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ABSTRACT
ENERGY BANDS, SURFACE STATES, AND RESONANT TRANSMISSION
' OF ELECTRONS IN FINITE ONE-DIMENSIONAL CRYSTALS
By
Willard M. Gersbacher, Jr.

The energies and wave functions of electrons in
finite one-dimensional potentials designed to simulate
various interesting physical situations have been calcu;
lated and are discussed. A general finite one-dimensional
periodic potential was considered, and the form of the
wave function in all regions of energy was eatablished‘
without recourse to the Bloch-Floquet theorem. Various
types of potential terminations were considered, namely,
step-function terminations at a potential minimum or
maximum or at an arbitrary point in the end cell, and
terminations by an arbitrary potential. The energy states
(both band and surface) were caléulated in each case and
conditions were obtained which exhibit clearly how these
states depend on the properties of the potential.

The band structure above the vacuum level was in-
vestigated by calculating the reflectioh coefficient
for free electrons incident upon the periodic potential,
for several tyﬁes of tefminations, and interesting
relations between band-structures'ﬁnd tunneling were

obtained. The resonant emission of electrons from metal



Willard M. Gersbacher, Jr.
and non-metal surfaces covered with impurity layers was
investigated for energies above the vacuum level by
methods similar to those used in investigating the band
structure.

In each area of investigation specific calculations
were performed for Kronig-Penny type periodic potentials
with appropriately selected parameters. The results of

these calculations are summarized in a number of graphs.
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INTRODUCTION

Progress in understanding surface phenomena has been
slow, because physical and chemical processes at the sur-
face are inherently more difficult to analyze than those
in the bulk. The forces acting on the atoms at the sur-
face are not symmetrical, as in the bulk, and consequently,
the atoms are usually displaced from their ideal lattice
positions. Moreover, Just the fact that the surface con-
stitutes an abrupt termination of the crystal lattice re-
sulté in a deformation of the crystal potential -- its
periodic nature 1s lost at the surface. This has far-
reaching consequences for the electronic processes in the
underlying region of the crystal close to the surface.

At the same time, unsaturated forces from the surface
atoms make them highly reactlive towards various atoms out-
side the crystal. Thus, except when produced and main-
tailned in a high-vacuum, the surface is covered by one

or more layers of foreign matter, greatly increasing the
complexity of an already difficult problem.

Although theoretical interest in electronic surface
states has existed since the 1930's, little was accom-
plished because there was negligible technological moti-
vation or opportunity for experimental confirmation. The

great impetus for surface-state study came with the advent
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of the transistor in the late 1940's. Since then further

motivation has rapidly developed in conjunction with a
variety of solid-state technologies.

Theoretical studies of the electrical properties of
surfaces have progressed along two different lines. Tamm's1
theoretical work, which treated a rather simplified model,
was extended by Shockley2 and by other workers to cover more
general situations. It was shown that in covalent crystals,
surface states may be assoclated with the unfilled orbitals
or dangling bonds of the surface atoms, which may trap an
electron at the surface. The historical development and a
summary of the various theoretical techniques used to calcu-
late surface states is given quite completely by Davison
and Levine3. Suffice 1t to say that most of the calcula-
tions since 1950 have used a LCAO (or MO) type approach
which was first introduced by Goodwinu in the late 1930's.

The second approach to this problem has been essen-
tially phenomenological. 1Its alm was to determine the
characteristics of the surface states by fitting a few
specifled parameters of the theory to experiment. The
theory was completely analogous to that of bulk impurity
states. This approach has proved extremely fruitful in

characterizing the surface of several crystals, such as

germanium and silicon. However, the correspondence is
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st1l1l small between the experimentally observed surface
states and the theoretically proposed Tamm or Shockley
states.

It i1s the purpose of this paper to establish a
better understanding of the Tamm- and Shockley-type sur-
face states by showing specifically what parameters these
states depend on, and how these states change as the para-
meters which specify the periodic potentiai are varied.
Since most calculations which have been performed to date
deal only with semi-infinite crystals, many interesting
effects which are peculiar to finite crystals have been
neglected; consequently, investigation of some of these
effects seems appropriate. It was thought better to per-
form simplified exact calculations relating to several
different questions concerning finite crystals and using
several different types of boundary conditions in each
case rather than to carry out a lengthy approximate cal-
culation designed to illuminate only one aspect of real
crystals. For simplicity, the one-electron scheme is
used throughout, although it 1s probable that surface
polarons and many-body interactions between surface states
can occur. The Justificatlion for using this approximate
scheme is that practically all the new concepts which have

been introduced into physics through solid-state theory,
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such as energy bands, effective mass, and Brilluoin zones,
have been obtained via the one-electron approximation. How-
ever, what one achieves in simplicity of calculation by
using this scheme one pays for with certain ambiguities
which would not otherwise arise.

In the one-electron approximation, one attempts to
represent all the various forces acting on a single elec-
tron by a single static field acting independently on each
electron. This one field includes both the interactions
between electrons and those between ions. The one electron

Schrodinger equation, then, may be written as
2 .
R+ VD))= Ench Yyck)

The significance of the potential in this equation has been
the subject of much study. In the one-electron scheme one
assumes the existence of such an average potential acting
on each electron. From the fact that (in the Born-
Oppenheimer approximation)5 the interaction potential has
the periodicity of the lattice, one infers that V_ (k,r)

has the same periodicity. What is usually done is to pick
& physically plausible potential for each state and solve

the one-electron problem. It is common practice to assume
the same potential for all electron states (i.e. Vh(k)r) =

V (r) ). The accuracy of this approximation is at present
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not known. Also, when a V (r) is determined in an ad hoc
fashion it 1s clear that only those results which are
reasonably insensitive to the choice can be trusted. Thus,
one expects only qualitative agreement between calculation
and experiment.

The technique used in this paper 1s based on the
so-called cell-matching procedure. In this technique, the
assumed crystal periodic potential is divided into cells,

a cell being one period of the periodic potential, and
solutions of Schrodinger's equatlion are found in each cell.
By connecting the solutions in each cell continuously to
those in the next cell, a wave function is constructed which
1s across the part of the crystal in which the potential is
perfectly periodic. This wave function is then matched to
the solution of Schrodinger's equation in the surface re-
gion to form a wave function for the crystal as a whole.

To solve any problem by this procedure in three di-
mensions is quite difficult, since the wave function must
be matched continuously from cell to cell at an infinite
number of points on the cell boundaries. The LCAO (or MO)
methods are better sulted for this type of problem, al-
though they are not conceptually as clear. Since the
interest here will be in clarifying various qualitative
questions concerning finite crystals and not in quantita-

tive results, only one-dimensional situations will be
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considered. Although this limitation may lead to neglect
of many interesting effects, it 1s believed that most of
the results obtained will have important analogs in three
dimensions.

In Section I, the wave function for the periodic
part of the crystal potential 1s constructed for any value
of energy without recourse to the Bloch-Floquet theorem.
Section II establishes the conditions under which surface
states may exist for the Tamm and Shockley type potential
terminations. Section III shows how to apply the princi-
ples discussed in Section II to the Kronig-Penney periodic
potential with Tamm- and Shockley-type terminations. 1In
Section IV, the effects of termination at an arbitrary
point 1n the end cell are considered. Sectlion V deals with
the band structure above the vacuum level by investigating
the diffraction of normally incident free electrons from
the surface of a finite periodic potential. Section VI
deals with a related phenomenon: resonant electron emis-
sion from crystals covered with several layers of adsorbed

foreign atoms.



SECTION I

DETERMINATION OF THE FORM OF THE WAVE FUNCTIONS AND ENERGY
BANDS FOR A FINITE PERIODIC POTENTIAL

A suitable starting point for the calculation of the
energy bands and wave functions for a finite crystal, is
described in an article by James6. In this article, James
gives a particularly clear and elementary derivation of the
band structure of permitted energy levels for an infinite
crystal. Although he considers only infinite crystals, he
discusses the properties of all solutions of the Schrodinger
equation, including those which do not satisfy the infinite-
crystal boundary conditions, namely, the solut;on in the
forbidden bands. He also introduces a new parameter o(E),
which, like the effective momentum p(E), depends upon and
partially characterizes the periodic pétential. The essen-
tial reason for using James' results is that they may eas-
ily be applied to the case of finite crystals. This is
because, unlike most derivations of the form of the wave
functions for periodic potentials, James does not rely on
the Bloch;Floquet theorem, which was derived for the case
of an infinitely extended perilodie potential. The manner

in which the wave functions are constructed leaves no doubt

T
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as to the form of the wave functions in all regions of
energy .

We shall, in summarizing and extending this work,
make the necessary modifications for the finite crystal.
Since we are modifying James' results, we shall give an
explanation of the various steps of James' derivation
which must be changed, and refer the reader to the article
when the analysis for the infinite crystal can be directly
carried over to the finite crystal. The results which
follow are valid for a general one-dimensional crystal, con-
taining a finite number of atoms each of which is repre-
sented by a potential well whose shape is symmetrical about
the center of the atom but is otherwise arbitrary. The
specification of a potential which 1s symmetrical about the
center of the atom is for mathematical convenience rather
than a necessity since the results which follow may be
altered to include potentials which can not be so defined.7

We consider the time independent Schrodinger equation
for a particle of mass m with energy E in a periodic poten-

tial v(x),

2 _ |
- .%t‘r—: g_xzq](X) + Wx)‘\(/(X) = qu()(), (1.1)

where V(x) i1s periodic with period a, and is defined only



for the range 0<x <Na by

_ = ...  N-1
Vx)y=V(x+na) , {’é:x;i’a‘ ) N4, (1.2)

In the region where x>Na and x<0, we shall, for the moment,
leave the potential unspecified. The range of x will be
sub-divided into perilods or cells of length a, such that in
the n-th cell

nasx<smda ,N=o,14,...,N-1. (1.3)

We choose the origin of our coordinate system so that the
potential in each cell 1s symmetrical about the center of
the cell.

We now fix our attention on the zeroth cell 0€x<a,
and on a particular E. Since Schrodinger's equaéion is of
second order, it will have two linearly independent solu-
tions. For the potential as defined above, the solufions
considered are two real functions which we shall call g(E;x)
and u(E;x). The specification of g(E;x) and u(E;x) is com-
pleted by requiring them to te symmetric and antisymmetric,
respectively, about the center of the cell. That 1is,



10

9o (F) F(E;0) = (&), (1.%a)

"

(E) = gUEs0) = -31F; @), (1.40)
Ue(BE) = UCE;0) = =UCE;Q), (1.4c)

WIHE) = Ui(Eso) = W(E; . (1.4d)

For convenlence, we shall normalize these functions so that
ge5;%)=1 , §'(E;%) =0,
WCE; %) =0 >, W(E;%2)= 1.

Since solutions to Schrodinger's equation have a constant

(1.5)

Wronskian, we then have, for any x,

WIED, WEX}f = 1, (1.6)
= gUENUYEX)- JEXULEX).

It should be recalled that a necessary condition for the

linear independence of a set of solutions 1is that their

Wronskian be non-zerc. This fact will be used later.
These functlons need only be defined for the range

O0<x<a. Since the potential has the same form in every
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cell, g(E;x-na) and u(E;x-na) will be the independent solu-
tions in the nth cell. Within each cell, an arbitrary solu-
tion TPEL 'of the wave equation can be expressed as an
appropriate linear combination of the corresponding cell

solutions:

T(¥) = ol G Py UL(E; -0) (1.7)

[masx<(ntha,

{’h-: 0)1)2) c--),/’.i.
These cell wave functions and their derivatives could now
be matched at the boundaries of each cell to form a con-
tinuous wave function for the entire crystal. However, the
coefficlients of our independent solutions depend on the cell
index and vary from cell to cell in a complicated manner,
making interpretation of the form of the wave function 4if-
ficult. This difficulty of interpretaticn has been elimin-
ated by James, who defines a new set of linearly independent
cell solutions. Each of these new solutions is itself a
linear combination of g(E;x) and u(E;x), the combination in
each case being such that the new solutions are linearly
independent. He defines these so-called self-matching solu-
tions 8o that the dependence on the cell index is incorpor-
ated in each.independent sclutiocn in such a way as to make

each independent solution in the n-th cell connect smoothly

on to the same independent solution in the next cell. With
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the ald of the following definitions

P= PE= (919000 U Ls)> (1.8a)

8

o =kE)= F (Uo,/llo)P%) (1.8b)

iifi

)(i(E)'X) = 1 +FL)(9(E)Z)— -——E}) ’J:) (1.84)

James 1s able to write the independent solutions as

Y (1.8¢)

na<x<mt/)a,
tPim: A _(E;x—m) {h 04, +ory NL. (1.9)

The significance of Cf | i is made clear by the

relations

JQ(E :0) f;t,(E;a
oi-fi(t‘,a) = Z;Z-E—,’TZ)) p) (1.10)
- Jr(5;@)
£ FHCE; 0

(1.11)

4
It should be noted that the quantity = ( Z&{/ Uop) ‘FI z
may be thought of as an effective wave number since it re-

duces in the free electron limit to the wave number k =

[FREJRE.
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The general solution to Schrodinger's equation will be a
linear combination of these two linearly independent solu-

tions,
Yoo = Ceroo + C- oo, (1.12)

where now C 4 and C = are constants independent of
the cell index. The nature of ‘I’-}(x) and \P.[x)
will depend to a large degree on the value of fD(E). To
obtain an idea of how ‘Q(E) will vary, it is necesséry to
examine go(E), g'o(E), uo(ﬁ), u'o(E).

For very low values of E (E < Vhin)vthe solutions
g(x), u(x) are damped and we must have g;, u', > 0, and
8'ys Uy, < 0. As E increases, g(x) and u(x) become oscill-
atory, and then oscillate with deéreasing wavelength; it
follows that 8o g'o, U, u'o, oscillate between positive
and negative values, as E increases. According to James,
the order in which the quantities under consideration vanish
is

¢ 4 / /

90 ;(jo)uo )) {70) ao)) (yo)[(o)) @o ”o),"i})
The order (within a parenthesis) of the zeroes of 8, and uo'
or of go' and u, 1s not fixed, but varies with the character

of the potential considered. These Zeroes may in fact coin-

cide. The order in which these quantities go to zero has
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important consequences for the existence of surface states,
as we shall see in the next section.

It follows from the above considerations that fa
varies from — GO to + OO » depending on the values
of‘go, go', Uy uo'. A typical plot of f’ versue E is
shown in Figure 1.1. Notice that the form which fo takes
allows a natural separation of the graph into three regions,
depending on whether "< 0, 0 <f< 1, or F) 1. It should
be noted that this graph depends only upon the values of
84> go', Uy, uo'; that is, the graph depends only upon the
potential in one cell, and does not depend upon the number
of cells or the type of termination at either end of the
crystal. As we shall see below, this plot determines what
we shall call the band structure of the cell. The term
band structure, as used here, refersto the structure of
this plot of f? versus E for a single cell solution. The
fact that several identical cells are joined together means
that the band structure 1s constant across the identical
cells. Thus, instead of assocliating a band structure with
a periodic potential, we can in fact associate a band struc-
ture with one cell. The case of a periodic potential can
then be treated as a special case of combining the individ-
ual cell band structures.

We now investigate the dependence of the 'l)’S on

in the various regions of interest. For each case, the
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range of x and the value of n will be specified by
7a<X$ (MR, h=0,1,2, «--, N-1.
Case 1. P = f_"_ o0,
In this case, r, and r_ are equal to -1, o+=o_==0
if u,'=0, and 0, = o_ = +(p if g = O. Because of the nor-
malization, it is necessary to construct two new independent

solutions, which remain finite:

(l,'(x)z <¢+(X)‘{¢-Q)) ) (llz(x): (4’-}“&%}"—[‘0 . (1.1%)

Letting uo' go to zero in these combinations, we obtain in

the limit
4’,(x) = I E%‘::Ml ) (1.152)
b0 = (’1)7'[(27#/) jaﬂ(l—ﬁﬂ)"ﬂoy/x-m)]. (1.150)
For gg 0, we find,
oo = cor|armndgonay-giuang), o.ase

4'1()‘) = ) g(;—na) . (1.16Db)
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In both cases, one of the solutions repeats itself exactly
in each cell, except for a sign change, and the other solu-
tion increases linearly in amplitude as x increases.
Case 2. ‘D< 0.
In this case, loi is imaginary and fi s d‘t

are complex. We may define
4 ° i
pr=tilpl* (1.17)

Let us for the moment use the positive sign but keep in
mind that the negative sign 1s also acceptable. Then

1 0 4
_[d+lpE =<1 —Zlpi~ (1.18)
= ‘) » - 1+£1f1£)'

Since ﬁ*: r- ., Y‘_*= i} and n}r.“-'- 1 , we
may define a constant k by the relations,

_ cha
= €

e-z'IéQ (1.19)

G - =

J

Then, characterizing our wave functions by k, we have

‘l’-rk(X) = ciémjg(g)-x_mb (1.20a)



18

q'-k(X) =C i:éla,]{[ £;X-Na). (1.20b)

We may define two new functions by
_ik(x-nn)
Pax)= €O e a0y, 0

Paex) = Cié{x‘m)jf[f';x-n@. (1.210)

It may easlily be verified that

Pk (x#2)= EA(X) ) Paldz)= Paly). (1.22)

Therefore, we may rewrite our independent solutions as

Sl'-bé[)() = Ci'éxﬂi x), (1.23a)

ll’—ﬁ(X) = C-iléz Prcx), (1.23b)

where P+k(x) s P_k(x) are periodiec functions with period a.
Now we see ﬁhat if the sign of Io'i is chosen negat:j.ve,~
one need only change ll'-l-lt to l".k and 1’- k

to ll’4k « These solutions are of the familliar Bloch
form and do not change in magnitude from cell to cell. They

may, however, change by a complex phase factor.



19
Case 3. F= 0,

In this case, r, = r_=1, © =o_=01fg'o=0,

+ +

and o, = 0_ = @ 1if u, = O. Constructing new solutions

+
in the same way as for Case 1, we have for g'o = O:

lh()() = (X:M) ) (1.24a)

4’:,()() = you(X—M) —[.Zﬂf/)l(,f()(-ﬂ-). (1.24b)

Similarly, for u_ = O, we obtain:

o

by = Uogx-12)-Ga))g! uix-nz), (1.25)

#’z(X)= Z‘%-nz—) R (1.25b)

These solutions behave in the same way as do those for Case
1 except that these solutions do not have a sign change in
going from cell to cell. |
case 4. o<p< 4.
In this case, p%- I+, _7[-_}- R lp_t are

all real. Since O< I < 4 , 1< hBh< +® and

Y + Y‘~ = 4, we may define a positive constant
K by the relations

G =C )y r=¢ . (1.26)
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Then,

kna
4‘+k(X) =C J{(E,‘X-—ﬂa) ) (1.27a)
S‘Lk(x) = C-km]{(b‘; X—=21a) - (1.27b)

In the same way as for < 0, we define periodic functions

P+K(x) and P_R(x? by

Py = € KO (Fix-na), .z

Prtx) = ka(x_m)f(b’jx-w)) (1.28b)
where Tk (X1@) = Ptx(Xx) as may be verified.
Then our two independent functions are

‘I’-fK(X): Ckx H/((X) 5 (1.292)

‘I'.K(x) = KX Py (x) . (1.29b)

\kfk_ increases exponentially in magnitude with increasing
X, while -k decreases exponentially.
It should be noted that the case = 1 never occurs
since this would imply that yol(yo = llo, [lUo or
,7" ul — ?o/ WU, =0, which would mean that g(x)
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and u(x) are not linearly independent.
Case 5. P>i.
In this case =1 < r_< 0, =® < r <-1, and )c 4’+,
F i are all real. In view of the ranges of r, and r_

and the relation r,_ r_ =1, 1t is convenlent to define a

constant K by

+ —-Ka
n=-cm )y Yr-=-€ . (1.30)

Then
""fk 0o = (-1)"6”’(“]{(5; X-ra) ) (1.30a)

“'—k x) = -D*e m][ (CE; X—-nrG).  (1.300)
Defining new functions
GuX) = éi)"c’k("n )J,{(g; X-7a),  (1.31a)
G—K[X)‘—‘ 1) C*k(x m.)/[é';)’—M), (1.31b)
it 1s easily seen that
GaxOtm) = —G(x) Gaxlt22)= G+ (X)) (1.32)

so that the G_ K(x) are periodic functions with period 2a.
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We then have as our independent solutions

KX
4’.,.‘()() = C G-I'k (x) ) (1.33a)

q»'_k(X) = C—kx G’-K [X) . (1.3%b)

The magnitudes of 'll-ﬂ( and ‘b—[{ behave as in Case 4.
For purposes of clarity in later sections, we shall
refer to energy regions in which the wave function is of

the form z'ki .
lP(X) = Cike Puto+ C4 C‘i}éﬁéﬂ (1.34a)

as pass bands (P.B.) and energy regions in which the wave

function i1s of the fom

'hx)= Cike€E kxﬁk(x) + C.k-é/aﬁk()(), (1.34p)
4)00‘-‘ C+x6kafk[X) 1 C_KEkXG.;kOV) (1.3%¢)

as attenuation bands (A.B.).



SECTION II

TERMINATION OF THE PERIODIC POTENTIAL - DETERMINATION OF THE
CONDITIONS FOR BAND AND SURFACE STATES

We shall now consider various boundary conditions
which may be imposed at elther end of the periodie potential.
The type of boundary condition we wish to impose will, of
course, depend upon the specific physical phenomena we are
trying to represent. For example, near the surface the
atoms do not have symmetrical forces acting on them as in
the bulk. This results in a deviation from perfect period-
icity, which may take several different forms. One of these
deviations might be an increase in a basic lattice trans-
lation, the closer to the surface the atom is situated.
Another deviation might be total reconstruction of the sev-
eral layers of atoms near the surface into a different type
of structure from the bulk. Several other types of devia-
tions might occur, and in general we have to consider the
specific type of bonding and the lowest energy state of the
system to decide which type of deviation will occur. We
might also consider the dirty-surface case which arises
when the unsaturated forces or dangling bonds of the sur-

face atoms tend to attréct foreign atoms which may be

23
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floating around outside the crystal. This usually results
in 4 or 5 layers of foreign atoms being deposited on the
surface before the bonds are saturated and requires consid-
eration of interfaces between crystals with different per-
iodic potentials.

We shall start with the simplest boundary conditions
possible and try to understand most of the phenomena which
occur for this case. We shall also outline a procedure for
the computation of more complicated terminations. This
method 1s straightforward enough so that further calcula-
tions using it could be made without any major difficulties.

The simplest way in which to terminate the periodic
potential is by a step function at either end. (Ineident-
ally, the relative smallness of the surface dipole contri-
bution to the work function bears witness that this type of
termination may not be too seriously in error in many
casesg.) For the present, conslider the termination to be
made elther at a potential maximum or at a potential mini-
mum (see Figure 3.1). The first type of termination is

10

commonly referred to as Shockley-type whereas the second

type of termination 1s referred to as Tamm-typell. These

classifications are named for the authors who first showed
that these type of potential terminations could have sur-

face energy states assoclated with them. The Shockley-

type potential termination is generally applied to covalent
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crystals where the surface perturbations are small whereas
the Tamm-type termination is thought to be valid in cases
where the surface perturbations are large. The Shockley
termination is usually thought to have more physical valid-
ity; it corresponds to terminating the crystal between two
atoms. Both types of terminations allow us to divide the
periodic potential into cells in which the potential is
symmetric about the center of each cell. The Shockley-type
termination ylelds a cell with a potential minimum at the
center whereas the Tamm-type has a potential maximum there,

For either case, we go about solving for the energy
states by matching the wave functions in all regions at
thelr respective boundaries to form a smoothly varying func-
tion of position. This matching, of course, will only be
possible for particular values of the energy, and it is our
purpose to find those energles which do allow a continuous
wave function. These energies will be our eigenvalues. The
band structure (i1.e. the regions of energy in which the wave
functiqns are either running waves of constant amplitude or
exponentially increasing and decreasing waves) is determined
completely by the periodic potential. The exact position of
the eigenstate in this band structure will be determined by
energy conditions which are derived below. |

For energies less than or equal to the lesser of Vi

and V2, we set up the matching conditions as follows: For
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x € 0, the solution of the Schrodinger equation yields

, KX .
‘l’(x)=AeK' , K, =V‘§%‘(W“f), (2.1)

where we have used the condition that ]" go to zero at -QO .
For O < x £ Na, we have five forms of the wave function
which the solution of Schrodinger's equation takes, depend-
ing upon the region of energy. In all cases, the general
solution will be a linear combination of the independent so-
lutions with constant coefficients which must be determined
by the matching conditions. Let us for the present discuss
in detall only the case of the running waves and then list
the other cases, since the procedure is the same in all

cases. Then for Case 2, IO < 0,

1."(X) = Cik 44/e(x) + C-k d'.k(x), (2.2a)
‘Ptk(X) = Ct‘%;?tk(X)- (2.2b)

For x = Na, we have

— ko (—Ne) o
‘I’(X)=:BC alx ) K1=V‘?E(V1‘t_).(2-3)

Continulty of the wave function and its derivative, or

alternately continulty of the logarithmic derivative at
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x = 0, requires

K = Cf,é(’"/z'I‘C-.éo-k
Cik + C-4

— Cih— C_4
= I » (2.%)
"( Cok + C-p

where we have used
b
e

U], =

=0 d (2.5)

Similarly, at x = Na, we have

PN, —ikNa
Ch€ — C-4E )) (2.6)

-K;, = 0 Coh e‘*"-;('_é 7.2

where again we have used the properties of the wave func-

li] = @me £, b = e

x=Ma (2.7)

‘kklgz Cih/a— > q’-k] Ay 6‘1'44&

Dividing Eq. (2.4) by Eq. (2.6), multiplying out the quan-

tion

titles and grouping terms, we obtain the quadratic equation
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in C+k and Ck:

Cit 26M%sz/6) - 2.1'(/6‘/6)5/71,4:5& Cul 4 (2:8)
—Cie )= ©.

Dividing through by (KtKz)e ikMa and solving for C

terms of C_, , we have

. “" A\ 1-( sfk#a](a)
Cut [1,(%1;5”2 ‘flé\/akﬂa)t' 9

4 1N

1< k?— Kl ) .
Now -1% ( > f ; <$l and K,, K, are always positive so
we may define a phase angle # by the relation

sing = 6—72 f’)sm,éﬁ/a (2.10)

Then, Eq. (2.4) becomes

[+C08¢+ isingle MC_A (2.10a)

or

hNatif

C-fk =te C_A N (2.10b)
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We may now substitute back into the Eq. (2.%4) or (2.6) to
obtain the conditions for matching. Substitution into (2.%4)
yields the two conditions

=t
K, = @t(_é%té) % (2.11b)

If we had used Eq. (2.6), we would have obtained

kz,:' "Z.a;fan (M%&) N (2.122a)
K2= I.GFCOZ‘('AJ—%:Q) . (2.12p)

Both sets of equations give equlivalent energlies when the
equality is satisfied. We shall, fqr' convenience, use the
first set of conditions. Bcth sets reduce to the same set
when Vl - V2 since the phase 'a.ngle goes to zero.

For the other four regions; the matching conditions are

listed below.
/
Case 1: P = tow , Golko'= 0.

(KLz.&Z) = N{'%) Go=0. (2.13)
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’
2 %,L-f_’%; =J_V'L(%) >, U'=0.

B2 = v () |, z.-o.

/
< (kn‘kz, = qﬁl—‘[%) > 90/=O'

Caselt: oO<p< 4,

k = — ai Lanh(K2-2),
K = —az coth (M2 2),

K = -4 by C1572) >
_% (,i
szné b= (177-,;&,(5, \sénk kha.

where

(2.1%)

(2.15)

(2.16)

(2 ol?&)

(2.171p)

(2.18a)
(2.18v)

(2.18¢)
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Case 5: ID >4 .

K, = —ar tanh (513'_-—55)' (2.192)

Ky = — a7 coth (K4412), (2.190)
k= - é/oj (‘%;.%7,‘), (2.20)

and @ , sinh @ are defined as in Case 4.

where

These matching conditions are transcendental equations and
cannot be solved explicitly for the energy of matching.

The correct energy eigenvalues can be found by a graphical
method. The left-hand side of a particular matching condi-
tion 1s plotted as a function of energy on the same graph
as the right-hand side of the matching condition. The
points at which the curves of the left and right hand sides
cross yleld satisfaction of the boundary conditions, and
consequently give the energy eigenvalues. The regions in
which the curves cross will determine the character of the
wave functions. The boundaries of these regions, as noted
in Section I, are determined by the zeros of g'o (E),

g, (E), u'y (E), u, (E). It is important to note in what
order these functions go to zero as the energy increases be-

cause this order determines whether conditions are favorable
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or not for surface states to occur. Consequently, it is in-
structive to follow the matching conditions as a function of
energy fqr a particular sequence in which g'o, g, u'!' , u
go to zero to obtain insight into what conditions determine
whether a surface state might occur.

For simplicity, we consider the case where V1 = V2 80
that K, =K, and $= & =o.

Let us first consider the case of the xerces oeeurring

in the following order with increasing energy.

9o’y 9o ) U, Uo,yo’,yo,uajuo, ceo (2.21)

[}
A qualitative graph of --(uvﬁlo) ,fl % is given for this
case in Figure 2.1. Notice that a discontinuity in the

slope occurs at g'o = 0,

——
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Figure 2.1, Effective wave number versus energy - Case 1.
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The above characteristics are those for the reduced zone
scheme where we have limited k to the range 0 € k <T/a.
If we had taken the sign on lf’li to be positive for the
odd-numbered bands and negative for the even-numbered bands,
we would have obtalned completely positive values for the
graph above with discontinuities in the slope occurring at
u'o = 0 also. In such a case, an energy versus k plot would
be in the extended zone schemg.

The left-hand side of each of the matching conditions
given by Eqs. 2.11-2.20 is K, =\ @n/ZH(V,— £) , and

when plotted as a function of energy is Jjust half of a

parabola with its axis along the E coordinate. It 1s posi-
tive for all values of energy. The right-hand side of the
matching conditions will have alternating regions in which
we must use the appropriate formulae.

The first region, corresponding to the energy at the
bottom of the potential well, is an attenuation band
0 <pP< 1. In this region, —(Uil,)| Ii 1s positive, as

are Llanh(KNa./z ) and Colh (KNa/2 ), so that
~CEM lanh (B8)<0, (e
- (‘” % Pi) "/07'% (Kzﬁ.'/@) <O0. (2.22b)
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As the energy increases to the zone boundary where go' = 0,

/ 4
K approaches zero, as does —(uo/ﬂo)lpl Z , Therefore, the

product -%Fliéﬁff%) goes to zero whi;.e the product -%{fli

e C (Kda%) approaches the limit -(-—%)/N’ < 0. This last
1imit 18 a result of the fact that —{&/4,) | P'Ji goes to
zero at the same rate as cdf/.(/—(—/(,f‘, ) goes to infinity
80 thé.t a finite limit is achieved at go' = 0., Both func-
tions are less than zero for the whole region so that no
crossing with the K1 curve 1is Iiaoss.Lible. At go' = 0, we

have E- 0, R = 0 so that -%—:/ IZZLa/z(.ééa;) 18 zero and
—(—%If/taof( kﬂ,{a) has the value —-(—ﬂ!{/ﬂo)/f/; provid-

ing a smooth connection into the next region of a pass band.

From the go' = 0 boundary to the go = O boundary, 'a varies
from O to - 00, and consequently, kR varies from O to T/a.
— (U lto) lf/i is positive in this region.—cof(% 18 Just
tall(-'é-éla' —%) 8o that both functions have the same form,
one being shifted by /2. Both functions have periods of
T within which they vary from - 00 to + 00. Now, as Kk
varies from O to TW/a, tan(/e//a/z) goes through N/2
periods so that it passes through any positive number N/2
times if N 1s even and (N+1)/2 times if N 1s odd. -cot(é‘z/@)
also goes through N/2 periods and goes through any positive
number N/2 times if N is even and (N-1)/2 times if N is
odd. Multiplication of tdlz(kl/a/z) and -COZL(AI/a/z)

by -(Ilo’/llo)rl‘i' changes the slope of these functions,
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but 1s 1s true that the total number of intersections with Kl
will be N, and consequently there will be N eigenvalues. As
the boundary g, = O is approached, —%’:Ifl%{% goes to the
value -(-—%)}J < 0 if N 1s even and + 00 if N is odd. Like-
wise, —(—%P/*)Cof-ﬁ%‘" goes to + 00 if N 1is even and -(-Irlé)ﬁf
€ O if N is odd. At g, = 0, we connect on fo ajx at'cenuz:iz:
band where P > 1. On the bounda’ry,i -—(——%l Iz)l‘all.é( 4&)
is equal to ’(“”zz‘i)"/ and - (—%“alfl‘)&ﬁ( %)1s equal to

+ 00. As the energy increases in going to the next bound-
ary u ' = 0, -("%'{;Iflé)&lj(k—;‘;/g)increases to zero and ,
_(-%lfl'aéod(%imreases from - 00 to the value %i( 0.
The two functions are both negative for the whole region so
that no crossings are possible. At uo' = 0, (0= - 00, k =
Tr/a, and —(”olﬂb)lff": is zero, going negative in the next
region of a pass band. Since k varies from W/a to O with
increasing energy, the behavior ofhl#;‘f) and -—Cd‘(kg)is the
reverse of that found in the first band. However, since
-'_1211 I’J: 18 negative for this region, the products (“%[fl{)‘
Uo /
ota.n(éé? ) and —{—%} ,fli)mé—i_ﬁl'g) yield the same form for the
functions s in the first band. At u' = O, we have (—-%,/f/:‘:).

tan(AN5 ) _ o 1ty 18 even sna \#ﬁ;; < 0 1f N 18 odd
while -é%/f/i)&ﬂ&%a)is equal to }'/A/y, if N is even

and zero if N is odd. In going from uo' =0 to u, = 0, we

agaln have a total of N crossings of the Kl curve. At u_ =

o, —%lff:’fél(éé{g) goes to /\I‘gf< 0 and ‘(c%!fli)calé‘;?)
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goes to + 00. These functions connect on to the forbidden
band boundary conditions (for O < < 1) at u, = 0:
8 ) fank ()= NG e _(-%lfﬁ)a&(m‘)
= + 00. Continuing across this region to the boundary g, U
-0, —(- Z”QI I‘WA&) increases to zero while — (- #lf’l‘)‘
mﬂt(m) goes to — ( - ”o/[l,)/ﬂ<0 Again both functions are
entirely negative in this region so that no crossings of Kl
are possible. At go' = 0, we are again back to the same
type of band as considered'before. As may be seen by the
above arguements, for the sequence of zeros of the functions
go', 842 uo' and u, considered, no surface states are poss-
ible.
We now consider the case when the order in which go',

842 uo', u, go to zero deviates from the order given atove.

For example, suppose the¢ order 1is given by

9o, Ge ), Us’, Uo > 90’) (%,)yo))%)$$-°' (2.23)

In this case, the order of the functions in parenthesis,

u_ ' and g , 1s reversed. A qualitative graph of —(a°/11,,)lf/"‘

1s given below in Figure 2.2. (Comparison of this graph
with that of the previously considered seduence shows that
the main result of switching the order of 8o’ u ' 18 to
cause -(”O/Ho)lf' to be zero on the upper band edge at u !
= O, at which point it goes negative in the regionf’) 1.
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Figure 2.2. Effective wave number versus energy - Case 2.

At g = O, -(“7'/#.)!,0!* is equal to - 00 at which point it
increases to some negative value before going to negative
infinity again at the upper band edge u, = O. The essential
feature to notice is that the form of —(%A/v)lf/" is
altered in the two band regions adjacent to the attenuation
region in which it goes negative. In the lower band, be-
tween go' = 0 and uo' = 0, -(%lf#)hn(é%) will go
through N/2 periods if N is even or odd achieving the value
oantu ' =0 1if N is even and W(%))OifNis odd.
Notice that the ratio 9 /‘ﬁ, is greater than zero in con-
trast to the previous situation. For N odd, the magnitude
of the product WL(%) will determine whether the crossing
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of Kl occurs in a pass-band or in an attenuation b’.nd.
For N small and the potential weak, the value ‘,{,’(%)> Ky»
and the crossing will occur in a pass band region. For
N large, the ratio 9‘5/, which depends only on the per-
iodie potential, remains the same but is reduced by a
large number N so that 75’(?)( Kl, and no croasing occurs
in the pass-band region. The function —(- If#)é’dl‘ ( ,é/Va,)
behaves in a similar way, attaining the value of #(97]{,)
> 0i1if N is even and O if N is odd. Thus the number of
band states which occur will be either N it H(9%,)> K,
or N-1 if -ﬁ(%< Ky. At u ' =0,-(- n;lf"‘)ﬁh/t(k””’)
= 0and —( #l/)l )dobf(@ (%/ ). In going from
= 0tog, =0, o —a"/ # lfq;[ ..s)inereases to the
value N(lb/llo) > 0 and - /%l /")&)ﬂ(k// goes to + 00.

Again, if N 1s small such that A/ {" . )< Ky» then no cross-
ings will ocour, but if N is large such that AN(X/L)> K, »
we obtain crossing in the attenuation band. It should be
pointed out that an intermediate ease with % (90{7,) > Ky
and /V( uo/lb) > K, may occur, in which case there is only
one crossing in the forbidden band. For N large, such
that #(jo"/y">< K, and N(.%‘é)) K,» We obtain two cross-
ing in the forbidden band. By analogy with the band con-
sidered previously, the allowed band bordering this at-
tennation band from above will have N allowed states 1if

N(%)( K, and N-1 states if /\/(&f >K,. We may

1.
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summarize the results of the above reasoning by the fol-

lowing table. (The function written above each column is
'to indicate at what energy the econditions are to be eval-
uated.)

Table 2.1. Existence conditions for Surface States - Case 1.
U=0 Jo= 0 :

}IL'(%:’)>kl N(%,)<kl No surface states

One surface state

/ ’
./lv.(%)</<‘ N(%%)(/(' coming from lower band

4 / On £ tat
ﬁ(%)%ﬁ N(%PK: coming from upper band

4 /
’b (ﬁ) <_k[ N ( % )> kl ?rxrg;;:rszggegower bands

We see that for large N, one of the pass-band states from
the two adjacent pass-bands moves into the attenuation
band to form two surface states.

The situation is similar when the zeroes of u,, g,'

are interchanged; that is, for
/ / ( / u
Gos Jorlo, (o, Us), ~ . (2.2%)

In this case we may represent the conditions for surface

state occurrence as
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Table 2.2. Existence conditions for Surface States - Case 2.

2i=0  TUe=0
.Al/.(g.é)>k, N@é)(kl No surface states

/ One surface state
ﬁ ( %) <k N(&){ k’ from lower band

One surface state

.,li_(%:) >k' ( )>/(' from upper band

2 surface states
( )< K|/ (‘g&))kl from upper and lower bands

Thus, we see that a necessary condition for the
posaible'occurrence of surface states i1s that the band
edges cross. When this condition 1s fylfilled, the actual
occurrence depends upon the number of atoms considered
and on the strength of the potential.

The effect of unequal terminations (i.:. v, ¥ Vé)
at either end of the crystal 1s to spread the energy
levels. However, this effect is not large since the
difference between V; and V, is manifested in K,, K2 which
vary only slowly with changes in V1 and Vé.
For a periodic potential terminated at an arbitrary
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point in the end cell by a step function, the formalism
which we are using is not the most convenient. However,
the match;ng calculations may be done in the same manner
a8 above, matching the wave function and its derivative
at the termination point to obtain a contiruous wave
function. This procedure is carried out in Section IV

for a Kronig-Penney12

type periodic potential and the
results are examined. It is found that this type of
termination gives rise to many other surface states be-
sldes the ones considered above.

For arbitrary terminations of the crystal potential,
it 1s necessary to use iterative techniques to integrate
the Schrodinger equation. For the region of the crystal
in which the crystal is perfectly periodic, we know the
wave function and its derivative at all points. At the
point where the potential starts to deviate from perfect
periodicity, we may iterate through the arbitrarily vary-
ing potential to a point outside the crystal where the
potential is constant. In this regiqn, the wave function

8—K’XI s 80 that

must have the exporential decay form,
we may match this to form a continuous wave function in
all regions. This method may also be used to connect

two different typgs of periodic pctentials by a region
of noh-periodic potential. In this way, a wide variety

of problems may by dealt with, with few changes in the
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calculational apparatus necessary to change from consider-
ation of one phencmenon to another. .

Another application which can be made of this method
is to the calculation of the reflection and transmission
coefficient through several identical barriers. This
topic will be discussed in Sections V and VI.



SECTION III

TERMINATION OF A KRONIG-FENNEY POTENTIAL

In order to obtalin a better understanding of the
principles discussed in Section II, we next consider
the Tamm- and Shockley-type terminations of a Kronig-
Penneyl3 type potential, as shown in Figure 3.1l. By
the Kronig-Penney type potential, we mean an array of
a finite number of rectangular well potentials. The
reason for choosing this type of potential is that it
leads to a Schrodinger equation which can be solved
easily, and the energy band structure associated with
it i1s similar in many respects to that of a real crystal.
Two important features which serve to illustrate this
point are the existence of points of contact between
different allowed bands (a specilal type of band oross-
ing) and the behavior of the band structure as the energy
approaches infinity; namely, the attenuation band gaps
go to zero. Maue,l4 and later Statz,15 and Koutecky,16
have derived conditions for the erossing of bands. In
these papers it is shown that crossing oeccurs for poten-
tials which require large numbers of Fourier components

to represent them, with some of the components being
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negative. Since a rectangular well potential abounds in

harmonics, as does a real potential, we expect the Kronig-
Penny model to be a useful model of a real potential.
A. SHOCKLEY-TYFE TERMINATION
We begin by considering the Shockley-type termination.
Dividing the periodic potential into cells yield a cell
with a potential minimum at the center.

L_F_ﬁ -b | +b —
| V;(a. ¢ — |
O! | | ll
:-Va/z | |
[ + | '
0 a/2 a

In the region, a/2-b< x< a/2+b, the Schrodinger equation

has two linearly independent solutions,

) = Cosk(x-%) > (3.18)
b ) k=\Z( F+Vs2);
uU)= A% k(z“ . (3.1b)
Note that

96%2)=1 , 91%)= o, (3.2a)
u%)=o > U'(%)=j, (3.2b)

If we now connect these solutions individually to the
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solutions of Schrodinger's equation in the region
o<x<a/2-b, we obtain for E<Vo/2, the values of

g(x), g'(x), u(x), u'(x) on the left cell boundary:

90 = €05 bbcsshk(%-h- é-sbz,éé siné/((Z-A),(s.ua)

= —keoshkbsivhhl%-htk sirkh oskhti-b, (5.4v)
Wo= 4 Coskb sinhk %-b)- F 5:’7215&5/@%4(3 Je)

U= coskb Coshh(%-bt ‘f-sizdsa/&%ﬂ(a Ha)
K= \B(tr-£).

For E = V°/2, and E>V°/2, we must connect in a similar

way to obtain expressions for go', 8,0 4,'s u . To

o o
determine the pass bands and attenuation bands, it is
necessary to make a plot of F versus E, where F has

been defined in Section I as

F = (ga,/go)/(ﬂol/ﬂo)- (3.5)

Such a plot was described in Section I. The exact posi-
tions of the band edges (i.e. energies at which one of

the quantities 8,'s Bys U ', u equals zero) will depend

o
on a, b, Vo. To obtaln a qualitative idea of what effects
these parameters will have on the band structures, we may

make energy versus potential depth plots for several values
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of the well width and the lattice constant a. Such plots
are shown in Figures 3.2, 3.3, and 3.4. PFigure 3.2 has
a well width of 0.75a, while Figure 3.3 has a width of
0.5a, and Figure 3.4 has a width of 0.25a. These graphs
were obtained by making a /9 versus E plot fdr a given
'su,

o o
go to zero (i1.e. the band structure). The parameter v,

a, b, vb to obtain the points where go'; 8o U

was then changed incrementally and another fJ versus E
plot was made. In this way, the dependence of the band
structure on Vb was obtained for a given a, b. Allenl7
has obtained similar but more detailed graphs, varying
the constant b for 12 values, for the Kronig-Penney type
potential, and the reader should refer to his article for
more detail.

Note: In all graphs contained in this thesis,

We shall use units in which 2%m= 1. To this

end we choose our unit of length to be -

strom and our unit of energy to be (1.97)¢ =

3.88 electron volts. This energy unit will

be denoted by E.U. hereafter.
For the above mentioned figures, note that for large values
of the potential Vb, the pass-band regions are very narrow,
corresponding to the tight binding of electrons to the
constituent wells or atoms. For large energies E, the
effect of the potential is not "felt" as much, allowing
the pass-band to widen. As we decrease the strength of
the potential, the pass-bands widen allowing some of the

band edges or boundaries to cross or just make contact.
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Figure 3.2 Band structure as a function of well
depth for a Kronig-Penney potential
with 2b= 0.75a.
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-2 F
U'o=0
A 5.40
-4 } B = 1.35
go=0
g'o=0 "
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0 2 4 6 8 10 12 14
< Vo

Figure 3.3

Band structure as a function of well

depth for a Kronig-Penney potential

with 2b=

0.50a.
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Figure 3.4 Band structure as a function of well depth
for a Kronig-Penney potential with 2b= 0.25a.
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This is best 1llustrated in Figure 3.3 in which the upper
band edge of the third pass-band edge crosses with the
lower band edge of the fourth pass-band, the upper band
edge of the fourth pass-band crosses with the lower band
edge of the fifth pass-band, and the upper band edge of
the fifth pass-band just touches the lower band edge of
the sixth pass-band. For the tight binding situation,

the band edges are determined by the sequence of zeroes,

.'9‘,’307 u"lluﬂjgol) gd,ug/)Zlo, cee. (3.6)

A8 we saw in Sectlion II, this sequence of zeroes does not
allow the emergence of surface states. As the potential
is decreased, the bands which cross have an attenuation
region between them, which is favorable for the appearance
of states. The points at which the bands cross can be
shéwn to occur only for E > V6/2.18' By consideration of

the equations for go', Bgs U ', u,, one can show that the

o
crossing points are given by

m’m?
féms =+ Dy,

om>o- (307)
77£[? 4%~ );

where n, m are integers. It should be noted thgt the

appearance of band crossing only for E > Vb/a is not
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peculiar to our model potential but can be proved to hold
for any arbitrary periodic one-dimensional potential.lg
(This does not hold for three dimensional crystals.)
Since the value of the vacuum level energy is of the order
of 20 eV for most real solids,2O ye see that to obtain
surface states Vb must be weak enough to allow band cross-
ings within this range, and consequently, surface states
of the Shockleytype would be expected to appear for nearly
free electrons. We note also in passing that the width
of the attenuation regions does not decrease monotonically
with increasing energy but varies in width due to the
crossings. However, on the average, the width will go to
zero as the energy goes to infinity. As Va goes to zero,
the attenuation band-widths go to zero ylelding a con-
tinuous pass-band region, or a free electron region.

To proceed, we consider specific values for a, b, Voo
As a reasonable approximation for a real crystal, we let
Vb have the magnitude of the‘fir;: Fourier component of
the 0.P.W. potential for silicon along the (111) direc-
tion and take V1 - Vé = Vooo, the average potential for
silicon. Along this direction, Si has a lattice constant
of spproximately 5.t A°. The well width will be taken
to be equal to the barrier width. For the present, we

shall 1limit ourselves to four cells. Thus
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Vi=Va= 25eV={(C.5FU., (3.8)
Vo=13.2eV= G4 EL., (3.8)

A= 5.4A° (3.8¢)
b= 1.35A° (3.84)

N=4 (3.8e)

A plot of f?veraus energy is given in Figure 3.5. Notice
that the lowest pass-band 1s very narrow, of the order

of .02 E.U. in width. The attenuation-band above this
pass-band i1s large, of the order of 1.75 E.U. or about
6.8 eV, which is much too large a gap, the experimentally
observed gap for Si being abtout 1.2 eV. However, one

of the difficulties associated with the choice of a po-
tential in the one-electron approximation is that the
Fermi energy is not unambiguously knovm.22 By inspec;
tion of the widths of the attenuation energy widths up
to the value of the vacuum, 6.5 E.U., we see that a
width which is of the same order of magnitude as 1.2 eV
would be that width occurring between 5 E.U. and 6 E.U..
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If the Fermi energy were assigned to this region, the

work function would be of the correct order of magnitude
as would the attenuation band width. However, this width
is still rather wide. This discrepency may be accounted
for by the fact that, while we are using an O0.P.W. po-
tential, we are not orthogonalizing our wave functions
to the core wave functions, so this potential is incor-
rect for our wave functions. Antoncik>> has shown that
this orthogonalization may be taken into account by sub-
tracting an effective potential from the 0.P.W. poten-
tial, the effective potential being calculated from the
core wave functions. The sum of the two potentials is
known as the pseudo-potential. The valence and conduo;
tion wave functions may then be calculated without an
orthogonalization procedure. For our purposes, we as-
sume that the 0.P.W. potential is reduced in magnitude
(1.e. v, is reduced). By inspection of Figure 3.3, we
see that if V_ 1s reduced to about 2.4 E.U., the atten-
uation width between 5 E.U. and 6 E.U. becomes about
1.2 eV which 18 approximately the energy gap observed.
Since this calculation is for illustrative pur-
poses only, we shall use the value of Vb = 3.4 E, U, in
the calculations which follow, being satisfied that we
are in the correct range.

Using the boundary conditions derived in Section
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II, (Eqs. 2.11-2.20) we plot the left hand side of these
equations on the same graph as the right hand side to
obtain Figure 3.6. The vertical lines indicate band
edges. The s80l1id curve is Just the left hand side of
the boundary conditions, K, = %(Vl - E). The dotted
curves are the two functions on the right hand side of
the boundary conditions. The crossing of the Kl curve
and the dotted curves determines the eigenvalues. This
procedure for finding eigenvalues is exactly analogous
to the method of finding eigenvalues for an electron
in a box with finite ends. Notice that in Figure 3.6,
the band edges are determined by the sequence of zeros

of go', 8y? uo', u, in the order,

\gclly" > llo/)Zb )go,) (uo/Jc.?’)) (.90/) Uo). (3.9)

From the considerations of Section II, we expect to

find surface states occurring between (u ' = O, g, = 0)
and between (go' =0, u, = 0). This is indeed the case.
A pass-band state from the third pass-band has moved in-
to the attenuation region. The number of cells is not
great enough or the pctential is not strong enough to
move the upper pass-band state down 1nto.the'attenuation-
band, so there is only one surface state. The same sit-

uation applies for the next higher attenuation region,
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except that now for the partial pass-band (which would

be pass-band 5 1f V Vé were large enough to include

’
the whole pass-band; one of the pass-band states has
moved down into the attenuation region. Note also the
effect of varying V1 or V2- Since the dotted curves

do not depend on V, or V, (1f vy = v2), we can vary

Kl -vg;;;_:—ijto see that increasing and decreasing V1
raises and lowers the crossing points and consequently
the energy eigenvalues. Since Kl depends on the square
root of Vi, we do not expect the energy crossing points
to change very much as Vl 1s varied except for energies
near the vacuum level.

An energy versus (k and K) plot in the reduced-
zone scheme is shown in Figure 3.7. The horizontal
lines indicate the band edges. The solid curves are
the E versus k plots in the pass bands whereas the dash:
ed curves are the E versus K plots in the attenuation
regions. To be entirely correct, we should have plot;
ted E versus K along fhe imaginary axis perpendicular
to the real values of k. This would then yield a band
structure with pass bands connected by imaginary loops
across the attenuation bands. These imaginary loops
are referred to by Héineau as "real lines", their exact

meaning coming from the analytie continuation of k in
E(k) into the complex plane with only real values for
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E considered. The X's represent the eigenvalues as deter-
mined from FPigure 3.6. Notice that in attenuation band
5, the value of K 1s very small so that our wave function
in this region is not attenuated very strongly going in-
to the interior of the crystal. In attenuation band 4,
the value of K is larger but is still not large enough
to attenuate the wave function strongly.

Figures 3.8 (a-e) are plots of the wave functions.
The ﬁass-band functions are labeled as ‘)"f where ol is
the pass-band index, and F is the index of kp in the
pass-band (e.g. d’.,, denotes pass-band 1, the lowest k
value labeled kl)' The surface wave functions are de-
noted by “"I,S}N 4/.¢,F where { } indicates a sur-
face wave function, ¥ indicates the attenuation-band,
the numbering starting above the first pa.ss-band, and
& indicates the label on Kg (§=1Lor2) . tThe
symbolic notation ~o l,’u, (3 is to indicate
which pass band function has moved into the attenuation
gap. Notice that the wave functions are Just modulated
box wave functions (i.e. modulated 30lutions to the
problem of an electron in a box). The surface wave
functions are hardly attenuated at all, as was to be
expected from the small attenuation constant K. In fact,
since the value of K is proportional to the band width,25
we do'not expect to obtain appreciable attenuation for
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less than 5 cells. To obtain a feeling for the way in
which the surface wave functions behave for larger crys-
tals, the surface states were calculated for attenuation
bands 3 and 4 with N = 20. In this case, N is large
enough to pull into the attenuation regions two pass-
band states from the upper and lower pass-bands. The
results are plotted in Figures 3.9 (a,b). Notice par-
ticularly the attenuation in Figure 3.9b where the K
constant is larger.

The location of the surface state energies in the
attenuation region is not the middle of the gap as was
found by 8hock1ey,26 (a result quoted by several other
authors). In fact, their location in the gap depends
on the potential considered, the height of the vacuum
level, and the number of cells. For the parameters con-
sidered in this example, we may observe the dependence
of the surface state elgenvalues on the value of N for
the two attenuatiorn bands in which surface states occur.
A plot of the surface state energy versus N is given in
Figures 3.10 (a,b). The points on these graphs are not
connected by a smooth line because the variation of the
energy eigenvalues for fractional values of N 1is quite
complicated, as will be shown in Section IV. It is
evident from these graphs, that the surface states do

not occur in the middle of the gaps, and that 75r N he-
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coming very large, the two states approach a common
asymtote. That is, they both approach the same energy.
The rate at which they approach each other is dependent
on the K constant; the more attenuated the wave function,
the faster the states will come together with increasing
N. It is clear from the above that this behavior may
be explained quite simply.

Since the surface cells are terminated symmetrically,
an electron which spends most of its time near the surface
(in a surface state) and does not interact with the other
surface state will have the same energy on either end of
the crystal, for very large crystals. In other words,
the electron on the right edge does not "feel" the electron
on the left edge because of the localization. As the
erystal is made smaller, the electrons begin to "see" one
another and their interaction splits the degeneracy in
the energy levels, in analogy to splitting cf the atomle
energy levels into bands when the atoms are brought to-
gether. For the surfaces very clcse together, the in-
teraction is great enough to push one state completely
out of the attenuation-band and change it into a pass-
band state.

B. TAMM-TYPE TERMINATION
For the Tamm-type termination, for comparison, we

shall use the same parameters a, b, Vb, VI, V.s N, as

2
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we used for the Shockley-type termination. The cell for

this case has a potential maximum at the center as shown

below.

e '
| Vo/z .:iL.L;ib_,

ob— |
R |
Vo2 |

| S I S
0 a/y a

Proceeding as before, we may write down the solutions

to Schrodinger's equation for a/2-b € x € a/2+b, E < va/a,

as
9(x)= coshk(x-%4), (3.10a)
‘ k =\Zip-£),
U = Smé(/((l-—%_)_ . (3.10p)

Connecting these solutions to the solutions in the region
0< x £ a/2-b yields the expressions on the left edge of
the cell of

o= Cashib cosh(%-h + f&'dés:’?lf/ﬁ’/),ﬂ 11a)
d=A cashkbsink(%-5)-k Sih/kl(’as:é(%-é))( 3.11b)
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Uo = - R Sithkbessk(S-D-F coshhbsinh®b) (3.11¢)

U = Cosh kbcas.é(fi-b- ]é’ Sﬂlkésll‘%-[)) (3.114)
k=\NF(c+V:/2)".

For E = V /2, E > V6/2, we connect to the appropriate

functions. With the parameters chosen earlier, a/2 is
equal to 2b, so that the functions go', 8y uo', u,s
for the Tamm-type termination may be related to the same
parameters for the Shockley-type termination. Thus we

see by inspection of the two sets of equations that

SHOCKLEY TAMM
97 - 9o’ (3.12)

-.79‘: ’ = Uo

= \90

Uo - Uo

This may be i1llustrated by reflecting Figure 3.3 across
the V_ = O vertical axis as shown in Figure 3.11. The
band edges are labeled to clearly indicate which function
determines the boundary. For small values of Vo, the

sequence of functions is given by

Goy(U 90y lo> P s GorUs, (95, Ue) (o, G).(313)
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By previous considerations, we expect to find surface

states between (uo' =0, g, = 0), (go' =0, u =0),

o
and (uo' =0, g, = 0). Note also that some crossing

and uncrossing of the band edges has occurred at V° =0
in going from a Shockley-type termination to a Tamm-type
termination. As V, increases, some of the bands again
cross to yileld a tight-binding situation. The main
difference between this Tamm-type termination and the
Shockley-type termination is that for the tight-binding
case we still have surface states in the Tamm case but

we have no surface states for the Shockley case. Actually,
as used by most authors (and in this paper so far), the
designation Tamm-type termination is a misnomer. This
will become more evident later. Suffice it to say that
Shockley states as well as Tamm states may occur for the
Tamm-type termination. We shall distinquish between the
two types of states by the fact that ShockleyQtype states
occur between pass-bands which have crossed once whereas
Tamm-type states occur between pass-bands which have
crossed twice. The Shockley-type states occur only for
weak potentials and ¢isappear as the potential becomes
stronger. The Tamm-type states occur only for strong
potentials. Another characteristic whicﬁ can be used

to distinguish the two types of states is the degree to
which they penetrate into the crystal, or in other words,
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thelr localization. The Shockley-type surface state has
& large attenuation length, being able tb penetrate rather
far into the crystal, as surface states go. The Tamm-
type surface state, on the other hand, is quite localized
and is appreciable only in the first cell near the sur-
face. Both types of states may occur at the same time
for weak potentials. This is because for low energies,
close to or below the maximum of the periodic potential,
the electron feels the effect of the potential quite
strongly and thus is essentially tightly bound. For
higher energies, the effect of the potential upon the
electron is much less, allowing the electron to behave
like an almost free electron. Thus when both types of
states occur, we expect to find the Tamm;type states
occurring at very low energies whereas we expéct the
Shockley;tyhe to occur near the vacuum level.

Proceeding as we did with the Shockley-fype termin-
ation, we apply the boundary conditions for the Tamm-type
termination to determine the eigenvalues. Figure 3.12
1llustrates the graphical procedure. This figure should
be compared with Figure 3.6 for the Shockley case. Al-
though it is not evident from the graph, the crossing of
the Kl curve in the attenuation band region between
(uo' =0, g = 0) is actually two crossings, one curve

superimposed on the other. These tw¢ eigenstates are



76

*9NTRAUSHTO UE SOUTWISIDP SAIND PO3IOPL® Y3zTM 9AIND Ty sy3 30 Putssoxo

3.

9yl cuoTjeutwIsl adA3 umre] @Yyl I0J saNTRAUSDTO® 9yl JO UOTIRUTWIS]SQ °*ZI°E oanktj
LRIND
G4 0c'] 00’9 'S5 006 0Sh O € COE UL e LIz T M7 oTE" 0 o5’ - O0°T- 06 Y- ol
— A s " \ _ A . s e
o o O © 2 o) o i) © o
A A A Vv A A v A A
o . jo) O [ ol o o | o ©
. N N g A
- 4 =
; > i b g ] b g w
] w W ! to o) o to o
w 'S 'S Wl w N [ - o
i \“.. .n. ....
. / ; w
w / ;

——

-

bam - 2

NOTLYNIWHSE S0 SR AN T

-

B

L]



7

of the Tamm-type since they occur for very low energies.
The surface state occurring between (go' =0, u = 0) 1is
exactly analogous to the surface state found for the
Shockley-type termination. The same considerations which
determine whether there will be 0, 1, or 2 states in this
gap may be applied to this situation.

An energy versus (k and K) graph is shown in Figure
3+13. This graph should be compared with Figure 3.7;
note the differences and the similarity. In attenuation
band 1, note that the value of K in this range is actually
off the scale of the graph and was not plotted outside
the limits shown. However, the X's (there are two X's,
one superimposed upon the other) are positioned at the
point where the K curve would go if it had been plotted
on a larger scale. The X's of course represent the
elgenvalues obtained from Figure 3.12. The pass-band
states in pass-band 4 and 5 and the surface state in
attenuation-band 4 are approximately the same for both
Tamm- and Shockley-type terminations. The surface state
in attenuation band 4 has approximately the same magnitude
of attenuation (1.e. K) as that of the Shockley-type
temination state calculated earlier, and we expect the
same general behavior of the wave function going into the
crystal. However, the two states occurringin attenuation-

band 1 have a very large attenuation constant K and should.
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be highly localized near the surface.

Figures 3.14 (a-e) are plots of the wave functions
for the energy eigenvalues obtained above. These wave
functions should be compared with Figures 3.8 (a-e) for
the Shockley-type termination. Note particularly the
Tamm-type states which are plcited at the bottom of
Figure 3.1%a and at the top of Figure 3.14b. They are
quite localized at the surface and in fact extend further
outside the crystal than the other surface states con-
Sidered. Note also the energies at which each occurs.
They indeed lie practically at the same energy due to
the large attenuation and consequent lack of interaction.
This result has been discussed earlier for the Shockley-
type surface states except that in that case a larger
crystal was required to establish it. Figure 3.15 is
a plot of the surface state wave functions in the 4-th
attenuation band for 20 cells. As may be seen by com-
parison with Figure 3.9b, the differences between the
states are small and hence the designation of Shockley-
type states for both sets.

Finally, we should comment that the procedure out-
lined for finding the energy states by the graphical
method of plotting various quantities was only for 1il-
lustrative purpcses. The actual computations were per-

formed on a CDC 6500 computer, with the processes
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outlined taking place internally in the computer. The

total time necessary for the calculation of the band
edges and 18 eigenstates to 6-figure accuracy was of
the order of 10-15 seconds.



SECTION IV
ARBITRARY TERMINATION OF A FINITE PERIODIC POTENTIAL

The problem of termination of the periodic potential
at an arbitrary point in the end cell will now be con-
sidered. To be more specific, we shall terminate the
potential at one end by a step function at an arbitrary
point in the end cell and at the other end by a step
funetion at the potential minimum. (see Figure %4.1)
Until now, with one exception, general conclusions have
been drawn from symmetry arguements for crystals ter-
minated in either a symmetric or antisymmetric manner.
In the literature, the various approximation methods
which have been used most extensively include the near-
ly-free-electron method, and the tight-binding (LCAO
or MO) method. The one exception is a paper by Levine,27
in which the problem of the arbitrary termination of a
semi-infinite cosine potential is treated. We expect
to find somewhat different properties for a finite
crystal; consequently, we shall carry out the calcul-
ations for the above mentioned problem to determine ex-
actly what the differences are.

This problem is made considerably more difficult

by the arbitrary termination since now the wave function
87
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and its derivative at the point of termination will not
reduce to a simple form. From Figure 4.1, we see that
the point of termination in the end cell is measured by
the quantity4 from the right edge. By continuoualy'vary-
ing A through this end cell and calculating the eigen-
values for each value of A , we obtain a general idea
of what effects an arbitrary termination has on the
energy eigenstates.

Proceeding as we did in Sections II and III, we
attempt to form a continuous wave function by matching
the wave function and its derivative in each region to
the wave function and its derivative in a neighboring
region.

For x £ O, the wave function is of the form

b= A e ¥ , k= VZEW-E). ()

Por O €« x £ Na- A , we have

b= C+lhiry+ ¢ b- 00, (4.2)

where the form of dL} ’ d).. will depend on the energy

range we are considering. For x = Na- A ,

K (x— (N2—4))

\l’(l) =Be (4.3)
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Matching the logarithmic derivative at x = O ylelds the

condition,

(4.4%)

= a(gter)>

while matching at x = Na- A yields

1 CilNa-p)+C_Y. (Na-1)
= (c.l/*o/a-mew.ma—m) e

If we now set the right hand side of Eq. (4.4) equal to

the negative of the right hand side of Eq. (4.5) and
define the quantities,

Li= WiNa-p) , o= arls(la-p), »0)
Y= d’i(ﬂa-—d) > yz=o:¢.(ﬂa.-4),(u;6b)

we obtain
C*‘C-\__ CiXy +C- Y, |
C; + C- c*gl—chyz.)' 4-7)

Notice that Of = — U-, and that x, becomes equal to X,
and y, becomes equal to y, if A 1is equal to some in-
tegral multiple of the lattice constant. Multiplying

Eq. (4.7) through by the denominators, and grouping
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terms, we obtain a quadratic in C + and C_,

Clu4xs) + C+C- ((XZ)H0~923)
+C2(y +42)= 0.

Factoring this equation, and using the Wronskian relation

(%.8)

W{"—F)d)‘} = -2, (4.9)

we find that C in terms of C is given by

(= [[apzwy, ﬁi\zlt;nw—wz)mwlc (+.10)

This equation may be simplified in form by considering

the different forms of the wave function for the three
regions P< 0, 0< P( 1, and P) 1. In each region,
we may write the wave functions out explicitly and form
the various sums and differences which are contained

in Eq. ‘(4.10). By defining new variables, we may sim-
plify the form of Edq. (4.10) considerably. For '0 <o,

we define

g2 " Zl(a—a

tante = (&Z‘% —4) g(a—zb II”P'
= 4 (Zt’(a—,d) z(a— )) 6’09('&) (+.110)

(u.lla)
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17—
( ﬁ-—‘(a 2 u(a‘d) St hé%), (.11c)

A= (7—‘%47'—‘2 - ‘g‘lﬂl)wséé%) (¥.110)
= ( 7‘(&'4) ‘M ) sin(&8), (v .110)

T = (B sinkih-Ha # (B cashktt-£e, v 11:)
r= VRI:L + Rzz?; (3.11g)

31’71,31= — T/r. (%.11h)

With these definitions, the matching condition given by
Eq. (#.10) becomes

- IA(A/-:)G- ‘/’1 2%t 26
Crk = "

C-4. (+.12)

For O < ‘0 < 1, the definitions are

(a -4) Ul |
M% ( [a-A) fo \‘(p,{) (%.13a)

g(a-— /
Ri =% ﬂgz;‘” b ST o)

Rx = ¥ %’_A) Zl(d-A) )3171‘/@(4 130)
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A, = ( w-1) _  glz—4) ) Cosh(&E),(4.130)

U Jo
AL = (Z‘z(f;ﬂ) - ’;&,—Al).&'lléf%(h.l}e)

( )S’ﬂz‘ k(1 »Lz)a-}(’")c’os/k(//—éh (%.13¢)

r = V,Rli""kg‘) (%.13g)
Sink Iﬁz = -7/r. (%.13h)

Then Eq. (#.10) becomes

Cu = + C-k(f/—i)a WA oo

Similarly, for F) 1l

wla-4) Z(a.——n)
cothty = (1 "7

4
-~ . 4.
wg‘f‘)-l- 27‘:_& )lrl, (%.15a)

( ‘u’(a—A) + .%-) )ji/]{(—%)) (%.15b)

I p—.
R=3( w,f:ﬂ t *%ffi)wl{%))(a.m)

Ia-2) 4)
= (uu% - "2{%} StrA(2) (x.150)




ok

Ao (B2 — Z82) Cosh (D), s
7= (2) coshkiW-92 +ED sinh kth-Han 15t

r= \[Rzz“'R?) (h.ng)
Siﬂé{% = 7/r. | (%.15h)

Eq. (4.10) then becomes

- k(N- 17/, TP
Cu=2e KM-$)e+ ¢ Fc_k |

(4.16)

Substitution of Eqs. (4.12), (4.1%), or (4.16) into Eq.
(4.%) yields |

(746W‘:£¥§r-¢§4&-£?)

"/, (4.17a)

Ki=-1 GFLIL

ff<i() B
I(a==45U71Za!f(akzzL:z)§£f¢svél*f?),(4.17b)

/
where g3 = "2.<'%2o)lfli.

O(ﬁ(l
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Ki -a:fallé(k["/’i‘)d;é"é-fz),uJ&)
Ki = -UICAZ%(KAL%)‘:M’L!?’)J(M%)

where Gf = -( ”9"110) f*‘.

I

The same formulae hold for P) l, except that the de-
finitions of K, ¢z and F" are changed.

¢,,é_, ¢3 and ‘8,,‘&, F; will, in general, exhibit quite
complicated behavior as E or A 1s varied; thus is best
discussed in connection with a specific potential. The
procedure for findins the energy eigenvalueq 1is the same
as used before. We plot the two sides of Eq. (4.17)
and Eq. (4.18) as functions of energy, and the points
at which the equality is satisfied give us the Ae:lgen-'
values. This is 1llustrated for the Kron:lg:Penney type
potential in Figure 4.2, where we have plotted. the energy
eigenvalues as a function of the parameter A (see Figure
4,1) for N = 5 and a, b, vo, Vl, and v2 the same as in
Section III. The lowest pass-band is not shown because
it was so narrow that no details could be distinquished
on the scale used to plot the graph. Figlire 4.2 shows
the change in the eigenvalues of the system as the

erystal is continuously changed from N = 5 to N = 4 atoms.
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Upon inspecting the eigenvalue spectrum calculated for
the Tamm-type terminations in Section III, we observe
that there are 2 surface states of the Tamm-type in
attenuation band 4. These surface states are shown
in Figure 4.2 for A=aor N= 4, As A is contin-
uously decreased the Tamm surface states are not much
affected, although there is some variation. The
Shockley state, however, osciilates in the attenuation
band quite noticable. The value of the Shockley state
energy eigenvalue as a function of N was given in
Section III for N an integer (see Figure 3.10). As
may be seen from this graph, we might easily be inclined
to draw a smooth line through the points for N integer,
which would be incorrect, because in between the in-
teger values, the eigenstate oscillates. We note also,
in Figure 4.2, the emergence of another type of surface
state which is absent in symmetric or antisymmetric

terminations. Levine27

has found similar type surface
states for the semi-infinite crystal mentioned earlier.
However, the states which he finds cross from one pass-
band into the next pass-band, which is not the case for
the finite crystal. Indeed;, the surface states which
emerge lie vefy close at all times to the pass-band
from which they originated and periodically disappear

and reappear with decreasing A . The behavior of the
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pass-band eigenstates is interesting but not surprising.
As the crystal length increases, the number of pass-band
states must increase. The new states emerge from the
upper pass-band edge while some of the old states dis-
appear into the lower pass-band edge. But the net effect
of increasing the crystal by one atom is to increase the
number of pass-band states by one.

The case of arbitrary termination, as may be seen
from the above, leads to extra energy states. Since
for real crystals we expect the termination of the crys-
tal by the surface to be a more or less arbitrary ter-
mination, we might expect to find more states than are
usually considered in the calculations which have been
carried out to date for symmetric or antisymmetric ter-
minations. These new states do not seem to be related
to the bulk properties of the crystal (i.e. the number
of cells, etc.) but depend only on the nature of the

termination.



SECTION V
LOW ENERGY ELECTRON DIFFRACTION FROM FINITE ONE-DIMENSIONAL
PERIODIC POTENTIALS

In this section, we shall study the elastic low
energy electron diffraction (LEED) for electrons normally
incident upon a crystal surface by calculating the re-
flection coefficient for a plane wave incident upon a
one-dimensional periodic potbntial at ehergies greater
than the vacuum 1eve1.. The applicability of this model
to real metallic crystals is questionable since the
energlies involved are high enough to ionize the core
electrons, and many-body effects should be 1arge.29 How-
ever, if we assume that we are only interested in very
low energy electrons, and that we are dealing principally
with insulators, then it 1s probable that the main con-
tribution to the elastic scattering is from the stafic
potential dﬁe to the lon-cores inside the solid. This
static potential should, in fact, 5e energy dependent
as are most calculations on real crystals, but we shall
assume that it 1s relatively constant over the energy
range -onsidered. -

There has been much interest in recent yéars in the
use of LEED as a tool for the study both of surfacgs and

the interaction of electrons with solids. Several methods

99
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have been employed to study this problem. The method
used in this thesit may be classified as a "dynamical"
model calculation of which there are two different
variants. The first variant is based on a generalization
of Lax's multiple x-ray diffraction theory. The second,
with which we shall be concerned is based on a band
structure treatment. For more detall about each method,
the reader is referred o the 1literature.’C >0 fhe
method. we shall uce is essentially a matchihg»procedure
in which one matches the plane wave at the surface to
the Bloch wave inside the crystal.

We proceed as follows: we consider a one;dinen-
sional periodic potential of period a with N atoms and
having either a Tamm-type or Shockley-type poténtial
termination at either end. Our zero of energy will be
at tﬁe average value of the periodic potential. The
vacuum level on the left is at a height Vi above zero
energy and the vacuum level on the right is at a height
V,- For x £ 0, we have a plane wave of unit amplitude
incident from the left upon the periodié potential and
2 reflected plane wave of amplitude R going to the left.
The solution of Schrodinger's equation in this region
yields the wave function
by = 6"4”+ Re ‘NE, (5.1)

k= N XE~Viy -
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For 0€x< Na, there are three regions of energy in each
of which the Bloch wave function assumes a different

form. These are
ik ;
ll/(y)z C,q,C ;1%(2) +4 C./,cﬁizllz); ,0<0, (5.2a)
Uir) = Cie'™ Pt 4 Co8Pa(0)504p<1(5.25)
D(I_) = Cx€XGilert C-xE" Bt p>1.(5.2¢)

As the energy of the incident plane wave 1is increased,
we must match the appropriate Bloch function to the in-
cident and reflected wave, depending on the band struc-
ture in the crystal. For x= Na, we have only an out-

going plane wave of the form
) Ry OC-#2)

These -wave functions must be ma.tched at x = 0 and x = Na
to yleld a continuous wave function throughout all space.
If the energy 461‘ the incident wave is such that
F < 0 inside the crystal, then we have at x = 0, the

matching condition

J1-R Y _ C:.e C-£




At x = Na, we have

G-': Cf‘e —G—AC. —_— I'éz_. (5.5)

If we now solve Eq. (5.5) for C_, 1n terms of C_,, we

obtain

o — Zéz, 2042
C‘k = a-i + {EL )C C'.;A. (5.6)

Substituting this equation into Eq. (5.%), we obtain

1—R \_ (gff ) dla)
1+ 7R / /k/ { 'I'(gi—fikz)c

g [iky— i0f Laphk¥a
iR 7 +/s lan kN /)

or

R = kR0 +( T hk)lan kN (5.7)
(ARG — (5 hko) Bnhlz

Since Of= —2 (w/tb) l‘ﬂlz, we obtain a reflection
coefficient for F( 0 of

IR Ch-k Y@ (1 kk) gl
m,ﬁmm otk ke N

-(5.8)
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For 0 < < 1, we simply replace k by ;11( and

/L
17/ él- ('m Eq. (5.7) to obtain

IRIE = k)10l (0 k) donkthe.
Cth) |GG oY dark A"

For F > 1, instead of calculating K by the formula

A4
K= "h"@(%fé? ) (5.102)
we use the formula

= ..-al: {oj (%;% (5.10b?

and the reflection coefficient 1s the same as for O <

f < 1 otherwise. -

For the case of a semi-infinite crystal, we need
only let N+ 00, to obtain

Z_ 2
RF= (e p ) peos o
IRI*= 1 , g>o. (5.12)

If we let v, = V2, |Rl2 will reduce for both (’( (o]
and f’) 0 to

L _ (loi kK tudaa ,
'Rl 4 Iaﬂzh,z'f‘(laﬂz‘fkf)z‘ézfl}m ) f <0; (5.13a)
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2 (10314 kEY Lankkrle
IR~ ‘//W/%/"'f(/"i/l‘ff)‘hﬂl/afF’O’(s‘m)

Notice that in this case, gf always enters |R| 2 as a
squared quantity. We saw in Section II that surface
states are obtained only if ‘(M*I{SOCB negative
in an attenuation region. Since in an attenuation
region (j equals -(llal,ll,)ﬂl',: and is squared in the formula
for |R| 2, we do not expect to see in the refleection
spectrum evidence of what would correspond to surface
states with energies lying within attenuation bands.
We should, however, be able to distinguish the pass region
and the attenuation regions for large N.

In a pass region, k varies from O to /a2 or from
T /a to O, so that tan(kNa) will exhibit N or N-1
zeroes, depending on the sequence of the zeroes of the
functions go', 82 uo', u, for increasing energy. In
analogy with the surface states problem we find that
if the band edges have crossed (i.e. if the zeroes oecur
out of order from the sequence g,', 30{ uo', Uys go',
o’ uo', Uys « « « ), then the neighboring pass regions
will have (depending on how large N is or how strong the
periodic potential is,) either N-1, N or N+l zeroes.

To see this, consider the form of the reflecticn -
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ccefficient in a pass region. The zeroes of lRl2 will

occur in a pass region for either

taﬂ[ﬁh)= 0O or IGF/=AI. (5.1%)

Considering only the tangent term, this condition implies
that k = n T /Na, where n is an integer. Since 0< k&
7~ /a, and we are restricting ourselves to. only positive
values for k, the possible valués of nare 0, 1, 2; . . .,
N. PFor ‘0 = 0 there is some difficulty since k = 0, and
laﬂ equals zero or infinity depending on which funetion
determines the boundary. The same difficulty arises at

P = 00. By consideration of the limiting forms for

the boundaries P = 0 and ‘0 = 00, we obtain

IR = A ! e 0- (5.152)
k7= 4 (U Tah)> > J° =05 .

Ui+ F, = ) Jo=05 (5:15)
2

IRI*= i f'(yo,/}”),, U= 0; (5.15)

RF= @Igj’;{ﬁ’; ) Up=0. (5.15)

Thus we see that k = O and k = ( 7 /a) yield no zeroes

of lRla. Then n is restricted ton =1, 2, 3, « « .,




106

N-1l. The extra zeroes may or may not occur depending
on whether G becomes equal to 1k1 as k varies from
O to W/a. Inspection of the form of "‘(llo'Aé)lf’Ié
in Figures 2.2 and 2.3 reveals that if the functions

Bo's Bgs Uy's Uy B,'s Bys U 's U, o o o have zeroes

in this sequence, there will be one value where ICETL

becomes equal to k12

in each pass region, bringing the
total number of zeroes for |RI2 to N. For the sequence
of zeroes deviating from the above order, as in Figure
2.3, we will obtain either no values or two values of

| 0f|* which are equal to k12 in the pass region be-
tween go' = 0 anc uo' = 0, and either two values or no
values for the next pass region between & = 0 and

u, = 0, depending on the magnitude of k 2 Thus in the

7 °
neighboring pass regions between which the band edges
have crossed, there will be either N-1 or N+l Zeroes.

For N becoming large, we see from Eq. (5.15) that
|R|2 approaches 1 on the band edges. For a semi-
infinite crystal, the structure in the pass-band dis-
appears because the reflection coefficient oscillates
an infinite number of times, and only the envelope of
the peaks remain. In the attenuation regions, the re-
flection is perfect.

It should be pointed out that the above analysis

may also be applied to tunneling phenomena, For example,
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we could let V, and V, be equal to the minimum value of

1 2

the periodic potential without changing the mathematics.
In this case, the calculations reduce to the solution
of a particle tunneling through N identical barriers.

The above analysis also resolves a question which
arises in applying the Born-von Karman boundary condition 36
to an infinite crystal. The Born-von Karman boundary
condition, as usually applied, uses only one of the in-
dependent Bloch functions and requires this function to
satisfy

Cz‘/{Ma: {

(5.16)

In this case, k = 2n 7 /Na where ~N/2 < n<N/2. There
are N values of k in all, counting both positive and
negative values. A better manner in which to impose
periodic boundary conditions would be to require the

function

kllcxs = &kcikzﬂh(z) +C-k é'hkk&) (5.17)

to satisfy

biziNa) =1 (). (5.18)
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In this way, one obtains twice as many values of k given

by

k=mm/le » -Mz<n<N/z. (5.9)

Now there is still some doubt as whether to ineclude

N/2 or - N/2 in the values for k, and one usually picks
either one or the other. However, we see by our analysis
that the choice should be neither of the above, but
should be such that

%—.— G =ik =\[BEt), (.20)

where V6/2 is the amplitude of the periodic potential

evaluated at a lattice site. From the formula for the

reflection coefficient, we see that k = nW/Na, n = 1,

2, 3, « « ¢, N-1, and 1k = (f correspond to values of

the energy for which the periodic potential is com-

pletely transparent to an incident electron and thus the

electron is not localized to any one region of the crystal.
To 1llustrate the features of the!above discussion,

calculations were carried out on a Kronig-Penny potential

for both Shockley- and Tamm-type potential terminations

at either end. For comparison, we use the same values

of a, b, VB, as we used in calculating the energy states
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in Section III. Figures 5.1 (a,b) show the reflection
coefficients for V, = V, = 6.5 E.U. and N = 4 for both
the Shockley and Tanm terminations. The vertical lines
indicate the band edges, and the arrows indicate which
band edges have crossed. Figures 5.2 (a,b) have the
same potential configuration except now N = 20. Figures
5.3 (a,b) show the case of tunneling when V, = V, = va/a
= -1,7 E.U. and N = 4, The lowest pass-band is not
shown because it is so narrow that the plotter missed

it.
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SECTION VI

RESONANCE TRANSMISSION IN ELECTRON EMISSION
FROM SURFACES WITH ADSORBED ATOMS

In recent years there has been renewed interest in the
role of resonance effects in the emission of electrons from

a metal surface with adsorbed atom338'45. Both qualitative38

and quantitativeuo

predictions indicate that structure in
the total energy distribution of field emitted electrons
should be related to resonance ~ffects reflecting the
atomic~like energy level spectrum of the adsorbed atoms.

Gadzuk4

5 has shown qualitatively that similar resonances can
oceur for transmission o#er the surface barrier in which an
adsorbed atom 1is present: However, as we shall see later,
his results are questionable in several respects. This be-
havior could be relevant to electron procebses such as
thermionic, Auger, or photoelectron emission in which a
partial monolayer of an alkali m?tal is deposited on the
surface to reduce the work function of the material. Con-
sequently, it 1s interesting to try to calculate this effect.
Tﬁé present section deals with a calculation which is

similar in many respects to calculations performed by

Gadzuk47. But whereas Gadzuk considered only the case of

116
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transmission of an electron into free space'from a free
electron metal with a single adsorbed atom, we shall con-
sider the more general case of transmission of an electron
from one periodic potential across another periodic poten-
tial 1nto free space. This includes the case of only one
period of a periodic potential, which is Jjust a single
adsorbed atom. We may relate this type of calculation to
tunneling phenomena, although there are no classically for-
bidden regions. However, there are quantum mechanical at-
tenuation regions through which the electron must pass and
the analogy between the classical case and the quantum-
mechanical case will be clear in what follows.

A great many of the featﬁres of tunneling phenomena
in so0lids are essentially of a one-dimensional nature. If
the tunneling barrier (or effective barrier in our case) ex-
tends in the x difectibn the momenta in the y and z direc-
tionﬁ can usually be taken to be constants of the motion and
yence are merely fixed parametersua. Therefore, we shall
confine ourselves to one-dimension for the calculations
which follow, even though such a model neglects a variety
of geometrical effects.

We shall first consider the special case of electron
emission from a free electron metal across several layers

of foreign atoms into free space. We will not consider the
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mechanisms which excite the electron into states from which
it can be transmitted out of the crystal but will assume
that the electron has already attained such an energy state.
We shall then replace the free electron metal by a periodie
potential with the same layers of foreign atoms on the sur-
face and perform similar calculations. The model poten;
tials we shall use for the first and second case are shown
in Figures 6.la and 6.1b.
A. ADSOREED ATOMS ON A METAL SURFACE

As a model for a metal, we assume a semi-infinite free
electron region for x < 0, and we represent the foreign atom
1gyers as square wells for O < x < Na2. For x > Naa, the
potential is zero representing free space. The three regions
are labeled appropriately by I, II, and III. By using a
square well for our model impurity potential, we havé com-
plicated matters considerably, since we have to deal with
band-edge crossing effects also. However, real impurity
potentials may be expected to have the same type of struec-
ture. In region I, the solution of Schrodinger's equation

ylelds plane waves which we shall write (for E > 0) as

(6.1)

4)(1): cié’z-l- RE : "f :él = \/%( £+ Va/\).
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We want to find the transmission coefficient of an electron
incident from the left, past the foreign layers into vacuum.

Consequently, we may calculate |R]| 2, the reflection eoef-

ficient and use

ITI* = 1 — |RI? (6.2)

to obtain the transmission coefficient. In region II,

solution of Schrodinger's equation yields the Bloch waves

Y, = C+ly + C- (6.3)

the exact form of which is given in Section I. In region

III, the wave function is given by the out-going plane wave

d} _ Tci 3(1””42) k= FTT—%‘ E ] (6.4?
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The requirement that the wave function be continuous across
the three regions determines‘the coefficients R, C+, C_, and
T. If we recognize that this problem is Jjust a special case
of the problem treated ir Section V with the zero of energy
shifted and unequal potential terminations, we may save cal-
culational duplication. By making the energy zero adjust-
ment and relabeling the corresponding variables according
to Figure 6.la, we may directly cérry over the calculations
of Section V to this section. We wish to calculate the
transmission coefficient rather than the reflection coef-
ficient as was done in Section V; so we must use Eq. (6.2)
to obtain the pertinent result. '

At this point, some discussion of the choice of po-
tentials is in order.. The potential around the foreign
atoms adsorbed on the surface of the metal is essentially
that due to the Coulomb potential of the fractionally
charged ion core. Thus, one would expect to use a strongly
attractive model potential whose radius is roughly that of
the ionic radius. However, if we incorporate the condition
of orthogonalization to the cccupled tightly bound electron
as a sepa}ate, non-local term in the potential, the sum of
the two potentials yields a more smoothly varying function
of position. The pseudo-wave function will then be anal-

ogous to the free-electron wave function. This approgch has
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been used to calculate electron field emission distri-

butionsug. Other workersso

dispute this approach for the
following reasons. The principle of the pseudo-potential
is that the exact Schrodinger equation for a system with a
complicated wave function can be transformed into a pseudo-
wave function equation with the same energy eigenvalue and
a simple pseudo-wave function. Tﬁe simple wave function has
nothing to do with the real wave function. 1In doing trans-
mission coefficient calculations, ﬁhe form of the wave func-
tion 1is 1nt1mate1y related to the detalls of the potential,
and the interference effects which are present in the real
wave functioﬁ are glossed over in the pseudo-wave fupction
approach. |

We shall adopt the latter viewpoint in calculating
the wave function, so consequently, we must use strong po-
tentials in a model of the true potential rather than weak
pseudo-potentials. We shall assume the adsorbed atom is
displaced to allarger lattice spacing from the end of the
crystal than it would have in bulk material. As suitable

parameters to use in our calculations, we take (see Figure

6.la)

a2 = 900 Ao, (605‘)

b,

V°2 = 51.5 eV = 13028 E.U.’ (6 050)

= 1.5 A%, - (6 .5b)
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Vcl = 12045 eV = 3020 EOU.’ (6 oSd)

T, = 3.88 eV = 1.0 E.U.. (6 .5e)

These are a"wroximately the same values of the para-
meters as used by Gadzuk in his calculation. However,
Gadzuk was mistaken in his interpretation of the units of
the various parameters defined above so that when he thought
ﬁe’was using a well depth V02 = 51.5 eV, he was actually

using a well depth,Vo = 200 eV. As a matter of fact, all

2
of his energy units are too smeall by a factor of 3.88. Con-
sequently, the transmission ccefficient which he calculates
has considerably more structure (i.e.the wave function has

a larger number of nodes near the well) then it should. To
clarify this situation, and to generalize the results for a
1grger number of adsorbed atoms than one, the transmission
coefficient was calculated using the above parameters for
the case of one, two, and three adsorbed atom layers. The
results are illustrated in Figure 6.2. The solid curve
represents the case of one adsorbed atom layer (N = 1),
whereas the 1/16" dashed curve 1s for two adsorbed atom lay-
ers (N = 2), and the 1/8" dashed curve is for three adsorb-
ed atom layers (N = 3). The range of energies in which we

are interested is betieen zero and twenty electron volts,
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since calculations of this type for higher values of erergy
are made irrelevant by inelastic effects. The most striking
feature about the N = 1 case is that the transmission coef-
ficient has very little structure, and is a slowly varying
function of energy. This is in agreement with previous
authors!? assuhptions about the nature of the transmission
coefficient with regard to ph§toemi$sion calculations, etec..
The small variation which does occur is a result of the at-
tenuation bands of the adsorbed atom. The attenuation band
edges are denoted by the vertical lines. For two adsorbed
atom layers, the situation 18 quite different owing to the
resonating effects between the impurity atoms. If we rea-
lize that this situation is analogous to the situation in
Section V, we may apply the same reasoning to explair the
structure of the transmission coefficient. The main dif-
ference between the calculations of this section and those
| of Sectioan-is that we are now dealing with unequal bound-
ary conditions at either end of the "periodic potential'.
The main effect which this has on the form of the trans-
mission coefficient is that, in a pass band, instead of
achieving the value one (corresponding to the reflection
coefficient of Section V going to zero) at various values
of k, the transmission coefficient reaches a relative max-

imum which may be shifted slightly from the values of
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k = nm/Na_, n =1, 2, . . .N-1. Otherwise, the two situ-
ations are analogous. The number of relative maxima which
the transmission coefficient will have in a given pass-band
will depend on whether the band edges which bound the pass-
band have crossed. Consequently, there will be either N-1,
N, or N+1 relative maxima in each pass-band. The attenua-
tion bands, of course, tend to lower the transmission coef-
ficient. Thus, the reason for the structure for the two
cases, N=2 and N=3, becomes clear. To obtaln a better under-
standing of what effect the potential depth of the impurity
layers has on the transmission coefficient, we have per-
formed the same calculations as above using the same values
for all the parameters except Vo2 which was reduced to half
of 1ts previous value. The results are illustrated in
Figure 6.3. This should be compared with Figure 6.2. As
may be seen, the transmission coefficient is enhanced in an
overall manner, and the structure changes slightly due to
the change in the position and widths of the pass-bands
and attenuation bands. The fact that an attenuation band
becomes wider as the potential becomes weaker is purely
a band-edge crossing effect, as may be seen in Section III.

B. ADSORBED ATOMS ON A NON-METAL SURFACE

The situatiqn of a non-metal with adsorbed atoms on

its surface represents a more complicated problem mathema-




°¢ ©se) -Te3jauw v UO swo3je

paqiospe € ‘Z ‘[ I0F JUSTOTIIS00 UOTISSTWSURIY,

"€°9 2anbra

AJEEN
both STt W GL'h SCE €T Q9T bmeg 61 (9T WT O s¢r et teat 2E D
7N
\
\
\
\
\
. \
~ |\
Ko
S ~ /
//’ \\ /. \
/“ \\ / \
\ : \ /
/— \ / ﬁ J
e " / el ") e
—]0 AL >\ 1)

[Sionke
INSINTAFA0

/e

~
-

00 ” ocu®

Jo’



128
tically than does the previous case, since now we must take

into account the band structure of the non-metal as well as
the band structure of the adsorbed atoms. The approach to
solving this problem for the transmission of electrons from
the non-metal into free space 18, however, analogous to the
previous calculation. A= before, we form a continuous weve
function throughout all space by Joining the appropriite
solutions to Schrodinger's equation at the boundaries of
the regions in which they are valid. We shall denote the
non-metal as region I, the adsorbed surface layers as region
II, and the vacuum as region III.

Since region I is characterized by a periodie poten-
tial, the solutions to Schrodinger's equation will yield a

wave function of the form

b= Ci ¢+I + CIUF, x<o, (6.6)

where the exact form of ‘p}- ) lbL. will depend on

the value of energy; i.e. on whether PI< 0, 0K PI< 1,
€I> l. Region I will have a band structure which depends
only on the periodic potential in region I. We want to

have a wave traveling to the right (i.e. incident wave) and
a wave traveling to the left (i.e. reflected wave), in order

to calculate the reflection coefficient. Since the indepen-



129

dent solutions for an attenuation band are both real func-
tions, they do not carry any current. To be able to obtain
a current in an attenuation band, it is necessary to take a
complex linear combination of the two real solutions. How-
ever, we shall not attempt to do this since the reflection
coefficient would depend exponentially on the depth inside
the non-metal at which the unstable state was created.
Since the time required for an electron to "tunnel" out of
the crystal is much larger than the time during which the
electron would stay in such an unstable state, we can say
that the reflection coefficient is essentially one, or that
the transmission coefficient is zero. The independent sol-

utions for the pass bands, ir. contrast, carry currents of

= 0
. , bk g, T b
%"(q” - * q) A )_ 7y (6.m)

where a; =—0- and Gy = i.<c'jg§:)0alég

e
I

’ 1
From Section II, we know that the quantity -{”O/Ha)l/’/ 2
i1s positive for the odd numbered bands and negative for the
even numbered bands. Since

Jr= B LI

(6 .8a)
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f" = -/-f) (6 .8b)

We must identify the wave traveling to the right as ¢QF'
for odd numbered pass bands and (l'-? for even numbered
pass bands. The situation is reversed for the wave travel-
ing to the left. Thus, the reflection coefficient is

given by

¢ '\” odd pass bands,

C#

IRI"= \%:trrr' even pass Eanols(f°9_)

In region II, we will again have a band-structured situa-

tion, so we may write the wave function in this region as

lll = C+I ¢)JI + C-‘F‘b—:}: 0< ¥< Na, . (6-10)

The band structure in this region will, in general, be

different from that of region I.
In region III, the wave function takes the form of an
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out-going wave

llj = TCiég‘(z—/f) éj =V2mf / iz’ (6.11)
x> Na,.

If we now require the logarithmic derivatives to be equal
at the boundaries x = 0 and x = Na2, we obtain the reflec-

tion coefficients of
€I< 0,p%<o0

(gl (gieqhtoitn)
IR‘ o ((5? 4 ,(73)’—7% 4 (gj’-}é?,é)%%ﬁ/d

Ty I
= ﬂozzlfl,

= — uﬂz,t) I Ij (6.12)

_ 11 o d band&
€= {-i even bﬂﬂd&

| p“<o\ pr>o0

2 [ ( ég,-éz)?i # (fz2 -fg'@és)zéaf/(/a .
IRl —((e?ﬁk;)zﬁ“% (faf'—ff/'éf)w%'( )
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T_O.I >0, pI Qrbz‘fml;l
‘R|Z= 1. (6.14)

The transmission coefficient is Just

I‘le"'-" 1" \Rlz (6.15)

Nntice that ezﬁ},. is always positive and could be re-
placed by [ @, | . As the periodic potential in region I
goes to zero, |§5 | goes to k,, where k, was defined
earlier in Eq. 6.1, and we recover the results of the ear-
lier subsection.

In order to be able to draw comparisons between this
calculation and the calculation done earlier, we let
855 b2, v 29 and T, have the same values as used before, and

o 2

let a8y, bl‘ Vbl. and Tl be such that the average value of

the periodic potential is the same as the vbl chosen earlier.

Thus, we let

a, = 3.0 A° (6.15a)
by = .75 A, (6 .15b)
V,, = 2.0 E.U., (6 .15¢)
T, = 1.2 E.U.. (6.154)

1
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Using the above parameters for region I, and the two sets
of parameters for region II, the transmission coefficient
was calculated for the range O < E € 20 eV, and is illus-
trated in Figures 6.% and 6.5. As before, the vertical
lines represent the band edges for region II. The band
edges for region I can clearly be distinguished by the
fact that the transmission coefficient goes to zero. These
graphs should be compared with Figures 6.2 and 6.3 and the
differences noted. There is only one attenuation band oc-
curring in region I for the range of energies considered.
It occurs more or less in the middle of a pass band of re-
gion II.

The structure in the transmission coefficient is en-
hanced in the pass band regions, as is readily seen by com-
parison. The various relative peaks in the transmission cb-
efficient may be explained by previous considerations.

To summarize, we have seen that for the case of one
layer of adsorbed atoms on the surface of a metal or non-
metal, the transmission coefficient is a slowly varying
function of energy, except near a band edge for a non-metal.
With the introduction of more than one layer, resonance ef-
fects predominate, leading to considerable structure in the
transmission coefficient. Hence, we would expect to observe
this type of effect in the toctal energy distribution of elee-
trons emitted from metals or non-metals with more than one

layer of foreign atoms deposited on the surface.
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SUMMARY

By constructing the total wave function for a
one-dimensional potential from individual cell solutions,
we have found that such wave functions may assume three
forms, depending on whether the parameter f’ (defined in
Section I) is less than zero, between zero and one, or
greater than one. All three forms are of the Bloch-function
type; there 1is no restriction as to the form or magnitude of
the periodic potential. Via the parameter fQ., a band
structure may be associated with a single period of the per-
iodic potential. By applying Tamm and Shockiey type poten-
tial terminations at either end of the periodic potential,
we hawn found that the emergence of surface séétes is depen-
dent on whether the parameter — ( [lol /[lo) |F f%' (defined
in Section I ; it corresponds to an effective wave number)
goes neéative-in an attenuation region. The number of sur-
face states in an attenuation region was foupd‘to depend on
the number of cells in the periodic potentlial considered and
the width of the attenuation band. Using a Kronig-Penney
type periodic potential as an illustration, we have seen
quite graphically the effects which the two different types

of potential terminations have on the energy states and the
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dependence'of these states on the parameters which specify
the potential. For potentials terminated st an arbitrary
point in the end cell, we have found the emergence of a new
type of surface state which is not found for terminations |
which are symmetric. The band structure above the vacuum
level was investigated by considering the refleetion of
free electrons from a finite periodic potential with the
Tamm and Shockley type terminations. It was found that the
presence of surface states for energies below the vacuum
level may be inferred from the structure of the curves giving
the reflection coefficient versus electron energy. For the
emission of electrons from crystals with from one to a few
layers of adsorbed atoms on the surface, resonance trans-
mission effects were found to be significant only for the

case of more than one layer of adsorbed atoms.
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