THE EFFECT OF ORAL AND INJECTABLE IRON ON THE HEMATOLOGICAL VALUES AND GROWTH WEIGHTS OF HOLSTEIN CALVES

> Thesis for the Degree of M.S. MICHIGAN STATE UNIVERSITY Samuel M. Getty 1964

ł

ABSTRACT

THE EFFECT OF ORAL AND INJECTABLE IRON ON THE HEMATOLOGICAL VALUES AND GROWTH WEIGHTS OF HOLSTEIN CALVES

by Samuel M. Getty

Mammals, shortly after birth, exhibit physiologically low hemoglobin values. Numerous theories have been proposed to explain this phenomenon. Because mammalian milk is believed to be a perfect food by many, one exception to this belief stands out in the literature. Milk is known to be sufficiently deficient in iron to produce an iron deficiency with relative ease. Because of the vast amount of material on this subject in the literature only selected references were used in a review of the literature. Clinically, a wide range of hemoglobin values are observed from calves less than twenty weeks of age. A study was undertaken to determine if any effect in body weight or hematology is noticeable when iron is supplied to calves either orally or intramuscularly.

Forty-five holstein calves were obtained when less than 7 days of age. Initial hemoglobin values were arranged in a linear fashion and a group consisted of fifteen calves selected from every third value. One group of calves received 30 mg. of iron orally each day while another group of 15 calves received two injections of iron (1,000 mg. total) at 7 and 21 days of age. The remaining calves served as a control group.

Calves were weighed and blood samples taken weekly. Body weight gains were not significant; however, the pattern of growth varied. Weight gains were compared to hemoglobin levels. A correlation was observed between the portion of calves receiving oral iron that had a higher mean level of hemoglobin and the increased rate of daily gain. Calves which received intramuscular iron and had low hemoglobin values showed a better rate of daily gain than calves with high hemoglobin values.

Hemoglobin and packed cell volume values showed a significant increase at approximately 7 and 21 days respectively after the calves were started on iron. A reticulocytic response was observed in calves treated with iron. Calves treated with oral iron showed a gradual but uniform response while calves treated with injectable iron showed a peak response for the three weeks during treatment and then returned to the normal range.

Serum iron levels were determined weekly by the dipyridal method. A significant increase (P < .01) was observed in all calves receiving injectable iron.

It is concluded from this study that iron either in intramuscular or oral form is beneficial in meeting the clinical requirement of the dairy calf as a supplement to whole milk. Although a great response is not seen in bovine hemoglobin values, as compared to the response in baby pigs, it was found that the physiological anemia was prevented in calves with the use of supplemental iron.

THE EFFECT OF ORAL AND INJECTABLE IRON ON THE HEMATOLOGICAL VALUES AND GROWTH WEIGHTS OF HOLSTEIN CALVES

By

Samuel M. Getty

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements för the degree of

MASTER OF SCIENCE

Department of Surgery and Medicine

ACKNOWLEDGMENT

327984 3/13/64

Vet Hed

I wish to extend my appreciation and gratitude to the following people who contributed their time and efforts in this study.

To Dr. Gabel H. Conner, Professor, Graduate Advisor, Department of Surgery and Medicine, for his cooperation and advice in this study and his patience in the writing of this thesis.

To Dr. David J. Ellis, Director of Ambulatory Clinics, Department of Surgery and Medicine, for his cooperation and stimulation during this time.

To Dr. Clifford C. Beck, Extension Veterinarian, Department of Surgery and Medicine, for his valuable suggestions and help in the research.

To Dr. Leonard D. Brown, Associate Professor, Department of Dairy, who provided the initial suggestion which encouraged these studies. Also, my sincere gratefulness for the arrangements which were made prior to this study.

To Mr. Dennis Armstrong, Manager, Dairy Herd Operations, and the Department of Dairy for providing the housing, feed, and care of these animals.

To Dr. Elwyn R. Miller, Associate Professor, Department of Animal Husbandry, for his critical evaluation.

To Dr. Wade Brinker, Chairman, Department of Surgery and Medicine, for his cooperation during the study.

ii

Dedicated to Lucy and the girls

TABLE OF CONTENTS

CHAPTER

PAGE

, 1	٠	٠	•	•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	N	rio	UC	lOD	ITR	IN	I.	
, 2	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	RE	rui	RA	rei	LI	HE	? T	O	EW	:VI	RE	II.	
, 9	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠	5.	DD:	TH (ME	ND	5 A	AL	RI	TE	MA	III.	
, 9	•	•	•	٠	٠	٠	٠	٠	٠	•	ls	na	ni	Aı	al	enta	ime	per	Ex;	•				
, 9	٠	•	٠	٠	٠	٠	٠	•	3.	ce	duı	ce	roo	Pı	al	enta	ime	per	Ex					
, 12	•	•	٠	•	٠	٠	٠	•	•	٠	٠	٠	ON	510	US:	ISCI	D:	₹N D	S	LT.	SU	RE	IV.	
2 6	•	•	٠	•	•	٠	٠	•	•	٠	٠	٠	٠	•	٠	, •	•	ons	SI	LU	NC	СС	V.	
, 27	•	٠	•	٠	٠	٠	٠	٠	•	٠	•	٠	٠	•	٠	•	•	٠	•	•	•	х.	PENDI	AP
51	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	'HY	RAF	BLIOG	BI

LIST OF FIGURES

FIGURE		PAGE
1.	Steps in Heme Biosynthesis (Taken from Rimington)	6
2.	Reticulocyte Response from Iron Treatment, for the Three Groups of Calves	23

LIST OF TABLES

TABLE		PAGE
l.	Mean Body Weights of Calves, by Group	13
2.	Average Daily Gain (1b.) at Weekly Intervals, by	
	Group	14
3.	Weight Gain in Comparison to Initial Hemoglobin	
	Level	15
4.	Mean Hemoglobin Values for the Three Groups of	
	Calves	17
5.	Average Packed Cell Volume by Calf Group	19
6.	Mean Erythrocyte Values for Control and Iron	
	Treated Calves	20
7.	Calculated Blood Indices by Calf Group	21
8.	Average Reticulocyte Values for the Three Groups	
	of Calves	22
9.	Mean Serum Iron Values by Calf Group	24

LIST OF TABLES FOR HEMATOLOGICAL FINDINGS AND BODY WEIGHTS AS FOUND IN THE APPENDIX

TABLE																							PAGE
1.	Calf	No.	l	٠	٠	•	•	•	٠	•	٠	•	•	٠	٠	•	٠	•	•	٠	٠	•	28
2.	Calf	No.	2	٠	٠	٠	•	٠	•	٠	٠	٠	•	•	٠	•	•	٠	٠	•	•	٠	28
3.	Calf	No.	3	•	•	٠	•	٠	•	•	٠	•	•	•	•	٠	٠	•	•	٠	٠	٠	29

.

vi

4.	Calf	No.	4	•	٠	٠	•	٠	•	•	٠	٠	٠	٠	•	ė	•	٠	٠	•	•	•	29
5.	Calf	No.	5	•	•	•	•	•	٠	•	•	•	٠	۲	٠	٠	•	٠	•	•	•	•	30
6.	Calf	No.	6	•	•	•	٠	•	•	•	٠	•	•	٠	٠	٠	٠	٠	٠	•	٠	•	30
7.	Calf	No.	7	•	•	•	•	•	•	٠	•	•	٠	٠	•	•	•	٠	٠	٠	•	•	31
8.	Calf	No.	8	•	•	٠	•	•	•	•	٠	٠	٠	٠	•	٠	•	٠	٠	•	•	•	31
9.	Calf	No.	9	•	•	•	٠	•	٠	•	•	٠	٠	٠	•	٠	•	•	٠	٠	٠	•	32
10.	Calf	No.	10	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	32
11.	Calf	No.	11	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	٠	•	•	٠	٠	•	33
12.	Calf	No.	12	•	٠	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	33
13.	Calf	No.	13	٠	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	٠	٠	٠	٠	•	34
14.	Calf	No•	14	•	•	٠	•	•	•	•	٠	٠	٠	•	•	•	٠	•	٠	٠	•	•	34
15.	Calf	No.	15	•	٠	•	٠	٠	•	٠	•	٠	•	•	٠	٠	٠	•	٠	•	•	•	35
16.	Calf	No.	16	•	•	٠	•	٠	٠	•	٠	•	•	•	•	•	•	•	•	٠	•	•	35
17.	Calf	No.	17	•	٠	•	•	٠	٠	•	•	•	٠	٠	٠	٠	•	•	•	٠	٠	•	36
18.	Calf	No.	18	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	٠	٠	٠	36
19.	Calf	No.	19	•	•	•	٠	•	٠	٠	•	٠	•	•	•	•	٠	٠	٠	•	٠	•	37
20.	Calf	No.	20	•	•	•	•	•	٠	•	٠	•	٠	٠	•	•	٠	•	٠	٠	٠	•	37
21.	Calf	No.	21	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	38
22.	Calf	No.	22	•	•	•	٠	•	٠	•	•	٠	•	•	•	•	٠	٠	٠	•	٠	•	38
23.	Calf	No.	23	•	•	•	•	٠	•	٠	٠	٠	٠	٠	•	•	٠	•	٠	٠	•	•	39
24.	Calf	No•	24	•	•	٠	•	•	•	٠	•	٠	٠	•	٠	•	٠	•	•	•	•	•	39
25.	Calf	No•	25	٠	•	•	•	•	•	٠	٠	•	٠	٠	•	٠	٠	•	٠	•	•	٠	40
26.	Calf	No.	2 6	•	٠	٠	•	٠	•	•	٠	٠	•	•	•	•	•	•	٠	•	•	•	40
27.	Calf	No.	27	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	41

..

vii

28.	Calf	No.	28.	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	41
29.	Calf	No.	29.	•	•	•	•	٠	•	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	•	42
30.	Calf	No.	30.	•	•	٠	٠	٠	•	•	٠	٠	•	٠	•	٠	٠	٠	٠	٠	•	42
31.	Calf	No.	31.	٠	•	٠	•	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	43
32.	Calf	No.	32.	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	•	43
33.	Calf	No.	33.	٠	٠	•	•	٠	•	٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	•	44
34.	Calf	No.	34.	٠	•	٠	•	٠	٠	•	٠	•	٠	٠	•	٠	٠	٠	٠	٠	•	44
35.	Calf	No.	35.	•	•	•	•	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	45
36.	Calf	No.	36.	٠	٠	•	٠	٠	٠	٠	٠	٠	•	•	•	٠	•	٠	٠	٠	٠	45
37.	Calf	No.	37.	•	•	•	٠	٠	•	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	•	46
38.	Calf	No.	38.	٠	٠	•	•	٠	•	٠	٠	•	٠	٠	٠	٠	٠	٠	•	•	•	46
39.	Calf	No.	39.	٠	•	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	47
40.	Calf	No.	40.	•	٠	•	•	•	٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	٠	•	47
41.	Calf	No.	41.	•	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	•	48
42.	Calf	No.	42.	•	•	•	٠	•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	•	48
43.	Calf	No.	43.	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	٠	٠	•	•	•	49
44.	Calf	No.	44.	٠	•	•	٠	•	•	•	•	٠	•	٠	٠	٠	•	٠	٠	•	•	49
45.	Calf	No.	45.	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	٠	•	50

PAGE

CHAPTER I

INTRODUCTION

The medicinal value of iron has been realized for some time. The element was a valuable tool in treating blood disorders, battle wounds, chlorosis, and other conditions during the 17th century and probably before that time.

More recently iron studies have been numerous in regards to absorption, excretion, metabolism, and requirements for the various animal species. Radioactive tracer techniques have been employed with much success in studying the role of this element.

A great deal of attention has been focused on the physiological low hemoglobin values of immature animals. The role of iron in relation to hemoglobin formation and body weight is unsettled at this time. Confusion is paramount, as evidenced by the wide range of "normal" hemoglobin values published for calves. A desire to determine the effect of iron administered parenterally and orally on the formation of hemoglobin and on growth of calves stimulated the following study.

CHAPTER II

REVIEW OF THE LITERATURE

The Egyptians and Greeks were probably the first to use iron for medicinal purposes although its function was not known at that time. Fowler (1936) reported that during the 17th century two English physicians, Sydenham and Willis, used the element to treat chlorosis. Later, Lemary, Geoffry and Menghinis found iron to be a necessary constituent of the blood.

Vannotti and Delachaux (1949) believe iron is present in all tissues and is an essential element to the animal. Tint and Reiss (1950), and Bernhart and Skeggs (1943) reported that the element is present in the hemin-chromoproteins and, as such, Coryell and Pauling (1940) are of the opinion that it is directly responsible for oxygenation and oxidation at the cellular level. Hahn et al. (1943) reported that siderophilin and ferritin are two non heminchromoproteins which contain iron. Schade and Caroline (1946) believe that siderophilin or transferrin is that protein fraction of the plasma serving as an iron carrier in the plasma iron transport system. Finch and Finch (1955) reported that storage iron is found intracellularly as a protein complex ferritin; while Bessis and Breton-Corius (1959) have demonstrated hemosiderin to be a condensation or

clustering of ferritin molecules. Hahn (1937) reported that blood hemoglobin constitutes the greatest quantity of iron in the body. Later Hahn (1948) reported that iron is present in the cytochrome system but this mechanism is not affected by an iron deficiency. Schultze (1941) reported that the cytochrome oxidase activity of bone is normal or elevated in a state of iron deficiency.

Cartwright (1956), Ullrey (1958), Matrone (1954), and Smith (1944a, 1944b) have reported that a typical iron deficiency produces a hypochromic-microcytic anemia in swine, calves, rats, and rabbits. Follis (1958), Wohl and Goodhart (1960) reported that the mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and the mean diameter were decreased when an iron deficiency existed.

Numerous theories have been presented regarding the absorption of iron. Copp and Greenberg (1946), and Widdowson and McCance (1937) have reported that most of the absorbed iron is conserved by the animal and very little is excreted. Brown and Justus (1956) have shown that assimilation is greatest in the duodenal region and progressively less in the lower gastrointestinal tract. Moore et al. (1944) demonstrated that ferric iron must be reduced to the ferrous form before absorption can take place. Sharpe et al. (1950) have shown by experimentally increasing bulk or phytic acid content in the diet that there is a decrease

in the absorption of iron. Pirzio-Biroli et al. (1958) reported that large amounts of ascorbic acid in the diet will increase absorption. Hahn (1948) believes that absorption of iron is governed by the need for it. Balfour et al. (1942) proposed that the mucosal cell contained an acceptor mechanism for iron. Granick (1951) proposed that iron is absorbed by combining with a protein apoferritin in the mucosal cell to form ferritin which is absorbed through the capillaries. When the mucosal cell becomes saturated, absorption is decreased due to a "mucosal block." Brown et al. (1958) believes the "mucosal block" theory should be discarded. Hegsted et al. (1952) reported rats gain rapidly when large amounts of iron are present in the diet. They suggested that when essentially all of the phosphate was bound by iron absorption was very rapid. Recently Moore et al. (1961) proposed ferritin to be a storage form of iron in the mucosa and absorption to be controlled by the activity of the transport system which serves to pass iron across a cell membrane. Elvehjen and Sherman (1932) reported that copper does not affect the assimilation of iron. Houk et al. (1946) found that when they added copper to the diet, iron retention doubled.

Copp and Greenberg (1946) reported that small amounts of iron are normally excreted. Greenberg et al. (1943) reported that bile was the main pathway for the excretion of iron. Known excretory routes are perspiration (Johnston

et al., 1950), feces (Greenberg et al., 1943), and urine (Heath, 1937).

Copper deficiency also produces a microcytic hypochromic anemia (Smith et al., 1944; Foster, 1931). Cohen et al. (1927) were the first to report an interrelationship between copper and iron in hemoglobin production. Chase et al. (1952), using radioiron, reported that copper facilitates iron absorption and hemoglobin synthesis in pigs. Jensen et al. (1956) reported that metabolism of iron was not affected in copper deficient pigs but that absorption was less. Because of the great deposits of iron that occur in the livers of sheep and cattle on diets poor in copper, Marston and Lee (1948) believe that copper does not have any great influence on iron absorption in ruminants. Underwood (1962) believes that the evidence on the role of copper in hemoglobin synthesis is very inadequate and that anemia should be explained on the basis of impaired erythrocyte maturation and a reduced survival time of the mature erythrocyte produced.

Rimington (1959) proposed a scheme for the biosynthesis of heme (Figure 1). Iodice et al. (1958) reported that anemia might be related to the lowering of δ -aminolevulinic acid dehydrase which contains 0.1% copper. Later Wilson et al. (1959) reported that the removal of copper did not affect this enzyme.

Drabkin (1951) reported that approximately 97-98%

Figure 1

of an animal's iron requirement is supplied by catabolized hemoglobin. He reasoned that the requirement for iron is determined by the hemoglobin turnover rate and the amount of iron accumulated during growth. In 1955, Walsh et al., cited by Underwood (1962) reported that at puberty human males maintain higher hemoglobin values than do women; however, Byers et al. (1953) reported that this condition is not true in cattle.

Knoop et al. (1935) reported that calves on a milk diet were unthrifty, developed rough appearing hair, had very low hemoglobin values, and in some, swollen joints and stiffness appeared. Convulsions were seen in several animals at six months of age. Thomas et al. (1953) reported that calves fed a whole milk diet developed an anemia with significant minimal hemoglobin values occurring during the 30th to 70th days. With one group of calves there was a correlation between hemoglobin level and body weight gains. Raleigh and Wallace (1961) reported that range calves reached the minimal hemoglobin levels at approximately 105 days. They postulated that the minimal values this late in calfhood were due to a diet of low quality forage. Swenson et al. (1957) reported that calves showed minimal hemoglobin values beginning at 2 weeks and lasting until 8 weeks of age.

The data of Swenson et al. (1957) and Thomas et al. (1953) reveal a close correlation between body weight gains and hemoglobin values between the second and eighth week.

Raleigh reports that treatment with iron and copper had no significant effect on rate of gain. Carlson et al. (1961) reported that calves which received injectable iron showed better weight gains at 10 weeks of age but the weights were approximately the same as those of the non-medicated control animals at 24 weeks of age.

.

CHAPTER III

MATERIALS AND METHODS

A--Experimental Animals

Forty-five Holstein male and female calves, all less than 7 days of age, were obtained from dairy farmers in the Lansing area. Before experimentation, each calf was determined to be in good physical health on the basis of a clinical examination. The animals were housed in the Michigan State University dairy barn in individual pens on sawdust bedding throughout the study. Pens were constructed of plywood with metal bar doors covered with aluminum paint.

B--Experimental Procedures

Prior to experimentation, hemoglobin values were determined for each calf. These values served as the basis for dividing the calves into three experimental groups. Hemoglobin values were arranged in a linear fashion and a group was composed of fifteen calves selected from every third value. Group III received 500 mg. (10 ml.) of irondextran* intramuscularly at the 7th day of the experiment and again at the 21st day of the experiment. Calves were

^{*}Armidextran, Armour Pharmaceutical Company, Kankakee, Illinois.

injected deeply into the posterior groups of muscles of a rear leg. Group II received 30 mg. of iron sulfate powder* suspended in water, orally, each noon. Group I served as the control.

The feeding regime was the same for all calves. They were given whole milk at the level of 10% of body weight daily during this study. Milk allotments were adjusted weekly. Water was available at all times. Beginning at the tenth week of the experiment one pound of grain mixture** was given daily. Third cutting alfalfa hay of good quality was offered ad libitum beginning at the tenth week of the experiment. Calves were weighed weekly.

Clotted blood samples for serum extraction and whole blood samples for complete blood counts were collected once a week from the jugular vein. Dipotassium Ethylenedine Tetraacetate (E.D.T.A.P.)*** was used as the anticoagulant. Serum samples were transferred into chemically**** cleaned

^{*}Ferrous Sulfate (fine crystal) FE So₄.7H₂O, Lot #3745. J. T. Baker Chemical Co., Phillipsburg, New Jersey.

^{**}D-16 Grain Ration--762 1/2 lbs. ground shelled corn, 627 lbs. crimped oats, 200 lbs. linseed meal, 133 lbs. soy bean oil meal (44%), 100 lbs. corn distillers solubles, 133 lbs. dexmolasses, 20 lbs. dicalcium phosphate, 20 lbs. trace mineral salt, 3/4 lb. Vit. A and D, and 3/4 lb. Vit. D-9F.

^{***}Dipotassium Ethylenedine Tetraacetate (E.D.T.A.P.). Cambridge Chemical Products, Inc., 5850 Chase Road, Dearborn, Michigan.

^{••••}Preparation of 100 gms. sodium dichromate in 200 cc. water plus 800 cc. of commercial sulfuric acid.

glass vials. Serum was stored by freezing within twentyfour hours after collection.

A Coulter Counter* was used for leukocyte and erythrocyte enumeration. Differential leukocyte counts, reticulocyte counts, hemoglobin (cyanmethemoglobin) and microhematcrit procedures were done according to the manual "Outline for Veterinary Clinical Pathology."** Serum iron levels were determined by the dipyridyl method of Ramsey (1962).***

^{*}Coulter Electronics, Inc., Hialeah, Florida.

^{**}Maxine M. Benjamin, The Iowa State University Press, Ames, Iowa.

^{***}Harold Varley, Practical Clinical Biochemistry, 3rd edition, Interscience Publishers, 1962, New York.

CHAPTER IV

RESULTS AND DISCUSSION

Prior to experimentation all calves were determined to be in good health on the basis of a physical examination. During the first three weeks of this study most calves developed pneumo-enteritis. Calves were treated for the condition with systemic antibiotics (1/2 gm. neomycin plus 1 million units of aqueous penicillin) and neomycin calf scours tablets (Biosol-M). Whenever a scouring condition was diagnosed, milk allotments were reduced by one-half until cessation of scouring; then milk was gradually increased to the normal amount over a three-day period.

Because of the sporadic outbreaks of calf salmonellosis near the Lansing area, fecal samples were taken for bacteriologic culture. Calves were considered negative for salmonella on the basis of these cultures.

Body weights of the calves were recorded weekly. The three groups of calves showed weekly mean weights differing from each other in pattern. Calves receiving oral iron showed a pattern similar to calves receiving no iron, while calves injected with iron had mean body weights comparatively less the first 6 weeks and greater from the 8th

*Upjohn Company, Kalamazoo, Michigan.

to the 12th week than those calves receiving oral iron. The mean body weights at the termination of the experiment were very close for the three groups of calves and nearly identical for the two groups receiving some form of iron. There was no significant difference in body weights among the three groups.

Week	Group I (No Iron)	Group II (Oral Iron)	Group III (Intramuscular Iron)
Initial	99 . 2 <u>+</u> 3.98	96.7 <u>+</u> 3.28	99.8 <u>+</u> 3.14
l	104.9 <u>+</u> 4.04	102 . 4 <u>+</u> 3.51	104.0 <u>+</u> 3.19
2	113.0 <u>+</u> 4.28	113.6 <u>+</u> 3.67	113.3 <u>+</u> 3.30
3	123.8 <u>+</u> 4.61	127.2 <u>+</u> 3.76	125.0 <u>+</u> 3.71
4	133.5 <u>+</u> 4.71	140.6 <u>+</u> 3.95	136.4 <u>+</u> 3.92
5	144.7 <u>+</u> 5.07	152.8 <u>+</u> 4.22	148.3 <u>+</u> 4.20
6	156.1 <u>+</u> 5.16	164.8 <u>+</u> 4.39	162.0 <u>+</u> 4.48
7	169 . 8 <u>+</u> 5.39	177.4 <u>+</u> 4.75	177.3 <u>+</u> 4.93
8	183.6 <u>+</u> 5.58	189.6 <u>+</u> 4.91	193.0 <u>+</u> 5.32
9	195.4 <u>+</u> 6.07	201.8 <u>+</u> 5.81	206.3 <u>+</u> 5.64
10	206.8 <u>+</u> 6.36	213.4 <u>+</u> 5.43	217.5 <u>+</u> 6.05
11	217.6 <u>+</u> 6.80	225.1 <u>+</u> 5.77	227.9 <u>+</u> 6.31
12	228.0 <u>+</u> 7.06	237.0 <u>+</u> 5.94	238.2 <u>+</u> 6.64
13	240.4 <u>+</u> 7.66	249 . 3 <u>+</u> 6.36	248.5 <u>+</u> 6.82

Table 1. Mean Body Weights of Calves, by Group

(pounds)

Average daily gains were calculated at the end of

each week and are presented in Table 2. All the groups of calves increased in average daily gain until about the 6th to 7th week when they tended to level off. Calves receiving iron showed faster daily weight gains than did calves receiving no iron. Raleigh (1962) reported that range calves receiving iron and exposed to forage showed greater weight gains from birth until 3 weeks and an increase in average daily gain until about 6 weeks when they leveled off.

Table 2. Average Daily Gain at Weekly Intervals, by Group (pounds)

7 days to	Group I (No Iron)	Group II (Oral Iron)	Group III (Intramuscular Iron)
2 wks	•82	•82	.61
3 wks	•99	1.20	•97
4 wks	1.17	1.45	1.20
5 wks	1.23	1.57	1.31
6 wks	1.30	1.60	1.39
7 wks	1.36	1.50	1.48
8 wks	1.44	1.65	1.58
9 wks	1.51	1.66	1.66
10 wks	1.53	1.67	1.69
ll wks	1.54	1.67	1.68
12 wks	1.54	1.67	1.66
13 wks	1.53	1.67	1.65
14 wks	1.55	1.68	1.63

A comparison was made within each group of calves between the average total weight gain and the hemoglobin (Hb.) level. Total weight gains of the seven calves with initial low hemoglobin values were compared with the seven calves that had high hemoglobin values. These data are presented in Table 3.

Table 3. Weight Gain in Comparison to Initial Hb. Level

			(Pounds 1	Per Day)	
Group	os of	l wk.	3 wk.	6 wk.	9 wk.
Calv	7es	to 3 wk.	to 6 wk	<u>to 9 wk</u> .	to 12 wk.
Hk	. Level				
*No	High Hb.	1.24 <u>+</u> .15	1.54 <u>+</u> .53	1.90 <u>+</u> .61	1.65 <u>+</u> .59
Iron	Low Hb.	1.07 <u>+</u> .74	1.50+.49	1.82 <u>+</u> .65	1.48 <u>+</u> .64
**Oral	High Hb.	1.57 <u>+</u> .32 ^C	1.85 <u>+</u> .41b	1.80 <u>+</u> .38	1.74 <u>+</u> .21
Iron	Low Hb.	1.37 <u>+</u> .41	1.72 <u>+</u> .41	1.76 <u>+</u> .45	1.67 <u>+</u> .47
***I.M.	High Hb.	1.13 <u>+</u> .41	1.66+.36	2.05 <u>+</u> .51	1.46 <u>+</u> .32
Iron	Low Hb.	1.27 <u>+</u> .51	1.85 <u>+</u> .42 ^b	2.14 <u>+</u> .52ª	1.61 <u>+</u> .55
asi bsi csi	lgnificant Ignificant Ignificant	ly greater ly greater ly greater	than least than least than least	value (P < 2 values (1 2 values (1	.05). P < .05). P < .01).

Those calves having "high" hemoglobin values and receiving either no iron or oral iron had greater total

No Calf Nos. 3, 5, 6, 15, 31, 41, and 45 High Hb. Iron Calf Nos. 1, 2, 14, 22, 33, 37, and 44 Low Hb. . Calf Nos. 4, 7, 10, 16, 18, 24, and 27 Oral High Hb. Calf Nos. 8, 12, 13, 19, 34, 35, and 38 Iron Low Hb. *** Calf Nos. 21, 29, 30, 32, 36, 40, and 43 I.M. High Hb. Calf Nos. 9, 11, 17, 25, 26, 39, and 42 Iron Low Hb.

weight gains than did the calves which had initial "low" hemoglobin values. Calves which had initial "low" hemoglobin values and received injectable iron had greater total weight gains than did calves which had initial "high" hemoglobin values. No explanation is offered for this phenomenon.

Blood samples were taken weekly for routine blood counts. The mean hemoglobin values are shown in Table 4. Hemoglobin values were significantly higher (P < .01) for the calves receiving oral and injectable iron when calves were 21 days old. The average initial hemoglobin value for all calves was 10.1 gm. per 100 ml. Raleigh and Wallace (1962) reported that range calves receiving iron reached minimal hemoglobin levels at about 105 days while Thomas et al. (1954) reported dairy calves showed a significant hemoglobin increase beginning at the 20th day and gradually increasing up to the termination at 41 days of age. The calves in this experiment varied from previously reported results. Animals in this study receiving no iron reached a minimal hemoglobin value at 91 days of age (termination of experiment). Calves receiving either oral or injectable iron showed a significant hemoblobin increase over the group of calves receiving no iron. Calves receiving oral iron reached maximum hemoglobin readings at approximately 28 days of age and then tended to level off.

		(Gm. per 100	Ml.)
Treatment	No Iron	Oral Iron	Intramuscular Iron
Age Days			
7	9 . 95 <u>+</u> .50	10 .12 <u>+</u> .4 6	10.03 <u>+</u> .44
14	9.66 <u>+</u> .53	10.05 <u>+</u> .44	9 . 91 <u>+</u> .47
21	8.99 <u>+</u> .47	10.16 <u>+</u> .46**	9.83 <u>+</u> .51**
28	8.51 <u>+</u> .44	10.43 <u>+</u> .45**	9 . 94 <u>+</u> .48**
35	9 . 29 <u>+</u> .47	10.47 <u>+</u> .47**	9 . 93 <u>+</u> .49**
42	8.79 <u>+</u> .44	10.55 <u>+</u> .47**	10.00 <u>+</u> .44**
49	8.71 <u>+</u> .42	10.57 <u>+</u> .45**	10.30 <u>+</u> .44**
56	8.60 <u>+</u> .45	10.46 <u>+</u> .43**	10.63 <u>+</u> .45**
63	8.79 <u>+</u> .49	10.45 <u>+</u> .43**	10.63 <u>+</u> .48**
70	8 .79 <u>+</u> . 48	10.55 <u>+</u> .43**	10.41 <u>+</u> .43**
77	8.69 <u>+</u> .43	10.47 <u>+</u> .46**	10.32 <u>+</u> .47**
84	8.56 <u>+</u> .45	10.53 <u>+</u> .46**	10.33 <u>+</u> .46**
91	8 .24 <u>+</u> . 43	10.46 <u>+</u> .44**	10.45 <u>+</u> .49**

Table 4. Mean Hemoglobin Values for the Three Groups of Calves

•• P < .01

Hubbert and Wallace (1959), using range calves, reported a decrease in packed cell volume (P.C.V.) values until calves reached the age of four weeks. Raleigh and Wallace (1962), studying range calves in the state of Oregon, found that P.C.V. values increased from birth to 3 weeks and at each blood sampling date thereafter. In the work presented here, calves showed a gradual increase in average P.C.V. values from 7 days of age until they were 35 days old. This difference was statistically significant (P < 0.05) from the fifth to eighth weeks for calves treated with oral iron and at the fifth, seventh and eighth weeks for calves treated with intramuscular iron. Average P.C.V. values are presented in Table 5.

Red blood cell enumeration was done with the aid of a Coulter counter. Average erythrocyte counts were not statistically different among the experimental groups. These data are presented in Table 6.

Mean corpuscular hemoglobin (M.C.H.) and mean corpuscular volume (M.C.V.) were calculated for each group of calves using the mean values found for hemoglobin, hematocrit and erythrocytes. The following formulas were used.

 $\frac{M.C.H.}{(micro-micrograms)} = \frac{Hb. (qm. per 1000 cc.)}{R.B.C. (1012)}$

M.C.V. = Volume packed cells per 1000 cc. (cubic microns) = R.B.C. (106)

Table	5.	A ve rag e	Packed	Cell	Volume	by	Calf	Group
					P.C.V.	. (%	6)	

Age Days	No Iron	Oral Iron	Intramuscular Iron
7	33.8 <u>+</u> 1.4	34.3 <u>+</u> 1.5	33.2 <u>+</u> 1.3
14	33.9 <u>+</u> 1.4	33.5 <u>+</u> 1.4	33 .2 <u>+</u> 1. 3
21	33.7 <u>+</u> 1.3	34.7 <u>+</u> 1.4	35.7 <u>+</u> 1.5
2 8	33.5 <u>+</u> 1.1	36 .0 <u>+</u> 1. 3	37.3 <u>+</u> 1.4
35	33 . 1 <u>+</u> 1.2	38 .2 <u>+</u> 1.4 *	38.5 <u>+</u> 1.3*
42	34.0 <u>+</u> 1.3	38 . 5 <u>+</u> 1.5*	37.7 <u>+</u> 1.3
49	33 .7 <u>+</u> 1.4	38.3 <u>+</u> 1.5*	37.9 <u>+</u> 1.3*
56	33 . 7 <u>+</u> 1.4	37.9 <u>+</u> 1.5*	37.7 <u>+</u> 1.3*
63	34.4 <u>+</u> 1.5	38 .0 <u>+</u> 1.5	36.7 <u>+</u> 1.4
70	34.0 <u>+</u> 1.3	38.7 <u>+</u> 1.4	36.3 <u>+</u> 1.2
77	33.7 <u>+</u> 1.4	37.3 <u>+</u> 1.6	36.5 <u>+</u> 1.3
84	33.8 <u>+</u> 1.3	37.9 <u>+</u> 1.5*	36.1 <u>+</u> 1.1
91	34.0 <u>+</u> 1.3	37.8 <u>+</u> 1.4	36 .5 <u>+</u> 1. 0

• P < .05

.

Age	Treated Calves	(10^6 per mm^3)	Intramuscular
Days	No Iron	Oral Iron	Iron
7	8.07 <u>+</u> .27	8 .22 <u>+</u> . 33	8.58 <u>+</u> .26
14	8.08 <u>+</u> .26	8 .24 <u>+</u> . 31	8.56 <u>+</u> .24
21	8.12 <u>+</u> .27	8 .21 <u>+</u> . 31	8.58 <u>+</u> .26
28	8.13 <u>+</u> .29	8.18 <u>+</u> .33	8.63 <u>+</u> .27
35	8.09 <u>+</u> .29	8.19 <u>+</u> .31	8.54 <u>+</u> .30
42	8 . 11 <u>+</u> .29	8.27 <u>+</u> .33	8.45 <u>+</u> .27
49	8.16 <u>+</u> .3	8.24 <u>+</u> .3	8•48 <u>+</u> •29
56	8.17 <u>+</u> .3	8.27 <u>+</u> .3	8.53 <u>+</u> .24
63	8.20 <u>+</u> .3	8.26 <u>+</u> .3	8.51 <u>+</u> .22
70	8.33 <u>+</u> .3	8.27 <u>+</u> .29	8.41 <u>+</u> .30
7 7	8.30 <u>+</u> 1.02	8.26 <u>+</u> .33	8.72 <u>+</u> .25
84	8.30 <u>+</u> .3	8 .22 <u>+</u> . 33	8.58 <u>+</u> .27
91	8.32 <u>+</u> .3	8 . 19 <u>+</u> .33	8.60 <u>+</u> .27

Table 6. Mean Erythrocyte Values for Control and Iron Treated Calves

Calculated blood indices are given in Table 7. Mean corpuscular hemoglobin values decreased gradually in calves which received no iron. Calves treated with iron showed a very slight increase in M.C.H.; however, these values remained somewhat constant. Mean corpuscular volume values showed a gradual increase in calves treated with supplemental iron.

M.C	.H. (mic	ro -micro g	grams)	M.C.V.	(cubic	microns)
Age Davs	No Iron	Oral Iron	Im. Iron	No Iron	Oral Iron	Im. Iron
7	12.32	12.31	11.68	41.9	41.8	38.8
14	11.95	12.19	11.57	41.9	40.6	38.8
21	11.07	12.37	11.45	41.5	42.3	41.6
2 8	10.46	12.75	11.51	41.2	44.0	43.2
35	11.48	12.78	11.62	40.9	46.6	45.1
42	10.83	12.75	11.83	41.9	46.6	44.7
49	10.67	12.82	12.14	41.3	46.5	44.7
56	10.52	12.64	12.46	41.2	45.8	44.2
63	10.71	12.65	12.49	42.0	46.0	43.2
70	10.55	12.75	12.37	40.8	46.7	43.1
77	10.46	12.67	11.83	40.6	45.1	41.9
84	10.31	12.81	12.03	40.7	46.1	42.1
91	9.90	12.77	12.15	40.9	46.2	42.5

Table 7. Calculated Blood Indices by Calf Group

The percentage of reticulocytes observed was increased in the calves which received iron. Calves receiving oral iron showed a somewhat gradual and uniform increase over calves receiving no iron. The calves receiving intramuscular iron showed a definite increase in reticulocyte percentage from the 2nd to 5th weeks which was immediately after the iron injections. Table 8 and Figure 1 summarize the reticulocyte findings.

Age Days	No Iron	Oral Iron	Intramuscular Iron
7	0.7	1.0	• 7
14	0.8	1.2	8.0
21	0.5	1.3	4.4
28	0.6	1.4	5.2
35	0.4	1.5	1.2
42	0.5	1.3	•4
49	0.5	1.6	•4
56	0.4	1.2	• 24
63	0.4	1.1	• 2
70	0.4	1.1	•33
77	0.5	1.3	• 28
84	0.4	1.1	•3
91	0.4	1.3	•28

Table 8. Average Reticulocyte Values for the Three Groups of Calves

Mean values for serum iron content are presented in Table 9. Planas and DeCastro (1960) found serum iron levels for adult cattle to be 142.4 \pm 22.1 micrograms with a range of 95-224 µgm. per 100 ml. The results of this study differ somewhat from the values established for the adult.

Number Per 100 Erythrocytes

Age Days	No Iron	Oral Iron	Intramuscular Iron
7	96.1 <u>+</u> 6.8	96.8 <u>+</u> 6.0	97.8 <u>+</u> 8.8
14	92.1 <u>+</u> 7.0	123.7 <u>+</u> 6.5**	149.0 <u>+</u> 8.0**
21	93 . 1 <u>+</u> 7.8	149.8 <u>+</u> 5.1**	194.3 <u>+</u> 8.8**
28	94.1 <u>+</u> 6.9	149.0 <u>+</u> 6.0**	198.9 <u>+</u> 7.5**
35	92.3 <u>+</u> 7.2	146.5 <u>+</u> 6.0**	198.7 <u>+</u> 7.3**
42	96.5 <u>+</u> 7.0	148.8 <u>+</u> 5.4**	193.6 <u>+</u> 8.1**
49	95.7 <u>+</u> 6.8	152.2 <u>+</u> 7.0**	200.8 <u>+</u> 7.2**
56	97.6 <u>+</u> 7.5	152.3 <u>+</u> 6.7**	199.5 <u>+</u> 8.5**
63	95.5 <u>+</u> 7.1	154.7 <u>+</u> 6.4**	204.7 <u>+</u> 9.8**
70	101.5 <u>+</u> 7.0	155.7 <u>+</u> 6.2**	195.5 <u>+</u> 9.4**
77	97 . 9 <u>+</u> 7.1	153.9 <u>+</u> 5.9**	188.1 <u>+</u> 10.1**
84	103.0 <u>+</u> 7.6	158.1 <u>+</u> 6.5**	192.8 <u>+</u> 10.2**
91		_ 156.2 <u>+</u> 6.3**	 186.3 <u>+</u> 8.9**

Table 9. Mean Serum Iron Values by Calf Group

(Augm. Per 100 Ml.)

•• P <.01

. 1

A significant difference was seen in serum iron levels immediately after the initial iron treatment. Serum iron levels remained constant for calves which received no iron throughout the experiment.

Leukocyte enumeration and differential counting was performed weekly throughout this experiment. These data are presented in the appendix. Values from leukocyte studies were essentially normal. Iron administration had no apparent effect on either the total or differential leukocyte counts; however, this determination was valuable from the standpoint of evaluating the health status of the calves.

V. CONCLUSIONS

- 1. Calves which received iron showed no statistically significant difference in body weight gains when compared to calves receiving no iron.
- 2. A difference in total weight gains was seen depending on the iron treatment. The group of calves which received oral iron and had higher hemoglobin values had greater total weight gains while the calves which received intramuscular iron and had low hemoglobin levels had greater total weight gains.
- 3. Calves which received iron supplement, either oral or intramuscular, showed statistically significant increases in hemoglobin levels and packed cell volumes as compared to calves receiving no iron.
- 4. Iron supplement, either oral or intramuscular, quickly raised and maintained serum iron levels to a significantly higher level in the young calf in this study.
- 5. A gradual and uniform increase in reticulocyte response was observed in the calves which received oral iron.
- 6. Calves receiving injectable iron exhibited a rapid and marked increase in reticulocytes which was sustained, however, only during the treatment period.
- 7. The physiological anemia, characteristic of most mammals, was not observed in calves on a whole milk diet when an iron supplement was employed.

APPENDIX

TABLE 1.	HEM/	TOLOG	FICAL	FINDI	NGS AN	ID BODY	: WE	EIG	ITS,	CA	LF	NO.	1
Age	с. т.	He	И Ъ.	RBC	Rat.	WBC -	Dif	fei	cent	ia]	B	B.W.	
initial	2.1.	nc.	nı) •	RDC	Ret.	MDC	N	ч	м	Ľ	Ð	121	•
7	114	33	9.1	7.79	7	13.1	38	62	0	0	0	130	
14	115	34 22	8.0	7.83	4		43	53	0	4	0	143	
21	108	33	/•0 7 2	7.88	2	0.4	21	63	õ	2	5	171	
35	110	33	8.4	7.85	õ	7.6	46	53	ŏ	ĭ	ŏ	185	
42	125	32	7.0	7.77	ŏ	7.4	41	55	i	3	õ	199	
49	114	32	7.4	7.70	8	7.8	39	59	ō	2	Õ	214	
56	118	32	7.2	7.65	0	7.9	28	71	0	1	0	227	
63	110	33	7.6	7.72	2	8.1	35	60	0	5	0	242	
70	109	32	7.0	7.80	0	7.4	39	61	0	0	0	255	
77	121	32	8.2	7.73	3	7.2	33	67	0	0	0	269	
84 91	118	33 31	/•4 7•1	7.91	5	7.2	41 47	57 51	0	2	0	283 299	
TABLE 2.	HEM	TOLOG	GICAL	FINDI	NGS AN	ND BODY	WE	EIGI	HTS,	, Cł	\LF	NO.	2 ⁻
Age						-	Dif	fe	cent	:ia]			
(days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	M	E	В	B.W.	,
initial												88	
7	68	32	9.0	7.96	7	11.6	58	42	0	0	0	98	
14	60	33	9.0	8.05	0	13.5	51	39	0	0	0	107	
21	57	32	8.4	8.24	1	14.2	32	68	0	0	0	118	
28	66 50	33	7.8	8.37	14		47	51	Ţ	Ť	0	129	
35	50	33	0.0	7 97	0	2 3 12•/	43	57	1	2	ň	155	
49	72	33	8.0	7.96	ŏ	5.4	51	49	ō	ō	ŏ	171	
56	77	32	7.8	7.90	ō	6.2	47	52	Ō	Õ	ī	186	
63	73	31	8.2	8.05	2	6.8	38	59	0	3	0	200	
70	70	33	8.6	8.11	9	6.8	40	60	0	0	0	215	
77	71	33	8.0	8.07	1	8.3	37	63	0	0	0	229	
84	79	32	8.0	8.12	4	9.1	52	47	1	0	0	238	
91	/4	32	8.2	/•99		8.1	43			±	<u> </u>	250	
S.I.	= Ser	cum Ir	con (r	nicrog	rams/]	L00 ml.	, b]	Lood	1)				
Hc.	= Her	natoci	cit (p	percen	t)		• •						
Hb.	= Hen	noglob	oin (c	grams/	100 m] 6 v	L. bloc	d)						
RBC	= Rec	1 DIO(oa ce.	(20, 20, 10)	0) 0~/50() oright	~~~		. .)				
WBC	= Mhi	$i \neq b$	lood	rell (103)	J EL Y LI	IL OC	y u	50/				
Differer	ntial												
N	= Neu	ltroph	nil (9	6)									
\mathbf{L}	= Lyn	nphocy	yte (9	6)									
M	= Mor	nocyte	≥ (%)										
E	= Eos	sinop	nil (9	6)									
B BW	= Bas	sopni]	L (%) i~h+ '	(a)								
$D \bullet W \bullet$	= DO(y wei	rdur ((pound)	3/								

TABLE 3	. HEM	ATOLO	GICAL	FINDI	NGS AI	ND BOD	Y WI	EIGI	HTS	, CA	LF	NO.	3
Age							Di	ffe	ren	tial			
(days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	M	E	B	B.W.	•
initial												115	
7	141	35	10.1	8.53	0	14.0	41	58	0	1	0	121	
14	138	35	10.0	8.49	3	17.2	38	62	0	0	0	130	
21	144	35	9.8	8.52	2	16.1	44	56	0	0	0	143	
28	151	34	9.0	8.62	2	11.6	50	50	0	0	0	158	
35	150	34	9.4	8.77	0	9.8	48	52	0	0	0	174	
42	154	34	9.2	8.66	3	10.4	46	54	0	0	0	187	
49	139	33	9.2	8.52	0	5.7	39	61	0	0	0	203	
56	141	34	9.2	8.56	5	8.1	37	63	0	0	0	220	
63	140	35	9.0	8.62	1	9.4	44	56	0	0	0	237	
70	145	34	8.6	8.51	0	8.5	51	49	0	0	0	252	
77	147	34	9.4	8.56	8	8.0	54	45	0	1	0	266	
84	161	34	9.0	8.69	5	8.6	47	53	0	0	0	283	
91	152	33	8.9	8.74	0	7.1	38	62	0	0	0	301	
				+									
TABLE 4	. HEM	IATOLO	GICAL	FINDI	NGS AI	ND BOD	Y WI	EIGI	HTS	, са	LF	NO.	4
Age							Di	ffei	ren	tial			
(days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	M	E	В	B.W.	•
initial												75	
7	98	37	11.4	9.22	1	8.9	37	63	0	0	0	79	
14	127	37	11.8	9.14	12	11.8	22	78	0	0	0	89	
21	148	39	11.6	9.08	3	7.4	39	61	0	0	0	107	
28	151	41	12.2	8.97	1	8.2	28	72	0	0	0	123	
35	146	44	12.4	9.06	2	13.0	23	77	0	0	0	138	
42	159	43	12.6	9.15	6	9.1	25	75	0	0	0	150	
49	150	43	12.0	9.22	0	8.6	31	69	0	0	0	163	
56	162	41	11.6	9.19	3	8.5	37	63	0	0	0	176	
63	171	42	11.8	9.17	5	8.0	35	65	0	0	0	190	
70	158	43	12.0	9.25	4	9.1	30	69	0	1	0	201	
77	162	42	11.6	9.03	0	8.3	38	62	0	0	0	213	
84	163	44	11.8	9.11	4	9.9	39	60	0	1	0	227	
91	168	42	11.8	9.23	8	10.4	42	58	0	0	0	240	
84 91 S.I. HC. HD. RBC Ret. WBC Differen N	163 168 = Ser = Hen = Hen = Red = Ret = Whi ntial = Neu	44 42 rum Ir atocr aglob bloc iculo itculo	11.8 11.8 con (mi cit (pe oin (gr od cell ocyte (Lood ce nil (%)	9.11 9.23 Lcrogr ercent rams/1 (106 (numbe ell (1	4 8 ams/1() 00 ml.) r/500 03)	9.9 10.4 00 ml. bloo eryth	39 42 blo d) rocy	50 58 pod	0) s)	0	0	227	
L	= Lyn	phocy	yte (%))									
M	= Mon	ocyte	e (%)										
E	= Eos	inoph	nil (%))									
В	= Bas	ophil	L (%)										
B.W.	= Bod	ly wei	ight (p	pounds)								

TABLE	5. HEM	ATOL	OGICAL	FINDI	NGS AI	ND BOD	Y WE	EIGI	HTS ,	, CA	LF	NO.	5
Age (days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC .	Di: N	fe L	cent M	tial E	в	B.W.	•
initia 7 14 21 28 35 42 49 56 63 70 77 84 91	1 90 84 96 78 81 84 92 96 99 106 95 98 109	37 36 37 38 39 39 37 37 37 37 37	11.1 12.2 9.8 9.4 11.0 10.2 10.4 9.6 10.4 10.6 10.0 10.0 9.5	9.10 9.04 9.03 8.95 9.08 9.11 9.17 9.12 8.91 8.93 9.00 9.12 9.14	1 9 0 2 1 0 4 0 1 0 1	6.3 5.8 8.6 12.1 9.2 8.7 10.1 6.8 9.4 10.1 6.7 8.9 8.1	40 44 52 58 50 46 39 44 44 44	60 59 42 57 40 51 55 59	000002112101	0 0 0 0 0 0 5 2 0 0 0 1 0	000000000000000000000000000000000000000	98 106 115 126 134 144 165 177 186 200 214 226 240	
TABLE	6. HEM	ATOL	OGICAL	FINDI	NGS AI	ND BOD	Y WE	EIGI	HTS,	, CA	LF	NO.	6
Age	ст	Va	ШЪ		Pot	WPC	Dif	fe	rent	tial		ъч	
(days)		пс.	HD•	RBC	Ret.	WDC	IN	L.	P1		D	D.W.	•
1nitia 7	1 1 1 1 1 1	36	9.5	8-55	2	7.8	37	63	0	0	0	84 90	
14	92	36	9.2	8.62	2	8.3	47	53	õ	ŏ	ŏ	99	
21	100	36	8.0	8.67	Ō	9.4	41	57	0	2	Ō	107	
28	97	36	7.8	8.63	4	13.3	39	58	0	3	0	116	
35	98	36	9.5	8.48	1	14.2	54	44	0	2	0	124	
42	103	37	8.6	8.52	0	11.7	46	52	0	2	0	134	
49 56	109	30	8.0	8.55	0	10.8	48	50	0	2	0	140	
50 63	96	37	8.0	8.62	2	9.7	39	53 61	õ	0	0	168	
70	115	36	8.4	8.58	ō	8.7	43	53	ŏ	Õ	Õ	180	
77	98	36	8.0	8.44	4	9.3	44	54	0	2	0	189	
84	111	37	8.0	8.	0	9.5	40	57	0	3	0	203	
91	104	37	7.5	8.49	3	10.4	48	50	0	2	0	215	
S.I. Hc. Hb. RBC Ret. WBC Differ N L M E B.W.	= Ser = Hem = Hem = Red = Ret = Whi ential = Neu = Lym = Mon = Eos = Bas = Bod	um In atocn oglob bloc iculo te b trophocn ocyto inophi ophi y we	ron (mi rit (pe oin (gr od cell ocyte (lood ce hil (%) yte (%) hil (%) l (%)	icrogrant ercent cams/1 (106 (numbe ell (1))	ams/1() 00 ml,) r/500 0 ³)	00 ml. blood eryth:	blo d) rocy	yte:) 5)				

TABLE 7	. HEM	ATOL	GICAL	FINDI	INGS A	ND BOD	Y WI	EIG	HTS	, CA	LF	NO.	7
Age						_	Di	ffe	rent	tia]			
(days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	М	E	B	B.W.	•
initial												93	
7	90	38	11.7	9.18	2	7.8	49	51	0	0	0	97	
14	112	37	11.4	9.23	11	12.4	56	44	0	0	0	109	
21	151	37	11.8	9.21	0	8.2	62	38	0	0	0	124	
28	148	38	12.3	9.06	4	9.4	47	52	0	1	0	137	
35	139	39	12.6	9.10	6	9.2	47	53	0	0	0	150	
42	146	42	12.8	9.33	6	9.4	45	55	0	0	0	161	
49	141	44	12.6	9.06	8	9.6	49	51	0	0	0	175	
56	144	41	12.1	9.11	2	7.2	38	60	0	0	2	187	
63	154	42	12.2	8.85	5	8.4	40	58	0	2	0	197	
70	150	42	12.4	8.67	2	9.8	39	5/	0	4	0	209	
//	153	41 41	12.2	9.23	16	9 •9	31	53	0	2	0	222	
04	152	41	12.0	9.20	10	10.4	4/	21	0	2	Ň	232	
91	172	40	TTOT	7.54	,	0.5	50	50	U	U	V	244	
TABLE 8	• HEM	ATOL	DGICAL	FINDI	NGS A	ND BOD	Y WI	EIG	HTS	, C <i>i</i>	LF	NO.	8
Age						_	Di	ffe	rent	tial			
(days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	Μ	E	B	B.W.	•
initial												99	
7	111	31	8.6	7.95	4	11.1	53	47	0	0	0	102	
14	139	31	8.6	8.30	9	12.6	51	49	0	0	0	110	
21	171	33	8.6	8.38	9	9.4	49	50	0	1	0	121	
28	160	35	9.0	8.24	15	9.4	49	50	0	1	0	131	
35	161	36	8.8	8.41	0	10.1	46	53	0	1	0	140	
42	159	34	9.0	8.46	7	11.4	39	61	0	0	0	151	
49	181	35	9.4	8.10	12	8.9	33	66	0	Ţ	0	103	
50	170	35	9.2	8.21	11	9.0	38	50	0	2	0	105	
70	168	35	9.2	0.20	12	7 0	40	20	0	2	0	105	
70	169	33	9.4	8 32	13	9.1	20	61	õ	ň	õ	206	
84	176	34	9.8	8.37	10	10.0	40	60	ŏ	ŏ	ŏ	215	
91	161	33	9.8	8.30	2	9.7	40	60	õ	ŏ	ŏ	225	
										_	-		
S.I.	= Seru	ım Iı	con (mi	Lcrogr	ams/1	.00 ml.	blo	bod)				
HC.	= Hema	atoci	cit (pe	ercent	.)	1. 9							
HD.	= Hemo	odioi	oin (gi	ams/1	00 ml	• D100	a)						
RBC	= Red		og ceri	(mumpo	·) ~/500	b			- \				
Ket. WRC	= Ret		lood a		031	erytm	rocy	Yte	57				
Differe	= WILI n+i⊇l	Le D.		:TT (T									
N	E Noui	ron	n il (%))									
T.		opocy	vte (%)	,)									
M	= Mong	ocvt	a (%)	,									
E	= Eosi	inopl	nil (%))									
B	= Base	ophi.	L (%)										
B.W.	= Body	/ we:	Lght (g	pounds)								

TABLE	9. HE	MATOLC	GICAL	FINDI	NGS	AND BOI	DY WE	EIGH	ITS	, с	ALF	NO.	9
Age							Di	fe	<u>en</u>	tia	1_		
(days)	S.I.	Hc.	Hb.	RBC	Ret	• WBC	N	L	M	E	в	B.W.	
initia	1											110	
7	110	24	7.5	7.56	2	8.4	38	62	0	0	0	118	
14	154	28	7.4	7.28	32	5.3	36	64	0	0	0	131	
21	198	27	7.2	7.31	29	4.8	43	57	0	0	0	146	
28	206	29	7.3	7.40	30	8.9	40	59	0	1	0	160	
35	198	31	7.4	6.96	9	10.2	42	58	0	0	0	173	
42	197	29	8.0	7.20	4	7.8	39	61	0	0	0	189	
49	211	29	8.2	7.72	2	8.6	37	60	0	3	0	207	
56	205	30	8.1	7.28	1	8.8	40	60	0	0	0	224	
63	202	28	8.0	7.44	0	9.0	48	49	0	2	1	240	
70	183	29	8.2	7.93	0	10.1	46	54	0	0	0	254	
7 7	195	29	8.0	8.44	2	9.6	42	58	0	0	0	266	
84	197	30	7.8	8.27	1	7.3	47	53	0	0	0	280	
91	192	30	7.7	7.22	Ō	8.2	48	51	Ō	1	Ō	294	
									_		-		
TABLE	10. H	EMATOL	OGICAL	FIND	INGS	AND BO	DDY V	JEI	GHT	s,	CALI	NO.	10
Ane							Di f	fo	- on	+1a	ı		
(dave)	ст	He	ЧЪ	DBC	Pot	WBC		T. C.	M	F		DW	
(uays)	J •±•		1000		Net	• WDC	14		1-1	8	U.	D•#•	
initia	1											108	
7	86	40	11.7	9.26	10	7.1	62	38	0	0	0	116	
14	104	40	11.4	9.36	7	6.7	57	43	0	0	0	127	
21	140	41	11.8	9.30	7	12.2	68	32	0	0	0	141	
28	131	43	12.0	9.18	9	8.4	59	39	0	2	0	154	
35	138	44	12.0	9.41	12	9.3	53	46	0	1	0	165	
42	135	44	12.0	9.48	14	14.1	56	43	0	1	0	179	
49	146	42	12.0	9.50	8	8.2	55	41	0	4	0	193	
56	131	42	11.8	9.06	8	9.4	60	40	0	0	0	207	
63	140	42	11.6	9.23	6	10.1	59	39	0	2	0	221	
70	139	43	12.0	9.36	6	8.2	61	37	0	2	0	234	
77	146	43	12.2	9.47	5	7.4	56	44	0	0	0	246	
84	148	43	11.6	9.12	4	6.9	52	45	0	3	0	256	
91	151	44	11.9	9.32	0	8.0	60	40	0	0	0	271	
S.I.	= Se	rum Ir	on (mi	.crogra	ams/	100 ml.	. blo	bod)				
Hc.	= He	matocr	it (pe	rcent)								
Hb.	= He	moglob	in (gr	ams/1	00 m	l. bloc	od)						
RBC	= Re	d bloc	d cell	(106)								
Ret.	= Re	ticulo	cvte (number	r/50	0 ervth	nrocy	rtes	3)				
WBC	= Wh	ite bl	ood ce	11 (1	ງ3ງີ				•				
Differ	ential				- •								
N	= Ne	utroph	il (%)										
L	= Lv	mphocy	te (%)										
M	= Mo	nocvte	(%)										
E	= Eo	sinoph	ii (%)										
B	= Ba	sophil	(%)										
B.W.	= Bo	dy wei	aht (r	ounds)								
					-								

TABLE	11.	HEMATO	LOGICAL	FIND	INGS	AND	BODY	WEI	GHT	s,	CALF	NO.	11
Age		t Va	ШЪ	DDC	Pot	MD		<u>iffe</u>	ren	tia	1_	D W	
(days)	5.	L. NC.	nu •	RDC	ret.			1	14	E,	ם	D • W •	
initia	1				-	-			-	-	-	105	
7	83	2 25	6.2	7.68	3	8.	5 5	2 48	0	0	0	104	
14	148	3 23	6.4	7.51	. 54	9.	3 5	6 44	0	0	0	112	
21	173	3 24	6.0	7.56	28	7.	6 3	9 61	0	0	0	123	
28	182	9 27	6.6	7.28	24	14.	8 4	0 59	0	Ţ	0	132	
30	180	20	6.4	7.52	2	9.	94	5 55	0	0	0	140	
42	1/2	5 28 7 20	0.0	1.44/	2	10.	6 4 7 3	0 60	0	0	0	120 120	
49	170	/ 3U	$0_{0}0$	7 71	4 2	11.	1 3	0 02 2 57	0	0	ů i	107	
50	201	7 <u>2</u> 7 1 20	/•4 7 1	/•/⊥ 7	2	7.	3 4	2 J/ 8 56	ŏ	Ň	1	107	
70	190	L 20	7 3	/• 7 15	2	1/	2 3	4 JO 7 61		2	õ	100	
70	188	20	7.0	7.71	2	10.	$\begin{array}{ccc} 3 & 3 \\ 2 & 4 \end{array}$	0 60	ň	õ	ŏ	273 211	
84	180	30	7.2	6.98	2	9.	6 4	2 58	ŏ	ŏ	ŏ	220	
91	174	1 29	6.7	7.31	2	12.	1 4	5 55	õ	ŏ	õ	228	
~	_	• /		/	5			5 55	v	v			
	10			DTUD			2021						
TABLE	12.	HEMATO	LOGICAL	FIND.	INGS	AND	BODI	₩Ľ⊥	GHT	'S, 		NO.	12
(dave)		T Ha	чЪ	PRC	Pot	. WR	<u>ر _ א</u>	T.	M	<u>Lle</u> F		R W	
(uuys)	5.		1	NDC	ne t			-	1.1		D		
initia	1								-	_	-	92	
7	96	5 30	7.8	5.82	12	9.	5 6	1 39	0	0	0	96	
14	126	5 29	7.6	6.30	0	12.	1 6	5 35	0	0	0	109	
21	139	30	7.6	6.06	10	18.	2 6	3 37	0	0	0	124	
28	14:	5 31	7.6	5.88	13	9.	4 6	643	0	Ť	0	138	
35	154	2 34	/•6	6.04	8	10.	1 0	5 35	Ň	U V	0	120	
42	104	2 34	7.8	5.93	/	9.	8 5	9 40	Ň	÷	0	104	
49	150	5 54	/•0	6 10	9	10.	7 0 65	0 10 T 20	0	л Т	0	103 TOT	
50	1 7 1	L 32	0.U 7 9	C 00	10	12	0 0 2 2	0 40	0	2	0	207	
70	103	L 30	7.0 8.0	6 26	11	120	2 0	5 77	Ň	1	0	207	
70	159	2 31	8 0	6 07	17	13	2 5	J 44 9 /1	ĩ	0	ŏ	220	
84	163	2 22	8.0	6.17	±/		2 5	6 43	ō	ĭ	õ	233 247	
91	160) 33	8.1	6.06	11	12.	1 5	9 40	ĩ	ō	ŏ	261	
~	100		0.1	0.00	**	1 C O		7 40	*	v	Ŭ	201	
S.I. Hc.	= 2 = H	Serum I Iematoc	ron (mic rit (per	crogra	ams/1)	.00 m	1. b	lood)				
	1 =	lemogio.	Din (gra	$\frac{100}{100}$)0 mT		000)						
RDC	1 = 7		ou cell	(TOO)	, ~/E00		4 h	a	<u>م</u>)				
Ket.	= 1		lood col	iumei	c7500 131	егу	thro	cyte	57				
Diffor	enti:		TOOM CG	(1(J- J								
N		 Neutron	hil (%)										
L		Lymphoc	vte (%)										
M		lonocvt	e (%)										
E	; = E	Eosinop	hil (%)										
E) = E	Basophi	1 (%)										
B.W.	_ = I	Body we	ight (po	ounds)								

TABLE	13. н	EMATO	LOGICAL	FINDI	NGS A	ND BO	DY I	NEIC	ЭНТ	s,	CALF	NO.	13
Age							Di	ffei	cen	tia	1		
(days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	M	E	B	B.W.	
initia	1											96	
7	101	33	9.8	8.02	1	7.6	61	39	0	0	0	101	
14	136	32	9.6	7.96	13	5.4	59	41	0	Ō	Ō	110	
21	152	35	9.8	7.85	12	6.1	63	37	Ō	Õ	Ŏ	125	
28	153	35	10.0	7.88	8	7.8	50	50	Õ	Ō	Ŏ	138	
35	163	39	9.8	8.03	13	6.4	64	36	0	Ō	Ō	148	
42	150	37	10.2	8.10	2	6.8	57	63	Ō	Ō	Ō	162	
49	157	37	10.2	7.93	14	8.4	56	44	0	Ō	Ō	174	
56	141	37	10.0	7.83	2	9.3	52	48	0	0	0	185	
63	155	38	9.8	8.07	9	7.8	53	47	0	0	0	196	
70	157	38	10.4	8.31	10	6.1	49	51	0	0	0	206	
77	150	35	10.6	8.12	7	9.6	61	39	0	0	0	218	
84	146	35	10.6	7.88	8	8.3	57	42	0	1	0	230	
91	148	37	10.8	7.96	8	9.4	56	44	0	0	0	242	
												ومفجوده	
	י או		OCTONT	FTNDT	NGS A		ז עח	JET	ะบก	C	CALE		٦.4
TYDDR	140 U	LINAIOI	DOGTCAT	FINDI	NG2 Y				3117	., 	CALF	NO.	Τ.4
Age							Di	fer	<u>cen</u>	tia	1_		
(days)	S.I.	HC.	Hb.	RBC	Ret.	WBC	N	Г	M	E	В	B.W.	
initia	1											113	
7	92	25	6.8	6.40	0	11.4	69	31	0	0	0	113	
14	81	25	5.8	6.48	1	14.9	64	36	0	0	0	117	
21	80	25	6.4	6.53	2	13.1	59	41	0	0	0	124	
28	94	26	6 .0	6.47	2	9.6	67	33	0	0	0	130	
35	72	25	6.2	6.63	9	12.4	62	38	0	0	0	138	
42	88	26	6.2	6.71	1	11.7	70	29	0	1	0	145	
49	79	26	6.2	6.88	7	9.8	59	40	0	1	0	153	
56	76	26	6.0	6.55	0	12.1	56	41	0	3	0	161	
63	70	27	5.8	6.58	5	11.4	53	45	0	2	0	169	
70	88	26	6.2	7.20	1	8.3	57	40	1	2	0	175	
77	93	25	6.2	6.57	6	9.1	60	39	0	1	0	182	
84	90	26	6.0	6.61	2	10.9	58	40	0	2	0	189	
91	91	26	5.8	6.53	0		64	33	0	3	0	198	
						-		_					
ст	_ 9	0 min -	rnon (-	lancar	ama /1	00 -1	h 7		4 /				
HC -	= J _ U	erum r	rrit (m.	arcon+) ams/T	.00 mI	•						
Hb	- 4		shin (a	rame/l	/ 00 ml	blo	~d)						
RBC		ad blo	od cel	1 (106))		ou,						
Ret.	= R	eticul	locyte	(numbe	r/500	ervt	hrod	·v+e)				
WBC	- N	hite h		11 (1	n3)	eryc		- y cc					
Differ	ential			~~~ ~~	V -7								
N		eutro	ohil (%)									
L	= L	vmphod	vte (%)									
M	= M	onocvi	te (%)										
E	= E	osinor	ohil (%))									
B	= B	asoph	11 (%)										
B.W.	= B	ody we	eight (pounds)								

TABLE]	L5. HI	EMATO	LOGICA	L FINDI	NGS	AND BO	DY I	NEIG	HT	5,	CALF	NO.	15
Age (days)	S.I.	Hc.	Hb.	RBC	Ret	. WBC	Di: N	ffer L	ent M	tia E	<u>1</u> B	B.W.	
- initial	1											76	
7	129	39	11.5	9.33	10	9-8	65	35	0	0	0	82	
14	135	39	11.0	9.27	18	9.6	68	32	ŏ	ŏ	ŏ	91	
21	138	39	10.6	9.36	-5	8.5	67	33	õ	ŏ	ŏ	104	
28	126	37	9.6	9.44	õ	8.3	62	38	õ	ŏ	ŏ	116	
35	131	36	11.8	9.51	ŏ	11.3	58	41	õ	ŏ	ĩ	129	
42	128	38	10.4	9.33	9	10.1	63	37	õ	õ	ō	142	
49	141	38	10.0	9.40	ō	9.6	57	43	õ	õ	ŏ	157	
56	139	39	10.0	9.51	ĩ	9.4	58	42	ŏ	ŏ	ŏ	171	
63	137	40	10.8	9.45	3	9.0	59	41	Õ	ŏ	ŏ	184	
70	141	39	10.4	10.40	õ	7.8	60	40	ŏ	ŏ	ō	197	
77	130	39	9.8	10.02	5	8.8	59	41	Ŏ	Ō	Ŏ	207	
84	140	40	9.5	9.92	5	9.4	57	43	Õ	Õ	ŏ	221	
91	144	40	9.0	9.97	3	10.1	63	37	Õ	Ŏ	Õ	234	
TABLE]	L6. н	EMATO	LOGICA	L FINDI	NGS	AND BO	DY I	NEIG	HT	5,	CALF	NO.	16
Age							Di	ffer	ent	tia	1		
(days)	S.T.	HCA	Hb.	RBC	Ret	WBC	N	L	M	E	B	B.W.	
								-		-	-		
initial					•			• •	~	~	•	87	
7	99	42	13.0	9.69	8	7.8	56	44	0	0	0	93	
14	136	41	13.0	9.80	3	12.6	62	37	0	Ţ	0	102	
21	160	42	12.8	9.77	10	9.3	55	45	0	0	0	113	
28	153		13.4	9.87	0	14.1	50	50	0	0	0	120	
35	144	46	13.2	9.83	8	13.3	40	52	0	2	0	137	
42	154	45	13.0	9.96	TÖ	10.9	43	54	ų į	Ť	2	140	
49	108	4/	14.0	9.80	, ,	7.8	23	41	Ţ	0	3	T22	
56	10/	40	13.8	9.92	11	12.1	54	44	2	2	0	10/	
63	148	40	13.8	10.07	14	8.4	22	43	0	2	0	105	
70	149	4/	13.4	9.79	2	9.3	27	41	0	0	0	102	
//	100	40	13.0	9.84	4	11•1	20	40	0	0	2	772	
84	103	4/	13.8	9.97		9.3	03	31	0	2	0	20/	
91	101	40	13.0	9.73	14	10.4	28	39	U	3	U	518	
S.I. Hc. Hb.	= Sei = Hei = Hei	rum I matoc: mogloj	ron (m rit (p bin (g	icrogra ercent) rams/10	ms/1	00 ml.	blo d)	pod))				
RBC	= Rec	1 blo	od cel	1 (106)			~ /						
Ret			ocvte	(number	/500	ervth	roc	vtes	.)				
WBC	= Wh	i + o h			3)			1002					
Differe	ntial												
N	= Nei	itron	hil (%)									
I.	= Lv		vte (%	;)									
M	= Moi	nocvt	e (%)	•									
E	= Eos	sinon	hil (%)									
B	= Ba	sophi	1 (%)										
B.W.	= Boo	dy we	ight (pounds)									

TABLE	17. 1	HEMATO	LOGICAL	FINDI	NGS .	AND BO	DY	NEIC	SHT	s,	CALF	NO.	17
Age							Di	ffer	<u>en</u>	tia	1		
(days)	S.I.	. Hc.	Hb₊	RBC	Ret	• WBC	N	L	M	E	В	B.W.	
initia	1											107	
7	60	28	10.2	8.85	5	14.2	61	39	0	0	0	110	
14	121	26	10.0	9.25	48	12.4	45	55	0	0	0	118	
21	168	32	9.6	9.42	22	9.0	58	41	0	1	0	130	
28	165	33	10.0	9.29	41	8.1	39	60	0	1	0	141	
35	176	35	10.4	9.21	5	7.6	42	58	0	0	0	154	
42	163	35	10.8	9.19	2	5.4	42	55	1	0	2	166	
49	170	35	10.8	9.36	4	9.4	45	55	0	0	0	182	
56	174	34	11.0	8.97	0	8.6	46	51	1	2	0	197	
63	183	33	11.0	9.25	1	12.1	48	48	1	0	3	211	
70	158	33	11.0	9.34	3	10.8	53	47	0	0	0	227	
77	159	29	10.6	9.53	0	7.8	47	49	0	4	0	232	
84	179	33	10.6	9.12	0	9.5	46	53	0	0	1	240	
91	163	33	10.8	8.97	0	10.3	49	51	0	0	0	251	
							_						
TABLE	18. 1	HEMATO	LOGICAL	FINDI	NGS .	AND BO	DY I	NEIC	GHT:	s,	CALF	NO.	18
Age							Di	ffei	en	tia	1		
(days)	S.I.	Hc.	Hb.	RBC	Ret	. WBC	N	L	M	E	В	B.W.	
initia	1											107	
7	91	35	10.4	8.58	0	8.4	63	37	0	0	0	114	
14	116	34	10.6	8,69	5	9.6	60	39	õ	ĩ	ŏ	127	
21	151	36	10.2	8.81	10	10.8	70	29	Õ	ī	ŏ	142	
28	148	37	9.8	8.60	14	9.5	73	27	Õ	ō	Õ	159	
35	149	40	9.8	8.59	7	9.0	70	29	Õ	1	Ō	175	
42	153	39	10.0	8.46	0	9.8	57	41	1	0	1	187	
49	147	38	10.0	8.69	6	7.3	58	40	2	0	0	201	
56	144	39	10.0	8.75	0	8.1	62	38	0	0	0	215	
63	153	41	10.4	8.67	5	9.8	63	37	0	0	0	227	
70	143	39	9.8	8.63	9	12.1	58	41	1	0	0	241	
77	162	39	9.0	9.08	4	9.6	59	39	0	2	0	255	
84	162	38	9.4	8.96	6	10.4	64	36	0	0	0	268	
91	171	38	9.0	8.79	7	11.1	61	38	0	0	1	282	
S.I.	= Se	erum I	con (mic	crogra	ms/1	00 ml.	blo	bod)				
Hc.	= He	ematoci	rit (per	cent)									
Hb.	= He	emoglo	oin (gra	ams/10	0 ml	. bloo	d)						
RBC	= Re	ed Ďloo	od cell	(106)									
Ret.	= Re	eticulo	ocyte (r	number	/500	eryth	rocy	ytes	5)				
WBC	= W1	hite b	lood cel	Ll (10	3)								
Differ	ential	1											
N	= Ne	eutropl	hil (%)										
L	= Ly	ymphocy	yte (%)										
M	= Mo	onocyte	e (%)										
E	= Eq	osinopl	hil (%)										
B	= Ba	asophi:	L (%)	- •									
B.W.	= Bo	ody we:	ight (po	ounds)									

TABLE	19.	HEMATO	LOGICAL	FINDI	NGS A	AND BO	DY V	VEIC	GHT	s,	CALE	NO.	19
Age							Di	ffei	<u>cen</u>	tia	1		
(days)	S.]	Hc.	Hb.	RBC	Ret	WBC	N	L	M	E	В	B.W.	
initia	1											91	
7	102	2 34	10.1	8.24	4	5.6	62	38	0	0	0	98	
14	133	33	9.6	8.11	10	8.1	64	36	0	0	0	107	
21	154	35	9.6	8.10	1	8.6	58	41	0	0	1	119	
2 8	162	? 36	9 •9	8.11	9	10.4	55	44	1	0	0	128	
35	151	. 38	9.8	8.30	5	11.3	63	37	0	0	0	140	
42	151	. 39	9.8	8.38	12	9.8	65	33	0	2	0	150	
49	169	38	10.0	8.25	7	8.4	59	41	0	0	0	159	
56	163	38	10.3	8.19	5	12.6	58	42	0	0	0	171	
63	150) 38	10.2	8.16	8	9.4	52	44	0	1	3	183	
70	168	38	10.4	8.25	3	8.4	58	41	Ţ	0	0	192	
//	101	30	9.8	8.12	4	/•8	65	35	0	0	0	206	
84	164	30	10.0	8.25	9	9.3	28	37	0	3	0	21/	
91	100	5 57	9.1	8.19	0	10.3	οτ	30	U	Т	U	220	
TABLE	20.	HEMATO	LOGICAL	FINDI	NGS I	AND BO	DY V	VEIC	GHT	s,	CALE	NO.	20
Aae							Di	ffei	cen	tia	1		
(days)	S.]	Hc.	Hb.	RBC	Ret	. WBC	N	L	M	E	B	B.W.	
- initia	г											92	
-111-L-LA 7	56	30	10.1	8.96	6	9.8	72	28	0	0	٥	92	
14	108	32	10.2	8.84	44	10.1	70	29	õ	ĭ	ŏ	104	
21	135	30	9.5	8.88	34	9.6	73	76	ŏ	ī	ŏ	117	
28	160	33	10.3	9.08	21	9.9	91	9	ō	ō	ŏ	129	
35	157	35	9.6	9.06	4	9.8	88	11	ì	Ŏ	Ō	140	
42	141	. 34	10.1	9.02	0	11.7	68	31	0	1	0	156	
49	161	. 34	10.4	8.91	2	10.3	73	25	0	2	0	173	
56	158	33	10.5	9.04	0	8.2	69	28	2	0	1	190	
63	137	/ 34	10.7	8.77	1	7.9	70	28	0	2	0	204	
70	144	32	10.5	9.18	0	10.6	72	27	0	1	0	216	
77	124	34	10.0	9.25	1	8.4	68	31	0	1	0	225	
84	133	31	9.8	8.79	2	9.3	66	33	0	1	0	233	
91	123	33	10.5	8.69	2	8.1	69	30	0	1	0	240	
S.I.	= 5	Serum I	ron (mio	rogra	ms/10	DO ml.	blo	bod)				
Hc.	= F	Iematoc	rit (pe	cent)	•								
Hb.	= F	lemoglo	bin (gra	ams/10	0 ml.	. bloo	d)						
RBC	= F	led blo	od ceĺl	(106)									
Ret.	= F	Reticul	ocyte (1	number	/500	eryth	rocy	ytes	5)				
WBC	= W	<i>l</i> hite b	lood ce:	Ll (10	3)	-	_						
Differ	entia	1											
N	= N	leutrop	hil (%)										
L	• = I	ymphoc	yte (%)										
M	= M	lonocyt	e (%)										
E	= E	osinop	nii (%)										
B) = E	sasophi	1 (%) 1 - 1 - 1 - 1	\ = ال- مرد م									
⊳ .₩.	= E	soay we	ignt (po	ounas)									

TABLE	21.	HEMATO	LOGICAL	, FINDI	NGS A	ND BO	DY V	VEIC	GHT	s,	CALF	NO.	21
Age							Di	fe	:en	tia	1		
(days)	S.	L. Hc.	Hb₊	RBC	Ret	WBC	N	L	Μ	E	В	B.W.	
initia	1											108	
7	75	5 31	9.8	10.49	0	12.3	72	28	0	0	0	115	
14	131	L 32	10.2	9.71	37	9.0	59	41	0	0	0	125	
21	166	5 36	10.6	9.97	9	8.7	75	25	0	0	0	142	
28	183	3 37	9.6	9.87	28	8.9	56	44	0	0	0	153	
35	174	41	9.8	10.40	31	14.0	64	36	0	0	0	167	
42	165	5 42	10.0	10.27	2	13.3	61	39	0	0	0	184	
49	183	3 40	10.8	10.33	0	9.6	57	43	0	0	0	204	
56	165	5 36	11.2	9.53	0	8.9	53	47	0	0	0	222	
63	179	37	11.6	9.60	0	10.6	51	48	0	1	0	238	
70	163	36	11.0	10.12	5	7.8	49	51	0	0	0	250	
77	156	5 36	11.2	10.49	0	11.2	60	40	0	0	0	263	
84	100	J 36	11.2	9.96	0	9.3	56	43	0	Ţ	0	275	
91	IV) 35	11.0	10.23	3	9.0	62	31	0	Ŧ	U	287	
TABLE	22.	HEMATO	LOGICAI	, FINDI	NGS A	ND BO	DY V	VEIC	HT	s,	CALF	NO.	22
Age							Dif	ffei	:en	tia	1		
(days)	s.:	L. Hc.	Hb.	RBC	Ret.	WBC	N	L	Μ	E	В	B.W.	
- initia	1											96	
7	. <u> </u>	1 28	7.2	7.02	5	8.4	61	29	0	0	0	99	
14	94	1 27	6.8	6.94	õ	10.1	70	30	ŏ	ŏ	õ	105	
21	102	28	6.0	6.85	ĩ	7.4	57	43	ŏ	ŏ	õ	113	
28	96	5 28	6.4	6.87	ō	8.3	68	32	ŏ	ō	õ	122	
35	101	28	6.6	7.00	ĩ	9.6	58	42	Õ	Õ	Ŏ	132	
42	93	8 28	6.6	7.12	4	7.9	67	33	0	Ō	Ō	141	
49	82	2 27	6.8	7.19	0	11.4	59	41	0	0	0	152	
56	96	5 2 8	6.4	7.27	1	9.6	64	34	0	2	0	163	
63	100	2 8	6.4	7.20	0	10.8	59	40	1	0	0	172	
70	96	5 2 8	6.2	7.31	4	6.5	70	29	0	1	0	183	
77	93	3 27	6.2	7.33	1	8.4	62	38	0	0	0	191	
84	101	L 27	6.2	7.36	0	9.3	57	43	0	0	0	205	
91	89	€ 27	5.8	7.40	1	10.9	60	39	1	0	0	217	
S.I.	= 2	Serum I	ron (mi	crogra	ms/10)0 ml.	blo	bod)				
Hc.	= 1	lematoc	rit (pe	ercent)		• • • • •							
Hb.	= H	lemoglo	bin (ar	ams/10	0 ml.	bloo	d)						
RBC	= F	led blo	od cell	(106)			•						
Ret.	= F	Reticul	ocyte (number	/500	eryth	rocy	tes	5)				
WBC	= V	White b	lood ce	11 (10	3)	-	-	•					
Differ	entia	1											
N	1 = 1	leutrop	hil (%))									
L	= I	Lymphoc	yte (%)	1									
M	1 = 1	lonocyt	e (%)										
E	=	Eosino	phil (%	5)									
В	= E	Basophi	1 (%)	- •									
B.₩.	= F	Body we	ight (p	ounds)									

TABLE	23.	HEI	MATOI	LOGICAL	FINDI	NGS A	ND	BODY	: W	EIG	HT	s,	CALF	NO.	23
Age	C	Ŧ	Va	Шъ	DBC	Pot	wD)if	fer	en [.]	tia	1	ъw	
(days)	2.	╸┷╺	пс.	nD•	RDC	Ret.	WD		(J	F1	Ľ	В	D.W.	
initia	1					_	-				-	-		116	
7	7	73	34	9.8	8.67	7	8.	7 7	0	30	0	0	0	122	
14	e	58	34	9.4	8.73	5	8.	96	57	33	0	0	0	132	
21	e	58	34	9.2	8.78	2	10.	6 6	52	38	0	0	0	145	
28	e	59	34	9.2	8.71	7	7.	8 5	59	41	0	0	0	154	
35	7	74	34	9.4	8.52	8	11.	3 5	54	44	0	2	0	167	
42	8	30	35	9.4	8.66	1	9.	4 5	53	47	0	0	0	178	
49	7	72	34	9.0	8.81	2	10.	6 6	53	36	0	0	1	193	
56	6	59	34	9.2	8.97	8	10.	2 5	59	41	0	0	0	207	
63	8	30	34	9.0	8.91	3	9.	8 5	57	39	0	4	0	222	
70	8	39	34	9.4	9.14	2	7.	9 5	55	43	0	2	0	234	
77	ε	32	31	8.4	9.22	0	9.	3 5	59	41	0	0	0	246	
84	ε	36	31	8.8	9.15	4	9.	6 5	55	44	0	0	1	251	
91	ε	88	34	8.6	9.10	1	9.	6 4	17	50	0	3	0	266	
TABLE	24.	HEI	IOTAN	LOGICAL	FINDI	NGS A	ND	BODY	: W	EIG	SHT:	s,	CALF	NO.	24
Age)if	fer	en	<u>tia</u>	1_		
(days)		5.I.	Hc.	Hb₊	RBC	Ret.	WB	CN	1	L	М	E	в	B.W.	
initia	1													121	
7		.06	36	10.4	9.21	4	7.	6 5	54	45	0	1	0	131	
14	1	.33	36	10.0	8.71	4	8.	4 5	55	45	0	0	0	142	
21	נ	49	35	10.4	8.48	0	10.	3 4	8	51	0	1	0	157	
28	נ	.63	36	10.0	8.93	13	9.	4 5	53	47	0	0	0	171	
35	נ	68	38	10.2	8.75	4	6.	8 5	52	48	0	0	0	185	
42	נ	.63	41	10.2	8.71	12	5.	4 4	17	53	0	0	0	199	
49	נ	.48	39	10.2	8.79	4	9.	6 6	50	40	0	0	0	212	
56]	.59	40	10.4	8.84	0	12.	3 5	57	41	0	2	0	224	
63]	.51	40	10.2	8.59	2	8.	4 4	4	55	0	1	0	238	
70	נ	.62	41	10.4	8.95	0	9.	4 5	57	43	0	0	0	250	
77	נ	49	37	10.8	9.17	3	10.	3 5	51	49	0	0	0	262	
84	נ	.67	39	10.4	9.03	2	9.	1 5	54	46	0	0	0	276	
91	נ	.54	39	10.2	8.86	8	7.	5 5	53	47	0	0	0	289	
											-				
S.I.	=	: Sei	cum I	Iron (m i	icroar	ams/1	.00	ml.	bl	000	1)				
Hc.	=	Her	nato	rit (pe	ercent)					-				
Hb.	2	Her	noald	bin (ar	ams/1	00 ml	. b	1000	i)						
RBC	=	Red	i blo	od cell	(106)									
Ret.	=	Re	ticu]	Locvte (numbe	r/500) er	vthr	oc	vte	es)				
WBC	=	Wh:	ite 1	blood ce	11 (1	03)		4							
Differ	enti	al				- •									
N	=	Net	itro	ohil (%))										
L	, =	- Lyr	nphod	vte (%))										
M	[=	Moi	nocvi	te (%)											
E	=	Eos	sinor	ohil (%))										
E	} =	Ba	soph	1 (%)											
B.W	=	Boo	ly we	eight (r	oounds)									
			-	- •											

TABLE	25.	HEMATO	LOGICAL	FINDI	NGS	AND BO	DY	WEIG	HTS	, CAI	F NO.	25
Age							Di	ffer	ent	ial		
(days)	S.	I. Hc.	Hb.	RBC	Ret	• WBC	N	L	M	E B	B.W.	
initia											99	
7	79	9 32	7.2	8.15	1	12.4	62	38	0	0 0	103	
14	14	B 31	7.0	8.03	24	14.2	57	43	ō	ōŏ	114	
21	18	7 33	6.8	7.85	18	16.8	59	37	i	2 1	128	
28	18	8 34	7.0	8.00	30	15.4	72	28	ō	ōō	143	
35	19	3 36	7.0	7.87	8	13.6	59	41	ŏ	õ õ	158	
42	21	0 37	7.2	7.53	ŏ	14.7	60	37	õ	3 0	171	
49	20	6 35	7.2	7.02	ĩ	10.3	58	39	ī	0 2	186	
56	21	1 37	7.6	7.26	2	12.1	71	29	ō	ōŌ	204	
63	21	4 35	7.4	7.92	ō	11.7	58	42	Ŏ	Õ Õ	220	
70	21	3 37	7.6	6.95	2	9.8	60	37	Ō	3 0	235	
77	20	1 36	7.0	7.48	ō	10.6	56	44	Õ	ÕÕ	248	
84	25	7 33	7.2	7.81	4	11.4	59	39	1	Î Õ	262	
91	19	2 37	7.6	8.08	ī	11.8	59	41	ō	ōŏ	275	
									-			
												• •
TABLE	26.	HEMATO	LOGICAL	FINDI	NGS	AND BO	DDY	WEIC	JHTS	, CAI	F NO.	26
Age							Di	ffer	ent	ial		
(days)	S.	I. Hc.	Hb.	RBC	Ret	• WBC	N	L	M	E B	B.W.	
initia	1										104	
7	יבי	२ २२	8.5	6-47	8	9.8	62	38	0	0 0	112	
14	21	1 34	8.2	6.67	41	7.2	53	47	ŏ	õ õ	122	
21	23	6 38	8.6	6.63	15	13.1	60	30	õ	i õ	136	
28	24	9 39	8.3	6.55	19	12.6	60	40	õ	ñõ	150	
35	25	4 40	8.4	6.30	6	9.8	56	44	õ	õ õ	165	
42	24	0 39	8.4	6.73	Ă	11.1	58	41	õ	i õ	181	
49	25	6 37	8.8	6.44	2	11.0	57	43	ō	ōŏ	196	
56	26	0 38	9.1	6.64	3	12.1	60	40	ō	õ õ	215	
63	26	a 33	8.8	7,19	2	9.3	63	37	ō	õ õ	230	
70	24	9 37	9.2	6.38	ō	9.4	57	43	ō	õ õ	243	
77	24	6 36	8-8	6.66	ž	8.6	65	35	ō	0 0	256	
84	25	2 37	8.8	6.32	2	11.7	60	38	ō	$\hat{2}$ $\hat{0}$	266	
91	23	a 37	8.9	6.71	ō	13.1	68	30	õ	$\overline{2}$ $\overline{0}$	276	
									• •			
-												
S.I.		Serum I	ron (mic	rogra	ms/1	00 ml.	, bl	ood)			
HC.	=	Hematoc	rit (pei	cent)			• •					
HD.	=]	Hemoglo	bin (gra	ms/10	0 ml	• bloc	d)					
RBC		Red blo	od cell	(100)	1500				•			
Ret.	=]	Reticul	ocyte (I	number	2500	eryti	roc	ytes	5)			
WBC		wnite b	Tood ce	LI (10	5)							
Differ	enti	al										
N		Neutrop	nil (%)									
L		Lympnoc	YTE (%)									
M		monocyt										
E		Losinop	nii (%)									
5 M		basophi	エ (次) まニンド /…・	المناف شارك								
D's Wa	=	boay we	rdur (bo	junds)								

Hc. Hb. 44 13.0 41 12.8 43 13.4 44 13.2 47 13.6 48 13.2 47 13.0 47 13.0 46 12.6 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	RBC 10.13 9.90 10.02 10.06 9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	Ret 5 4 14 5 21 10 9 7 15 7 5 10	• WBC 8.6 14.1 11.8 8.0 7.9 9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4 MND BO	Diff N 1 59 4 52 4 71 2 61 3 52 4 63 3 52 4 63 3 59 4 66 3 59 4 66 3 58 4 60 4 DY WE	erer M 1 0 7 0 9 0 0 0 9 0 7 0 4 0 6 0 1 0 3 1 3 0 2 0 0 0	0 1 0 0 1 0 0 1 0 0 1 0 0	1 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B.W. 99 112 125 137 150 163 174 187 198 213 226 239 250 264	
44 13.0 41 12.8 43 13.4 44 13.2 47 13.6 48 13.2 47 13.0 47 13.0 46 12.6 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	10.13 9.90 10.02 10.06 9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	5 4 14 5 21 10 9 7 15 7 5 10 NGS	8.6 14.1 11.8 8.0 7.9 9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4 AND BO	59 4 52 4 71 2 61 3 52 4 63 3 59 4 66 3 59 4 66 3 56 4 56 4 58 4 58 4 58 4 50 4	1 0 7 0 9 0 9 0 7 0 4 0 6 0 1 0 3 1 3 0 2 0 0 0	010001000000		99 112 125 137 150 163 174 187 198 213 226 239 250 264	
44 13.0 41 12.8 43 13.4 44 13.2 47 13.6 48 13.2 47 13.0 47 13.0 47 13.0 46 12.6 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	10.13 9.90 10.02 10.06 9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	5 4 14 5 21 10 9 7 15 7 5 10	8.6 14.1 11.8 8.0 7.9 9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4 ND BO	59 4 52 4 71 2 61 3 52 4 56 4 63 3 59 4 66 3 58 4 60 4 58 4 60 4 DY WE	1 0 7 0 9 0 7 0 4 0 6 0 1 0 3 1 3 0 2 0 0 0	0100010001000		99 112 125 137 150 163 174 187 198 213 226 239 250 264	
44 13.0 41 12.8 43 13.4 44 13.2 47 13.6 48 13.2 47 13.0 47 13.0 46 12.6 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	10.13 9.90 10.02 10.06 9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	5 4 14 5 21 10 9 7 15 7 5 10 NGS	8.6 14.1 11.8 8.0 7.9 9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4 ND BO	59 4 52 4 71 2 61 3 52 4 61 3 56 4 63 3 56 4 56 4 56 4 56 4 58 4 60 4 DY WE	1 0 7 0 9 0 7 0 4 0 6 0 1 0 3 1 3 0 0 0	01000100100		112 125 137 150 163 174 187 198 213 226 239 250 264	
41 12.8 43 13.4 44 13.2 47 13.6 48 13.2 47 13.0 47 13.0 46 12.6 47 13.0 46 12.6 47 13.0 48 13.4 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.90 10.02 10.06 9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	4 14 5 21 10 9 7 15 7 5 10 NGS	14.1 11.8 8.0 7.9 9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4 AND BO	52 4 71 2 80 2 61 3 52 4 63 3 56 4 66 3 56 4 58 4 60 4 0Y WE	7 0 9 0 9 0 7 0 4 0 6 0 1 0 3 1 3 0 2 0 0 0			125 137 150 163 174 187 198 213 226 239 250 264	
43 13.4 44 13.2 47 13.6 48 13.2 47 13.0 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	10.02 10.06 9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	14 5 21 10 9 7 15 7 5 10	11.8 8.0 7.9 9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4	71 2 80 2 61 3 52 4 63 3 59 4 66 3 56 4 58 4 60 4 58 4 60 4 DY WE	9 0 9 0 9 0 7 0 4 0 6 0 1 0 3 1 3 0 2 0 0 0 IGH			137 150 163 174 187 198 213 226 239 250 264	
44 13.2 47 13.6 48 13.2 47 13.0 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	21 10 9 7 15 7 5 10	7.9 9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4 AND BO	60 2 61 3 52 4 56 4 63 3 59 4 66 3 56 4 58 4 60 4 0Y WE	9 0 7 0 4 0 6 0 1 0 3 1 3 0 2 0 0 0			150 163 174 187 198 213 226 239 250 264	
47 13.0 48 13.2 47 13.0 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.51 9.76 9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	1 10 9 7 15 7 5 10	9.4 8.6 10.2 12.3 11.4 8.6 10.1 11.4 AND BO	51 3 52 4 56 4 63 3 59 4 66 3 56 4 58 4 60 4 0Y WE	7 0 4 0 6 0 1 0 3 1 3 0 2 0 0 0			163 174 187 198 213 226 239 250 264	
40 13.2 47 13.0 47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.64 9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	10 9 7 15 7 5 10	8.6 10.2 12.3 11.4 8.6 10.1 11.4 AND BO	56 4 63 3 59 4 66 3 56 4 58 4 60 4 DY WE	4 0 6 0 1 0 3 1 3 0 2 0 0 0			174 187 198 213 226 239 250 264	
47 13.0 46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.80 9.93 9.71 9.69 9.67 9.58 AL FINDI	9 7 15 7 5 10 NGS	10.2 12.3 11.4 8.6 10.1 11.4 AND BO	63 3 59 4 66 3 56 4 58 4 60 4 DY WE	6 0 1 0 3 1 3 0 2 0 0 0			198 213 226 239 250 264	
46 12.6 47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.93 9.71 9.69 9.67 9.58 AL FINDI	7 15 7 5 10 NGS	12.3 11.4 8.6 10.1 11.4 AND BO	59 4 66 3 56 4 58 4 60 4 DY WE	1 0 3 1 3 0 2 0 0 0			213 226 239 250 264	
47 13.0 48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.71 9.69 9.67 9.58 AL FINDI	15 7 5 10 NGS	11.4 8.6 10.1 11.4 AND BO	66 3 56 4 58 4 60 4 DY WE	3 1 3 0 2 0 0 0			226 239 250 264	
48 13.4 48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.69 9.67 9.58 AL FINDI	7 5 10 NGS	8.6 10.1 11.4 AND BO	56 4 58 4 60 4 DY WE	3 0 2 0 0 0	1 0 0		239 250 264	
48 13.6 46 13.2 MATOLOGIC Hc. Hb.	9.67 9.58 AL FINDI	5 10 NGS	10.1 11.4 AND BO	58 4 60 4 DY WE	2 0 0 0	0		250 264	
46 13.2 MATOLOGIC Hc. Hb.	9.58 AL FINDI	10 NGS	AND BO	60 4	0 0 IGHT	0	0 	264	
MATOLOGIC Hc. Hb.	AL FINDI	NGS	AND BO	DY WE	IGH				
MATOLOGIC	AL FINDI	NGS	AND BO	DY WE	IGHT	nc	CAT		
Hc. Hb.						,	CAL.	F NO.	28
HC. Hb.		_ ·		Diff	erer	<u>itia</u>	1_	.	
	RBC	Ret	• WBC	NL	M	E	в	B.W.	
								118	
34 9.8	7.97	0	12.3	69 3	10	0	0	115	
32 9.6	8.05	4	14.2	67 3	3 0	0	0	130	
33 10.0	8.13	6	16.6	62 3	8 0	0	0	143	
34 10.4	8.37	0	15.5	63 3	70	0	0	158	
36 10.2	8.21	7	14.7	56 4	40	0	0	170	
38 10.2	8.34	3	17.3	56 4	21	0	2	179	
37 10.2	8.39	6	14.8	54 4	60	0	0	189	
38 10.4	8.52	13	11.7	58 4	10	0	1	201	
38 10.4	8.60	5	12.4	55 4	30	0	2	212	
39 10.0	8.16	2	10.8	56 4	40	0	0	220	
38 10.0	8.07	9	13.2	59 3	70	1	3	2 29	
38 9.6	8.12	3	11.9	71 2	80	0	1	240	
38 8.6	8.13	7	12.6	66 3	10	2	1	249	
	32 9.6 32 9.6 33 10.0 34 10.4 36 10.2 38 10.4 38 10.0 38 10	32 9.6 8.05 33 10.0 8.13 34 10.4 8.37 36 10.2 8.21 38 10.2 8.34 37 10.2 8.39 38 10.4 8.52 38 10.4 8.60 39 10.0 8.16 38 10.0 8.07 38 9.6 8.12 38 8.6 8.13 um Iron (microgra atocrit (percent) oglobin (grams/10)	32 9.6 8.05 4 33 10.0 8.13 6 34 10.4 8.37 0 36 10.2 8.21 7 38 10.2 8.34 3 37 10.2 8.39 6 38 10.4 8.52 13 38 10.4 8.60 5 39 10.0 8.16 2 38 10.0 8.07 9 38 9.6 8.12 3 38 8.6 8.13 7 um Iron (micrograms/1 atocrit (percent) oglobin (grams/100 m1 blood coll (106)	32 9.6 8.05 4 14.2 33 10.0 8.13 6 16.6 34 10.4 8.37 0 15.5 36 10.2 8.21 7 14.7 38 10.2 8.34 3 17.3 37 10.2 8.39 6 14.8 38 10.4 8.52 13 11.7 38 10.4 8.60 5 12.4 39 10.0 8.16 2 10.8 38 10.0 8.07 9 13.2 38 9.6 8.12 3 11.9 38 8.6 8.13 7 12.6 um Iron (micrograms/100 ml. atocrit (percent) oglobin (grams/100 ml. bloo blood gold (106)	32 9.6 8.05 4 14.2 67 3 33 10.0 8.13 6 16.6 62 3 34 10.4 8.37 0 15.5 63 3 36 10.2 8.21 7 14.7 56 4 38 10.2 8.34 3 17.3 56 4 37 10.2 8.39 6 14.8 54 4 38 10.4 8.52 13 11.7 58 4 38 10.4 8.60 5 12.4 55 4 39 10.0 8.16 2 10.8 56 4 38 10.0 8.07 9 13.2 59 3 38 9.6 8.12 3 11.9 71 2 38 8.6 8.13 7 12.6 66 3 um Iron (micrograms/100 ml. blood) blood corit (percent) oglobin (grams/100 ml. blood)	32 9.6 8.05 4 14.2 67 33 0 33 10.0 8.13 6 16.6 62 38 0 34 10.4 8.37 0 15.5 63 37 0 36 10.2 8.21 7 14.7 56 44 0 38 10.2 8.34 3 17.3 56 42 1 37 10.2 8.39 6 14.8 54 46 0 38 10.4 8.52 13 11.7 58 41 0 38 10.4 8.60 5 12.4 55 43 0 39 10.0 8.16 2 10.8 56 44 0 38 10.0 8.07 9 13.2 59 37 0 38 9.6 8.12 3 11.9 71 28 0 38 8.6 8.13 7 12.6 66 31 0 um Iron (micrograms/100 ml. blood) atocrit (percent) oglobin (grams/100 ml. blood)	32 9.6 8.05 4 14.2 67 33 0 0 33 10.0 8.13 6 16.6 62 38 0 0 34 10.4 8.37 0 15.5 63 37 0 0 36 10.2 8.21 7 14.7 56 44 0 0 38 10.2 8.34 3 17.3 56 42 1 0 37 10.2 8.39 6 14.8 54 46 0 0 38 10.4 8.52 13 11.7 58 41 0 0 38 10.4 8.60 5 12.4 55 43 0 0 39 10.0 8.16 2 10.8 56 44 0 0 38 10.0 8.07 9 13.2 59 37 0 1 38 9.6 8.12 3 11.9 71 28 0 0 38 8.6 8.13 7 12.6 66 31 0 2 um Iron (micrograms/100 ml. blood) atocrit (percent) oglobin (grams/100 ml. blood)	32 9.6 8.05 4 14.2 67 33 0 0 0 33 10.0 8.13 6 16.6 62 38 0 0 0 34 10.4 8.37 0 15.5 63 37 0 0 0 36 10.2 8.21 7 14.7 56 44 0 0 0 38 10.2 8.34 3 17.3 56 42 1 0 2 37 10.2 8.39 6 14.8 54 46 0 0 0 38 10.4 8.52 13 11.7 58 41 0 0 1 38 10.4 8.60 5 12.4 55 43 0 0 2 39 10.0 8.16 2 10.8 56 44 0 0 0 38 10.0 8.07 9 13.2 59 37 0 1 3 38 9.6 8.12 3 11.9 71 28 0 0 1 38 8.6 8.13 7 12.6 66 31 0 2 1 um Iron (micrograms/100 ml. blood) atocrit (percent) oglobin (grams/100 ml. blood)	32 9.6 8.05 4 14.2 67 33 0 0 0 130 33 10.0 8.13 6 16.6 62 38 0 0 0 143 34 10.4 8.37 0 15.5 63 37 0 0 0 158 36 10.2 8.21 7 14.7 56 44 0 0 0 170 38 10.2 8.34 3 17.3 56 42 1 0 2 179 37 10.2 8.39 6 14.8 54 46 0 0 189 38 10.4 8.52 13 11.7 58 41 0 0 1 201 38 10.4 8.60 5 12.4 55 43 0 0 2 212 39 10.0 8.16 2 10.8 56 44 0 0 0 220 38 10.0 8.07 9 13.2 59 37 0 1 3 229 38 9.6 8.12 3 11.9 71 28 0 0 1 240 38 8.6 8.13 7 12.6 66 31 0 2 1 249 um Iron (micrograms/100 ml. blood) atocrit (percent) oglobin (grams/100 ml. blood)

TABLE	29.	HEMATO	LOGICA	L FINDI	NGS	AND BO	DY	WEIC	GHT S	5,	CALF	NO.	29
Age (days)	S.I	. Hc.	Hb.	RBC	Ret	• WBC	Di: N	<u>ffe</u> L	<u>cent</u> M	tia E	<u>1</u> B	B.W.	
initia	1											112	
ל	100	34	12.4	9.12	3	8.6	68	31	0	1	0	115	
14	153	33	12.0	9.21	53	10.4	71	29	0	0	0	122	
21	210	35	12.0	9.17	14	9.6	63	37	0	0	0	131	
28	205	38	11.8	9.30	28	7.3	53	46	U 1	Ţ	0	140	
30	202	37	12.0	9.33	85	5 4	20	43	7	0	0	163	
42	206	36	11.8	9.40	0	5.8	47	51 48	õ	0	0	179	
56	189	37	12.2	9.37	ĭ	7.4	46	54	ŏ	ŏ	ŏ	192	
63	214	38	12.4	9.07	ō	6.3	58	41	i	õ	ŏ	203	
70	201	35	12.4	9.02	2	9.4	45	55	Ō	Ó	Ó	211	
77	182	36	12.0	9.23	1	9.8	55	44	0	1	0	221	
84	175	35	12.2	9.50	0	9.1	49	51	0	0	0	229	
91	186	36	12.4	9.47	2	9.9	58	42	0	0	0	239	
							••••••				<u> </u>		
TABLE	30.	HEMATO	LOGICA	L FINDI	INGS I	AND BO	DY	WEIG	SHTS	5,	CALF	NO.	30
Age	с т	u.	τīb	DDC	Det	WDC	$\underline{D1}$	ffei		<u>t1a</u>		DW	
(days)	2.1	• HC •	HD.	RBC	Ret	• WBC	N	ע	М	C	В	B.W.	
initia	1								-	_	-	113	
7	76	34	12.7	9.76	11	8.7	60	40	0	0	0	117	
14	118	34	12.5	9,90	34	9.8	61	38	0	1	0	127	
20	102	38 27	12.0	10.10	20	12.1	20	41 50	T T	2	0	157	
20	178	30	12.9	9.89	12	11.4	40 57	12	0	1	õ	165	
42	175	37	13.0	9.37	0	8.6	43	55	ŏ	2	ŏ	179	
49	180	38	12.6	8.92	ŏ	9.3	53	47	ō	ō	ŏ	195	
56	179	38	13.1	9.30	2	10.4	43	54	Ō	3	Ō	213	
63	180	38	13.2	9.50	2	8.7	56	43	0	1	0	228	
70	172	38	13.0	9.90	2	9.6	41	58	0	1	0	238	
77	160	39	13.0	9.71	0	9.4	49	50	1	0	0	250	
84	173	38	12.8	9.79	2	10.0	41	57	0	0	0	260	
91	174	38	13.5	10.07	1	11.4	49	51	0	0	0	267	
	_ 6	T											
HC.		emator	rit (r	ercent)	THOL T	oo mr.	DI	00u.	,				
Hb.	= H	emoglo	bin (o	rams/10	0 ml	. bloo	d)						
RBC	= R	ed blo	od cel	1 (106)									
Ret.	= R	eticul	ocyte	(number	/500	eryth	roc	ytes	5)				
WBC	= W.	hite b	lood c	ell (10:	3)	-	•						
Differ	entia	1											
N	= N	eutropi	hil (%	5)									
L	$= L_{1}$	ymphoc	yte (%	5)									
M	= M	onocyt	e (%)	· \									
E		osinop	nii (%	5/									
B B W	= B	asophi	1.(%) 1	Jonnaide .									
	= 19	oay we	ignt (pounas)									

TABLE	31.	HEI	MATOI	LOGICAL	FINDI	NGS A	ND B	ODY	WEI	GHT:	s,	CALF	NO.	31
Age (days)	5	5.I.	Hc.	Hb.	RBC	Ret.	, WBC	Dj	ffej L	ren M	tia E	1 B	B.W.	
initia	1												123	
7	-	81	37	10.8	9.12	2	7.8	56	44	0	0	0	130	
14		70	37	10.6	9.18	12	12.1	41	57	ĩ	ŏ	i	139	
21		63	36	10.2	9.21	-0	9.4	39	61	ō	õ	ō	149	
28		72	36	9.6	9.25	ĩ	10.3	53	47	õ	õ	õ	156	
35		64	35	10.4	9,11	ō	9.5	36	63	õ	õ	ĩ	165	
42		80	38	9.8	9.33	Š	9.4	51	49	õ	ŏ	ō	176	
49		76	36	9.6	9.37	õ	7.8	40	58	2	õ	ŏ	190	
56		71	36	9.4	9.45	õ	9-6	45	54	ō	i	ŏ	203	
63		61	36	9.6	9.37	ŏ	8.6	42	57	õ	ī	ŏ	214	
70		79	35	9.6	9.47	2	9.6	45	55	ŏ	ō	ŏ	223	
77		66	36	9.6	9.42	2	8.3	40	60	ŏ	õ	ŏ	231	
84		72	36	9.6	9.40	2	8.9	44	56	Õ	Ō	ŏ	240	
91		68	38	9.0	9.53	2	7.9	38	62	õ	ō	ŏ	251	
										-		-		
TABLE	32.	, HEI	MATOI	LOGICAL	FINDI	NGS A	ND B	ODY	WEI	GHT:	s,	CALF	NO.	32
Age								Di	ffe	rent	tia	1		
(days)		S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	M	Ē	В	B.W.	
initia	1												106	
7		68	35	11.1	10.02	0	9.6	41	. 58	0	1	0	109	
14	נ	.23	34	10.7	9.83	41	11.4	48	51	1	0	0	118	
21	נ	.81	39	10.8	9.90	28	8.6	45	55	0	0	0	127	
28	1	.82	39	11.1	10.19	15	10.8	53	47	0	0	0	138	
35]	.75	41	11.1	10.26	0	11.7	43	54	0	3	0	148	
42]	.68	40	10.8	10.07	2	10.3	44	54	0	2	0	160	
49	נ	.69	42	11.1	10.42	2	11.4	46	53	0	1	0	175	
56]	.70	40	11.5	9.74	0	7.8	47	51	0	2	0	191	
63	נ	.71	38	11.4	9.90	0	9.3	60	38	0	2	0	200	
70	1	.60	35	11.4	9.97	3	9.8	51	45	0	4	0	212	
77]	.50	39	11.0	9.84	3	8.4	63	36	0	1	0	220	
84]	.43	39	11.0	9.93	3	10.6	48	48	0	4	0	232	
91	נ	.38	39	11.7	9.97	3	9.7	57	41	0	2	0	241	
3•⊥• U=	=	: seri		on (mi)	crogra	ns/10	io mi	- D1	000	J				
	3	Hema	ITOCI	it (pe	rcent)	`	27.							
		Hemo	ogror	oin (gra	$\frac{ams}{100}$	J MI.	DTO							
RBC	3	: Rea	DIOC			1500	• ••• • •	.		- \				
Ket.	-	Ket:		cyte (200	eryt	nroc	yte	5)				
NDL Diffa-	B A market	- WAL1	ce Di	looa ce.	TT (TO.	-)								
DTILEL		Tat	hrant	41 (9)										
N T			boor	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
		• nawi	-unc?											
r F			lnon ^y	= \/0/ \11 /9/\										
	, = \	. Bac	nphi 1	···· (@)										
B.W.	, 4	, Body	, moj	aht (n	ounde)									
	-	u	. wel	and the	Junus/									

TABLE	33.	HEI	MATOL	OGICAL	FINDI	NGS .	AND BO	DY I	VEIC	HTS	5, (CALF	NO.	33
Ag e (days)	S	.I.	Hc.	Hb.	RBC	Ret	• WBC	Di: N	fei L	<u>ent</u> M	tia E	1 B	B.W.	
initia	1												86	
7	_	85	24	7.2	5.97	2	11.6	50	49	0	1	0	90	
14		80	24	6.8	6.09	3	9.8	51	48	0	1	0	97	
21		82	25	6.6	6.20	5	12.0	41	58	Ō	ĩ	Ō	106	
28		86	26	5.8	5.76	2	13.1	56	44	Õ	ō	Ŏ	115	
35		82	25	6.4	5.52	2	11.5	60	40	Õ	Ŏ	Ŏ	125	
42		83	26	6.0	5.38	4	8.3	58	42	Ŏ	Õ	Ŏ	136	
49		88	25	6.0	5.42	ō	7.6	49	50	ŏ	i	Ō	149	
56		88	25	5.8	5.48	ō	10.4	46	54	ŏ	ō	ŏ	164	
63		81	25	6.0	5.60	5	11.1	46	53	ĩ	ŏ	Ō	176	
70		90	25	6.0	5.82	ī	7.5	42	56	ō	2	ō	187	
77		85	25	6.4	5.53		11.6	49	49	õ	2	ō	196	
84		86	26	5.8	5.72	Ō	10.1	53	47	õ	ō	ō	206	
91		80	26	5.6	5.84	ŏ	11.7	50	48	ĭ	ī	ō	215	
											_	-		
TABLE	34.	HEI	MATOL	DGICAL	FINDI	NGS .	AND BO	DY I	VEIC	HT	5, (CALF	NO.	34
Age									ffei	ent	tia'	1		
(days)		S.I.	Hc.	Hb.	RBC	Ret	• WBC	N	L	M	E	В	B.W.	
initia	1												79	
7		90	32	8.2	6.38	12	7.6	46	54	0	0	0	81	
14	1	18	30	8.0	6.55	4	12.7	55	45	0	0	0	93	
21	1	51	32	8.5	6.48	2	13.8	47	52	0	1	0	103	
28	1	36	34	9.0	6.23	8	13.3	54	44	2	0	0	115	
35	1	38	35	9.4	6.19	5	12.4	47	50	0	3	0	124	
42	1	27	35	9.4	6.52	Ó	11.6	52	48	0	0	0	135	
49	1	33	37	9.2	6.42	8	9.5	43	57	0	0	0	143	
56	1	44	36	8.6	6.57	4	10.7	48	51	0	Ó	1	154	
63	ī	47	36	8.8	6.69	3	14.0	40	58	Ō	2	Ō	165	
70	ĩ	48	37	9.2	7.02	10	12.8	46	54	Ō	Õ	Ō	174	
77	ī	41	33	9.0	6.47	12	16.7	49	49	0	2	0	182	
84	1	48	36	8.4	6.21	Ō	9.8	44	55	Ó	ī	0	191	
91	ī	49	36	8.2	6.22	6	10.4	39	56	1	3	1	201	
S.I.	=	Seru	um Iro	on (mic	rogra	ms/1	00 ml.	b10	bod)				
Hc.	-	Hema	atocr:	it (per	cent)									
Hb.	=	Hemo	oglob:	in (gra	ms/10	0 ml	. bloo	d)						
RBC	-	Red	b lood	i cell	(106)									
Ret.	8	Ret:	iculo	cyte (r	number	/500	eryth	rocy	tes	5)				
WBC		Whi	te blo	bod cel	1 (10	3)	-	-	-					
Differ	ent	ial												
N		Neu	troph:	il (%)										
L	, =	Lym	phocy	te (%)										
M	. =	Mond	bcyte	(%)										
E	-	Eos	inoph	il (%)										
B	=	Base	ophil	(%)										
B.W.	=	Body	y weig	jht (pd	unds)									
		-												

TABLE	35. HE	MATO	LOGICAL	FINDI	NGS A	ND BO	dy n	EIG	HT.	s,	CALF	NO.	35
Age (days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	Dif N	fer L	<u>en</u> M	tia E	1 B	B.W.	
initia 7 14 21 28 35 42 49 56 63 70 77 84 91	1 53 79 118 110 98 106 104 103 117 109 109 109 106 110	23 23 25 27 27 26 28 25 26 27	7.6 7.8 8.0 8.4 8.4 8.0 8.4 8.6 8.6 8.6 8.6 8.8 8.2 8.8 9.4	6.77 6.72 6.76 6.59 6.81 6.69 6.74 6.78 6.51 6.57 6.68 6.60 6.67	10 4 9 11 8 16 9 6 8 5 12 11 3	7.3 5.9 6.7 5.4 7.3 8.4 6.5 5.3 8.0 9.1 7.4 7.6	61 57 53 49 44 53 46 47 52 45 57 58	39 44 47 55 47 55 47 547 48 48 41 39	000000000000000000000000000000000000000	0 0 0 0 0 0 0 1 4 0 0 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95 104 113 127 141 153 168 183 196 208 221 235 249 263	
TABLE	36. HE	MATO	LOGICAL	FINDI	NGS A	ND BO	DY W	EIC	SHT.	s,	CALF	NO.	36
Age (davs)	S.I.	Hc.	Hb.	RBC	Ret.	WBC .		L	<u>ren</u> M	<u>tia</u> E	B	B.W.	
initia 7 14 21 28 35 42 49 56 63 70 77 84 91	1 151 190 256 253 239 230 228 261 264 259 257 246 240	36 37 38 40 38 36 40 39 35 37 39 38 38	11.4 11.6 11.0 11.6 11.8 10.8 11.6 12.2 12.0 11.4 11.0 11.6 11.9	7.77 8.11 8.00 7.91 8.12 7.67 7.91 7.93 8.05 7.65 7.83 8.56 8.05	2 32 16 12 4 3 3 2 0 2 0 0	12.5 16.2 15.0 14.3 9.8 12.3 11.5 14.2 10.6 9.8 10.4 11.7 12.1	60 55 52 57 58 53 61 50 62 55 57 52 51	39 44 47 42 45 39 45 38 40 47 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 2 0 2 0 2 0 3 2 1 4	001000100100	93 97 105 115 124 133 145 155 169 182 193 203 211 222	
S.I. Hc. Hb. RBC Ret. WBC Differ N L M E B.W.	= Ser = Hem = Hem = Red = Ret = Whi ential = Neu = Lym = Lym = Eos = Bas = Bod	um In atocn oglob bloc iculo te b troph phocy ocyte inoph ophi: y we:	ron (mic rit (per oin (gra od cell ocyte (r lood cel nil (%) yte (%) e (%) nil (%) l (%)	crogram rcent) ams/100 (106) number, L1 (105)	ms/10 0 ml. /500 3)	0 ml. bloo eryth	blo d) rocy	tes)				

TABLE 3	87. HE	MATOI	OGICAL	FINDI	NGS .	AND BO	DY V	NEIG	HTS	, CALI	F NO.	37
Age (days)	S.I.	Hc.	Hb.	RBC	Ret	. WBC	Di: N	ffer L	ent: M	ial E B	B.W.	
initia 7 14 21 28 35 42 49 56 63 70 77 84 91	57 60 54 59 62 63 68 59 64 70 66 58	30 30 29 28 29 32 31 32 31 32	9.8 10.0 8.6 8.0 8.8 8.2 8.4 8.0 8.0 8.0 8.4 7.8 8.2 8.0	6.80 6.87 6.79 6.88 6.95 6.98 6.85 6.85 6.87 7.02 6.98 7.04 7.10 7.14	0 0 1 1 0 7 4 0 3 3 2 4	11.7 12.4 8.3 6.5 9.4 10.2 9.6 7.8 11.3 9.4 9.6 10.4 11.1	60 53 562 48 50 49 46 47	40 38 46 37 43 38 52 43 50 54 50 53	000000000000000000000000000000000000000	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93 95 101 110 119 130 145 163 182 188 196 204 210 217	
TABLE 3	88. HE	MATOL	OGICAL	FINDI	NGS .	AND BO	DY V	VEIG	HTS	, CAL	F NO.	38
Age (davs)	S.I.	Hc.	Hb.	RBC	Ret	. WBC	Di: N	<u>ffer</u> L	M I	ial E B	B.W.	
initia] 7 14 21 28 35 42 49 56 63 70 77 84 91	137 164 183 197 181 190 194 200 206 196 203 201 210	26 26 27 28 30 31 30 31 31 28 31 31	8.3 9.0 8.4 9.3 9.2 9.5 9.5 9.8 9.1 9.3 9.0 9.6 9.6 10.5	6.94 6.84 6.79 6.72 6.64 6.78 6.81 7.05 6.99 6.77 6.53 6.57 6.61	3 1 5 4 0 7 8 1 0 8 3 8	8.8 9.6 12.1 9.3 8.7 9.6 10.0 11.3 8.6 9.7 8.3 9.2 10.1	52 53 54 51 55 56 60 61 58 46 46 41 50	48 46 48 45 44 37 41 52 54 58 49		0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1	91 98 112 125 140 155 167 183 198 211 224 238 251 265	
S.I. Hc. Hb. RBC Ret. WBC Differe N L M E B.W.	= Ser = Hem = Hem = Red = Ret = Whi = Neu = Lym = Lym = Eos = Bas = Bod	um Ir atocr oglob bloc iculo te bl troph phocy ocyte inoph ophil y wei	con (mic pit (per pin (gra od cell ocyte (r cood cel mil (%) rte (%) c(%) mil (%) . (%) . (%)	cent) ms/100 (106) number 11 (105)	ms/10 0 ml /500 3)	00 ml. . blood eryth:	bla d) rocy	ytes	;)			

TABLE 3	9. HE	MATO	LOGICAL	FINDI	NGS A	ND BO	DY I	NEIG	HTS	5,	CALF	NO.	39
Age (days)	S.I.	Нс.	Hb.	RBC	Reta	WBC	Di: N	ffer L	<u>ent</u> M	tia E	<u>1</u> B	B.W.	
initia]	_											80	
7	115	37	10.1	8.53	0	4.7	72	28	0	0	0	84	
14	160	36	10.2	8.49	60	6.3	61	39	Ō	Õ	Ō	94	
21	208	39	9.8	8.75	31	5.1	71	29	0	0	0	106	
28	210	41	9.7	8.62	40	8.4	64	34	0	2	0	118	
35	203	43	9.5	8.24	7	9.3	63	37	0	0	0	130	
42	211	40	10.2	8.36	2	7.8	68	28	0	4	0	145	
49	205	42	10.6	8.69	0	8.4	60	40	0	0	0	162	
56	206	40	11.1	8.75	1	9.6	54	43	0	3	0	178	
63	197	38	11.4	8.52	4	10.1	44	48	0	6	0	193	
70	188	39	10.7	8.56	2	7.9	67	33	0	0	0	206	
77	181	38	10.5	8.62	0 1	8.3	59	40	0	1	0	218	
84	175	38	10.7	8.75	Ţ	9.4	69	29	Ţ	Ţ	0	229	
91	172	39	10.7	8.78	3	10.4	69	31	0	0	0	240	
		M & TO 1	OGTCAT	FTNDT	NGS			JF T	ינותי		CATE		40
IADLE 4		MATU	LOGICAL	L TNDT			ו בט		76112), 1 _	1	NU.	40
Age (days)	S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	M	E E	B	B.W.	
initial												69	
7	170	38	11.7	8.56	3	9.1	59	41	0	0	0	75	
14	203	38	11.4	8.70	27	9.4	59	40	0	1	0	83	
21	258	37	11.8	8.62	28	8.5	52	48	0	0	0	90	
28	242	41	11.3	8.81	34	8.9	49	50	0	0	1	100	
35	246	42	11.2	8.73	2	7.6	47	43	0	0	0	112	
42	256	41	11.2	8.31	1	9.0	46	54	0	0	0	123	
49	251	41	11.6	8.52	6	10.3	51	49	0	0	0	135	
56	243	42	11.9	9.39	0	11.4	43	56	0	1	0	149	
63	271	43	12.0	8.24	Ū,	9.8	52	48	0	U V	0	102	
70	259	41		8.39	Ţ	11.9	49	49	Ţ	Ţ	0	1/1	
// 0/	239	41 20	12.0	0.13	2	12.0	20	40	T T	1	Ň	100	
04 Q1	240	30		0.02 9.07	2	7.0	57	40	ı ı	0	ň	100	
JT	242	20	110/	9.07	-	10.3	57	42	<u>ب</u>		•	190	
с т	- Com		non (mic		ng /10	0	b]	and '					
Jele Va		atogi	con (mic)	cont)	as/10		DIC	500,	,				
HC.	$= \Pi e_{\Pi}$		hin (gra	$\frac{100}{100}$	0	hloo	4)						
PBC			of cell	(106)		DIOO	u /						
Ret.	= Ret	iculo	ocvte (r	umber	/500	ervth	roci	vtes	;)				
WBC	= Whi	te h'		(10)	3,500				••				
Differe	ntial		994		•								
N	= Neu	tropl	hil (%)										
L	= Lym	phocy	yte (%)										
М	= Mon	ocyte	e (%)										
E	= Eos	inopl	nil (%)										
В	= Bas	ophīl	L (%)										
B.W.	= Bod	y we:	ight (po	ounds)									

TABLE	41. 1	HEMATO	LOGICAL	FINDI	NGS .	AND BO	DY I	NEIC	HT:	s,	CALF	NO.	41
Age	S.T	НС	Hb.	RBC	Ret	. WBC	Di: N	ffei T.	en M	tia E	<u>1</u> B	B.W.	
(uays)	- 0.1	••	1100	NDC	Net	• • • • • • • •	14	2		-	D	D • • ••	
initia	1	47	12 4	0 20	2	~ ~	C 7	20	•	~	^	86	
	66	41	13.4	8.38	3	9.9	PT PT	39	0	0	0	93	
14	65	41	12.5	8.24	0	13.2	20	44	0	0	0	100	
21	27	41	11.8	8.30	0	14 2	39	41	0	U 1	0	100	
28	70	38		8.41	0	14.5	40	23	0	Ť	0	120	
30	50	38	11.0	8.5T	8	TO*8	20	4/	0	v v	0	142	
42	70	38		8.60	2	9.0	44	22	0	Ť	0	143	
49	70	40	11•4	8.00	0	12.4	22	48	0	0	0	122	
56	63	42	11.1	8.55	4	11.0	49	DT D	0	0	0	1/8	
63	68	43	11.0	8.59	0	8.8	20	44	0	U V	0	192	
70	61	42	11.0	8.69	Ť	9.7	52	47	0	Ť	0	202	
77	64	41	11.4	8.96	0	10.4	22	43	0	2	0	214	
84		40	11.4	8.70	2	11.1	60	40	0	0	0	222	
91	66	41	11.0	8.77	. 0	12.6	58	42	0	0	0	234	
TABLE	42.	HEMATO	LOGICAL	FINDI	NGS	AND BO	DY	NEIC	GHT.	s,	CALF	NO.	42
Age							Di	ffei	cen:	tia	1		
(days)	S.I.	. Hc.	Hb.	RBC	Ret	• WBC	N	L	M	E	в	B.W.	
initia	1											98	
7	- 81	40	10.4	8-23	4	12.4	62	37	0	0	٦	103	
14	119	38	10.6	8.32	39	7.6	61	39	ŏ	ŏ	ō	111	
21	173	45	10.0	8.03	22	8.4	61	39	ō	ō	ŏ	121	
28	178	44	10.8	8.73	44	9.6	58	40	ĩ	ŏ	ĩ	130	
35	190	46	11.0	7.97	10	10.3	72	28	ō	ō	ō	139	
42	181	44	10.5	8.10	-0	8.7	53	45	õ	2	õ	152	
49	190	44	10.8	8.15	3	6.8	55	41	õ	3	ĩ	164	
56	183	46	10.8	8.37	3	7.4	50	46	ō	Ă	ō	175	
63	184	43	10.8	8.58	2	8.4	56	43	ĩ	ō	ŏ	186	
70	189	ΔΔ	10.0	8.39	<u> </u>	9.3	50	48	ō	2	ŏ	195	
77	178		11.0	8.53	3	10.1	55	45	ň	ົ	õ	205	
84	180	13	10.6	7.63	1	7.9	55	40	ŏ	5	õ	216	
01	102	42	10.0	0 00	2		55	11	ĩ	ñ	ŏ	220	
91	103	43	10.2	0.00	2	0.0	55	***	Ŧ	V	U	220	
S.I.	= S(erum I	ron (mi	crogra	ums/1	00 ml.	blo	boc)				
Hc.	= He	ematoc	rit (pe	rcent)	1								
Hb.	= He	emoglo	bin (gr	ams/10	0 ml	. bloo	d)						
RBC	= Re	ed Ďlo	od cell	(106))								
Ret.	= Re	eticul	ocyte (a	number	/500	eryth	roc	ytes	5)				
WBC	= W]	hite b	lood ce	11 (10	3)	-	-	-					
Differ	entia	1											
N	= Ne	eutrop	hil (%)										
L	= L'	ymphoc	yte (%)										
М	= Mo	onocyt	ē (%)										
E	$= \mathbf{E}\mathbf{e}$	osinop	hil (%)										
В	= Ba	asophi	1 (%)										
B.W.	= Be	ody we	ight (p	ounds)									

TABLE	43. H	IEMATO	LOGICAL	FINDI	NGS A	ND BO	DY I	NEIC	GHT	s,	CALE	NO.	43
Aae							Di	ffei	ren	tia	1		
(days)	S.I.	Hc.	Hb₊	RBC	Ret.	WBC	N	L	М	E	В	B.W.	
- initia	7											101	
7 7	± 101	42	11.1	8.62	6	12.5	60	39	0	٦	0	106	
14	148	42	10.2	8.51	36	9.3	59	41	õ	ō	õ	114	
21	187	42	11.0	8.53	15	10.6	60	40	õ	ŏ	õ	125	
28	192	47	10.8	8.42	17	14.1	49	50	ō	ĭ	õ	134	
35	208	47	10.6	8.38	Ō	11.2	42	54	õ	4	õ	145	
42	193	47	10.8	8.30	2	7.5	43	56	ĩ	ō	ŏ	159	
49	199	46	11.4	8.04	2	9.0	49	49	ō	2	Ō	175	
56	209	47	11.7	8.63	0	9.8	47	53	0	0	0	189	
63	206	47	11.6	8.32	0	9.4	42	55	0	3	0	201	
70	195	43	11.0	7.28	0	10.1	41	58	0	1	0	213	
77	186	44	11.7	8.78	2	9.8	44	54	0	2	0	221	
84	196	43	11.8	8.51	3	7.8	44	55	1	0	0	233	
91	2 08	43	11.5	8.24	0	11.1	49	49	0	1	1	242	
TART.F	<i>11</i>		OGTCAL	FINDT	NGS &		nv I	JF TO	านก	C	CAL		<u>л</u> л
INDUC	44 F		DOGICAN	L TNDT	TIGS F		DI		3117	5,	CUT	NO•	44
Age							<u></u>	ffei	cen	tia	1		
(days)	S.I.	HC.	HD.	RBC	Ret.	WBC	N	L	M	E	в	B.W.	
initia	1											85	
7	136	33	10.8	8.19	l	8.5	49	51	0	0	0	91	
14	130	33	10.4	8.75	0	5.3	52	48	0	0	0	99	
21	133	33	9.6	8.39	0	4.6	53	47	0	0	0	110	
28	130	33	9.2	8.32	0	7.3	54	46	0	0	0	121	
35	123	33	9.6	8.30	0	9.6	61	39	0	0	0	132	
42	128	35	9.4	8.44	5	12.9	53	47	0	0	0	144	
49	138	33	9.4	8.38	9	10.3	58	41	0	1	0	158	
56	141	34	9.6	8.51	1	12.1	60	40	0	0	0	172	
63	139	34	9.6	8.37	0	9.1	61	38	0	1	0	185	
70	136	33	9.2	8.53	4	10.0	60	36	0	4	0	197	
77	140	35	9.4	8.81	0	7.9	65	35	0	0	0	211	
84	145	34	9.0	8.65	U F	8./	6U 57	39	0	0	Ţ	513	
91	120	30	8.4	0.34	5	0.1	57	43	U	U	U	221	
S.I.	= Se	rum I	con (mie	crogra	ms/10	00 ml.	blo	bod)				
Hc.	= He	matoc	rit (pe	rcent)									
Hb.	= He	moglol	oin (gra	ams/10	0 ml.	, bloo	d)						
RBC	= Re	d bloc	od cell	(106)									
Ret.	= R e	eticulo	ocyte (1	number	/500	eryth	rocy	ytes	s)				
WBC	= Wh	ite b	lood ce	11 (10	3)								
Differ	ential	•											
N	= Ne	utropl	nil (%)										
Ľ	= Ly	mpnocy	(~)										
M	= MC	nocyte	き (<i>で</i>)										
E D	= ĽC	STUODI	111 (2) 1 (2)										
в в W		dy me	L (%) 1ab+ (~	ounde)									
	= DC	wy we.	ranc (b	Junus									

TABLE	45. HE	MATO	LOGICAL	FINDI	INGS A	ND BO	DY	WEIG	GHT	s,	CAL	F NO.	45
Age							Di	ffei	cen	tia	1		
(days)) S.I.	Hc.	Hb.	RBC	Ret.	WBC	N	L	M	E	B	B.W.	
initia	al					·						108	
7	115	43	13.2	9.19	2	9.5	53	47	0	0	0	114	
14	109	43	12.6	9.15	11	7.3	54	46	0	0	0	121	
21	101	43	12.0	9.25	2	6.8	51	49	0	0	0	133	
28	110	41	11.2	9.32	0	7.6	46	53	0	1	0	142	
35	111	40	11.4	9.37	0	8.3	49	51	0	0	0	154	
42	108	42	11.2	9.23	0	9.0	52	47	0	0	1	163	
49	106	44	10.8	9.51	1	7.8	50	48	0	2	0	174	
56	121	43	11.6	9.48	1	11.5	57	43	0	0	0	186	
63	114	45	11.8	9.96	0	9.6	64	34	0	2	0	197	
70	128	42	12.2	9.42	1	7.9	58	41	0	1	0	207	
77	118	43	11.6	9.80	0	8.4	67	30	0	2	1	216	
84	125	43	11.5	9.63	2	8.8	59	41	0	0	0	225	
91	112	42	11.2	9.87	5	9.4	55	44	0	1	0	238	

S.I. = Serum Iron (micrograms/100 ml. blood) Hc. = Hematocrit (percent) = Hemoglobin (grams/100 ml. blood) Hb. = Red blood cell (106) RBC = Reticulocyte (number/500 erythrocytes)
= White blood cell (10³) Ret. WBC Differential N = Neutrophil (%) L = Lymphocyte (%) M = Monocyte (%)E = Eosinophil (%) B = Basophil (%)

B.W. = Body weight (pounds)

BIBLIOGRAPHY

- Balfour, W. M., Hahn, P. F., Bale, W. F., Pommerenke, W. T., and Whipple, G. H.: Radioactive Iron Absorption in Clinical Conditions: Normal, Pregnancy, Anemia, and Hemochromatosis. Jour. of Exper. Med., 76 (1942): 15-30.
- Benjamin, M. M.: Outline of Veterinary Clinical Pathology, 2nd ed. The Iowa State University Press, Ames, Iowa, 1961.
- Bernhart, F. W., and Skeggs, L.: The Iron Content of Crystalline Human Hemoglobin. Jour. of Biol. Chem., 147 (1943): 19-22.
- Bessis, M. C., and Breton-Gorius, J.: Ferritin and Ferruginous Micelles in Normal Erythroblasts and Hypochromic Hypersideremic Anemias. Blood, 14 (1959): 423-432.
- Blaxter, K. L., Sharman, G. A. M., and MacDonald, A. M.: Iron-deficiency Anemia in Calves. British Jour. of Nutri., 11 (1957): 234-246.
- Brown, E. B., Jr., Dubach, R., and Moore, C. V.: Studies in Iron Transportation and Metabolism. Critical Analysis of Mucosal Block by Large Doses of Inorganic Iron in Human Subjects. Jour. of Lab. and Clin. Med., 52 (1958): 335-355.
- Brown, E. B., and Justus, B. W.: In Vitro Absorption of Radioiron by Everted Pouches of Rat Intestine. Am. Jour. of Phys., 194 (1958): 319-326.
- Byers, J. H., Jones, I. R., and Haag, J. R.: Blood Hemoglobin Values of Dairy Cattle. Jour. of Dairy Sci., 36 (1952): 661-667.
- Carlson, R. H., Swenson, M. J., Ward, G. M., Booth, N. H.: Effect of Intramuscular Injections of Iron-Dextran in Newborn Lambs and Calves. Jour. of the Am. Vet. Med. Assoc., 139 (1961): 457-461.
- Cartwright, G. E., Gubler, C. J., Bush, J. A., and Wintrobe, M. M.: Studies on Copper Metabolism. Further Observations on the Anemia of Copper Deficiency in Swine. Blood, 11 (1956): 143-153.

- Chase, M. S., Gubler, C. J., Cartwright, G. E., and Wintrobe, M. M.: Influence of Copper on Iron Absorption. Fed. Pro., 11 (1952): 438.
- Copp, D. H., and Greenberg, D. M.: A Tracer Study of Iron Metabolism with Radioactive Iron. I. Methods: Absorption and Excretion of Iron. Jour. Biol. Chem. 164 (1946): 377-387.
- Coryell, D. C., and Pauling, L.: A Structural Interpretation of the Acidity of Groups Associated with the Hemes of Hemoglobin and Hemoglobin Derivatives. Jour. of Biol. Chem., 132 (1940): 769-779.
- Drabkin, D. L., Metabolism of the Hemin Chromoproteins. Physiological Reviews, 31 (1951): 345-431.
- Elvehjem, C. A., and Sherman, W. C.: The Action of Copper in Iron Metabolism. Jour. Biol. Chem., 98 (1932): 309-319.
- Finch, S. C., and Finch, C. A.: Idiopathic Hemochromatosis, An Iron Storage Disease. A. Iron Metabolism in Hemochromatosis. Medicine, 34 (1955): 381-386.
- Follis, R. H., Jr.: Deficiency Disease. Charles C. Thomas, Springfield, Illinois, 1958.
- Foster, P. C.: The Effects of Radiant Energy on Milk Anemia in Rats. Jour. of Nutri., 4 (1931): 517-524.
- Fowler, W. M.: Chlorosis--An Obituary. Annals of Medical History, 8 (1936): 168-177.
- Greenberg, D. M., Copp, D. H., and Cuthbertson, E. M.: Studies in Mineral Metabolism with the Aid of Artificial Radioactive Isotopes. VII. The Distribution and Excretion, Particularly by Way of the Bile, of Iron, Cobalt, and Manganese. Jour. of Biol. Chem., 147 (1943): 749-756.
- Granick, S.: Structure and Physiological Functions of Ferritin. Physiologic Reviews, 31 (1951): 489-511.
- Hahn, P. F.: Metabolism of Iron. Federation Proceedings, 7 (1948): 493-498.
- Hahn, P. F.: The Metabolism of Iron. Medicine, 16 (1937): 249-266.

- Hahn, P. F., Bale, W. F., Ross, J. F., Balfour, W. M., and Whipple, G. H.: Radioactive Iron Absorption by Gastro-Intestinal Tract. Influence of Anemia, Anoxia, and Antecedent Feeding Distribution in Growing Dogs. Jour. of Exp. Med., 78 (1943): 169-188.
- Heath, C. W., and Patek, A. J.: The Anemia of Iron Deficiency. Medicine, 16 (1937): 267-350.
- Hegsted, D. M., Finch, C. A., and Kinney, T. D.: Influence of Diet on Iron Absorption. III. Comparative Studies with Rats, Mice, Guinea Pigs, and Chickens. Jour. of Exp. Med., 96 (1952): 115-119.
- Houk, E. H., Thomas, A. W., and Sherman, H. C.: Some Interrelationships of Dietary Iron, Copper and Cobalt in Metabolism. Jour. of Nutri., 31 (1946): 609-620.
- Hubbert, F., Jr., and Wallace, J. D.: The Effect of Injectable Iron and Oral Oxytetracycline on Hemoglobin, Packed Cell Volume and Rate of Gain of Baby Range Calves. Jour. of Animal Science, 18 (1959): 1180.
- Iodice, A. A., Richert, D. A., and Schulman, M. P.: Copper Content of Purified -Amino-levulinic Acid Dehydrase. Fed. Pro., 17 (1958): 248.
- Jensen, W. N., Bush, J. A., Ashenbrucker, H., Cartwright, G. E., and Wintrobe, M. M.: The Kinetics of Iron Metabolism in Normal Growing Swine. Jour. of Exper. Med., 103 (1956): 145-159.
- Johnston, F. A., McMillan, T. J., and Evans, E. R.: Perspiration as a Factor Influencing the Requirement for Calcium and Iron. Jour. of Nutri., 42 (1950): 285-295.
- Knoop, C. E., Krauss, W. E., and Washburn, R. G.: The Development of Nutritional Anemia in Dairy Calves. Jour. of Dairy Sci., 18 (1935): 337-347.
- Marston, H. R., and Lee, H. L.: Effects of Copper Deficiency and of Chronic Overdosage with Copper on Border-Leicester and Merino Sheep. Jour. of Agric. Sci., 38 (1948): 229-240.
- Matrone, G., Conley, C., Wise, G. H., and Waugh, R. K.: A Study of Iron and Copper Requirements of Dairy Calves. Jour. of Dairy Sci., 40 (1957): 1437-1447.

- Moore, C. V.: Iron Metabolism and Nutrition. The Harvey Lecture Series, 55 (1959-1960): 67-101.
- Moore, C. V., Dubach, R., Minnich, V., and Roberts, H. K.: Absorption of Ferrous and Ferric Radioactive Iron by Human Subjects and by Dogs. Jour. of Clin. Invest., 23 (1944): 755-767.
- Pirzio-Biroli, G., Bothwell, T. H., and Finch, C. A.: Iron Absorption. II. The Absorption of Radioiron Administered with a Standard Meal in Man. Jour. of Lab. and Clin. Med., 51 (1958): 37-48.
- Planas, J., and de Castro, S.: Serum Iron and Total Ironbinding Capacity in Certain Mammals. Nature, 187 (1960): 1126-1127.
- Raleigh, R. J., and Wallace, J. D.: The Influence of Iron and Copper on Hematologic Values and on Body Weight of Range Calves. Am. Jour. of Vet. Res., 23 (1962): 296-299.
- Rimington, C.: Biosynthesis of Haemoglobin. British Medical Bulletin, Series 15 (1959): 19-26.
- Schade, A. L., and Caroline, L.: An Iron-binding Component in Human Blood Plasma. Science, 104 (1946): 340-341.
- Schade, A. L., Reinhart, R. W., and Levy, H.: Carbon Dioxide and Oxygen in Complex Formation with Iron and Siderophilin, the Iron-binding Component of Human Plasma. Archives of Biochemistry, 20 (1949): 170-172.
- Schultze, M. O.: The Relation of Copper to Cytochrome oxidase and Hematopoietic Activity of the Bone Marrow of Rats. Jour. of Biol. Chem., 138 (1941): 219-224.
- Smith, S. E., and Medlicott, M.: The Blood Picture of Iron and Copper Deficiency Anemias in the Rat. Amer. Jour. Physi., 141 (1944): 354-358.
- Smith, S. E., Medlicott, M., and Ellis, G. H.: The Blood Picture of Iron and Copper Deficiency Anemias in the Rabbit. Amer. Jour. of Physi., 142 (1944): 179-181.
- Sharpe, L. M., Peacock, W. C., Cooke, R., and Harris, R. S.: The Effect of Phytate and Other Food Factors on Iron Absorption. Jour. of Nutri., 41 (1950): 433-446.

- Swenson, M. J., Underbjerg, G. K. L., Bartley, E. E., and Jones, W. G.: Effects of Trace Minerals, Aureomycin, and Other Supplements on Certain Hematologic Values and Organ Weights of Dairy Calves. Jour. of Dairy Sci., 40 (1957): 1525-1533.
- Thomas, J. W., Okamoto, M., Jacobson, W. C., and Moore, L. A.: A Study of Hemoglobin Levels in the Blood of Young Dairy Calves and the Alleviation of Anemia by Iron. Jour. of Dairy Sci., 37 (1954): 805-812.
- Tint, H., and Reiss, W.: Studies on the Purity and Specificity of Cytochrome. II. Spectrophotometric Constants and Molecular Weight Determination from the Content of Iron. Jour. of Biol. Chem., 182 (1950): 397-403.
- Ullrey, D. E., Miller, E. R., West, D. R., Schmidt, D. A., Seerley, R. W., Hoefer, J. A., and Luecke, R. W.: Oral and Parenteral Administration of Iron in the Prevention and Treatment of Baby Pig Anemia. Jour. of Anim. Sci., 18 (1959): 256-263.
- Underwood, E. J.: Trace Elements in Human and Animal Nutrition. Academic Press, New York and London, 1962.
- Vannotti, A., and Delachaux, A.: Iron Metabolism and its Clinical Significance. Frederick Muller, Ltd., 29 Great James Street, W. C. 1, London, England, 1949.
- Varley, H.: Practical Clinical Biochemistry, 3rd Ed., Interscience Publishers, Inc., New York, 1962.
- Widdowson, E. M., and McCance, R. A.: The Absorption and Excretion of Iron Before, During and After a Period of Very High Intake. Biochem. Jour., 35, Part 2 (1937): 2029-2034.
- Wilson, M. L., Iodice, A. A., Schulman, M. P., and Richert, D. A.: Studies on Liver -Aminolevulinic Acid Dehydrase. Fed. Pro., 18 (1959): 352-Article 1396.
- Wohl and Goodhart: Modern Nutrition in Health and Disease. Lea and Febiger, Philadelphia, 1960.

NO	DV a lat
Atzin	

