INVESTIGATION OF MULTI PLATES TESTED AS COLUMNS

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

Richard Porter Gillespie

1950

This is to certify that the

thesis entitled

INVESTIGATION OF MULTI PLATES
TESTFD AS COLUMNS

presented by

Richard Porter Gillespie

has been accepted towards fulfillment of the requirements for

M.S. degree in Civil Engineering

Major professor

Date 3-10-50

INVESTIGATION OF MULTI PLATES TESTED AS COLUMNS

bу

Richard Porter Gillespie

A THESIS

Submitted to the graduate school of Michigan State College of Agriculture and Applied Science in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

Department of Civil Engineering

1950

TABLE OF CONTENTS

		Page
1.	Introduction	.2
2.	Report	.5
3.	Report on Column Test No. 3	.6
4.	Design of Test Press	.8
5.	Dynometer Rings K-1 and M-1	15
6.	Presentation of Data	19
7.	Size and Type of Corrugation	67
8.	Gauge of Metal	75
9.	Conclusion	83
10.	Research Data	84
11.	.Bibliographyl	08

ACKNOWLEDGMENT

I wish to thank Professor C. A. Miller for his helpful comments and guidance in the preparation of this thesis.

I want to express my thanks to the Bridge Division of the Michigan State Highway Department and the Research Division of the Michigan State Highway Department for the use of their material, time and equipment.

INVESTIGATION OF MULTI PLATES TESTED AS COLUMNS

Introduction

The practical success attained by corrugated pipe under a wide variety of conditions— its resistance to cracking and disjointints under unfavorable loading and foundation conditions, its immunity to damage by frost, fire, and by termites and other borers, its comparatively light weight, ease of handling, hauling and installation, its freedom from maintenance, and its adaptability to extension and re-use—led to its employment in larger sizes than were first contemplated.

Natural Limits of Standard Corrugated Pipe

The qualities that made corrugated pipe so much in demand for small openings were also in demand for waterways of from 50 to 60 square feet in cross section. Many small bridges have been replaced by Standard Corrugated Pipe of from 8' to 9' in diameter, but because of shipping difficulties, larger diameter pipe can not be used in this form.

Development of Multi Plate

In 1931 plates of larger corrugations, 6 inches wide by $1\frac{1}{2}$ inches deep, made from metal ranging up to No. 1 gauge, $\frac{9}{32}$ inch thickness, as compared with the former limit of No. 8 gauge, $\frac{11}{64}$ inch thickness, were developed. These

plates are corrugated, curved and galvanized at the factory, and shipped in knock down form for bolted assembly in the field, in pipe or arch form. These multi plates have been widely employed on highways, railways and in cities, and they have in many cities taken the place of bridges and sewers of much more expensive construction.

In 1944 the multi plate corrugation was improved by making it 6 inches wide by $1\frac{3}{4}$ inches deep and of an entirely different shape. This new type corrugation proved to be more efficient and increased the strength approximately 40 per cent with the use of only 10 per cent more metal in any given gauge.

Description of Plates

Improved multi plate sections made by Armco Company are structural units of corrugated metal with corrugations 6 inches wide and $1\frac{3}{4}$ inches deep, running at right angles to the length of the sheet. They are available in No. 1 gauge $(\frac{9}{1})$, No. 3 $(\frac{1}{4})$, No. 5 $(\frac{7}{1})$, No. 7 $(\frac{3}{1})$, No. 8 $(\frac{11}{1})$, No. 10 $(\frac{9}{1})$, and No. 12 $(\frac{7}{1})$ gauge. Plates are made in three widths, 9 pi, 15 pi, and 21 pi. The covering width of each sheet is designated by its number of pi; that is, 9 pi is 9 x 3.14 inches wide. These improved plates are made in two lengths, 6 feet and 8 feet. They are punched along each edge and end.

Plates are furnished flat or curved to any radius of 30 inches or longer.

Standard and Special Punching

The standard multi plate is punched with one bolt hole in each crest and valley in staggered rows 2 inches apart on each longitudinal edge of the plate. There are also additional holes along each end, corrugation punched at 3 pi inch intervals.

For special cases such as extremely high fills over a multi plate structure, it is possible to obtain the plates with additional bolt holes along each edge of the plate, thus making six or eight instead of four bolts per foot.

It is also possible to obtain the plates with bolt holes in only the inside valleys, thus eliminating nuts or bolt heads projecting inside of the inside crest where that is objectionable.

Additional holes in the end corrugations may be obtained for watertight construction or other special purposes.

Specially punched plates are not carried in stock and may cause some delay as compared with standard plates.

Comparison of Three Manufacturer's Plates

The three leading manufacturers of multi plates, are

Armco Products Company of Middletown, Ohio; Republic Steel

Corporation of Cleveland, Ohio; and United Steel Fabricators

Inc. of Wooster, Ohio. The Armco Products Company will here-

after be referred to as Armco or A. on graphs and pictures to avoid crowding of material. The Republic Steel Corporation will be referred to as Republic or R. hereafter, and the United Steel Fabricators inc. will be referred to as United or U. hereafter.

Difference of Pitch and Depth of Corrugation

Armco uses a 6 inch pitch and a 1 inch depth of corrugation. Republic uses a 6 inch pitch and a 2 inch depth of corrugation. United uses a 6 inch pitch and a 2 inch depth depth of corrugation.

Difference of Type of Corrugation

Armco uses a sine wave type of corrugation. Republic uses a sine wave type of corrugation. United uses a box type of corrugation.

Difference of Jointing (Butt or lap)

Armco uses a lap type of joint. Republic uses a lap type of joint. United uses a butt type of joint.

Report

The Michigan State Highway Department and The Public Roads Administration in conjunction with Armco, Republic and United Companies, furnished the material and place

where these tests could be run. The tests were run at the Michigan State Highway's Testing and Research Laboratory at Michigan State College in East Lansing, Michigan. The multiplates were furnished by Armco, Republic and United Companies.

These tests were run to see if a standard type plate as to gauge, pitch and depth of corrugation could be put out by all three of the multi plate companies. The Michigan State Highway Department and The Public Roads Administration also want to find out if a standard type of joint can be used (either butt or lap).

REPORT ON COLUMN TEST NO. 3

For the column test on 150" radius plates, each manufacturer sent 3 plates which are lettered X, Y, and Z. Two of the plates, (X and Y), will be used to find an average value of load and displacement, and the third plate, (Z), will be used in case a mistake was made in testing either plate X or Y. If the testeX and Y compare favorably, then test Z may be used to find additional information on what ever kind of test you care to run.

The multi plates from each manufacturer are cut to a length of $52\frac{3}{4}$ inches and a width of 22 inches, for this test. The bolted columns are of the same dimensions, and the bolted section is in the middle of the test plate.

The guages used in this test are No. 1, 0.2690 inches

thick; No. 7, 0.1793 inches thick; and No. 12, 0.1046 inches thick. The total number of plates for this test is 3 tests x 6 plates x 3 manufacturers, or 54 plates to test. In this report only 18 graphs were drawn, one from each test.

A short form type of designation will be used on these tests for ease in drawing graphs for each type of multiplate.

Example: A3Y7P stands for Armco Manufacturer test

No. 3, plate Y of X, Y, Z, and P stands for unbolted plate.

An S will be used in place of a P for the bolted plates in the designation numbers.

DESIGN OF TEST PRESS

The testing of multi plates of 150" radius presented the problem of designing a press of 150,000# capacity. We had on hand a Dake hydraulic testing jack with a capacity of 120,000#, and we built our press to conform to this load. The loading head was mounted between two reinforced angles, see Fig. 1, and the sides were made of 7 inch channels. base was made like a ribbed box and this box was filled with concrete (see Fig. 2). The frame was jacked in place from the ceiling and shims were put in so that the machine would be tight under load. A steel plate was put on the bottom of the machine for bearing load, and a raised platform was built so that the 523 m plate would fit in the machine and leave enough room for a 6 inch travel of the piston in the hydraulic pump. The top and bottom of the multi plate is fitted with adjustable angles which have half rounds welded on to them, see Fig. 3. These rounds fit into flat pieces of metal which are grooved out. One piece is fastened at the base, see Fig. 5, and the other piece is fastened to the loading head, (see Fig. 4). The loading head is built up with flat stock, and four edges are smoothed off for rollers to be put on to take care of side thrust (see Fig. 4), which would otherwise bend the piston of the hydraulic pump when the load is applied. A dynometer ring, called K-1 which is calibrated to 50,000# see Fig. 6, and a dynometer ring M-1, which is calibrated to 150,000#, (see Fig. 7), are used in these tests.

have a hole in the bottom of their base plates, which fits over a ball which is set in a moveable plate on the loading head, see Fig. 4. The rollers move on flat plates which are recessed in two 9 inch channels (see Fig. 5).

Straps are placed on each side of the rollers and finger tightened for light guage plates and wrench tightened for heavy guage plates. This is to keep the channels from spreading. The head has a tendency to turn and follow the curve of the plate, therefore, the straps are needed (see Fig. 5). For raising and lowering the loading head, hooks were placed on each end of the loading head, and a pulley system was used to raise and lower the head. The vertical displacement was measured by two 3 inch displacement dials, and the horizontal displacement was measured by two 1 inch displacement dials, which were reset for each inch displacement, see (Fig. 5). The concrete blocks were from another test, but they were left as guards in case something happened during a test.

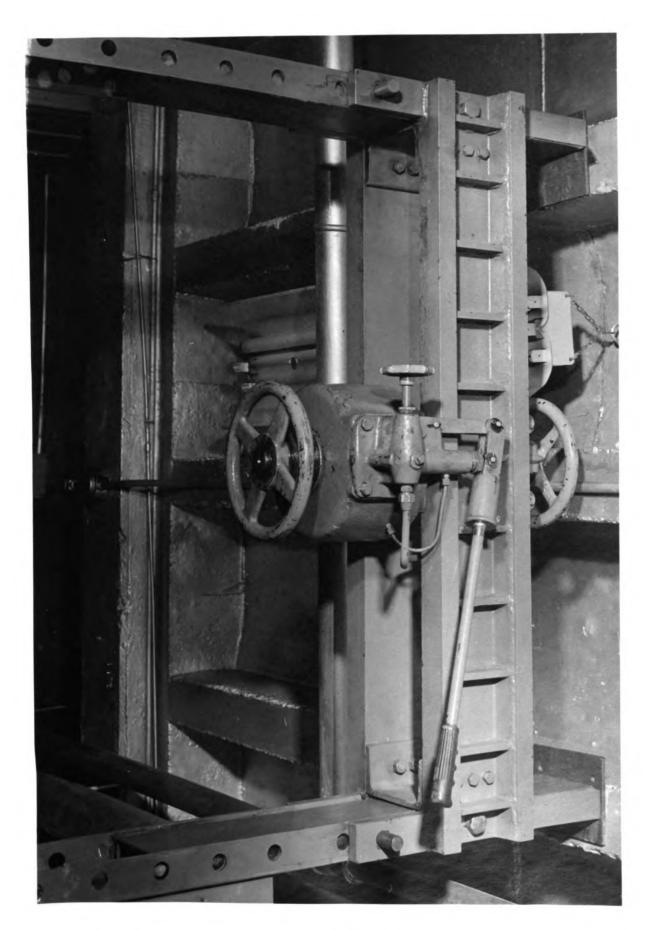


Fig. 1.



Fig. 2.

Fig. 3.

Fig. 4.

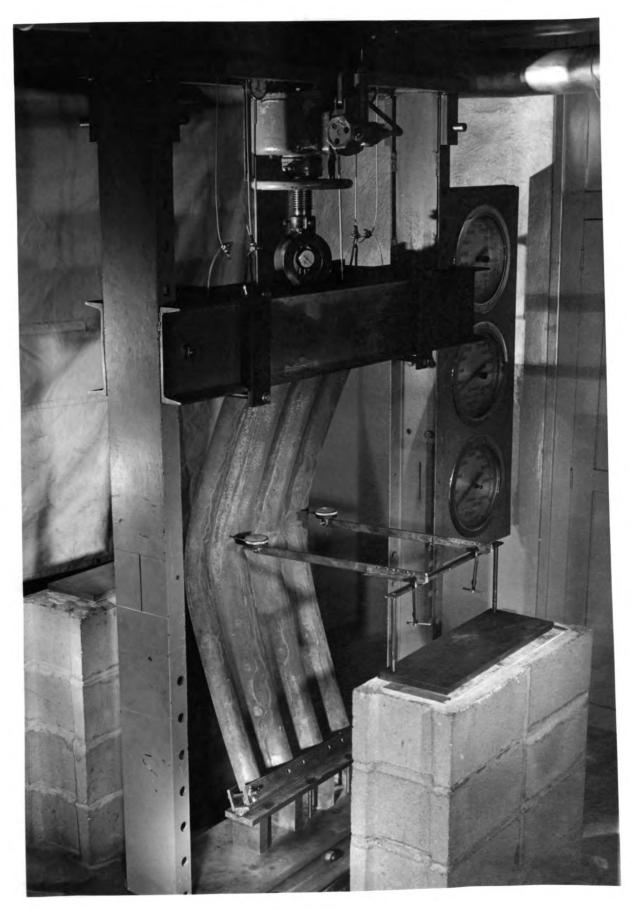


Fig. 5.

DYNOMETER RINGS K-1 AND M-1

Two dynometer rings, K-1 and M-1, were calibrated for use in this test of multi plates, used as columns.

For the ring K-1, an initial load of 2,000# was put on the ring to take out any slack in the machine, and then it was loaded to 50,000# in equal loads of 1,000#. The initial curve was then changed to the corrected curve, which was used to change dial readings to load in pounds readings. See Fig. 6 page /6

For the ring M-1, an initial load of 10,000# was put on the ring to take out any slack in the machine, and then it was loaded to 150,000# in equal loads of 5,000#. The initial curve was then changed to the corrected curve, which was used to change dial readings to load in pounds readings, see Fig. 7 page 17

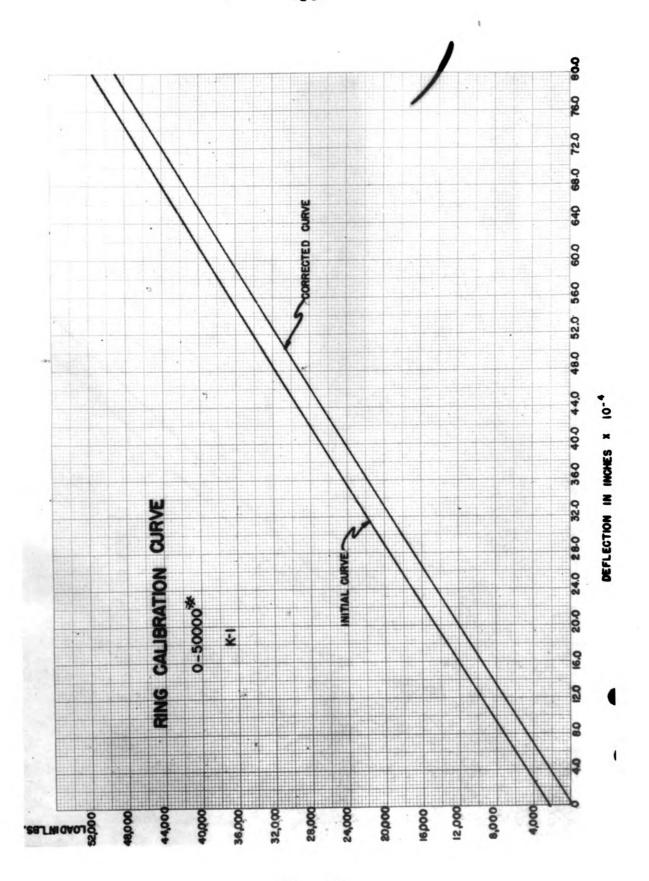


Fig. 6.

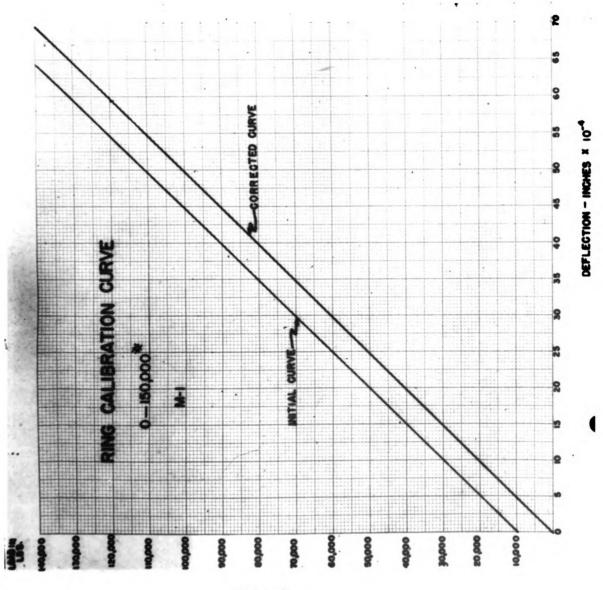


Fig. 7.

The following are the factors to be considered in this report to check on the use of a standard type multi plate:

- 1. Size and type of corrugation.
- 2. Gauge of metal.
- 3. Method of jointing (butt or lap).
- 4. Tensile stresses in bolts.
- 5. Torque resistance of bolts.
- 6. Single versus double bolted joints.

Presentation of data:

- 1. Size and type of corrugations: A series of 18 graphs are used in this report to show the displacement plotted against load for the vertical and horizontal direction. Six cross graphs are used to show the difference between the different manufacturers plain and bolted plates for the No. 1 guage, No. 7 guage, and No. 12 guage plates.
- 2. Guage of metal: A series of 6 graphs will be used to compare the different guages of each manufacturer.

 Three graphs will be used for the plain plates and 3 graphs will be used for the bolted plates. The graphs will be used to compare the No. 1 guage, No. 7 guage, and the No. 12 guage plates of the same manufacturer with each other.
- 3. Method of jointing (butt or lap): This data has already been shown graphically in presenting items (1.) and (2.). The method of presentation would be in tabular form, showing the % efficiency of each type of bolted joint as compared with a plain specimen of the same thickness.
- 4. Tensile stresses in bolts: In direct tension where the pull is applied to the head of the bolt and to the nut, the average tensile strength per bolt is approximately 27,000#.

5. Torque resistance of bolts: A torque of 200 ft.

1bs. has been used during this test to insure a tight fit of the joints. The overall test was primarily run to test the plates and not the joints. Under actual field conditions it will be found that different men of different strength will be tightening the bolts, and it is assumed that the bolt tightness will vary between 100 ft. 1bs. torque to 200 ft. 1bs. torque.

A torque wrench of special design rated up to 1200 ft.

1bs. torque was used to check the tightness of the bolts

in this test. A test was run on Armco, Republic and

United bolts to see at what ft. # torque they would fail.

At a torque of 700 ft. # none of the bolts failed, so the

tests were discontinued and the bolts passed as adequate.

6. Single versus double bolted joints: Failure was found to occur outside of the limits of the joint. When the bolts are strong enough to hold the joint together it doesn't matter if the plates are double bolted or if the plates are drilled for double bolting and no extra bolts put in the holes. The load at failure will be approximately the same as for single bolting. This test was run on Armco and Republic lap joints. United's butt joint could not be tested for double bolting.

Data sheet for Armco plain and bolted 12 gauge plates with picture of the two plates taken after failure has occurred:

Elastic Limit at 15,000# for plain 12 gauge plate, (see Fig. 8).

Elastic Limit at 15,200# for bolted 12 gauge plate, (see Fig. 10).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{15,200}{15,000}$$
 x 100 = 1.013 %

Failure of plain (see Fig. 9) and bolted plates (see Fig. 11).

Spreading, crimping and buckling at the center for plain 12 gauge plate.

Spreading, failure of the plate below the bolted joint for bolted 12 gauge plates.

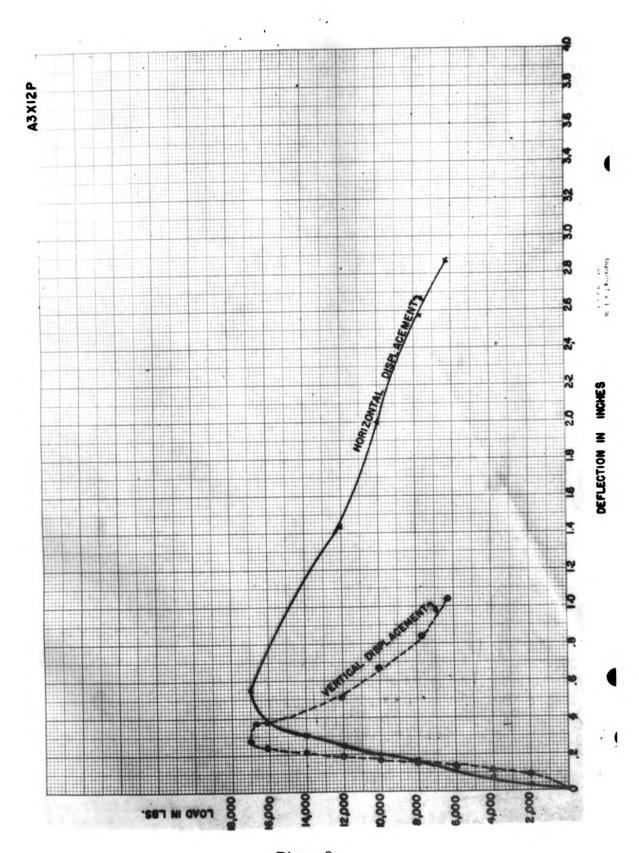


Fig. 8.

Fig. 9.

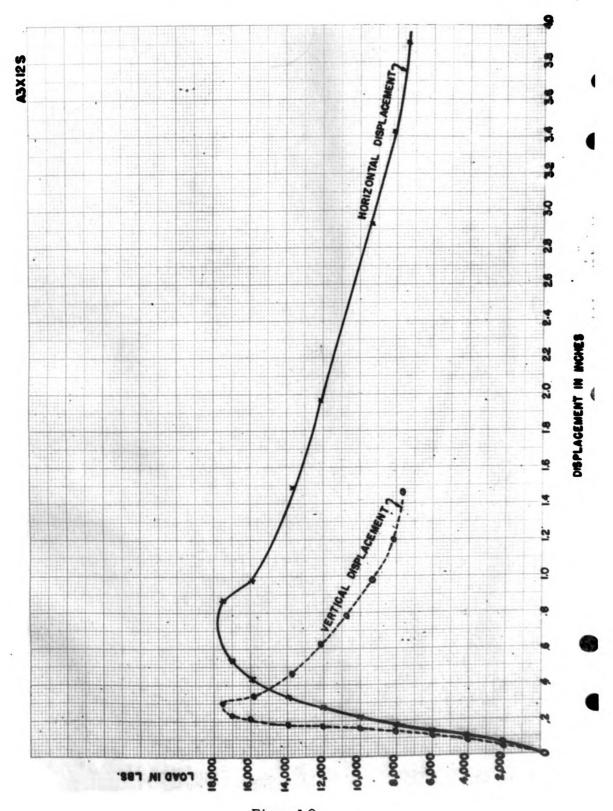


Fig. 10.

Fig. 11.

Data sheet for Armco plain and bolted 7 gauge plates with pictures of the two plates taken after failure has occurred.

Elastic Limit at 37,000# for plain 7 gauge plate, (see Fig. 12).

Elastic Limit at 29,000# for bolted 7 gauge plate, (see Fig. 14).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{29,000}{37,000}$$
 x 100 = 78.4 %

Failure of plain (see Fig. 13) and bolted plates (see Fig. 15).

Spreading at the center for plain 7 gauge plates.

Spreading at the center for bolted 7 gauge plates.

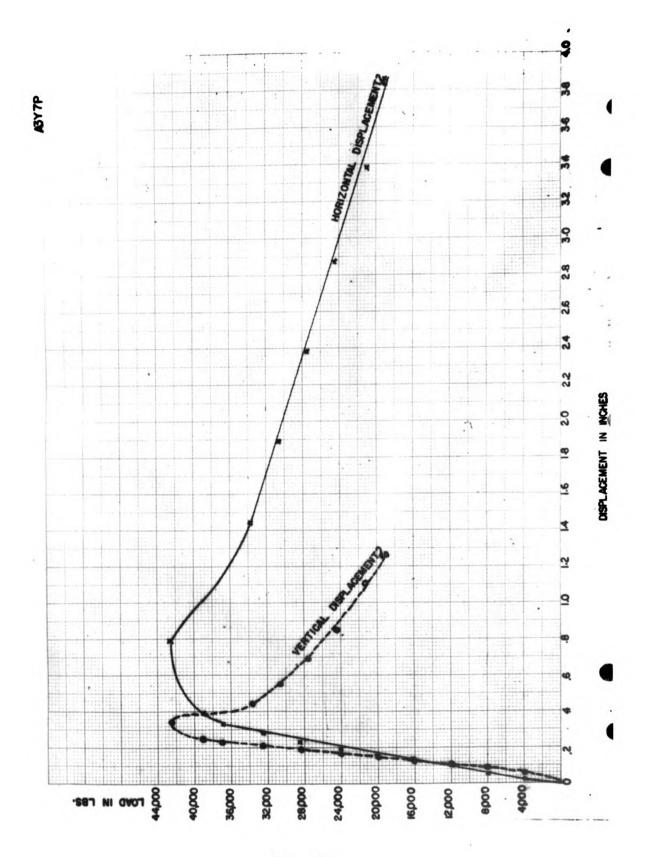


Fig. 12.

Fig. 13.

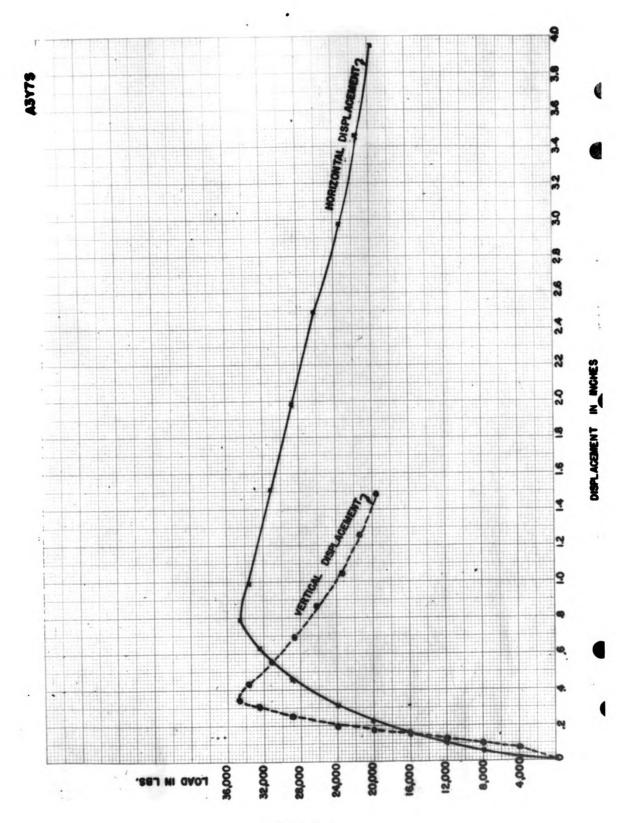


Fig. 14.

Fig. 15.

Data sheet for Armco plain and bolted l gauge plates with pictures of the two plates taken after failure has occurred:

Elastic Limit at 45,000# for plann l gauge plate, (see Fig. 16).

Elastic Limit at 35,000# for bolted 1 gauge plate, (see Fig. 18).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{35,000}{45,000}$$
 x 100 = 77.9 %

Failure of plain (see Fig. 17) and bolted plates (see Fig. 19).

Slight spreading at the center for plain 1 gauge plate.

Slight spreading at the center for bolted l gauge plate.

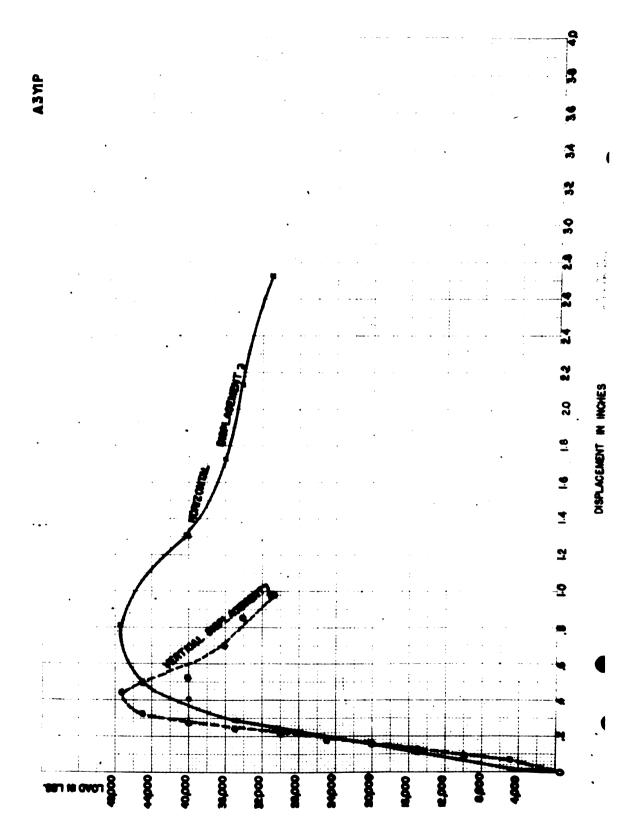


Fig. 16.

Fig. 17.

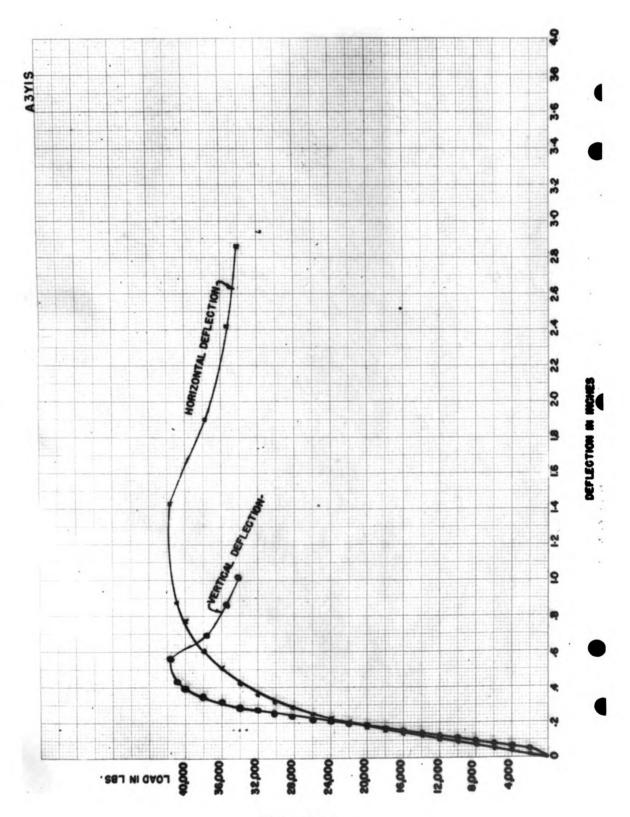


Fig. 18.

Fig. 19.

Data sheet for Republic plain and bolted

12 gauge plates with pictures of the two plates
taken after failure has occurred:

Elastic Limit at 27,000# for plain 12 gauge plate, (see Fig. 20).

Elastic Limit at 23,000# for bolted 12 gauge plate, (see Fig. 22).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{23,000}{27,000}$$
 x 100 = 85.3 %

Failure of plain (see Fig. 21) and bolted plates (see Fig. 23).

Spreading and buckling at the center of the 12 gauge plain plate.

Spreading, buckling, and tearing of the plate through the bolt holes in the 12 gauge bolted plate.

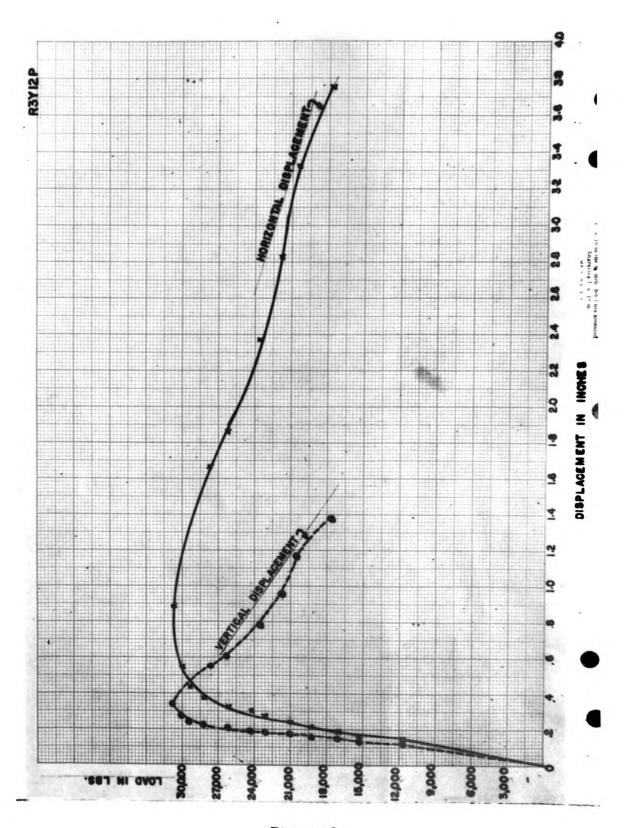


Fig. 20.

Fig. 21.

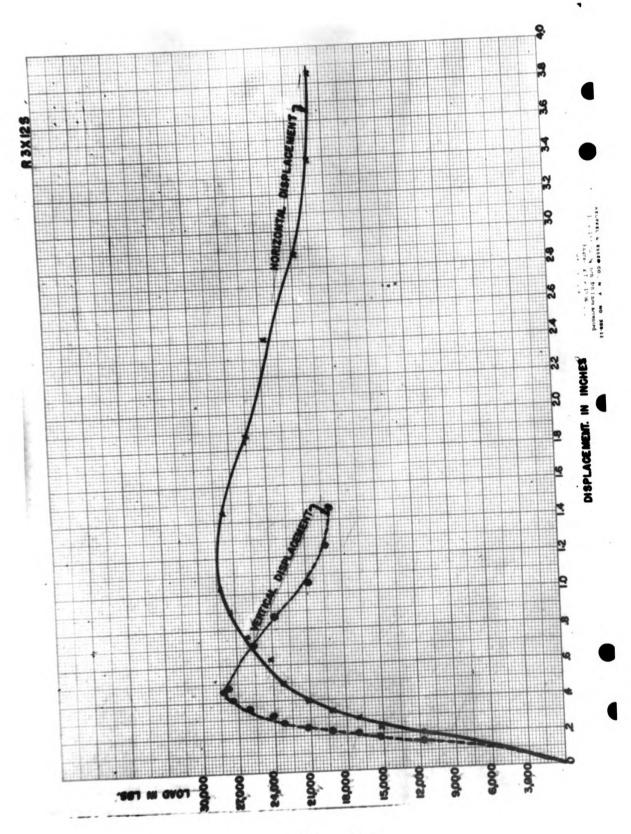


Fig. 22.

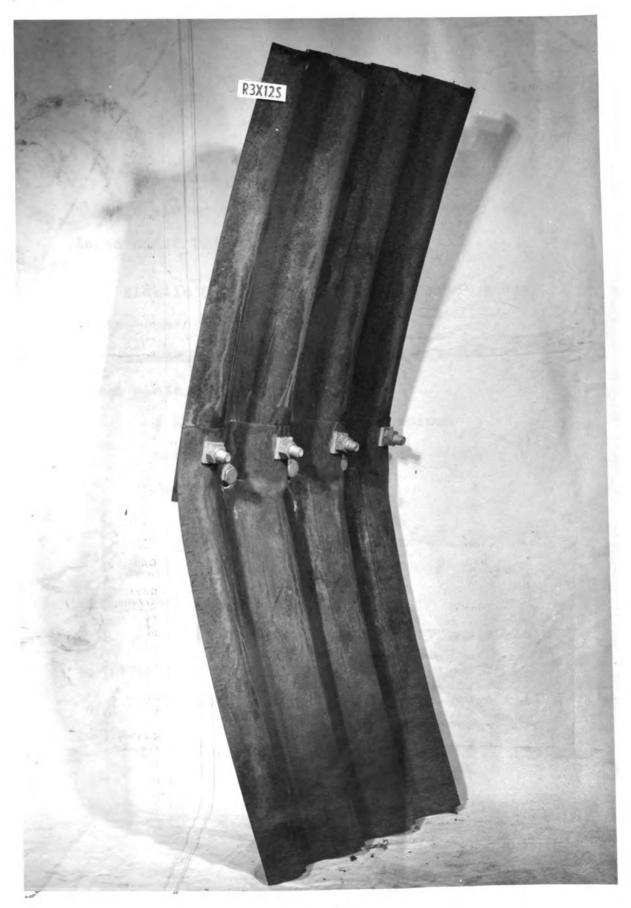


Fig. 23.

Data sheet for Republic plain and bolted 7 gauge plates with pictures of the two plates taken after failure has occurred:

Elastic Limit at 48,000# for plain 7 gauge plate, (see Fig. 24).

Elastic Limit at 34,000# for bolted 7 gauge plate, (see Fig. 26).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{34,000}{48,000}$$
 x 100 = 70.8 %

Failure of plain (see Fig. 25) and bolted plates (see Fig. 27).

Spreading at the center of the 7 gauge plain plate.

Spreading at the center of the 7 gauge bolted plate.

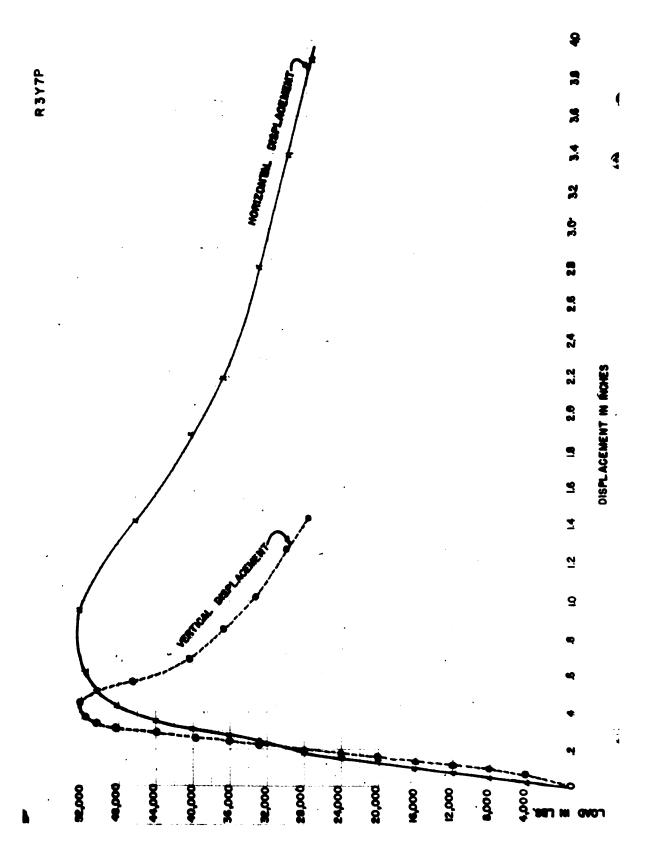


Fig. 24.

Fig. 25.



Fig. 26.



Fig. 27.

Data sheet for Republic plain and bolted l gauge plates with pictures of the two plates taken after failure has occurred:

Elastic Limit at 73,000# for plain 1 gauge plate (see Fig. 28).

Elastic Limit at 42,000# for bolted 1 gauge plate (see Fig. 30).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{42,000\#}{73,000\#}$$
 x 100 = 57.5 %

Failure of plain (see Fig. 29) and bolted plates (see Fig. 31).

Slight spreading at the center of the l gauge plain plate.

Slight spreading at the center of the 1 gauge bolted plate.

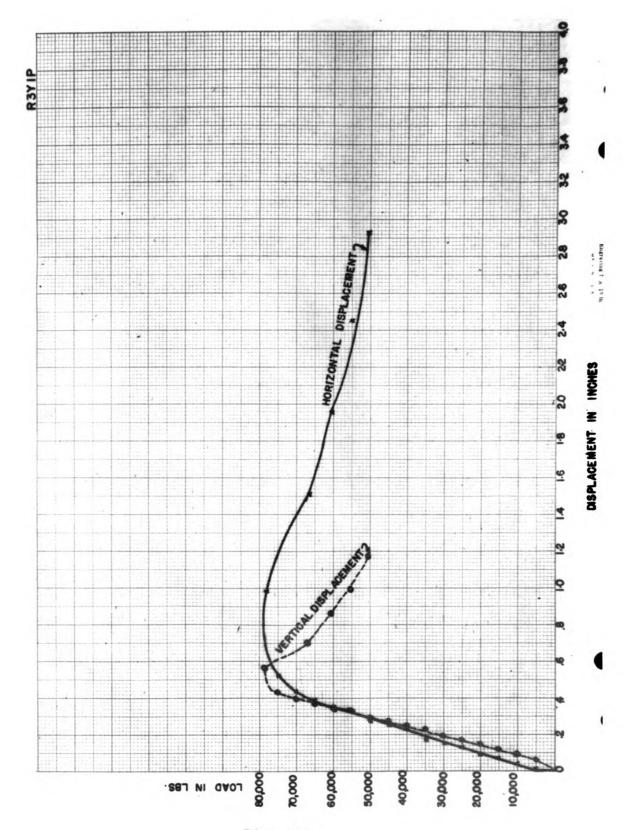


Fig. 28.

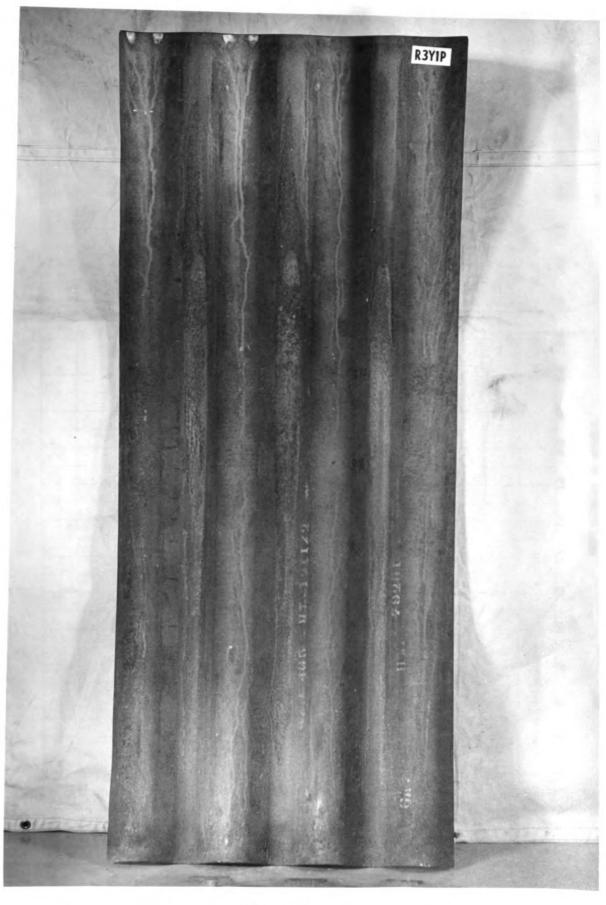


Fig. 29.

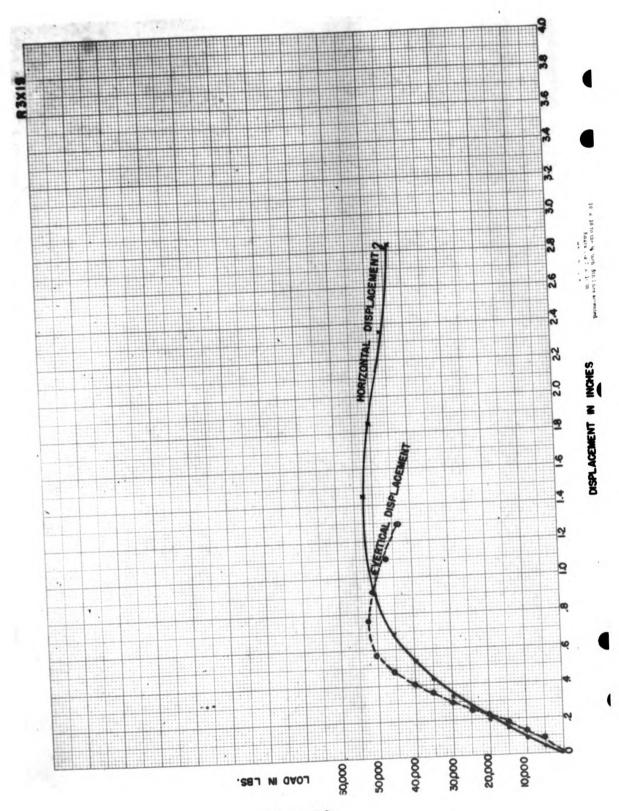


Fig. 30.

Fig. 31.

Data sheet for United plain and bolted 12 guage plates with pictures of the two plates taken after failure has occurred:

Elastic Limit at 35,000# for plain 12 gauge plate, (see Fig. 32).

Elastic Limit at 23,000# for bolted 12 gauge plate (see Fig. 34).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{23,000}{35,000}$$
 x 100 = 65.8 %

Failure of plann (see Fig. 33) and bolted plates (see Fig. 35).

Spreading and crimping at the center of the 12 gauge plain plate.

Slight butt joint failure, crimping and buckling of the plate below the joint for the bolted 12 gauge plate.

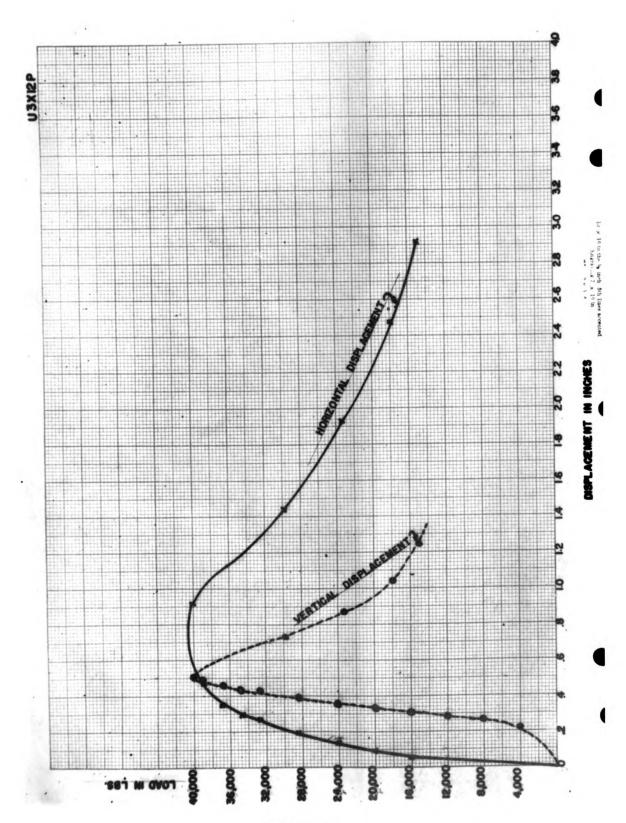


Fig. 32.

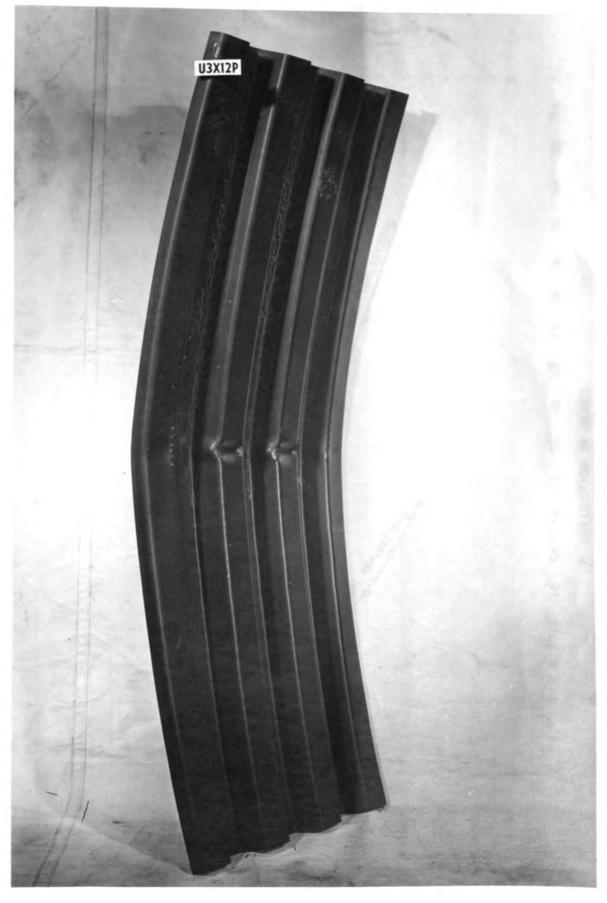


Fig. 33.

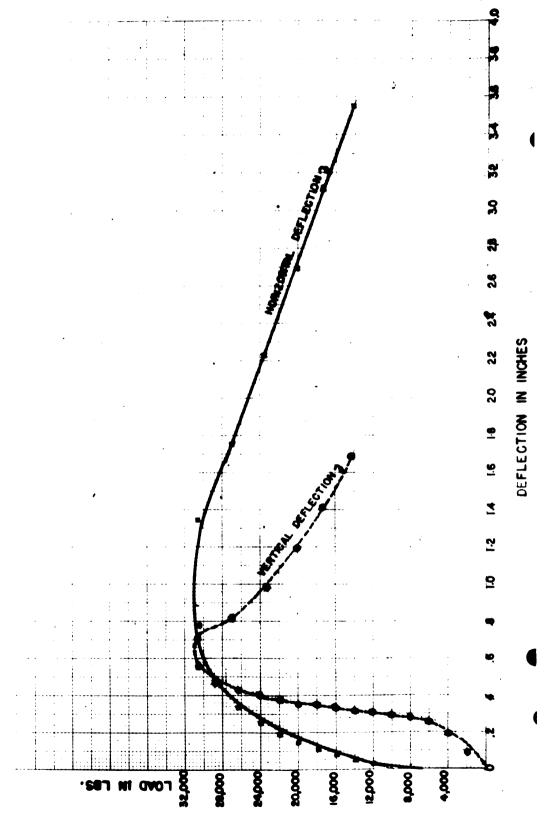


Fig. 34.

Fig. 35.

Data sheet for United plain and bolted 7 gauge plates with pictures of the two plates taken after failure has occurred:

Elastic Limit at 66,000# for plain 7 gauge plate, (see Fig. 36).

Elastic Limit at 36,000# for bolted 7 gauge plate (see Fig. 38).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{36,000}{66,000}$$
 x 100 = 54.6 %

Failure of plain (see Fig. 37) and bolted plates (see Fig. 39 and 39(a).

Slight rippling of inner corrugation for 7 gauge plain plate.

Failure of butt joint plates also failure of weld on the edges.

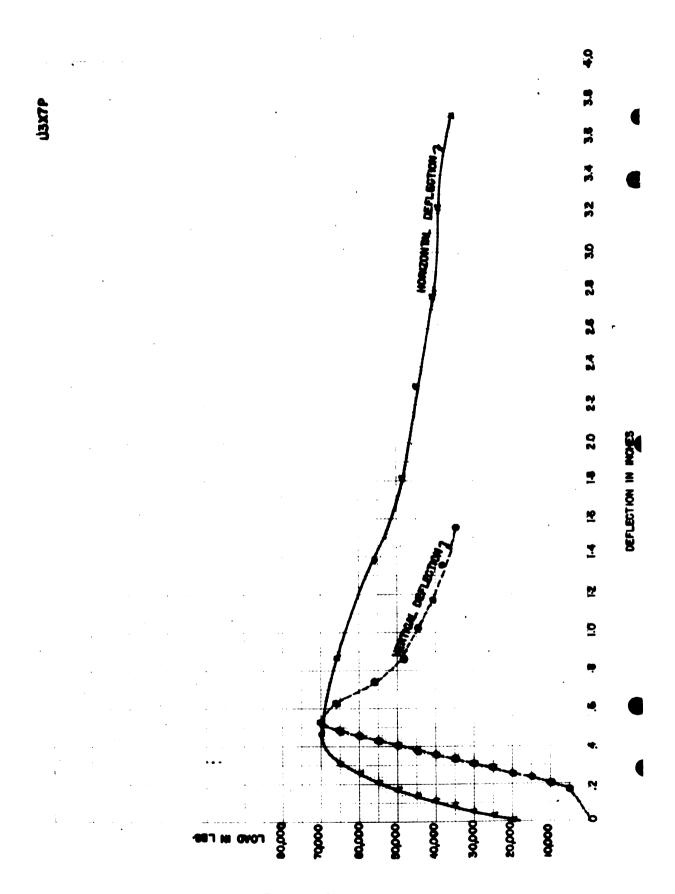


Fig. 36.

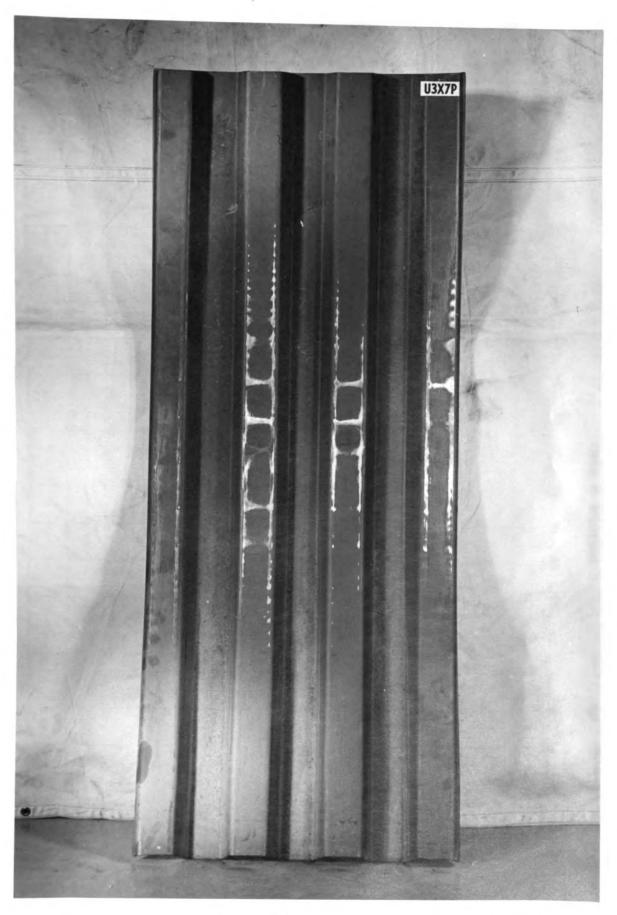


Fig. 37.

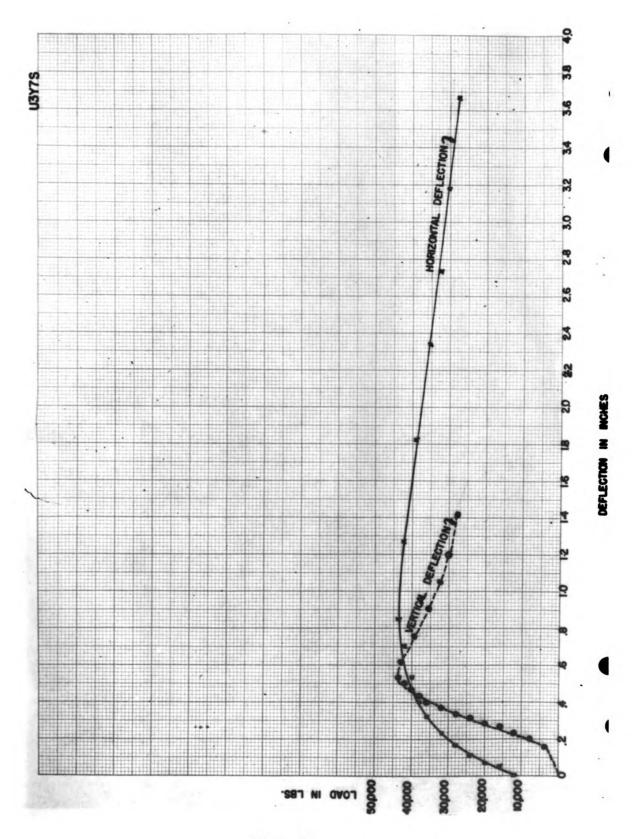


Fig. 38.

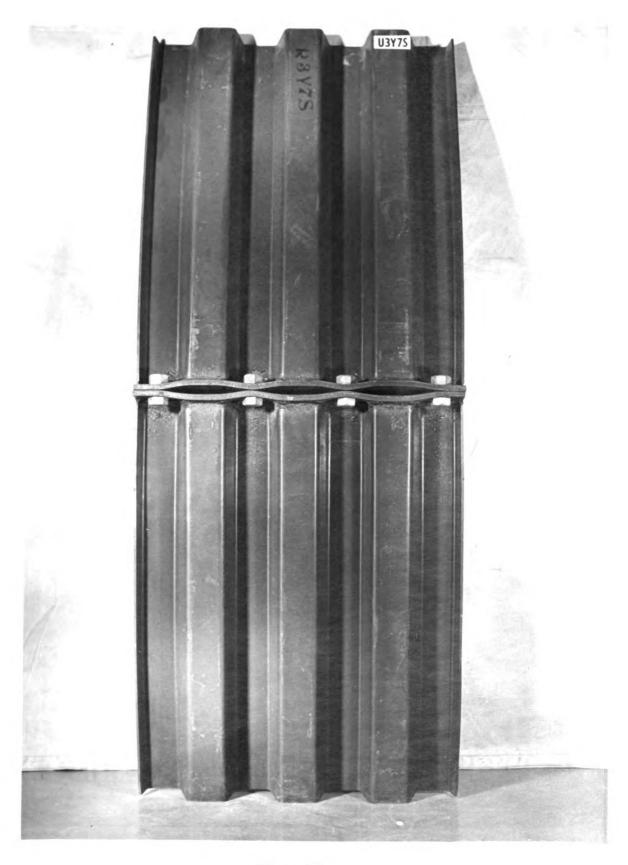


Fig. 39.

Fig. 39a.

Data sheet for United plain and bolted l gauge plates with pictures of the two plates taken after failure has occurred:

Elastic Limit at 120,000# for plain 1 gauge plate (see Fig. 40).

Elastic Limit at 61,000# for bolted 1 gauge plate (see Fig. 42).

% efficiency of bolted specimen compared with plain specimen taken as the standard:

$$\frac{61,000}{120,000}$$
 x 100 = 50.8 %

Failure of plain (see Fig. 41) and bolted plates (see Fig. 43).

Small change in radius of curvation for plain 1 gauge plate.

Weld failure and butt joint failure for bolted 1 gauge plate.

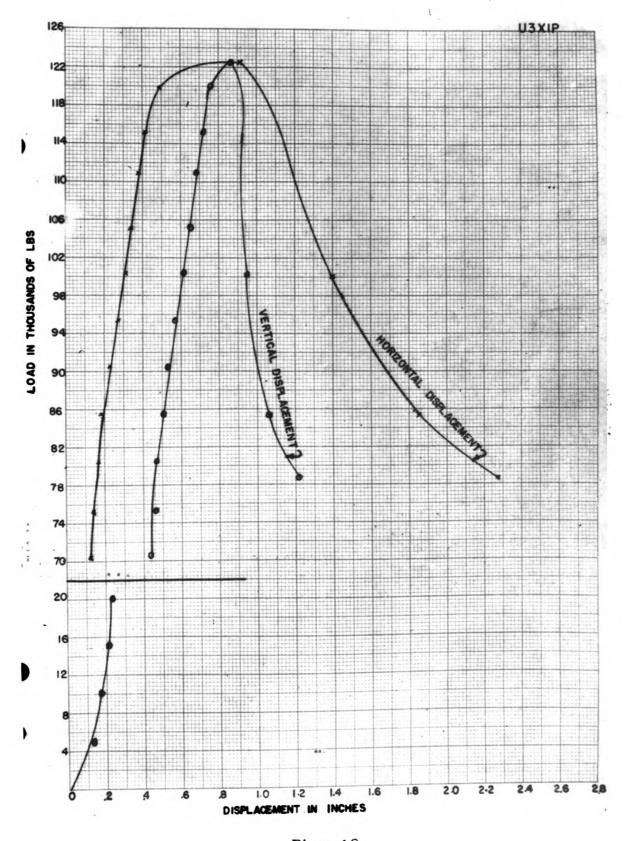


Fig. 40.

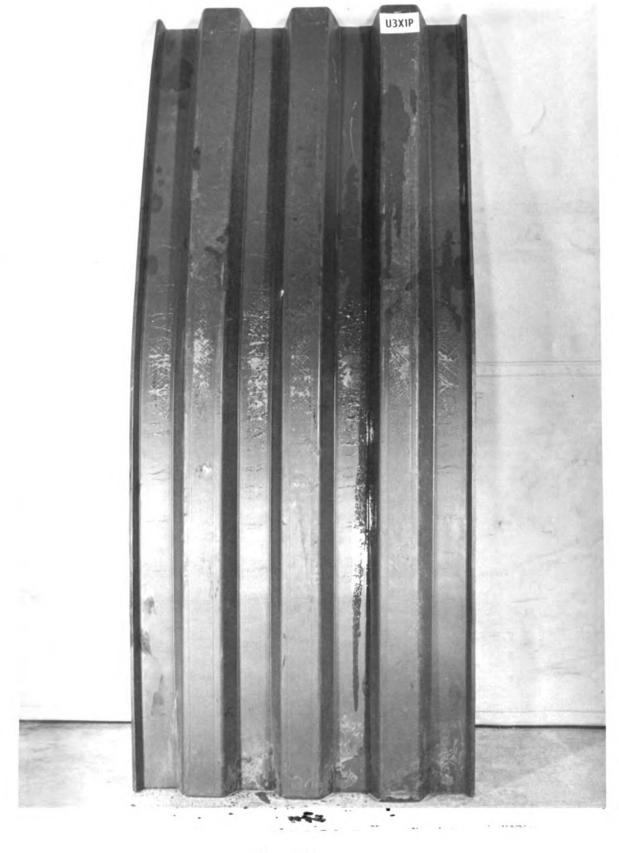


Fig. 41.

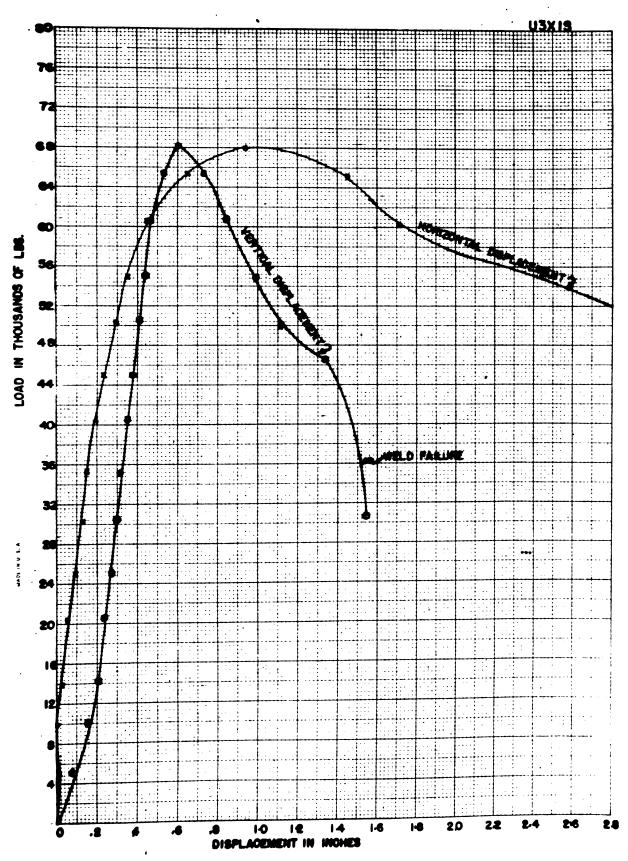


Fig. 42.

Fig. 43.

Fig. 43a.

SIZE AND TYPE OF CORRUGATION

The following 6 graphs compare the plain and bolted specimens of the same gauge of metal with one another:

DATA SHOWING ELASTIC LIMITS

	ARMCO	REPUBL ₁ C	UN 1 TE D
12 gauge plain plate See Fig. 44	14,700#	28,300#	37,000#
12 gauge bolted plate See Fig. 45	15,000#	22,000#	26,300#
% efficiency of bolted specimen compared with plain specimen taken as a standard	15,000=10% 14,700	22,000=78.6% 28,000	26,300=71.3% 37,000
7 gauge plain plate See Fig. 46	39,400#	49,000#	65,000#
7 gauge bolted plate See Fig. 47	28,500#	43,000#	36,000#
% efficiency of bolted specimen compared with plain specimen taken as a standard	28,500=72.39 39,400	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	36,000=55.5% 65,000
l gauge plain plate See Fig. 48	44,000#	73,000#	120,000#
l gauge bolted plate See Fig. 49	36,000#	44,800#	61,000#
% efficiency of bolted specimen compared with plain specimen taken as a standard	36,000 81.89 44,000		61,000=50.8% 120,000

Analysis of data:

The Armco Company uses a $1\frac{3}{4}$ " depth of corrugation and 6" pitch, which develops a good efficiency ratio between

the bolted and unbolted specimens, but the overall loads that can be withstood by these plates is less than the Republic and United plates.

The Republic Company uses a 2" depth of corrugation and a 6" pitch which develops from good to fair efficiency ratio between the bolted and unbolted specimens. The overall loads that can be withstood by these plates are in all cases better than the Armco Company's and in one case (No. 7 gauge) they are better than the United Company's plates.

The United Company uses a 2" box type corrugation with a 6" pitch. The plain specimens of the United plates are in all cases better than the Armco or Republic Company's plates but the butt type joint fails on the bolted plates and does not let the bolted specimen take a high load. The overall efficiency of this plate is poor but this is due not to type of corrugation, but to the butt type joint used by the United Company.

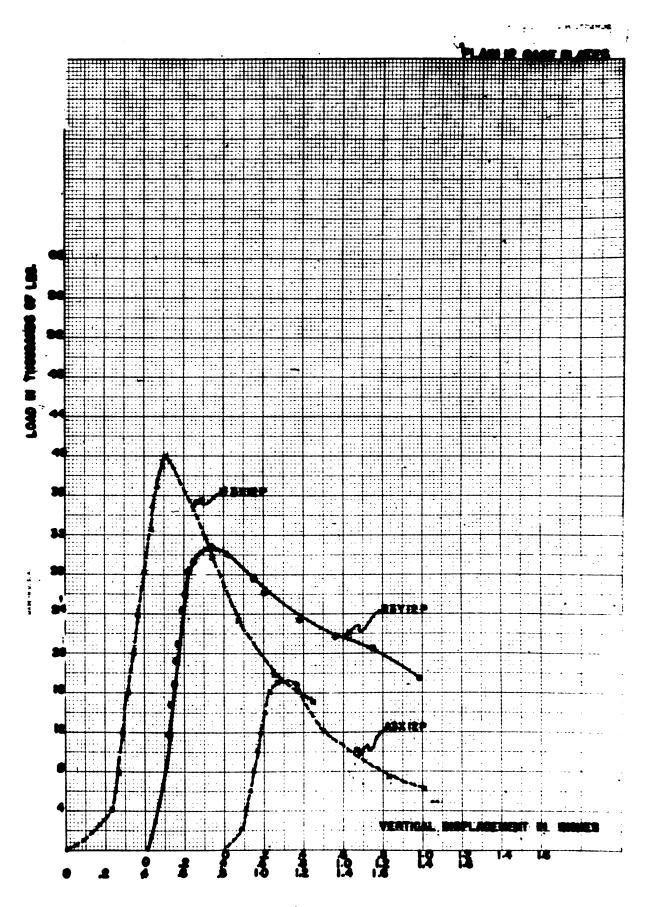


Fig. 44.

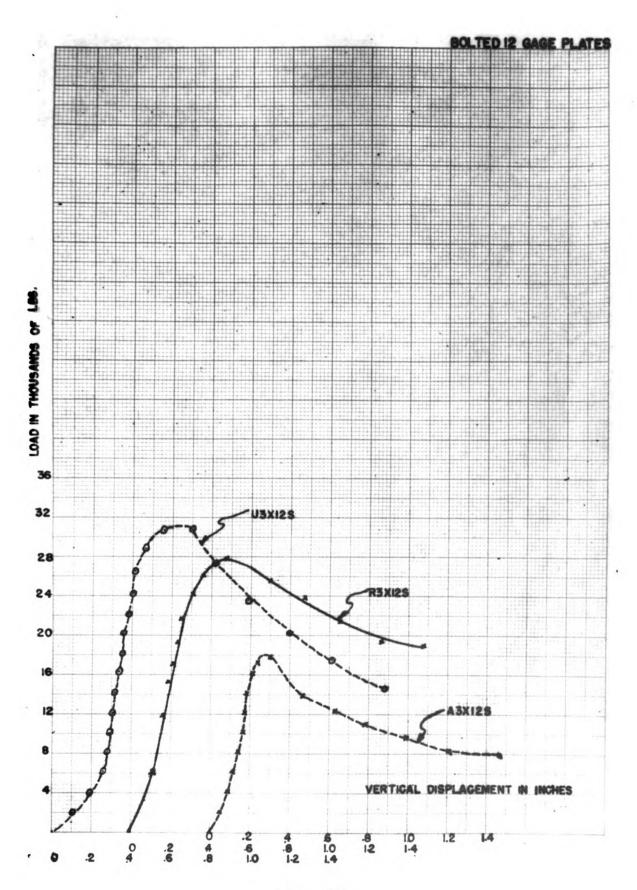


Fig. 45.

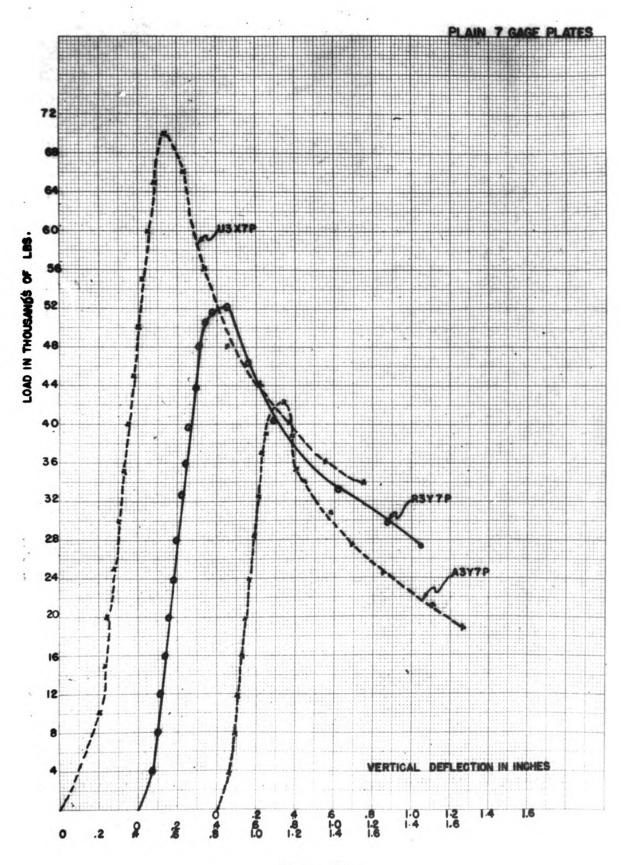


Fig. 46.

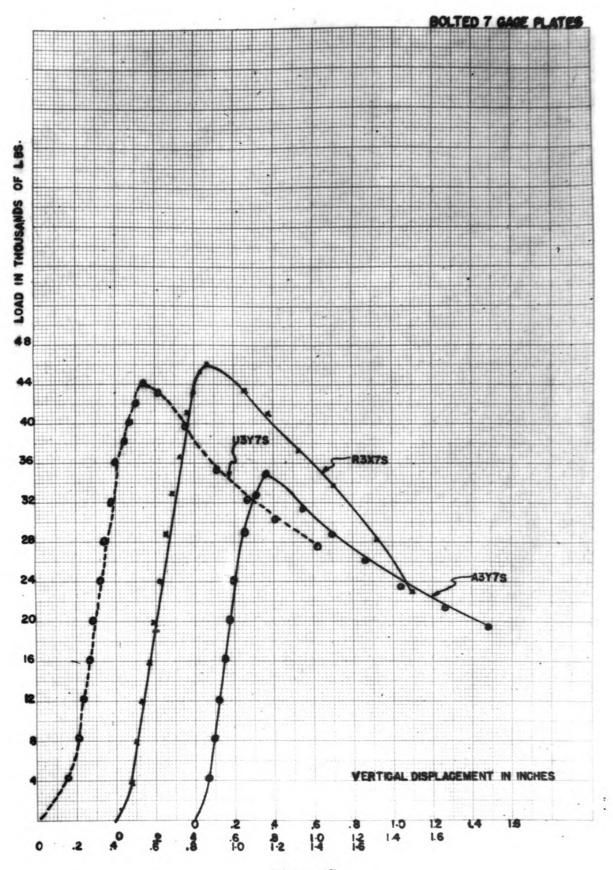


Fig. 47.

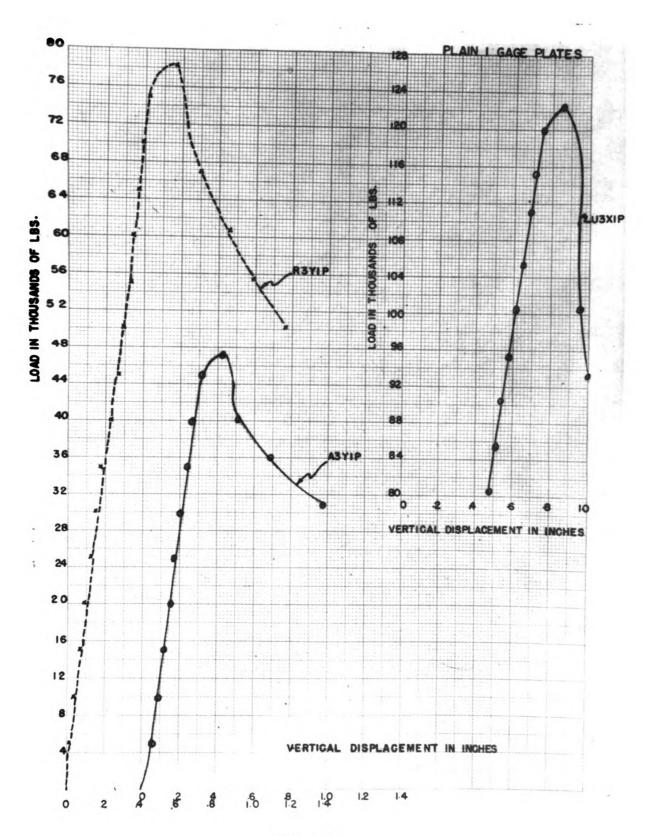


Fig. 48.

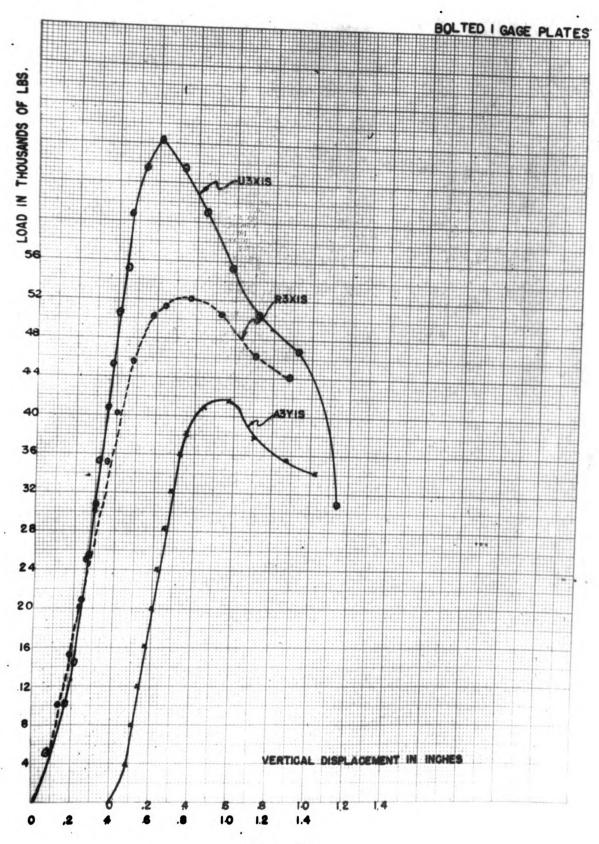


Fig. 49.

GAUGE OF METAL

The following 6 sheets of graphs compare the plain and bolted specimens of each manufacturer for the No. 12 gauge, No. 7 gauge, and No. 1 gauge plates.

An ideal series of multi plates would show that the bolted and plain plates would both have the same elastic limit for the same gauge plate. Also the difference between the elastic limits of the different plates (No.12, No. 7, and No. 1 gauge plates for the same manufacturer) is in proportion to the section modulus of the different plates in an ideal series of multi plates.

The analysis of data will be run on the plain plates to test the section modulus against gauge for the various plates. If we were to use the bolted plates we would be studying the joints instead of the gauge of metal.

Comparison of the ratio of the section modulus to the ratio of the elastic limits for the various gauge plates to see if there is a definite relationship between section modulus and elastic limit for these plates, is made. I used Armco plates as a standard for elastic limit and section modulus.

- Z = .0786 in , 12 gauge United 37,000# at Elastic Limit
- Z = .0585 in , 12 gauge Republic 28,300# at Elastic Limit
- Z = .0520 in , 12 gauge Armco 14,700# at Elastic Limit

Ratio	Armco		Republic		United
Section Modulus 12 gauge plain pla	1 ates	:	1.125	:	1.513

Ratio	Armco	Armco		;	United	
Elastic Limit 12 gauge plain	l plates		1.925	:	2.520	
Z = .1298 in , Z = .0984 in , Z = .0865 in ,	7 gauge Re	epublic	44,000#	at Ela	stic Limit stic Limit stic Limit	
Ratio	Armco		Republic	·	United	
Section Modulus 7 gauge plain		: .	1.135	:	1.501	
Ratio	Armco		Republic	:	United	
Elastic Limit 7 gauge plain		:	1.32	:	1.76	
Z = .1945 in , Z = .1450 in , Z = .1280 in ,	1 gauge Re	epublic	73,000#	at El		,
Ratio	Armco		Republic	;	United	
Section Modulus 1 gauge plain p		•· ••	1.132	:	1.52)
Ratio	Armco		Republic	;	United	
Elastic Limit 1 gauge plain p		:	1.66		2.73	

Results of comparison of the ratio of Elastic Limit to the ratio of Section Modulus.

For the plates tested as columns there seems to be no definite relationship for a basis of comparison of Elastic Limit to Section Modulus except that for all gauge plates tested the ratio of Elastic Limit is higher than the ratio for Section Modulus.

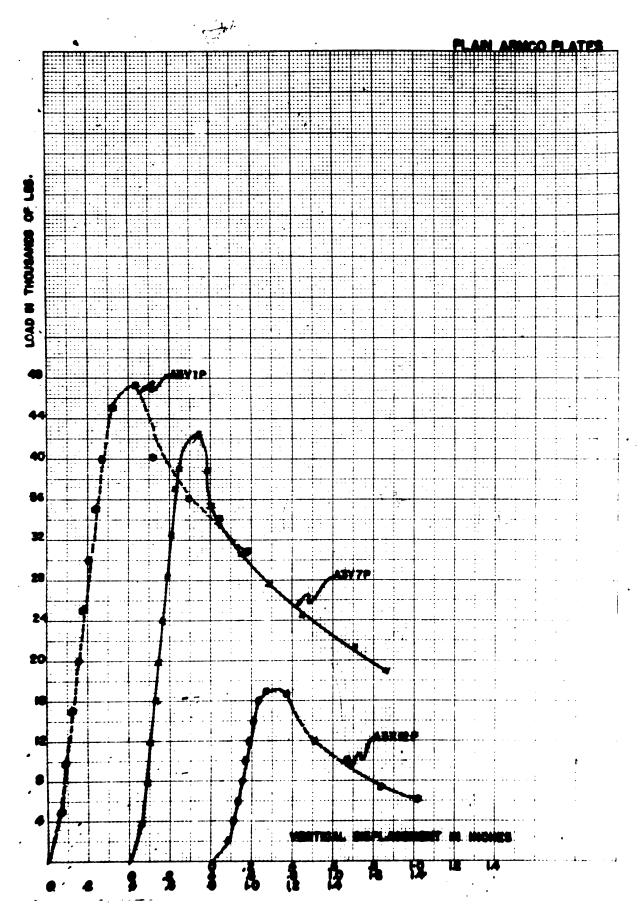


Fig. 50.

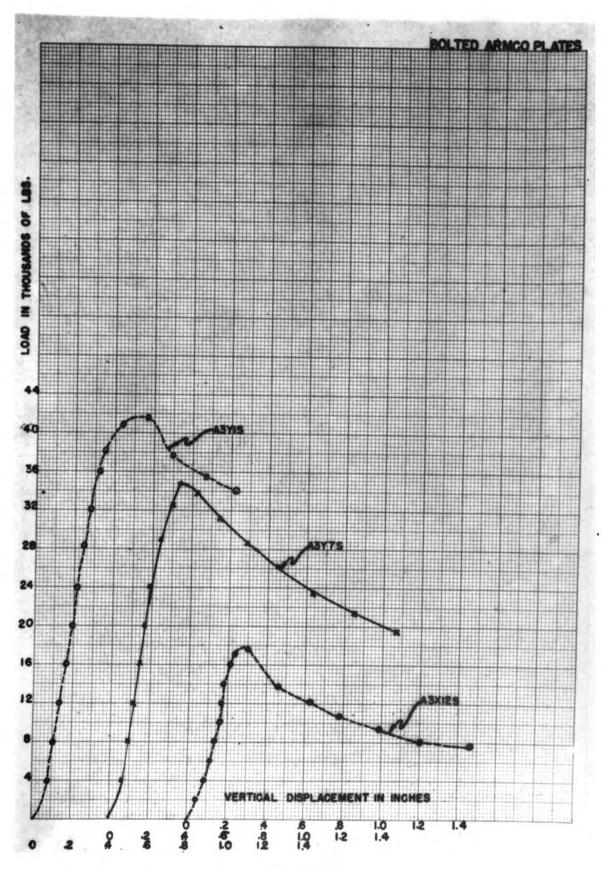


Fig. 51.

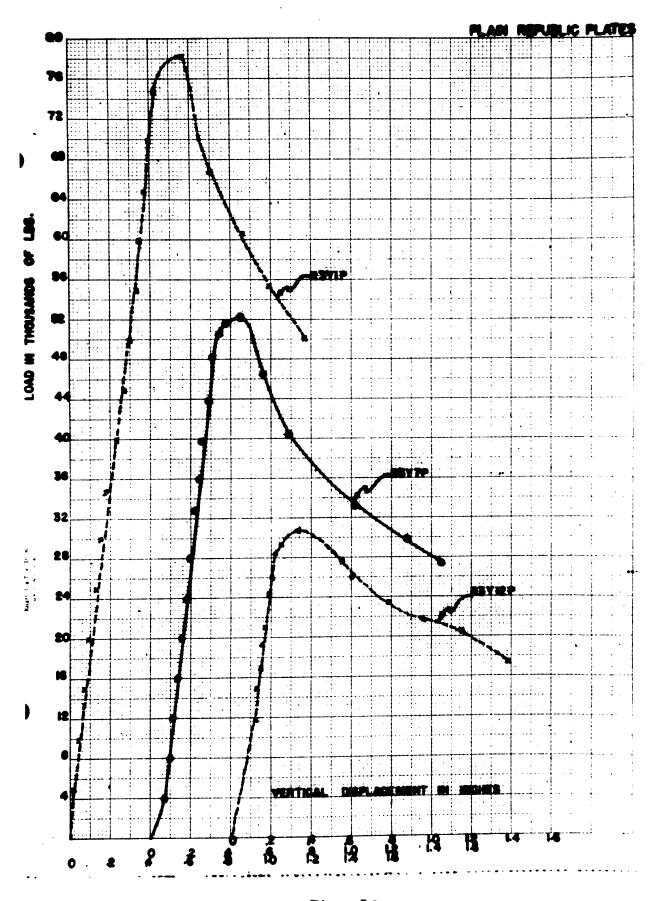


Fig. 52.

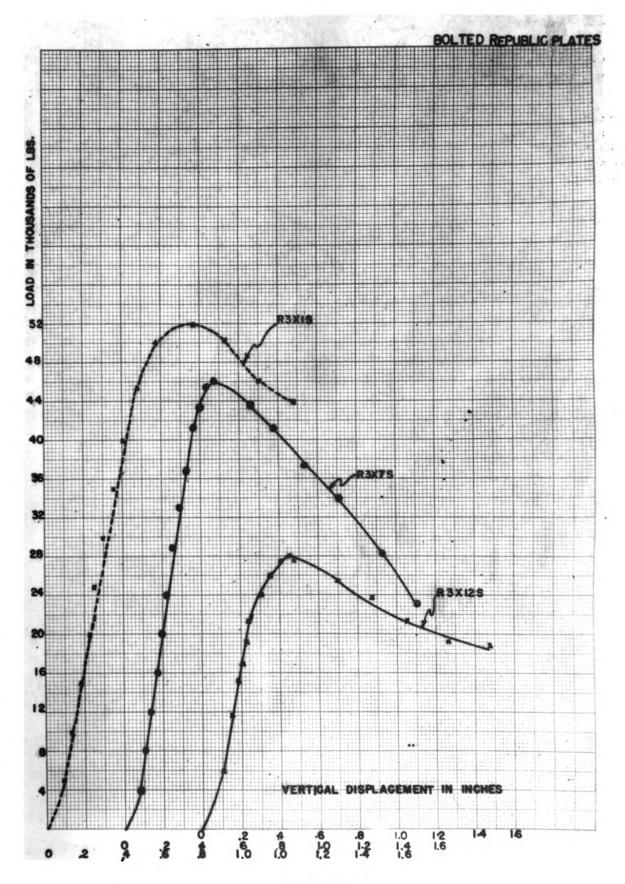


Fig. 53.

Fig. 54.

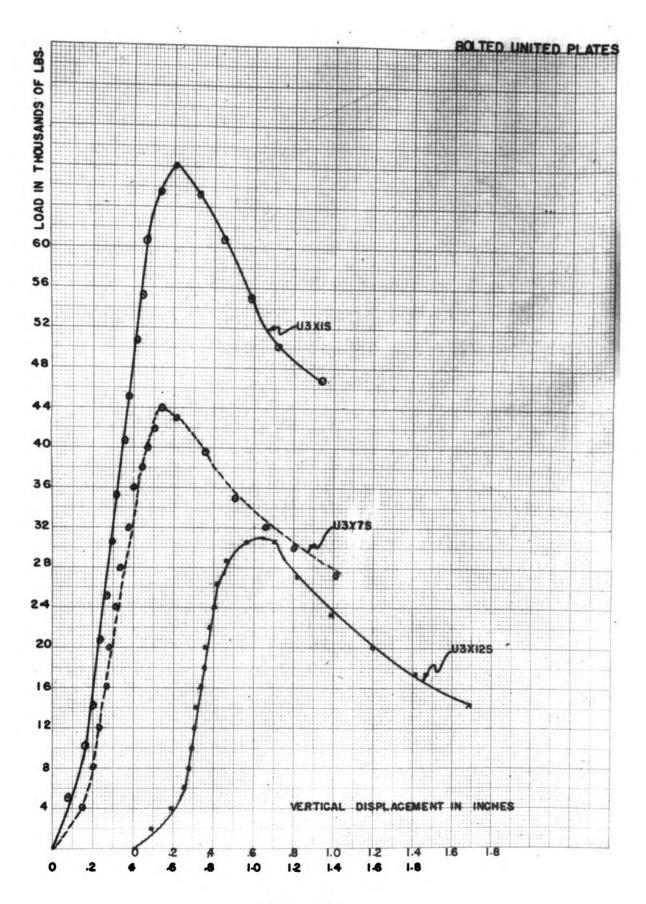


Fig. 55.

CONCLUSION

This test on multi plate sections was run to see if the 2" depth of corrugation was superior to the $1\frac{3}{4}$ " depth of corrugation, also to find out if the box type of corrugation was superior to the sine wave type of corrugation, and to see if the lap joint was superior to the butt joint for joining the multi plate sections together.

The Armco Company uses a $1\frac{3}{4}$ depth of corrugation with a sine wave type of corrugation and a lap joint.

The United Company uses a 2" depth of corrugation with a box type of corrugation and a butt joint.

The Republic Company uses a 2" depth of corrugation with a sine wave type of corrugation and a lap joint.

Results:

The test results show that the 2" depth of corrugation is superior to the 12" depth of corrugation and that the box type of corrugation is superior to the sine wave type of corrugation (see Page 67 for computations).

The test results also show that the lap joint is superior to the butt joint (see page 67 for computations).

RESEARCH DATA

The following data sheets are the ones from which the data for the graphs for this report were taken. The data sheets follow the same order in this report as the graphs do in the front part of this report. All of the data sheets have an identifying marking on them which is the same as the graph and picture marking. For example on the first data sheet opposite Spec. Designation, the marking A3 x 12P appears, which means it is the data sheet of the Armco Company's test 3, plate x, and it is also a 12 gauge plain plate.

In the first column the dynometer readings are placed, the second column is used for load in lbs., the third and fifth columns are used for the vertical displacement (see Fig. 5) in inches, the fourth and sixth columns are used for the displacement in inches per increment of load used. The seventh and ninth columns are used for the horizontal displacement (see Fig. 5) in inches, and the eighth and tenth columns are used for the displacement in inches per increment of load used.

In addition the thickness of each plate is given and the radius to the neutral axis is given.

Form 579 (8-49)

1	Do te	In	. 5.	1950
5	iachi	He Air	404	da
	ing		1KI	_
(hser	vers (¥ , 40	eks
	Chank	No.	7//	

RESEARCH DATA

Source of Material Area Spec. Designation A 3 X /2 P
Type Corrugations A Test No. 3 Spec. No. 4 Gage /2
Plain Bolted Thickness . 106 Length Radius /2-0"

				TEST RESU	LTS				
Dia!	hoad #	Dia/	4,	Dial	42	Dial	13	Dial	14
0		6.651		7.07/		6.991		6.984	
3.5	2,000	6.559	.092	6.984	.087	6.943		6.966	018
7.0	4.000	6.534	.117	6.961	.116	6.904	.087	6.930	1054
10.5	6.000	6512	./39	6.942		6.863	.128	6.889	.095
13.8	8000	6.490	./6/	6.922		6.814		6.890	1144
17.2	10,000	6.472	.179	6.966		6772		6.796	188
20.4	12,000	6.456		6891		6.732	.259		
23.5	14,000			6.870		6.672		6.696	1
27.0	16.172	6.410		6.849		6,595		6.625	
28.4		6.371	-280	6.812	1219	6.425		6.466	
24.0	16,590	6.273	.378	6.716	.355	6.000	.991	6-056	1828
24.0	11560	6.273	,370	6.716	.355	5.992	1991	5:996	.828
20.5	1.2 1/2	1/121	1,000	11.077	1494	5.465	1.518	5.490	1.33
11.0	9,885	5:977	.674	6.427	.644	5.000	1.983	5.026	1.79
	1220=		1411	1/424	.644	4.475	1.983	4.994	1.79
17.0	1770	5.977	0.55	1.2117	.824	4.495	2.463	4.517	2.22
11.0		5.796		6.030	1.041	4.000	2.958	4.011	2.7
		1000			-	-	-	-	
7	-	-	-	-					
						-	-	-	-
23	-	-	-	-	-				
_		1.					-	-	+-
		-	-	-	-	-	+		
	-	1 -	+						-
			+	-					1

Form 579 (8-49)

Fing No.
Cheer No.
Cheer No.

RESEARCH DATA

Source of Material //emco Spec. Designation A 3 1 / 2 S

Type Corrugations Test No. 3 Spec. No. 1 Gege / 2

Plain Bolted 5 Thickness //S Length Radius / 470°

Pictures A 3 1 / 2 5

TEST RESULTS									
Dia 1	101	0:1		1	1			···	
Road	* oa o	Dial	1 ,	Dial	4,	Dial	Δ,	Dial	4
0		6.899							
				6.421				6.983	
7.0	4 400	6.848	4 2 0	1 220	263	6.37	1037		
		6.801						6.960	
		6.783						6.814	
17.2	10.000	6.764	135	6.268	.14-3	6 407	167		
20.4	12.000	6.749	150	6.251	1171	6 747	141	12.2021	1.27
23.5	14 ago	6.728	171	6 229	192	6.678	.306	6.127	257
26.6	16.000	1.707	.192	6.205	.211	1.601	.303	6.537	.44
21.4	17,000	6.679	مدده	6.173	241	6.482	:502	6.400	-54
	1	6.614		•	•	1	1	1	
		6.579							
		6.179							
		6.454							
20.5	12.063	6.312	1587	6793	1628	5.000	1.964	1:038	1.945
	ļ								
20.5	12063	6.312	1547	5.763	1628	4.902	1.964	5.000	1.949
18.5	10.781	6. N/1- 1. G1-3	1754	5.621	.800	4495	2.461	4.524	2421
16.0	9,300	5.653	946	5:425	,996	4.000	2906	4.144	2.901
11 1			0.44			2 (2)	100	1 1 1 1 1	12.0
	9300	5.953	946	17425	1446	3.992	d. 436	4.000	2 20
14.0	1,120	5.73/	1.168	1.195	10206	3.473	2 0110	3.270	2 0-
15.0	7,500	5.455	1.414	4. 950	1.471	5.000	5.946	3.450	Ted 7
	 					ļ		<u> </u>	 -
		 			 				
		 	••				-		
	†	 		-					

Form 579 (8-49)

Date O. 4.1950 Hackine William St. 1950 Pling No. 20 Observers Oid Under Sheet No.

RESEARCH DATA

Source of Material Spec. Designation A 3/17/2

Type Corrugations A Test No. 3 Spec. No. 4 Gage 17

Plain Bolted Thickness ./93 Length Radius /570'

TEST RESULTS Load Dia 1 Dia/ Dia Dia/ Dial Road 3 6.431 2000 .366 525 663

Form 579 (8-49)

Source		RCH DAT					Machi Fing Obser Sheet	ne de la	yeeks
Plain	rugations B	olted	_ Test N	o. 3 ickness.	Spec	. No. /		9347 ge 77	1407
Pictures	434	TP	1 pic				,	u.u.s_7,372	
Dia 1	10	1	1	TEST RESI	ILTS				
Road	Load #	Dial	4,	Dial	12	Dial	14,	Dial	14
400	,	5.238	.821	5.547	.884	4.000	2.839	3.992	1.900
35.0	1 -	4.939	1.120	5.347	1.084				
31.5	18,928	4.828	1.231	5.136			3.839		
		-	-	-	-			-	
	-								
			-				-		
		-		-	•				
				-					
	-	-	-	-					-
	1		-	 			-		<u> </u>
-	-	-			-		-	-	-
	—	†	-	<u> </u>	-		1		1
				**					
							-	-	-
					1				

Form 579 (8-49)

RESEARCH	DA	TA

Source of Material (Lemco Spec. Designation C 3 4 75

Type Corrugations 7 Test No. 3 Spec. No. Gage 7

Plain Bolted 5 Thickness /93 Length Radius /50"

0	1 (-		TEST RES	ULTS				
Road	hoad	Dia!	1,	Dia 1	12	Dià 1	13	Oral	14
0	-	6.884		6.183		6.999		6.993	
3.5		6.832	.052	6.130	1053	6.999	.000		
7.0	1	6.813	.071	6-115	1078	6.981		6.978	
10.5	6.000			6.089		16.960		6.955	
13.8		6.786	.098	6.076	107	6.940		6.937	_
17.2		6.774	.110	6.063		6.914			
204	7		119	6.054		6.897			
23.5	14,000	6.753	./21	6.042	.141	6.872		6.819	
26.6	The second	6.743	.141	6.002		6.848			
30.1	18,000	6.729	155	6.018		6-816		1 / 1	.18
33.2	20,000	6.714	.170	6.003	1	6.777			
36.2		6.704		5.588	.195	6.729	,271	1.730	. 2/
39.4		6.684	.190	~		6.688			
42.9	26, 354	6.665	.219		.229	6.628	.371	6.631	. 36.
	28.826			1.925	.258	6.537	.462	6.547	16
19.9	30,567	6.620		5.907	.276	6.485	1774	6.492	.5%
53.4	32.693	6.086		5.873		6.358			
74.9	34,767			1-834		6.194			
,	33,640	_				6.000	.999	1.000	. 99
5.0	32,640	6.463	.421	5.752	1431	6.000	.999	5.992	.99.
7.0	31,236	6.331	.033.	5.622		5.479			
16.5	28.531	6.194	.690	5.483		5.000			
16.5	28531	6.194	,690	5.483	1700	4.995	1.989	4.992	1.98
12.5	26,118	6.026	1858	5.312	1861	4.484	2.500	4.495	2.48
8.3		5.848							
8.3	13.354	5.848 5.636	1.036	5.122	1.000	3.986	2.984	3.992	2.95
35.1	21,208.	5.636	1.248	4.919	1.264	9 487	2.483	2.575	3.44

Form 579 (8-49)

Machine Holass trians
Ping No. M -/
Observers O. Chole
Sheet No.

RESEARCH DATA

Source of Material Spec. Designation A 9 (1) Property Corrugations Test No. Spec. No. Gage Plain Bolted Thickness . 354 Length Radius 157

ricure	-434		- Jain	,					
	1 4	i		TEST RESI	ILTS	,		~~~	
Dia!	hoad	Dial	1,	Dial	12	Dia/	1.	Dia/	1
		-			===	T		•	
<u> </u>	+	6.925		6.561		6.945		6.936	<u> </u>
2.5	`	6.859	.066	6199	.065	6.908	.037	6.903	
4.9		6.827	off	6.465	.099	6.276	.475	6.869	1
2.4		6.799	126	6.439	125	6.029	.116	6. PS5	.10
9.8	7 - 7	6.772	13	6.412	153	6.787	1159	6.799	1.2
2.3		6.2/3	1/12	6.3PS	119	6.741	.204	6.754	.17
14.9	30,200		12/2	6.364	-210	6.693	.25.2	6.716	
24	35,300	6.616	1299	6.324	.240	6.644	105.	6.665	2
20.1	40000	6.651	120	6.292	.272	6.572	.373	6.600	.2
22.5	45,400	6.600	220	6.247	117	6.428	.517	6-467	15
27.6	17.600	6.518	.417	6.174	.390	6.691	· Serve	6.153	$\cdot z$
				4					
23.6	47.600	6.518	-47	6.174	390	5.985	254	5.012	. 74
na.a		6.390		6.20		5.487		6:485	
18.6		6.207		5.926	.638	5.019		5.032	62
7.0	26,100	6.257	.119	5.026	.631	4.965	1.520	4.622	V. 2
30		6.099				4.496			
	7 -	5.916	_			4.008			
			· ·		O.C. Stript				
				tione Be	r '				
				1de19018 20.00 - 51 t					
•				inclug Co.					
			·	Sous,					
	1								
	1				•				
	1								
• ;	 	1.							
	 								
	 								
	 	 							

Form 579 (8-49)

D te	
Machine /	SIF
ling No.	
Chservers (2)	Chape
Sheet No.	

RESEARCH DATA

Source of Material (IPMC) Spec. Designation A 3 1/3
Type Corrugations Test No. 9 Spec. No. Gage //
Plain Bolted 5 Thickness Length Radius 150"

				TEST RESU	LTS				
dia /	find #	Diol	A,	Dia/	<i>a</i> .	ا مند ليو	13	Din /	14
0		6.782		6.414	•	6.922		6.935	
3.1	2,000	6.228	.054	6.347	. 167	6.916	.016	6.910	.015
7.0	4.000	6.705	.077	4.323	191	6.887	.035	6.892	.033
	6,100			6.308	.106	6.872		6.874	
	8,000			6.295		6.853		6.857	
	-	6.664		6.283		6.837		I	٠.
	12,000		130		142	6.820		6.820	
	14000	l .		6.261		6.502		4.801	1
		6.629				6.785			
	18,000	1	.164	, -		6.763	1 ./	6.764	1
	24,000	l .	Y	6.229		6.745			
	1	6.594		6.216	.198			6.721	
	24,000	,		6.204		6.700		6.688	
		6.55.5	T	6.176	T	6,643	1		•
	30.212	1	7	6.160	1	6.409	,	6.568	1
5-2,3		6.525		6-144	1	6.571		6.557	1
	r /-	6.5-04		6.121		6,512	·	6.495	
		6,473		6.089	,	6.421		1	
		6.445		6.05-8		6.342		6.366	
		6.397	1	6.000	_	6.182	1	6.128	1
		6.372	I .	1-976	.438	6.1190	.832	6.125	1.000
	 		<u> </u>			ļ	2 -		
	1 -	6 372	1	1.976		1.982	T	1-	1
		6.241	1.54	5-83P	1.576	1:482	1.440	17.45	1.42
6/.8	3775	6.110	1.672	1:22	17/2	1.606	1.7/6	2.000	1.27
61.8	37.754	6.110	1672	5.702	1.7/2	4.999	1.916	4.980	100
58.0		1:948	1	5.530	1	4:415	2.430	4.453	2.4.4
56.6	T - ',	9:862		0-365			2.87/		

Form 579 (8-49)

	RESEARCH	DATA
--	----------	------

Date Sic 27, 1949
Machine Wich and On Ton
Ping No. Block
Cheevers Civ. Hocks
Sheet No.

Plain	of Materia Trugations B	olted	_ Test N	0. 3	Spec	pec. Desi	Can Can	ge / /2	135588
Pictures	N34	LIZP	Lpis.	ickness	1/6 L	ength	Ra	d1us /57	2.00
	0		•	TEST RESI	IT TO			,	- 33
Dia 1 Prad	Load	Dial	1,	Dial	12	Dia 1	13	Dial	14
		6.157		1 071				4	-
20.0	11.720	6.040		6.876		6.909		6.951	
25.5	15,25-2			6.742			155	6.784	
28.5	12.004			6.729		6.727		6.753	
22.0	19,252			6.718		6.702		6.725	- 100
25.0	21,191	5.986		6.708		6.681		6.700	
8.0	23/77	5.971		4.6 94		6.649		6.665	
9.8	24,288	5.958		6.682		6.621		6.630	
42.5	26,118		,209	6.672	1	6.599	-	6.604	
46.0	28,236	5.933	.224	6.657	.219	6.559		6.554	
17.9	29.345	5.912	. 245	6.636	,240	6.500	.490	6.480	.47
19.0	30,000	5.887	.220	6.608	.268	6.406	.503	6.363	.58
7	20,693	5.814	.343	6.5-29	.347	6.096	.813	6.000	.9:
50.1	30,693	5.814	.343	6.529	.347	5.985	.813	6.000	:9:
15.0	27.630	5.618	.539	6.325	.351	5.221	1.577	5.194	1.7.
12.9	26,354	5.560		6.265					
42.9	26,354	5.560	.597	6.265	.611	4.958	1.772	5:000	1.9
38.6	23,531	5.384	.773	6.086				4.485	
35.9	21.794	5.215	.942	5.913	.963	4.000	2.730	4.026	2.9.
3.5.9	21,794.	5.215	.992	5.913	, 963	3.979	2.730	3.950	2.9.
34.0	20.526	5.005	1.152	5.701	1.175	3.491	3.218	3.439	3.4
29.5	17,649	4.798	1.359	5.491	1.385	3.072	3.637	3.000	3.8

Form 579 (8-49)

RESEARCH	DATA
----------	------

Date & ac. 18 1949

dachine// day on be

Ping No. A//

Physervers/:// feek

Source of Material Type Corrugations Plain Bolted Pictures 77 / 1	Test No. 2	Spec. Designation Spec. No Length	R91/25 Cogo /2 Radius /424
	TEST RESULTS		

			,	TEST RESU			•		
hoad	hoad	Dial	Δ,	Diel	ر ۵	Oie 1	<u> </u>	Dial	1 y
_		6.024		6.528		6.993		6.961	
20.0	14720	1-877	.147	6.367	161	1.547	.196	1.759	202
25.5	12,35	5.852	172	6.338	190	6.791	.202	6.689	272
2815	17,059	5.835	.189	6.317	12//	6.747	-246	6.636	. 9.26
32.0	19.252	5.818	.206	1.297	1271	6. 702	. 201	1. 1-21	774
25.0	21.191	5.799	.225	6,276	1250	6.649	.344	65-24	.430
38.0	23,177	5.765	259	6.239	,289	6.549	.444	6.412	.249
		5.720							
42.5	26.118	5.683	-341	6150	.378	6.300	.693	6.140	.821
44.1	27,504	5.640	1384	10.104	.424	6.162	.831	6.000	261
44.8	27,50	27.640	,384	6.104	.424	1.981	.831	6.000	.961
46.0	28,236	5.600	1424	6.064	464	5.857	.855	5.821	1.090
45.1	27693	5.479	.445	2.936	1552	5.436	1.376	5-432	ويتوير
41.7	25563	5.747	.627	5.800	1228	5.000	1.812	5000	1.961
417	21.503	5.397	.627	5.800	.728	4.915	1.812	4.995	1.961
38.9	23.708	5.184	.840	1:634	. 894	4.470	2.327	4.482	2.474
34.5-	20,861	5.011	1.013	5.451	1.077	4.000	2.797	4.010	2.946
34.5	20.861	57011	1.013	5.451	1.077	2.992	2.797	3.98x	2.94
32.0	19.252	4.812	1.212	5.238	1.291	3.480	3.299	3.479	3.65
31.5	18938	4.610	1.414	5.021	1.507	2.000	3,789	3.000	4.939
			 		 			,	
	 								
			ļ						

Form 579 (8-49)

RE	SEA	RCH	DATA

Porte Hacking Services Service

Source of Material Republic Spec. Designation R 3 7 7 P

Type Corrugations R Test No. 2 Spec. No. Y Gege 7

Plain P Bolted Thickness /83 Length Radius /50 V

			-	TEST RESU	LTS				
								••.	
_0		1.223		6.683		6.997		6.093	
1.7	1,000	6.197	.026	6.6661	1122	6.992	.005	6.993	.000
3.5	2.000	6.175	-048	6.641	.142	6.089	008	6.993	.000
5.3	3,000		1059	6.631	1052	6.888	009	6.992	asl
7.0		6.156		6.622		6.981	1016	6985	OBE
P.P	0,000			6.615		6.973	. 124	6.978	NS
10.0	/ /	6.741	182	6.607		6.966	.031	6.919	
21	1 '/	6.134	.089	6.600	ľ	6.958	.039	6.959	039
3.8		6.127		4.044		6.90	147	6.951	
5.4	1 -	6.121	102	6.588	.085-	6.943	1054	6.944	
7.2	F - 7	6.115		6.502		6.935	1062	6.936	
18.9	14,000		.//2	6.578		6.931	.066	6.930	
20,4	12110			6.574			.172		
22.0	13,000			.569			.078		-
	14,000			6.563					
	15,000			6.558		6.906	1091		
26.6	16,000			6.554		6.900	.097	6.896	
288	17.000	T		6.549		6.993	.104	6.887	
30.1	18,000			6.543		6. FAT	1/2	6.879	
3.106	19,000	1 .		6.540		6.879		1 011	
		6.065		6.53				6.564	· .
248	21,000			6.528		6.862		6.849	Γ.
36.2		6.055		6.523		1 000	147	6.844	1
	23.000	T		6.519		6.850		6.834	149
		6.044		6.513		6.840		6. 8.28	119
408		6.040		6.503	1	4.125		6.819	
		6.033		6.491	T	-	ī	1.800	
	_	6.025	1	1 .	t	1.808		6.801	
45-9		6.021		6.492			199	6.292	204
47.6	17.127	6.015	108	6.486	1197	14.176	1177	1	1

Form 579 (8-49)

	Dote
	Machinett Janu altan
	Fing No
	Cheervers all - Gest
	Sheet No. 2

RESEARCH DATA

Source of Material Keny Spec. Designation_ _ Test No. t No. 3 Spec. No. 4 Thickness 1/88 Length Type Corrugations Radius /30" Plain Bolted pic Pictures . TEST RESULTS Load . 993 2.39/

Form 579 (8-49)

Same	RESEAR	Hachine H. Columny Sol. Fing No. K-/ Chserversaul, Marks Sneet No. 3							
Type Cor	f Material rugations	R	Tost No	w 3	Syac	Dec. Design	nation_	R3 Y7!	<u> </u>
Plain	P R	olted	Thi	. 3 ckness	Spec.	ength_	Rad	ius / 50	1"
rictures	R3)	70 1p	··					······································	
				TEST DESI	LTS				
5H.0	33059	£ 167	1021	1-117	1011	4/ # 22	2 064	. /	2 000
54.0	29 150	5.101	1.122	5.60	1.016	4.092	2.292	3 600	
49.0	20,000	4.990	002	2006	1 227	4.000	2.10	3.992	200
45.0	17/20	4.768	1 41-0	7.426	1 11=2	3.305	3.419	3.449	2.27
73.0	7630	7.766	7.733	9.33/	1.492	5.030	5.904	3.000	7.87/
	† · · · · · · · · · · · · · · · · · · ·		 		 	 		· · · · · · · · · · · · · · · · · · ·	
	1	 	 		<u> </u>				
			 	 	 				
•	 				 				
	 			 	 				
	 		 			 			
	 -			ļ	 	 			
	 	 	 	!	 				
	 	ļ	 				<u> </u>		
	 	ļ	ļ.——		 		<u> </u>		
	 		 	 	 	 	 -		
	ļ	 	 	 	 				
	-		ļ			ļ		<u> </u>	
	 		 	 		 	 	<u> </u>	
			ļ	ļ	ļ <u> </u>	ļ			
	<u> </u>		 		 	 			
		ļ						<u> </u>	
			ļ			 		 	
				 		 			 -
					 	 			-
				ļ					
		ļ	ļ		<u> </u>		 		
			ļ			ļ			
			1			 			
-						<u> </u>			-
						<u> </u>	ļ		-
			1	1	1		•		

RESEARCH DATA

Form 579 (8-49)

Date Jang 1950
Machine direction fing No. 110
Observers O. Upress
Sheet No. 1

Source of Material Hepublic Spec. Designation R 9 X 75

Type Corrugations R Test No. 3 Spec. No. 4 Gage 7

Plain Bolted 5 Thickness / R Length Radius / 50"

			,	TEST RESI	ILTS		-		
Dia 1 Boad	Lord	Dial	Δ,	Die 1	1	Dial 3	13	Dia 1	1
0	-	6.650		6.596		4.000		6.993	
3.5	2000	6.593	.057	6.535	.060	7.000		6.078	
7.0	4,000	6.571	.079	6.508			.014		1
10.5	6,000	6.556		6.486			.031	1	
13.8	8,000	6.544		6.470		6.951		6.918	
17.2	10,000	6.531		6.457		6.932		6.896	
20.4	12,000	6.521		6 445		6.917	.083	6.876	
23.5	14,000	6.508		6.432		6.897	.10.3	6.852	_
26.6	16.000	6.496		6.420		6.877	.123		
	18,000			6.406		6.855	.145	-	
33.2	20,000	6.469	1	6.293	,	6.835		6.773	1
36.2	22,000	6.456		6.380		6.814	.186		
	24,000			6.367		6.791		6.746	_
	26,354			6-351		6.762		6.716	
	28.826			6. 332		6.725		6.681	
	20,567			6.317		6.1.94			
	22177			6.219		6.643		6.599	
	34.767			6.278		6.612		6.533	
	36082			6.256				6.497	
	39,059		-	6.234		6.562	-438	6.442	
	41.189					6.574		6.385	
-, -				6-212		6.466		6.325	
	43.75-4			6.183		6.400			
	45,413			6.142				6.113	
76.0	46,378	6.140	,456	60105	.490	6,235	1775	6.000	.992
76.0	46,378	6.195	.455	6. N5	.490	6.000	, 775	1.992	.99
	43.413			5.911		5.455			_
67.0	40,945	5.927						5:000	
67.0	40.945	5.927	.723	5.795	. 200	Can	1.105	4.963	1.984
27.0	74112		720	. 78.9	- 7 - 0	3.000		4447	-127

A			

HULTI-PLATE INVESTIGATION RESEARCH DATA				Date Jan 4, 1950 Nachine Min au 17/107 Fing No. 2/1 Observera/ / Charles Sheet No. 2					
Type Cor Plain	f Material rugations	olted 5	Test He	ickness	Spec	. No	mation_	Paxa	<u>s</u>
				TEST REST	ilts				
Dial	Load	Dial	4,			Dia 1	1,	Dial	14
620	40945	5.027	,723	5.795	.900	6.000	1.690	4903	1. 204
61.0	27252	5.759	1891	5.617	.971	4.480	2.2/5	4.495	
55.5	33.044	5.187	1.063	4-436	11.59	3.999		3.962	
46.0		5.383 5.158	1.267	4.994	1.375	3.489	3.105	3.488	3.166
38. A									
			-	 				 	+
	-	 	-						

Form 579 (8-49)

Date 19, 1950
Wachine 1, 1950
Ping No. 11
Observers 14 Usake
Sheet No. 1

RESEARCH DATA

Source of Material Spec. Designation R3U/ Type Corrugations Test No. Spec. No. Gage Plain Bolted Thickness .304 Length Radius /470 Pictures TEST RESULTS Dia! Road Dia 1 Dial Scad # 6.995 25,000 5.993 40,000 5.919 12.3 .391 .378 .402 70.000 5.774 381 6.470 .519 6.471 .442 6.430 75.000 5.736 .419 1579 6-003 .992 147 6-293 78.300 .992 6.293 1.579 6.000 28.8 78.300 5.608 .547 . 714 5.485 1.507 1.458 1.511 66,600 5.469 3.3.0 30.2 60,400 5.339 .842 4.8991.956 4.970 1.961 .816 6.030 60,400 .981 5.869 1.003 4.506 2.449 4.485- 240 55,200 5.174 2.933 4.001 5.690 1.152 4.022

Form 579 (8-49)

	Date Jan. 17, 1950
	machine Makes so To
	Fing No.
,	Chservers Cid . Years
	Shoot No

RESEARCH DATA

Source of Material Achic Spec. Designation R 3 X 15

Type Corrugations Test No. 2 Spec. No. 4 Gage

Plain Bolted 5 Thickness .194 Length Radius 177"

	1	1		TEST REST	JLTS				
Dia 1	Load	Dial	1,	Dia/	12	Dial 3	13	Digl	14
0		6.803		7.014		6.687		6.998	
2.5		6.689	.114	6.034	. 050	6.943		6.993	
		6.640		6.907		6.901		6.895	
		6.585		6.873		6.846		6.830	
		6.542		6.844	1170	6.797		6.771	
	1	6.495	-	6.810		6.735	1202	6.716	.28
		6.456		6,774		6.668		6.645	35
17.3	35,000	6.389	1414	6.731	1283	6.579		6.557	
19.8	39,600	6.328	.475	6.684	.330	6.475		6.449	.54
	1 '	6.255		6.620	1	6.328	.659	6.296	170
24.8	49,800	6.158	. 645	6.531	.483	6.089	1898	6.070	, 92
24.8	49,800	6.158	.645	6,531	.483	5.992	. 898	5.998	.92
26.3	53,000	5.953	.850	6.350	1664	5.437	1.453	5.488	1.43
24.9	50,000	5.803	1.000	6.203	1811	2.022	1.868	5.085	1.84
24.9	50,000	5.813	1.000	6.203	.811	4.992	1.868	4.993	1.84
23.2	46,800.	5.606	1.197	6.009	1.005	4.486	2.374	4.491	2.34
21.7	41,400	5.415	1.388	5.121	1.193	4.007	2.980	4.022	2.81

Form 579 (8-49)

Dote 9 . 9 . 1950
Machine/hour Falon
Fing No. K-1
Observers Gill of Graha
Sheet No.

RESEARCH DATA

Source of Material Works Spec. Designation W 3 X / 2 P

Type Corrugations W Test No. Spec. No. K Gage / 2

Plain Bolted Thickness, 106 Length Radius 150"

		1	TEST RES					
load	Dial	Δ,	Dial	12	Dia 1	4 3	Dial	4
	6.881		6.330		6.99		6.992	
1 //		223	6.199	.221	6.999	007		_
/				. 252	6.999	- 007	6.992	.00
				.276	6482	010	6.967	-02
				.299	6.948	.044	6.931	.06
1 '				. 324	6.906	.086	6.892	.10
		.368	5.983	.347	6.802	.130	6.853	113
/				.376	6.809	.183	6.797	.19
						.259	6.724	.26
	1	.450	5.907	423	6.698	-294	6.690	
36,882	6.407	.474	5.886	.444	6.639	.353	6.630	.36
39,059	6.370	.511	5.850	.480	6.516			_
40,000	6.262	-619	5.748	. 582	6.064	.928	6.083	.90
		.619	5.748	.582	5.998	.928	5.992	,90
		.752	5.620	.710	5.470	1.456	5.478	
23,177	5.988	. 893	5.479	.851	5.000			
				1851	4.957	1.926	4.992	1.90
1 '/								
14,945	5.615	1.266	5.108	1.222	4.000	2.913	4.045	2.84
								_
							7	
	4,000 2,000 12,000 20,000 24,000 24,000 24,000 34,767 36,882 39,059 40,000 40,000 23,177 23,177 12,944	6.881 4,000 6.658 8,000 6.616 12,000 6.589 16,000 6.539 24,000 6.533 28,472 6.482 32,693 6.447 34,267 6.431 36,882 6.407 39,059 6.370 40,000 6.262 29,885 6.129 23,177 5.988 12,944 5.819 14,945 5.615	6.881 4,000 6.658223 8,000 6.616 .265 12,000 6.564 .317 20,000 6.539 .342 24,000 6.513 .368 28,472 6.482 .399 32,643 6.447 .434 34,767 6.431 .450 36,882 6.407 .474 39,059 6.370 .511 40,000 6.262 .619 29,885 6.129 .752 23,177 5.988 .893 17,944 5.819 1.062	6.881 4,000 6.658223 6.199 8,000 6.616 .265 6.078 12,000 6.589 .292 6.054 16,000 6.564 .317 6.031 20,000 6.539 .342 6.00 6 24,000 6.513 .368 5.983 18,472 6.482 .399 5.954 32,693 6.447 .434 5.923 34,767 6.431 .450 5.907 36,882 6.407 .474 5.886 39,059 6.370 .511 5.850 40,000 6.262 .619 5.748 29,885 6.129 .752 5.620 23,177 5.988 .893 5.479 12,944 5.819 1.062 5.310	6.881 4,000 6.658223 6.199221 2,000 6.616265 6.078252 12,000 6.589292 6.054276 16,000 6.564317 6.031299 20,000 6.539342 6.006324 24,000 6.513368 5.985347 28,472 6.482399 5.954376 32,693 6.447434 5.923407 34,767 6.431450 5.907423 36882 6.407474 5.886444 39,059 6.370511 5.850480 40,000 6.262619 5.748582 29,885 6.129752 5.620710 23,177 5.988893 5.479851 23,177 5.988893 5.479851	6.881 4,000 6.658 .223 6.199 .221 6.999 8,000 6.616 .265 6.078 .252 6.999 12,000 6.564 .317 6.031 .299 6.948 20,000 6.564 .317 6.031 .299 6.948 20,000 6.539 .342 6.006 .324 6.906 24,000 6.539 .342 6.006 .324 6.906 24,000 6.513 .368 5.98\$.347 6.802 18,472 6.482 .399 5.954 .376 6.809 32,693 6.447 .434 6.923 .407 6.733 34,767 6.431 .450 5.907 .423 6.698 36,882 6.407 .474 5.886 .444 6.639 36,859 6.370 .511 5.850 .480 6.516 40,000 6.262 .619 5.748 .582 6.064 40,000 6.262 .619 5.748 .582 5.998 23,177 5.988 .893 5.479 .851 5.000 23,177 5.988 .893 5.479 .851 5.000	6.88/ 4,000 6.658223 6.199221 6.999007 8,000 6.616265 6.078252 6.999007 12,000 6.616265 6.078276 6.68200 14,000 6.564317 6.031299 6.948044 20,000 6.539342 6.006324 6.906086 24,000 6.513368 5.98\$347 6.802130 28,472 6.482399 5.954376 6.809183 32,693 6.447434 6.923407 6.733259 34,767 6.431450 5.907423 6.698294 36,882 6.407474 5.886444 6.639253 39,059 6.370511 5.850480 6.516476 40,000 6.262619 5.748582 6.064928 29,985 6.129752 5.620710 5.470 1456 23,177 5.988993 5.479851 5.000 1926 23,177 5.988993 5.479851 5.000 1926	# 6.881 6.330 6.992 6.992 6.992 4,000 6.658 .223 6.199 .221 6.999007 6.992 8,000 6.616 .265 6.078 .252 6.999007 6.992 12,000 6.564 .317 6.031 .299 6.948 .044 6.931 20,000 6.539 .342 6.006 .324 6.906 .086 6.892 24,000 6.539 .342 6.006 .324 6.906 .086 6.892 24,000 6.513 .368 5.913 .347 6.802 .130 6.553 28,472 6.482 .399 5.954 .376 6.809 .183 6.797 12,693 6.447 .434 6.923 .407 6.733 .259 6.724 24,767 6.431 .450 5.907 .423 6.698 .294 6.690 36,882 6.407 .474 5.886 .444 6.639 .353 6.630 29,059 6.370 .511 5.850 .480 6.516 .476 6.329 40,000 6.262 .619 5.748 .582 6.064 .928 6.083 40,000 6.262 .619 5.748 .582 5.998 .928 5.992 29,885 6.129 .752 5.620 .710 5.470 1.456 5.478 23,177 5.988 .893 5.479 .851 5.000 1.926 5.006

Form 579 (8-49)

hachine 1950

Fing No. K
Observers Gill of Greek

Sheet No.

RESEARCH DATA

ial	1 . 1	1		TEST RESU					
Pead	load	Dial	Δ,	Dial	12	Dia 1	و ۵	Dial	4
0		6.881		6.330		6.992		6.992	
7.0	4,000	6.658	223	6.199		6.999		Can 992	.00
	2,000			6.078		6.999		6.992	عمد
	12,000			6.054		6482		6.967	Y
26.9	16,000			6.031		6.948		6.931	
	20,000			6.006	T	6.906		6.892	I
	24,000			5.989		6.802		6.4.53	
	28,472			1:954		6.809		6.797	I
53.4				5-923		6.733		6.724	
56.9	1 2	1 .	I	5.907	T	6.698	1		1
	36882			5.886		6.639		6.630	.3
	39,059			5.850		6.516		1.309	
65.5	40,000	6.262	.6/4	5.742	520	6.064	.937	6.083	.50
65.5	40,000	6.262	.619	5.748	.582	5.998		5.492	
48.8	, ,		.752	5.620	.710	5.470	1.456	5.428	1.4.
38.0	23,177	5.488	.193	5.479	P51	1.000	1.926	5.000	1.70
38.0	23.177	1.988	.243	5.479	1551	4.957	1.926	4.992	1.4
20.0	12,944		1.062	5.310	1.020	4.489	2.444	4.530	2.4
25.0	14,945		1.266	5.105	1.222	4.300	2.413	4.045	2.0
		 			 	 	 		-
									
									
		 	 		 	 		 	+
		 	ļ	 	 				
		-	 	 	 				
		<u> </u>	1			 	 	 	+

Form 579 (8-49)

Date	lan	- 10.	1960
Mach	ried	hasu	47 47
Ping	No.	KI	
Chae	rvera	Qil .	Chek
Sheet			7

RESEARCH DATA

Source of Material Spec. Pesignation Spec. Pesignation Spec. No. 125

Type Corrugations 7 Test No. 3 Spec. No. 4 Gage 12

Plain Bolted 5 Thickness 107 Length Radius 1 + 0 N

Pictures 7 1 1 1 2 5

•		<u> </u>	- Lpcs	TEST RESU	IT TTC				
Oia / Rad	hoad	Dia 1	4,		i	Dial	4,	Dig 1	14
.0		6.939		4.395		6.984			
3.6	2000	6.850	1	7.304		6.991			
7.0	4.000	6.749	.190	7.199	.196	6.992	001	7.100	-04
		6.697		7.126	.269	6.981	- 004	7.000	-04.
		6.679		7.107		6.954		6.999	
	19000			7.091		6. 968	1	6.980	
•	1 -	6.649		7.076	, ,	6.945	. /	6.949	
	14,000		1	7.064		6 925		1 /	
26.6	14,000	6.622		7.048		6.099		884	
	cs,ana	1		7-032	ı	6. £72	1	6.842	1
	24,000		- /	7.016		6.847		6,799	
		6.076	1	6.997	1	6.813		6.744	
	20,000			6.976	7.	6. 764		6 674	
	16364	1		1 449	1	6.691		6 579	•
	28.767	T		1 0/2		6.550		6.414	
47.9	10,367	6.404	1343	m 8/3	13/1	6.20%	• 73/	6.000	100
		6.404							
50.0	30,630	6.265	1674	6.667	325	5-421	1.274	5.419	1.449
14.6	27,000	6.147	1792	6.544	25/	5.03/	1.674	5.009	1.29
114.1	27000	6.147	,792	6.544	.851	4.971	1.674	4.962	1819
38.5	23472	9.983	.956	1.375	1.120	4.519	2.126	4.47	12.334
33.5	20,191	1-784	1.155	6.175	1.220	4.069	20576	4.101	2.820
27.5	20101	5.284	1.103	1.175	1.220	2.941	2.576	2.952	2.83
29.1	17312	5.562	1.377	5.95N	1.441	2.530	2.987	2.497	2.27.
24.1	14,378	5.289	1.650	5.682	1.713	2.074	3.439	3.012	3.760
		<u> </u>		· 	·			 	-
	 	-	 	 -	 	+	 	 	-

Form 579 (8-49)

DECEADON	-
RESEARCH	DATA

Source of Material Manifed	Spec. Degionati	on the symp
Type Corrugations Test No.	Spec. No. V	Gage 7
Plain Bolted Thickness ./ P.	Length	Radius 150

	1 4			TEST RES	ULTS				
Road	hoad	Dial	1,	Dial	12	Dia/	13	Oial	14
0		7.055		6.689		6.919		6.897	
2.5	5,000	6.896	.159	6.172		6.992	073	6.069	- 117
4.9	19000	6.862		6.465	,	6.981	-062	6.951	- 45
17.4	1-		,224	6.433		6.949	030	6.912	- 11
	20,000			6.409	.280	16.922		6.843	
	25,000			6.388		6.896		6.853	
	30,000			6.362		6.871		6.829	
	35,000			60 336	1.354	6.841		6.795	
19.8	39600	G. 709	.346	6.3/2	1377	6.816	1103	6. 767	13
	45,000	1		6.291	1 - 7 -	6.791		6. 739	115
	49.800			6. 261		6. 758	161	6.703	195
	55,000			6.241		6.723		6. 16/02	
	60,000			le 2/3		6.680	,239	6.612	.280
	65,000		. ,	6-187		6.634		560	
		6.539		6.132		6.495		6. 388	
12.8	66,200	6. 451	, 609	6.030	.659	6.079	.840.	1.000	.89
32.8	16,000	61451	604	4.030	1659	5-982	:840	5.981	.89
	03,600		17/3	5-909	.780	5-450	1.365	5.477	1.401
4.2	48,600	6.228	.827	5.788	.901	5.023	1.799	5.053	1.820
14.2	V8.600	6.228	.827	5:268	1901	4,979	1.799	4.984	1.621
22.2	14 800	6.078	,977	5.633	1.05%	4.475	2.303	4.499	2.200
	40,400		1.132	5.472	1.217	4.004	2.774	4.006	2.76
20.2	40,400	1-923	1./32	57470	1.2/7	2.675	2.774	2.958	2.76
8.6	38,200	1.750	1.305	5-281	1.400	3.413	3.246	3.491	3.230
2.0	34,400	5.549	1.506	5.078	1.611	3.127	3.727	3.031	3.690
		-						ri "	
	-							-	

Form 579 (8-49)

	Do te
•	Machine Walnu Stan
	Fing No.
	· Chservers Cill, Charles
	Sheet No.

RESEARCH DATA

Source of Material Spec. Designation // 3 U.7.5

Type Corrugations Test No. 3 Spec. No. // Gage / 7

Plain Bolted 5 Thickness // 3 Length Radius / 30"

		0		TEST RESU	LTS				
Dial Ruad	Sood	Dia!	Δ,	Dial 2	12	Dial	13	Dial	14
0		7.103		6.860		6.913		6.915	
7.0		6.033	171	6.233	.127	6.900	-013	6.930	015
128		6.893	.210	6654	. 206	6.911	.001	6.944	- 029
20.4	12,000			6.45	245	6.873	-030	6.919	- 04
	16,000			6.587		6.850	063	6.889	-026
_	29000	ı		6.564		6.817	1	6.854	
	4 / *	6.795		6.570		6.784		6.814	
	28,000	L.		6.514		6.732		6.765	
	32000			6.486		6.662		6.705	
	36,000	1 .		6.453		6558	1 '	4.606	_
	38,000			6.433		6.473		6.532	T
		6.672		6.400		6.331		la das	. – –
	42000		1	6.364		6.162		6.251	
71.0	43413	6.591	.512	6327	1333	6.016	.41.3	6.889	.826
71:0	43,43	6.591	1512	6.927			•	1-980	1 .
70.1	42 819	6.493	.610	6.238				5.592	
64.5-	19,4/1	6.345	· 75-P	6.100	.760	1.000	1.885	5-045-	1.761
14.5	19 4/3	6.345	.758	6.100	.760	4.948	1.885	4.977	1.761
•		6.188		1.952				4.462	
		6.054						4.05-8	
54.0	33054	6.05-4	1.049	5.819	1.041	3.93/	2.802	3.974	2.680
490	2000	1-550	1.219	1:653	1.207	3.492	3.241	3.175	1.119
44.5	27.315	1.672	1.431	1:447	1.413	3.006	3.727	3.049	3.605
							<u> </u>	 	
			ļ		<u> </u>		ļ	ļ	
								 	-
·							<u> </u>		
			1 -,	1	1	i	1	•	•

Form 579 (0-49)

RESEARCH DATA

Date John 1900
Machine What of 1900
Ring No. 1 M h
Observers Will Herense
Sheet No. 1

Source of Material thirted Spec. Designation & 3 X / P
Type Corrugations to Test No. 3 Spec. No. X Gage
Plain Bolted Thickness . 274 Length 52 Radius / 274
Pictures 11 3 X / P

TEST RESULTS											
Dia /	hoad	Dial	1,	Dià 1	12	Dial	1,	Diz	14		
0		6.908		6.266		6.912		6.913			
2.5	5,000	6.765	143	6.132	.134	6,970	058	6.982	069		
5.0	10,000	6.717	-191	6.081							
	15,000			6.057		6.958	- 046	6.969	-,006		
10.0	20,600	6.670	.238	6.034	.232	6.942	-030	6.956	-043		
12.5	25,500	6.646	. 262	6.009	1257	6.922	015	6.942	-029		
15.0	30,500	6.626	.282	5,990	.276.	6.815	003	6.931	-118		
12.5	35,500	6,602	. 306	5.966	.300	6.900	-012	6.915	-002		
200	40,500	6.578	.330	5.943	.323	6.883	1.029	6.900	-013		
22.5	45,500	6561	.347	5.936	1340	6.871	t.041	6.887	t.026		
25.0	17,500	6.541	1367	5.904	.362	6.855	1.007	6.869	±044		
27.5	55,000	6.523	1285	5.887	1379	6.841	+.071	6.854	1.059		
30.0	60,500	6.503	1405	5.862	.399	6.822	t.090	6.836	+1000		
32.5	65,500	6.481	.427	5.846	1420	6.802	t.110	6.816	+ 197		
35.0	20000	6.463	.445	5.827	.439	6.286	+426	6.298	+.115		
	75,500		1465	5.806	.460	6.267	+.145	6.211	+.13.5		
4	80,500			5.284		1	1	6.253			
4-	85.000		1	5.765				6.732			
	90.000			5.741				6.701			
	95.100		1	1.699				6.648			
	100.500			5.462				6.621			
	105.500			2-137				6.591			
	111,000		1	5.597	.669	6.512	tuno	6.550	1.35%		
	115500			0:1-62				6.524			
	120,500			5.535	.741	6.389	t. 523	6.454	1.454		
	122,600		-	5.431	.835	6.000	+ 912	6.100	t.913		
61.0	122/10	6.011	.897	5.431				5: 992			
49.7	100,100	5,932	.986	3.343	1923	15:48	1.432	55542	1.363		
42.8	8550	5.815	1.093	5,235	1.031	5.020	1.892	5.084	1.821		
						1					

Source Type Co Lain Picture	Reac	ARCH orial one Bolted	Date 2/2/ 1937 Nachine 1/2/ 1937 Ring No. 1-2/1 Observers 2:11 102222 Sheet No. 1 Spec. No. 1 Gage 225 Length 1-2* Radius 157						
Dial that Dial D, Dial D, Dial D, Dial A,									
Dial Hus d	The of	Digl	1,	0121	42	Dial	13	Dial	14
42.8	85,500	5.815	1.093	5-235	1.031	5.120	1.892	5.644	1.821
42.8	85.000	5-810-	1.193	1-2-75	1031	1/910	1.802	11.911	1821
38.3	78.800	5699	1.309	6-118	1.148	4,497	2,323	4.175	2200
34.1	68,600	256	1.463_	4.962	1.44	4.025	2.785	4.008	2.704
				-		· · ·			
				:					
									
		-							
	de la								
en) دارهام دست	· · ·					-:			
- 4									
									

Form 579 (0-49)

RESEARCH DATA

Source of Naterial // Spec. Designation // 9 / 5
Type Corrugations S. Test No. 3 Spec. No. 4 Gage
Plain Bolted S Thickness .278 Length Radius / 37
Pictures 7/ 9 / 5 2 pic.

Test results Load Rod # 6.941 066 2.905 145 .207 191 6.938 . 242 6.091 6.065 . 213/ 6.869 -301 6.037 -282 6.833 .330 5.981 .338 6 361 .362 . 238 .416 1-930 389 671 289 6.658 .445 1.899 420 1350 .461 468 55858 6.357 143 6.799 1520 6306 654 6.263 6/2 5-727 -592 6.026 34.0 682m 6.288 935 6.000 1612 5.727 ·572 55981 ·985 5.972 1718 1542 1.444 1:467 65.100 123 15-601 60.800 6.048 .62 1-477 · Sul 2 1:004 1.912 - 10 1.917 .8424.984 1.912 4.932 852 5477 60.800 6.048 .987 4.490 2.406 4.469 2 186 .996 1.332 17 500 5-GUH 1.113 4.000 2.896 4.000 1.104 3.943 0:160 24.0 17 300 4.984 1.335 3.490 3.349 3.483 CAX6 1.334 1.138 3,000 3,899 3,000

BIBLIOGRAPHY

- 1. "Handbook of Culvert and Drainage Practice" Armco Drainage and Metal Products, Inc.
- 2. Toncan Sectional Plate Republic Steel Company.
- 3. Folders from United Steel Fabricators Inc.
- 4. Interview with Mr. Jerry Evans "Armco representative for Michigan."
- 5. Interview with Mr. Shaffer, Research Engineer for Armco.

WOUND USE ONLY

Mey 21 '50

ı (. \ . . . 1 · ·

