ESTABLISHING AND MEASURING A BASE LINE

THMNE FOR MIR DEERIR OT B. S H. N. Girardin F. A. Wheeler
 L. T. Stache] 1934

THESIS
Surveying
cope
Jite: Base line

Establisining end ineasuring
 A Base Jine

A Thesis Submitted to
The Faculty of hiciagan itite coliege
of

I.T. Stachel

Candiaates for the Degree of

Bachelor of science

$$
\text { Jane } 19 \% 4
$$

THVAIS

Table of Contents
Foreword Page
Definition of Base Iine 1
Iocation of Base Line 1
Sketch of Base Iine 2
Description of Base Line Monuments 3
Description of Astronomical Monuments 4
Measuring the Base Iine 5
Determination of Latitude 6
Determination of Azimuth 7
Data and Results 10-20
Sample Computations for Base Line Measurement 21
Compatation for Iatitude 22
Computation for Azimuth 23

FOhinOR

We chose the sabject of "Establishing a Base Ine" for our thesis because we wished to learn more about United States Coast \& Geodetio Survey methods of obtuining their great accuracy in measuring distances. ie first met with this sabject in a Geodesy class at Michiean State College. ae believe that the practice cbtained in performing the work necessary for the completion of this thesis has given us experience that we otherwise would not have obtained. we wish to thank the Civil Eneineering Department for supplying the necessary equipment, to thank professor C.N. Cade for his aid, advice and criticism, and to thank ar. P.P. VanAtta and LIr. D.H. Barnes for the elevations with which they provided us. in connection with their thesis. we believe that the college will derive some benefit from this thesis because the base line is permanent and can be used in connection with courses given in Geodesy acd Astronomy.

Signed
Howard Girardin Fred wheeler Louls Stachel

Abstract

A base line is the preliminary step in trianguiation woris bin therefore is a very important part. The length of the base line must be deterained by at least two complete measurewents with etandardized tapes. with a resultant accuracy of a probable error of 1 part in 1 million. This moasurement is used in triangulation work to compute the sides of the original triangle by the method of "Least Squares". Then the computed gideg are usod to determine the sides of other triangles. This procedure continues ani it can bo seen that a elignt error in the mesaurement of the base line will accumalate as the work progresses. Tho base line is locsted on the north side of the road raning iuast and west from farm Lane, in frost of the Beef Cattle Barn, to South Harrison Loal in front of the Uichigan State Police Barracks. It begins about 200 ft . west of the spur track and extends westward for approxinately 1000 ft. A sketch showing the location of the base line in reference to the fence and road is on the followiag page.

In order to make the base line permanent the monuments were constructed of concrete. The monument at each end of the base is 16 in. square at the bottom and is placed about 12 in. ander the surface of the ground and projects about 8 in. above the surface. They are reinforced with an iron pipe the total length of the monument. securely

End Monument fastened in the top of the pipe is a 3 in. diameter, standard U.S.C.\& G.S. brass plate. Each end monument is also fitted with a brass plate providlag spaces for Jatitude. Iongitude and Elevation of the mark in the center of the 3 in. diameter brass plate. The monuments placed in between the two large monuments are the standard U.S.C. \& G.S. monuments, placed at intervals of approximately 100 ft. These monuments are 11 in. square at the botton and taper down to 7 in. square at the top. being 4 ft. 6 in. high. They are placed in the ground with from 8 to 18 in. of the monument protruding above the surface, depending upon the topography of the ground between stations. Each monument is reinforced with an iron
pipe in which a brass plate is secured, is in the end monuments.

At the east end of the base smaller monuments are placed at intervals of 10 ft.. to be used in confection With the field work of the estronomy clesses given by the Civil Engineering Department. These monumeats are 6 in. square and 3 it. long containing a brass plate adi reinforced in the exme mancer as the other monuments.

After the sites of the termingl stations were selected. the first atep was to place the trinsit on one end of the line and sight on a range pole of target accurately placed on the other end of the line. The stakes to mark the points to plsce the wonuments were sccurately set on ine at intervals of approximately 100 ft . The line was then cleared of brash so that the tape would hang free when under tension.

The intermediate ard astronomical monuments were made In the concrete laboratory, making use of the forma provided by the U.S.C. \& G.E. They were made cf concrete of a 1:4:2 mix and of a consistancy so that the mixture could be easily tamped. After setting for a week the moriuments were transported to the site of the base line. The end monuments were poured in the field, using a standard form provided by the ग.S.C. \& G.S. After secoudury stakes were set and strings atretched to mark the point already markod on the prelininary stakes, holes were 3 ag end the concrete mondinents placed direatly wader the intersection of
the strings. The monuments provided for the astronomy class were placed in the ground directly on line and approximately 10 ft . apart. A mark wes scratched on the brass plate directly on line to be of aid in lining the tape. Also a mart was scratched perpendicular to the first one as a reference when the distance was measured.

The measuring of the base was done with tapes which were standardized at the Bureau of standards at washington D.C. All measurements of the line were run once forward and once backward with each tape and under varying weather conditions. Tape-stretchers and a standardized scale were employed to get the required tension on each tape for every measurement. Dividers and a steel scale, divided into $1 / 100$ of an inch, were used to obtain the sigight variations over or under 100.000 ft . The rear tape-man stretched the tape with a tape-stretcher and accurately placed the zero of the tape on the mark on the center of the brass plate at the zero station. The front man stretched the tape to the required tension and kept it thas antil the

third man had measured the slight deviation from exactly 100.000 ft., by means of the dividers. when the third mian had measured it with the dividers, he then used the scale and found out how many $1 / 100$ of an inch

Front tape-man and third man it was over or uoder 100.000 ft. He recorded this as (+) when over and (-) when under and while he did this the front man read and recorded the temperatare on a standardized thermometer which was supported on the tape so that the exact temperature of the tape could be known. This procedure was repeated between each station until the end of the line was reached. Then the tape was turned around and another measurement was made in the saae manner going back to the zero station. The lengths of the tapes and the poands of tension to apply varied with each tape. This information along with the temperature at which the tape was standardized was sent from washington, D.C. When the tapes were retarned after they were standardized.

In finding the latitude of one end of the base line, and the axinuth of the line, observations on polaris were
taken. These observations were taken at night along with the astronomy elass. A theodolite, a chronometer end a stop watch wore used in taking the readings. The theodoLite was set over tre point on one end monument and the plates set on zero. Whe cross heirs were Bighted on the Capitol Yational Bank tower in Iansing and an angle of approximately 90 degrees turied off. The telescope was eleruted to an angle of aboat 42 degrees and winen this Was done, Polaris could be seen in the telescope lesis. The crosis halrs mere set horlzontaliy and vertically on Poluris tnd the stop watch syncronized with tie chronometer. when the inetrianont-men had the cross heirs exactly on the star he called "take" and the stop wetch was stopped. The time to a teriti of e gecond was noted and recorled. The horizontal end vertical angles were read and recorded. Three readings were taken in this maner and then the cross heirs were sighted eguin on the tower and the horizontel rafle retu to gerve es a check on the readngs. The telescope was invertod and the same procedure followed to trke three more readings with the telescope in this poaition to take care of any error in the inetrament. After these were tiken the cross hairs hairs aguln ceatered on the tower and the nisark checked. This coupleted the obeervations.
of the line as those to inind the iatitude of the point. The azinuth of the star wis computed and the horizontul angle that was read on the theodolite when each realing Wag made was added to the azinuth of the etar. This yielded the azinath of the inafinary line from the point to the tower. The angle from the tower to the base ine Was tiarned off and gaded to the azimuth of the lageinary linc frow the point to the tower. This addition yielded the requircl azinuth of the line proper.

In conclalloe tinis thesis we hope to tave conveyed to tire reader a definite adid clear luew of hou e base line, saltable por U.S.C. \& G.S. Work is measured and hoin the Latituie of a point ana tre azinith of a line may be conputod from a series of observations on a pole star. Tpon examining tine duta it is very piainiy seen trict the best results in weasurine were obtained aren the temperature renained weurly conetsint because the variaticn due to a fea degrees change in tre teaperature of the tape causes a consilerable error in tice wergurement of the ine. Tinerefore tine best tiwe for aetsurine a line is on a clouiy, misity day or eise at aight.

The following data was obtsinel in measuring the base line with tapa 70. B.3. 4413 on a cloudy day. Supported at $0 \& 100 \mathrm{ft}$ et $68^{\circ} \%, 10$ lbs. tension Length $=99.940 \mathrm{ft}$.

Sta. Teinperature Dist. (f)or(-) Diff. in Sta. Elev. No. Degrees F. ft. elev.ft. No.

$0-1$	70	+0.07917	0.040	0	849.1993
$1-2$	69	-0.03500	0.133	1	849.2398
$2-3$	69	+0.04250	1.535	2	849.3727
$3-4$	72	+0.00917	1.482	3	847.7877
$4-5$	72	-0.02917	0.089	4	840.3057
$5-0$	71	+0.01083	0.255	5	840.2163
$6-7$	70	+0.08250	0.585	6	846.4713
$7-8$	69	-0.04083	2.503	7	847.0563
$8-9$	70	-0.00583	0.753	8	849.6243
$9-10$	70	-0.01833	0.505	9	850.3323

$10-9$	70	-0.01833	0.505	9	849.8873
$9-8$	70	-0.00583	0.758	8	849.6243
$8-7$	70	-0.03917	2.568	7	847.0563
$7-6$	70	+0.08167	0.585	0	840.4713
$6-5$	70	+0.01167	0.255	5	846.2163
$5-4$	70	-0.03000	0.089	4	846.3057
$4-3$	69	+0.01167	1.482	3	847.7877
$3-2$	67	+0.04417	1.585	2	849.3727
$8-1$	60	$-0.038 \div 3$	0.133	1	849.2398
$1-0$	68	+0.08167	0.040	0	849.1998

By usine the datia on pare 16, the following results were obtalaed.

Sta. Heas. dist. Temp. Trie inc. Grido True hor. No. It. corr. length corr. length $0-1 \quad 100.01917+0.00129 \quad 100.02040 \quad 0.00000 \quad 100.02040$ $1-2 \quad 99.91500 \quad+0.00005 \quad 99.91565 \quad 0.00009 \quad 99.91556$
 3-4 99.94917 +0.00259 99.95175 0.01099 99.94076 4-5 $99.91082+0.00<58 \quad 99.91341 \quad 0.00000 \quad 99.91341$ $\begin{array}{llllll}5-6 & 92.95083 & +0.00194 & 99.95277 & 0.00033 & 99.95244\end{array}$ $6-7 \quad 100.02250 \quad+0.00129 \quad 100.02379 \quad 0.00172 \quad 100.02207$ $\begin{array}{llllll}7-8 & 99.39917 & +0.00065 \quad 99.39982 & 0.03: 02 & 99.86680\end{array}$ 8-9 99.93417 +0.00129 99.93546 0.00287 99.93259 $\begin{array}{llllll}9-10 \quad 99.92167 & +0.00129 \quad 89.92296 & 0.00127 & 99.92169\end{array}$

10-9 99.92167 +0.00129 $99.92296 \quad 0.00127 \quad 99.92169$
$9-8 \quad 99.93417+0.00129 \quad 99.93546 \quad 0.00287 \quad 99.92559$
8-7 99.90083 +0.00129 99.90212 0.03:301 99.86911
$\begin{array}{llllll}7-6 & 100.02167 & +0.00129 & 100.02296 & 0.00173 & 100.02123\end{array}$
$\begin{array}{llllll}6-5 & 99.95167 & +0.00129 & 99.95296 & 0.00033 & 99.95263\end{array}$
$5-4 \quad 99.91000+0.00129 \quad 99.91129 \quad 0.00000 \quad 99.91129$
$\begin{array}{llllll}4-3 & 99.95167 & +0.00065 & 99.95232 & 0.01098 & 99.94134\end{array}$
$\begin{array}{cccccc}\text { E-2 } & 99.93407 & -0.00055 \quad 99.98342 & 0.01257 & 99.97095\end{array}$
$\begin{array}{llllll}\text { z-1 } & 99.90167 & -0.00129 & 99.90058 & 0.00009 & 59.90029\end{array}$
$1-0 \quad 100.02167 \quad 0.00000 \quad 100.02107 \quad 0.00000 \quad 100.02167$

The following aata wes obtained in moasuring the base line with tape Fo. Gel55 on a cloudy, miaty duye Supported at 0 \& 100 ft at $68^{\circ} \mathrm{F} .22 \mathrm{lbs}$ tension Length $=99.998 \mathrm{ft}$.

Sta. Teinperature Dist. (+)or(-) Difi. in sta. Elev. No. Deerees F. ft. elev. ft. No.

$0-1$	52	+0.08249	0.040	0	849.1998
$1-2$	53	-0.03580	0.133	1	849.2398
$2-3$	54	+0.03540	1.585	2	849.2727
$3-4$	54	-0.00299	1.482	3	847.7877
$4-5$	54	-0.07083	0.089	4	846.3057
$5-6$	54	+0.00458	0.255	5	846.2163
$6-7$	54	+0.08291	0.585	6	846.4713
$7-8$	54	-0.08333	2.568	7	847.0563
$8-9$	56	-0.00166	0.758	8	849.6243
$9-10$	58	-0.02166	0.505	9	850.28823
					10

$10-9$	51	-0.02416	0.505	9	849.8873
$9-8$	51	-0.00166	0.758	8	849.6243
$8-7$	51	-0.03208	2.568	7	847.0563
$7-6$	52	+0.03541	0.585	6	846.4713
$6-5$	52	+0.00499	0.255	5	846.2163
$5-4$	52	-0.07374	0.089	4	846.3057
$4-3$	52	-0.00208	1.482	3	847.7877
$3-2$	52	+0.03024	1.585	2	849.3727
$2-1$	52	-0.03416	0.133	1	849.2398
$1-0$	52	+0.08533	0.040	0	849.1998

By using the data on pare 12, the following resalts vere obtained.

Sta. No.	Meas. dist. ft.	Temp. corr. (-)	True inc. leagth	Grade corr. (-)	True hor. length
0-1	100.08049	0.01032	100.07017	0.00000	100.07017
1-2	99.96220	0.00908	99.95253	0.00008	99.95244
2-3	100.03:40	0.00903	100.02437	0.01258	100.97499
3-4	99.99001	0.00903	99.98598	0.01099	99.97499
4-5	99.92217	0.00903	99.91314	0.00000	99.91314
5-6	100.00258	0.00903	99.99355	0.00032	99.99323
6-7	100.08091	0.00905	100.07188	0.00171	100.07017
7-8	99.91407	0.00903	99.90564	0.03303	99.87261
8-9	99.99634	0.00774	99.98860	0.00286	99.98574
9-10	99.97634	0.00645	99.96989	0.00128	99.96801

$10-9$	99.97334	0.01097	99.96287	0.00127	99.96100
$9-8$	99.39034	0.01097	99.98537	0.00285	99.98252
$8-7$	99.91592	0.01097	99.90495	0.03302	99.87193
$7-6$	100.08341	0.01032	100.07309	0.00173	100.07136
$6-5$	100.00299	0.01032	99.99267	$0.000 \Sigma 2$	99.95235
$5-4$	99.92426	0.01032	99.91394	0.00000	99.91394
$4-3$	99.99592	0.01032	99.98560	0.01094	99.97466
E-2	100.03424	0.01032	100.02592	0.01256	100.01136
2-1	99.96384	0.01032	99.95352	0.00009	59.95343
$1-0$	100.08183	0.01052	100.07101	0.00000	100.07101

The followlag datia was obtained in metsuring the base line with tupe NO. C2l55 at night.

Supported at $0 \& 100$ ft. at $68^{\circ} \mathrm{F}$, EE 2bs. tension Leagth $=99.998 \mathrm{ft}$.

Sta. Teinperature Dist. (f)or(-) Diff. in sta. :iev. No. 迆rees F. ft. elev. ft. No.

$0-1$	60	+0.08416	0.040	0	849.1998
$1-2$	60	-0.03583	0.133	1	849.2398
$2-3$	60	+0.03583	1.585	2	849.3727
$3-4$	60	-0.03363	1.482	3	847.7877
$4-5$	60	-0.07750	0.089	4	846.3057
$6-6$	60	+0.00416	0.255	5	846.2163
$6-7$	60	+0.09583	0.585	6	846.4713
$7-8$	59	-0.08416	2.568	7	847.0563
$8-9$	69	-0.00083	0.758	8	849.6243

9-10 5
-0.01166
0.505
$\begin{array}{ll}9 & 850.3823 \\ 10 & 849.8873\end{array}$
$10 \quad 849.8873$
9 850.38に2
10-9 58
-0.01450
0.505
-0.00166
0.758
$8 \quad 849.6243$
9-8
58
8-7
58
7-6
58
6-5
58
5-4
58
4-3
58
3-2
58
$+0.03416$
1.585
$2 \quad 849.3727$
2-1
53
-0.02500
0.133
1849.2398
$\begin{array}{llllll}1-0 & 58 & +0.03442 & 0.040 & 0 & 849.1998\end{array}$

By ueling the data ou pace 14，the following results were cotinined．

$\begin{aligned} & \text { sta. } \\ & \text { Ifc. } \end{aligned}$	Nも甘と．dist． It．	Tesp． corr． （－）	$\begin{aligned} & \text { irue iuc } \\ & \text { lenpth } \end{aligned}$	Grede corr． （－）	$\begin{aligned} & \text { True hor } \\ & \text { leneth } \end{aligned}$
0－1	100．08216	0.00010	100.07700	0.00000	100.07700
1－2	99．90217	0.00516	9¢．9¢701	0.00007	99．95054
2－3	100．0こ233	0.00516	100.02367	0.01257	100.01610
3－4	99.90406	0.00516	99.95950	0.01096	99.94354
4－5	99.92050	0.00516	99.91534	0.00000	99.91534
5－6	100．00216	0.00516	99.99700	0.00034	99.99066
6－7	100.09383	0.00516	100.08867	0.00173	100.08694
7－8	99．91已84	0.00531	99.90803	0．03202	99.87501
8－9	99.99717	0.00581	99．99126	0.00287	99．98889
c－10	99.9304	0.00031	99.98053	0.00127	99.97965
10－9	99.98550	0.00045	99．97705	0.00125	99.97280
9－8	99．99004	0.00645	99.98989	0.00286	99．98703
8－7	99.91817	0.00045	99.90572	0.03501	99.87271
7－6	100.09133	0.00645	100.08488	0.00172	100.08816
6－5	99.99906	0.00045	99.99821	0.00032	99．99289
5－4	99.92550	0.00645	99.91905	0.00000	99.91905
4－3	99.99550	0.00645	99.98905	0.01059	99.97800°
3－2	100．0こ217	0.00045	100．02572	0．0125E	100．01217
2－1	99.90300	0.00040	89．9505	0.00009	99．95046
1－0	100.03241	0.00045	100．07590	0.00000	100．07596

By using tine data on page 13，the following results weje ootained．

$\begin{aligned} & \text { Stia. } \\ & \text { No. } \end{aligned}$	Necis．dist． ft．	Terap corr.	$\begin{aligned} & \text { True inc. } \\ & \text { leneth } \end{aligned}$	$\begin{aligned} & \text { Grade } \\ & \text { corr. } \\ & \text { (-) } \end{aligned}$	$\begin{aligned} & \text { True hor. } \\ & \text { leneth } \end{aligned}$
0－1	100．02007	＋0．00238	100．02525	0.00000	100．02925
1－2	99.91107	＋0．00129	99．91896	0.00008	99．91288
$\varepsilon-3$	$9 y .98107$	$+0.00129$	99．98¢76	0.01256	99．97020
$5-4$	99．95ころこ	＋0．00129	99.95712	0.01098	99.94014
4－ 5	99．91250	＋0．001：9	99.91379	0.00000	99．91378
5－6	99.95667	＋0．000ن5	99．957を2	0.00033	99.95099
6－7	100．02607	＋0．00005	100．02752	0.00171	100．05561
7－8	99．90676	0.00000	99．90076	0.03302	95．87：65
8－9	99.94167	0.00000	99．84167	0.00286	99.93831
9－10	99.92833	0.00000	99．9283	0.00187	99．98706
10－9	99.92760	0.00000	99.92750	0.00130	99．52620
9－8	99.94333	0.00000	99.94333	0．0023\％	99.91050
8－7	99.90107	0.00000	99.90167	0.03301	99.86860
7－0́	100．08750	0.00000	100.02750	0.00171	100．0£579
6－5	99.95917	－0．00129	99．95783	0.00023	99．96755
b－4	97.91500	－0．00129	99.91371	0.00000	99.91371
4－3	99.95083	－0．00005	99.95518	0.01090	99.94422
2－2	99.93000	－0．00065	29．98455	C．01256	99.97179
2－1	99.91033	－0．00065	99．51018	0.00008	99.91010
1－0	100.02500	－0．000ن5	100．08435	0.00000	100.02485

Tho viuldes on pages lésid 25 mere gives a woight of
 of 1. Then the aithmetical wean wia taken and the followlng rebults cotanied.

Stid.
No.
0-1
1-2
2-3
3-4
4-5
5-6

- -7

7-8
8-9
9-10

$$
\begin{gathered}
\text { Bean hor. length } \\
\text { ft. } \\
100.05676 \\
99.9401 \% \\
100.00007 \\
99.96185 \\
99.911 \% 6 \\
95.98265 \\
100.06108 \\
99.87158 \\
99.97076 \\
99.955 \Sigma 6
\end{gathered}
$$

Sanole Calculations for Base Ine

Deitu tioken froan prece 10.
Tepe Gíl5j Iength $=9.9 .998$ ft. at $68^{\circ} \mathfrak{F}$ and 22 lbs tension weasurement made from sta. 1 to Rti. 2.

Teinnereture $=24^{\circ} \mathrm{P}$.
Increwent under $100.00^{\prime}=0.04085^{\prime}$
之eas. Length = 99.998-0.04583 = 99.9E\&17
remp. corr. $=0.00000645$ i $100 \mathrm{X} 14=-0.00903^{\prime}$
firde inclisei length $=99.95217-0.00903=99.94214^{\prime}$
Craie corrcction $=-\left(\frac{1}{I^{2}-E^{2}}\right)$
where $L=$ length and $H=$ diff. in elev.
Grade correction $\left.=-69.94514-\sqrt{99.94314^{2}-0.133^{2}}\right)$
$=-0.00009^{\circ}$
Prixe hor. lengtil $=99.94514-0.00009=99.940^{\prime} 05^{\prime}$

Dat: and Culculations for Obtaining
 Latitude and Azimath of Iine

Leduction
$\theta=11 \mathrm{~h} 01 \mathrm{~m}$ 6. E 7 s

$$
\begin{aligned}
& \alpha=9 \mathrm{~h} \text { 52m 52. } 24 \mathrm{~B} \\
& t=15 \mathrm{~h} 4 \mathrm{~m} 3.68 \\
& h^{\prime}=41^{\circ} 55^{\prime} 61.67^{\prime \prime} \\
& \text { 2'=48•718.E®" } \\
& r=0^{\circ} \text { 2'8.0." } \\
& z=48^{\circ} 8^{\prime} 16.57^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { reduction contd } \\
& \tan F=\cot \delta \cos t \\
& \cot \delta=0.01824 \\
& \cos t=-0.85248 \\
& t_{\text {Lin }} F=-0.01 \text { Er: } \\
& P=-0^{\circ} 52^{\prime} 43.44^{\prime \prime} \\
& \sin (\phi+F)=\cos F \cos z \csc \\
& \text { cos }=0.000883 \\
& \cos \approx=0.6072 \pi 3 \\
& 08 \mathrm{c} \delta=1.000170 \\
& \sin (\phi+F)=0.0673734 \\
& (\phi+F)=41^{\circ} 51^{\prime} 51.82^{n} \\
& \phi=45^{\circ} 44^{\prime} 35.26^{\prime \prime} \\
& \sin A=\frac{\sin t \cos \delta}{8 \ln 2}=\frac{0.52297 \times 0.01833}{0.74475}=0.0128714 \\
& \text { Azimuth of star }(A)=0^{\circ} 44^{\prime} 20.00^{\prime \prime} \\
& \text { Azimuth to tower }=97^{\circ} 51^{\prime} 40.00^{\prime \prime} \\
& \text { Angle from tower to line }=7^{\circ} 55^{\prime} 77^{\prime \prime} \\
& \text { Azimuth of 11ne }=97^{\circ} 51^{\prime} 40.00^{\prime \prime}-75^{\circ} 55^{\prime \prime} \\
& \text { " } \quad \text { " } \quad=89^{\circ} 56^{\prime 23.00 " ~}
\end{aligned}
$$

ROOM USE GNLI

ROOM USE DNLI

