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Introductian

One of the newest branches of the science of statistics
is that of the analysis of variance. This was first intro=-
duced by Dr. R. A. Fisher(s-)in 1923, and he and many other
statisticlians have been working constantly since that time
to perfect 1it.

It 18 a means for segregating from groups of data being
compared the variability arising from known sources, leaving
an estimate of the experimental error. It can be utilized
in testing significance between means of the groups of data.

The analysis of variance is applicable to large or
smallvaamples and to a large number of experimental designs.
In an analysis of covariance 1t is also possible to analyze
two or more associated variables.

It 18 the purpose of this thesis to 1llustrate with
varioﬁa experimental designs how the experimental error used
in the analysis of variance is derived. To do this the
method of least squares, as suggested by F. Yates(,q)and
illustrated by him(As), will be used. A second method,
called the method of fundamental identities, will be illus=-
trated in the case of Randomized Blockse.

In conclusion a method for finding values of missing

plots occurring in an experiment will be suggested.
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Notation

The notation used in this paper is simple; however, a
reader who 1s unaccustomed to it will find it complicated
unless this explanation is given.

The letter y will be used consistently through the
paper to indicate the yield of a plot in the experiment.
It could, however, depending on tne experiment, be used as
a measurement of height, weight, amount of growth, etc.
The letter x will be used in the analysis of covariance
as the "stand" while y will be used, as before, as the
yield.

The subscripts on the y, such as 1n Yijkewo o will
be explained in the individual chapters. |

The general mean of the y's will be denoted by Y.

Summing willl be denoted by dots in the subscripts.
For example, let us suppose that the data were arranged in
n columns and r 7rows and that yq indicates the yleld
occuring in the 1 th column and the j th row. The sum of
the ylelds of the first row would be denoted by ¥,(» which
indicated that the ylelds having a 1 1in the second place
of the subscript--that 1s, those in the first row--would
be totaled. Similarly, Y, would be-the total of the sec-

ond columne. Y denotes the grand total.

Throughout the theslis
T; 18 used to denote treatment 1,

B; 1s used to denote block 1,
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Ri is used to denote replication 14,
C¢ 18 used to denote column i,
V; 1s used to denote "variety" 1.

After the first chapter the sum of squares of the
residual errors will be denoted by 5SS, and the degrees
of freedom by D. of F.

Each chapter will have equation indexing 1ndepéndent
of any other; that 1is, the first equation in each chapter
will be numbered (1). If it becomes necessary at any time
to refer to an equation in a previous shapter, for example,
chapter 3, equation (1), this will be done by referring to
equation (3.1).

Other notation will be described in the individual

chapters.,
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Chapter 1.
Randomized Blocks

One field arrangement that has been found extremely
useful and at the same time specially suited to the appli-
cation of the analysis of varlance, is that of randomized
blockss In this design blocks are set up, each of which
contains a complete replication of the treatments (or va-
rieties) arranged at random. The number of blocks used
depends upon the desired number of replications of each
treatment.

As has been stated previously, there are two ways in
which the experimental error used in the analysis of var-
lance can be derived algebraically: l. the method of fun-
damental identities, and 2, the method of least squares.
The first method may be explained as follows:

Consider the randomized block layout shown.. in Table
l. This is not the arrangement used in the fleld layout,
but that used for computation purposes. Let n be the

number of treatments and r the number of blocks.
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Table l.
Treatments ‘
Blocks T, ' T, ceo Ta Totals
B, I Y ¢ Y Y.
Bz yl’- yaz e oo y"l Yoz_
By Yir Yor oo Yar Y.r
Totals | X, Y, cee Y. Y.,

The total sum of squares 1s equal to the sum of
squares of the deviations of the variates ffom the generql
mean. In symbols this 1is:

-2

»
n
Total sum of squares = & yi5 - ¥)

]
Ll
ol

where y 18 the general mean and Yij indicates that y
appears in the 1 th treatment and the J th block.
Now consider the 1identity
(yi; =¥) = (., =9+ (y,. =7y)+(a),
s b t;
where
1) da=y4 S Yy It Yo

and yb. is the mean of block J and Y. 18 the mean
) (3

of treatment 1.

Squaring and summing,
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D r_Z(itL -7’ + %:(d)z
¢ 3

(y;: -7)= nZF
gyu y n%n}

+22@, ~NG,, -V 226, -NE)
v25(F, -7)@) .

The fourth term of the right hand side of the equa-
tion can be shown to equal zero thus:
£, -9G, -9 = 3, TG, -9 - 726, - 7]
=0,
since %;(yfi -« J) = 0, and since the mean of the iti:s
is equal to y .
The fifth and sixth terms equal zero likewise. Therefore

we have
-2 - -2 - -2 2
5:“"‘-3 -y) = ng(ybs -¥) + :r'Z[:(yti -y) + %(d) .

The corresponding equation for the degrees of freedom 1is:
n-l=(r-1)+ (n-1)+ (n=-1)(r - 1) .

This has been proven in the literature quoted.
In calculating the sums of squares the following for-

mulae are convenlent:

2
—z z Y..
(2) Total (y;:v =y)= Y. - —
5 Tu T

(3) Blocks nz.('ib. -y)= - 5
3 J



(4) Treatments kZGt_ -y) = ¢ _ ’
it r nr
2
(5) Error 2 (a) = (2) = (3) - (4) .
j
The analysis of variance table 1s shown in Table 2.
Table 2.
Source of Degrees of Sums of Variance
Variation Freedom Squares | SS/D.of F.
Total nr - 1 (2)
Blocks r -1 (3)
Treatments n-1 (4)
Error (r=1)(n=1) (5)

The standard error of the experiment 1s given by

> @)*

3 -—I)(n =) =/\/error variance.

(6) 3

It is possible to verify the analyses of varilance of
other designs in this way; however, it is the purpose of
this paper to illustrate the second way, that of the
method of least squarese.

Let ti be a factor concerning treatment 1 which affects
yields,

bS be a factor concerning block j which affects

yields,
and m be a constant.
We will assume that %ti a O, because, while factors

concerning some treatments tend to increase the mean yield
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of a plot above the general mean for the whole experiment,
other factors tend to decrease it. Similarly, %:bj'a o .
We will assume that the ti's, bi's, and m are coef-
ficients in the following linear equation:
(7) y"‘v: LG, T cea ¥t G, 4 b|Hl+ see ¥b H, + mK+.euv ,

where Gi’ H and K are variables which take on the fol=-

jo
lowing values for Y :

Gy=*1l, whenu =1 ; G,=0, whenu #1

e

H,=1, wvhenv =) ; H =0, when v # }
K =1, for a1l u and ve.
In equation (7) the e ,, represents the variation
due to chance,
After substituting values for G, Hj, and K, equation
(7) reduces to
(8) ydj'ti.*bl'm"e"-j'
or

eiizya"-tt"b.“-mo

The method of least squares 1is used to find values of
ti» bj, and m that make the sum of the squares of the re-
sidual errors a minimum. This is done by setting the par-
tlal derivatives with respect to ti, bj, end m equal to

zero and solving the resulting simultaneous equations;

Let

FaZez= Z(yis-t‘-b“’m)zo
¥

Taking the partial derivatives,gives:



2F _ &
W = Z(-2)(yq - tl - b:‘ -m): o,
or
(9) Yy, =rt;-rm=0 ;
and
2F . 2 , o
Tb—i - ("2)(y“'1‘ "t“b's m)= 0 ,
or
(10) Y.j -nb;-nm=0 ;
and
oF _ . .
30 ° %(-2)(3?;3 -t;, =b; =m)=0 ,
or
(11) Y, =-Nm=0, where N=nr .
Directly from equation (11), it is seen that
YC. —
_(’12) sz-.-y .

Substituting this value of m 1in (9) and solving

for t ., glves

T
(13) v, = - Y -
Similarly,

Y,
(14) bj = —n-— - Y o

Substituting the values from (12), (13), and (14) in

(8), and simplifying,

Y‘.o Y'.; s
Vg2 v T Yt

this becomes, when predicting the value of y on the
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average,
. Y -
~ L e 3 _ =
(15) y = 5+ ¥ e

If an equation i1s of the form given in (7), the stan-

dard error of estimate 1s given by

T L w
(16) 8 = \/;%grees of freedom °

where

wz Zy*-tZy6 - t,Zy6,- ... - t,Zyq,

-b, Xy H, - b Xy Hy = «+» - B, Ey H, - nZy K ,

and the degrees of freedom in this case are
D of Feo=zsN-1=-=(n-1) =-(rel) .
Substituting the values given in (12), (13), and
(14) in (16) and simplifying, gives:

ws Zyz'-%(i:;’--'i)if;. - 2;(%5) L, - 3.,

2
- Ny _(zixc.z _Y..) )
: (’:-" ‘77") —

Comparing this final value for w with that indi-

cated in (5), we see that







- 1ll.
and is equivalent to that given in (6), as found by the
method of fundamental identities,
The standard error of estimate used in this and the
following problems 1s the experimental error which gives ri-

rise to the analysis of variance.,
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Chapter 2.
Single Criterion of Classification
The simplest set-up to which the analysis of varlance
can be applied 1s that of a single criterion of classifi-
cation with elther equal or unequal frequencies in the
classes. Such a set-up is illustrated in Table 3.

Table 3.

___Treatments

-T. Tz eece Tﬂ

I | Yar | *° | Tn

Yia | Yaz | **° | Tna

y"“ ) yzr,. eee y"hh
YL Xz. e In.

In the general case we will consider n treatments,
and the frequencies in Treatment 1, 2, ¢ , n Will be
respectively r ), r,, ses , I, Where the r 's may be

equal or unequal.

The equation from the fundamental identity 1is
2 2 '
Y Y. X 2
z - X = Ce - )
where d 18 an expression similar to that in (i.l), and
N = Zr.z.
R L
Let t; be a factor concerning treatment 1 which

affects yilelds,

and m be a constante.
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We will assume that the ti's and m are coefficients

in the following linear equatioﬁ:
(2) y“v = tlEl + tzEZ P+ ecve t'.\EH +n§ + e“v,

where J t. = O, and where the variables E and & take
(3

on the following values for y

E,=1l, whenu=1; E = O, when u # 1;
® =1, for all u's and v's.
Then (2) reduces to

(3) yij s ti"- m <+ ei‘ 9

J
or
e‘-j 2 y"j "t“ * M o
Then let
2
F:ZQ":Z(}":J» -ti-m) .
¢y

Taking the.partial derivatives and setting them equal

to zero, gives

T;
a - s - -
'5'%{ =Z(-2)(y;; -t -m) =0,

or
(4) Yi.. - riti -rm=0 ;
and
bg :Z('Q)(Y;j -t;-m)=0,
d]
or
(s) Y..-Nm=0 .

Directly from (5) we get
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(6) m'—"';o
. Substituting this value of m in (4) and solving for
ti glves

t‘:-il-- °
(7) : o y
Substituting the values in (6) and (7) in (3), and
simplifying, gives
(8) Y. =2 42 4+€::

If an equation is of the form (2), the standard error

of estimate is given by

(9) 5 = Degrees of Freedom

where
w=Jy* - t.ZyE’ - tzzyEz - eee = t, LYE, - nTyB ,
and
Degrees of Freedom = N -1 - (n - 1)

Substituting the values of t; and m given in (6)
and (7) in the equation for w yields |

Y. ?
2 . - -—
meZy -Z(; ‘y)xz.“y"--

¢

=<Z y* - Y,}’z) - (Z‘: Yf.’.z - Y;,'z) ,

¢

which 1s essentlally the same as that given in (1) if Z:dz

is replaced by w

The analysis of varlance is given in Table 4.
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Table 4.
Source of Degrees of Sums of
Variation Freedom Squares -
Y
Total N-1 (a) Zyz - ;{'
Y. * Y *
eatments n-1 b L L
Treatmen ( )%: T 5
Error N-1l =(n-l) (a) - (b)
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Chapter 3.
Multiple Criteria of Classification

Some times an experiment is carried out in which
there are more than two criteria of classification, say
three; in such an experiment, the problem of interactions
occurs, For instance, 1f we have an arrangement of four
varieties and three treatments, replicated three times, we
have an interaction appearing between varietles and treat-
ments because of the different responses of the different
varieties to the same treatment; similarly, we have inter-
actions between varleties and replication, and treatments
and replications.

Suppose in the general case we have n treatments,
r varietles, and s blocks or replications. The arrange-

ment for computation purposes is illustrated in Table 5.



17.

Table 5.
Treatments
Varieties T, Ty ceoo T [ITotals
AT Yai Ynu
v' (] [ ] L J L J
s Yiis Yous ecce Ynis
il LATH Yot eoee Yore || Yo,
Bl y|z' yzz‘ xXxx Yna.
vz ® L ] [ ] [ ]
[ ] [ ] [ J ®
By Yias Yo2s eeee Ynas
leo Yuo Ynz,. I-zn
° L] [ °
B Ve Jar sees Ynre
v (] [ ] [ 2
r [ ] ® o L J
Ps Yies Yars e | Ynes
Yl!‘o er. ¢oee tho Yof’.
Totals Y‘ Ya cece Yn Y
L X} o [ o

By yijk it is indicated that the yield is in the
1 th treatment, J th variety, and the k th block. The

total for Block k =Y"k .

Let t, Dbe a factor concerning treatment 1 which
affects ylelds,
Let v:l be a factor concerning varlety J which affects

yields,
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bK be a factor concerning block k which affects

yields,

m be a consteant,

(tv)ij be a factor concerning the interasction of
treatment 1 and variety J which affects
yields,

(tbhx be a factor concerning the interaction of
treatment 1 and block k which affects
ylelds,

and (Vbhk be a factor concerning the interaction of va-

riety J and block k which affects ylelds,

where

Zta = 0, )sz = 0, gbk = 0, ; (tv)‘-j a O,

3

%(tvns = 0, Zi:(t‘b)ik" 0, z\j‘_(t.b)“‘: 0,

}:‘:(vb)‘.k = O, ZE(Vb)'mz O.

We will assume that these factors are coefficients in

the following linear equation:

(1) vy

vvw t'E'+...+t"En+v‘F‘ +oee err+blG‘—r...

+ DGy + m H + (tv), J,, +.eot (tv) J,.

+ (tb)“ K +Tooe "'(tb) + (Vb)|| L“ P oo

" nsKhs
+ (vb)"L,.s T e uyw?

where the variables take on the following values for y;skz
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E,=1, whenu =1 ; E,= 0, when u#1

“we

we

F, =1, when v = 3 Fy =2 0, when v # 1
=1, whenw=k ; G, = O, when w3 k

-e

H =1, for all u, v, and w ;
=i, when u = 1 and v = J ;
Juy =20, 1in éll other cases ;
Kuw=1l, When ua 1 and w =k ;
Kew = 0, 1N all other cases ;

L,,=1, when v 3 J and w = k

we

=20, in all other cases .
Then (1) reduces to
(2) Yige = LTRE I SRR N - (tv),;,- + (tb); + (VD). + eijk¥ m.

Then

2
FeZe®= Flyiw -t - v - b-m- o)y - (ep) - () ]

The partial derivatives result in the following equations:

<3)‘%F£T‘Y;..“P“t'r”=°'
)
(5) 95-; ¥
Wb, ¢ Yew "W De-nrm=0,
(6)%;Y.,,-nrsm:0,
(7) 2 F sy Y;: =8 1t: -8 vV - t v S
ST Y. teticev mem-s (=0,
°
(B)W%)-‘_:-;Y‘-.k-rt;_-rbx-rﬂl-r(tb)ik= 0,

we

t°) vg Y.ik-nvi-nbk-nm-n(vb)jkgc.
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From (6) we see immediately that
(10) m=Yy .
Substituting this value of m in equations (3), (4),

and (5) and solving for t; , v; , and b, respective-

ly, we get
Yo =
(11) b2 — =¥
Y. =
(12) v, = B -J o
Y..k =
(13) b = = "7

Utilizing the values of (19Q), (11), (12), and (13) in
equations (7), (8), and (9), we get

(14) (t'V)-- - I“i. - Ii.. - .i. v
L " 8r e Y o
Y. Y. Y
Lol Leo aek -
(15) (tb)ik = T BT nr + Y »
Y . Y . Y .
16 D), = —o - o Ry,
(16) (v )J* n ns nr vy

After substituting values in (10) through (16) in
equation (2), we get the following equation for predicting
yijk on the average:

Y Y . Y Y-l-

.. . . Y
. ~ . Lik o§K boeeo o i
17 (Y = tj ) - - “
Q7) Yijw s YT t% sr ns = nr

The standard error of estimate is given by

8) s = Afgorer

where
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() B )
.(ZY;;. (L.t < X0 Yn.r.s.’)
(B _Y...‘) (ma.. ) {2 5)
- E(Zj:'.n‘L - ans") _(ZYT.z ) ) '(ZY " an:)l
. ;(in‘f _ ans’) _(in-j.‘ ¥ ) _( A ans‘)]
i n nrs ne TS — T

= (Total Sum of Squares) = (S.S8. for Treatments)

e (S.S. for Varieties) - (S.S. for Blocks)
- [S.S. for Interaction TxV]
- [S.S. for Interaction TxBJ
[_S.S. for Interaction VxB]
=(1) - (11) - (111) - (1v) - (v) - (vi) - (vi1) ,
and
D. of F. =Qprs -1l=(n=-1)=(r=-1)-(s -1)
-n-1)(r-1)-(n-1)(s~-1) = (r-1)(s -1)
Thus we have derlved the experimental error used in
the analysis of variance of an experiment with three
classifications.

The resulting analysis of varience 1is given in Table 6.
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Table 6,
Source of Degrees of Sums of Squares
Variation Freedon
Total N-1" (1)
Treatments n -1 (11)
Varieties r -1 (111)
Blocks 8 -1 (1v) |
Interactions
TV (n=-1)(r - 1) (v)
TxB (n=-1)(s - 1) (vi)
VxB (r =1)(s = 1) (vii)
Error(TxVxB) |(N-1(n=1)=(rel) (1)=-(11)=(111)
=(8=1)=(n=1)(r-1) =(iv)=(v)=(vi)
«(n-1)(s~1) -(vii)

-(r-1)(s-1)

# N=nrs .
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Chapter 4.
Latin Square
An experimental design which is frequently used is
the Latin 8quare. If n varieties (or treatments) are to
be tested, a plot of land is divided into a checkerboard
arrangement of n rows and n columns, and the n vari-
etles are distributed at random in the plots, but with the
double restriction that each variety appear once and only
once in each column and each row." If Vs Voo Vgs Vg Vo

are five varieties, we can form a Latlin Square as shown in

Table T.
Table 7.
Columns
V* v,
Y‘ Vs
Vz Ve
Y} v,
Rs.|t75 v, v, v, [v,

If n 1is the number of rows, columns, and varietles,
the fundamental identity for the Latin Square, written in

terms of summations used in calculations, is

'* Rider, P. Re., An Introduction to Modern Statistical

Methods, pp. 166-9.




2
+(§¥..,‘ _ Y'":)“'Zdl ,
n n
where 4 1s an expression similar to that for randomized
blocks and yijk is the yleld of the veriety k which
appears in the 1 th row and the J th column.
Let vk be a factor concerning variety k which affects
yields ,
ri be a factor concerning row 1 which affects
yields ,
ci be a factor concerning column J which affects
yields ,

and m be a constant,

where
e will assume that the v's, r's, and c¢'s and m are

coefficients in the following linear equation:

(2) Yurw = v.G' + ootV G, + rH +.c. rH, + ¢, J

*eerc,dy+ MK+ e,,,,

where G, H“, Jy» and K are variables which take on the
following values for y[jk’
G, =1, when w = k; G, = O, when W f,k;
a 21, whenu =21; H, = O, when u # 1;

H
Jv = 1, when v = J; J, = O, when v # §;
K

=1, for all u, v, and w.
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Then (2) reducés to

The expression of the sum of squares of the residual
errors 1s .
2 2,
F =2e -“Z(y(-jk =V -¢ =r, =-m)" .
tyk
The partial derivatives result in the followilng

equations:

(4)‘%‘% 3 Y, *nVoenm=0;
(5)—%%;1,3,-nc;-nm=o;
(5)-—2—% ’ Y‘.“-nr‘-nmzo;
(m 3L 5y, -n'm=o0.

Directly from equation (7) it 1is seen that

(8) IO‘.O -~
ms =2y .
n’-

Substituting this value for m into (4), (5), and

(6) and solving for Vs ©;» and r; respectively, we get

(9) vk - —!:1'.'5 - 3'. »

Y50 —~
(10) cj = a - Y o
and

X...
1) rp= /-

<l
.
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Now substituting these values into (3) and simpli-
fying we have the following equation for predicting y

on the average:

Y Y . Y, _
(12) y.. - so g * oy - [ - 2 y .

tJk = n n n

The standard error of estimate 1s given by

- w
(13) S= ‘\/D. of F. '’

where

Y, 2 y * y * y ¢
- z [ - XX Z o!. - "o ’
i n n? y n n?*
which is essentially the same as (1) 1is we let
w = Zdz °

Thus we have derived the experimental error used in

the analysis of variance for a Latin Square design.
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Chapter 5.
Analysis of Covariance

It is the purpose of the analysis of variance to re-
move from the experimental error all variability except
that due to the chance variation within the factor being
tested. This 1is done sometlimes through an attempt to hold
other factors constant, or through replications. Sometimes,
however, a factor enters into the experiment which can not
be held constant. For instance, in an experiment which
deals with the yilelds of a certain variety undér various
treatments, there may be a variation in the yields caused
by unequal stands in addition to the variation caused by
the treatments. Also, 1n an experiment regarding the
weights of animals fed different diets, original weight
may cause varliation which should be considered.

Fisher' and Goulden** have discussed problems of this
nature and analyzed them by the analysis of govariance.

When an experiment i1s analyzed by the analysis of
covariance, two separate measurements x and y are
made on the items. Now, in the first case above, x
would refer to stand and y would refer to the yields,

while in the second case x would refer to initial weight

# Fisher, Re. A., Statistical Methods for Research Workers,
Sixth Edition, pp. 275-90.

bl qulgen, Ce He, Methods of Statistical Analysis, ppe.
27" Oo
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and y the final weighte.

Randomized Rlocks

Let us consider a randomized block experiment in

which measurements were made both on stand and yield.

n be the number of treatments applied and

ber of replications.

Table 8 1llustrates such an experiment.

Let x =

Let

be the num-

stand and y = yield.

Table 8.
Treatments
Repli=-
cation T, Tz « o Tn Totals
:
R' x“ x’.. S PS n X..
Yw| Yay| * Yni .
RQ. 'y xzz ° ° n1 x.z
Ve Yoz [ = Yna Y.a
L ] ® [ ) [ ]
[ ] [ ] [ ] [ ]
R_ X\ X,p o o . X,r
Yir Jae | ¢ Inr L
X X o o X..
Totals ' L. ne-
“ SO I S Y, . Y.,
Let ti be a factor concerning treatment 1 which
affects yields;
rj be a factor concerning replication J which
affects ylelds;
m be a constant;
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and D be the regression coefficlient between stand and
yield;

where

2t =0, Xr. =0.
t y
Then the equation similar to (1.8) is

(1) y;.=s t .+ r.o+m+bx.

,1-6;.3.

ij
The expression for the sum of squares of the residual

errors 1is

- z - - - - .'L
F-Ze :%(y(j t.‘- r'.i m bx“) .

Setting the partial derivatives equal to zero and

simplifying, we have,

(2)_%%‘_.; Y; =rt;-rm=-bX,; =0;

i * *

(3)_&; Y, ~-nr, =nm=bX,:= 0;
r 3 J )

(4) 2E_ ; Y, -Nm=-bX, =0, where N =nr ;

°om oo
5) _DF_ . X: V., = Ft:X: «Fr:X, -oX._ =bEx..*=o0.
) % cz;: R Y g

By straight forward algebraic manipulation on equa-
tions (2), (3), (4), and (5), one can arrive at a solution

for b ; it 1is

(6) p = Sum of products due to error ,
Sum of x squares due to error

where
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(7) Sum of products due to error =

2xy - N ) (;x"y" - X,&Y,.)-(;x.ix.j _ x.;qy,_)

(8) sSum of x squares due to error =

£ %) E %) (B - %),

This b 1s used for adjusting y for stand and has the

and

covariance due to treatment and replication removed from

it.

It 1s possible to solve for ¢t , r , and m in terms

of b ; by doling so we get

©

ct

-~

(1]
0

I o
e~

1

|
\_/

]

o
~
’Slrx

!

>l
N

Y - X _
(10) r.={ 2% -Y) - 3 -X)
n n
and

(11) m = ¥ -« X ;
where Y 18 the general mean of the y's and X 1is the
general mean of the x's,
Substituting (9), (10), and (11) in (1), we get
(y- Y o X;, X -
(12) y = —;—+—n--Y) b("?'""r?" X)Obx;j+e,;i.

The standard error of estimate is given by

w
@ s = Apgre
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w = Sum of y squares due to error =
b (sum of products due to error) ,
where

(14) Sum of y squares due to error =
S 8
};x. >x.. Y 2
. - - °) - oo
(zy ) ( N ) ( 3 N )’

Disof Fem=N=-=-1-(n=-1)=-(r-1)-1,

and

Hence we have derived the experimental error which
glves rise to the analysis of covariance suggested by

»
Fisher.

% Fisher, R. A., Statistical Methods for Research Workers,
Sixth Edition, ppe. 275-90.
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Chapter 6.
Analysls of Covarlance
Latin Square
Let us ncw consider an experiment to be analyzed by
the analysis of covariance which is set up inan n by n
Latin Square. Let x = stand and y = yleld. Table 9

illustrates such an experiment.

Table 9.
Colunmns
Row C' C& N . C“ fTotai;
R T' T& [ ] L Tn
! X104 Xas/2 . . Xnoa X,
Yeas4 Yar2 . . Ynin X,,.

The sum of the stand for plots with treatment k

will be denoted by T}k. denotes the yield of the

y('jk
plot in the i1 th column and the jJ th row, where treatment
k was applied.

Let c¢; be a factor concerning column 1 which affects
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yields;

r: be a factor concerning row J which affects
yields;

« be a factor concerning treatment k which
affects ylelds;

m be a constant;
and b be the regression coefficlent between stand and

yield;

where Zc‘- . Zr.

i
Then we have the following linear equation

’ E:tk. are all equal to zero.

(1) y‘-jk = C;, + I‘j-l- t’k + o +bx‘~_’,‘ *eijk o
The expression for the sum of the squares of the
residual errors 1is
2 _ 2
_Ze = i’Z"(Jr‘:"-k- i =r; = te-m -bx,;j,‘) .
Setting the partial derivatives equal to zero and

simplifying, we have

(2)"%‘%‘Yc..‘nzci‘nm-bxi..-‘-os
i

(3) aF'Y- -nzr.-nm-bx.:._o.

sri ’ °\e Jd o) 9
4y BF_ ; T wn®t, = nm =T 03
(*) oty | % K by, = 0
) $ ;5 v, -nta-px., =05
(6) asl{; 3 é‘xy - ngcixi.. - nizrsx.". - ngtkﬁ.‘"k
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Again as in the preceding chapter, by a straight for-
ward algebralc manipulation on equations (2), (3), (4),

(5), and (6), we can arrive at a solution for b ; 1t 1s

1

(7) b = Sum of products due to error ’
=~ Sum of squares of x's due to error

where

(8) Sum of products due to error =

(ny - ’i_{f.__‘) i (7-:"‘:-’&.. ) X..&Y...)

- gxo"oxoso - xoch"... Z“ 'kTsk - x...Y--o
n N n N
(9) Sum of squares of x's for error =
(3 : 2
1" x... Z-xi" XO..z
zx - - ¢ -
N n N

_(gg.x.; _ X..,‘)_({-ik _ x..f) ,

n N n N

and

We can solve equations (2), (3), (4), and (5) for

c“’ r'

} 0 ty, and m respectively in terms of b as fol=-

lows:

(10) ¢;= (X:l - Y) - Db (—_...x; - '}E)
J%y s i _=
11) =T)-p{ S -X

(12) tk‘:(

“e

“e
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and

(13) m=Y~bX ;.
- Equation (1) Dbecomes, after substitution of values
given in (7), (1c), (11), (12), and (13) ,

. ¢ ‘

Yi“ .:‘, ‘K L e
(14) y‘jkz Y <+ n + n - 2%

Xi._ X.:‘_ -'1‘-' _

The standard error of estimate 1is given by

w
(15) s '\/m-

where
W = Sum of squares of y's for error

« b (Sum of products for error) ,

where Sum of products for error is given by (8) and the
Sum of squares of y's for error 1s the same as (9) except
that x 18 replaced by y ;
and
Di oOf Fo = N=1l « 3(n=1) -1,

Hence we have derived the experimental error which
glves rise to the analysls of variance for a Latin Square

experiment,
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Chapter 7.
Incomplete Blocks
If the number of varietles being tested 1s very large,
it often becomes 1impossible to use the complete randomized
block layout because of the amount of field space needed.

/74 /0
Yates( ) and Weiss and Cox( )

have developed and extended
methods by which a large number of varietles can be tested
economlcally. Two designs which are useful 1in this respect
ares 1l. Incomplete blocks, balanced or unbalanced, and 2.
Lattice Squares or Quasi-Latin Squares.

The requirement of the balanced incomplete block de=-
sign is that every variety occur with every other variety
in the same number of blocks.‘ Since the number of replica-
tions and block size must be kept within practical limits,
it i1s possible to arrange such designs for only specific
numbers of varieties. If n 1s the number of varieties,
8 1s the number of varletlies 1in each block, r 1s the
number of replications of each variety, N or nr or sp
is the total number of items, and w 1s the number of
times two varieties appear together, it is seen that certailn
relationships must exist between these numbers, since they
must all be integers. Two of these relationships are

le n=-1)w=r (s8=-121) ,
2. P =.QE£ .
For any value of n and 8 , there do exist values of

w and r which do satisfy the first relation, but it is

desirable to keep the number of blocks (p) to a small
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number or all benefit of such a design is loste.
There are simple devices for deriving the combinations

(%)

which are possible, yet which retain balance. Yates

“( ) givessome of these arrangementse.

Struéture of balanced incomplete block arrangements is dis-

cussed thoroughly by Yates(/4), “( ),

and by'Goulden..

Let us consider in connection with the derivation of
the experimental error used in the analysis of varianée,
the special case in which n=7 and 8 =3 . By carrying
through this problem, yet keeping in mind the general case,
we will arrive at a result which will be applicable to any
experiment set up in balanced incomplete blocks.

Let the blocks be set up as indicated in Table 10,

Table 10.

Blocks " Total
B, Yu Ya, Vs, B,
Ba Yia | Y2 | Ys2 B,
Bs Yi3 | Yes| Yaa By
By Yag | Yyy| Yeu By
Bs Yas | Yss| Yas By
Be Yoo | Y56 | Yeo Bg
By || Y7 | Va7 | V41| By

In this figure, is the yield of the 1 th variety in

Y,;,'

% Goulden, C. H., Methods of Statistical Analysis, pp.
175"2 02 3




38
J th block. Bj; denotes the sum of the ylelds of the
plots in block J . V; denotes the sum of the yields of
variety [
This 1is a balanced incomplete block design because

variety one occurs in a block with each other variety once

and only once. Similarly for each other variety.

Let v, Dbe a factor concerning variety 1 which affects
yields ,-
b; be a factor concerning block J which affects

§
yields ,

and m be a constant ,
where
%;vi =0 ; ;;bj =0 .
We will assume that the v's, b's, and m are coeffi-

cients in the following linear equation:

(1) .yw = VE + cee ¥ VE, blF‘ + eoe t+ prp + m G + € uyr

where E,, F,, and G are variables which take on the fol-

lowing values for Y ¢

Ey=1, whenu=1; E =20, vhenu $#1

F,=1, whenv =J ; F, =0, when v # 1

-e

G =1, for all u and v.

Then (1) reduces to

(2) y‘.j=vi+bj+ m+e;; o

2 2
Let F = Ze =Z(yi'; -vi'-bs-m) .
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Setting the partlal derivatives equal to zero and

8implifying, we have ¢

Vi
(3) 2E_ ; v--rv--Zb:‘-rm-_-O;

ov; ¢ ¢
B:
)
(4)_3%.; ﬁj-Zvi-sb-‘-smzo;

o

(5)%; Y,,-Nm=0.

Directly from equation (5) we see that
(6) m:;.

Now considering the special case indicated above,
where n =7 and 8 =3 , and writing out the equations

indicated by (3) and (4) , we have

(a) ¥, -rv, -b, =byg=Dbg=-y=0,
(b) Va=rvy, =b, =by=bg=-y =0,
(¢) V; ervy=b, =be-bg=y=0,
(@A) Vg =rvgee b, -by=-byg=-y =0,
() Ve=-rvg -by=-bg=-bg-y =0,
(f) V¢ =rv, -bg=by=Dbe=-y=0,
(8) Vg-rvy=byg=-bsg=-bg=-y=0,
(h) §,-v,-va-v3-sb,-§=0,
(1) Bp=V, =Vg=-Vg-8Dby=y =0,
(J) By=-v, -vg-vg=-8b -y =0,
(k) Bq-vz-v¢-v6-sb¢,-i=o,
(1) Bg=vy =Vg=vVvp=8bg=-3 =0,
(m) ﬁ‘-vaov,.-\r‘-sb-i'-'—o,
(n) By-v -v,'-v?-sb.'-'&'-‘-‘o.
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These, together with (5) are called the normal equations.
Subtracting [(h) + (1) + (j)] / 8 from (a) and

simplifying (making use of the fact that Z_v; = 0) we
R
have v,

B.
V; r v' . $ ( S lv, =0,

or

4
V.-Zﬁ -v'us-r+l)=0.

Solving this equation for v, we have

(]
1) v, =8V -23B;
! ré = r +1

in general this becomes

8  vi=q y=H .

where

v.
(9) Q;=s8V; -iﬁj . '

Substituting the value for ve given in (8) into

(4) and solving for b, , we have

10 .b.-_-B-J .
(10) e NBZB - li z:ﬁl

Equation (2) now becomes

B;

- 4 . =1l) a -1 ..
—E—"'Q', N(n ) (n ) Q"l+e

(11) Yig = (s «1) Ns(s =1 'y °

If an equation 1s of the form (1) , the standard

error of estimate is given by
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a2) s =qf5orT

where
1
2 = 2
Y B Y
b e ] o0 2
w = Z -] - - - n -1
< y N ) (Ls N ) <Nss-l Q‘)'

and

De f Foes N=1l = (p=1) = (n-1) .
Thus we have derived the experimental error used in
the analysis of variance of an incomplete block designe.

This gives rise to the analysis of variance given by

Iates(l4). The analysis of variance is illustrated in
Table 1ll.
Table 11
Source of Variation Degrees of Sums of Squares
Freedom
2 Y %
Total N -1 2y - (1)
y 4
5 v,
Between Blocks p -1 sJ - —5— (11)
n -1 2
Between Varieties ne-1 Na(a=1) ZQi (111)
Error ’ N-p-n+1 (1) - (11) = (111)

This method of balanced incomplete blocks works very
well in the case where the number of varieties 1s egual to

s‘ or sz « 3 +1 where 8 1is the number of items in a

block. Goulden” discusses in great detall these two spee

clial cases,
# Goulden, C.H., Method of Statistical Analysis, p. 175-
202.
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Chapter 8.
Unbalanced Incomplete Blocks
The problem of incomplete blocks becomes much more
complicated if the blocks are not balanced; that is, 1if
each variety does not appear with every other one the sanme
number of times. Goulden“ dlscusses a simple case of this
kind in which the number of varieties 1s equal to pz'.
If the varleties are arranged in the form of a square,
the blocks may be set up by first considering the rows as
blocks and then the columns as blocks. For instance, con-
gsider the following nine varietlies arranged in the form
of a square?
11 12 13
21 22 23
31 32 33

The blocks which may be set up as indicated above are:

Group X Group Y
11 12 13 11 21 3
21 22 23 12 22 32
31 32 33 13 23 33

These blocks are unbalanced because variety 21 gp-
pears only with 11 , 31 , 22 , and 23 . It does not ap-
pear with the other four varieties. Similarly for each
other variety.

The groups may be replicated as many times as needed

to make the desired number of replicationse.
% Goulden, C. H., Methods of Stetistical Analysis,pp.179-
185,
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Let p be the number of items in each block, then
p" equals the number of varieties, 2 np equals the num=-
ber of blocks, 2 equals the number of groups, and n 1s
the number of times each group is replicated.
Then we can set up summary tables in which each Xy
and yii is the sum of n ylelds of variety 1] 1in the

n replications of group X and group Y respectively, and

Tij”xij + y‘-j .

Group X Total Group Y Total

Bix |*xu X,2 X3]Xy, Buk Yo Yar Y ]Ye
B’-& Xqy X 22 Xas xz. Bz.L yn. a2 yai Y.,y
By |Xar X332 Xa3|Xs. _5_33 Via Y23 Y52 |¥.3
Group Total X.. Group Total Y..

Variety Summary

Ty Tia Tia

Tay Ta; Taj

Ty Ta2 Taa

The grand total X,.*Y, = T

It 18 to be noted in this case that the first sub-
script of the varlety indicates the block in the X-group
to which it belongs, and the second subscript indicates
the block in the Y-group.

Let V{j be the factor concerning variety 1) which
affects ylelds;

bix and b: be factore concerning blocks ix and

'3

Jy respectively which affect yields;
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8 and 8 be factors concerning group X and group

x
Y resnpectively which affect yields;
m be a constant ;

vhere gvij =0 ; ;b"“-!-izbj%-o Bk B = O
Instead of one equation as in previous chapters, we

wlll use the following two for the ylelds of the X group

and Y group respectively:

xu =y;-‘ + bigy *8, + 0+ eijx »

Y = Vi +b3‘ -s3+m q-e‘_-s.‘ .

(1)

For this experiment the sum of the squares of the
residual errors 1is:

2 L
() F=Zet= 2lxy = vy = by =8, = m)

i¢ = V.o @ b - - °
+§(y" vij iy s; m)

Setting the partial derivatives equal to zero and

8implifying, we have:

(3) 2F_ ;. .. -2n v, “nbi,=nby,~2nm =0 ;

‘av;i ¢ ¢) '
3 Bea
(4)3_5%;xh-nZv‘.j-npbix-nps“-npm=0;
B.
OF ° . - L e . - - - M
(5) 35—’ Y') n v‘l np bJa np sz rpm= 0 ;
'Y
Py 2
(6) :Fa‘,‘;x”-np 8, =npm=0;
2
(7) 2E.; Y, -np" B =nPm=0;
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(8) 2E_; 7. ~2np2mn=0.

am o0

Solving (8) for m , recalling that N =2 n pz,
we get
(9) m=M,
where M 1s the general meane.

Substituting this value for m in (6) and (7)

and solving for s and 8, respectively, we get

X

L

X

(10) Bym —g = M o
np

and

e ®

(ll) B} ;-;-1-. - M.

By straight forward algebralc manipulation the values
of the other factors are determined to be:

X = Yi. -2nps

(12) Diy® to x .
np :
Y. «X . «2n P 8
(13) by, = 23 ‘3 ¥
| ¥ -
(14) — b T‘.'S - (Xi. - Ya.) - (Y’S - x':\) «2npM
Y 2 n ¢
P

By substituting the values of equations (9), (10),
(11), (12), (13), and (14) in equations (1), we get the

following equations for predicting the ylelds x ;.

) and Yy

on the average:
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b Tl:j + (xc:- - Lo) (Y ) -x.s, X

(15) X/ = - +M
. ‘3 2np np" !
and
. - * - . +* . e .
a6y §o.ow DT T i m¥e) P0G -Xg) XL
“ 2np np

The standard error of estimate 1is gilven by

(17) —
- w
s = D. of F. ’

where
w = Total Sum of Squares = Sum of Squares due to varieties
- Sum of Squares due to blocks ,

2 2 (X_,+Y,,
(18) Total Sum of Squares =in3 + Zyii -

where B 2
)
’

N
and

(19) Sum of Squares due to Varieties =

2 2 a.
ZT‘.). . 2 (X;, =Y;) Z(x - Y}
2n 2 np 2 np
2 2 2
(x,, =Y, ) (XX, "'ZY-S
2np* np ’

and
(20) Sum of Squares due to Blocks =

X "'ZY_; T *

" L

np ) &
and
2 2
Diof Foe =2 2np = (2npel)e(p =1)1 ,

Thus we have derived the experimental error used in
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the analysis of varience of an unbalanced incomplete block
designe. Equation (17) gives rise to the analysis of var-

»
fance which Goulden discussés.,

# Goulden, C. He, Methods of Statistical Analysis, p. 180.
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Chapter 9.
Youden's Square
We Jo Youden(’7) has modified the method of incom-
plete blocks in order to eliminate variations due to
replications from the error term. Consider the arrange-
ment in Table 12 in which there are seven treatmentsv(A
through G) and three plots in each block, the blocks being
the vertical rows:
Table 12.

A B c D E F G

D E F G A B C

B ¢C D E F G A
One will notice that there are three replications of each
treatment. The modification which Youden introduced was
that of placing the seven blocks side by side and arrang-
ing the treatments within the blocks in such a way that
each of the horizontal rows contains a complete replication
of the treatments. Table 12 shows this. Youden also sug-
gests that this can be done for various combinations of
treatments and blocks, when ceptain restrictions are
placed on the number of treatments and replications. It
will be noted that the number of incomplete:(vertical)
blocks is equal to the number of treatments (n); that the
number of replications (s8) of each treatment is equal to
the number of items in each block; that n and 8 are
connected by the relation

nelw=sg (s=1) ;
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that ns =N 18 the total number of items .

Let yi}x be the yleld of a certain plot, where the

plot appears in row

Let r:

b;

be the factor concerning row

i, block J

yields ,

be the factor concerning block

ylelds ,

, and treatment k .

1 which affects

which affects

tx Dbe the factor concerning treatment k which af-

and m

be & constant ,

fects yield

8,

where Y r; =0, Yb;=0,and 2t =0.
i 3 K

We will assume that the r's , b's , t'

8 , and m

are coefflcients in the following linesr equation:

(1) ywws;Dir( + ijEsbs +¥F“t,‘ $G D +0 s

where D,, E,, §, and G are variables which take on the

following values for Y

Dy =
Ev‘

F; =

1, when u
l, when v

l, when w

1

J
k

’

]

Dy = O, when u ¢ 1
E, = 0, wvhen v 3# J
F, = O, when w ¢ k

G =1, for all u, v, and w o

Then

@) ¥

(1) reduces to

:ri+bi+t“*eu

Y

.o e

The sum of the squares of the residual errors 1s

8lven by

L by
FaZe =X (yye -ri-b=-t) .
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Setting the partiasl derivatives with respect to the

various constants equal to zero, we have

bF . - . - - .
(3) —>r] Y;,.-nr,-nm=0 ;

“e

we

(4) :% ; Y.j. -sbj-itk-sm=0

(5)-;—%:; I”K-stK-ij-smzo;
(6)..%5..; Y «Nm=0.

se b
In (4 ) it denotes the sum of the factors con-

cerning the treatments appearing in block J . In (5)

ibi denotes the sum of the factors concerning the blocks
in which treatment k appearse.
Directly from (6) we see that
(7) n=Yy .
Substituting this value of m in (3) and solving for

ri s W6 get

(8) r;= :1 -¥ .

Using a method similar to that used to find v and

b-) in Chapter 7, we find

(9) by = i% v o
8 (s%-5 +1)
and
Qk
(10) t, = —_

B =8 +1

where
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Ty
ngs Y"“ - ZY.:‘. *

If we substitute the values of equations (7) through
(10) into equation (2), we get the following equations for

predicting yiik on the average:

B)
- Y. D 4 Q Q
(11) yijk - Leo ¥y + eyeo sz +- < Kk .
8 8(8"=8 +1) 8 =g ¥+l

The standard error of estimate is

- 1/_'_’___
(12) S = De. of Fe

where

1 )4 r y N
[ X X 1
' = y.‘ - - Q
z tik N 8(s¥= s +1)k *

_(ZY;'s.z i Y{«",‘) _ (;Yx.;..‘ _ Y}.‘..t) ,

D.OfF.'—'N-l-(s-l)-2(n~l)o

and

Thus we have derived the experimental error used in
the analysis of varliance of an experiment set up in a
Youden's Square. The analysis of variance which results
from this value of the experimental error is given in

Table 13.
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Table 13.

Source of Degrees of Sums of Squares
Variation Freedom .
Total sn - 1 2y, %
zy"jk - N (1)
&
ZY, y %
Between 8 - 1 L e 22 (11)
Rows n
Between n -1 g;Y l.L v, ©
Blocks - (111)
8 N
Between . n-1 2
Treatments 1 Zlak (iv)
s(s -8 1) %
Error sn-l-(8-1)-2(n=1) (1)=(11)=-(111)=(1v)
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Chapter 10.
Lattice Squares
The second design for a large number of varieties
that was suggested previously 1s that of Lattice Squares.
For this design to be used 1t 18 necessary that the number
of varieties being tested be a perfect square. In Table

14 an example of such a design 1is given for 25 varieties,

Table 14,
1l 2 3 4 5 110 14 18 22 1 81517 24
6 7 8 910 2024 3°711 19 21 3 10 12
11 12 13 14 15 23 2 61519 25 2 911 18
16 17 18 19 20 1216 25 4 8 132022 4 6
21 22 23 24 25 91317 21 5 7 14 16 23 5

In this lattice square arrangement every pair of
varieties occurs together once only in either a row or a
column of any one of the squaresa. Also, every variety
occurs with every other variety once in one column and one
row from each square. Complete discussion of this example

(s0),

has been presented by Weiss and Céx Other examples

have been discussed by Fisher and Yates( ), and Yates(’z).

| yijxp be the yield of variety J in square 1,

column k and row p e« Let n? be the number of varlie-

ties and t the number of squares.,

Let 8; be a factor concerning square 1 which affects
ylelds,

vj be a factor concerning variety J which affects

yields,



54,
c be a factor concerning columin k which affects
ylelds;
r be a factor concerning row p which affects
ylelds;

m be a constant;

X
I

0 ;Zv,--.-.o 3Z°k=° ;Zr,:—-o .
J Si.

The yield y.

e p is given by

1) vy Bi¥y Vi+® Cu¥Tp+ I +8jkp

., 2
t)Kp
and the expression for the sum of the squares of the re-
sidual errors is

2
(2) F=Ze"= Z(yuk‘, -8, =y -ck-r’-m) .

Setting the partial derivatives of F with respect
to the various factors equal to zero, and simplifying,

gives the following equations:

oF . e m2 g. o nt - .
(3) o8; ' Liee n"s8; =n"m=0;
v; vy
(4) %s_j- ’ Y’i" -t Vs *ch -ZI’P «-tm=0 ;
Cx
aF M . - - - - L
(5) 2c, ' Yo, ™8 zv’ nec,-nm=0 ;
R
”_ 2 .
(6) TIT: H Y..., ns; v.‘ nr,=-nmn =0 ;
(7) 2E.; -tn*m=0;
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where 8 . 1s the factor concerning the square in which
column k occurs; similarly, s ip 1s the factor concerning

the square in which row p occurs. In equation (4)

J

Zc denotes the sum of the columns in which variety
V;

occurs, andzr denotes the sum of t.he rows in which

variety J occurs. In equation (5) iv denotes the

sum of the varietlies occurring in column k « In eguation

(6) Z’v denotes the sum of the varieties occurring in

row .
Solving equation (7) for m results in

(8) =¥ .
Substituting this value in (3) and solving for s

Y.
(9) s et -

nt

<l
o

We can now solve for the other factors in a manner

very similar to that 1n Chapter 7; when we do so, we get

Q; +n ty
(10) vj’nt-2t+l
Q: +n t y\ 1
=1 - . - ) eny
(11) °k‘n[Y"k- n By é(n'c.--:em-l) ny e
o= 1 '"P'ns‘.' nt.-2t.+1 'ny_
where V. v
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The standard error of estimate 1is given by

(13)

_ 1/ w
S = De of Fe.

where

w = Total Sum of Squares - Sum of Squares due to sqguares

= 33 due to columns in squares

« 33 due to rows in squares = 5S due to varieties ,

where

(14) Total SS= )y~ -

2

N

ry, b x. .t

, , -
(15) 8s for Squares = = X R
(16) 8S for Columns in Squares =
2 > > >
gx"k' YOOOO - Z‘YLO'O - Y.ooo
n N n* N ’
(17) S5 for Rows 1n Squares =
Y
ZY * Y.ooo‘ ZYC.“' Yoooct)
ece P - . - ’
n N n* N
i (Zna;)*
2 nQ.
. - 1 ) e = 27 ).
(18) SS for Varieties = X T +1{Z(HQ,) — } :
and

D. of Foen®t = (t =1) =2(nt=t) = (n?el1)-1.

Thus we have derived the experimental error used in

the analysis of varilance.

This gives rise to the analysis

of varlance for a Lattice Square which has been discussed

by Welss and COX(IO)O
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Chapter 1l.
Factorial Design

Let us consider an experiment 1n which we have three
kinds of fertilizer, a', b', c'. We may apply the ferti-
lizers one at a time, two at a time, or all together, so
that instead of three treatments we have eight, which may
be designated by

a'b'e!, a'p', a'c', db'c', a', d', c', (1)
where (1) denotes the abseﬁce of each fertilizer and is
used as a control "treatment". In the field set-up we
would have blocks of land with eight plots in each, the
treatments scattered at random in each block, with the
one condltlion that each block contain all the treatments.

The analysis of variance could be considered as in
a randomized block experiment with eight treatments; how-
ever, the effect A of treatment a' can be found by compar=
ing the ylelds of all plots containing a', with or without
any other ingredient, with the yields of plots not con-
taining a' at all. A comparison may also be made of the
effect of a' in the presence of b' with that of a' in the
absence of b's. This effect we call AB, the simple inter-
action between a' and b'. Thus we can make sevem differ=-
ent comparisons

4, B, C, AC, AB, BC, ABC.
The first three of these we shall call the main effects

and the remainder we shall call the interactions.
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We might also consider that the three fertilizers
are applied in two ways == some fertilizer and no feriili-
zer; we will call these a", bl" c" and ao', bo', co'
respectively where the subscript 1 1indicates the pre-
sence of the fertilizer and the subscript 0 1indicates
its absence,

For simplicity we will let y{jk: be the yield of the
plot in which a, bj, c . Were applied; the subscripts of
the y 1indicate the levels on which the a, b, c, were
applied respectively. W#e will let the number of replica-
tions be four, and the fourth subscript on the y will

indicate the number of the replication.

Let r_ be the factor concerning block p which affects

4
ylelds ;
a4 8 be factors concerning main effect A which
affect ylelds ;
bo, b, be factors concerning main effect B which
affect yields ;
Cos C be factors concerning main effect C which

affects ylelds ;
(ab) be the factor concerning simple interaction AB
which affects yields ;
(ac) be the factor concerning simple interaction AC
which affects ylelds ;
(bc) be the factor concerning simple interaction BC
which affects yields ;
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(abc) be the factor concerning double interaction ||

ABC which affects yields ; ?f

and m be a constant. :
We will assume that these factors are coefficients

in the following linear equation:

(1) Yypwa® %P0 * 2,0 + PaEg + D\E | + C Fy + ¢F, F

+(ab)g + (ac)H + (be)I + (abc)J + 2_b,Lp
.

+mn K +e uvwa’

where D, E,, F,, G, H, I, J, L, and K are varlables which
take on the following values for y‘-J'KP:

Dy,=1, when u =1 ; D, = O elsewhere ;

Ev =1, whenv = J ; E, = O elsewhere ;
F, =1, when w = k ; Fw = O elsewhere ;
G =1, when uv = 11 or 00 ;
G =<1, when uv = 10 or Ol ;
H &1, when uw =11 or 00 ;
H 3«1, when uw =10 or Ol ;
I =1, when vw = 11 or 00 ;
I =<1, when vw = 10 Or O1 ;
J =1, when uvw = 111, 100, 010, OOl ;
J =el, when uvw =110, 101, 011, 000 ;

K =1, for all values of u , v ,_a.nd w 3
L* s1l, wvhen 2z = p ; L*a. O elsewhere .
The values of the variables G, H, I, and J were determined

as follows:
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Goulden” states that "algebraically, all the treat-

ments can be represented aé follows:

N =(N, = N)(K, + K)(P, +B,) ,

P = (N, + N,)(K, + Ko)(P, = B)
K,)(P, +P,)
K,)(®, =P,) ,
Ko)(P, + Po) ’
PxK = (N, + NJ(K, - K,)(P, =P,) ,
K,) (B, = P) " ,

L]

K =(N, + N (K,
Nx?P =(N| - No)(K’

+

N x K =(N' - No)(Kl

NxPxK =(N, - N K,
where N, P, and K are the three treatments correspond-
ing to the A, B, and C 1in our experimente 1 1in the
subscript of the N, P, and K denotes presence of the
fertilizer, while O denotes absence.

We shall make use of N x P to determine the values
for G . This is the interaction which corresponds to AB,
the factor doncerning which is the coefficient in (1) .
In the notation of our experiment N x P is written:

AB=(a, - ag)(p, = b.)(c‘..- Co)
Expanding this we have

AB=abec, + abec,=ab,c, -abec

P aob,c,

- a,b,c, rabc, +ab,c, .
The coeffielents of the terms containing a,b, and agbe
are +1 while the coefficlents of the terms containing
a,b, and agb, are =1 . These are the two values of
Go H and I are determined similarly.
We shall make use of N x P x K to determine the

values of J . In our experiment this relation is written:
# Goulden, C. H., Methods of Statistical Analysis, p.l6l.

. £as

e or A e TETRET W
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ABC =(a = a,)(b =Dbg)c =¢c,).
Expandihg this we have :

ABC= a‘blc| - a.b.co - a'boc' + em.b"c° - aob‘c'

+ aoblco + a.ob‘c, - a°b°c° .

The coefficients of terms a,b,c,, a,b,c a,b,c,, and

o?
agb,c, are +1 while the coefficients of terms a,b,c,,
a,b,c', a,b‘c,, and aeb.c° are =1 o These are the

two values of J .

Using the values of these variables (1) reduces to
the following equations, where each equation represents
four equations since p takes on values from one to four:
(2) yooop =a,+r b, v c, +(ab) + (ac) + (bc) = (abc)

+D +r, + ©000p
(3) ybovp = 8g + by *c + (ab) = (ac) = (bc) + (abc)

+m Ty,  €,4.p 5

(4) y.'.P =a, + b‘ +Cc, - (ab) + (ac) = (bc) + (abc)
+0 *Ty + €gpp

(5) yﬁnp = a5+ Db, +c, - (ab) - (ac) + (bc) = (abc)
+m FT e+ g,

(6) y%oop =8 + b° +c, - (ab) = (ac) + (bc) + (abec)
+m 4Ty Fe o

(7) y‘°'P =a +Db,+c, = (ab)+ (ac) - (bc) = (abe)
+m+ T, +e g0

(8) yHOP =a, +b, +c, +(ab) = (ac) = (bc) = (abec)

+m +r, +e
P nop ’

vzare



62.

(9) y”’P = a + b +c, + (ab) + (ac) + (bc) + (abc)

+m+rp+ e“" .

4

= 2
Now let F = Ze Linp

Taking the partial derivatives and 8implifying we

? AL T

have } E‘
(10) _gl;'_‘.; Y‘:“. - 16 a; -1 m =0 ;

(11)_?%3_; 4. =16D;-16m=0 ;

(12) ..g_l;“.; Y, ... =16c, =16m=0 ;

(13) 35,‘ Y, p -8rp=-8m=z0;

(14) ?a(lj‘m; (AB) - 32 (ab) = 0 ,

where (AB) = Yo00. ¥ Yooi1.* Yio0. +*Y . = Yoi0.

“You. " Yi00. = Y0y 5

(15) f(%c‘y‘ (AC) = 32 (ac) = 0 ,

where (AC) = Ygqo, + Y g0, + Y 00, + Y, e = Yoor.

-X -Y -Y

[ ]
100, 1o, ?

[- XY
(16) 3}{;_5;; (BC) = 32 (be) = 0 ,

where (BC) =Y000. *Yout.* ¥, 00, + Y0i, " Yooy,

- Y¢No. “Y01. = Y,0. 3

dF . - -

-Y Y

“Yer. = Y,,0. 3

o,
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- 32 m =20,

() 2E_; v
From (18) we have immediately
(19) m=y .
' Solving the remaining equations for the factors de-

sired, making use of (19), we have :

Y.

[ X =~ .
(20) ag=—p—-Vy;
and

.j'. -

we

(21) bi=T-y

and

Y-'k. -
(22) Ck= T -Y >
and

Y.oo’ -
(23) r' s T di A
and
(24)  (ab) = 448) ;
and
(25) (ac) = {42) ;

32
and
(26)  (pe)w {231 ;
and -
(27) (abc) = _(%_g_c_)_ *;
The standard error of estimate is given by
- L

(28) 8 = Ao+

DaOfF.:Bl-(l“"l)-(s-l);
and



vely -(ii:s__ - i)x,,,. -(Ellg-— - ?)Y....

(-7 v (- 9) v

oo
( DN - ) (_1'.6._'_ F)Y..l. l
j
- z( 000 )I"'P 1_3__2 AB) = .L.—l(AC) ]
L
- 1) (s0) - L) (ame) - T 1.,

or

Y * ry * oy 2
W-(ZY"""‘—'%:? )'(; = e )

Zye by, ) [Ty Lk Y....‘)

e )\ T

2
+ ;Y,-Ko -Yoooot - (AB)_+ A\J *EC-L
16 32 32

32 32
+ (ABC)
32
Total Sum of Squares = Sum of Squares due to Blocks

- Sum of Squares due to Treatments ,

where
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Sum of Squares due to Treatments =
SS due to A 4 SS due to B + SS due to C
+ 5SS due to AB 4 SS due to AC 4 SS due to BC
+ 5SS due to ARC

= 53 due to main effects
4+ SS due to simple interactions

43S due to double interactions .

Thus we have derived the experimental error which
glves rise to the analysis of variance of a factorial
experiment. This analysis of variance has been discussed

by Yates(’5), Fisherf, and Rider™® .

* Fisher, R. A., The Design of Experiments .

#% Rider, P. R., An Introduction to lodern statistical
Methods, pp. 16G=174.
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Chapter 12.
Confounded (3x2x2)

Confounding is a method whereby the necessity of
including every treatment combination of a factorizl ex-
reriment in each block 1s avolded. This has been dis-
cussed in some detail by Yates(A‘). By use of this method
block size may be kept small even though the number of
treatment comblnatiocns 1s large.

The comblnations of treatments are divided into two
(or more) groups so that the contrasts between the differ-
ent groups represent some interaction of higher order
which 1is not 1mportan£ in the experiment. 1In the analysis
of varlance, information concerning the interactlion which
is "confounded" is lost but this loss 1s compensated for
in greater accuracy in other comparisons. When an inter-
action is confounded in only several of the replications,
we say that it is partially confounded.

Let us consider a 3 x 2 x 2 eiperiment in which
treatment a 1s applied in three amountss: 2, 1, O;
treatments b and ¢ in two amounts: 1, O . This ex-
periment is one which has been dlscussed by Yates“. In-
teractions BC and ABC are partially confounded with
block differences. Table 14 shows the design of this

experiment.

% ZYates, F., The Design and Analysis of Factorial Exper-
iments, pp. 58-61.
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Table 14,
'Blocks 7
:=‘f¢ Tb -ﬁn. ﬁu I-ﬁa. —fﬁé
Yoo Yooo [[Yooe |Yeor [Yeoo |Yoor
Yo10 You1 Yous Yoso Yorr Yoi0
y\oo yCOI yIOI ylao y/oa y/o/
ylll yo!o ylla yNI y/l/ yllo
Ye0e | T201 Y200 | Yaer |Y2or [Y2eo
Yau Yaio Yass ya.:o Yas0 Yau

Yopw denotes the yleld of a plot on which a was
applied on the u 1level, b on the v level, ¢ on the

w level.

We will let the block totzls be [Ial, [I,] , etc.,
and {[}s] - [z =8, » {[nb] - [IIJ} =g, »
{[IIIJ - [IIIJ = 830 This 18 the notation which 1is used
by Yates. ]
Let the factors which affect yield be
for main effect A: Bgs &1y 89 3
B: Dy, by H
Cs Cos cl H
simple interaction
AB: (ab)Os (ab),v (ab)z ’
AC: (ac),, (ac),, (ac), ;

BC: (bc) ;

4l







double interaction

replications:

68.

ABC (abc)o, (abc),, (abc)z;

constant: m

where the sum of the factors concerning treatments equals

zero and the sum of the factors concerning blocks or

replications equals zero.

In the factors concerning the slmple interaction AB,

(ab); denotes a contrast between a; 1in the presence of

b and a,;

in the basence of b .

factors concerning AC and ABC.

Similarly for the

We have the following linear equation for y H

1) Yyywe 230+ ;va, + g-chw + %(ab).G“

where the

Yi5n

:-

Dy

< :j <M

G @
<

¥ p n
R N R R

+ Z“(ac)&H“-!-i (be) J + %(abc)uK“

-

+ IIItL“ + mP + Cuvw -

IoL,q + Iy, + I LgII Loy + III\L;.

variables take on the following valiues for

, when u =1

s When v = § ;
, when w = k ;
s When uv = il
, When uw = 1l

, When vw = 11

D,= 0, whenu # i
E, =0, when v #
Fy = 0 , when w $#k
, =l,when uv =10 ,
» =l,when uw = 10 ,

and 00 , -1 when vw

O elsewhere
0O elsewhere

= 01 and 10

-e e

DI Forar -t v apem
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K, = l , when uvw = 100 and 111, «~1 when uvw = 110 and
101, O elsewhere ;

L,,* 1, when y &ppears in I, , O elsewhere ;

la
simllarly for Ly, , Laer Lays Lges Lgys
P =1 everywhere.
These values for the vearlables were determined in a
manner similar to that in the chapter on factorial designe.
Usling these values for the variables we cen get an
expression for y"l',‘ in general; this 1s quite complicated

to write down in the general case, However, in a special

case, say for Y41 @prrearing in block II, , we would hage

(2) y.. = a,+ b, +c +(ab)' + (exc)l + (bec) +(abc)‘

+ II‘+m + e

WXL

Again we will let F equal the sum of squares of the

residual errors. Settling the partial derivatives of F

wiith respect to the various factors equal to zero and Sm‘-}v’_:

plifying, we have the following equations:

(3) a;: Y;, =1l2a;=-12m =0 ;
(4) b; Y, =18 Db; =18m =0 ;
(5) Cy $ Y,,K-18c.‘-_18m-.-0;
(6) (ab); : Y;, =Yio, =12 (ab) = 0 ;

(7) (ac);
(8) (be)

where (BC) = Jooco ¥ Yerr * Yi00T Yiuu * Yace *Yaun

Y"., - Y‘.“ - 12 (aC) =0 M

(1]
-
A

]

36 (bc)+25'+2gz+23330,

=Yoot “Yo1e " Yier " Vo = Vaor = Yy

yorman
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(9) (abc), :  (AKC), = 12 (bc)
' ' +2g,+285 =0,

12 (abc)o -2g,

where (ABC)O'—'Y,,,"'Y,“ “Yo10 " Yoo

(10) (abe), : (ABC), = 12 (bc)

12 (abc)l +2g,
-2g,¢t28g 20,
where (ABC), & Y,00 * Y4y = Y410 = Y101 o
(11) (abe), : (ABC), = 12 (bc) = 12 (abe)y +2 g, |
t2g, -

»n
(03]
[ ]
\
o
-

where (ABC), = Ye00* Yau

e
g

(12) 1 2 (bc) =2 (a.bc)° + 2 (abc)' + 2 (abc)z
v 61, - [_IQJ =0 ;
(13) I, 5 =2 (bc) + 2 (abc)y = 2 (abe), = 2 (abe),
+ 6% - [1,]=0;
(14) 113 2 (be) + 2 (abc), =2 (abc), + 2 (abc)y
+6 11, - [11,]=0;
(15) Iy s =2 (bc) = 2 (a.bc)o + 2 (abc), = 2 (abc),
0
2

.
»

+6 11, - [11,]=
(16) III, ¢ 2 (bc) 4 2 (abe), +2 (abe), =

+6 1114 - [117]
(17) IIIb $ «2 (bc) =2 (abc)° -2 (abc)‘ -2 (abc_)z

+6 III - rrr,] =0 ;
(8) m : ¥Y,,, =3 m=0,

(abe ),

03

from which we see directly that
(19) n=y .
Knowing this value of m we can solve for the un-

known factors in equations (3) to (8); the results are
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(20) ar=z ' -

<l
-

o

" ]
-

'

<

.

(¢}
)
]
<)
-

Wa may solve for (bc) by making the following
combination of equations:

(12) - (13) + (14) - (15) + (16) - (17) +3 (8) ,
making use of the values of gr Bas By Hence we get:
(21)

bc = -LB_C—). - 1 °

(bc) 3 T 5% (8, + 84 +8,)

By a similar process we get:

(22) (ave)y = 2(ABC), + s2(-g) + &4 +85) = 2(be),

(23) (abe), = 2(ABC), + 28, - g, v&3) - S(re),

(24) (ave)y = SB(ABC), 4 l( g, + 8, -8,) - B(be) .

We will solve for the fyctors concerning replications

in terms of (bc), (abc),, (abc),, and (abc),

I .
(23)» Iag.%i]-:;-[(bc) - (abc)o-l- (abc)' + (abc)z] ’

e e am e e

......



h = _3__ 3Ebc) + (abc) - (abc), = (abc);}
II‘__.C_s_]. 3[bc) + (abc) - (abc)| > (abc)z],

[Hb]
II, %bc) -(abc), + (abc), = (abc),|,

[IIIJ L
III, =_T_ - 3 be) -l-(abc)o + (abc), - (abc)l] R

[IIIJ |
IIIb = -T— -,-(bc) - (abc)° - (abc)l + (abc),‘ .

The standard error of estimate is given by

w
(2%) S = ‘\/ D. of F. °’

where
Y. *

Py
Y
w = Total SS = Block SS = ( Cee  _tee

12 36

1 35 -

ZY.S.“ Y...‘ zyukz Y...L
- T =5

L X 2
(F - o) | (Fy - ¥eo)
\ 12 ] 12
>
_ (be * . 2(abc), .
23% 60
and
De Of Fo. =36 - 5 - ll’lo
This 1s essentially the analysis of variance described
»
by Yates, and thus we have derived the experimental error

for a confounded experiment.

% Yates, Fe, The Design and Analysis of Factorial Experie-
ments, pp. 58=60.

9
e v v
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Chapter 13.
Estimation of Missing Plot Values

Sometimes when an experiment 1s completed, it is
seen that a value of the yield in one of the plots 1is
missing. As 1t would be quite wasteful to discard the
entire experiment for this reason, it 1s better to make
an estimation of the value and carry out the analysis of
variance using this new value. However, when such an
estimation 1s made, the degrees of freedom for the total
must be decreased by the number of estimated values.

Allen and Wishart (/) and Baten (&) have derived
formulas for estimating plot values. I am going to show
a way, different from theirs, to arrive at the same for-
mulas, and to suggest how it can be extended to any rea-
sonable number of missing plots.

Let us considera randomized block experiment (see
Table 1) in which the yield in plot uv 1is missing.
We wish to make an estimation of this value.

From equation (l1.1l5) we know

Y‘ Y .
V.o o g3 -7

which 18 on the average the "best" value of the yield

Y;j .
In the case when a missing plot occurs in treatment
u and block v , Y, 18 the sum of the value of the y
yield of the missing plot and the sum of the known yields
in that treatment; we will denote this sum of known yilelds

by T, « Similarly, Y, 6, 18 the sum of the value of the

TR

[ e B
T
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yield of the missing plot and the sum of the known ylelds
in block v which we shall denote by B, « Y , 18 the
sum of the value of the yield of the missing plot and the
sum of the known yields, which we shall denote by T (no
subscript).

Substituting these sums in (1) we have

Yow * Ty Yyy *+B, VY, +T
(2) vy = r + n - N *

Solving this equation for y,,, we have
(3) v = nT, +rB,=~-T .
vy (n=1)(r=-1)

This 18 essentially the same as that given in the liter-

eture cited.

If there are two missing values occuring, we shall
assume in two different treatments and two different
blocks, the problem becomes one of solving the two fol-

lowing simultaneous equations for Yov and yq, $

&)y =Y,v -l-'l‘v +yvv+Bv } Yoo * Vse + T ,
vv r n N
'y“-o-'r‘ ys-e*Bt yw-ry“-r'r .
(5) Yee = r ¥ n - N
This gives:
- r- -

= (n Tg +r B‘_-T)] ’

4
i
|
3
2
A
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and Vs is a similar expression.

The reader will readily see that it 1is ptssible to
solve for any reasonable number of missing plots, no
matter where they appear in the layout.

In the case of a Latin Square, equation (4.12) 1is
used. To illustrate this problem let us assume that the
values of y,.,,. and y .. are missing. The values are
in different rows and columns, but they are in the same

treatment. The resulting simultaneous equations are:

_ yvvw"'ystw""rw_‘_ Yovw * Ry . Yuvw * Cv
Yovw = n n n

(7)

-5 (yww"'yuw*'r
N

and

y +y +T + R +C
(8) Voo, © vvw n:tw w, ysev\; S y:twn +

-2 (yuvw'*i;st\v”r) »

where T, 18 the sum of the known ylelds in treatment w ;
R, 1s the sum of the known yields in row u ; C,, 1s the
sum of the known yields in column v ; and T is the grand
total of the known yields.

The solution for Yoyw is :
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(9) Yovw = (n-2)[](.n-l)"-41.]— [(n-l)(n Tw*n Cy#en Ry =-2T)

+ (nTy+n Co+n Rg = 2 T)] ’

and Y sew is a similar expression.

Equation (5.12) would be used to estimate the value of
missing plots in the analysis of covariance for randomized
blocks. Similarly, equations (3.17), (6.14), (7.11), (8.15),

and (9.11) may be used in estimating missing plot values for

the various experimental designs.

[ R ek
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