THE DESIGN OF ARAILROAD TRESTLE BRIDGE

Thesis for the Degree of B. S. MHCHIGAN STATE COLLEGE Paul N. Gillett

1938

The Design of a Railroad Trestle Bridge

A Thesis Submitted to
 The Faculty of
 miChigin state college
 of
 AGRICULTURE AND APPLIED SCIENCE

by

Paul N. Gillett
Candidate for the Degree of
Bachelor of Science

June 1938

THESIS

$\therefore \quad 1$

As a thesis for the Degree of Bachelor of Science in civil engineering, the writer selected the design of a wooden trestle bridge with a steel floor system. ' The design was based upon two factors: first, location of site, materials used, and loading and erection requirements as determined by the mythical "A \& B Mining Co."; and second, design factors as determined from a survey of the location.

The writer is indebted to Mr. J. E. Meyer, sponsor of this thesis, and Professor C. L. Allen, of the Civil Engineering Department of Michigan
 of this design. He wishes also to acknowledge the assistance of Mr. Carl Haussman, of the H. G. Christman Co., Lansing, in making cost estimates, and of Messrs. W. M. Cade, K. W. Southwell, and F. M. Barron in the surveying work.

$11639{ }^{\circ}$

B

1. The alignment of the bridge shall be as shown by the two stakes "a" and "b" at the site. Stake "a" is at El. 276.83, which is the eleration of the top of rail at that point. The station no. of "a" is 51+05.00. Grade is -1.0% from " a " to " b ".
2. Previous explorations by borings show a mixture of sand and yellow clay for a depth of about 50 feet. Pile foundations are therefore feasible.
3. Materials: A large stock of steel beams (CB $242-24^{n} \times 12^{n} \times 18^{\prime}-0^{n}$) is available. The bridge is to be so designed as to utilize these beams. Seasoned and treated timber of sizes up to $12^{\prime \prime} x 12^{\prime \prime}$ and piles up to $14^{\prime \prime}$ dia. are locally available and cheap.
4. Loadings: The bridge shall be designed to safely carry two mining locomotives and their tenders followed by a train of ore cars. This condition approximates, on the safe side, a Cooper's E-40 loading.
5. Permanence: Due to the purpose of this railroad (feeder line for ore trains), permanence is a secondary consideration and low cost primary.
6. Construction: Will commence at " a " on south side of river and proceed towards " b^{n}. Equipment available will consist of one locomotive, one l0-ton crane with clam bucket and pile driver attachment, and such flat cars and other rolling stock as may be necessary. Materials will be brought in from the south on the completed portion of the track. Construction will be entirely by the forces of the A \& B Mining Co.

Briefely, the requirements of this design ares a bridge using steel I-beams of the size available, and structural timber, for materials; a bridge of low first cost; and a bridge where permanence is a secondary consideration.

Two or three types are available which would probably fill the requirements: A wooden truss bridge of two or three spans, a framed timber trestle with steel I-beams as stringers, or a pile trestle with steel stringers. The truss is out of the question from an economical standpoint, since there would be a large expense involved in framing the members. Therefore, the type to be used appears to be a trestle of either the framed- or pile-bent type, since both of these are comparatively cheap to erect.

The wooden bridge is not as might be supposed, an obsolete structure. In 1936 the Atchison, Topeka \& Santa Fe Railroad built some 110.5 miles of new track, of which 5905 feet of the total of 6671 feet of bridging was composed of treated timber trestles. All tracking and structures were designed for modern high-speed passenger traffic. The use of timber trestles for work of this type seems to indicate that there is still a very definite place for this kind of bridge. It has been repeatedly shown ${ }^{2}$ that a first class timber trestle can be erected, maintained, and replaced every 15 years -this being the estimated life of the structure- for less than the interest on the investment required to build a so-called permanent structure at the same location.

1. Engineering News-Record-April 22, 1937-P. 579
2. Holtman, D. "Wood Construction" McGraw-Hill Book Co., Inc.

$$
1
$$

The survey party consisted of Instrumentman, notekeeper, and rodman. First a point "a" was established and given a station no. of $51+05.00$ and an elevation of 276.83. These values were assumed to have been given by a previous locating party, as was the location of point "b" on the north side of the river. To determine the station no. of "b" (that is, the distance " $a b$ ",) an auxiliary point " c " was set up and a simple triangulation carried through. This consisted of measuring each angle twice and the distance "ac" and "cb" twice each. From this information, the distance "ab" was computed from two sides, and a mean value of 272.91 was obtained. .

Next, a topographic survey was made, locating the river banks and contours and the existing highway bridge. Sufficient levels were then taken to determine the profile of the center line of the proposed bridge. As a boat was not available, the following method was resorted to in obtaining the underwater contours: a weighted steel tape was lowered into the water at each panel point of the lo-panel highway bridge truss. The distance from bridge floor to water was established, and the distance from bridge floor to river bottom at each point recorded. The underwater contours were assumed to run parallel to the banks of the river for the 100 or so feet from the existing bridge to the proposed bridge site. This assumption may be considered as taking too much for granted, as temporary bars or depressions might be present at the point of soundings which would disappear entirely a few feet upstream. However, the riverbanks an both sides are fairly regular and there is no evidence to show that the river bottom is not a simple alluvial valley. Further, the
depth to which the piles are to be driven is uncertain within several feet, and the underwater profile as shown is probably accurate to at least one foot.

Six level shots were taken on the water surface, on both banks at distances of about 150 feet on either side of the center line. Elevations varied from an extreme upstream value of 265.05 to 265.53 on the downstream side. A mean of 265.2 was taken as the average water level. Investigations regarding high water were made, and muddy water lines were found on the piers of the existing bridge at about 266.5. These water lines were very likely made during the flood of February, 1938, which was probably a maximum 20-year flood. Another 1.5 feet were added to the 266.5 , and a maximum value of 268.0 feet for high water was obtained. This is 3 feet below the lowest longitudinal steel in the floor system.

DESIGN BASED ON SURVEY

The distance between points "a" and "b" was found to be 272.91. It was not deemed advisable to start the bridge from a, since an earth ${ }^{\circ}$ fill would be more economical for a short distance. Also a large content of the present highway fill consists of large boulders, which would make pile driving difficult. Accordingly, sta. $51+54.00$ was selected as the location of bent no. 1. Since the stringers are 18.0 ft . long, and allowing 0.10 ft . for expansion and clearance between stringers, bents will be located at intervals of 18.10 ft . There will be 12 spons, making the station no of bent no. $1353+70.20$.

It was previously stated that either the pile or framed bent would be used for this bridge. The two types of bent are shown in the accompanying sketch.

Good practicel in trestle work seems to indicate that pile bents are economical for heights up to about 15 feet, and framed bents for greate r heights. Since the cost of obtaining and handling long piles is quite high, and increases with the length of pile used, a point is reached at which the additional cost of buying and erecting framed bents on a pile foundation is more than offset by the saving effected in not using long piles. In a study of about twenty designs of timber trestles, 15 feet seemed to be the line of demarcation between pile and framed bents.

A study of the center line profile on the accompanying map shows that at the deepest point in the river, the bent must be about 7.5 feet above water and 2.5 feet from water surface to river bottom. Plainly, the trestle falls within the pile-bent olassification.

It was not deemed expedient to conduct explorations by borings or by driving test piles, both of which methods should probably be used in actual practice. Foundation conditions were assumed, however, to be "a mixture of sand and yellow clay" for a depth of 50 feet below the

1. Foster, W.C. "A Treatise n Wooden Trestle Bridges"-Chapters 1,2,4.
2. Foster, W.C. Op.Cit. -Part 2.

ground surface. A reasonable penetration of piles in this ground can be expected to be about 15 feet. Adding on 10 feet to the cap and 2 feet for safety, a length of pile of 27 feet is obtained. In looking up prices on piling, the writer found no listings for piles less than 30 feet long. This seems to prove the advisability of using the pile bent in preference to the framed bent.

Computations for Design

1. Floor Systern
a. Ties

Live Load: Assume max. wheel load
distributed over 3 ties : $\frac{25}{3}=$
Dead load: $\frac{450}{2}=$ wt. of rail per ft. $=$ Wt. of Tie (Assume 30*/)

Bending moment. $s=\frac{M c}{I}$ or $\frac{M}{S}=\frac{G}{5}=\frac{6 d^{2}}{6}$

$$
d=\sqrt{\frac{6 M}{56}}=\sqrt{\frac{8+32.5 \cdot 6 \cdot 12}{8 \cdot 2000}}=\frac{6.14}{\text { add onliopp }} \begin{aligned}
& \frac{1.00}{7.14}
\end{aligned}
$$

Use an si8xio'o" W. U. Tie

Bearing of Rail on Tie: Test for Tie Plate
Live load 4160^{*}
impact 4160
Rails 15
Total 3395*

No Tie Pl NAy ${ }^{\text {d }}$

Test for Shear Stress

$$
\begin{aligned}
& \text { Longitudinal shear: Live load t160" } \\
& \text { impact } 4160 \\
& \text { Ruins IS } \\
& \text { Tie } 54 \\
& \text { total } \quad 8449=V \\
& S_{s}=\frac{3}{2} \frac{\mathrm{~V}}{\mathrm{~A}}=\frac{3}{2} \cdot \frac{8449}{8 \cdot 8}=198 * 100^{\circ}
\end{aligned}
$$

Allowable $\rangle_{5}=125^{*} / \mathrm{N}^{\prime \prime}$. However, on account

of overlap between rail ara stringer flange, condition of sheurarri be considered satisfactory.

Guard Knit Nitwit's:

6"8" Guard Rail - bart every Ind tie, staggered. Use $1 \times 16^{"}$ sg. hd. bolt and cr. Washer. secure tie to stringer with /810 "Ell boot and washer. Bolt every second tie
b-design of stringers

Max live shicar at impact-at end

$$
\begin{aligned}
& \operatorname{Lood}(1) \text { ot } A=\frac{979}{B}=26.6 \\
& \text { Lood (1) at } A=\frac{828+3.90-2610}{18}=46.6-M 1 x \\
& \text { Load (3) at } A=\frac{833+8.90-(229+30.18)}{18}=23.3
\end{aligned}
$$

Alternute cood: $\frac{z 5 \text { sirrig }}{16}=40.3-$ Not indux.
impout: $\frac{\text { 76.6.300 }}{3004180}=76.1$

Dead Shear at end

$$
\text { Weight of Stringer: } \begin{aligned}
W=\frac{k}{2}(12.51+100) & =\frac{08}{2}(12518+100) \\
& =143
\end{aligned}
$$

Roils ot Fittings
$=75$
Tres: ($\frac{8.8}{12} \cdot 4 . S^{*} \cdot 5$
$=109.5$
Guard Rail (6.8 .4 .5)
13.5

Total Uniform dead load:
$3+1.0 \mathrm{~m} /$

Max Live moment \& Impact:
(I) Alternate Load.

$$
\frac{1 \frac{1}{4} f^{25} 71^{28} 37}{18} M=\frac{25(3.75+10.75) \cdot 7.25}{18}=146.0
$$

(z) E-40 Load:

Load (3) at A: $\frac{230+4 \cdot 50 \cdot 9-18}{18}=128$
Load (3) at A: $\frac{[980+(9.70)-220] .9-100}{18}=\frac{170-M a x}{}$ Load $\left(9\right.$ at $A \cdot \frac{\left(830+\frac{18}{4.90-[(120+(30.1) 1)] \cdot 9}-100\right.}{18}=150$
Impact: $\quad I=\frac{170 \cdot 300}{300+\frac{18^{2}}{100}}=168.3$

$$
\begin{aligned}
\text { Total Live moment } & =168.3+170 \\
& =338.3 \text { tip.tt. }
\end{aligned}
$$

Dead Moment:

$$
M=\frac{1}{8} w l^{2}=\frac{1}{8} \cdot 341 \cdot 18^{2} \quad=13.800 \text { tip tl. }
$$

Selection of Stringer:

$$
\begin{aligned}
& M=\frac{5 I}{c} ; \frac{M}{S}=\frac{I}{C}=\text { section Modulus }=S \\
& 338300 \\
& \frac{13800}{352100}=M
\end{aligned} \quad S=\frac{352100 \cdot 12}{16000}=264
$$

Properties of Beams on Hond.

Since the section modulus क्ष is greater tenon regained, the bean is satisfactory tron moment concidentions.

Investigation for shear:

$$
S_{r}=\frac{V}{A}=\frac{95700}{.536 \cdot 24.31}=7080 \# / \omega^{\prime \prime} \text { Allowable } 5_{r}=10000^{\# 10 "}
$$

Revisions of Weights.

Actual stringer wt.

Assumed wt: of thor system: 341.0
Less assumed stringerwt. 143.0
198.0

Actual stringer wt: 150.0
Revised Total : 348.0%

Provision for Lateral Loods:

$$
" A B " A^{\prime} B^{\prime} " \frac{1}{6} " \quad=1400^{\neq} e a
$$

Try a channel section. 6-12-40"1/
Compressive stress . $=15000-50 \frac{2}{\%}=15000-50\left(\frac{5.95}{.75}\right)=14604 \mathrm{HE} / \mathrm{D}^{*}$ Allowable Load in each member. $14604 \cdot 11.73=171000$ ok

Total Loot to be rested by armor outs: 8tout or 4200^{4} ateach end. Use \& lag screws $-3+10^{\prime \prime}$

2- Design of Bents

Max. Live shoer ε Impact on cup.

Land (4 at a: $20+\left(\frac{13+8+13}{18}\right) 20+\frac{4}{18} \cdot 13=60.8$
impact: $I=\frac{300 \cdot 60.8}{300+\frac{300}{20}}=58.3$
Total Live shear= 119.1 K

Dead shear: (Wt. of Floor system) $=398 \cdot 18=$
Total load coming on cap from each stringer 125.36 K .
Bearing Value, Crosswise to grain (wee. cap.) : $500 \% 10^{\text {". }}$
Width of bearing P\%. regal= $\frac{125360}{500.12}=20.9^{\prime \prime}$ say $21^{\prime \prime}$
Thickness of bearing $p \%$ reid:

$$
\text { Max. moment }=\frac{1}{2} \omega l^{2}=\frac{500}{2} \cdot\left(4 \frac{2}{2}\right)^{2}=5050^{n *}
$$

Resisting moment $=\frac{65}{c}=16000 \cdot \frac{1}{6} t^{2}$

$$
t=1.37 \text { soy } 1 \frac{1}{2} \text { " }
$$

The safe load a pile will support is dependent upon the method of driving. The are numerous formulas ${ }^{1}$ expressing the relation between safe load, weight of hammer, height of fall, etc. Probably the best known and most used is the Engineering News formula, usually written in the form

$$
L=\frac{2 W_{h}}{s+1}
$$

in which L is the safe load in pounds, W the weight of the hammer in pounds, h the fall of the hammer in feet, and s the distance in inches the pile moves under each of the last 5 blows of the hamer.

Assuming a 3000 lb . hammer with a fall of 15 feet and a set of $\frac{1}{2}$ in., we have

$$
L=\frac{2 \times 3000 \times 15}{1+\frac{1}{2}}=60,000 \mathrm{lbs} .
$$

The number of piles required under each cap will be 250,720 divided by 60,000 , which equals 4.2 . We therefore use 5 piles per bent.

Further investigation is necessary to determine if the individual piles are sufficiently strong acting as columns to bear their share of the load. The load on each pile is 250,720 divided by 5 , or 50,144 lbs. The following formula, given by Foster, is used for determining the allowable stress:

$$
Q=\frac{1000}{1+\frac{1}{550} \times \frac{L}{d}^{2}} 2 \times f
$$

In this formula, L is the unsupported length, d the least transverse

1. "Concrete Piles" booklet by the Portland Cement Assn. P. 18, 19, 22.
2. Foster, W.C. Op. Cit. P. 174, 175
dimension, and f is a factor depending upon the kind of wood. For short leaf yellow pine, $f=0.825$. Assuming a 12 in. dia. pile with an unsupported length of $10 \mathrm{ft} .$, the allowable stress Q is found to be 700 lbs. per sq. in. The total allowable load on each pile then equals the cross-sectional area $\times 700$, or 78,800 lbs., which is amply strong.

The Forest Products Laboratory ${ }^{1}$, which has done considerable research in timber structures, recomnends that "for short columns having an unsupported length (in inches) not greater than ten times the least transverse dimension (in inches), the working stress S_{s} equals the allowable compressive stress S. For short leaf yellow pine, $S=880 \mathrm{lbs}$. per sq. in, In the previous computation, a unit stress of 700 lbs. per sq. in. was used.

For both Foster's formula and the rule of the Forest Products Laboratary, the column is assumed to have hinged ends. In the pile under consideration, the lower end is fixed, and a degree of stability is furnished by the sway bracing. A column with one end fixed and one end hinged is at least twice as resistant as a column with both ends hinged. Therefore, it is considered that the piles as designed are amply safe.

1. Timoshenko \& Mac Cullough "Elements of Strength of Materials" P. 274 et seq.

Construction will start from the south side of the river and work north. Fill will be placed and track laid to the point a-a in the sketch. Work should be arranged so that a day's work will end at this point, thus clearing the tracks for the bridge equipment the following day. Sufficient fill material should be left at this time to complete the filling to $b-b$ after the first bent is driven.

The work train will be made up as shown in the sketch. Proceedure will be as follows: First, the engineer will give the location of bent no. 1. During this time the crane will unload stringers from first car and place them on the ground at "c". The crane will then take off the piles and other timbers from the second car and place conveniently in front of crane. At this time the pile leads and driver will be attached to the crane boom, and driving will begin, driving vertical piling first. While driving is in progress, a crew of 2 men will be fastening ties and guard rails to stringers at "c".

When piles have been driven to refusal, or until a pile sinks $\frac{1}{2}$ in. under each of 5 successive blows, the elevation of cutoff (see sheet no.2) will be given by the engineer, and the pile sawed at that elevation. The cap and sway bracing will then be fastened to the piles, and the $3^{\prime \prime}$ $x 12^{n}$ planks nailed on in back. The remainder of the fill to b-b will now be placed, and track built out to bent no. 1. Bent no, 2 will be constructed in the same fashion, except that there will be no planks on the back of the bent.

After bent no. 2 has been erected, the pile leads will be removed from the crane and the stringer lifted out over the bents and lowered into place. This done, and the stringers fastened down by lag screws, track will be laid out to bent no. 2.

The same proceedure will be followed in building the remaining bents. The locomotive will bring in new timber and steel as erection proceeds.
Preliminary engineering:
Engineer's salary - 78 hrs . at $\$ 2.00$ \$156.00
Assistants' wages - 12 hrs . at $\$ 0.50$ 6.00
Drafting equipment 50 $\$ 162.50$
Wood materials and labor:
Piling - 13 bents of 5 ea. - $12^{\prime \prime}$ dia. $x 7^{\prime}$ long-S.L.Y.P.
at $\$ 0.20$ per ft. 351.00
Labor at \$0.20 per f't. 260.00
Cap - 13 bents - each cap $12^{\prime \prime} x 12^{\prime \prime} x 13^{\prime}-0^{\prime \prime}$ - W.O. at $\$ 80$ BM 162.00
Sway bracing - $3^{n} x 10^{\prime \prime} x l 4^{\prime}-0^{\prime \prime}$-pine-2 ea. on 11 bents
at $\$ 38$ BM 29.00
Ties - 216 of $8^{\prime \prime} x 8^{\prime \prime} x 10^{\prime}-0^{\prime \prime}$ - W.O. at $\$ 47$ BM 55.50
Guard Rails - $6 " x 8 " x 216^{\prime \prime}$ - pine at $\$ 38$ BM 65.70
Bank bent - 6 of $3^{\prime \prime} x 12^{\prime \prime} x 18$ ' Old Timbers
Labor at $\$ 15$ per BM 90.50
Iron and Steel materials and labor:
Stringers - On hand
Cross channels 11,502 lbs.
Hitch angles 1,770
Drift bolts 215
Lag screws 75
Bolts and rivets 2,140
Bearing plates 2,780$18,500 \mathrm{lbs}$ at $\$ 8.00$ per $100 \mathrm{lb} .1,480: 00$
Labor at 5% of steel cost

Use zirivets NOTE
Use z^{\prime} rivets througthont.
Assemble stringer conpileve in shop. 12 strinerer Uaits rood.
$6^{\circ} 8^{\circ}$ Guard rall-bolt every and tie, stasgered. Use
14TG" sq. hal bolt \& c. 7 h'nsher

E.2 - nllulua ce	
-10.3x crav10 inl23	
34GOE crentur ostrames	
azstario al ios	
nsami er na.	Datre: creron
apscowso ar	L Chats moz

