

GROWTH STUDIES IN ALFALFA

Thesis for the Degree of M. S.
MICHIGAN STATE COLLEGE
Carlton S. Garrison
1938

THESIS

GROWTH STUDIES IN ALFALFA

A THESIS

Submitted to the Faculty of Michigan State College
of Agriculture and Applied Science in partial
fulfillment of the requirements for the
Degree of Master of Science

Carlton S. Garrison

December, 1938

THES!S

.

ACKNOWLEDGMENT

The writer is very grateful to Mr. E. E. Down for invaluable advice and assistance in the pursuit of this work.

To Mr. H. M. Brown whose interest and cooperation made this work possible, the writer wishes to express his sincere appreciation.

CONTENTS

	Page
Introduction	1
Review of Literature	1
Material and Methods	1
Results and Discussions	5
May Rating	5
Number of Days to Observance of Secondary Shoots	10
Yield	15
Relationship Between May Rating and Number of Days to Observance of Secondary Shoots	18
Relationship Between May Rating and Yield	19
Relationship Between the Number of Days to Observance of Secondary Shoots and Yield	20
Relationship Between May Rating, Number of Days to the Date of Cutting, and Yield	21
Conclusions	24

GROWTH STUDIES IN ALFALFA

INTRODUCTION

It had been observed in the alfalfa breeding nursery that there were certain noticeable differences existing between the individual plants within a strain in the amount of growth made early in the spring, in the time of appearance of the secondary shoot growth and in yielding ability. The purposes of the investigation here reported were: (1) to study (a) the amount of growth made by the individual plants by May 1, (b) the number of days from May 1 to the date when the secondary shoot growth was observed to be one to two inches high, (c) the yielding ability, in green weight, of the plant at time of observance of secondary shoots, and (d) the relationships between these characters; and (2) to determine whether the several strains differed from each other in regard to these characters.

REVIEW OF LITERATURE

Among all of the published material relating to growth studies in alfalfa no literature was found pertaining to this particular problem.

MATERIAL AND METHODS

The data for this study were secured from the alfalfa breeding nursery which was set out in July, 1934, one plant in a place with the plants spaced 33 inches in the row and the rows 36 inches apart. The nursery was planted in four series of 101 rows each; each row of the north three series, A, B, and C, was 27

plants long while the fourth series, D, was 29 plants long, Figure 1. Series B and D were the replications of Series A and C, respectively. The entire nursery consisted of 150 different strains plus the check. A check (designated by x in tables) was planted in the east row and every for th row thereafter. The other 75 rows of a series were each the progeny of a high yielding plant of the previous nursery. The systematic replications were such that a strain appeared in two adjacent series, that is plots 0-100 were in series A and B, and plots $100\frac{1}{2}$ - 200 in series C and D. Around the entire nursery was a row of plants used as a border.

It was decided that this exploratory study should be made on only a portion of the nursery rather than the whole nursery. The areas selected for this study consisted of the first 26 plots in series A and C and their replicates. All of the data presented was secured on the first cutting in 1936.

Each plant in the alfalfa breeding nursery was given a rating according to the amount of growth made by May 1, 1936. Four ratings, based entirely on plant height, were used. Rating "1" included all plants which had made a growth of only a trace to two inches high.

Rating "2" included those plants which had made a growth of two to four inches. Rating "3" included those plants which had made a growth of 4 to 6 inches. Rating "4" included all plants having made a growth greater than six inches.

At various times during the last half of May, the nursery

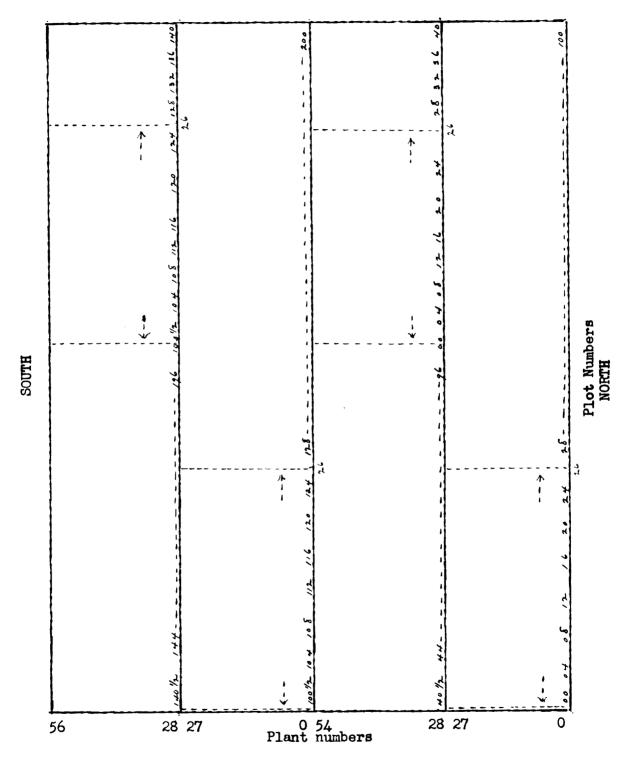


Fig. 1. Diagram of the alfalfa breeding nursery.

Series

А

೮

Ø

1

A

was examined to determine whether secondary shoots had begun to appear. During the last few days of May and the first days of June some plants were observed to have their secondary shoots. On June 4 all plants so observed were recorded, cut and weighed. On June 12 and 19 similar notes and cuttings were made. The plants remaining uncut on June 19 were so slow in showing secondary shoots that two weeks were allowed to elapse before the plants were again cut on July 2. On the final date of cutting, July 16, all remaining plants, whether they had yet formed secondary shoots or not, were cut. This was done to allow ample time for the second crop to develop seed.

The number of days to observance of secondary growth (hereafter, more briefly called date of cutting) was determined from May 1, the day the May ratings were taken.

Green weights were taken immediately after cutting and were recorded in grams.

The more detailed data are presented in two parts, by series A and B and by series C and D, as that formed a convenient method of dividing the otherwise long tables. However, in the statistical analysis for significance of differences between strain means the entire area was treated as a whole and plots $100\frac{1}{2}$ to 125 were considered to be a continuation of plots 0 to 25. In the analysis of variance there were assigned, therefore, 103 degrees of freedom to total, 1 to replication, 51 to strains, and 51 to error.

RESULTS AND DISCUSSIONS

May Rating

The May rating values were taken by two persons, one taking those on plots 0 to 16 of series A, the other taking all of the other ratings.

Table 1, which is arranged according to plot number, shows the frequencies of the individual May ratings, the number of plants in each plot, the plot means, the strain means (average of series A and B), and the number and per cent of plants in each May rating group for plots 0 to 25. The strains varied in May rating from 2.20 to 3.11, giving a range of .91. The average for all strains was 2.57. The average May rating for series A was 2.26 and series B 2.89. The large difference of .63 between the two series averages may be partially explained by the fact that two persons took the May ratings for series A as mentioned above.

The average for the two replications gave a more even distribution between ratings 1 and 4, and 2 and 3 than was the case in the individual series. The average shows 7.3% and 10.4% in ratings 1 and 4, and 38.7% and 43.6% in ratings 2 and 3, respectively.

Table 1
Number of plants per plot classified according to May

rating, total number (N) of plants per plot, plot mean rating and strain mean rating. Order that of plot numbers in series A and B.

Plot				ies	A.				Strain mean				
	I	•	ratin	ıg	}				lay re				1
	1	_2	3_	4	N	Mean	<u> </u>	2_	3_	4	N	Mean	
00x	4	20	2		26	1.92	1	7	17		25	2.64	2.27x
01	6	15	2 1	- 1	22	1.77		3	9	4	16	3.06	2.32
02	4	14	6	1	24	2.08	1	1	18	4	26	3.12	2.62
03	2	12	10		24	2.33		1	12	11	24	3.42	2.88
04x	6	15	4	1	25	1.92		6	12	3	21	2.86	2.35x
05	4	12	ġ		25	2.20		9	15	3	27	2.78	2.50
06	6	12	5		23	1.96	1	10	12	3	26	2.65	2.33
07	1	18	6	1	25	2.20		1	11	3 3 13	25	3.48	2.84
08x	3	20	9 5 6 2 3 8	1	25	1.96		8	15	1	24	2.71	2.33x
09	5	14	3	1	23	2.00	1	4	11	3	19	2.84	2.38
10	1	16	8		25	2.28		ĺ	17	8	26	3.27	2.78
11	2	15	10		27	2.30	2	4	16	3	25	2.80	2.54
12x	2	19	4	1	25	2.08		6	16	3 2	24	2.83	2.45x
13	4	17	4		25	2.00		2	15	4	21	3.10	2.50
14	5	17	4	1	26	1.96	3	3	13	4	23	2.78	2.35
15	4	16	3		23	1.96	3 2	3	9	1	18	2.50	2.20
16x	1 5	20	_		25	1.80	1	9	14	1 2	26	2.65	2.24x
17		9	13	4	26	2.81		5	18	1	24	2.83	2.82
18	1	3	18	4	25	3.04		4	14	7	25	3.12	3.08
19	1	10	11	2	24	2.58		3	19	1	23	2.91	2.74
20x	1	14	11		26	2.38		9	13	3	25	2.76	2.57x
21	1	8	12	4	25	2.76		6	9	4	19	2.89	2.82
22	1 1	7	12	5	25	2.84	2	1	14	3 7	20	2.90	2.87
23	1	4	13	6	24	3.00		2	14	7	23	3.22	3.11
24x	4	11	9	2	26	2.35		7	13	2	22	2.77	2.54x
25	1	15	9	1	26	2.38	3	10	7	2	22	2.36	2.38
Tota	1												
No.	. 74	353	189	29	645		17	128	353	101	599	1	
%	11.5	54.7	29.3	4.5			2.8	21.4	58.9	16.9			
Av.						2.26						2.89	2.57
Tota	al, be	oth se	ries				91	481	542	130	1244		
18		Ħ	Ħ				7.3	38.7	43.6	10.4			

In this and all other tables the checks are marked with an x.

In Table 2 are given the data on May ratings for series C and D similar to those in Table 1 for series A and B. The strains varied in May rating from 1.98 to 3.02, a range of 1.04. The average for all strains was 2.42. The average May rating for series C was 2.30 and for series D was 2.53.

The average of series C and D shows 12.2%, 43.1%, 35.7% and 9.0% for ratings 1, 2, 3, and 4, respectively. As in series A and B, the greater numbers of plants were found in ratings 2 and 3 with a total of 78.8%.

The totals for all four series are the following: Rating 1 2 Total 3 4 No. of 251 1043 1008 248 2550 plants % 9.8 40.9 39.5 9.7 100

In Table 3 is given the average May rating of each strain with the check average inserted in its proper place. It is seen that there are many significant (5% point) differences and some highly significant (1% point) differences between strains.

Table 2

Number of plants per plot classified according to May

rating, total number (N) of plants per plot, plot mean rating

and strain mean rating. Order that of plot numbers in series

C and D.

	, and												
Plot				ies (C				Se	ries	D		Strain
No.		May	rati	ng					May	rati	ng		mean
	1_	2			N	Mean	1	2	3		N	Mean	
100 } x	9	12	£	1	27	1.93	1,	15	8	1	28	2.21	2.07x
101	5	10	5 8	ī	24	2.21	1	16	9	2	28	2.43	2.33
102)	11	3	2	20	2.15	i	9	6	2	18	2.50	2.32
103	4	8	ü	ĩ			li	ű	9				
	9			1	23	2.43	1 -	16	10	3 2	24 28	2.58	2.51
104x	9	14	3 7	7	27	1.85						2.50	2.18x
105		14		3	24	2.54	3	9	10	4	26	2.58	2.56
106		10	9	6	25	2.84	1 -	7	12	6	26	2.88	2.86
107	2	9	8	7	26	2.77	3	7	12	5	27	2.70	2.74
108x	10	11	4 8	1	26	1.85	4	11	13		28	2.32	2.09x
109	1	10	8	2	21	2.52	ł	7	18	3	28	2.86	2.71
110	2	7	9	4	2 2	2.68	1	2 8	14	5	22	3.05	2.86
111	7	8	8	1	24	2.13	4		10	6	28	2.64	2.40
112x	5	11	6	1	25	2.28	5 2	15	7	1	28	2.14	2.21x
113	1	7	13	5 3	25	2.92	2	1	16	8	27	3.11	3.02
114	2	11	7	3	23	2.48	1	10	10	2	22	2.64	2.56
115	1	11	9	1	21	2.52	1	7	17	4	28	2.89	2.73
116x	7	13	7		27	2.00	2	17	9		28	2.25	2.13x
117	2	15	6		23	2.17	4	9	12	2	27	2.44	2.32
118	Í	7	18	1	26	2.77	4	6	10	7	27	2.74	2.75
119	4	13	5	2	24	2.21	2	9	10	2	23	2.52	2.36
120x	li	18	6		25	2.20	1 3	14	ii	~	28	2.29	2.25x
121	6	10	9		25	2.12	3 2	15	6		23	2.17	2.15
122	6	13	9 5		24	1.96	7	9	7		23	2.00	1.98
123	4	12	7	2	25	2.28	3	10	12	3	28	2.54	2.42
124x	4	16	6	~	26	2.08	1	15	10		25	2-40	2.24x
125	6	16	6	1	26	1.96	3	ñ	8	2	24	2.38	2.16
Total							+			•			
No.	99	297	190	48	634		60	26 6	276	70	672		
8	15.6	46.8	30.0	7.6			8.9	39.6	41.1	10.4			
Av.						2.30	1					2.53	2.42
Total,	, both	seri	es			lan	159	563	466	118	1306		
1 %		11					İ						
							175.5	43.1	3201	7.0			

			a	.	2.0
Strain	Rating	Dif.	Strain	Rating	Dif.
122	1.98	7 <i>1</i> 7	103	2.51	•05
121	2.15	.17	105	2.56	
125	2.16	•01	11	2.58	•02
15	2.20	•04	109	2.71	•13
		•04			.01
1	2.24	•04	18	2.72	•01
Ck.	2.28		115	2.73	•01
102	2.32	•04	19	2.74	
117	2.32	•00	107	2.74	•00
6	2•33	•01	118	2.75	•01
		•00			•03
101	2.33	•02	10	2.78	-04
14	2.35	•01	17	2.82	•00
119	2.36		21	2.82	
2	2 .38	•02	23	2.83	•01
9	2.38	•00	7	2.84	•01
		•00		·	•02
25	2•38	•01	106	2.86	•00
13	2 .39	•01	110	2.86	•01
111	2.40		23	2.87	
123	2.42	•02	3	2,88	•01
5	2.50	•08	113	3.02	•14
		•00	לדד	J•U&	
114	2.50	•01			
		-			

Difference between two strain means must be at least .66 to be significant (5% point) or .88 to be highly significant (1% point).

Number of Days to Observance of Secondary Shoots

Table 4 shows the plots arranged according to plot number for series A and B and gives the distribution of plants within a strain cut on the various dates when notes were taken on presence of secondary shoots. Also included in the table are the number of plants in each plot, the plot means, the strain means (average of series A and B), and the number and per cent of plants cut on each date within each series for plots 0-25.

The strains varied in the average number of days to date of cutting from 37.2 to 45.1, a range of 7.9 days. The average for the 26 strains means was 39.7 days. The average number of days to the date of cutting for series A was 39.3 days, and for series B it was 39.9 days.

Series B was very similar to A in the per cent of plants cut at the various cutting dates. The percentages for both series together were 62.8%, 26.4%, 7.1%, 5.3% and 0.2% for the five cutting dates of 35, 43, 50, 63 and 77 days, respectively, from May 1.

Table 5 gives the data on the number of days to date of cutting for series C and D similar to that in Table 4 on series A and B.

The strains varied in the average number of days to the date of cutting from 37.6 to 47.0 days, a range of 10.6 days. The average number of days to the date of cutting for the 26

RESM 39.7 Strain to the date of cutting, arranged according to plot numbers. 43.0 42.1 37.4 42.4 39.9 23.55 23.35 50.25 Mean plants 1244 To .oM Series -0 7 ww 9T/L L 38 2/4 3 20 7588 6T/9306 24.6 27.7 **6/1**2 781 62**.8** 376 62.8 おおは 7/9 64.68.4 64.68.4 39.3 **Mean** Average number of days from May 1 atasiq No. of 9T/4 Н 0.3 63 2/4 Series 50 **6T/9** よこなろ both series **2**T/9 174 27.0 7/9 Total, Plot No.

Table 4

Average number of days from May 1 to the date of cutting arranged according to plot numbers Table 5

:	_																			_											
			nisrt2 neen	37.4x	6.04	47.0	38.4	37.1x	41.3	38.9	39.1	37.3x	39.8	39.4	41.8	38.9x	38.2	37.6	47.6	38.6x	41.1	47.6	42.9	×1.0/2	41.3	76.0	41.9	36.8x		40.1	
			Mean	37.7	42.8	6.67	39.0	36•4	42.2	38.7	40.3	36.1	41.1	0.07	41.0	39.5	38.6	38.5	45.8	38.3	42.3	43.9	4-17	5. 5. 1. 1.	39.7	0.67	40.5	37.8		9.07	
	D		No. of stants	28	58	18	77	58	92	%	23	58	28	22	88	58	52	22	88	28	27	24	23	8 6	23	23	28	52	672		1306
l		77	9T/L																										00	>	21.
	Seri	63 77	٦/٢		ત્ય	9	ત્ય		4	N	ત્ય		₹	ત્ય	m	ત્ય	-1		5		ĸ,	9	N	•	-	~		"	25.	٥ •	87 6•7
		50	6T/9		٧	4		~	4	-	ત્ય			ત્ય	т	m	ત્ય	ત્ય	ત્ય	m		~	4			6	9		52,	φ •	108 8•3
		73	ZT/9	9	Ħ	r	₹	႕	ત્ય	m	2	7	4	n	√	m	₹	9	9	9	2	2	4	٠,	ဌ`	9	∞	r :	17.	41.5	299
		35	7/9	ಸ	2	m	17	52	16	ଷ	1 6	77	19	15	17	ଛ	19	ቷ	15	19	15	13	5	67 T	12	m	ቷ	17 51	607	6.9	810 62.0
			Mean	37.0	38.6	44.3	37.7	37.9	6.07	39.2	37.9	38.5	38.0	38.8	42.7	38.3	37.8	36.7	0.07	39.0	39.6	39.2	7:77	30.0	75.8	43.2	43.5	35.9		39.6	
			lo .oM atmafq	27	77.	8	23	27	7	55	56	%	ส	22	77	25	25	23	ส	2	33	%	75	52	25	77	\$	%%	634		
1	8	777	9T/L							Н																	-		20	3	
	Serie	63	Z/L			n			Н		႕	Н		Н	m	٦			7	-	Н		Ŋ	•	4	ત્ય	m		88	7.7	
		50	6T/9	7	ત્ય	m	٦	m	4	٦	ч	Н	Н	-	4	-	~	Н	m		8	m	N,	⊣ ·	4	4	ત્ય	~	4	2	
		73	ZT/9	5	~	~	9	4	₹	9	4	9	9	₹	₹	Ŋ	~	~	4	ដ	9	∞	~		M	9	7	ساد	152	24.0	8
		35	7/9	な	15	~	16	ଛ	ቷ	17	ଛ	18	ቷ	15	12	18	17	19	13	1 6	ቷ	15	01	ત્રં :	7	∞	21	8 5	401	63.3	both series
			•oN toIq	100 \$ x	101	102	103	104x	105	106	107	108x	109	110	111	112%	113	77.	115	116x	117	118	911	120x	121	122	123	124x	Total	AV.	17,
_		_				-		_			_							_				_				-	-	_			

strain means was 40.1. The average number of days to the date of cutting for series C was 39.4 days and for series D it was 40.6 days.

The results in series D were very similar to those of series C. The percentages for both series together were 62.0%, 22.9%, 6.7% and .1% for the five successive cutting dates respectively.

Considering all four series together, the number of plants cut on each date and the percentage that number was of the total are as follows:

Date Cut	June 4	June 12	June 19	July 2	July 16	Total
Number of days after May 1	35	43	50	63	77	
Number of plants	1591	605	196	153	5	2550
% of total	62.4	. 23.7	7.7	6.0	•2	100

In Table 6 are given the strain averages of the number of days to the cutting date. It is seen that there are some significant (5% point) and a few highly significant (1% point) differences between strains in number of days after May 1 until secondary shoots emerge.

Table 6

Number of days from May 1 to the date secondary shoots were observed (date of cutting) arranged in ascending order of strain averages.

Strain	Days	Dif.	Strain	Days	Dif.
7	37.2		2 3	41.0	•
Ck.	37.4	•2	117	41.0	•0
114	37.6	•2 ·	19	41.1	.1
11	37.8	•2	103	41.3	•2
18	38.2	•4	121	41.3	•0
113	38.3	•1	115	41.6	•3
103	38.4	•1	118	41.6	•0
106	38.9	•5	111	41.8	•2
1	39.0	.1	9	41.9	•1
107	39.1	•1	21	41.9	•0
110	39•4	•3	14	42.0	•1
109	39 .8	•4	17	42.6	•6
15	39•9	•1	119	43.0	•4
5	40.1	•0	22	43.3	•3
6	40.1	•0	13	45.1	1.8
10	40.1	•0	25	45•3	•2
2	40.2	•1	122	46.0	•7
123	40.5	•3	102	46.9	•9
3	40.6	•1			
101	40.9	•3			
125	40•9	•0			
.	••	.1			

Difference between two strains must be at least 3.3 days to be significant (5% point) or 4.4 days to be highly significant (1% point).

Yield

In Table 7 are given the plot and the strain means for the yield (green weight in grams) per plant of series A and B, and of series C and D, arranged according to plot number.

The strain means for series A and B varied from 467 to 840 grams per plot, a range of 373 grams. The average of the 26 strain means was 673 grams. The average yield per plot for series A was 646 grams and for series B it was 671 grams.

The strain means for series C and D varied in yield from 520 to 907 grams per plot, a range of 387 grams. The average of the 26 strains means was 756 grams. The average yield per plot for series C was 743 grams, and for series D it was 769 grams.

In Table 8 is given the average plant yield of hay per strain. It can be seen that there are some significant (5% point) and several highly significant (1% point) differences between strains.

- 16 Table 7

Mean yield of hay per plant arranged according to plot number.

Plot	Series		Strain	Plot	Ser	ie s	Strain
No.	A B		mean	No.	C	D	mean
00x 01 02 03 04x 05 06 07 08x 09 10 11 12x 13 14 15 16x 17 18 19 20x 21 22 23 24x 25	702 533 693 765 612 637 600 687 598 463 851 687 660 688 590 460 620 877 758 766 575 646 541 527	772 526 722 817 759 640 520 796 760 546 689 590 621 839 667 477 671 800 806 712 683 616 667 601 693 512	737x 530 780 781 679x 639 558 742 677x 501 768 641x 757 626 467 646x 840 782 740 628x 633 671 592 611x 520	1002x 101 102 103 104x 105 106 107 108x 109 110 111 112x 113 114 115 116x 117 118 119 120x 121 122 123 124x 125	800 745 831 773 707 875 861 822 735 831 836 659 648 750 770 892 747 674 947 498 702 626 578 818 676 519	775 795 805 909 953 937 928 827 890 831 847 767 697 911 660 647 785 676 633 532 654 850 772 522	787x 775 819 842 832x 907 895 825 815x 831 842 683 662x 759 734 903 703x 659 864 585 666x 581 615 835 723x 520

Table 8

Green weight per plant arranged in ascending order of

strain ave	erages.				
Strain	Grams	Dif.	Strain	Grams	Dif.
15	467	21	19	740	2
9	501	34	7	742	
25	5 20	19	13	757	15
125	5 20	0	113	759	2
1	5 30	10	10	768	9
6	558	28	101	775	7
		23			7
121	581	4	18	782	9
119	585	8	3	791	13
23	593	23	103	804	14
122	616		102	818	
14	626	10	107	825	7
21	633	7	109	831	6
5	638	5	123	835	4
11	641	3	17	840	5
		19		-	1
117	660	11	110	841	23
22	671	12	118	864	30
111	683	18	106	894	9
Ck.	701		115	903	
2	704	3	105	907	4
114	734	30			
		6			

Differences between two strains must be at least 123 grams to be significant (5% point) or 164 grams to be highly significant (1% point).

Relationship Between May Rating and Number of Days to Observance of Secondary Shoots

Not all the plants in any one of the May rating groups were observed to have their secondary shoots by the same date of cutting, Table 9, although rating groups (3 and 4) showed more than 90% of their plants with secondary shoots at the first two dates of cutting.

Table 9

The number and per cent of plants of each May rating group harvested on the various cutting dates.

May		Number and per cent of plants harvested											
Rating	June	4	June	12	Jun	e 19	July	July 2		16			
	No.	Я	No.	%	No.	%	No.	%	No.	%	No.	%	
1	77	30.7	74	29.5	32	12.7	66	26.3	2	.7	251	100	
2	586	56.2	296	28.4	99	9.5	60	5.8	2	•2	1043	100	
3	705	68.9	212	21.0	64	6.3	26	2.6	1	.1	1008	100	
4	223	89.9	23	9•3	1	-4	1	-4	0	0	248	100	
Total	1591	62.4	605	23.7	196	7.7	153	6.0	5	•2	2550	100	

The coefficient of correlation, -.326, between May rating and date of cutting on an individual plant basis, is highly significant statistically though not very great biologically - the squared variability in May rating accounting for only 10.6 per cent of the squared variability in date of cutting. The coefficient indicates

that there is a tendency for the more vigorous plants on May 1 to produce their secondary shoots early.

When the plot averages were compared and the covariance due to series and strains eliminated, the correlation coefficient was found to be -.154, a non-significant value. Even though the coefficient is not significant it may be noted that it has the same sign as does the coefficient obtained from the individual plants.

Relationship Between May Rating and Yield

The plants which received a rating of 3 or 4 on May 1 gave higher yields than did the plants which received ratings of 1 and 2, Table 10. Ratings 3 and 4 gave an average yield of 849 grams and 1005 grams, respectively, while ratings 1 and 2 gave average yields of 328 grams and 599 grams respectively.

Table 10

The average yield of plants when grouped according to their May ratings.

May rating	Number of plants	Per cent of plants in each group	Per cent of total yield in each group	Average yield
1	251	9.8%	4.5%	328
2	1043	40.9%	34.5%	5 99
3	1008	39.5%	47.2%	849
4	248	9.7%	13.8%	1005
Total	2550	General A	verage	711

While the plants were grouped by ratings quite symmetrically, the average yield tended to vary in the direction of the plants receiving the higher ratings. Rating 1 with 9.8% of the total number of plants included only 4.5% of the total yield; rating 2 with 40.9% of the plants included only 34.5% of the total yield; rating 3 with 39.5% of the plants included 47.2% of the total yield, while rating 4 with only 9.7% of the plants included 13.8% of the total yield.

After the covariance due to series and strains was eliminated, the coefficient of correlation was .209, a non-significant value, indicating that though within a strain there was little relationship between plot average May rating and green weight of plant, yet the relationship was in the positive direction.

Relationship Between the Number of Days To Observance of Secondary Shoots and Yield

The results given in Table 11 show that as the number of days to the observance of secondary shoots (date of cutting) increased the average yield per plant decreased. The increase in the average yield of the July 16 cutting over that of July 2 can be explained as due to the small number of plants, five, which were cut on the later date.

The per cent of plants cut on the various cutting dates corresponds very closely to the per cent of the total yield in each of the groups, indicating a fairly close relationship between earliness of secondary shoot observance and yield.

Table 11

Average yield per plant on the various cutting dates.

Cutting Date	No. of days to cutting date	Per cent of plants cut	Per cent of total yield	Average Yield (Grams)
June 4	35	62.4	65.8	750
June 12	43	23•7	23.2	696
June 19	50	7.7	7.2	667
July 2	63	6.0	3.6	421
July 16	77	•2	•2	664

This relationship is further substantiated by the coefficient of correlation between plot averages. After the covariance due to series and strains had been eliminated, the coefficient of correlation was -.569, which is highly significant.

Relationship Between May Rating, Number of Days to the Date of Cutting, and Yield

Within each May rating, as the number of days to cutting increased there was no definite relationship with yield but within the date of cutting as the May rating increased the average yield per plant increased. This is brought out by Table 12 in which are given the number of plants and the average yield for each date of cutting within each May rating group. In only May rating "1" was there a continuous decrease in average yield per plant as the length of the growing period increased from June 4 up to July 2.

Table 12

The number of plants and the average yield in grams for each of the dates of cutting within each May rating.

Cutting	No. of	May rating								Total	Aver-
date days to		1		2		3		4		No.of	age
}	date of		_		Yield	No.of	Yield	No.of	Yield	plants	Yield
	cutting	plants		plants		plants		plants			
June 4	35	77	400	586	595	705	836	223	1003	1591	750
* 12	43	74	379	296	613	212	889	23	1009	605	696
* 19	50	32	324	99	630	64	887	1	1220	196	667
July 2	63	66	178	60	509	26	802	1	1320	153	421
* 16	777	2	645	2	855	1	320	0	0	5	664
Total plants		251		1043		1008		248	_	2550	
Average yield			328		599		849		1005		711

Table 13 allows a comparison between the strain averages for May rating, number of days to date of observance of secondary shoots (date of cutting) and yield. An examination of this table substantiates further the point made earlier that there is little relationship between May rating and either number of days to secondary shoot emergence or yield. A similar conclusion might be made between the date of cutting and yield.

Table 13

Strain averages arranged in order of May rating. Within a rating the order is that of number of days to cutting. Yield is in grams.

Strain	Rating	Day s	Grams	Strain	Rating	Days	Grams
122	1.98	46.0	616	114	2.50	37.6	734
				5	2.50	40.1	630
121	2.15	41.3	581	103	2.51	38-4	804
125	2.16	40.9	520	105	2.56	41.3	907
				11	2 .58	37.8	641
15	2 .20	39.5	767				
1	2.24	39.0	530	109	2.71	39.8	831
Ck.	2.28	37.4	701	18	2 .7 2	38.2	782
				115	2.73	41.6	903
117	2.32	41.0	6 60	107	2.74	39.1	825
102	2.32	46.9	818	19	2.74	41.1	740
6	2.33	40.1	558	118	2.75	41.6	864
101	2.33	40.9	775	10	2.78	40.1	768
14	2.35	42.0	626		-	•	-
119	2.36	43.0	5 85	21	2.82	41.9	633
2	2.38	40.2	708	17	2.82	42.6	840
9	2.38	41.9	501	23	2.83	41.0	593
25	2.38	45.3	520	7	2.84	37.2	742
13	2.39	45.1	757	106	2.86	38.9	894
				110	2.86	39.9	841
111	2.40	41.8	683	23	2.87	43.3	671
123	2.42	40.5	835	3	2.88	40.6	791
		4000	-23		~300	4500	• /-
				113	3.02	38.3	759

Since yield in hay is the last, in point of life cycle, of the three variables studied and since high yields of hay are desired, yield was considered the dependent variable with May rating and number of days to secondary shoot observance as independent variables. The coefficient of multiple correlation (R) obtained by covariance after eliminating the effect of series and strain, was found to be .582, which is highly significant statistically though not large enough to aid materially in selecting for high yield of hay when May rating and number of days to observance of secondary shoots are known.

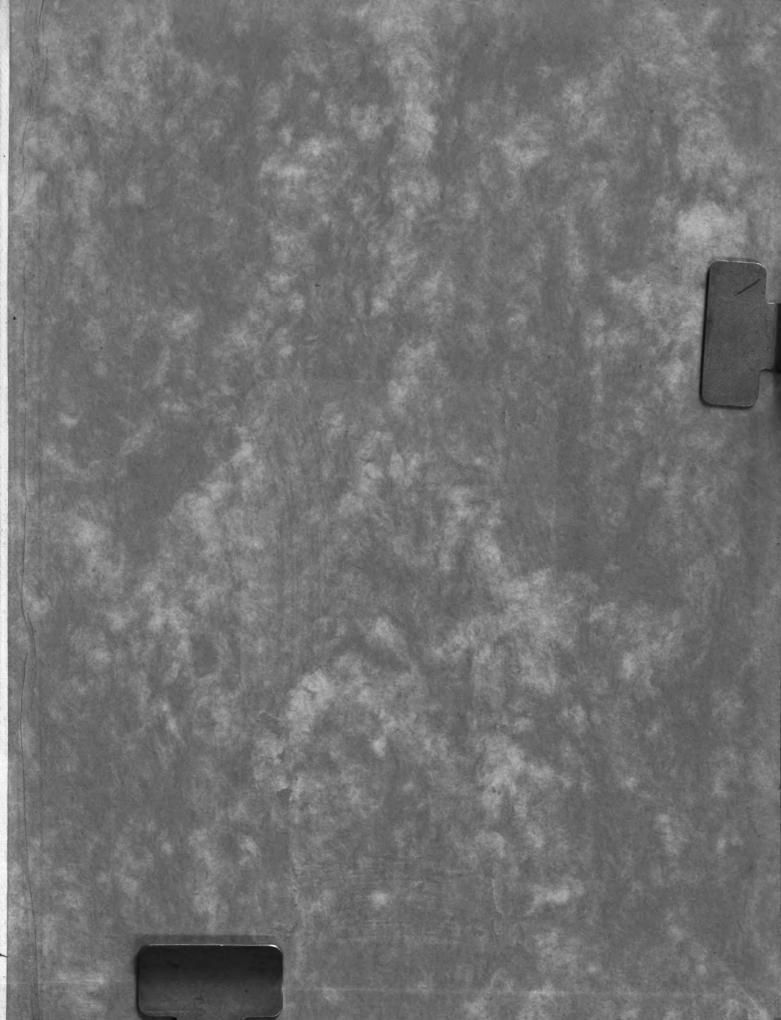
CONCLUSIONS

This investigation was made on a part of the regular alfalfa breeding nursery with a view to determining whether the
differences which had been observed between various plants
were characteristic of the strains. The three types of differences studied were: May rating, number of days from May 1 to
the observance of secondary shoots (date of cutting) and yield
of hay.

Significant differences were found between the strain averages in each of the three types of differences studied. This indicates that some of the factors which govern May rating, number of days to observance of secondary shoots and yield of hay are inherited and characteristic of the several strains. The stability of these characteristics could not be studied as

only one year's results were available.

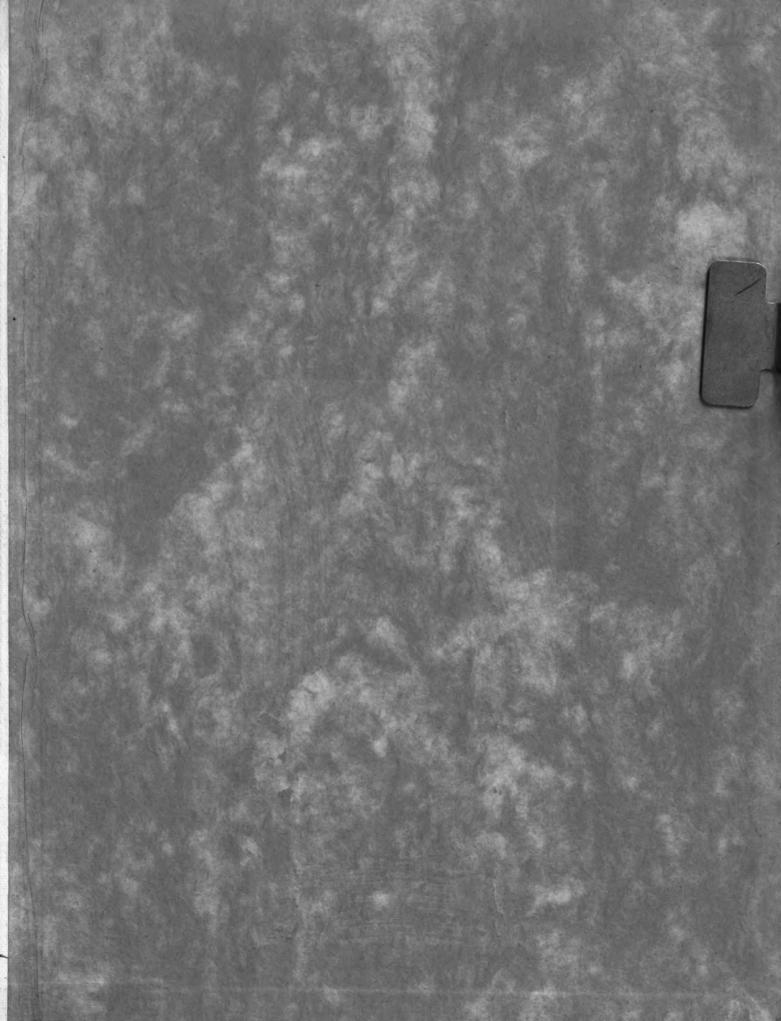
There was found a slight tendency for the more vigorous plants on May 1 to produce their secondary shoots earlier than the less vigorous plants. (On a single plant basis, r was --326, and on a plot basis, --154.)


The more vigorous plants on May 1 tended to produce the higher yields of hay. (r was .209.)

The earlier the plants produced their secondary shoots the greater the yield of hay. (r was -.569.)

From a strain standpoint, whatever the factors were which tended for vigorous growth in the spring (May rating) and for early production of secondary shoots (number of days to observance of secondary shoots) also tended for high yield of hay.

(R was .582.)


ROOM USE ONLY

ROOM USE ONLY

ROOM USE ONLY

best Guarden Labor

