un and εi replaced by Unj and ε∗ij in (1.5), respectively. Recall un

and dni from (1.5). For the first term on the left-hand side with j = 1, note that

∫
(Ûn1(x, θ̂n1)− Un1(x, θ̂n1))µ̇n(x, θ̂n1)dψ̂w(x)

= ‖un‖
∫ [

n−1
n∑
i=1

Khi(x)(1− δi)
dni
‖un‖

]
µ̇n(x, θ̂n1)dψ̂w(x)

+uTn

∫ [
n−1

n∑
i=1

Khi(x)(1− δi)ṁθ0
(Xi)

]
µ̇n(x, θ̂n1)dψ̂w(x) := Jn1 + Jn2.

By (m4), (m5), (a), and result (1.8), we obtain

n1/2‖Jn1‖ ≤ n1/2‖un‖ max
1≤i≤n

|dni|
‖un‖

∫
f̂h(x)‖µ̇n(x, θ̂n1)‖dψ̂w(x)

≤ n1/2‖un‖ max
1≤i≤n

|dni|
‖un‖

{∫
f̂h(x)‖µ̇n(x, θ0)‖dψ̂w(x)

+ max
1≤i≤n

‖ṁ
θ̂n1

(Xi)− ṁθ0
(Xi)‖

∫
f̂h(x)dψ̂w(x)

}
= op(1).

Moreover, observe that

n1/2JTn2 = n1/2uTn

∫
µ̇hδ(x)µ̇Th (x)dψ̂w(x)

+n1/2uTn

∫
µ̇hδ(x){µ̇Tn (x, θ0)− µ̇Th (x)}dψ̂w(x)

+n1/2uTn

∫
µ̇hδ(x){µ̇Tn (x, θ̂n1)− µ̇Tn (x, θ0)}dψ̂w(x)

+n1/2uTn

∫
{µ̇nδ(x, θ0)− µ̇hδ(x)}µ̇Th (x)dψ̂w(x)

+n1/2uTn

∫
{µ̇nδ(x, θ0)− µ̇hδ(x)}{µ̇Tn (x, θ0)− µ̇Th (x)}dψ̂w(x)

+n1/2uTn

∫
{µ̇nδ(x, θ0)− µ̇hδ(x)}{µ̇Tn (x, θ̂n1)− µ̇Tn (x, θ0)}dψ̂w(x).
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On the right-hand side of last equality, the last five terms are op(1), because of (m5), (a),

(1.8), C-S inequality and the fact that

E

∫
{µ̇n(x, θ0)− µ̇h(x)}{µ̇Tn (x, θ0)− µ̇Th (x)}dψ(x)

=

∫
V ar(µ̇n(x, θ0))dψ(x) = Op((nh

d)−1),∫
{µ̇n(x, θ̂n1)− µ̇n(x, θ0)}{µ̇Tn (x, θ̂n1)− µ̇Tn (x, θ0)}dψ(x)

=

∫
f̂2
h(x)dψ(x) max

1≤i≤n
(ṁ

θ̂n1
(Xi)− ṁθ0

(Xi))(ṁ
T
θ̂n1

(Xi)− ṁT
θ0

(Xi)) = op(h
d),

E

∫
{µ̇nδ(x, θ0)− µ̇hδ(x)}{µ̇Tnδ(x, θ0)− µ̇δhT (x)}dψ(x)

=

∫
V ar(µ̇nδ(x, θ0))dψ(x) = Op((nh

d)−1).

For the first term, by (m4), (m5), (a), (1.8), and C-S inequality, one has

∫
µ̇h(x)µ̇Thδ(x)dψ̂w(x) = Σ∗0 + op(1).

Hence (1.22) holds. If under H0, mθ0
(x) is a linear function of θ0, and α̂n is the least square

estimator, we have un = Σ̃−1
n S̃n and result (1.24).

To prove (1.25), it suffices to show that when j = 2, the first term in the left-hand side

of (1.35) multiplied by n1/2 is op(1). Note that by C-S inequality,

∥∥∥∫ (Ûn2(x, θ̂n2)− Un2(x, θ̂n2))µ̇n(x, θ̂n2)dψ̂w(x)
∥∥∥2

≤
(

1 + sup
x∈I
|f2(x)/f̂2

w(x)− 1|
)2
Ãn2

∫
‖µ̇n(x, θ̂n2)‖2dψ(x).

By the fact that
∫
‖µ̇n(x, θ̂n2)‖2dψ(x) = Op(1), and supx∈I |f2(x)/f̂2

w(x) − 1| = op(1)

derived by (1.8), and it suffices to prove Ãn2 = op(n
−1), which in turn follows (a), (1.12),
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(1.19), and (1.34).

(2.b) We shall prove (1.26) in this step. Based on (1.24) and (1.25), it suffices to prove

that

n1/2{Sn1 + Σ∗0Σ̃−1
n S̃n} →d Nq(0,Σ1), (1.36)

n1/2Sn2 →d Nq(0,Σ2). (1.37)

The proof of (1.37) is similar as that of Lemma 4.1 (a) in K-N, if εi, σ
2 and Σ there are

replaced by δiεi/∆(Xi), σ
2/∆, and Σ2 in (1.5), respectively. To prove (1.36), note that

n1/2S̃n = Op(1) by the Central Limit Theorem, and Σ̃−1
n = Σ̃−1

0 + op(1) by Law of Large

Numbers and routine calculations. Thus we have

n1/2{Sn1 + Σ∗0Σ̃−1
n S̃n} = n1/2{Sn1 + Σ∗0Σ̃−1

0 S̃n}+ Σ∗0(Σ̃−1
n − Σ̃−1

0 )(n1/2S̃n)

= n1/2{Sn1 + Σ∗0Σ̃−1
0 S̃n}+ op(1),

and it suffices to show n1/2{Sn1 + Σ∗0Σ̃−1
0 S̃n} →d Nq(0,Σ1). Write

n1/2{Sn1 + Σ∗0Σ̃−1
0 sn1}

= n−1/2
n∑
i=1

(∫
Khi(x)µ̇h(x)dψ(x) + Σ∗0Σ̃−1

0 ṁθ0
(Xi)

)
δiεi

= n−1/2
n∑
i=1

sni, say.

Note that by (e1) and (e2), {sni, i = 1, · · · , n} are i.i.d. centered r.v.’s for each n. By the

Lindeberg-Feller C.L.T., it suffices to prove that as n→∞,
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Es2
n1 → Σ1, (1.38)

E{s2
n1I(|sn1| > n1/2η)} → 0 ∀η > 0. (1.39)

By the continuity of σ2, ∆, f , and g, we obtain

Es2
n1 = E

[( ∫
Kh(x−X)µ̇h(x)dψ(x) + Σ∗0Σ̃−1

0 ṁθ0
(X)

)2
∆(X)σ2(X)

]
= E

∫ ∫
Kh(x−X)Kh(y −X)σ2(X)∆(X)µ̇h(x)µ̇Th (y)dψ(x)dψ(y)

+E

∫
Kh(x−X)σ2(X)∆(X)µ̇h(x)ṁT

θ0
(X)dψ(x)Σ̃−1

0 Σ∗0

+Σ∗0Σ̃−1
0 E

∫
Kh(x−X)σ2(X)∆(X)ṁθ0

(X)µ̇Th (x)dψ(x)

+Σ∗0Σ̃−1
0 E[ṁθ0

(X)ṁT
θ0

(X)σ2(X)∆(X)]Σ̃−1
0 Σ∗0

→
∫
σ2(x)∆(x)ṁθ0

(x)ṁT
θ0

(x)(f(x))−1g2(x)dx

+2
(∫

σ2(x)∆(x)ṁθ0
(x)ṁT

θ0
(x)g(x)dx

)
Σ̃−1

0 Σ∗0

+Σ∗0Σ̃−1
0

(∫
σ2(x)∆(x)ṁθ0

(x)ṁT
θ0

(x)f(x)dx
)

Σ̃−1
0 Σ∗0 = Σ1,

Hence (1.38) is proved. Note that by the Hölder’s inequality, the L.H.S. of (1.39) with η = δ0

in (e3) is bounded by

Cn−δ0/2Es
2+δ0
n1

= Cn−δ0/2E
[{∫

Kh(x−X)µ̇h(x)dψ(x) + Σ∗0Σ̃−1
0 ṁθ0

(X)
}2+δ0 |δε|2+δ0

]
≤ Cn−δ0/2E

[{
2

∫
Kh(x−X)µ̇h(x)dψ(x)

}2+δ0 |δε|2+δ0
]

+Cn−δ0/2E[{2Σ∗0Σ̃−1
0 ṁθ0

(X)}2+δ0 |δε|2+δ0 ]
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≤ Cn−δ0/222+δ0E
[{∫

(Kh(x−X)µ̇h(x))
2+δ0

2 dψ(x)
}2{∫

dψ(x)
}δ0|δε|2+δ0

]
+Cn−δ0/2E[{2Σ∗0Σ̃−1

0 ṁθ0
(X)}2+δ0 |δε|2+δ0 ]

= Op((nh
d)−δ0/2).

Therefore the proof is complete.

Remark 1.4.1. (Choice of G). Assuming f = 0 implies g = 0. When q = 1 and σ2(x) ≡ σ2,

a constant, the asymptotic variance of θ̂n1 satisfies

v1 : = σ2Σ̃−1
0 + σ2Σ−2

0

[ ∫
∆(x)ṁ2

θ0
(x)(f(x))−1g2(x)dx

−
(∫

∆(x)ṁ2
θ0

(x)f(x)dx
)−1(∫

∆(x)ṁ2
θ0

(x)g(x)dx
)2]

≥ σ2Σ̃−1
0 ,

because, by C-S inequality,

(∫
∆(x)ṁ2

θ0
(x)g(x)dx

)2

=
(∫

∆1/2(x)ṁθ0
(x)f1/2(x)∆1/2(x)ṁθ0

(x)f−1/2(x)g(x)dx
)2

≤
∫

∆(x)ṁ2
θ0

(x)f(x)dx

∫
∆(x)ṁ2

θ0
(x)(f(x))−1g2(x)dx,

with equality if and only if g ∝ f ; and the asymptotic variance of θ̂n2 satisfies

v2 : = σ2
∫

(∆(x))−1ṁ2
θ0

(x)g2(x)(f(x))−1dx
(∫

ṁ2
θ0

(x)g(x)dx
)−2

≥ σ2
(∫

∆(x)ṁ2
θ0

(x)f(x)dx
)−1

= σ2Σ̃−1
0 ,
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because

(∫
ṁ2
θ0

(x)g(x)dx
)2

=
(∫

(∆(x))−1/2ṁθ0
(x)g(x)(f(x))−1/2(∆(x))1/2ṁθ0

(x)(f(x))1/2dx
)2

≤
∫

(∆(x))−1ṁ2
θ0

(x)g2(x)(f(x))−1dx

∫
∆(x)ṁ2

θ0
(x)f(x)dx,

with equality if and only if g ∝ f∆. This implies that both lower bounds on the asymptotic

variances of θ̂nj , j = 1, 2, are at that of the least square estimator’s when the regression

function is linear.

1.5 Asymptotic distribution of the test statistics under

H0

In this section we shall discuss the asymptotic null distribution of D̂nj in Theorem 1.5.1.

Theorem 1.5.1. Assume that H0, (e1), (e2), (e3), (e4), (f1), (f2), (g), (k1), (m1)-(m5),

(a), and (h3) hold. Then,

D̂n1 →d N (0, 1).

If, in addition, (k2), (b2), and (h4) hold, then,

D̂n2 →d N (0, 1).

Consequently, for each j = 1, 2, the test that rejects H0 whenever |D̂nj | > zα/2, is of the
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asymptotic size α.

The proof of Theorem 1.5.1 is facilitated by Lemma 1.5.2-1.5.7. The idea of the proof is

similar to that of Theorem 5.1 in K-N. Lemma 1.5.1 is applied to prove Lemma 1.5.2.

Lemma 1.5.1. (Theorem 1 of Hall (1984)) Let X̃i, 1 ≤ i ≤ n, be i.i.d. random vectors, and

let

Un :=
∑

1≤i<j≤n
Hn(X̃i, X̃j), Gn(x, y) = EHn(X̃1, x)Hn(X̃1, y),

where Hn is a sequence of measurable functions symmetric under permutation, with

E(Hn(X̃1, X̃2)|X̃1) = 0, a.s., and

EH2
n(X̃1, X̃2) <∞, for each n ≥ 1.

If

[EG2
n(X̃1, X̃2) + n−1EH4

n(X̃1, X̃2)]/[EH2
n(X̃1, X̃2)]2 → 0,

then, Un is asymptotically normally distributed with mean zero and variance equal to

n2EH2
n(X̃1, X̃2)/2.

To proceed further, we need the following notation:

K2(v) :=

∫
K(u)K(u+ v)du, ‖K2‖2 :=

∫
K2

2(v)dv, (1.40)

Γ1 := 2‖K2‖2
∫
I

∆2(x)(σ2(x))2g2(x)

f2(x)
dx, Γ2 := 2‖K2‖2

∫
I

(σ2(x))2g2(x)

∆2(x)f2(x)
dx,
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Γn1 := 2hd
∫ ∫

[EKh(x−X)Kh(y −X)∆(X)σ2(X)]2dψ(x)dψ(y),

Γn2 := 2hd
∫ ∫

[EKh(x−X)Kh(y −X)(∆(X))−1σ2(X)]2dψ(x)dψ(y).

Recall the definitions of Ĉnj , Γ̂nj , D̂nj from (1.4), and T̃nj , Tnj , Cnj from (1.5).

Lemma 1.5.2. Suppose H0, (e1), (e2), (e4), (f1), (g), (k1), (h1), and (h2) hold. Then,

nhd/2(Tnj(θ0)− Cnj)→d N (0,Γj), j = 1, 2.

The proof of Lemma 1.5.2 follows the same routine as that of Lemma 5.1 in K-N, but

with the following changes: for j = 1, replace εi, σ
2(x), σ4(x), Γn, and Γ in K-N by δiεi,

∆(x)σ2(x), ∆(x)σ4(x), Γn1, and Γ1, respectively; for j = 2, replace εi, σ
2(x), σ4(x), Γn,

and Γ in K-N by (∆(Xi))
−1δiεi, (∆(x))−1σ2(x), (∆(x))−3σ4(x), Γn2, and Γ2, respectively.

The following results will be used in the proofs later:

Γnj →a.s. Γj , j = 1, 2. (1.41)

Remark 1.5.1. Similar as Remark 5.1 in K-N, one has

nhd/2(Tnj(θ0)− ETnj(θ0))→d N (0,Γj), j = 1, 2.

Lemma 1.5.3. Under H0, (e1), (e2), (f1), (f2), (k1), and (h3),

nhd/2|T̃nj(θ0)− Tnj(θ0)| = op(1), j = 1, 2.

The proof of Lemma 1.5.3 is similar to that of Lemma 5.3 in K-N where now Un(x) would
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be changed to Unj(x), j = 1, 2.

Lemma 1.5.4. Under H0, (e1), (e2), (e3), (f1), (k1), (m1)-(m5), (a), (h1), and (h2),

nhd/2|T̃n1(θ̂n1)− T̃n1(θ0)| = op(1).

If, in addition, (k2), (b2), and (h4) hold, then,

nhd/2|T̃n2(θ̂n2)− T̃n2(θ0)| = op(1).

Proof. Observe that

T̃nj(θ0)− T̃nj(θ̂nj) = 2

∫
Unj(x)Zn(x, θ̂nj)dψ̂w(x)−

∫
Z2
n(x, θ̂nj)dψ̂w(x).

If we follow similar routine as proof of Lemma 5.2 in K-N, with θ̂n and Un in K-N changed

to θ̂nj and Unj , respectively, we can find that it suffices to show

nhd/2(θ̂nj − θ0)T
∫
Unj(x)µ̇n(x, θ̂nj)dψ̂w(x) = op(1), j = 1, 2.

Note that the integral is the same as the second term in the left-hand side of (1.35). Thus,

L.H.S. = nhd/2(θ̂nj − θ0)T
∫
Zn(x, θ̂nj)µ̇n(x, θ̂nj)dψ̂w(x)

−nhd/2(θ̂nj − θ0)T
∫

(Ûnj(x, θ̂nj)− Unj(x, θ̂nj))µ̇n(x, θ̂nj)dψ̂w(x)

:= Qn1j −Qn2j , j = 1, 2, say.

We have Qn1j = op(1) for j = 1, 2, by the same argument as used in proving (5.10) in K-N.
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By the proof of step (2.a) of Theorem 1.4.1, one obtains that

n1/2
∫

(Ûnj(x, θ̂nj)− Unj(x, θ̂nj))µ̇n(x, θ̂nj)dψ̂w(x) = Op(1), j = 1, 2,

hence Qn2j = nhd/2Op(n
−1/2)Op(n

−1/2) = Op(h
d/2), and the proof is completed.

Lemma 1.5.5. If H0, (e1), (e2), (e3), (f1), (k), (m1)-(m5), (a), (h1), and (h2) hold, then

nhd/2|T̂n1(θ̂n1)− T̃n1(θ̂n1)| = op(1).

If, in addition, (k2), (b2), (h3), and (h4) hold, then,

nhd/2|T̂n2(θ̂n2)− T̃n2(θ̂n2)| = op(1).

Proof. Observe that

|T̂nj(θ̂nj)− T̃nj(θ̂nj)|

=
∣∣∣ ∫ [Ûnj(x, θ0)− Zn(x, θ̂nj)]

2 − [Unj(x, θ0)− Zn(x, θ̂nj)]
2dψ̂w(x)

∣∣∣
≤ (1 + sup

x∈I
|f2(x)/f̂2

w(x)− 1|)
[ ∫

(Ûnj(x, θ0)− Unj(x, θ0))2dψ(x)

+2
{∫

(Ûnj(x, θ0)− Unj(x, θ0))2dψ(x)
}1/2

×
{∫

(Unj(x, θ0)− Zn(x, θ̂nj))
2dψ(x)

}1/2]
,

by the C-S inequality. The results in (1.18), (1.19), and (1.34) lead to the fact

∫
(Ûnj(x, θ0)− Unj(x, θ0))2dψ(x) = op(n

−1).
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Let for j = 1, 2,

ûnj := θ̂nj − θ0, d̂nij := m
θ̂nj

(Xi)−mθ0
(Xi)− ûTnjṁθ0

(Xi). (1.42)

Then,

∫
[Unj(x, θ0)− Zn(x, θ̂nj)]

2dψ(x)

≤ 2

∫
U2
nj(x, θ0)dψ(x) + 2

∫
Z2
n(x, θ̂nj)dψ(x)

≤ 2

∫
U2
nj(x, θ0)dψ(x) + 4‖ûnj‖2 max

1≤i≤n

d̂nij
‖ûnj‖

∫
f̂2
h(x)dψ(x)

+4‖ûnj‖2
∫ [

n−1
n∑
i=1

Khi(x)‖ṁθ0
(Xi)‖

]2
dψ(x)

= Op((nh
d)−1) + op(n

−1) +Op(n
−1) = Op((nh

d)−1), j = 1, 2.

by (m4) and Theorem 1.4.1. This completes the proof of Lemma 1.5.5.

Lemma 1.5.6. If H0, (e1), (e2), (e3), (f1), (f2), (k), (m1)-(m5), (a), and (h3) hold, then

nhd/2|Ĉn1 − Cn1| = op(1).

If, in addition, (k2), (b2), and (h4) hold, then,

nhd/2|Ĉn2 − Cn2| = op(1).

Proof. Let for j = 1, 2, i = 1, · · · , n,

vw(x) := f2(x)/f̂2
w(x)− 1, tij := m

θ̂nj
(Xi)−mθ0

(Xi), (1.43)
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si := (1− δi)(mα̂n(Xi)−mθ0
(Xi)), ai := ∆(Xi)r̂ni,

ci := (1− δi
∆(Xi)

)(mα̂n(Xi)−mθ0
(Xi)),

qi := −r̂niδi(mα̂n(Xi)−mθ0
(Xi)),

wi1 := si − ti1, wi2 := ci + qi − ti2.

Note that from result (1.17), for i = 1, · · · , n,

ε̂i1 = (Ỹi1 −mθ0
(Xi)) + (Ŷi1 − Ỹi1)− (m

θ̂nj
(Xi)−mθ0

(Xi))

= ε∗i1 + si − ti1,

ε̂i2 = (Ỹi2 −mθ0
(Xi)) + (Ŷi2 − Ỹi2)− (m

θ̂nj
(Xi)−mθ0

(Xi))

= ε∗i2(1 + ai) + ci + qi − ti2,

and hence,

Ĉn1 − Cn1

= n−2
n∑
i=1

∫
K2
hi(x)[ε̂2

i1 − (ε∗i1)2]dψ̂w(x) + n−2
n∑
i=1

∫
K2
hi(x)(ε∗i1)2vwdψ(x)

= n−2
n∑
i=1

∫
K2
hi(x)[(ε∗i1 + wi1)2 − (ε∗i1)2]dψ̂w(x)

+n−2
n∑
i=1

∫
K2
hi(x)(ε∗i1)2vwdψ(x),

Ĉn2 − Cn2

= n−2
n∑
i=1

∫
K2
hi(x)[ε̂2

i2 − (ε∗i2)2]dψ̂w(x) + n−2
n∑
i=1

∫
K2
hi(x)(ε∗i2)2vwdψ(x)
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= n−2
n∑
i=1

∫
K2
hi(x)[(ε∗i2(1 + ai) + wi2)2 − (ε∗i2)2]dψ̂w(x)

+n−2
n∑
i=1

∫
K2
hi(x)(ε∗i2)2vwdψ(x).

By (a), (m4), (1.9), (1.13), (1.27), one has

vn := sup
x∈I
|vw(x)| = Op((logk n)(log n/n)2/(d+4)), (1.44)

tnj := max
1≤i≤n

|tij | = Op((nh
d)−1/2), j = 1, 2,

sn := max
1≤i≤n

|si| = Op(n
−1/2), an := max

1≤i≤n
|ai| = Op((nb

d)−1/2(log n)1/2),

cn := max
1≤i≤n

|ci| = Op(n
−1/2), qn := max

1≤i≤n
|qi| = Op((n

−1/2b−d/2(log n)1/2),

wn1 := max
1≤i≤n

|wi1| ≤ sn + tn1 = Op((nh
d)−1/2),

wn2 := max
1≤i≤n

|wi2| ≤ cn + qn + tn2 = Op((n
−1/2b−d/2(log n)1/2).

These facts together with the following facts that

Snj,2 := n−2
n∑
i=1

K2
hi(x)(ε∗ij)

2dψ(x) = Op((nh
d)−1),

Snj,1 := n−2
n∑
i=1

K2
hi(x)|ε∗ij |dψ(x) = Op((nh

d)−1),

Snj,0 := n−2
n∑
i=1

K2
hi(x)dψ(x) = Op((nh

d)−1), j = 1, 2,

we obtain

nhd/2{(|Ĉn1 − Cn1|)} ≤ nhd/2[(1 + vn){2wn1Sn1,1 + w2
n1Sn1,0}

+vnSn1,2] = op(1),
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nhd/2{(|Ĉn2 − Cn2|)} ≤ nhd/2[(1 + vn){2wn2Sn2,1(1 + an) + w2
n2Sn2,0

+(2an + a2
n)Sn2,2}+ vnSn1,2] = op(1),

by (b2) and (h4). This completes the proof.

Lemma 1.5.7. Under H0, (e1), (e2), (e3), (f1), (k1), (m1)-(m5), (a), (h1), and (h2),

Γ̂n1 − Γ1 = op(1).

If in addition, (f2), (k2), (b2), and (h4) hold, then,

Γ̂n2 − Γ2 = op(1).

Consequently, Γj > 0 implies |Γ̂njΓ−1
j − 1| = op(1), j = 1, 2.

Proof. The proof of Lemma 1.5.7 is similar to that of Lemma 5.5 in K-N. Recall vw,

ti1, ti2, si, ai, ci, qi from (1.43), and vn, tn1, tn2, sn, an, cn, qn, wn1, wn2 from (1.44). Let

for k = 1, 2,

Γ̃nk := 2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)ε∗ikε

∗
jkdψ(x)

)2
.

From result (1.41), it suffices to show

Γ̃nk − Γnk = op(1), Γ̂nk − Γ̃nk = op(1), k = 1, 2. (1.45)

The first claim in (1.45) is proved similarly as (5.13) in K-N. For the second claim, note that
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Γ̂n1 − Γ̃n1

= 2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)(ε∗i1 + wi1)(ε∗j1 + wj1)(1 + vw(x))dψ(x)

)2

−2hdn−2
∑
i 6=j

(∫
Khi(x)Khj(x)ε∗i1ε

∗
j1dψ(x)

)2

= 2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)(ε∗i1 + wi1)(ε∗j1 + wj1)dψ(x)

)2

+2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)(ε∗i1 + wi1)(ε∗j1 + wj1)vw(x)dψ(x)

)2

+4hdn−2
∑
i 6=j

(∫
Khi(x)Khj(x)(ε∗i1 + wi1)(ε∗j1 + wj1)dψ(x)

)
×
(∫

Khi(x)Khj(x)(ε∗i1 + wi1)(ε∗j1 + wj1)vw(x)dψ(x)
)

−2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)ε∗i1ε

∗
j1dψ(x)

)2
,

Γ̂n2 − Γ̃n2

= 2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x){ε∗i2(1 + ai) + wi2}

×{ε∗j2(1 + aj) + wj2}(1 + vw(x))dψ(x)
)2

−2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)ε∗i2ε

∗
j2dψ(x)

)2

= 2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x){ε∗i2(1 + ai) + wi2}

×{ε∗j2(1 + aj) + wj2}dψ(x)
)2

+2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x){ε∗i2(1 + ai) + wi2}

×{ε∗j2(1 + aj) + wj2}vw(x)dψ(x)
)2

44



+4hdn−2
∑
i 6=j

(∫
Khi(x)Khj(x){ε∗i2(1 + ai) + wi2}

×{ε∗j2(1 + aj) + wj2}dψ(x)
)

×
(∫

Khi(x)Khj(x){ε∗i2(1 + ai) + wi2}

×{ε∗j2(1 + aj) + wj2}vw(x)dψ(x)
)

−2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)ε∗i2ε

∗
j2dψ(x)

)2
.

By Fubini’s theorem and taking the expected value, one obtains

Wnk,2,2 := 2hdn−2
∑
i6=j

(ε∗ik)2(ε∗jk)2
(∫

Khi(x)Khj(x)dψ(x)
)2

= Op(1),

Wnk,2,1 := 2hdn−2
∑
i6=j

(ε∗ik)2|ε∗jk|
(∫

Khi(x)Khj(x)dψ(x)
)2

= Op(1),

Wnk,2,0 := 2hdn−2
∑
i6=j

(ε∗ik)2
(∫

Khi(x)Khj(x)dψ(x)
)2

= Op(1),

Wnk,1,1 := 2hdn−2
∑
i6=j
|ε∗ik| |ε

∗
jk|
(∫

Khi(x)Khj(x)dψ(x)
)2

= Op(1),

Wnk,1,0 := 2hdn−2
∑
i6=j
|ε∗ik|

(∫
Khi(x)Khj(x)dψ(x)

)2
= Op(1),

Wnk,0,0 := 2hdn−2
∑
i6=j

(∫
Khi(x)Khj(x)dψ(x)

)2
= Op(1), k = 1, 2.

Hence, we have

|Γ̂n1 − Γ̃n1| ≤ (1 + vn)2{2w2
n1Wn1,2,0 + w4

n1Wn1,0,0 + 4wn1Wn1,2,1

+4w2
n1Wn1,1,1 + 4w3

n1Wn1,1,0}+ (2vn + v2
n)Wn1,2,2

= op(1),
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|Γ̂n2 − Γ̃n2| ≤ (1 + vn)2{(2an + a2
n)Wn1,2,2 + 2w2

n2(1 + a2)2Wn2,2,0

+w4
n2Wn2,0,0 + 4wn2(1 + an)3Wn2,2,1

+4w2
n2(1 + an)2Wn2,1,1 + 4w3

n2(1 + an)Wn2,1,0}

+(2vn + v2
n)Wn1,2,2

= op(1).

Therefore the second claim of (1.45) is proved, and so is Lemma 1.5.7.

1.6 Simulations

In this section two simulation studies are reported. The first investigates behavior of the

empirical size and power of the test I(|D̂n1| > 1.96) with g(x) ≡ 1 on [−1, 1]2 at 4 alter-

natives under different designs and data missing probabilities. The second lists the mean

and standard deviation of the minimum distance parameter estimator θ̂n1. In both studies,

d = 2, and the completed data set are constructed using imputation method. All simulations

are based on 1000 replications.

In the first study, we compare the empirical size and power of the test at 4 alternatives,

on 2 designs X, and 3 data missing probabilities ∆(X). More precisely, the design variables

Xi = (X1i, X2i)
T , i = 1, · · · , n, are i.i.d bivariate normal N (0, Vk), k = 1, 2, with

V1 =

 0.36 0

0 1

 , V2 =

 1 0.64

0.64 1

 . (1.46)
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The three choices of ∆(x), x = (x1, x2)T , are as follows:

∆1(x) = (1 + e−0.8−0.5x1−0.5x2)−1, (1.47)

∆2(x) = (1 + e−0.2−0.3x1−0.3x2)−1,

∆3 ≡ 1, the complete data.

These choices are similar to those in Sun and Wang (2009). They use the data missing

probabilities {1+exp(−0.3−0.3x)}−1, {1+exp(−1.0−0.8x)}−1, and 1−0.4 exp(−5(x−0.4)2)

when d = 1. The error distribution is N (0, (0.3)2). The regression function under the null

hypothesis is µ(x) = θT0 l(x), where θ0 = (0.5, 0.8)T , l(x) = x = (x1, x2)T . The regression

models are as follows:

Model 0. δiYi = δiµ(Xi) + δiεi,

Model 1. δiYi = δiµ(Xi) + 0.5δi(X1i − 0.2)(X2i − 0.4) + δiεi,

Model 2. δiYi = δiµ(Xi) + 0.5δi(X1iX2i − 1) + δiεi,

Model 3. δiYi = δiµ(Xi) + 2δi{exp(−0.4X2
1i)− exp(0.6X2

2i)}+ δiεi,

Model 4. δiYi = δiX1iI(X2i > 0.2) + δiεi,

The nominal level is α = 0.05. The sample sizes considered are n = 50, 100, 200. The

first 2 tables describe empirical sizes and powers in models 0-4. Model 0 is the null model

while model 1-4 are the alternatives. These empirical levels and powers are computed by

the relative frequency of the event {|D̂n1| > 1.96} in corresponding models. Bandwidths

h = n−1/4.5 and w = (log n/n)1/6 are chosen because of (h3) and (1.9). The kernels are
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K(u, v) ≡ K1(u)K1(v) and K∗ ≡ K, with K1(u) := 3
4(1− u2)I(|u| ≤ 1).

Table 1.1: Empirical sizes and powers for model 0 vs. models 1-4 with X ∼ N (0, V1) and
ε ∼ N (0, (.3)2)

n n=50 n=100 n=200
∆ ∆1 ∆2 ∆3 ∆1 ∆2 ∆3 ∆1 ∆2 ∆3

Model 0 .020 .027 .031 .029 .029 .036 .033 .034 .042
Model 1 .103 .079 .224 .278 .176 .586 .633 .513 .935
Model 2 .993 .941 1 1 .999 1 1 1 1
Model 3 .315 .203 .999 .351 .270 1 .375 .338 1
Model 4 .241 .159 .484 .671 .497 .905 .980 .920 1

Table 1.1 gives the empirical sizes and powers for testing model 0 against models 1-4

with design X ∼ N (0, V1), when the data are randomly missing with either of the 2 missing

data probabilities or with no missing data. In the simulation, the empirical sizes of the test

for model 0 keep less than 0.05. When the sample size increases, it gradually approaches

the asymptotic level and becomes quite close at the sample size 200. On the other hand,

the empirical powers of the test are greater than 0.05 against each alternative 1-4 for all the

sample sizes we take, and become closer to 1 as the sample size increases; especially against

alternative 2, the power is above 0.94 even at sample size 50. From the comparison among

the 3 data missing probabilities, we observe that the level behavior is affected by the data

missing probability, while the power is affected much more.

Table 1.2: Empirical sizes and powers for model 0 vs. models 1-4 with X ∼ N (0, V2) and
ε ∼ N (0, (.3)2)

n n=50 n=100 n=200
∆ ∆1 ∆2 ∆3 ∆1 ∆2 ∆3 ∆1 ∆2 ∆3

Model 0 .025 .027 .030 .029 .031 .036 .035 .037 .043
Model 1 .115 .103 .371 .199 .164 .677 .479 .373 .952
Model 2 .965 .831 1 .999 .991 1 1 1 1
Model 3 .237 .187 1 .272 .209 1 .274 .227 1
Model 4 .203 .144 .529 .596 .471 .927 .957 .892 1

Table 1.2 lists empirical sizes and powers with design X ∼ N (0, V2). In addition to

48



obtaining similar conclusion as the first table, we can also find that the power and the

level behaviors are affected by the dependence between the design variable coordinates,

although they are not affected that much. Results for model 4 in both tables show that the

discontinuity of regression function has an effect on the power of the test, because the power

is dramatically changed as the sample size increases.

Table 1.3: Mean and s.d. of θ̂n1 under model 0 with X ∼ N (0, V1), ε ∼ N (0, (.3)2), and
E(δ|X = x) = ∆1(x)

n n = 50 n = 100 n = 200
Mean (.494, .804) (.503, .800) (.499, .800)

Std dev (.110, .084) (.078, .061) (.052, .043)

The second study gives the mean and standard deviation of each component of θ̂n1

under the null hypothesis model 0 with normal error ε ∼ N (0, (0.3)2) when d = q = 2.

The variance of design and data missing probability are chosen to be V1 in (1.46) and ∆1 in

(1.47), respectively. The regression function and parameter are the same as in the first study.

Results listed in Table 1.3 show that the minimum distance estimator of the parameter is

very close to the true parameter and the standard deviation is quite small.
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Chapter 2

Testing for Superiority of Two

Regression Curves when Responses

are Missing At Random

2.1 Introduction

This chapter considers a class of tests using covariate matching for comparing the equality

of two nonparametric regression curves against a one-sided alternative, when responses are

missing at random. More precisely, let (Xk, δkYk), k = 1, 2, be the two groups of random

variables, where Xk is a one-dimensional explanatory variable, Yk is a one-dimensional re-

sponse variable, δk is an indicator for whether the response is missing or observed, i.e. δk = 1,

if Yk is observed, and δk = 0, if Yk is missing, k = 1, 2. We say Yk is missing at random, if

δk and Yk are conditionally independent, given Xk, i.e. P (δk = 1|Yk, Xk) = P (δk = 1|Xk),

a.s., k = 1, 2; see Little and Rubin (1987).
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Now, let

µk(x) := E(Yk|Xk = x), x ∈ R, k = 1, 2,

be the two regression functions so that

Yk = µk(Xk) + εk, E(εk|Xk = x) = 0, ∀x ∈ R, k = 1, 2.

Let I be a compact interval in R. The problem of interest is to test the hypothesis

H0 : µ1(x) = µ2(x), for all x ∈ I,

H1 : µ1(x) ≥ µ2(x), for all x ∈ I with strict inequality for at least one x ∈ I,

based on independent samples {(Xk,i, δk,iYk,i) : i = 1, · · · , nk} from the distributions of

(Xk, δkYk), k = 1, 2, respectively. Moreover, let φ be a non-negative continuous function on

R. One is interested in the asymptotic power of a given test against the local alternatives

H1N : µ1(x) = µ2(x) +N−1/2φ(x), N :=
n1n2

n1 + n2
, for all x ∈ I. (2.1)

When we observe complete data, this testing problem has been addressed by many re-

searchers. In particular, Hall et. al (1997) proposed a class of tests based on the covariate-

matching, and the local averaging interpolation rule. They proved the asymptotic normality

of the proposed statistics under general alternatives, allowing design and error densities to

be different. They also proposed an adaptive version of their test that achieves the opti-

mal power against a sequence of local alternatives. Koul and Schick (1997) proposed four
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classes of tests under the assumption of possibly distinct design but common error densities.

They gave a general asymptotic optimality theory against a sequence of local alternatives.

One of these classes of covariate-matched tests is shown to have desirable asymptotic power

properties against several alternatives. Koul and Schick (2003) (K-S) developed this class

of test further and derive their asymptotic power for the local alternatives, under the het-

eroscedastic setting with possibly distinct error and design densities in the two regression

models. They obtained an upper bound on the asymptotic power of all tests against a given

sequence of local alternatives using a semiparametric approach, and showed that a member

of this class of tests achieves this upper bound.

This chapter discusses the above one-sided testing problem when responses are missing

at random. We construct a complete data set by imputing kernel-type estimates for the

regression functions, and investigate the asymptotic properties of the modified version for

missing at random setup of the covariate-matched test statistic proposed in K-S under null

hypothesis and local alternatives. The consistency of the tests based on these statistics is

also discussed. To set up the analysis, let U be the set of all non-negative functions that are

continuous on I and vanish off I. Assume that Xk has a density gk that is bounded away

from zero on I, k = 1, 2. Let K be a symmetric Lipschitz continuous kernel density with

compact support [−1, 1], a = aN , bk = bk,nk
, ck = ck,nk

, and dk = dk,nk
, be bandwidth

sequences. Let Kh(y) := K(y/h)/h, y ∈ R, h = a, bk, ck, dk. The estimators of regression

functions and the constructed responses are, respectively,

µ̂k(x) :=

∑nk
i=1 δk,iYk,iKbk(x−Xk,i)∑nk
i=1 δk,iKbk

(x−Xk,i)
,

Ŷk,i := δk,iYk,i + (1− δk,i)µ̂k(Xk,i), 1 ≤ i ≤ nk, k = 1, 2.
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For each k = 1, 2, let v̂k be a non-negative estimate of vk :=
√
u/gk which vanishes off I.

The covariate-matched statistic and the adaptive version with responses missing at random,

respectively, are

T :=
1

n1n2

n1∑
i=1

n2∑
j=1

v1(X1,i)v2(X2,j)(Y1,i − Y2,j)Ka(X1,i −X2,j),

and

T̂ :=
1

n1n2

n1∑
i=1

n2∑
j=1

v̂1(X1,i)v̂2(X2,j)(Ŷ1,i − Ŷ2,j)Ka(X1,i −X2,j).

The needed assumptions and conditions to state the main results are given in Section 2.2.

Section 2.3 states the asymptotic normality of T̂ under H0 and H1N, and the consistency of

the test based on T̂ . The optimal u to maximize the asymptotic power against H1N is also

discussed. Section 2.4 gives the estimates needed to construct T̂ and the corresponding test.

Simulation studies are set in Section 2.5.

2.2 Assumptions

In this section we shall state the needed assumptions. The following assumptions are similar

to those in K-S. For each k = 1, 2,

(e1) (Xk,i, δk,iYk,i) : Xk,i ∈ R, Yk,i ∈ R, δk,i = 0 or 1, i = 1, 2, · · · , nk, are i.i.d. ran-

dom vectors with δk,i = 1, if Yk,i is observed, and δk,i = 0, if Yk,i is missing;

µk(x) = E(Yk,1|Xk,1 = x), x ∈ R, εk,i = Yk,i − µk(Xk,i), δk,i and εk,i are con-

ditionally independent, given Xk,i. {(X1,i, δ1,iY1,i)}
n1
i=1 and {(X2,j , δ2,jY2,j)}

n2
j=1 are
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independent.

(e2) Eε2
k,1 < ∞, σ2

k(x) := E(ε2
k,1|Xk,1 = x) and ∆k(x) := E(δk,1 = 1|Xk,1 = x) are

continuous and positive on I.

(e3) ν4
k(x) := E(ε4

k,1|Xk,1), x ∈ R, is bounded on an open interval containing I.

(e4) σ2
k and ∆k are twice continuously differentiable on I.

(g1) The design variable Xk,1 has a bounded Lebesgue density gk which is continuous

and positive on I.

(g2) The density g is twice continuously differentiable on I.

(k) The kernel w is symmetric square integrable continuous density with compact

support [−1, 1]. In addition, w satisfies Lipschitz-continuity of order 1.

(m) µ1 is continuous. µ2 is Lipschitz-continuous of order 1 with Lipschitz constant

`µ2 .

(p) φ is a non-negative continuous function.

(q) ξ is a non-negative continuous function with ξ(x) > 0 for at least one x ∈ I.

(u) U is the set of all non-negative functions that vanish off I and whose restrictions

to I are continuous.

(w1) a2N → 0, aNη1 →∞, for some η1 ∈ (1/2, 1).

(w2) b2knk → 0, bkn
η2
k →∞, for some η2 ∈ (1/2, 1).

(w3) ck → 0, dk → 0, (ck+dk)n
η3
k →∞ for some η3 ∈ (0, 1/2), (c5k+d5

k)nk(log nk)−1 ≤

C for some C <∞.

(z) {Ik,1, · · · , Ik,Bk} partitions I into disjoint intervals of equal length πk, with πk → 0

and n
1/2
k πk →∞.
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Note that (e2) and (g1) imply that for each k = 1, 2, the functions gk, σ2
k, and ∆k, are

bounded and uniformly continuous on the compact interval I, and bounded away from zero

on I.

Rewrite H1 into the form:

H1 : µ1 = µ2 + ξ, where ξ satisfies (q) and

∫
u(x)ξ(x)dx > 0, u ∈ U . (2.2)

To state the main results, we need the following set of additional conditions on estimators.

They are motivated by Schick (1987), and proposed in K-S as Definition 2.1, Assumption

2.3, and Lemma 2.4, for the case of complete responses. These conditions are reproduced as

follows, only with changes from the case of complete responses to data missing at random

setup. We need these conditions not only under H0 and H1N in (2.1), but also under H1 in

(2.2). Let

X := (X1,1, · · · , X1,n1
, X2,1, · · · , X2,n2

), (2.3)

δ := (δ1,1, · · · , δ1,n1
, δ2,1, · · · , δ2,n2

),

Y := (Y1,1, · · · , Y1,n1
, Y2,1, · · · , Y2,n2

),

rk(x) = u(x)/gk(x), x ∈ I.

and Yk,j be the vector obtained from Y by removing Yk,j , j = 1, · · · , nk, k = 1, 2.

Definition 2.2.1. The estimator r̂k of rk is said to be consistent and cross-validated on I

for the function rk (short CCV on I for rk) if the following two conditions hold:
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N

n2
k

nk∑
i=1

1I(Xk,i)E[{r̂k(Xk,i)− rk(Xk,i)}2|X, δ] = op(1), (2.4)

N max
1≤j≤nk

sup
x∈I

E[{r̂k(x)− E[r̂k(x)|X, δ,Yk,j ]}2|X, δ] = op(1). (2.5)

We say r̃k is a modification of r̂k if P (supx∈I |r̃k(x) − r̂k(x)| > 0) → 0. We say r̂k is

essentially CCV on I for rk if there exists a modification of r̂k which is CCV on I for rk.

Assumption 2.2.1. The estimate r̂k is essentially CCV on I for rk for k = 1, 2.

Lemma 2.2.1. Suppose there are modifications ṽk of v̂k such that, for k = 1, 2 and l = 1, 2,

0 ≤ ṽk(x) ≤M, x ∈ I, (2.6)

for some finite constant M , and such that

1

nl

nl∑
i=1

E[{ṽk(Xl,i)− vk(Xl,i)}2|X, δ] = op(1), (2.7)

N max
1≤i≤nl

sup
x∈I

E[{ṽk(x)− E[ṽk(x)|X, δ,Yl,i]}2|X, δ] = op(1). (2.8)

Then Assumption 2.2.1 holds.

The proof of Lemma 2.2.1 follows that of Lemma 2.4 in K-S, only with changes from X

to (X, δ). Since this proof does not involve the responses Y but only the designs (X, δ), the

above lemma holds under H0, H1N, and H1.

Remark 2.2.1. Suppose modifications ṽk of v̂k exist and satisfy (2.6)-(2.8), k = 1, 2. K-S
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show in their proof of Lemma 2.4 that the estimators

r̂1(x) := v̂1(x)
1

n2

n2∑
j=1

v̂2(X2,j)Ka(x−X2,j), and (2.9)

r̂2(x) := v̂2(x)
1

n1

n1∑
i=1

v̂1(X1,i)Ka(x−X1,i), x ∈ R,

are essentially CCV on I for r1, and r2, respectively, and their respective modifications can

be chosen as

r̃1(x) = ṽ1(x)
1

n2

n2∑
j=1

ṽ2(X2,j)Ka(x−X2,j), (2.10)

r̃2(x) = ṽ2(x)
1

n1

n1∑
i=1

ṽ1(X1,i)Ka(x−X1,i).

We also need the following notation and results in the proofs later. Let

hk(x) := ∆k(x)gk(x), λk := inf
x∈I

hk(x), k = 1, 2. (2.11)

ĥk(x) :=
1

nk

nk∑
l=1

δk,lKbk
(x−Xk,l), ĝk(x) :=

1

nk

nk∑
l=1

Kbk
(x−Xk,l).

Lemma 2.2.2. Let tk = tnk , k = 1, 2, be bandwidths satisfying tk → 0 and nkt
5
k(log nk)−1 ≤

C for some C <∞. Assume (e2), (e4), (g1), and (g2) hold. Then the following hold.

sup
x∈I

∣∣∣ 1

nk

nk∑
i=1

Ktk(x−Xk,i)− gk(x)
∣∣∣ = op(1). (2.12)

sup
x∈I

∣∣∣ 1

nk

nk∑
i=1

δk,iKtk(x−Xk,i)− hk(x)
∣∣∣ = op(1). (2.13)
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sup
x∈I

∣∣∣ 1

nk

nk∑
i=1

εk,iδk,iKtk(x−Xk,i)
∣∣∣ = op(1). (2.14)

sup
x∈I

∣∣∣ 1

nk

nk∑
i=1

ε2
k,iδk,iKtk(x−Xk,i)− Eε2

k,1δk,1Ktk(x−Xk,1)
∣∣∣ = op(1). (2.15)

sup
x∈I

∣∣∣ 1
nk

∑nk
i=1 δk,iKtk(x−Xk,i)

1
nk

∑nk
i=1Ktk(x−Xk,i)

−∆k(x)
∣∣∣ = op(1). (2.16)

This lemma is obtained from Theorem 3 of Collomb and Härdle (1986).

2.3 Asymptotic distribution of the test statistic under

H0, H1N, and H1

In this section we discuss the asymptotic distribution of T̂ against H1N in Theorem 2.3.1.

The asymptotic null distribution is included because the choice φ = 0 corresponds to the

null hypothesis. The asymptotic behavior of T̂ against H1 is given in Theorem 2.3.2, while

consistency of the corresponding test against H1 is stated in Remark 2.3.1.

K-S propose an optimal u to test H0 against H1N when data is complete. When responses

are missing at random, a similar optimal u can be derived. This result is given in Remark

2.3.1.

The following definitions are used in the theorems and remarks below.

q1 :=
N

n1
=

n2

n1 + n2
, q2 :=

N

n2
=

n1

n1 + n2
, (2.17)

ψ1(x) :=
σ2

1(x)

∆1(x)g1(x)
, ψ2(x) :=

σ2
2(x)

∆2(x)g2(x)
, x ∈ R,

τ2 :=

∫
u2(x)[q1ψ1(x) + q2ψ2(x)]dx, D :=

∫
u(x)(µ1(x)− µ2(x))dx.
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Theorem 2.3.1. Assume that (e1), (e2), (e4), (g1), (g2), (k), (m), (p), (u), (w1), (w2),

and Assumption 2.2.1 hold. Then under H1N of (2.1),

N1/2
(
T̂ −D − 1

n1

n1∑
i=1

u(X1,i)

∆1(X1,i)g1(X1,i)
δ1,iε1,i

− 1

n2

n2∑
j=1

u(X2,j)

∆2(X2,j)g2(X2,j)
δ2,jε2,j

)
= op(1),

as both sample sizes n1 and n2 tend to infinity. Consequently, under H1N,

N1/2(T̂ −D)→d N (0, τ2), as n1 ∧ n2 →∞.

Proof. Recall r from (2.3), r̂k from (2.9), ĝk and ĥk from (2.11), k = 1, 2. For x ∈ R,

k,m = 1, 2, let

µ̄k,m(x) :=
1

nk

nk∑
l=1

µm(Xk,l)δk,lKbk
(x−Xk,l)/ĥk(x),

ε̄k(x) :=
1

nk

nk∑
l=1

εk,lδk,lKbk
(x−Xk,l)/ĥk(x),

φ̄k(x) :=
1

nk

nk∑
l=1

φ(Xk,l)δk,lKbk
(x−Xk,l)/ĥk(x).

Suppose H1N holds. With definitions above, write T̂ = A1 +B1−B2 +C1−C2 +R1 +R2,

where

A1 :=
1

n1n2

n1∑
i=1

n2∑
j=1

v̂1(X1,i)v̂2(X2,j)
(
µ2(X1,i)− µ2(X2,j)

)
Ka(X1,i −X2,j),

B1 :=
1

n1

n1∑
i=1

r̂1(X1,i)(1− δ1,i)
(
µ̄1,2(X1,i)− µ2(X1,i)

)
,
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B2 :=
1

n2

n2∑
j=1

r̂2(X2,j)(1− δ2,j)
(
µ̄2,2(X2,j)− µ2(X2,j)

)
,

C1 :=
1

n1

n1∑
i=1

r̂1(X1,i)
(
δ1,iε1,i + (1− δ1,i)ε̄1(X1,i)

)
,

C2 :=
1

n2

n2∑
j=1

r̂2(X2,j)
(
δ2,jε2,j + (1− δ2,j)ε̄2(X2,j)

)
,

R1 :=
N−1/2

n1

n1∑
i=1

r̂1(X1,i)φ(X1,i),

R2 :=
N−1/2

n1

n1∑
i=1

r̂1(X1,i)(1− δ1,i)
(
φ̄1(X1,i)− φ(X1,i)

)
.

In the following, we shall show that

N1/2A1 = op(1); N1/2Bk = op(1), k = 1, 2;

N1/2R1 = n1/2D + op(1); (2.18)

N1/2Ck =
N1/2

nk

nk∑
i=1

rk(Xk,i)

∆k(Xk,i)
δk,iεk,i + op(1), k = 1, 2; (2.19)

N1/2R2 = op(1). (2.20)

Among them, (2.18) is derived by similar proof as that of Theorem 2.6 in K-S, while some

details proof of (2.19) are also inspired by those of Theorem 2.6 in K-S. Recall the Lipschitz

constant `µ2 of µ2 in condition (m). By (g1), (m), (u), (w1), Assumption 2.2.1, and routine

calculation, one has

N1/2|A1| ≤ N1/2`µ2a
1

n1

n1∑
i=1

r̂1(X1,i) = op(1).

From (g1), (m), (u), (w2), Assumption 2.2.1, and the fact
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∣∣∣µ̄k,2(Xk,i)− µ2(Xk,i)
∣∣∣ ≤ 1

nk

∑nk
l=1 |µ2(Xk,l)− µ2(Xk,i)|δk,lKbk(Xk,i −Xk,l)

ĥk(Xk,i)

≤ `µ2bk, k = 1, 2,

one obtains N1/2|Bk| ≤ N1/2`µ2bk
1
nk

∑nk
i=1 r̂k(Xk,i) = op(1), k = 1, 2. For each k = 1, 2,

note that

Ck =
1

nk

nk∑
i=1

εk,i

{ 1

nk

nk∑
l=1

r̂k(Xk,l)(1− δk,l)δk,iKbk(Xk,i −Xk,l)

ĥk(Xk,l)
+ δk,ir̂k(Xk,i)

}
.

Write Ck = Ck,1 + Ck,2 + Ck,3 + Ck,4, where

Ck,1 :=
1

nk

nk∑
i=1

εk,i

{ 1

nk

nk∑
l=1

rk(Xk,l)(1− δk,l)δk,iKbk(Xk,i −Xk,l)
hk(Xk,l)

−
δk,i(1−∆k(Xk,i))rk(Xk,i)

∆k(Xk,i)

}
,

Ck,2 :=
1

nk

nk∑
i=1

εk,i

{ 1

nk

nk∑
l=1

( r̂k(Xk,l)

ĥk(Xk,l)
−
rk(Xk,l)

hk(Xk,l)

)
×(1− δk,l)δk,iKbk(Xk,i −Xk,l)

}
,

Ck,3 :=
1

nk

nk∑
i=1

εk,iδk,i(r̂k(Xk,i)− rk(Xk,i)),

Ck,4 :=
1

nk

nk∑
i=1

εk,iδk,irk(Xk,i)

∆k(Xk,i)
.

For i, l = 1, · · · , nk, k = 1, 2, let

Ik,i,l :=
rk(Xk,l)(1− δk,l)δk,iKbk(Xk,i −Xk,l)

hk(Xk,l)
,
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Jk,i :=
δk,i(1−∆k(Xk,i))rk(Xk,i)

∆k(Xk,i)
.

By (e1), (e2), (g1), (u), (w2), and routine calculation, one has E(N1/2Ck,1) = 0 and

V ar(N1/2Ck,1)

=
N

nk
E
[
ε2
k,1

{ 1

nk

nk∑
l=1

Ik,1,l − Jk,1
}2]

=
N

nk
E
[
ε2
k,1

{nk − 1

n2
k

I2
k,1,2 +

(nk − 1)(nk − 2)

n2
k

Ik,1,2Ik,1,3

−2(nk − 1)

nk
Jk,1Ik,1,2 + J2

k,1

}]
=

N

nk

[nk − 1

n2
kbk

∫ ∫ (
σ2
k(x)∆k(x)gk(x)

)(
r2
k(x+ bu)(1−∆k(x+ bu))

×(∆k(x+ bu))−2(gk(x+ bu))−1
)
K2(u)dudx

+
(nk − 1)(nk − 2)

n2
k

∫ ∫ ∫ (
σ2
k(x)∆k(x)gk(x)

)(
rk(x+ bu)

×(1−∆k(x+ bu))(∆k(x+ bu))−1)
)(
rk(x+ bv)

×(1−∆k(x+ bv))(∆k(x+ bv))−1
)
K(u)K(v)dudvdx

−2(nk − 1)

nk

∫ ∫ (
σ2
k(x)rk(x)(1−∆k(x))gk(x)

)(
rk(x+ bu)

×(1−∆k(x+ bu))(∆k(x+ bu))−1)
)
K(u)dudx

+

∫
σ2
k(x)r2

k(x)(1−∆k(x))2(∆k(x))−1gk(x)dx
]

→ 0, k = 1, 2.

Hence N1/2Ck,1 = op(1), k = 1, 2. Recall the modification r̃k of r̂k defined in (2.10) which

is CCV on I for rk. Let for i, j,m = 1, · · · , nk, k = 1, 2,

r̃k,i(x) := E[r̃k(x)|X, δ,Yk,i], r̃k,i,j(x) := E[r̃k,i(x)|X, δ,Yk,j ],
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M̂k,i :=
1

nk

nk∑
l=1

( r̂k(Xk,l)

ĥk(Xk,l)
−
rk(Xk,l)

hk(Xk,l)

)
(1− δk,l)δk,iKbk(Xk,i −Xk,l),

M̃k,i :=
1

nk

nk∑
l=1

( r̃k(Xk,l)

ĥk(Xk,l)
−
rk(Xk,l)

hk(Xk,l)

)
(1− δk,l)δk,iKbk(Xk,i −Xk,l),

M̃k,i;j := E[M̃k,i|X, δ,Yk,j ], M̃k,i;j,m := E[M̃k,i;j |X, δ,Yk,m].

Then we have

Ck,2 =
1

nk

nk∑
i=1

εk,iM̃k,i;i +
1

nk

nk∑
i=1

εk,i(M̃k,i − M̃k,i;i) +
1

nk

nk∑
i=1

εk,i(M̂k,i − M̃k,i)

= Ck,2,1 + Ck,2,2 + Ck,2,3, say.

For each k = 1, 2, let Qk,l;i,j := E[(r̃k,i(Xk,l) − r̃k,i,j(Xk,l))2|X, δ], l, i, j = 1, · · · , nk. By

C-S inequality, one has

Sk,1 : =
N

n2
k

nk∑
i=1

nk∑
j=1

E[(M̃k(i),i − M̃k(i),i,j)
2|X, δ]

=
N

n2
k

nk∑
i=1

nk∑
j=1

E
[{ 1

nk

nk∑
l=1

( r̃k,i(Xk,l)
ĥk(Xk,l)

−
r̃k,i,j(Xk,l)

ĥk(Xk,l)

)
×(1− δk,l)δk,iKbk(Xk,i −Xk,l)

}2∣∣∣X, δ]
≤ N

n2
k

nk∑
i=1

nk∑
j=1

E
[ 1

nk

nk∑
l=1

( r̃k,i(Xk,l)
ĥk(Xk,l)

−
r̃k,i,j(Xk,l)

ĥk(Xk,l)

)2
Kbk

(Xk,i −Xk,l)
∣∣∣X, δ]

×
{ 1

nk

nk∑
l=1

(1− δk,l)δk,iKbk(Xk,i −Xk,l)
}

≤ sup
x∈I

ĝk(x)
N

n2
k

nk∑
i=1

nk∑
j=1

{ 1

nk

nk∑
l=1

E
[( r̃k,i(Xk,l)

ĥk(Xk,l)
−
r̃k,i,j(Xk,l)

ĥk(Xk,l)

)2∣∣∣X, δ]
×Kbk(Xk,i −Xk,l)

}
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= sup
x∈I

ĝk(x)
N

n3
k

nk∑
l=1

nk∑
i=1

nk∑
j=1

Qk,l;i,j

ĥ2
k(Xk,l)

Kbk
(Xk,i −Xk,l)

= sup
x∈I

ĝk(x)I[

nk⋂
m=1

{ĥk(Xk,m) ≥ λk
2
}]

×N
n3
k

nk∑
l=1

nk∑
i=1

nk∑
j=1

Qk,l;i,j

ĥ2
k(Xk,l)

Kbk
(Xk,i −Xk,l)

+ sup
x∈I

ĝk(x)I[

nk⋃
m=1

{ĥk(Xk,m) <
λk
2
}]

×N
n3
k

nk∑
l=1

nk∑
i=1

nk∑
j=1

Qk,l;i,j

ĥ2
k(Xk,l)

Kbk
(Xk,i −Xk,l)

= Sk,1,1 + Sk,1,2, say.

By Assumption 2.2.1, (2.5), (e1), and C-S inequality, one obtains

sup
1≤i,l≤nk

N

nk

nk∑
j=1

Qk,l;i,j

= sup
1≤i,l≤nk

N

nk

nk∑
j=1

E[(r̃k,i(Xk,l)− r̃k,j,i(Xk,l))2|X, δ]

≤ sup
1≤l≤nk

N

n2
k

nk∑
i=1

nk∑
j=1

E[E({r̃k(Xk,l)− r̃k,j(Xk,l)}2|X, δ,Yk,i)|X, δ]

≤ N max
1≤j≤nk

sup
x∈I

E[{r̃k(x)− r̃k,j(x)}2|X, δ] = op(1). (2.21)

(2.12) in Remark 2.2.2 shows supx∈I ĝk(x) = op(1). Together with (2.11) and (2.21), we

have

Sk,1,1 ≤
1

n2
k

nk∑
l=1

nk∑
i=1

Kbk
(Xk,i −Xk,l)

{
sup

1≤i,l≤nk

N

nk

nk∑
j=1

Qk,l;i,j

}/
(λk/2)2

× sup
x∈I

ĝk(x)I[

nk⋂
m=1

{ĥk(Xk,m) ≥ λk/2}]
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≤
(

sup
x∈I

ĝk(x)
)2{

sup
1≤i,l≤nk

N

nk

nk∑
j=1

Qk,l;i,j

}/
(λk/2)2 = op(1).

(2.13) in Remark 2.2.2 leads to the result

P (

nk⋃
i=1

{ĥk(Xk,i) < λ/2}) ≤ P ( max
1≤i≤nk

|ĥk(Xk,i)− hk(Xk,i)| > λ/2)

≤ P (sup
x∈I
|ĥk(x)− hk(x)| > λ/2)→ 0.

Together with the fact that
⋃nk
i=1{ĥk(Xk,i) < λ/2} ∈ σ(X, δ), one has Sk,1,2 = op(1). Thus,

we have Sk,1 = op(1), k = 1, 2. Let

Di := ε1,iM̃1,i;i, Di,j := E[Di|X, δ,Y1,j ], i, j = 1, · · · , n1.

Note that by (e1), Di,i = 0, and E[DiDj |X, δ] = E[(Di−Di,j)(Dj −Dj,i)|X, δ]. From (e2),

one has

E[(N1/2Ck,2,1)2|X, δ] =
N

n2
k

nk∑
i=1

nk∑
j=1

E[(Di −Di,j)(Dj −Dj,i)|X, δ]

≤ N

n2
k

nk∑
i=1

nk∑
j=1

E[(Di −Di,j)2|X, δ]

=
N

n2
k

nk∑
i=1

nk∑
j=1

E[ε2
1,i(M̃1,i;i − M̃1,i;i,j)

2|X, δ]

≤ Sk,1 sup
x∈I

σ2
k(x) = op(1), k = 1, 2.

Thus N1/2Ck,2,1 = op(1), k = 1, 2. By similar routine in proving Sk,1 = op(1), one has

Sk,2 := N
nk

∑nk
i=1E[(M̃k,i− M̃k,i;i)

2|X, δ] = op(1), k = 1, 2. This together with (e2) and C-S

inequality leads to the following result:
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(N1/2Ck,2,2)2 ≤
(N
nk

nk∑
i=1

(M̃k,i − M̃k,i;i)
2
)( 1

nk

nk∑
j=1

ε2
k,j

)
= op(1), k = 1, 2.

Because of P (|N1/2Ck,2,3| > 0) ≤ P (supx∈I |r̃k(x)− r̂k(x)| > 0)→ 0, we have N1/2Ck,2,3 =

op(1), k = 1, 2. Therefore one obtains N1/2Ck,2 = op(1), k = 1, 2. By similar proof as that

of Theorem 2.6 in K-S, N1/2Ck,3 = op(1) can be derived. Then one has

N1/2Ck =
N1/2

nk

nk∑
i=1

rk(Xk,i)

∆k(Xk,i)
δk,iεk,i + op(1), k = 1, 2.

Furthermore, by Assumption 2.2.1, (2.4), (p), C-S inequality, and Law of Large Numbers,

one obtains

N1/2R1 =
1

n1

n1∑
i=1

r1(X1,i)φ(X1,i) +
1

n1

n1∑
i=1

(r̃1(X1,i)− r1(X1,i))φ(X1,i)

+
1

n1

n1∑
i=1

(r̂1(X1,i)− r̃1(X1,i))φ(X1,i) = N1/2D + op(1),

N1/2R2 ≤
( 1

n1

n1∑
i=1

r̂2
1(X1,i)

)1/2( 1

n1

n1∑
i=1

(φ̄1(X1,i)− φ(X1,i))
2
)1/2

.

Together by the result as follows:

1

n1

n1∑
i=1

(φ̄1(X1,i)− φ(X1,i))
2

=
1

n1

n1∑
i=1

( 1

n1

n1∑
l=1

(φ(X1,l)− φ(X1,i))δ1,lKb1(X1,i −X1,l)/ĥ1(X1,i)
)2

≤ 1

n1

n1∑
i=1

1

n1

n1∑
l=1

(φ(X1,l)− φ(X1,i))
2δ1,lKb1(X1,i −X1,l)/ĥ1(X1,i)
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=
( 1

n2
1

n1∑
i=1

n1∑
l=1

(φ(X1,l)− φ(X1,i))
2δ1,lKb1(X1,i −X1,l)/ĥ1(X1,i)

)

×
(
I[

n1⋂
m=1

{ĥ1(X1,m) ≥ λ1/2}] + I[

n1⋃
m=1

{ĥ1(X1,m) < λ1/2}]
)

= op(1) + op(1) = op(1),

we have N1/2R2 = op(1). Therefore, one obtains

N1/2T̂ = N1/2
(
D +

1

n1

n1∑
i=1

r1(X1,i)

∆1(X1,i)
δ1,iε1,i −

1

n2

n2∑
j=1

r2(X2,j)

∆2(X2,j)
δ2,jε2,j

)
+ op(1).

Thus the proof is complete.

Theorem 2.3.2. Suppose (e1), (e2), (e4), (g1), (g2), (k), (m), (p), (u), (w1), (w2), and

Assumption 2.2.1 hold. Then under H1 in (2.2), one has N1/2T̂ →p ∞.

The proof of Theorem 2.3.2 is similar to that of Theorem 2.3.1, only with difference that

N1/2(R1 +R2)→p ∞ under H1.

Remark 2.3.1. Let γ :=
∫
u(x)φ(x)dx

/
τ . Assume that under H0, H1, and H1N, the

assumptions of Theorem 2.3.1 hold, and there exists an estimate τ̂2 of τ2 which satisfies

τ̂2 = τ2 + op(1). Then, one has

N1/2T̂ /τ̂ →d N (0, 1), under H0,

N1/2T̂ /τ̂ →d N (γ, 1), under H1N,

N1/2T̂ /τ̂ →p ∞, under H1.
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Consequently, the asymptotic level of the test

V̂ = I{N1/2T̂ /τ̂ ≥ zα}, (2.22)

is α. The asymptotic power of this test under H1N is 1− Φ(zα − γ). An application of the

Cauchy-Schwarz (C-S) inequality shows that γ and the asymptotic power are maximized by

the choice

u = uφ :=
φ1I

q1ψ1 + q2ψ2
.

The maximal asymptotic power is 1− Φ(zα − γφ), where

γφ :=
(∫ φ2(x)1I(x)

q1ψ1(x) + q2ψ2(x)
dx
)1/2

is the maximal value of γ. This result is similar to that of the complete responses data

discussed in Remark 2.8 and Remark 2.9 of K-S. The only difference in the missing data at

random structure is reflected in having ∆k(x) appear in the denominator of ψk, k = 1, 2.

The result is exactly the same as that of complete responses data when ∆k ≡ 1, k = 1, 2.

2.4 Some suggested estimators

In this section we shall consider estimates of vk and τ2. K-S give these estimates for a given

u and the (unknown) optimal u when responses are complete, and discuss their properties.

When responses are missing at random, similar estimates and properties are still valid. They

are listed as follows for the sake of completeness.
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The following discussion gives an estimate of vk, k = 1, 2. Recall ĝk and ĥk from (2.11).

When u is known, consider

v̂k :=
√
u/ĝk, ṽk :=

√
u/(ĝk ∨ η), (2.23)

where η is a positive number satisfying gk(x) > 4η for all x ∈ I, ṽk is a modification of v̂k

which satisfies assumption of Lemma 2.2.1. This implies that Assumption 2.2.1 holds.

When u = uφ with a known non-negative continuous function φ, let ck and dk be band-

widths satisfy (w3), and consider

µ̂k,c(x) :=

∑nk
j=1 Yk,jδk,jKck(x−Xk,j)∑nk
j=1 δk,jKck(x−Xk,j)

, (2.24)

σ̂2
k(x) :=

∑nk
j=1(Yk,j − µ̂k,c(Xk,j))2δk,jKdk

(x−Xk,j)∑nk
j=1 δk,jKdk

(x−Xk,j)
, x ∈ R,

ψ̂k :=
σ̂2
k

ĥk
, µ̂φ :=

φ1I
q1ψ̂1 + q2ψ̂2

, v̂k :=

√
µ̂φ
ĝk

, k = 1, 2.

Arguing as in the estimation of vk when u = uφ in section 3 of K-S, we can find a modification

ṽk of v̂k, which satisfies the assumptions of Lemma 2.2.1, such that Assumption 2.2.1 holds.

The following lemma gives the needed properties of σ̂2
k.

Lemma 2.4.1. Suppose (e1), (e2), (e3), (e4), (g1), (g2), (k), (m), (p), (u), (v), and (w3)

hold. Then for each k = 1, 2,

sup
x∈I
|σ̂2
k(x)− σ2

k(x)| = op(1), under H0,H1, and H1N, (2.25)

and σ̂2
k is essentially CCV on I for σ2

k, under H0, H1, and H1N.
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Proof. First we give the proof of (2.25) under H1N. The case φ = 0 corresponds to the

result under H0. For k = 1, 2 and x ∈ I, define

ĥk,c(x) :=
1

nk

nk∑
l=1

δk,lKck(x−Xk,l),

µ̄k,c(x) :=

1
nk

∑nk
l=1 µk(Xk,l)δk,lKck(x−Xk,l)

ĥk,c(x)
,

ε̄k,c(x) :=

1
nk

∑nk
l=1 εk,lδk,lKck(x−Xk,l)

ĥk,c(x)
,

while ĥk,d(x), µ̄k,d(x), and ε̄k,d(x) can be defined similarly when the bandwidth dk is used

instead of ck. One can write σ̂2
k(x)− σ2

k(x) into the sum of the following terms:

Zk,1(x) =

1
nk

∑nk
j=1(µk(Xk,j)− µ̄k,c(Xk,j))2δk,lKdk

(x−Xk,j)

ĥk,d(x)
,

Zk,2(x) =

1
nk

∑nk
j=1 ε̄

2
k,c(Xk,j)δk,jKdk

(x−Xk,j)

ĥk,d(x)

−
2
nk

∑nk
j=1 εk,j ε̄k,c(Xk,j)δk,jKdk

(x−Xk,j)

ĥk,d(x)

+
( 1
nk

∑nk
j=1 ε

2
k,jδk,jKdk

(x−Xk,j)

ĥk,d(x)
− σ2

k(x)
)

= Zk,2,1 − Zk,2,2 + Zk,2,3, say,

Zk,3(x) =

2
nk

∑nk
j=1(µk(Xk,j)− µ̄k,c(Xk,j))(εk,j − ε̄k,c(Xk,j))δk,jKdk(x−Xk,j)

ĥk,d(x)
.

By (m), (p), and (u), we have supx∈I Zk,1(x) ≤ `2µ2
c2k + op(n

−1) = op(1). (2.13) and (2.14)

in Lemma 2.2.2 leads to the result
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sup
x∈I

Zk,2,1(x) ≤ max
1≤j≤nk

ε̄2
k,c(Xk,j)

≤ sup
x∈I

∣∣∣ h(x)

ĥk,c(x)

∣∣∣2 sup
x∈I

∣∣ 1
nk

∑nk
l=1 εk,lδk,lKck(x−Xk,l)

∣∣2
h2(x)

= op(1).

From (2.13) and (2.15) in Lemma 2.2.2, one obtains

sup
x∈I
|Zk,2,3(x)| ≤ sup

x∈I

∣∣ 1
nk

∑nk
j=1 ε

2
k,jδk,jKdk

(x−Xk,j)− σ2
k(x)hk(x)

∣∣
hk(x)

× sup
x∈I

hk(x)

ĥk,d(x)
+ sup
x∈I

σ2
k(x) sup

x∈I

∣∣∣ hk(x)

ĥk,d(x)
− 1
∣∣∣

= op(1)op(1) + op(1)op(1) = op(1).

By C-S inequality, we have supx∈I |Zk,2,2(x)| = op(1) and supx∈I |Zk,3(x)| = op(1). There-

fore, supx∈I |σ̂2
k(x)− σ2

k(x)| = op(1) holds under H1N.

Under H1 of (2.2), the above proof remain the same except that of Z1,1(x). By (m), (q),

(u), and compactness of I,

sup
x∈I

Z1,1(x)

≤ sup
x∈I,0≤t≤c1

(µ1(x)− µ1(x+ t))2

≤ sup
x∈I,0≤t1≤c1

2(µ2(x)− µ2(x+ t1))2 + sup
x∈I,0≤t2≤c1

2(ξ(x)− ξ(x+ t2))2

≤ 2`2µ2
c21 + sup

x∈I,0≤t2≤c1
2(ξ(x)− ξ(x+ t2))2 = op(1).

Therefore one has (2.25) under H1. The rest of the results in this lemma can be proved in a

routine fashion. Thus the proof is complete.
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To estimate τ2, let {Ik,1, · · · , Ik,Bk} and πk be as in assumption (z). Define

∆̂k(x) :=

∑nk
j=1 δk,jKck(x−Xk,j)∑nk
j=1Kck(x−Xk,j)

, x ∈ R,

g̃k(x) :=
1

nkπk

nk∑
j=1

1{Xk,j∈Ik,i}
, x ∈ Ik,i, k = 1, 2.

By Remark 3.2 in K-S, the function g̃k(x) is a simple bin-estimate, which is uniformly

consistent for gk(x) for x ∈ I under condition (z). Recall r̂k from (2.9). Because τ2 from

(2.17) can be expressed as

τ = q1

∫
r2
1(x)σ2

1(x)g1(x)

∆1(x)
dx+ q2

∫
r2
2(x)σ2

2(x)g2(x)

∆2(x)
dx

= q1

∫
v4

1(x)σ2
1(x)g3

1(x)

∆1(x)
dx+ q2

∫
v4

2(x)σ2
2(x)g3

2(x)

∆2(x)
dx,

we consider two estimators of τ2:

τ̂2 := q1
1

n1

n1∑
i=1

r̂2
1(X1,i)σ̂

2
1(X1,i)

∆̂1(X1,i)
+ q2

1

n2

n2∑
j=2

r̂2
2(X2,j)σ̂

2
2(X2,j)

∆̂2(X2,j)
,

τ̂2
∗ := q1

1

n1

n1∑
i=1

v̂4
1(X1,i)σ̂

2
1(X1,i)g̃

2
1(X1,i)

∆̂1(X1,i)
+ q2

1

n2

n2∑
j=2

v̂4
2(X2,j)σ̂

2
2(X2,j)g̃

2
2(X2,j)

∆̂2(X2,j)
.

These estimators have the following properties, which can be proved in a routine fashion.

Lemma 2.4.2. Suppose the assumptions of Lemma 2.4.1, (w1), and (z) hold. Then

τ̂2 = τ2 + op(1), and τ̂2
∗ = τ2 + op(1)

hold under H0, H1, and H1N.
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2.5 Simulations

In this section we investigate the behavior of the empirical size and power of the test V̂ defined

in (2.22) against local alternatives and fixed alternatives. To be specific, let I = [0, 1], Z1 and

Z2 be independent standard normal random variables, and independent of {X1, X2, δ1, δ2}.

Recall ûφ defined in (2.24). Design and error distributions and functions including φ, ξ, u,

µ2, ∆l, l = 1, 2, are chosen as follows:

X1 ∼ N (0, (0.7)2), X2 ∼ N (0, 1), X1 andX2 are independent;

ε1 =
Z1√

1 +X2
1

, ε2 = Z2(1 +X2
2 );

∆l(x) = Dl(x), l = 1, 2,

where D1(x) = {1 + exp(−0.5− 0.5x)}−1, D2(x) = {1 + exp(−2− 2x)}−1,

or ∆l(x) ≡ 1, l = 1, 2, for complete responses;

φ(x) = φj(x), j = 0, 1, 2, 3,

where φ0(x) = 0, φ1(x) = (x+ 1)2, φ2(x) = 2ex, φ3(x) = 4 cos(x);

ξ(x) = ξj(x), j = 1, 2, 3, where ξj(x) = φj(x);

u(x) = uj(x), j = 1, 2, 3, where uj(x) = 1[0,1](x)φj(x),

or u(x) = u∗j (x), j = 1, 2, 3, where u∗j (x) = ûφj (x);

µ2(x) = log (x2 + 0.5).

The kernel is chosen to be K(u) := 3
4(1− u2)I{|u| ≤ 1}, with bandwidths a = ρ1N

−2/3,

bk = ρ2n
−2/3
k , and ck = dk = ρ3n

−1/4
k , k = 1, 2, where ρi, i = 1, 2, 3, are constants. The

sample sizes are chosen to be n1 = n2 = 50, 100, 200. All simulations are based on 2000
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replications. The nominal level is α = 0.05. The empirical sizes and powers are computed

by the relative frequency of the event {N1/2T̂ /τ̂ ≥ 1.645}.

Table 2.1: Empirical sizes of V̂ , with coefficients ρ1, ρ2, ρ3, and ∆l = Dl, l = 1, 2.
(ρ1, ρ2, ρ3) n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200

u1 (.5,.2,.8) .066 .057 .050

u∗1 (.5,.2,.8) .071 .059 .052

u2 (.8,.5,.8) .077 .053 .051

u∗2 (.2,.5,.8) .066 .062 .052

u3 (.2,.2,.5) .072 .058 .050

u∗3 (.2,.5,.8) .068 .055 .049

Table 2.2: Empirical sizes of V̂ , with coefficients ρ1, ρ2, ρ3, and ∆l = 1, l = 1, 2.
(ρ1, ρ2, ρ3) n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200

u1 (.8,.5,.8) .073 .066 .052

u∗1 (.8,.8,.8) .085 .079 .052

u2 (.2,.2,.8) .072 .065 .049

u∗2 (.5,.8,.8) .084 .074 .051

u3 (.2,.2,.8) .071 .061 .052

u∗3 (.2,.2,.8) .063 .073 .050

Before we calculate the empirical powers, we choose suitable coefficients (ρ1, ρ2, ρ3) in

bandwidths for each u and the corresponding test, in order to make the empirical size close

to 0.05 when n1 = n2 = 200. To find such coefficients, we compare the empirical sizes

among all choices of ρi ∈ {0.2, 0.5, 0.8}, i = 1, 2, 3, and pick the one which is closest to

0.05 at n1 = n2 = 200. For each u, empirical sizes with the best choice of (ρ1, ρ2, ρ3) at

n = 50 and 100 are also listed. These results of data with responses missing at random,

i.e. ∆l = Dl, l = 1, 2, are put in Table 2.1; while results of complete data set, ∆l ≡ 1,

l = 1, 2, are reported in Table 2.2. Notice that these choices of ρ′is are just fairly good ones

among many others. There doesn’t really exist best choices. The behavior of V̂ under null

hypothesis will not be affected by the choices of these coefficients for large sample sizes n1

and n2.
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Table 2.3: Empirical powers of V̂ with ρ1, ρ2, ρ3 in Table 2.1, and ∆l = Dl, l = 1, 2.
φ n1 = n2 u = u1 u = u∗1 u = u2 u = u∗2 u = u3 u = u∗3

50 .268 .183 .281 .230 .242 .210
φ1 100 .238 .230 .265 .255 .233 .228

200 .238 .308 .269 .341 .215 .282

50 .420 .268 .436 .318 .356 .308
φ2 100 .384 .281 .388 .339 .370 .324

200 .379 .357 .389 .399 .351 .411

50 .431 .292 .472 .344 .436 .371
φ3 100 .402 .303 .403 .368 .427 .395

200 .410 .379 .388 .421 .444 .464

Table 2.4: Empirical powers of V̂ with ρ1, ρ2, ρ3 in Table 2.2, and ∆l = 1, l = 1, 2.
φ n1 = n2 u = u1 u = u∗1 u = u2 u = u∗2 u = u3 u = u∗3

50 .339 .345 .238 .325 .234 .207
φ1 100 .295 .302 .247 .308 .215 .185

200 .280 .303 .236 .282 .237 .201

50 .519 .509 .382 .503 .360 .314
φ2 100 .472 .503 .353 .477 .376 .310

200 .429 .468 .373 .494 .373 .329

50 .495 .541 .401 .542 .448 .405
φ3 100 .434 .490 .380 .507 .445 .420

200 .404 .483 .376 .503 .455 .404

Table 2.5: Empirical sizes and powers of V̂ with ρ1 = ρ2 = ρ3 = 1 and ∆l = Dl, l = 1, 2.
φ n1 = n2 u = u1 u = u∗1 u = u2 u = u∗2 u = u3 u = u∗3

50 .070 .070 .068 .080 .065 .065
φ0 100 .055 .060 .060 .052 .058 .058

200 .056 .056 .054 .054 .060 .059

50 .280 .293 .292 .299 .281 .252
φ1 100 .262 .288 .264 .273 .258 .241

200 .243 .275 .244 .280 .242 .230

50 .439 .459 .450 .457 .439 .412
φ2 100 .405 .448 .419 .434 .418 .394

200 .394 .440 .374 .458 .396 .411

50 .410 .463 .417 .474 .503 .521
φ3 100 .362 .439 .391 .489 .488 .508

200 .332 .454 .361 .490 .476 .516
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Table 2.6: Empirical sizes and powers of V̂ with ρ1 = ρ2 = ρ3 = 1 and ∆l = 1, l = 1, 2.
φ n1 = n2 u = u1 u = u∗1 u = u2 u = u∗2 u = u3 u = u∗3

50 .068 .073 .076 .088 .063 .078
φ0 100 .061 .074 .056 .061 .052 .054

200 .060 .059 .045 .066 .041 .062

50 .305 .331 .315 .340 .301 .274
φ1 100 .294 .307 .290 .315 .266 .288

200 .263 .317 .281 .320 .265 .253

50 .477 .525 .494 .525 .500 .488
φ2 100 .452 .524 .456 .514 .470 .467

200 .439 .472 .463 .509 .474 .471

50 .449 .537 .474 .571 .553 .611
φ3 100 .394 .537 .412 .557 .541 .601

200 .364 .533 .392 .541 .535 .610

Table 2.3 and 2.4 give the empirical powers of V̂ against H1N of (2.1), with respect to

missing data and complete data, respectively. These empirical powers of each test with

corresponding u are calculated with the coefficients (ρ1, ρ2, ρ3) in bandwidths given in Table

2.1 and 2.2.

Table 2.5 and 2.6 compare the empirical powers of V̂ with different u′s against H1N, by

choosing common coefficients ρ1 = ρ2 = ρ3 = 1 in bandwidths, with respect to missing

data and complete data, respectively. In each table, one can see that the empirical sizes are

getting closer to 0.05 as the sample sizes increase. For each φ = φj , j = 1, 2, 3, the test V̂

with u = u∗j has the largest, or one of several largest, empirical power among all choices of

u. This is consistent with the result in Remark 2.3.1. Moreover, for each j = 1, 2, 3, u = u∗j

has larger empirical powers than u = uj for all choices of φ. From comparison between

two tables, one can see that empirical powers of all these tests at three sample sizes of the

complete data’s are larger than those of the missing data’s, while their empirical sizes don’t

show much difference. It means that data missing probability affects the power of the test.

All of the empirical powers of V̂ with above choices of u are 1, against H1 in (2.2) with
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ξ = ξj , j = 1, 2, 3, for both of the missing data and the complete data, and for all three

sample sizes. This result in turn shows the consistency of V̂ .
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