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ABSTRACT

ENERGY BANDS, SURFACE STATES, AND RESONANT TRANSMISSION

’ OF ELECTRONS IN FINITE ONE-DIMENSIONAL CRYSTALS

By

Willard M. Gersbacher, Jr.

The energies and wave functions of electrons in

finite one-dimensional potentials designed to simulate

various interesting physical situations have been calcu;

lated and are discussed. A general finite one-dimensional

periodic potential was considered, and the form of the“

wave function in all regions of energy was established.

without recourse to the BlochsFloquet theorem. ‘Various

types of potential terminations were considered, namely,

step-function terminations at a potential minimum or

maximum.or at an arbitrary point in the end cell, and

terminations by an arbitrary potential. The energy states

(both band and surface) were calculated in each case and

conditions were obtained which exhibit clearly how these

states depend on the properties of the potential.

The band structure above the vacuum level was in-

vestigated by calculating the reflection coefficient

for free electrons incident upon the periodic potential,

for several types of terminations, and interesting

relations between band-structures and tunneling were

obtained. The resonant emission of electrons from.metal



Willard M. Gersbacher, Jr.

and nonsmetal surfaces covered with.impurity layers was

investigated for energies above the vacuum level by

methods similar to those used in investigating the band

structure.

In each area of investigation specific calculations

were performed for Kronig-Penny type periodic potentials

with appropriately selected parameters. The results of

these calculations are summarized in a number of graphs.
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INTRODUCTION

Progress in understanding surface phenomena has been

slow, because physical and chemical processes at the sur-

face are inherently more difficult to analyze than those

in the bulk. The forces acting on the atoms at the sur-

face are not symmetrical, as in the bulk, and consequently,

the atoms are usually diSplaced from their ideal lattice

positions. Moreover, Just the fact that the surface con-

stitutes an abrupt termination of the crystal lattice re-

sults in a deformation of the crystal potential -- its

periodic nature is lost at the surface. This has far-

reaching consequences for the electronic processes in the

underlying region of the crystal close to the surface.

At the same time, unsaturated forces from the surface

atoms make them highly reactive towards various atoms out-

side the crystal. Thus, except when produced and main-

tained in a high-vacuum, the surface is covered by one

or more layers of foreign matter, greatly increasing the

complexity of an already difficult problem.

Although theoretical interest in electronic surface

states has existed since the 1930's, little was accom-

plished because there was negligible technological moti-

vation or opportunity for experimental confirmation. The

great impetus for surface-state study came with the advent
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of the transistor in the late 1940's. Since then further

motivation has rapidly developed in conjunction with a

variety of solid-state technologies.

Theoretical studies of the electrical properties of

surfaces have progressed along two different lines. Tamm's1

theoretical work, which treated a rather simplified model,

was extended by Shockley2 and by other workers to cover more

general situations. It was shown that in covalent crystals,

surface states may be associated with the unfilled orbitals

or dangling bonds of the surface atoms, which may trap an

electron at the surface. The historical development and a

summary of the various theoretical techniques used to calcu-

late surface states is given quite completely by Davison

and Levine}. Suffice it to say that most of the calcula-

tions since 1950 have used a LCAO (or MO) type approach

which was first introduced by Goodwin” in the late 1930's.

The second approach to this problem has been essen-

tially phenomenological. Its aim was to determine the

characteristics of the surface states by fitting a few

specified parameters of the theory to experiment. The

theory was completely analogous to that of bulk impurity

states. This approach has proved extremely fruitful in

characterizing the surface of several crystals, such as

germanium and silicon. However, the correspondence is
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still small between the experhmentally observed surface

states and the theoretically proposed Tamm or Shockley

states.

It is the purpose of this paper to establish a

better understanding of the Tamm- and Shockley-type sur-

face states by showing specifically what parameters these

states depend on, and how these states change as the para-

meters which specify the periodic potentiai are varied.

Since most calculations which have been performed to date

deal only with semi-infinite crystals, many interesting

effects which are peculiar to finite crystals have been

neglected; consequently, investigation of some of these

effects seems appropriate. It was thought better to per—

form simplified exact calculations relating to several

different questions concerning finite crystals and using

several different types of boundary conditions in each

case rather than to carry out a lengthy approximate cal-

culation designed to illuminate only one aspect of real

crystals. For simplicity, the one-electron scheme is

used throughout, although it is probable that surface

polarons and many-body interactions between surface states

can occur. The Justification for using this approximate

scheme is that practically all the new concepts which have

been introduced into physics through solid-state theory,
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such as energy bands, effective mass, and Brilluoin zones,

have been obtained via the one-electron approximation. HOw-

ever, what one achieves in simplicity of calculation by

using this scheme one pays for with certain ambiguities

which would not otherwise arise.

In the one-electron approximation, one attempts to

represent all the various forces acting on a single elec-

tron by a single static field acting independently on each

electron. This one field includes both the interactions

between electrons and those between ions. The one electron

Schrodinger equation, then, may be written as

. 1 _

’33-" v2 + “(kmfl‘Pnéb-r):
End“) 44515.0.

The significance of the potential in this equation has been

the subject of much study. In the one-electron scheme one

assumes the existence of such an average potential acting

on each electron. From the fact that (in the Born-

Oppenheimer approximation)5 the interaction potential has)

the periodicity of the lattice, one infers that Vh (k,r)

has the same periodicity. What is usually done is to pick

a physically plausible potential for each state and solve

the one-electron problem. It is common practice to assume

the same potential for all electron states (i.e. Vh(k,r) =

V (r) ). The accuracy of this approximation is at present
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not known. Also, when a V (r) is determined in an ag_hgg.

fashion it is clear that only those results which are

reasonably insensitive to the choice can be trusted. Thus,

one expects only qualitative agreement between calculation

and experiment.

The technique used in this paper is based on the

so-called cell-matching procedure. In this technique, the

assumed crystal periodic potential is divided into cells,

a cell being one period of the periodic potential, and

solutions of Schrodinger's equation are found in each cell.

By connecting the solutions in each cell continuously to

those in the next cell, a wave function is constructed which

is across the part of the crystal in which the potential is

perfectly periodic. This wave function is then matched to

the solution of Schrodinger's equation in the surface re-

gion to form a wave function for the crystal as a whole.

To solve any problem by this procedure in three di-

mensions is quite difficult, since the wave function must

be matched continuously from cell to cell at an infinite

number of points on the cell boundaries. The LCAO (or M0)

methods are better suited for this type of problem, al-

though they are not conceptually as clear. Since the

interest here will be in clarifying various qualitative

questions concerning finite crystals and not in quantita-

tive results, only one-dimensional situations will be
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considered. Although this limitation may lead to neglect

of many interesting effects, it is believed that most of

the results obtained will have important analogs in three

dimensions.

In Section I, the wave function for the periodic

part of the crystal potential is constructed for any value

of energy without recourse to the Bloch-Floquet theorem.

Section II establishes the conditions under which surface

states may exist for the Tamm and Shockley type potential

terminations. Section III shows how to apply the princi-

ples discussed in Section II to the Kronig-Penney periodic

potential with Tamm- and Shockley-type terminations. In

Section IV, the effects of termination at an arbitrary

point in the end cell are considered. Section V deals with

the band structure above the vacuum level by investigating

the diffraction of normally incident free electrons from

the surface of a finite periodic potential. Section VI

deals with a related phenomenon: resonant electron emis-

sion from crystals covered with several layers of adsorbed

foreign atoms.



SECTION I

DETERMINATION OF THE FORM OF THE WAVE FUNCTIONS AND ENERGY

BANDS FOR A FINITE PERIODIC POTENTIAL

A suitable starting point for the calculation of the

energy bands and wave functions for a finite crystal, is

described in an article by James6. In this article, James

gives a particularly clear and elementary derivation of the

band structure of permitted energy levels for an infinite

crystal. Although he considers only infinite crystals, he

discusses the prOperties of all solutions of the Schrodinger

equation, including those which do not satisfy the infinite-

crystal boundary conditions, namely, the solution in the

forbidden bands. He also introduces a new parameter 0(E),

which, like the effective momentum p(E), depends upon and

partially characterizes the periodic potential. The essen-

tial reason for using James' results is that they may eas-

ily be applied to the case of finite crystals. This is

because, unlike most derivations of the form of the wave

functions for periodic potentials, James does not rely on

the BlocheFloquet theorem, which was derived for the case

of an infinitely extended periodic potential. The manner

in which the wave functions are constructed leaves no doubt

7
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as to the form of the wave functions in all regions of

energy.

We shall, in summarizing and extending this work,

make the necessary modifications for the finite crystal.

Since we are modifying James' results, we shall give an

explanation of the various steps of James' derivation

which must be changed, and refer the reader to the article

when the analysis for the infinite crystal can be directly

carried over to the finite crystal. The results which

follow are valid for a general one-dimensional crystal, con-

taining a finite number of atoms each of which is repre-

sented by a potential well whose shape is symmetrical about

the center of the atom but is otherwise arbitrary. The

specification of a potential which is symmetrical about the

center of the atom is for mathematical convenience rather

than a necessity since the results which follow may be

altered to include potentials which can not be so defined.7

We consider the time independent Schrodinger equation

for a particle of mass m with energy E in a periodic poten-

tial V(x),

2 __ ..

-g $44100 + .VOQWOO " E4KX3) (1.1)

where V(x) is periodic with period a, and is defined only



for the range OSxSNa by

_. :: .., -1

V<X)=V(x+na>, ($330“ 1N , (1.2)

In the region where x>Na and x<O, we shall, for the moment,

leave the potential unspecified. The range of x will be

sub-divided into periods or cells of length a, such that in

the n-th cell

nasxflmlm , “n:- 0.1,” .,N-1, (1.3)

We choose the origin of our coordinate system so that the

potential in each cell is symmetrical about the center of

the cell.

We now fix our attention on the zeroth cell O\<x$ a,

and on a particular E. Since Schrodinger's equation is of

second order, it will have two linearly independent solu-

tions. For the potential as defined above, the solutions

considered are two real functions which we shall call g(E;x)

and u(E;x). The specification of g(E;x) and u(E;x) is com-

pleted by requiring them to be symmetric and antisymmetric,

respectively, about the center of the cell. That is,
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50(6) 3(80) = gas a.) , (1.4a)

gyan?) m 9’65») = —-9’(E;a). (1.4.)

u.(E) '5 21(50): -uCE;a), (1.40)

¢{(13) 55 117530) = 117530.). (Md)

For convenience, we shall normalize these functions so that

9(E;%)=1 . 9'CEsa/z>= 0.

U(s5%)=o . wag-6%): 1.

Since solutions to Schrodinger's equation have a constant

(1.5)

Wronskian, we then have, for any x,

w{9(E,-x),u(E;X)} 2: i , (1.6)

-: manila-D'- 9757>OW ;x).

It should be recalled that a necessary condition for the

linear independence of a set of solutions is that their

Wronskian be non-zero. This fact will be used later.

These functions need only be defined for the range

OSxSa. Since the potential has the same form in every
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cell, g(E;x-na) and u(E;x-na) will be the independent solu—

tions in the nth cell. Within each cell, an arbitrary solu-

tion .4In. .of the wave equation can be expressed as an

appropriate linear combination of the corresponding cell

solutions:

111.10) = 0(1. 3(51’714Hfin1MEjl-M) , (1.7)

i 710.5 Z 4 (”+040

{01:7 0’1)2) ton)N’1.

These cell wave functions and their derivatives could now

be matched at the boundaries of each cell to form a con-

tinuous wave function for the entire crystal. H0wever, the

coefficients of our independent solutions depend on the cell

index and vary from cell to cell in a complicated manner,

making interpretation of the form of the wave function dif-

ficult. This difficulty of interpretation has been elimin-

ated by James, who defines a new set of linearly independent

cell solutions. Each of these new solutions is itself a

linear combination of g(E;x) and u(E;x), the combination in

each case being such that the new solutions are linearly

independent. He defines these so-called self-matching solu-

tions so that the dependence on the cell index is incorpor-

ated in each independent solution in such a way as to make

each independent solution in the n-th cell connect smoothly

on to the same independent solution in the next cell. With
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the aid of the following definitions8

PE [0(5): (Qngo>/(ua’/llo); (1.8a)

 

 

a}. :.-= 01:03) =-- :6 (u.’/u.) pi. (1.81.)

i 1::

HELMET-1' 7 i;%>) (1.8c)

; >.... . J.

{1(BX) = C1Lfi)(—Q£€;£ + 71—57%!) 1): (1.8a)

James is able to write the independent solutions as

heé x {flu/)4,

41100 = E -(BX’M),{h ‘0’!) ..., ”.1. (1.9)

The significance of (If ) IE is made clear by the

relations

- £730) _ fi'{5;g.)
 

 

Oi: fi(£j0) - fi(£’,’0—) 1 (1.10)

.. f1(51‘_¢)

Y £10.70) (1'11)

.L

It should be noted that the quantity -(111/u.) ((17-

may be thought of as an effective wave number since it re-

duces in the free electron limit to the wave number k =

5171-177.
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The general solution to Schrodinger's equation will be a

linear combination of these two linearly independent solu-

tions,

(«n = C+4‘+(x> + 0-41.00, (1.12)

where now 01+ and C... are constants independent of

the cell index. The nature of 4400 and I‘L[X)

will depend to a large degree on the value of f9(E). To

obtain an idea of how (DCE) will vary, it is necessary to

examine go(E), g'O(E), uo(E), u'o(E).

For very low values of E (E < Vfiin) the solutions

g(x), u(x) are damped and we must have g6, u' > 0, and
o

g'o, uO < 0. As E increases, g(x) and u(x) become oscill-

atory, and then oscillate with decreasing wavelength; it

follows that go, g'o, uo, u'o, oscillate between positive

and negative values, as E increases. According to James,

the order in which the quantities under consideration vanish

is

I, I I , I o a .yc,(ja)uo)) (901%)) (yo)ao)) (yo)a0)j(1:13)

The order (within a parenthesis) of the zeroes of go and uo'

or of go' and uo is not fixed, but varies with the character

of the potential considered. These zeroes may in fact coin-

cide. The order in which these quantities go to zero has
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important consequences for the existence of surface states,

as we shall see in the next section.

It follows from the above considerations that ’0

varies from - co to + w , depending on the values

of go, go', uo, uo'. A typical plot of f? versue E is

shown in Figure 1.1. Notice that the form which (3 takes

allows a natural separation of the graph into three regions,

depending on whether r< O, O <f< l, or F) 1. It should

be noted that this graph depends only upon the values of

go, go', no, uo'; that is, the graph depends only upon the

potential in one cell, and does not depend upon the number

of cells or the type of termination at either end of the

crystal. As we shall see below, this plot determines what

we shall call the band structure of the cell. (The term

band structure, as used here, refersto the structure of

this plot of '9 ‘versus E for a single cell solution. The

fact that several identical cells are Joined together means

that the band structure is constant across the identical

cells. Thus, instead of associating a band structure with

a periodic potential, we can in fact associate a band struc-

ture with one cell. The case of a periodic potential can

then be treated as a special case of combining the individ-

ual cell band structures.

We now investigate the dependence of the «PS on

in the various regions of interest. For each case, the
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range of x and the value of n will be specified by

flaSXS(’IH/)6Z, h=0,1,.2., an, IV—!.

Case 1. P: ta),

In this case, r and r_ are equal to -1, 0+;o_=0
+

if uo'=,0, and 0+ = o_ = 1w ing= 0. Because of the nor-

malization, it is necessary to construct two new independent

solutions, which remain finite:

$.00: <¢+OQ£¢QQ> ) 4'10): (dfiaigr‘lj-ép , (1.11))
 

 

Letting uo' go to zero in these combinations, we obtain in

the limit

4’10) = {-01 “(12:14) 2 (1.15:1)
 

ta) = (’1)?27m)fella-7111) 'Zloyew]. (1.151.)

For go= O, we find,

4"“) = (‘21))! [(ZMImy(x.n¢).yo’u(x.M]’ (1-15a)

+100 = (’1)n gg'na) . (1.16b)
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In both cases, one of the solutions repeats itself exactly

in each cell, except for a sign change, and the other solu-

tion increases linearly in amplitude as x increases.

Case 2. P<O .

In this case, (oi is imaginary and f1 , d"!

are complex. We may define

l. a 4k

’01 = i Z If] . (1.17)

Let us for the moment use the positive sign but keep in

mind that the negative sign is also acceptable. Then

I o J.

_ UHF!“ =(1‘llflz' (1.18)

Ur"(i-z'lialzt) ’ r’ 1+z'lfli)'

  

Since (Ix: r; ’rj‘: fl, and nr_=i ,we

may define a constant k by the relations,

= 61740. n = e—ZAR.‘ (1.19)

J

n

Then, characterizing our wave functions by k, we have

‘l’+k(X) = Cihd£(€5x-7za)j (1.2011)
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4%“) = C [£1a£[£;X—M). (1.201))

We may define two new functions by

34 _

73mm = C I [x mag/6*”): (1'2“)

73100 = ci’é{”"“’£{5;x-m). (1.211)

It may easily be verified that

7311(x+a)= BM), 72,: (Ha):- 7.21/1). (1...)

Therefore, we may rewrite our independent solutions as

4’41“”: Ci'éxfll (X) J (1.23a)

4'40!) = 6.1%! file ()0) (1.23b)

where P;k(x), P;k(x) are periodic functions with period a.

Now we see that if the sign of 10* is chosen negative,

one need only change Ili+k to Ikk and qu

to llhk . These solutions are of the familiar Bloch

form and do not change in magnitude from cell to cell. They

may, however, change by a complex phase factor.
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Case 3. P: 0'

In this case, r+ = r_ = 1, 0+

= 0. Constructing new solutions

=O_=01f8'o=0,

and c+=o_=;|;m ifuO

in the same way as for Case 1, we have for g'o = O:

|“()0 2 (X:7la) J (1.24a)

4’1(x)= 9.2101414) {ravage-M). (1.211.)

Similarly, for u0 = O, we obtain:

(m) = hiya—w-(zni/ga’uzx-m), (1.25.)

E(X-flQ . (1 .25b)II’Z(X) = E

These solutions behave in the same way as do those for Case

1 except that these solutions do not have a sign change in

going from cell to cell.

29M. o<p<l.

Inthis case, P3.- )rt , fi- , (bi:

O< h<1 . i<n<+oo and

we may define a positive constant

are

all real. Since

r+ (fl-<1,

K by the relations

Ka ~ka

C (1.26)
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Then,

_ kna
Ill-”(00 ‘- C £(EJX’7Z¢) J (1.27a)

~Km

W-ko‘) = C £05.; X-Zd)- (1.27b)

In the same way as for < O, we define periodic functions

P+K(x) and P_R(x) by

E]: (X) 2 C—k(X—M37€(PJX'7Z¢)J (1.28a)

fk(X—7la

P—kO‘) :2 C ).7€(EJX"M)2 (1.28b)

where BK ( X'I‘a) = Pix (X) as may be verified.

Then our two independent functions are

(IQKO‘): CKX HKO’) 1 (1.29:!)

[It/(0’) = C-kx RX (X) . (1.29b)

Qkfk_ increases exponentially in magnitude with increasing

x, while ’K decreases exponentially.

It Should be noted that the case = 1 never occurs

since this would imply that 90,170 = ual/[lo or

jo Ila, -- 30/ up = O, which would mean that g(x)
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and u(x) are not linearly independent.

Case 5. P>1.

In this case-l < r_ < O, on < r <-l,' and $.13. 4’4,

Pi are all real. In view of the ranges of r+ and r_ .-

and the relation r r_ = 1, it is convenient to define a
+

constant K by

+I< -—Ka.

n="C a. ) r...=—-c . (1.30)

Then X I

7! 0L .,

4"” (X) = (’flnc £(tJX-M)) (1-30a)

4’4: (x) = we”?(5; x—m) . (1.301))

Defining new functions

G410) = 6-1)"c*("”");,€(5; X-Zd), (1.31:1)

G40!) = (‘1)ncfka-MggOFJ/Y-M), (1 .3111)

it is easily seen that

Gik(x+a)= -G1sk(x) ., Guam): 6100) (1.32)

so that the 0+ K(x) are periodic functions with period 2a.



22

‘We then have as our independent solutions

KX

44K“): C aft“): (1.3311)

delX) =3 C.kx G—K (X) o (1.331,)

The magnitudes of 41K and 4"“ behave as in Case ’4.

For purposes of clarity in later sections, we shall

refer to energy regions in which the wave function is of

i161 -2

(ax) = C./( 6 721(0) + 6.; c £12m (1.32).)

as pass bands (P.B.) and energy regions in which the wave

function is of the form

4’00: C+kckxflkm + C-kgkxp'kooJ (1.31m)

4’00= Cuckaiklx) + 61,5”6140 (1.3%)

as attenuation bands (A.B.).



SECTION II

TERMINATION OF THE PERIODIC POTENTIAL - DETERMINATION OF THE

CONDITIONS FOR BAND AND SURFACE STATES

We shall now consider various boundary conditions

which may be imposed at either end of the periodic potential.

The type of boundary condition we wish to impose will, of

course, depend upon the specific physical phenomena we are

trying to represent. For example, near the surface the

atoms do not have symmetrical forces acting on them as in

the bulk. This results in a deviation from perfect period-

icity, which may take several different forms. One of these

deviations might be an increase in a basic lattice trans-

lation, the closer to the surface the atom is situated.

Another deviation might be total reconstruction of the sev-

eral layers of atoms near the surface into a different type

of structure from the bulk. Several other types of devia-

tions might occur, and in general we have to consider the

specific type of bonding and the lowest energy state of the

system to decide which type of deviation will occur. We

might also consider the dirty-surface case which arises

when the unsaturated forces or dangling bonds of the sur4

face atoms tend to attract foreign atoms which may be

23
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floating around outside the crystal. This usually results

in h or 5 layers of foreign atoms being deposited on the

surface before the bonds are saturated and requires consid-

eration of interfaces between crystals with different per-

iodic potentials.

We shall start with the simplest boundary conditions

possible and try to understand most of the phenomena which

occur for this case. We shall also outline a procedure for

the computation of more complicated terminations. This

method is straightforward enough so that further calcula-

tions using it could be made without any major difficulties.

The simplest way in which to terminate the periodic

potential is by a step function at either end. (Incident-

ally, the relative smallness of the surface dipole contri-

bution to the work function bears witness that this type of

termination may not be too seriously in error in many

casesg.) For the present, consider the termination to be

made either at a potential maximum or at a potential mini-

mum (see Figure 3.1). The first type of termination is

10 whereas the second

type of termination is referred to as Tamm-typell. These

commonly referred to as Shockley-type

classifications are named for the authors who first showed

that these type of potential terminations could have sur-

face energy states associated with them. The Shockley-

type potential termination is generally applied to covalent
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crystals where the surface perturbations are small whereas

the Tamm-type termination is thought to be valid in cases

where the surface perturbations are large. The'Shockley

termination is usually thought to have more physical valid-

ity; it corresponds to terminating the crystal between two

atoms. Both types of terminations allow us to divide the

periodic potential into cells in which the potential is

symmetric about the center of each cell. The Shockley-type

termination yields a cell with a potential minimum at the

center whereas the Tamm-type has a potential maximum there.

For either case, we go about solving for the energy

states by matching the wave functions in all regions at

their respective boundaries to form a smoothly varying func-

tion of position. This matching, of course, will only be

possible for particular values of the energy, and it is our

purpose to find those energies which do allow a continuous

wave function. These energies will be our eigenvalues. The

band structure (i.e. the regions of energy in which the wave

functions are either running waves of constant amplitude or

exponentially increasing and decreasing waves) is determined

completely by the periodic potential. The exact position of

the eigenstate in this band structure will be determined by

energy conditions which are derived below. A

For energies less than or equal to the lesser of V1

and‘Vé, we set up the matching conditions as follows: For
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x 5; O, the solution of the Schrodinger equation yields

, X ——.

4'00 =AeK' , K, =V§e(w-£),- (2.1)
 

where we have used the condition that 1" go to zero at -m .

For 0 < x\< Na, we have five forms of the wave function

which the solution of Schrodinger's equation takes, depend-

ing upon the region of energy. In all cases, the general

solution will be a linear combination of the independent so-

lutions with constant coefficients which.must be determined

by the matching conditions. Let us for the present discuss

in detail only the case of the running waves and then list

the other cases, since the procedure is the same in all

cases. Then for Case 2, t91< O,

APO) == Cit/1 (III/26:) + C—k 44.1100, (2.2a)

((11.00 = ciz’ézPik/XL (2.2b)

For x 2 Na, we have

-k (x—Na) ‘ 'fi

4’(X)= BC 2 I Kz=fiii(lé-£).(2.3)

 

Continuity of the wave function and its derivative, or

alternately continuity of the logarithmic derivative at



27

0&0} + C~A 0.16

x = 0, requires

 

(:fié it (3 )é

_. C'flé— C-A .

":04 C/év‘C-é I (21)

'where we have used

41% L17“; ’ 44‘ L: (7:, (2.5)

(kflt]x: 1: , ‘IL‘HIX::;

(z; ==r-‘ GK: .

Similarly, at x = Na, we have

[Ma 46%
("Ae —C—é€ )) (2.6)

“ “I "' C7- 16 a: “—Axyflh;

1 6M6” [4645

where again we have used the properties of the wave func-

(4),] == 01660% (’1): 01-13%
flew.

Xena.

£1410. __ 4.442

qkukijflé: C: )' ‘PLAh1 =jlf‘ca

Dividing Eq. (2.1) by Eq. (2.6), multiplying out the quan-

tion

(2.7)

titles and grouping terms, we obtain the quadratic equation
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in C+k and C

Ciztfflf’szb)“2.1.(1276)5/‘Iz)éha%afi
(2.8)

— Cid—(”26,7%,) == 0 .

a:

-k:

Dividing through by (KIf ((2)6

terms of C-k’ we have

= ' "7) AV“ 1311111). )
CM [lérgkm (:évakghfi 9

and solving for C+k in

 

Now -—l€ %) girl and K1, K2 are always positive so

we may define a phase angle ’6 by the relation

' _ /K "kl ' (2.1 )

50¢ “ \éfldsmém O
 

Then, Eq. (2.4) becomes

=[+C0$¢+lsillé]€“CLA
(2.10s)

01?

{AI/4:411

CI]? = i C C“ . (2.10b)
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We may now substitute back into the Eq. (2.4) or (2.6) to

obtain the conditions for matching. Substitution into (2.4)

yields the two conditions

a:=-z’ut
k..=- ;aiith) M)(.11.)

If we had used Eq. (2.6), we would have obtained

K2,: ~iail‘an(M) > (2'12”

‘ Coll(‘é£/4‘:é) . (2.12b)

Both sets of equations give equivalent energies when the

equality is satisfied. We shall, for convenience, use the

first set of conditions. Both sets reduce to the same set

when V1 - Vé since the phase angle goes to zero.

For the other four regions, the matching conditions are

listed below.

(1... 1. ,9: 1a: , g.u.’= a.

(El—2%KZ.) = ”6%) 91, = 0. (2.13)



2(S{#§3;.)‘=’ ;:—(E§?;) ) "
 

<32a£5e4}: ‘f7==:£9 ) ‘sz,€gh9-:: ‘7.

(M) =NGE') , now.

I

:2 (fik91F/Ki. :.J<%fi(c%%%:) ) J§h::=’<7‘

 

Casein 0<’o<1.

kl = '— a; Z‘anfi(flaz:§)>

 

 

‘—0;Caz%(M§fJ)>

K=—‘L[qy(1:___€o§)

=”gifi

521%I: (:73215—3 )Sz'lzékA/a .

(2.1#)

(2.15)

(2.16)

(2.17s)

(2.1711)

(2.183)

(2.18b)

(2.18c)
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Case5: ’9 :>.1. .

k. = wan/MW). (2.19.,

K, =: 'WCOZtA (W)
, (2.1911)

where

 

J.

Lac—I
k=_i[0~7(fF-£1l ) (2.20)

and a; , sinh I are defined as in Case ll.

These matching conditions are transcendental equations and

cannot be solved explicitly for the energy of matching.

The correct energy eigenvalues can be found by a graphical

method. The left-hand side of a particular matching condi-

tion is plotted as a function of energy on the same graph

as the right-hand side of the matching condition. The

points at which the curves of the left and right hand sides

cross yield satisfaction of the boundary conditions, and

consequently give the energy eigenvalues. The regions in

which the curves cross will determine the character of the

wave functions. The boundaries of these regions, as noted

in Section I, are determined by the zeros of g'o (E),

go (E), u'O (E), uo (E). It is important to note in what

order these functions go to zero as the energy increases be-

cause this order determines whether conditions are favorable
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or not for surface states to occur. Consequently, it is in-

structive to follow the matching conditions as a function of

energy for a particular sequence in which g'o, go, u' , u
o 0

go to zero to obtain insight into what conditions determine

whether a surface state might occur.

For simplicity, we consider the case where V1 a V: so

thatKl-K2 and «fi- 717 :0.

Let us first consider the case of the zeroes occurring

in the following order with increasing energy.

3:4)?» 119’. unyofiyoflofi 11., ~-- (“1)

l

A qualitative graph of -(ZIGM) [Ioli is given for this

case in Figure 2.1. Notice that a discontinuity in the

VW'

slope occurs at g'o = 0.

+

i
. z
.
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Figure 2.1. Effective wave number versus energy - Case 1.
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The above characteristics are those for the reduced zone

scheme where we have limited k to the range 0 5 k S. 7r/a. .

If we had taken the sign on I'M-g; to be positive for the

odd-numbered bands and negative for the even-numbered bands,

we would have obtained completely positive values for the

graph above with discontinuities in the slope occurring at

u'o - 0 also. In such a case, an energy versus k plot would

be in the extended zone scheme.

The left-hand side of each of the matching conditions

given by Eqs. 2.11-2.20 is 111 =W(V,— E) ‘, and

when plotted as a function of energy is Just half of a

 

parabola with its axis along the E coordinate. It is posi-

tive for all values of energy. The right-hand side of the

matching conditions will have alternating regions in which

we must use the appropriate formulae.

The first region, corresponding to the energy at the

bottom of the potential well, is an attenuation band_

0 < < 1. In this region, -(YIo’/%)I Ii is positive, as

are tallA(Kfi/Q./Z) and Cot (KA/a/z), so that

" (’%:Fi> ltdlzé (%)< O) (2.229.)

-<—%rewz%<%<o. (2.2...
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As the energy increases to the zone boundary where go' a O,

, .L

K approaches zero, as does —(”0/[L0)IFI 1' . Therefore, the

I . I 1

product '~%Ifliéfl£{%) goes to zero while the product -116; FI".

5 c (8%) approaches the limit -(-%)/N< O. This last

limit is a result of the fact that -€4flto) I'm-Ii goes to

zero at the same rate as €051,099) goes to infinity

so that a finite limit is achieved at go' a 0. Both func-

tions are less than zero for the whole region so that no

crossing with the K1 curve is possible. At go' a O, we

have f- o, k = 0 so that -—7£-:/ [Zia/Mb?) is zero and

—(—2%If/£cot(-&g£’) has the value véuvl/fla/l’,’ provid-

ing a smooth connection into the next region of a pass band.

From the go' - O boundary to the go -= O boundary, (a varies

from O to - co, and consequently, It varies from 0 to “IT/a.

~(lloI/llaNf/t is positive in this region.-cof(éjg) is Just

tall(éla’-¥) so that both functions have the same form,

one being shifted by 1172. Both functions have periods of

71' within which they vary from - 00 to + 00. Now, as k

varies from O to 1r/a, tan(k//a/z) goes through N/2

periods so, that it passes through any positive number ”/2

times if N is even and (N+1)/2 times if N is odd. "Cot(1‘49)

also goes through n/z periods and goes through any positive

number N/2 times if N is even and (N~1)/2 times if N is

(odd. Multiplication of talz(kA/a/v.) and —60f(,4/\/a/z)

by -(llo//llo)q0r£ changes the slope of these functions,
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but is is true that the total number of intersections with K1

will be N, and consequently there will be N eigenvalues. As

I

the boundary go = O is approached, —%IIpI%/é£é goes to the

I

value ~(—%)}I< o if N is even and 1- 00 if N is odd. Like-

I f I

wise, ~(—%fo/£)Coz€éz4" goes to -_I- 00 if N is even and -é-%3)Af

< 0 if N is odd. At go = O, we connect on to an attenuation

’ 1

band where F > 1. 0n the boundary, -(‘%I Iz)z‘alli(%)

. I I 1

is equal to -(-”H‘-o’)l\/ and - (’filfll)&fi( ‘91s equal to

-_1_- 00. As the energy increases in going to the next bound-

1 .l

ary uo' - O, -(’%Iflz)w(gf/a)increases to zero and

’ .I. “a. 5

(.%lfl9&0d(¢)increases from - 00 to the value 5;; O.

The two functions are both negative for the whole region so

that no crossings are possible. At uo' .. 0, (0: - 00, k a

1 J.

"IT/a, and "(Ila/2b)?!" is zero, going negative in the next

region of a pass band. Since k varies from T/a to 0 with

increasing energy, the behavior ofW) and -Cdl(é¢,t)is the

reverse of that found in the first band. However, since

ygl .L ' 1

- I I” is negative for this region, the products {—filfl‘)‘

”" as ’ s ~'tam( z, ) and -—[—%, If! )cdfl‘) yield the (same form for the

I .1

' a - 3 0functions as in the first band. At no ’0, we have( %3Ifl)

'tdfl[fiAh/z) = 0 if N is even and \fi;; < 0 if N is odd

while —6%Ifl/£)Caf¢i¢a)is equal to fyfly, if N is even

and zero if N is odd. In going from u0' = O to 110 a O, we

again have a total of N crossings of the K1 curve. At 11 a

o, —Z‘a0’;lrlefbn(éé€4) goes to Ng< 0 and reg/#leégg)
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goes to + 00. These functions connect on to the forbidden

bandboundary conditions (for 0 < f < l) at 110 - O:

—‘€.3:,é)m(m)- ”ff and -(—%I/I“)ca2é(m)

- + 00. Continuing across this region to the boundary gO'

- 0, “($19,I‘M/h) increases to zero while -(-%0l [‘9‘

M(W) goes to - (- %/%)/N<0. Again both functions are

entirely negative in this region so that no crossings of K1

are possible. At go' - O, we are again back to the same

type of band as considered before. As may be seen by the

above arguements, for the sequence of zeros of the functions

30', 30’ uo' and 110 considered, no surface states are poss-

ible.

we now consider the case when the order in which go',

g , uo', uo go to zero deviates from the order given above.

For example, suppose tht order is given by

.90]; 9' J ”0’, 11.0) 90’) (WI)90))%J%S'°' (2-23)

In this case, the order of the functions in parenthesis,

110' and go , is reversed. A qualitative graph of -(a”/Uo)lf/"

:18 given below in Figure 2.2. Comparison of this graph

with that of the previously considered sequence shows that

'the main result of switching the order of go: no. is to

cause -‘("°’/llaa)l/’It to be zero on the upper band edge at u0'

= O, at which point it goes negative in the region f) l.
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Figure 2.2. Effective wave number versus energy - Case 2.

At go - O, -(”9’¢l,)lf(* is equal to - 00 at which point it

increases to some negative value before going to negative

infinity again at the upper band edge “0 a O. The essential

feature to notice is that the form of -(“0%(o)lpli is

altered in the two band regions adjacent to the attenuation

region in which it goes negative. In the lower band, be--

tween go' a O and u0' = O, ‘(%élf#)bn(é%) will go

through N/2 periods if N is even or odd achieving the value

oantuo'=OifNis evenand W‘(gé)>01fNis odd.

Notice that the ratio ya/fi is greater than zero in con-

trast to the previous situation. For N odd, the magnitude

of the product #(fi) will determine whether the crossing



38

of K1 occurs in a pass-band or .in an attenuation band.

For N small and the potential weak, the value (61%) > K1,

and the crossing will occur in a pass band region. For

N large, the ratio 95/ , which depends only on the per-

iodic potential, remains the same but is reduced by a

large number N so that flgk K1, and no crossing occurs

in the passeband region. The function -(-%élf(£)6d2"(£21?)

behaves in a similar way, attaining the value of #69791)

> 0 if N is even and 0 if N is odd. Thus the number of

band states which occur will be either N if 7619990)) K1

or N-l if fi(.7%)< x1. At uo' - o, -(—%Ifr£)tan/z(£44’)

- O and —('%llfllé)dobé(5g- # (fit/f.) . In going from

no, - O to go‘ 8 0, --[-‘-‘g/ [ably—gnomes“ to the

value ”(M/”0) > O and -- -%If/£)&fl('§éld/ goes to + 00.

Again, if N is small such that N (“.510)< K1, then no cross-

ings will occur, but if N is large such that A”(4/14)) K1,

we obtain crossing in the attenuation band. It should be

pointed out that an intermediate ease with #6907?” > K1

and ”(ual/lb) > K1 may occur, in which case there is only

one crossing in the forbidden band. For N large, such

that #(YOT/yo>< K1 and N(.%€)> x1, we obtain two cross-

ing in the forbidden band. By analogy with the band con-

sidered previously, the allowed band bordering this at-

tenuation band from above will have N allowed states if

iv(%:)<x1 and N-l states if AM“: > K1 . We may
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summarize the results of the above reasoning by the fol-

lowing table. (The function written above each column.is

.to indicate at what energy the conditions are to be eval-

uated.)

Table 2.1. Existence conditions for Surface States - Case 1.

.. k"0 (90‘30
 

I-VL %)>k' N(%)<kl No surface states

 

One surface state

 

fi(%)<l<l N(%;)</(, Coming from lower band

r I I On f t t .

# §§)>k, N(flip/(g cogizgurfgg; 3P3; band

5 I

t(3m, N(-Z’;:)>I<. assistants“... 1......

 

    
 

We see that for large N, one of the pass-band states from

the two adjacent pass-bands~moves into the attenuation

band to form two surface states.

The situation is similar when the zeroes of no: 30'

are interchanged; that is, for

I I ( l a

902.90) 5L0) .90) 0)) ' H (2.24)

In this case we may represent the conditions for surface

state occurrence as



#0

Table 2.2. Existence conditions for Surface States - Case 2.

fzg=<9 _ IZD‘=¢9

I I

fi%)>kl Ngfl<kl No surface states

’ One surface state
1. I

N (_‘%)<k’ N(%)(k’ from lower band

One surface state

.L (w) >k' ”6%)>/(' from upper band

IV

I ’ 2 r

‘5’!’(10%) <k) N653)kl refuggirameiower ”and“

 

 

 

 

    
 

Thus, we see that a necessary condition for the

possible occurrence of surface states is that the band

edges cross. When this condition is fulfilled, the actual

occurrence depends upon the number of atoms considered

and on the strength of the potential.

The effect of unequal terminations (i.e. V1 K Vé)

at either end of the crystal is to spread the energy

levels. Hewever, this effect is not large since the

difference between‘v1 and‘Vé is manifested in K1, K2 which

vary only slowly with changes in'V1 and'v .
2

For a periodic potential terminated at an arbitrary



41

point in the end cell by a step function, the formalism

which we are using is not the most convenient. However,

the matching calculations may be done in the same manner

as above, matching the wave function and its derivative

at the termination point to obtain a contiruous wave

function. This procedure is carried out in Section IV

for a Kronig-Penney12 type periodic potential and the

results are examined. It is found that this type of

termination gives rise to many other surface states be-

sides the ones considered above.

For arbitrary terminations of the crystal potential,

it is necessary to use iterative techniques to integrate

the Schrodinger equation. For the region of the crystal

in which the crystal is perfectly periodic, we know the»

wave function and its derivative at all points. At the

point where the potential starts to deviate from perfect

periodicity, we may iterate through the arbitrarily vary-

ing potential to a point outside the crystal where the

potential is constant. In this region, the wave function

'KIXI , so thatmust have the exponential decay form, 8

we may match this to form a continuous wave function in

all regions. This method may also be used to connect

two different types of periodic potentials by a region

of non-periodic potential. In this way, a wide variety

of problems may by dealt with, with few changes in the
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calculational apparatus necessary to change from consider-

ation of one phendmunon to another..

Another application which can be made of this method

is to the calculation of the reflection and transmission

coefficient through several identical barriers. This

topic will be discussed in Sections V and VI.



SECTION III

TERMINATION OF A KRONIG-PENNEY POTENTIAL

In order to obtain a better understanding of the

principles discussed in Section II, we next consider

the Tamms and Shockley—type terminations of a Kronig-

Penney13 type potential, as shown in Figure 3.1. By

the Kronig-Penney type potential, we mean an array of

a finite number of rectangular well potentials. The

reason fer choosing this type of potential is that it

leads to a Schrodinger equation which can be solved

easily, and the energy band structure associated with

it is similar in many respects to that of a real crystal.

Two important features which serve to illustrate this

point are the existence of points of contact between

different allowed bands (a special type of band cross-

ing) and the behavior of the band structure as the energy

approaches infinity; namely, the attenuation band gaps

go to zero. Mane,“ and later Stat2,15 and Koutecky,16

have derived conditions for the crossing of bands. In

these papers it is shown that crossing occurs for poten-

tials which require large numbers of Fourier components

to represent them, with some of the components being
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negative. Since a rectangular well potential abounds in

harmonics, as does a real potential, we expect the Kronig-

Penny model to be a useful model of a real potential.

A . SHOCKLEY-TYPE TERMINATION

We begin by considering the Shockleyetype termination.

Dividing the periodic potential into cells yield a cell

with a pctential minimum at the center.

 

   

L?— -b 'w "—4
It). «~—I———~ I

o! . I 1

I | 7

I + I I

C) I011 (L

In the region, a/2-b€ x€ a/2+b, the Schrodinger equation

has two linearly independent solutions,

 

 

300: scam-4i?» (3.1.) .-

. k 0/)k=\f%(FH/o/1>2

1(0):: 5772,51“ 21’ - (3.11:)

Note that

9(%)=1 , 97%):0, (3.2a)

U(%)=0 ) “7%)=1. (3.21:)

If we now connect these solutions individually to the
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solutions of Schrodinger's equation in the region

osxSa/2-b, we obtain for E<VO/2, the values of

g(x), g'(x), u(x), u'(x) on the left cell boundary:

90 z 603)1,as;[43-5)— £52744 Sabra—5), (3 .1.)

‘9;= -Kcoséési11/(Z-a)+lé Sz’nIIA/MK/Qz-é), (3 .41»)

2L.= wt 605M SIM/((72.1 — isiraazas/W-éu .ch )

710’ = 605% CasMflj-afl'{Sagas/MB.ud )

K -= \féfl‘m/z - 55‘.

For E - vo/2, and E>Vo/2, we must connect in a similar

 

way to obtain expressions for go': go’ uo', uo. To

determine the pass bands and attenuation bands, it is

necessary to make a plot of F versus E, where F has

been defined in Section I as

F ::: (95/30/[af/flo). (35)

Such a plot was described in Section I. The exact posi-

tions of the band edges (i.e. energies at which one of

the quantities go', go, u ', uO equals zero) will depend
c

on a, b, V6. To obtain a qualitative idea of what effects

these parameters will have on the band struetures, we may

make energy versus potential depth plots for several values
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of the well width and the lattice constant a. Such plots

are shown in.Figures 3.2, 3.3, and 3.4. Figure 3.2 has

a well width of 0.75a, while Figure 3.3 has a width of

0.5a, and Figure 3.4 has a width of 0.25a. These graphs

were obtained by making a f, versus E plot for a given

I’u’

o 0

go to zero (i.e. the band structure). The parameter‘Vb

a, b,‘v6 to obtain the points where go', go, u

was then changed incrementally and another (3 versus E

plot was made. In this way, the dependence of the band

structure on‘Vb was obtained for a given a, b. Allen17

has obtained similar but more detailed graphs, varying

the constant b.for 12 values, for the Kronig-Penney type

potential, and the reader should refer to his article for

more detail.

Note: In all graphs contained in this thesis,

—"hawes 11 use units in which 22b” 1. To this

end we choose our unit of length to be -

strom and our unit of energy to be (1.97) '

3.88 electron volts. This energy unit will

be denoted by E.U. hereafter.

For the above mentioned figures, note that for large values

of the potential‘vb, the pass-band regions are very narrow,

corresponding to the tight binding of electrons to the

constituent wells or atoms. For large energies E, the

effect of the potential is not "felt" as much, allowing

the pass-band to widen. As we decrease the strength of

the potential, the pass-bands widen allowing some of the

band edges or boundaries to cross or Just make contact.
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Figure 3.2 Band structure as a function of well

depth for a Kronig-Penney potential

with 2b= 0.75a.
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Figure 3.3 Band structure as a function of well

depth for a Kronig—Penney potential

with 2b= 0.50a.
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Figure 3.4 Band structure as a function of well depth

for a Kronig-Penney potential with 2b= 0.25a.
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This is best illustrated in Figure 3.3 in which the upper

band edge of the third pass-band edge crosses with the

lower band edge of the fourth passeband, the upper band

edge of the fourth pass-band crosses with the lower band

edge of the fifth passéband, and the upper band edge of

the fifth passeband Just touches the lower band edge of

the sixth pass-band. For the tight binding situation,

the band edges are determined by the sequence of zeroes,

19:19.2; Zlo’,l£o,90’) 901m/fll
o, .. . . (3.6)

As we saw in Section II, this sequence of zeroes does not

allow the emergence of surface states. As the potential

is decreased, the bands which cross have an attenuation

region between them, which is favorable for the appearance

of states.. The points at which the bands cross can be

shown to occur only for E >‘Vb/2.18' By consideration of

the equations for go', go, u ', no, one can show that the
o

crossing points are given by

_. mr" W’-

$71155 ”+ -—-Z§2—’ V

°CVBSS> O. (3.7)

M'::ing- fit .2.))

where n,‘m are integers. It should be noted that the

appearance of band crossing only for E > Vb/a is not
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peculiar to our model potential but can be proved to hold

for any arbitrary periodic one-dimensional potential.19

(This does not hold for three dimensional crystals.)

Since the value of the vacuum level energy is of the order

of 20 eV’for most real solids,2O we see that to obtain

surface states V6 must be weak enough to allow band cross-

ings within this range, and consequently, surface states .

of the Shockleytype would be expected to appear for nearly

free electrons. we note also in passing that_the width

of the attenuation regions does not decrease monotonically

with increasing energy but varies in width_due to the

crossings. Hewever, on the average, the width will go to

zero as the energy goes to infinity. As Vb goes to zero,

the attenuation band-widths go to zero yielding a con-

tinuous pass-band region, or a free electron region.

To proceed, we consider specific values for a, b, v0.

As a-reasonable approximation for a real crystal, we let

V6 have the magnitude of the'firzt Fourier component of

the O.P.W. potential for silicon along the (111) direc-

tion and ta‘ke'V1 - V: - V600, the average potential for

silicon. Along this direction, Si has a lattice constant

of approximately 5.4 A0. The well width will be taken

to be equal to the barrier width. For the present, we

shall limit ourselves to four cells. Thus
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V. =Va= raid/=- 4.5’.e’.u., (3.8.)

Va = I3.2 eV= 3.45%, (3.811)

a= £¥A° (3.8c)

A = /.35flo (3.3a)

N: 17‘
(3.8e)

A plot of P versus energy is given in Figure 3.5. Notice

that the lowest pass-band is very narrow, of the order

of .02 E.U. in width. The attenuation-band above this

pass-band is large, of the order of 1.75 E.U} or about

6.8 ev, which is much too large a gap, the experimentally

observed gap for 31 being about 1.2 ev. However, one

of the difficulties associated with the choice of a po-

tential in the one-electron approximation is that the

Fermi energy is not unambiguously known.22. By inspece

tion of the widths of the attenuation energy widths up

to the value of the vacuum, 6.5 E.U., we see that a

width which is of the same order of magnitude as 1.2 ev

would be that width occurring between 5 E.U} and 6 E.U..
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If the Fermi energy were assigned to this region, the

work function would be of the correct Order of magnitude

as would the attenuation band width. However, this width

is still rather wide. This discrepency may be accounted

for by the fact that, while we are using an O.P.W. po-

tential, we are not orthogonalizing our wave functions

to the core wave functions, so this potential is incor-

root for our wave functions. Antoncik23 has shown that

this orthogonalizationumay be taken into account by sub-

tracting an effective potential from the O.P.W. poten-

tial, the effective potential being calculated from the

core wave functions. The sum of the two potentials is

known as the pseudo-potential. The valence and conduo;

tion wave functions may then be calculated without an

orthogonalization procedure. For our purposes, we as-

sume that the O.P.W. potential is reduced in.magnitude

(i.e. VB is reduced). By inspection of Figure 3.3, we

see that if V6 is reduced to about 2.4 E.U., the atten-

uation width between 5 E.U. and 6 E.U} becomes about

1.2 eV'which is approximately the energy gap observed.

Since this calculation is for illustrative pur-

poses only,we shall use the value of V6 - 3.4 E.U} in

the calculations which follow, being satisfied that we

are in the correct range.

using the boundary conditions derived in Section
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II, (Eqs. 2.11-2.20) we plot the left hand side of these

equations on the same graph as the right hand side to

obtain Figure 3.6. The vertical lines indicate band

edges. The solid curve is Just the left hand side of

the boundary conditions, K1 --?\/"7"(vl - E)‘. The dotted

 

curves are the two functions on the right hand side of

the boundary conditions. The crossing of the K1 curve

and the dotted curves determines the eigenvalues. This

procedure for finding eigenvalues is exactly analogous

to the method of finding eigenvalues for an electron

in a box with finite ends. Notice that in Figure 3.6,

the band edges are determined by the sequence of zeros

of go', go. uo', uo in the order,

$5.90 ) Zia/2741:2912 (”o/J90): (90/1210). (3-9)

From the considerations of Section II, we expect to

find surface states occurring between (uo' - 0, go a 0)

and between (go' - O, 110 - O). This is indeed the case.

A pass-band state from the third pass-band has moved in-

to the attenuation region. The number of cells is not

great enough or the potential is not strong enough to

move the upper pass-band state down into the attenuation~

band, so there is only one surface state. The same sit-

uation applies for the next higher attenuation region,
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except that now for the partial pass-band (which would

be pass-band 5 if‘V 'Vé were large enough to includea

the whcle pass-band; one of the pass-band states has

moved down into the attenuation region. Note also the

effect of varying Vi or V2. Since the dotted curves

do not depend on‘V1 or‘v2 (if‘vl =‘Vé), we can vary

K1 -V%gyl - Ejto see that increasing and decreasing V

 

l

raises and lowers the crossing points and consequently

the energy eigenvalues. Since K1 depends on the square

root of‘vl, we do not expect the energy crossing points

to change very much as Vi is varied except for energies

near the vacuum level.

An energy versus (k and K) plot in the reduced-

zone scheme is shown in Figure 3.7. The horizontal

lines indicate the band edges. The solid 99?V°3 are.

the E versus k plots in the pass bands whereas the dash:

ed curves are the E versus K plots in the attenuation

regions. To be entirely correct, we should have plot?

ted E versus K along the imaginary axis perpendicular

to the real values of k. This would then yield a band

structure with pass bands connected by imaginary loops

across the attenuation bands. These imaginary 100ps

24 as "real lines", their exactare referred to by Heine

meaning coming from the analytic continuation of k in

E(k) into the complex plane with only real values for
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WAVE NUMBER x (8/?)

Energy versus (k and K). The X's denote

eigenvalues which were determined in

Figure 3.6 (Shockley).
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E considered. The X's represent the eigenvalues as deter-

mined from Figure 3.6. Notice that in attenuation band

3, the value of K is very small so that our wave function

in this region is not attenuated very strongly going in-

to the interior of the crystal. In attenuation band 4,

the value of K is larger but is still not large enough

to attenuate the wave function strongly.

Figures 3.8 (a-e) are plots of the wave functions.

The pass-band functions are labeled as hf where at is

the pass-band index, and F is the index of kf’ in the

pass-band ('e.g. 44,. denotes pass-band 1, the lowest 1:

value labeled 1:1). The surface wave functions are de-

noted by “9.3%” 4).“? where ‘i } indicates a sur-

face wave function, 3' indicates the attenuation-band,

the numbering starting above the first passeband, and

8 indicates the label on kg (S=i or 2.) . The

symbolic notation rv l'Ju, (a is to indicate

which pass band function has moved into the attenuation

gap. Notice that the wave functions are Just modulated

box wave functions (i.e. modulated solutions to the

problem of an electron in a box). The surface wave

functions are hardly attenuated at all, as was to be

expected from the small attenuation constant K. In fact,

since the value of x is proportional to the band width,25

we do not expect to obtain appreciable attenuation for
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less than 5 cells. To obtain a feeling for the way in

which the surface wave functions behave for larger crys-

tals, the surface states were calculated for attenuation

bands 3 and 4 with N = 20. In this case, N is large

enough to pull into the attenuation regions two pass-

band states from the upper and lower passébands. The

results are plotted in Figures 3.9 (a,b). Notice par-

ticularly the attenuation in Figure 3.9b where the K

constant is larger.

The location of the surface state energies in the

attenuation region is not the middle of the gap as was

found by Shockley,26 (a result quoted by several other

authors). In fact, their location in the gap depends

on the potential considered, the height of the vacuum

level, and the number of cells. For the parameters con-

sidered in this example, we may observe the dependence

of the surface state eigenvalues on the value of N for

the two attenuation bands in which surface states occur.

A plot of the surface state energy versus N is given in

Figures 3.10 (a,b). The points on these graphs are not

connected by a smooth line because the variation of the

energy eigenvalues for fractional values of N is quite

complicated, as will be shown in Section IV. It is

evident from these graphs, that the surface states do

not occur in the middle of the gaps, and that for N be—
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coming very large, the two states approach a common

asymtote. That is, they both approach the same energy.

The rate at which they approach each other is dependent

on the K constant; the more attenuated the wave function,

the faster the states will come together with increasing

N. It is clear from the above that this behavior may

be explained quite simply.

Since the surface cells are terminated symmetrically,

an e1ectron.which spends most of its time near the surface

(in a surface state) and does not interact with the other

surface state will have the same energy on either end of

the crystal, for very large crystals. In other words,

the electron on the right edge does not "feel" the electron

on the left edge because of the localization. As the

crystal is made smaller, the electrons beginto "see" one

another and their interaction splits the degeneracy in

the energy levels, in analogy to Splitting of the atomic

energy levels into bands when the atoms are brought to-

gether. For the surfaces very close together, the in-

teraction is great enough to push one state completely

out of the attenuation-band and change it into a pass-

band state.

B. TAMMéTYTE TERMINATION

For the Tamm-type termination, for comparison, we

shall use the same parameters a, b, V6,‘V1,'V2, N, as
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we used for the Shockley-type termination. The cell for

this case has a potential maximum at the center as shown

 

 

   

below.

i f ' '
| ‘vg/z «i'ib—p |

0% '— L J

J ' T I45/2 J
LL | J

o 4/2— 0-

Proceeding as before, we may write down the solutions

to Schrodinger's equation for a/2-b é x ( a/2+b, I: < VO/2,

 

 

9(1): 653A k(Z-%>) (3.10:1)

, k =\[§"f(14/2 22:“), A

71.00: Slflék(g-%) . (3.10b)

Connecting these solutions to the solutions in the region

OS 1: S a/2-b yields the expressions on the left edge of

the cell of

a: camsashes-A)Jfificsmmgmm

a]:A605M$i7l(IQ/24)~KSih/kA%£(%—£))(3 .11b)
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Mo = ‘75’ 5211K$0$£[2*b-fMIAWIZ‘QUJn)

710, = 605A kLCaSHZ’b'[éSIR/{$114924}; (3 .11d)

A = V$ZE+n/LT.

For E - Vb/z, E > V6/2, we connect to the appropriate

 

functions. With the parameters chosen earlier, a/2 is

equal to 2b, so that the functions go', go, uo', “0’

for the Tamm-type termination may be related to the same

parameters for the Shockley-type termination. Thus we

see by inspection of the two sets of equations that

 

SHOCKLEY’ TANK

a’ «- go’, (3.12)

‘90, 3 Ha

1e. - 4&0

710 ' us

This may be illustrated by reflecting Figure 3.} across

the‘Vb - 0 vertical axis as shown in.Figure 3.11. The

band edges are labeled to clearly indicate which function

determines the boundary. For small values of‘Vb, the

sequence of functions is given by

9o;(ll5,9o), lb) 90,190)M) 6,0,) ”I))(”;)§o). (3 '13)
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By previous considerations, we expect to find surface

states between (u0' = 0, go s 0), (go' a 0, u - 0),
o

and (u0' = 0, go = 0). Note also that some crossing

and uncrossing of the band edges has occurred at V0 = 0

in going from a Shockley-type termination to a Tamm-type

termination. As Vb increases, some of the bands again

cross to yield a tight-binding situation. The main

difference between this Tamm-type termination and the

Shockley-type termination is that for the tight-binding

case we still have surface states in the Tamm case but

we have no surface states for the Shockley case. Actually,

as used by most authors (and in this paper so far), the

designation Tammrtype termination is a misnomer. This

will become more evident later. Suffice it to say that

Shockley states as well as Tamm states may occur for the

Tamm—type termination. we shall distinquish between the

two types of states by the fact that Shockleyetype states

occur between pass-bands which have crossed once whereas

Tamm-type states occur between pass-bands which have

crossed twice. The Shockley-type states occur only for

weak potentials and disappear as the potential becomes

stronger. The Tamm-type states occur only for strong

potentials. Another characteristic which can be used

to distinguish the two types of states is the degree to

which they penetrate into the crystal, or in other words,
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their localization. The Shockley-type surface state has

a large attenuation length, being able to penetrate rather

far into the crystal, as surface states go. The Tammr

type surface state, on the other hand, is quite localized

and is appreciable only in the first cell near the sur-

face. Both types of states may occur at the same time

for weak potentials. This is because for low energies,

close to or below the maximum of the periodic potential,

the electron feels the effect of the potential quite

strongly and thus is essentially tightly bound.ngor

higher energies, the effect of the potential upon the

electron is.much less, allowing the electron to behave

like an.almost free electron. Thus when both types of

states occur, we expect to find the Tammetype states

occurring at very low energies whereas we expect the

Shockleyetype to occur near the vacuum.1eve1.>

Proceeding as we did with the Shockleyetype termin-

ation, we apply the boundary conditions for the Tammrtype

termination to determine the eigenvalues. Figure 3.12

illustrates the graphical procedure. This figure should

be compared with Figure 3.6 for the Shockley case. Al-

though it is not evident from the graph, the crossing of

the K1 curve in the attenuation band region between

(uo' - 0, go - O) is actually two crossings, one curve

superimposed on the other. These two eigenstates are
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of the Tamm-type since they occur for very low energies.

The surface state occurring between (go' - 0, u0 = 0) is

exactly analogous to the surface state found for the

Shockley-type termination. The same considerations which

determine whether there will be 0, l, or 2 states in this

gap may be applied to this situation.

An energy versus (k and K) graph is shown in Figure

3.13. This graph should be compared with Figure 3.7;

note the differences and the similarity. In attenuation

band 1, note that the value of K in this range is actually

off the scale of the graph and was not plotted outside

the limits shown. However, the X's (there are two X's,

one superimposed upon the other) are positioned at the

point where the K curve would go if it had been plotted

on a larger scale. The X's of course represent the

eigenvalues obtained from Figure 3.12. The pass-band

states in pass-band 4 and 5 and the surface state in

attenuation-band 4 are approxtmately the same for both

Tammr and Shockley-type terminations. The surface state

in attenuation band 4 has approximately therame magnitude

of attenuation (i.e. K) as that of the Shockley-type

termination state calculated earlier, and we expect the

same general behavior of the wave function going into the

crystal. However, the two states occurring in attenuation-

band 1 have a very large attenuation constant K and should
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be highly localized near the surface.

Figures 3.1# (a-e) are plots of the wave functions

for the energy eigenvalues obtained above. These wave

functions should be compared with Figures 3.8 (a-e) for

the Shockley-type termination. Note particularly the

Tamm-type states which are plotted at the bottom of

Figure 3.14a and at the top of Figure 3.1#b. They are

quite localized at the surface and in fact extend further

outside the crystal than the other surface states con?

sidered. Note also the energies at which each occurs.

They indeed lie practically at the same energy due to

the large attenuation and consequent lack of interaction.

This result has been discussed earlier for the Shockley-

type surface states except that in that case a larger

crystal was required to establish it. Figure 3.15 is

a plot of the surface state wave functions in the 4-th

attenuation band for 20 cells. As may be seen by com-

parison with Figure 3.9b, the differences between the

states are small and hence the designation of Shockley-

type states for both sets.

Finally, we should comment that the procedure out-

lined for finding the energy states by the graphical

method of plotting various quantities was only for il-

lustrative purposes. The actual computations were per-

formed on a CDC 6500 computer, with the processes
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outlined taking place internally in the computer. The

total time necessary for the calculation of the band

edges and 18 eigenstates to 6-figure accuracy was or

the order of 10-15 seconds.



SECTION IV

ARBITRARI’TERMINATION OF A FINITE PERIODIC POTENTIKL

The problem of termination of the periodic potential

at an arbitrary point in the end cell will now be con-

sidered. To be more specific, we shall terminate the

potential at one end by a step function at an arbitrary

point in the end cell and at the other end by a step

function at the potential minimum. (see Figure 4.1)

until now, with one exception, general conclusions.have

been drawn from symmetry arguements for crystals ter-

minated in either a symmetric or antisymmetric manner.

In the literature, the various approximation methods

which have been used most extensively include the near-

ly-free-electron method, and the tight-binding (LCAO

or no) method. The one exception is a paper by Levine,27

in which the problem of the arbitrary termination of a

semi-infinite cosine potential is treated. we expect

to find somewhat different properties for a finite

crystal; consequently, we shall carry out the calcul-

ations for the above mentioned problem to determine ex-

actly what the differences are.

This problem is made considerably more difficult

by the arbitrary termination since now.the wave function

87



 

T

V
o
/
Z

.
1
1
-
}
.
.
.

_
0
/
2

I
2
b
"

V

 
 

 
 

 
 

 
 

 
 

1

1

1

1

O
”
’

a
2
a

3
a

4
a

5
a

F
i
g
u
r
e

4
.
1
.

T
e
r
m
i
n
a
t
i
o
n

o
f

t
h
e

p
e
r
i
o
d
i
c

p
o
t
e
n
t
i
a
l

a
t

a
n

a
r
b
i
t
r
a
r
y

p
o
i
n
t

i
n

t
h
e

e
n
d

c
e
l
l
.

  

88



89

and its derivative at the point of termination will not

reduce to a simple form. From Figure 4.1, we see that

the point of termination in the and cell is measured by

the quantityA from the right edge. By continuouslyvary-

ing A through this end cell and calculating the eigen-

values for each value of A , we obtain a general idea

of what effects an arbitrary termination has on the

energy eigenstates.

Proceeding as we did in Sections II and Ill, we

attempt to form a continuous wave function by matching

the wave function and its derivative in each region to

the wave function and its derivative in a neighboring

region.

For x S O, the wave function is of the form

 

W30: A C“ 3 l<——- \Ffz‘m—ET. (4.1)

For O < x s Na-A , we have

41(1)::- C+d'+[x)+ C- (I)- (x). (11.2)

where the form of ah, , i)... will depend on the energy

range we are considering. For x ? Na- A ,

K:(z-— (Ala-AD. (4.3)

W1) = B c.



90

Matching the logarithmic derivative at x = 0 yields the

condition,

3, =42: 2%))

while matching at x - Na-A yields

_ . C+'¢‘I’(Na-A)+C-W(Ila-21)
-K. " (61W a—A)+€.¢,(N¢em) ' (“'5’

If we now set the right hand side of Eq. (4.4) equal to

 

(n.u)

 

the negative of the right hand side of Eq. (4.5) and

define the quantities,

il= WMa'A) , xi= William—A), (11.6.)

M: (MO/r11) , yz=03¢i(Ah-A),(u.6b)

 

 

we obtain 1

07" C-\____ eff/+6-21 * '

C} ‘I’ C- I — Gill—6.192.) (m7)

Notice that Of - -— 0: , and that x1 becomes equal to x2

and y1 becomes equal to y2 if A is equal to some in-

tegral multiple of the lattice constant. Multiplying

Eq. (#.7) through by the denominators, and grouping
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terms, we obtain a quadratic in c+ and C_,

(13577414243) + 0+6. ((XI-XJQMV/‘Jfl?

+ 03o, 145/3.) = 0.

Factoring this equation, and using the Wronskian relation

(1L8)

W{¢+)¢-} : *ZQF, (4.9)

we find that 0+ in terms of C is given by

C3— [-[zreho-ggltgewedohweflc.w10,

This equation may be simplified in form by considering

 

the different forms .of the wave function for the three

regions P< O, O < ’0 < l, and P) 1. In each region,

we may write the wave functions out explicitly and form

the various sums and differences which are contained

in.Eq. (4.10). By defining new variables, we may sim-

plify the form of Eq. (4.10) considerably. For f3 < O,

we define

.921” + lac—A

0/ £

mfg_ (12:26:m1. germ If!

:i (2174-30)?) Zap—A96-050?qu (1;. 11b)

 

(4.11a)
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= J'1,(ig——l(a:A)+ ’U.(___d__‘d)) 51%), (Itno)

3,: (W - Moosééfi), (MM)

7‘1: fig-lgf-ZD- flg-y:A)Szn(éé), (A. lle)

T==”A?“)SizléI/l'ihf(2')Casi{AFih (i111')

t‘ = V7311 + Ref. (4.11;)

 

3271,31: "‘ 71/)”. (n.11h)

With these definitions, the matching condition given by

Eq. (4.10) becomes

+C-iA61/2zM-‘fié/2+ 2 I

Cfle= FCL," (4.12)

For 0 < f < 1, the definitions are

(a-A) ) .

Mg: (3wuia-A)f “a£&fi;\lffi3 (4.13a)
*gm—A>/

_____ 1610:.» 7. ‘myflagnim

121 =5; j$)+ u(a—A)——)SIW‘/@(n.130)
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9“: (”721:“) -— \7f[:“")96051(¥’)(#.13o)

~11 ’A'A .

)1: (We ) "’ 3;, ))51"A{1’),(*-139)

=(-;—:)S’Z’ZA /((ALzh-fp")c’o$1ka’1fh(4 .13:)

 
 

 

r = V’RF—Rf. (1.133)

Sifié ’32 :5 "‘ 77/? . (4.1311)

Then Eq. (4.10) becomes

C~l~k = :1" C‘K(Il’i)d+¢a/z iflz -/(° (“.1”)

Similarly, for ‘a> 1

a— ) (a—A

CoMé’=(1jz€:): fig: )llol'; (4.151)

R: i: ( fizz-3+ 3354))51'1164E), (4.151;)

12.. = fl"24) 1‘ ifff'iwlfiiwsc)

-= (132% *- "2(,_:’TA)) SZMP?) (4.15d)
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___..(T11(er —‘2\'§-§9 603$ (€61), (Lise)

7.:(.33!)6,31HIV-m +{—21631724Ira/~19.)1 .131)

 

r = Viki-12?. (1.1510)

Sin; ‘63 = 77/? . ' (1.1511)

Eq. (4.10) then becomes

Cm_ is- [41/494 + ¢% 1193*
(4.16)

Substitution of Eqs. (1.12), (M.l#), or (4.16) into Eq.

(1.4) yields '

 

K1= -i0¥D/L(’éw-i)f¢lélfl), (1.17.)

g<o .1

K1: z‘arcd(Mb)“1.05'flffl), (4 1 >

I

where 0; = ‘i(%go)lflt.

o<p<1

1
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-4 _. .. ,_

Kn -(K{dflA(k/12)da.é/z I).(4-18t)

1

K: = "’ 0+. 60% (Kai-akiM-ffzzwdeb)

where 0.7. = -(”5%) fi.

 

H

 

The same formulae hold for f!) 1, except that the de-

finitions of K, ¢z and F; are changed.

flaky ¢3 and PM!” P; will, in general, exhibit quite

complicated behavior as E or A is varied; thus is best

discussed in connection with a specific potential. The

procedure for finding the energy eigenvalues is the same

as used before. We plot the two sides of Eq. (4.17)

and Eq. (4.18) as functions of energy, and the points'

at which the equality is satisfied give us the eigene

values. This is illustrated for the Kronig:Fenney type

potential in Figure 4.2, where we have plotted the energy

eigenvalues as a function of the parameter A (see Figure

4.1) for N - 5 and a, b,‘v6.'vl. and‘v2 the same as in

Section III. The lowest pass-band is not shown because

it was so narrow that no details could be distinguished

on the scale used to plot the graph. Figure 4.2 shows

the change in the eigenvalues of the system as the

crystal is continuously changed from N - 5~to N - 4 atoms.
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  “'1 l 1 1 1

a .8a .6a .4a .2a 0

N=4 <~ A N=5

 

 

Figure 4.2 Energy eigenvalues as a function of the cell

termination parameter A.
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Upon inspecting the eigenvalue spectrum calculated for

the Tamm-type terminations in Section III, we observe

that there are 2 surface states of the Tamm-type in

attenuation band 4. These surface states are shown

in Figure 4.2 for A- a or N - 4. As A is contin-

uously decreased the Tamm surface states are not much

affected, although there is some variation. The

Shockley state, however, oscillates in the attenuation

band quite noticable. The value of the Shockley state

energy eigenvalue as a function of N was given in

Section III for N an integer (see Figure 3.10). As

may be seen from this graph, we might easily be inclined

to draw a smooth line through the points for N integer,

which would be incorrect, because in between the in-

teger values, the eigenstate oscillates. we note also,

in.Figure 4.2, the emergence of another type of surface

state which is absent in symmetric or antisymmetric 1

terminations. Levine27 has found similar type surface

states for the semi-infinite crystal mentioned earlier.

However, the states which he finds cross from one pass-

band into the next pass-band, which is not the case for

the finite crystal. Indeed, the surface states which

emerge lie very close at all thmes to the pass-band

from which they originated and periodically disappear

and reappear with decreasing A . The behavior of the



98

pass-band eigenstates is interesting but not surprising.

As the crystal length increases, the number of pass-band

states must increase. The new states emerge from the

upper passeband edge while some of the old states dis-

appear into the lower pass-band edge. But the net effect

of increasing the crystal by one atom is to increase the

number of pass-band states by one.

The case of arbitrary termination, as may be seen

from the above, leads to extra energy states. Since

for real crystals we expect the termination of the crys-

tal by the surface to be a more or less arbitrary tere

mination, we might expect to find more states than are

usually considered in the calculations which have been

carried out to date for symmetric or antisymmetric ter-

minations.t These new states do not seem to be related

to the bulk properties of the crystal (i.e. the number

of cells, etc.) but depend only on the nature of the

termination.



SECTION V

LOW ENERGY ELECTRON DIFFRACTION FROM FINITE ONE-DIMENSIONAL

PERIODIC POTENTIALS

In this section, we shall study the elastic low

energy electron diffraction (LEED) for electrons normally

incident upon a crystal surface by calculating the re-

flection coefficient for a plane wave incident upon a

one-dimensional periodic potential at energies greater

than the vacuum level.. The applicability of this model

to real metallic crystals is questionable since the

energies involved are high enough to ionize the core

electrons, and many-body effects should be large.29 How-

ever, if we assume that we are only interested in very

low energy electrons, and that we are dealing principally

with insulators, then it is probable that the main con-

tribution to the elastic scattering is from the static

potential due to the ion-cores inside the solid. This

static potential should, in fact, be energy dependent

as are most calculations on real crystals, but we shall

assume that it is relatively constant over the energy

range ~onsidered. ' .

There has been much interest in recent years in the

use of LEEDas a tool for the study both of surfaces and

the interaction of electrons with solids. Several methods
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have been employed to study this problem. The method

used in this thesis may be classified as a "dynamical"

model calculation of which there are two different

variants. The first variant is based on a generalization

of Lax's multiple x-ray diffraction theory. The second,

with which we shall be concerned is based on a band

structure treatment. For more detail aboutweach method,

the reader is referred to the literature.3°'36 The

method, we shall use is essentially a matching procedure

in which one matches the plane wave at the surface to

the Bloch wave inside the crystal.

we proceed as follows: we consider a oneedimen-

sional periodic potential of period a with N atoms and

having either a Tammrtype or Shockley-type potential

terminationat either end. Our zero of energy will be

at the average value of the periodic potential. The

vacuum level on the left is at a height‘Vi above zero

energy and the vacuum level on the right is at a height

'Va. For x $70, we have a plane_wave of unit amplitude

incident from the left upon the periodic potential and

a reflected plane wave of amplitude R going to the left.

The solution of Schrodinger's equation in this region

yields the wave function

(’01): euéfi 726—2 ’73 (5.1)

fir" WMX£~MT.
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For Oéxé Na, there are three regions of energy in each

of which the Bloch wave function assumes a different

form. These are

ZA _.

M1): Cue ‘3‘?!) 4 C+cééz£lmh0<0) (5.2a)

(’0!) = CI]: CK" Path) + C.kEk'7Z/((x);o((<1)(5.2b)

”(2) = 6&6?va64331.0); fJ>1 . (5.2c)

As the energy of the incident plane wave is increased,

we must match the appropriate Bloch functionto the in-

cident and reflected wave, depending on the band struc-

ture in the crystal. For x? Na, we have only an out-

going plane wave of the form

‘ (Jr-Ah)

¢In=716b42 , kz=Jitfl(E-pz>.(5.3)

These'wave functions must be matched at x a 0 and x - Na

to yield a continuous wave function throughout all space.

If the energy of the incident wave is such that

F < 0 inside the crystal, then we have at x .1 o, the

‘matching condition

- 141): Cit—OJ:

”“1342? 0" QHC—A
  ). (3.03



At x - Na, we have

 

6M6 —6—-A€ —- A
- __ “a — I 2.. (5 5)

(Cue’kfii‘éfie

If we now solve Eq. (5.5) for C_k in terms of C+k,’ we

obtain

 

a; -- [’42, 21M¢

C”: = 01 + 2351, >6 CM' (5'6)

Substituting this equation into Eq. (5.4), we obtain

l’R \: “‘(g; )2,114)

1+R/ i/é/ 11+(air'ikz)6w

afiib

__ M(—££Z; flail/1A

— 177 a; +19, furl/Ya /’

 

 

or

R = (36,4310; +(aiz4k0ézflanA/e (5 .7)

(4175429645-(0'2semis/r

Since aria-r -z(dd/Ma) If]; , we obtain ,a reflection

coefficient for F< 0 of

I'Rlz— (k:"W(10112—164)me

(147%)"10.11%10:14th

 

.(5,8)
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For 0 < 2(1, we simply replace 1: by 41K and

I

04.- 9’.Ef in qu (5.7). to obtain

m1= (t—Ad‘tarlfiaonfi:hafmé‘m (5 9,
(Mariana(Is/7:-hkzfladkh' ‘

For F > 1, instead of calculating K by the formula

.l

145) (173%
= - - 5.10s

K a 1 + (at ’ ( ,)

we use the formula

1

: ’éloja‘111‘) (5.101;)

and the reflection coefficient is the same as for 0 <

f? < 1 otherwise. ~'

 

For the case of a semi-infinite crystal, we need

only let N‘M, to obtain

 

1.. a.

11:) ,1...
Hut: 1 , (>0. (5.12)

I: we let v1 a v2, |RI2 will reduce for both (R o

and f!) 0 to

2.: ( tail”;Mam/a .

IR! 4 lail‘kf+(10;!‘+/e7)‘£msz ’ (a (0’ (5 '13“)
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2.__ (1W11+kf)zM1/<Ah

IR. ‘ ills/411+ (IdiltéfFW/la’ F’O"5°1"°’

Notice that in this case, a; always enters Nil 2 as a

squared quantity. we saw in Section II that surface

states are obtained only if —(ll¢u(,¥l{goes negative

in an attenuation region. Since in an attenuation

region a; equals wflfi and is squared in the formula

for [BI 2, we do not expect to see in the reflection

spectrum.evidence of what would correspond to surface

states with energies lying within attenuation bands.

we should, however, be able to distinguish the pass region

and the attenuation regions for large N.

In a pass region, It varies from 0 to T/a or from

T /a to 0, so that tan(kNa) will exhibit N or N-l

zeroes, depending on the sequence of the zeroes of the

functions go', go, uo', uo for increasing energy. In

analogy with the surface states problem we find that

if the band edges have crossed (i.e. if the zeroes occur

out of order from the sequence go', sof uo', uo, go',

go: “0" uo’ . . . ), then the neighboring pass regions

will have (depending on how large N is or how strong the

periodic potential is,) either N-l, N or N+1 zeroes.

To see this, consider the form of the reflection -
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coefficient in a pass region. The zeroes of IRlz will

occur in a pass region for either

ltdltafih)= 0 or [Gt/Mg. (5.14)

Considering only the tangent term, this condition.implies

that k - n'IT/Na, where n is an integer. Since 05 kx<

'1T’/a, and we are restricting ourselves to only positive

values for k, the possible values of n are 0, l, 2, t . .,

N. For ‘0 - 0 there is some difficulty since I: - 0, and

[0;] equals zero or infinity depending on which function

determines the boundary. The same difficulty arises at

P =- 00. By consideration of the limiting forms for

the boundaries P = 0 and €= 00,: we obtain

”2'1" k,1f’:M/aofi)’-’ 9"""05 (5'15“)

mf: (WA/gaff}? 2 90:05

R11: h" fag/3.10" aka; (5.15:)

ml: (357%,:3/‘30; , (to: a. (5.156)

Thus we see that k - 0 and k - (717a) yield no zeroes

'(5.15b)

 

of IRIZ. Then n is restricted to n -'l, 2, 3, . . .,
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N-l. The extra zeroes may or may not occur depending

on whether q becomes equal to ik:l as k varies from

0 to 1173.. Inspection of the form of “(Wmflfli

in Figures 2.2 and 2.3 reveals that if the functions

80', so. uo', no. 30'. so. uo'. “o’ . . . have zeroes

in this sequence, there will be one value where ICEjz'

becomes equal to k12 in each pass region, bringing the

total number of zeroes for IRI2 to N. For the sequence

of zeroes deviating from the above order, as in.Figure

2.3, we will obtain either no values or two values of

[Hill which are equal to k12 in the pass region be-

tween go' - 0 ant uo' - 0, and either two values or no

values for the next pass region between go - 0 and

uo - 0, depending on the magnitude of klz. Thus in the

neighboring pass regions between which the band edges

have crossed, there will be either N-l or N+1 zeroes.

For N becoming large, we see from Eq. (5.15) that

[R12 approaches 1 on the band edges. For a semi-

infinite crystal, the structure in the pass-band dis-

appears because the reflection coefficient oscillates

an infinite number of times, and only the envelope of

the peaks remain. In the attenuation regions, the re-

flection is perfect.

It should be pointed out that the above analysis

may also be applied to tunneling phenomena, For example,
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we could let Vi and‘Vé be equal to the minimum value of

the periodic potential without changing the mathematics.

In this case, the calculations reduce to the solution

of a particle tunneling through N identical barriers.

The above analysis also resolves a question which

arises in applying the Born-von Karman boundary condition 36

to an infinite crystal. The Born-von Karman boundary

condition, as usually applied, uses only one of the in~

dependent Bloch functions and requires this function to

satisfy

611:1. (5.16)

In this case, k = ant/Na where ~IM2 éhéfi/Z . There

are N values of k in all, counting both positive and

negative values. A better manner in which to impose

periodic boundary conditions would be to require the

function

M1) =-- Mei/”Pam +04:abut) (547)

to satisfy

¢(¢+Na)=i W). (1.10,
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In this way, one obtains twice as many values of k given

by

k=7l7l'//Vd 1 -A//251<///2. (5.9)

Now there is still some doubt as whether to include

N/2 or - N/2 in the values for k, and one usually picks

either one or the other. However, we see by our analysis

that the choice should be neither of the above, but

should be such that

Lm__“alez:\rflng/fi)(520)

(4(in)

where V6/2 is the amplitude of the periodic potential

 

evaluated at a lattice site. From the formula for the

reflection coefficient, we see that k - n1r/Na, n - 1,

2, 3, . . ., N-l, and ik - a; correspond to values of

the energy for which the periodic potential is com-

pletely transparent to an incident electron and thus the

electron is not localized to any one region of the crystal.

To illustrate the features of the above discussion,

calculations were carried out on a Kronig-Penny potential

for both Shockley- and Tamm-type potential terminations

at either end. For comparison, we use the same values

of a, b, V6,as we used in calculating the energy states

 



109

in Section III. Figures 5.1 (a,b) show the reflection

coefficients for v - v - 6.5 an}. and N - 4 for both
1 2

the Shockley and Tamm terminations. The vertical lines

indicate the band edges, and the arrows indicate which

band edges have crossed. Figures 5.2 (a,b) have the

same potential configuration except now N e 20. Figures

5.3 (a,b) show the case of tunneling when‘v1 i‘Vé a Vb/a

- -1.7 3.0; and N - 4. The lowest pass-band is not

shown because it is so narrow that the plotter missed

it.
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SECTION VI

RESONANCE TRANSMISSION IN ELECTRON EMISSION

FROM SURFACES wITH ADSORBED ATOMS

In recent years there.has been renewed interest in the

role of resonance effects in the emission of electrons from

a metal surface with adsorbed atoms’a'ns. Both qualitative

and quantitative“0 predictions indicate that structure in

38

the total energy distribution Of field emitted electrons

should be related to resonance effects reflecting the

atomicplike energy level.speetrum of the adsorbed atoms.

Gadzukn5 has shown qualitatively that similar resonances can

occur fOr transmission over the surface barrier in which an

adsorbed atom is present: HOwever, as we shall see later,

his results are questionable in several reSpects. This be-'

havior could be relevant to electron proceSses such as

thermionic, Auger, or photoelectron emission in which a

partial monolayer of an alkali metal is deposited on the

surface to reduce the work function of the material. Con-

sequently, it is interesting to try to calculate this effect.

The present section deals with a calculation which is

similar in many respects to calculations performed‘by

Gadzukn7. But whereas Gadzuk considered only the case of

116
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transmission of an electron into free space from a free

electron metal with a single adsorbed atom, we shall con-

sider the more general case of transmission of an electron

from one periodic potential across another periodic poten-

tial into free space. This includes the case of only one

period of a periodic potential, which is Just a single

adsorbed atom. we may relate this type of calculation to

tunneling phenomena,.although there are no classically for-

bidden regions. However, there are quantum.mechanical at-

tenuation regions through which the electron must pass and

the analogy between the classical case and the quantum-

mechanical case will be clear in what follows.

A great many of the features of tunneling phenomena

in solids are essentially of a one-dimensional nature. If

the tunneling barrier (or effective barrier in our case) ex-

tends in the x directiOn the momenta in the y and s direc-

tions can usually be taken to be constants Of the motion and

hence are merely fixed parametersna. Therefore, we shall

confine ourselves to one-dimension for the calculations

which follow, even though such a model neglects a variety

of geometrical effects.

We shall first consider the special case of electron

emission from a free electron metal across several layers

of foreign atoms into free Space. we will not consider the
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mechanisms which excite the electron into states from which

itcan be transmitted out of the crystal but will assume _

that the electron has already attained such an energy state.

We shall then replace the free electron metal by a periodic

potential with the same layers of foreign atoms on the sur-

face and perform similar calculations. The model potené

tials we shall use for the first and second case are shown

in Figures 6.1a and 6.1b.

A. ADSORBED ATOMS ON A METAL SURFACE

As a model for a metal, we assume a semi-infinite free

electron region for x < O, and we represent the foreign atom

layers as square wells for O < x.< Na2- For x > Nae, the

potential is zero representing free space. The three regions

are labeled apprOpriately by I, II, and III. By using a

square well for our model impurity potential, we have com-

plicated matters considerably, since we have to deal with

band-edge crossing effects also. However, real impurity

potentials may be expected to have the same type of struc-

ture. In region I, the solution of Schrodinger's equation

yields plane waves which we shall write (for E > O) as

(6.1)

41(1): (31%];<I-RCi,3: IéI=V2fi(€+%/).
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We want to find the transmission coefficient of an electron

incident from the left, past the foreign layers into vacuum.

Consequently, we may calculate lRl 2, the reflection coef-

ficient and use

”11: 1 "‘ ”XI” (6.2)

to obtain the transmission coefficient. In region II,

solution of Schrodinger's equation yields the Bloch waves

”12,: C+l|1r+ C-q}. (6.3)

the exact form of which is given in Section I. ,In region

111, the wave function is given by the out-going plane wave

 Kl) ___: TC; 3(1-A/az) kévfgfiXE) (6 .4?
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The requirement that the wave function be continuous across

the three regions determines the coefficients B, C+, C_, and

T. If we recognize that this problem is Just a special case

of the problem treated it Section'V with the zero of energy

shifted and unequal potential terminations, we'may save cal-

culational duplication. By making the energy zero adjust-

ment and relabeling the correSponding variables according

to Figure 6.1a, we may directly carry over the calculations

of Section‘v to this section. we wish to calculate the

transmission coefficient rather than the reflection coef-

ficient as was done in Section‘V; so we must use Eq. (6.2)

to Obtain the pertinent result. '

At this point, some discussion of the choice of po-

tentials is in order.. The potential around the foreign

atoms adsorbed on the surface of the metal is essentially

that due to the Coulomb potential of the fractionally

charged ion core. Thus, one would expect to use a strongly

attractive model potential whose radius is roughly that of

the ionic radius. However, if we incorporate the condition

of orthogonalization to the occupied tightly bound electron

as a separate, non-local term in the potential, the sum of

the two potentials yields a more smoothly varying function

of position. The pseudo-wave function will then be anal-

ogous to the free-electron wave function. This approach has

 



122

been used to calculate electron field emission distri-

butionsng. Other workers50 dispute this approach for the

following reasons. The principle of the pseudo-potential

is that the exact Schrodinger equation for a system with a

complicated wave function can be transformed into a pseudo-

wave function equation with the same energy eigenvalue and

a simple pseudo-wave function. The simple wave function has

nothing to do with the real wave function. In doing trans-

mission coefficient calculations, the form of the wave func-

tion is intimately related to the details of the potential,

and the interference effects which are present in the real

wave function are glossed over in the pseudo-wave function

approach. .

we shall adopt the latter viewpoint in calculating

the wave function, so consequently, we must use strong po-

tentials in a model of the true potential rather than weak

pseudo-potentials. we shall assume the adsorbed atom is

displaced to a larger lattice spacing from the end of the

crystal than it would have in bulk material. As suitable

parameters to use in our calculations, we take (see Figure

6.1a)

8.2 3 900 A0, (605‘)

be

v02 - 51.5 eV - 13.28 E.U., (6.5c)

- 1.5 A0, . (6.5s)
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g 12eu5 'eV ‘3 3020 EeUe, (6 05d)

P

T2 3 3.88 eV = 100 Eoer
(6'5e)

vcl

These are anoreximately the same values of the para-

meters as used by Gadzuk in his calculation. However,

Gadzuk was mistaken in his interpretation Of the units of

the various parameters defined above so that when he thought

he was using a well depth V02 = 51.5 ev, he was actually

using a well deptth02 = 200 av. As a matter of fact, all

of his energy units are too small by a factor of 3.88. Con-

sequently, the transmission coefficient which he calculates

has considerably more structure (i.e.the wave function has

a larger number of nodes near the well) then it should. ‘TO

clarify this situation, and to generalize the results for a

larger number of adsorbed atoms than one, the transmission

coefficient was calculated using the above parameters for

the case of one, two, and three adsorbed atom layers. The

results are illustrated in Figure 6.2. The solid curve

represents the case of one adsorbed atom layer (N = 1),

whereas the 1/16" dashed curve is for two adsorbed atom lay-

ers (N - 2), and the 1/8" dashed curve is for three adsorb-

ed atom layers (N s 3). The range of energies in.which we

are interested is between zero and twenty electron volts,
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since calculations of this type for higher values of energy

are made irrelevant by inelastic effects. The most striking

feature about the N - 1 case is that the transmission coef-

ficient has very little structure, and is a slowly varying

function of energy. This is in agreement with previous

authors' assumptions about the nature of the transmission

coefficient with regard to photoemiSsion calculations, etc..

The small variation which does occur is a result of the at-

tenuation bands of the adsorbed atom. The attenuation band

edges are denoted by the vertical lines. For two adsorbed

atom layers, the situation is quite different owing to the

resonating effects between the impurity atoms. If we rea-

lize that this situation is analogous to the situation in

Section‘v, we may apply the same reasoning to explain the

structure of the transmission coefficient." The main dif-

ference between the calculations of this section and those

‘ of Section V is that we are now dealing with unequal bound-

ary conditions at either end of the "periodic potential".

The main effect which this has on the form of the trans-

mission coefficient is that, in a pass band, instead of

achieving the value one (corresponding to the reflection

coefficient of Section V going to zero) at various values

of k, the transmission coefficient reaches a relative max-

imum which may be shifted slightly from the values of
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k = mr/Na2, n = 1, 2, . . . N-l. Otherwise, the two situ-

ations are analogous. The number of relative maxima which

the transmission coefficient will have in a given pass-band

will depend on whether the band edges which bound the pass-

band have crossed. Consequently, there will be either N-l,

N, or N+1 relative maxima in each pass-band. The attenua-

tion bands, of course, tend to lower the transmission coef-

ficient. Thus, the reason for the structure for the two

cases, N=2 and Ne}, becomes clear. To obtain a better under-

standing of what effect the potential depth of the impurity

layers has on the transmission coefficient, we have per-

formed the same calculations as above using the same values

for all the parameters except‘Vbz which was reduced to half

of its previous value. The results are illustrated in

Figure 6.3. This should be compared with Figure 6.2. As

'may be seen, the transmission coefficient is enhanced in an

overall manner, and the structure changes slightly due to

the change in the position and widths of the pass-bands

and attenuation bands. The fact that an attenuation band

becomes wider as the potential becomes weaker is purely

a band-edge crossing effect, as may be seen in Section III.

B. ADSORBED ATOMS ON A NON-METAL SURFACE

The situation of a nondmetal with adsorbed atoms on

its surface represents a more complicated problem mathema-
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tically than does the previous case, since now we must take

into account the band structure of the non-metal as well as

the band structure of the adsorbed atoms. The approach to

solving this problem.for the transmission of electrons from

the nonémetal into free space is, however, analogous to the

previous calculation. As before, we form's continuous wave

function throughout all space by Joining the appropriate

solutions to Schrodinger's equation at the boundaries of

the regions in which they are valid. We shall denote the

nonametal as region I, the adsorbed surface layers as region

II, and the vacuum.as region III.

Since region I is characterized by a periodic poten-

tial, the solutions to Schrodinger's equation will yield a

wave function of the form

“I = C: [bf 4' CE (1'?) 1(0) (5-6),

where the exact form of 1p} ) w. will depend on

the value of energy; i.e. on whether PI< O, O < PI< 1,

PI) 1. Region I will have a band structure which depends

only on the periodic potential in region I. We want to

have a wave traveling to the right (i.e. incident wave) and

a wave traveling to the left (i.e. reflected wave), in order

to calculate the reflection coefficient. Since the indepen-
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dent solutions for an attenuation band are both real func-

tions, they do not carry any current. To be able to obtain

a current in an attenuation band, it is necessary to take a

complex linear combination of the two real solutions. How-

ever, we shall not attempt to do this since the reflection

coefficient would depend exponentially on the depth inside

the nonametal at which the unstable state was created.

Since the time required for an electron to "tunnel" out of

the crystal is much larger than the time during which'the

electron would stay in such an unstable state, we can say

that the reflection coefficient is essentially one, or that

the transmission coefficient is zero. The independent sol-

utions for the pass bands, in contrast, carry currents of

,2. ___. laws: we: - ii“? We»
,iét(q’1w-IW’* q)1¥'4,1’)_%I (6.71))

where a; - -- 01'— and 0;: i(-—fl€é)lfl:

“
t

I
l
l

l .1

From Section II, we know that the quantity ’(aO/flo)lflz’

is positive for the odd numbered bands and negative for the

even numbered bands. Since

15%.625340! (6.8a)
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f" = *fi‘, (6.8b)

We must identify the wave traveling to the right as 41-}:

for odd numbered pass bands and “’3: for even numbered

pass bands. The situation is reversed for the wave travel-

ing to the left. Thus, the reflection coefficient is

given by

$11 odd Pass bands.

IR‘ 2 \ng‘z even Pass (smog?)

In region 11, we will again have a band-structured situa-

tion, so we may write the wave function in this region as

1p = 01‘ 4)..” + 61‘ (1)3“, avg/Varese)

The band structure in this region will, in general, be

different from that of region I.

In region III, the wave function takes the form of an
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out-going wave

('1 : TC&3'(Z’A/f) £3 =V1m£/iZ; (6.11)

,z 2 Ala, .

 

If we now require the logarithmic derivatives to be equal

at the boundaries x - 0 and x - Nae. we Obtain the reflec-

tion coefficients of

pI< o . .01< 0
l l

IR1" _ as,+3)sz+ (gf-5,th ,
— Z 1

(67.1%)??? + (35+656(a)2W”

[1' :r g;

was ,
$1: - (Z!) I I) (6.12)

_— 1 A bdfldS)

E — {:1 211611 [241115.

. p1<o.p1‘> 0

H341“ ijwm(6 13)

" (6Weta{yf— 651/cféa/M- '
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p.150 OI arbifmrl

)R '1: (5 .14)

The transmission coefficient is Just

ITIZ': 1 - )le (5.15)

Notice that {Se}, is always positive and could be re-

placed by' I ll . As the periodic potential in region I

goes to zero, If, I goes to k1, where k1 was defined

earlier in Eq. 6.1, and we recover the results of the ear-

lier subsection.

In order to be able to draw comparisons between this

calculation and the calculation done earlier, we let

a2, b2,‘Vo2, and T

let a1, b

2 have the same values as used before, and

1. V61. and T1 be such that the average value of

the periodic potential is the same as the'V’o1 chosen earlier.

Thus, we let

a1 - 3.0 A0 (6.15a)

b1 - .75 1°, (6.151»)

v01 - 2.0 E.U., (6.15c)

T - 1.2 E.U.. (6.15d)
1
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USing the above parameters for region I, and the two sets

of parameters for region II, the transmission coefficient

was calculated for the range 0 < E < 20 av, and is illus-

trated in.FigureS 6.4 and 6.5. ‘As before, the vertical

lines represent the band edges for region II. The band

edges for region I can clearly be distinguished by the

fact that the transmission coefficient goes to zero. These

graphs should be compared with Figures 6.2 and 6.3 and the

differences noted. There is only one attenuation band oc-

curring in region I for the range of energies considered.

It occurs more or less in the middle of a pass band of re-

gion II.

The structure in the transmission coefficient is en-

hanced in the pass band regions, as is readily seen by com-

parison. The various relative peaks in the transmission co-

efficient may be explained by previous considerations.

To summarize, we have seen that for the case of one

layer of adsorbed atoms on the surface of a metal or non-

metal, the transmission coefficient is a slowly varying

function of energy, except near a band edge for a nondmetal.

‘With the introduction of more than one layer, resonance ef-

fects predominate, leading to considerable structure in the

transmisSion coefficient. Hence, we would expect to observe

this type of effect in the total energy distribution of elec-

trons emitted from metals or nonpmetals with more than one

layer of foreign atoms deposited on the surface.
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SUMMARY

By constructing the total wave function fer a

one-dimensional potential from individual cell solutions,

we have found that such wave functions may assume three

forms, depending on whether the parameter F (defined in

Section I) is less than zero, between zero and one, or

greater than one. All three forms are of the Bloch-function

type; there is no restriction as to the form or magnitude of

the periodic potential. Via the parameter P ‘ , a band

structure may be associated with a single period of the per-

iodic potential. By applyingTamm and Shockley type poten-

tial terminations at either end of the periOdic potential,

we hav: found that the emergence of surface states is depenp

dent on whether the parameter -— (Ital/(lo) ”of; (defined

in Section I ; it corresponds to an effective wave number)

goes negative-in an attenuation region. The number of sur-

face states in an attenuation region was found to depend on

the number of cells in the periodic potential considered and

the width of the attenuation band. UBing a Kronig-Penney'

type periodic potential as an illustration, we have seen

quite graphically the effects which the two different types

of potential terminations have on the energy states and the

136
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dependence of these states on the parameters which specify

the potential. For potentials terminated at an arbitrary

point in the end cell, we have found the emergence of a new

type of surface state which is not found for terminations a

which are symmetric. The band structure above the vacuum

level was investigated by considering the reflection of

free electrons from a finite periodic potential with the

Tamm.and Shockley type terminations. It was found that the

presence of surface states for energies below the vacuum

level may be inferred from the structure of the curves giving

 the reflection coefficient versus electron energy. For the -

emission of electrons from crystals with from one to a few

layers of adsorbed atoms on the surface, resonance trans-

mission effects were found to be significant only for the

case of more than one layer of adsorbed atoms.
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