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ABSTRACT 

 

EVALUATING EQUATING RESULTS IN THE NON-EQUIVALENT GROUPS WITH 

ANCHOR TEST DESIGN USING EQUIPERCENTILE AND EQUITY CRITERIA 

 

By 

 

Minh Quang Duong 

 

 

Testing programs often use multiple test forms of the same test to control item exposure 

and to ensure test security. Although test forms are constructed to be as similar as possible, they 

often differ. Test equating techniques are those statistical methods used to adjust scores obtained 

on different test forms of the same test so that they are comparable and can be used 

interchangeably. 

In this study, the performance of four commonly used equating methods under the non-

equivalent group with anchor test (NEAT) design - the frequency estimation equipercentile 

method (FE), the chain equipercentile method (CE), the item response theory (IRT) true score 

method (TS), and the IRT observed score method (OS) – were examined. In order to evaluate 

equating results, four evaluation criteria - the equipercentile criterion (EP), the full equity 

criterion (E), the first-order equity criterion (E1), and the second-order equity criterion (E2) – 

were used. Simulated data were used in various conditions of form and group differences. 

Several major findings were obtained in this study. When the distributions used to 

simulate ability for the groups were equal, the four methods produced similar results, regardless 

of the criterion used.  

When group difference existed in the distributions used to simulate the data, the results 

produced by different methods diverged significantly when the EP, E, and E1 criteria were used. 

The difference was small when the E2 criterion was used. In general, the OS method 



outperformed the others in regarding to the EP and E criteria. The TS method performed the best 

in regarding to the E1 criterion followed by the OS, CE, and FE methods. Between the two 

observed score methods (i.e., FE and CE), which were outperformed by the two IRT methods, 

the CE method produced much better results and they were close to those produced by the two 

IRT methods. The FE method produced the worst results, regardless of the criterion used. 

It was also found that test form difference had clear effects on all methods, regardless of 

the criterion used. Larger difference between test forms led to worst equating results. 

While the two IRT methods were not clearly affected by group differences in the 

generating distributions, the two observed score equating methods were. Larger group 

differences produced worse equating results obtained from the CE and the FE methods. In 

addition, the impacts of group differences were much stronger for the FE method than for the CE 

method. 

 Group and form interaction effects were not found for the IRT methods. They were, 

however, present for the FE and CE methods although those effects were small. 

 When evaluated with the E2 criterion, the four equating methods produced results that 

were not better than those obtained from using directly raw scores from test forms without 

equating. 

 These results are discussed in more details and some recommendations are made for 

equating practice. Limitations of the study and suggestions for further research are also 

presented. 
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CHAPTER 1 

INTRODUCTION 

 

This introductory chapter presents the foundations of this study. Major points include 

context and nature of the problem, the approach used to address the problem, purpose of the 

study, specific research questions to be answered, research expectations, and the significance of 

this study to test equating research and practice. 

 

1.1. Test equating 

 In many testing programs, alternative forms of the same test are used in different 

administrations to maintain test security. For example, the SAT exam is given at several 

administrations each year with different forms. In developing various forms of the same test, test 

developers use test specifications to ensure that alternative forms are similar in contents and 

statistical characteristics. Despite test developers‟ efforts, it is almost inevitable that differences 

among test forms exist to some degree unless they are identical. As a result, one test form may be 

easier or more difficult than others. Therefore, some test takers might have advantages or 

disadvantages simply because they are administered a relative easy or difficult test form. In order 

to maintain test fairness, scores obtained from different test forms should not be used before 

some adjustment is made to ensure score comparability (i.e., being on the same scale). The 

adjustment process is called test equating or equating. Equating is often defined as a statistical 

process used to adjust scores on alternative test forms so that their scores can be used 

interchangeably (Kolen & Brennan, 2004).  If equating is successfully performed, test fairness is 

maintained and it becomes possible to compare examinees or to measure their growth (Angoff, 

1971; Petersen, Kolen, & Hoover, 1989). 
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 In general, a test equating process consists of two important components: an equating 

design, and one or more equating methods. Equating design refers to a plan to collect equating 

data.  For that reason, it is sometimes called data collection design. The most commonly used 

design is the non-equivalent groups with anchor test (NEAT) design. In this design two test 

forms, which share some common items, called anchor items, are administered to two samples 

from two, usually distinct, populations of test takers (von Davier, Holland, & Thayer, 2004a). If 

the total score includes the score on the anchor items, the anchor is called internal. If the score 

from the anchor items is not included in the total score, it is called an external anchor. This 

design is also called the common-item nonequivalent groups design (Kolen & Brennan, 2004). 

Other common designs are single group design and random groups design. In each equating 

design, different equating methods can be used. An equating method is a framework to derive the 

equating function which places scores of one test form on the scale of another test form. 

Equating methods can be generally classified into two different groups: the observed score 

equating (OSE) methods, and the item response theory (IRT) methods. The OSE methods are 

usually referred to as traditional methods. Another way to classify equating methods is based on 

the assumed relationship between scores on the two test forms being equated. Within this 

framework, an equating method can be classified as either linear or equipercentile depending on 

whether the relationship between scores on the two test forms is assumed linear or non-linear. 

 

1.2. Evaluating equating results  

Given the importance of equating in making scores comparable, which in turn has crucial 

impacts on decision making, it is critical that equating results be evaluated for accuracy. 

Evaluation results are also useful in helping psychometricians compare and select appropriate 

equating procedures in a specific situation.  
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Evaluating equating requires a criterion or criteria to which equating accuracy can be 

judged. A variety of criteria have been proposed and used in research and practice (for a detailed 

review, see Harris & Crouse, 1993). 

Traditionally, equating results from a very large sample are often used as benchmarks to 

evaluate other equating procedures (e.g., see Holland, Sinharay, von Davier, & Han, 2008; 

Livingston & Kim, 2010; Puhan, Moses, Grant, & McHale, 2009; Sinharay & Holland, 2007). 

However, comparing a method to another assesses the similarity between them, but not 

necessarily the accuracy of the former. In addition, the selection of what method to use on a large 

sample to obtain the criterion is arbitrary. Any equating method can be used to produce the 

criterion. Because different methods likely yield different results, this approach does not seem 

reasonable. According to Harris and Crouse (1993), large sample equating procedures do not 

necessarily provide the true equating results to which other methods should be compared. 

Another popular equating criterion is the standard error of equating (SEE) which is 

defined as the standard deviation of equated scores over many hypothetical replications of an 

equating process on samples from a target population of test takers (Kolen & Brennan, 2004). 

Assessing SEE often involves drawing random samples from the same population under the 

same set of conditions. Other statistical techniques, such as bootstrap methods, can be used to 

assess SEE for a single equating. Equating processes with smaller SEE are preferred. Several 

studies used SEE to evaluate equating results (e.g., see Cui & Kolen, 2008; Hanson, Zeng, & 

Kolen, 1993; Liu, Schulz, & Yu, 2008; Lord, 1982a, 1982b; Wang, Hanson, & Harris, 2000; 

Zeng, Hanson, & Kolen, 1994). However, the use of SEE as means of comparing different 

equating methods has been criticized because it only accounts for random errors due to sampling 

examinees from the population and ignores other sources of errors (Harris & Crouse, 1993).  
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 Cross-validation and replication are also frequently used to evaluate equating results. 

Cross-validation applies equating transformation obtained on one sample to another independent 

sample. Replication requires recalculation of the equating transformation on another sample. 

Both methods use results from two different applications to check the stability of equating 

results. Examples of research of this kind are those conducted by Holmes (1982), and Kolen 

(1981). Circular equating, which equates a test form to itself through a chain of equatings, is 

another commonly used equating criterion. Traditionally, the circular equating criterion is 

intended to assess systematic error. Ideally, the final result must be an identity (i.e., a score is 

transformed to an identical score). Many studies used this criterion to evaluate equating results 

(e.g., see Gafni & Melamed, 1990; Han, Kolen, & Pohlmann, 1997; Klein & Jarjoura, 1985; 

Lord & Wingersky, 1984; Philips, 1985; Puhan, 2010; Skaggs, 2005; Wang, Hanson, & Harris, 

2000). Cross-validation, replication, and circular equating have the same setback as SEE. 

Stability obtained in those methods may not be an appropriate criterion for choosing an equating 

method because an incorrect equating procedure may produce more stable equating relationships 

than correct procedures (Lord & Wingersky, 1984). Kolen and Brennan (1987) recommended 

that circular equating should be used with considerable caution. Wang, Hanson, and Harris 

(2000) showed in their simulation study that the accuracy of equating methods cannot be 

determined by circular equating because this equating criterion does not take into account 

systematic error (bias) embedded in the equating. 

 

1.3. Concerns regarding equating criteria 

As presented previously, most widely used equating criteria have shortcomings.  

Although many equating criteria have been proposed and used, no one criterion is 

unambiguously preferable to others. For many years, researchers have recognized that there is a 
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problem in evaluating equating because no definitive criterion exists (Harris & Crouse, 1993). 

Using different criteria may lead to different conclusions about equating adequacy in a given 

context (Skaggs, 1990). Kolen (1990) indicated that there is no universally agreed upon equating 

criterion. This does not mean that all criteria are equally problematic. Some criteria can be better 

than others in a specific situation. However, the lack of a common equating criterion makes it 

difficult to compare results across equating studies. Even the Standards for Educational and 

Psychological Testing (AERA, APA, & NCME, 1999), which states that technical information 

should be provided on the accuracy of the equating, provides no guideline on how the adequacy 

of equating should be assessed. 

 

1.4. The approach taken: equating definition and equating criterion 

 When implementing an equating evaluation process, it is crucial to consider the adopted 

definition of equating. The goal of equating evaluation must be to assess the extent to which the 

definition of equating holds. In other words, equating criteria should be closely linked to what it 

means for the two test forms to be equated. 

 Theoretically, equating is often defined as a statistical process to adjust scores of multiple 

test forms so that their scores are comparable and interchangeable (Kolen & Brennan, 2004; 

Petersen, Kolen, & Hooever, 1989). Definition of equating presented this way does not carry 

much usefulness to the process of selecting an appropriate criterion. What does it mean to say 

scores are comparable and interchangeable? How does one determine if scores are actually 

comparable after being equated? In order to be able to select a correct and fair criterion, one 

needs a definition that can be operationally applied. In other words, an operational definition of 

equating is necessary for criterion selection. In order to be useful, any operational definition must 

be able to specify what comparability and interchangeability mean. 
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This study focused on two operational definitions of equating that have been proposed in 

the literature: the equipercentile definition proposed by Angoff (1971), and equity definition 

proposed by Lord (1980). 

 

1.4.1. Equipercentile definition 

According to Angoff (1971), “two scores, one on form X and the other on form Y (where 

X and Y measure the same function with the same degree of reliability), may be considered 

equivalent if their corresponding percentile ranks in any given group are equal” (p. 563). This 

statement is commonly regarded as Angoff‟s equipercentile definition of equating (Harris & 

Crouse, 1993). The equipercentile definition implies that the distributions of scores on two test 

forms in a population should be identical after equating (Kolen & Brennan, 2004, p.12). The 

equipercentile definition is also labeled the definition of observed-score equating. 

 

1.4.2. Equity definition 

The equity definition of equating, also called the definition of true-score equating, was 

proposed by Lord (1980) as “if an equating of test X and Y is to be equitable to each applicant, it 

must be a matter of indifference to applicants at every given ability level  whether they are to 

take test X or test Y” (p.195). Equity requires that for every , the conditional distributions of 

scores on the two test forms to be equated must be identical after equating. 

The two definitions are not unrelated. If one applies the equipercentile definition to a 

group of examinees with the same ability  level, it is equivalent to the equity definition (Divgi, 

1981). In addition, both definitions are based on score distributions. The difference is that the 

equipercentile definition is focused on marginal score distributions while the equity definition is 

defined on conditional score distributions. 
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Lord (1980) proved that equity is never satisfied unless the test forms being equated are 

perfectly reliable or strictly parallel, in which case equating is unnecessary. In practice test forms 

are never perfectly reliable nor strictly parallel. In other words, equity is unlikely to be fully 

satisfied in practice. Nevertheless, equity can be considered as a gold standard for evaluating 

equating in the sense that it represents an ideal equating. 

Since full equity is unlikely to be satisfied in practice, some weaker versions of equity 

have been proposed. Two popular weakened versions are the first-order equity (Divgi, 1981) and 

the second-order equity (Morris, 1982). Those equity definitions require only the first-order 

moment (i.e., expected value) or the second-order moment (i.e., variance or standard deviation) 

of the two conditional score distributions be the same, respectively. Kolen, Hanson, and Brennan 

(1992) argued that the second-order equity should be nearly satisfied in order for the two test 

forms being equated to be used interchangeably. 

 

1.4.3. Equipercentile criterion and equity criteria 

Four equating criteria can be formulated from the two basic operational definitions of 

equating. Let X, Y, and Ye represent score on Form X (old form), score on Form Y (new form), 

and equated Form Y score, respectively. Also, let x, y, and ye represent particular values of X, Y, 

and Ye, respectively. The equipercentile criterion compares two marginal score distributions: one 

for Ye, and one for X. The full equity criterion compare two conditional score distributions for Ye 

and X at a specific value of latent ability . The first-order and second-order equity criteria 

compare the means and the variances (or standard deviations) of those two conditional 

distributions. 

Note that equity-based criteria must be evaluated at all levels of   in the range of 
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interest. Different criteria are appropriate for different equating definitions (or purposes). For 

example, if the equating purpose is to obtain the same marginal distributions of scores on two 

test forms after equating, the equipercentile criterion would be appropriate. If getting the same 

conditional distributions on two test forms after equating is the goal, the full equity criterion 

would be more suitable. 

 

1.5. Motivation 

Test equating is an important task in many testing programs to make scores from 

alternative test forms comparable. It is very crucial that equating results be evaluated based on 

appropriate criteria in accordance with predetermined equating purposes. There are several 

factors that motivated this study as follow: 

 There are urgent needs for evaluating equating results properly using appropriate and fair 

criteria which are directly linked to the adopted definition of equating. In order to ensure 

test fairness, the evaluation process for equating must be correct and fair. 

 Although equity is the most important aspect of equating (Lord, 1980), equity-based 

criteria have rarely been used in equating research and practice. In fact, no research using 

full equity criterion to evaluate equating results has been reported, at least up to the time 

this dissertation was written. 

 Many testing program currently use equipercentile OSE methods and IRT equating 

methods. Therefore, it is necessary to compare their performances. Although many 

research studies comparing them have been conducted, most focused only between two 

methods of the same kind (i.e., either OSE or IRT equating), and they led to different 

conclusions. In addition, research comparing equipercentile OSE and IRT equating 

methods is sparse. 
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 The NEAT design is the most popular equating design used in practice. However, not 

much research has been conducted to compare equipercentile OSE and IRT equating 

methods in this design, especially using equity criteria. 

 

1.6. Purpose of the study and research questions 

1.6.1. Purpose 

 The primary purpose of this study was to use equipercentile and equity-based criteria to 

evaluate performance of four commonly used equating methods under the NEAT design. 

Specifically, those equating methods are (see Chapter 2 for more details): 

 Presmoothed frequency estimation equipercentile method (FE) 

 Presmoothed chain equipercentile method (CE) 

 IRT true score equating method (TS) 

 IRT observed score equating method (OS) 

In addition, the identity equating (i.e., no equating) method was also used to examine 

possible conditions when no equating is preferred. The performance of those equating methods 

was investigated in various conditions of differences between test forms and differences between 

groups of test takers. 

 

1.6.2. Research questions 

Particularly, this study aimed to address the following research questions: 

Question 1: Overall, how do those equating methods compare to one another in terms of 

equipercentile and equity criteria? 

Question 2: How do test form differences affect equating results for each method? 

Question 3: How do group differences affect equating results for each method? 
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Question 4: Are there interaction effects between test form differences and group 

differences for each method? 

Question 5: In what conditions is the identity equating preferred to the others? 

 

1.7. Research expectations 

 Kolen and Brennan (2004) stated that each equating method tends to function optimally 

under certain situations. Therefore, it was expected that the investigated methods would perform 

differently relative to different criteria. Specifically, it was expected that 

 FE, CE, and OS perform relatively well under the equipercentile criterion. 

 TS produces the most accurate results under the first-order equity criterion. 

 OS performs better than TS when the equipercentile criterion was used. 

 All equating methods perform similarly when test form differences and group 

differences are small.  

 When form differences and group differences are large, equating results, regardless of 

methods used, would be worse than when these differences are negligible. 

 Identity equating is preferred when form differences and/or group differences are very 

large. 

 

1.8. Significance of the study  

 Given the lack of research on using equipercentile and equity criteria to evaluate equating 

results, and the scarcity of studies comparing equipercentile OSE and IRT equating methods in 

the NEAT design, this study was initiated to fill the gap. It was hoped that this study would make 

significant contributions to the research literature by providing an alternative perspective on how 

to evaluate equating results in such a way that is well aligned with equating purposes in specific 
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contexts. In addition, results from this study would provide more comprehensive guidance for 

practitioners to select appropriate methods based on their adopted purposes. It was also expected 

that this study will inform equating practice by suggesting the size of form difference and group 

difference that can cause a specific equating method to perform well or poorly relative to various 

criteria. 

 

1.9. Additional notes 

 In this study, the equating direction was from Form Y to Form X. In other words, Form Y 

was the new form and Form X was the base (old) form. 

 The anchor used in this study was internal which means the anchor score was included in 

the total score. 

 Although the words „definition‟, „purpose‟, and „property‟ have different meanings in the 

regular context, they are used interchangeably in this dissertation in the phrases such as 

„equating definition‟, „equating purpose‟, and „equating property‟ to mean the same 

things. All of them mean what is supposed to be accomplished from equating. 

 The term „equating criterion‟ is frequently used in this dissertation. In general, it means a 

certain property of equating that should hold for the equating results to be considered 

accurate. For example, equity criterion means equity property proposed by Lord (1980). 

Note that the equating criterion used in this study is a different concept than the 

commonly used statistical criterion. 

 

1.10. Overview of the dissertation 

 The rest of this dissertation is organized as follows. 

 Chapter 2 presents theoretical background relevant to the study. Major topics that are 
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addressed include the NEAT design, equipercentile OSE and IRT equating methods used 

in the study, equating criteria, and a review of relevant research. 

 Chapter 3 is reserved for presenting research design and methodology. Detailed steps are 

laid out including overall framework, research factors, procedures, and evaluation 

criteria. 

 Results of the study are presented in Chapter 4 for all research conditions, focusing on 

addressing proposed research questions.  

 The last chapter, Chapter 5, summarizes main findings and discusses their practical 

implications. Limitations of the study, current issues and future steps are also discussed 

in this closing chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, theoretical issues relevant to this study are discussed. The chapter begins 

with the issue of test equating including its two main components: equating design and equating 

methods. Details about a specific design, the NEAT design which was used in this study, are 

discussed next. After that, four equating methods used in this study, frequency estimation 

equipercentile equating, chain equipercentile equating, IRT true score equating, and IRT 

observed score equating, are examined. The equipercentile definition and the equity definition 

along with their corresponding criteria are the next topics. The chapter concludes with a 

summary of prior research relevant to this study. 

 

2.1. Test equating 

Testing programs often use multiple forms of the same test for a variety of reasons. For 

example, in situations such as college admission, people can take the test at different times. If the 

same questions were used at each administration, they would become known and people taking 

the test at a later administration would have advantages. Thus, using multiple forms of a test 

maintains test fairness and security. Another example is a situation where it is necessary to use 

pretest and posttest (e.g., measuring growth). The main reason for using different forms of a test 

is to ensure that a test taker‟s score is a current measure of his or her competence and not a 

measure of ability to recall questions on the form previously administered. Furthermore, using 

multiple alternative forms of the same test also serves to satisfy broad content coverage. 

Although multiple forms are created to have similar characteristics, it is unlikely that test 

forms are exactly equivalent. For this reason, some examinees may have advantages or 
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disadvantages by taking an easy or difficult form. To ensure test fairness, scores for different test 

forms must be adjusted by a process commonly referred to as equating. Whenever alternative 

forms are used, equating is performed to place scores from different test forms on the same scale. 

Equating is commonly defined as a statistical process for adjusting scores of different test forms 

to account for unintended form-to-form differences such that scores can be considered 

comparable (Kolen & Brennan, 2004). 

When test forms are equated, a group (or population) of test takers to whom the equating 

relationship is supposed to be applied must be identified (Braun & Holland, 1982). This group is 

usually called the target population in the equating literature.  

An equating process consists of two major components: equating design and equating 

method. The equating design is a framework for collecting equating data. Common equating 

designs include: (a) single group design where the two test forms being equated are given to a 

single group randomly drawn from a population which is also the target population; (b) random 

groups design where the two forms are administered to two groups of test takers randomly drawn 

from a target population; and (c) nonequivalent groups with anchor test (NEAT) design where 

two test forms which share a set of common item, called an anchor, are given to two groups from 

two populations which usually differ in level of ability measured by the test. This study focused 

on the third design which is discussed in the next section. 

Under each equating design, various methods can be used. Equating methods can be 

classified into two categories: (a) observed-score equating (OSE) methods, and (b) IRT equating 

methods. OSE methods, which are also called traditional methods, are conducted on empirical 

observed scores and can be further grouped into two kinds depending on the hypothetical 

equating relationship.  Linear methods specify a linear relationship between scores on the two 
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test forms being equated. Equipercentile methods determine a non-linear relationship between 

scores of the two test forms. This study used two common equipercentile OSE methods that are 

widely used in practice: the frequency estimation equating method and chain equating method. 

Details about these methods follow. 

Unlike traditional OSE methods, IRT methods are not conducted on empirical scores. 

These methods are based on IRT models which hypothesize a relationship between a specific 

examinee‟s latent ability, represented by , and the probability of his or her getting a correct 

answer to a specific test item. IRT equating is either conducted on true score or observed scores 

generated by the adopted models. Two common IRT equating methods were investigated in this 

study: the IRT true score equating and the IRT observed score equating. Details of these methods 

are also reviewed in the subsequent sections. 

Further details about equating designs and methods can be found in Holland and Dorrans 

(2006),  Kolen and Brennan (2004), von Davier, Holland, and Thayer (2004a), and Petersen, 

Kolen, and Hooever (1989). 

 

2.2. The nonequivalent groups with anchor test (NEAT) design 

Various equating designs can be used to collect data for equating. One of the most 

popular designs is the nonequivalent groups with anchor test (NEAT) design (von Davier, 

Holland, & Thayer, 2004a). This design is also called the common-items non-equivalent group 

design (Kolen & Brennan, 2004). In this dissertation, the term „NEAT‟ is adopted. 

In this design (see Table 2.1), two test forms to be equated, Form X and Form Y, are 

administered to two groups (i.e., samples), group 1 and group 2, of test takers from two different 

populations P and Q, respectively. The two test forms share a subset of items which is usually 

called the anchor (denoted A in Table 2.1). The sets of non-common (i.e., unique) items of Form 
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X and Form Y are labeled XU and YU, respectively. A is internal anchor if its score is included in 

the total score. Otherwise, it is external anchor. Note that in the NEAT design, as presented in 

Table 2.1, scores on XU are not obtained for the population Q sample and scores on YU are not 

obtained for the population P sample. 

 

Table 2.1. The NEAT design 

Population Sample XU A YU 

P 1   Not observed 

Q 2 Not observed   

 

 

The anchor A is used to adjust for differences between the two groups in terms of 

abilities or skills relevant to the test. In other words, A serves to remove group differences to 

increase equating accuracy. It is recommended that the anchor should be a representative of the 

test forms being equated in content and statistical characteristics (see Sinharay & Holland, 2007; 

Kolen & Brennan, 2004). That is, the anchor should be a mini-version of the test forms. When 

groups differ substantially, the anchor may fail to adjust for group differences. In such situations, 

equating may not be accurate. 

In the NEAT design, the target population T is the mixture of P and Q and can be 

formulated as 

T = wP + (1-w)Q (2.1) 

The mixture is determined by the weight w given to population P. Theoretically, w can be 
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any number between 0 and 1. When w = 1, T  P; and when w = 0, T  Q. In most cases, w is the 

ratio of sample size of the group from P and the sum of the sample sizes of the two groups 

(Angoff, 1971). In the equating literature, the mixture is also called the synthetic population. 

The NEAT design is widely used in many testing programs. There are some reasons for 

its popularity. The first reason is that this design requires only one test form to be administered 

per test date. In many testing situations, it is not possible to give more than one test form at the 

same administration because of the test security and disclosure concerns. In such situations, the 

NEAT design is a good choice. Another reason is that with external anchors, non-common items 

can be disclosed after the test date without compromising future test forms. The ability to 

disclose test items is important for many testing programs as some states require disclosure of 

test items. The ability to deal with groups of test takers with different abilities is another 

advantage of the NEAT design because the groups taking the test at different administrations 

tend to be self-selected so they usually differ in systematic ways (Petersen, Kolen, & Hooever, 

1989). 

Various equating methods can be employed in the NEAT design. This dissertation 

focused on four non-linear methods: two equipercentile OSE methods and two IRT equating 

methods. Details of these methods are discussed in the following sections. 

 

2.3. Equipercentile OSE methods under the NEAT design 

2.3.1. General framework 

Equating methods can be classified into two major categories: observed score equating 

(OSE) methods, and IRT equating methods. Among OSE methods, equipercentile equating 

methods are the most important (von Davier, Holland, & Thayer, 2004a) and they are widely 



18 
 

used in testing practice (Brennan, 2010). This study focused on two popular equipercentile OSE 

methods. 

Equipercentile OSE methods focus on the distributions of observed scores on the two test 

forms being equated. These methods equate the quantiles of those score distributions on the two 

forms. In other words, in equipercentile OSE, scores on two forms are considered to be 

equivalent if their corresponding percentile ranks in some groups are equal (Angoff, 1971). The 

equipercentile equivalence of a score from Form Y on the scale of Form X is calculated by first 

finding the percentile rank on Form Y of a score y, and then finding the score x on Form X 

associated with that percentile rank. 

Formally, general equipercentile equating framework can be described as follows. Let X 

and Y represent scores on Form X and Form Y, respectively, and Y is equated to the scale of X. 

The equipercentile equating transformation is a function from the scale of possible values of Y to 

the scale of X, that is, from y to x. The transformation (y) equates the quantiles of the two 

population distributions for X and Y using their cumulative distribution functions, FY(y) and 

FX(x), on the target population T. The transformation function is  

 1( ) ( )X Yy F F y   (2.2) 

where 
1

XF 
represents the inverse function of FX. 

Because actual scores are discrete rather than continuous, a procedure is required to 

approximate a continuous distribution of score. This procedure is called continuization (von 

Davier, Holland, & Thayer, 2004a). Some methods have been used including linear interpolation 

and Gaussian kernel smoothing (for more details see Kolen & Brennan, 2004; von Davier, 

Holland, & Thayer, 2004a). 
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From Equation 2.2, in order to conduct equipercentile equating, two cumulative 

distribution functions of the scores on the two test forms being equated on the target population 

must be defined. In the NEAT design, because of the missing data of XU on Q and YU on P (see 

Table 2.1), some assumptions have to be made to compute FX(x) and FY(y). Two popular 

equipercentile equating methods in the NEAT design were investigated in this study. They are 

discussed next. 

 

2.3.2. Frequency estimation equipercentile equating method (FE) 

The frequency estimation equipercentile equating method (FE) consists of two steps. The 

first step is to estimate score distributions for each test form on a target population T, which is 

usually a synthetic population as defined in (2.1). The second step is to derive the equating 

function using the estimated score distributions obtained from the first step and the 

equipercentile equating framework (2.2).  

 The score distributions of the two test forms in the target population are estimated as 

 . .( ) . ( ) (1 ). ( )X X P X Qf x w f x w f x    (2.3) 

 . .( ) . ( ) (1 ). ( )Y Y P Y Qf y w f y w f y    (2.4) 

where f represents the population frequency distribution and w represents the weight given to 

population P. 

 Because of the characteristics of the NEAT design, as seen in Table 2.1, . ( )X Qf x and 

. ( )Y Pf y  are not available from the observed data. Therefore, some statistical assumptions need 

to be made to obtain score distributions in the target population. The FE method assumes that the 

conditional distributions of X and Y, conditioning on the anchor score A, are population 



20 
 

independent. That is, 

 | . | .( | ) ( | )X A P X A Qf x a f x a  (2.5) 

 | . | .( | ) ( | )Y A P Y A Qf y a f y a  (2.6) 

where a is a particular value of A. 

 Combining (2.3) with (2.5), (2.4) with (2.6), it follows that 

 . | . .( ) . ( ) (1 ). ( | ) ( )X X P X A P A Q

a

f x w f x w f x a f a     (2.7) 

 | . . .( ) . ( | ) ( ) (1 ). ( )Y Y A Q A P Y Q

a

f y w f y a f a w f y    (2.8) 

where . ( )A Pf a  and . ( )A Qf a are the marginal distributions of A in P and Q, respectively. All 

quantities on the right hand sides of (2.7) and (2.8) are observable from the NEAT design. From 

( )Xf x and ( )Yf y , the cumulative distributions ( )XF x and ( )YF y  can be derived for Form X 

and Form Y, respectively. Equipercentile equating is then applied to ( )XF x  and ( )YF y  using 

(2.2). 

 Although the FE method is theoretically appealing, it was found to produce larger 

equating bias in comparison to the other methods in the NEAT design, especially when the group 

differences are substantial (e.g., see Holland, von Davier, Sinharay, & Han, 2008; Wang, Lee, 

Brennan, & Kolen, 2008). One reason for this disadvantage might be that the assumptions about 

missing data made in the FE method is too strong and does not always hold in practical situations 

(Sinharay & Holland, 2010). 

 

2.3.3. Chain equipercentile equating method (CE) 

The chain equipercentile equating method (CE) (Dorans, 1990; Kolen & Brennan, 2004) 
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is another popular OSE method used in the NEAT design. It is also called the Design V method 

(Angoff, 1971; Braun & Holland, 1982; Harris & Kolen, 1990). 

The CE method consists of three sequential steps. In the first step, Form Y score y is 

equated to the anchor score a in population Q using the equipercentile equating method, resulting 

in an equating function 

  1
. . .( ) ( )YA Q A Q Y Qy F F y    (2.9) 

where 1
.A QF 

 
represents the inverse cumulative function of A in Q and .Y QF  represents the 

cumulative function of Y in Q. 

 In the second step, the anchor score A is equated to Form X score x in population P, 

producing an equating function 

  1
. . .( ) ( )AX P X P A Pa F F a    (2.10) 

where 
1

.X PF 
represents the inverse cumulative function of X in P and .A PF  represents the 

cumulative function of A in P. 

 Finally, Y is equated to X through a chain of the two equipercentile equating functions 

 
1 1

. . . . . .( ) ( ( )) ( ( ( ( ))))AX P YA Q X P A P A Q Y Qy y F F F F y       . (2.11) 

In comparison with the FE method, the CE method is easier and less computationally 

intensive to implement because it does not require consideration of the joint distribution of total 

score and anchor score (Kolen & Brennan, 2004). It can use marginal distributions of X and A for 

the examinees taking Form X and the marginal distributions of Y and A for the examinees taking 

Form Y. 

 However, the CE method has theoretical shortcomings. The method involves 
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equipercentile equating between a long test (total test) and a short test (anchor). Theoretically, 

test forms of unequal lengths, thus unequal reliabilities, cannot be equated in the sense that their 

scores can be used interchangeably. Another problem is that the CE method does not clearly 

determine the target population (Braun & Holland, 1982). The CE method consists of two 

equating procedures performed on two different groups but it is not clear how the groups are 

combined. However, the CE method does not require equivalent groups so it can be helpful when 

group differences exist. Equating research has found that the CE method produces smaller bias 

than the FE method when group differences are large (e.g., see Holland, von Davier, Sinharay, & 

Han, 2008; Wang, Lee, Brennan, & Kolen, 2008). 

 

2.4. Presmoothing score distributions using log-linear models 

 In the NEAT design, there are two observed bivariate score distributions, one for the pair 

(X, A) of Form X and the other for the pair (Y, A) of Form Y. Those distributions are obtained 

from samples of examinees taking the two forms. The sample score distributions are usually 

irregular, particularly at the extremes of the score range. The irregularities are primarily due to 

the random errors in sampling examinees from the population of the test takers. This may, 

especially when the sample sizes are small, result in unstable and inaccurate equating functions 

(Liou & Cheng, 1995). To mitigate these effects, smoothing sample score distributions prior to 

equating is often recommended (Hanson, 1991, Kolen & Brennan, 2004;  Rosenbaum & Thayer, 

1987; van der Linden & Wiberg, 2010). This process is called presmoothing since it is conducted 

prior to equating. The purpose of presmoothing is to smooth out some of sampling variability to 

produce more stable score distribution estimates. The resulting smoothed distributions are then 

used to equate test forms.  

It has been found that for small samples presmoothing can reduce equating error. When 
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the samples are large, presmoothing may not produce a large improvement, but it may be a 

useful way to remove undesired roughness in the sample score distributions (Hanson, Zeng, & 

Colton, 1994; Livingston, 1993; Livingston & Feryok, 1987). 

Various presmoothing methods are available to psychometricians. Among the popular 

models used in presmoothing are the log-linear models, the beta binomial models, and the four-

parameter binomial models. The log-linear models were used in this study because they are very 

flexible in the sense that they can potentially fit a wider class of bivariate distributions. The log-

linear models are discussed in more details in Holland & Thayer (2000). 

The log-linear models considered in this study are those used to produce a smoothed 

version of a bivariate distribution of total test score and anchor score such as (X, A) for Form X 

or (Y, A) for Form Y. 

 Assume that possible values for X and A are xi (i=1,…,I) and aj (j=1,…,J) respectively. 

The vector of observed bivariate frequencies, n = 
'

11( ,..., )IJn n , sums to the total sample size, 

N. The following log-linear model can be used to fit a bivariate distribubion to the observed 

distribution of (X, A) 

 0

1 1 1 1

log ( )
C D E F

c d e f
e ij xc i ad j xaef i j

c d e f

p x a x a   
   

       (2.12) 

where pij is the expected joint score probability of the pair (xi, aj) (xi on X, aj on A), 0 is a 

normalizing constant that forces the sum of the expected probability pij to equal 1, and the 

remaining s are free parameters to be estimated in the model-fitting process. 

 This model produces a smoothed bivariate distribution that preserves C moments in the 
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marginal (univariate) distribution of X; D moments in the marginal (univariate) distribution of A; 

and number of cross moments in the bivariate (X, A) distribution determined by E and F. For 

example, a model with C=D=2, E=F=1 (denoted as model 2211) will preserve the first two 

univariate moments (i.e., mean and standard deviation) of X and A as well as the first cross 

moment (i.e., covariance) between X and A. 

 The observed bivariate (Y, A) distribution can be fit by a log-linear model in a similar 

procedure. 

 

2.5. Item response theory (IRT) equating methods under the NEAT design 

Item response theory (IRT) equating methods are used in many testing programs. In this 

section, two commonly used IRT equating methods employed in this study are discussed. 

 

2.5.1. Three-parameter logistic model 

IRT consists of a family of probabilistic models that relate examinee‟s proficiency level  

to the probability of answering an item within a particular category (Lord, 1980). For 

dichotomously scored items, there are only two response categories, correct and incorrect. 

 Various IRT models have been developed for dichotomously scored items as well as for 

polytomously scored items. The general and commonly used IRT model for dichotomous items 

is Birnbaum‟s three-parameter logistic (3PL) model (Lord & Novick, 1968). 

Under the 3PL model, the probability that an examinee, with latent ability j, scores a 

correct response, uij = 1, to item i, is 

1
1| ; , ,

1 exp

i
ij ij j i i i i

i j i

c
p p(u a b c ) c

Da ( b )





   

    
 (2.13) 

where ai is the item discrimination parameter, bi is the item difficulty parameter, ci is the item 
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guessing parameter, and D is the scaling constant equal to 1.7. 

 In practice, item and examinee parameters are estimated from data (i.e., examinees‟ 

responses to test items). 

 

2.5.2. IRT scale linking 

 When using the NEAT design, IRT item and ability parameters are typically estimated 

separately for the two test forms, resulting in two different ability scales. However, in order to 

perform IRT applications, parameters must be on the same scale. This problem can be solved by 

a process called scale linking, or simply, linking. 

In the 3PL model, the two scales X and Y have a linear relationship 

 X YS I    (2.14) 

If the 3PL model perfectly holds, parameters of common items have the following relationship  

 
Yi

Xi

a
a

S
  (2.15) 

 Xi Yib Sb I   (2.16) 

 Xi Yic c  (2.17) 

where i indices a common item. If the model holds perfectly and item parameters are known, the 

true linking coefficients S and I can be obtained from any one of the common items. In practice, 

equations (2.15), (2.16), and (2.17) are not satisfied for all common items. Thus, a linking 

process is needed to estimate S and I. Various linking procedures are available (see Kolen & 

Brennan, 2004, for more details about IRT linking methods). Four linking methods are often 

used in research and practice: mean/sigma (Macro, 1977), mean/mean (Loyd & Hoover, 1980), 

Haebara (Haebara, 1980), and Stocking-Lord (Stocking & Lord, 1983). In this study, the 
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Stocking-Lord method was used. This method estimates S and I by minimizing the difference 

between the test characteristic curves for the anchor associated with two sets of anchor item 

parameter estimates obtained from two separate calibrations, one for each form. After S and I are 

estimated, equations (2.14)-(2.17) can be applied to ability estimates of Form Y and to all non-

common item parameter estimates of Form Y to place them on the scale of Form X. 

 Once item parameter estimates of the two forms are on the same scale, equating can be 

conducted.  Details of IRT equating methods can be found in Kolen and Brennan (2004) and 

Lord (1980). The following sections briefly present two commonly used IRT equating methods 

which were used in this study. 

 

2.5.3. IRT true score equating method (TS) 

In the 3PL model, the number-correct true scores on Form X and Form Y associated with 

ability  are defined through their test characteristic function (Lord, 1980) as, where the  

summations are over items in Form X and Form Y, respectively 

 
:

( ) ( ; , , )X i i i i

i X

p a b c    (2.18) 

 
:

( ) ( ; , , )Y j j j j

j Y

p a b c    (2.19) 

where p represents the probability of getting the correct response as presented in (2.13)  

 In the 3PL model, very low true scores are not available because when   -∞, 

( )p   c. The same problem occurs when true score equals to all-correct score because  

  + ∞. Therefore, the range of true scores on Form X and Form Y are defined as 

 
:

i X X

i X

c K   (2.20) 
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:

j Y Y

j Y

c K   (2.21) 

where KX and KY are the total numbers of items on Form X and Form Y, respectively.  

 In IRT true score (TS) equating, the true number-correct score on one form associated 

with a given  is considered to be equivalent to the true score on another form associated with 

the same  (Kolen & Brennan, 2004). Mathematically, ( )X  and ( )Y  , as computed from 

(2.18) and (2.19) where the same  value is used, are considered to be equivalent. 

TS equating can be conducted in three steps (Kolen & Brennan, 2004, p. 176): 

1. Specify a true score Y on Form Y , 
:

j Y Y

j Y

c K    

2. Find a value  that correspond to Y  

3. Find the true score on Form X, X , that is associated with  obtained from step 2. 

The second step, which requires solving (2.19) for , requires an iterative procedure such 

as Newton-Raphson as presented in Kolen and Brennan (2004). 

Pairing two true scores associated with the same  values across different s produces a 

true-score equating table. This table is then applied in practice to observed number-correct 

scores. Since true score is not the same as observed score, this step does not have a sound 

theoretical justification (Lord, 1980). 

When using TS equating with observed scores, a procedure is needed for equating scores 

outside the range of possible true scores described in equations (2.20) and (2.21). Lord (1980) 

and Kolen (1981) proposed ad hoc procedures to handle this problem. The Kolen‟s procedure, 

which was used in this study, is as follows: 
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1. Set a score of 0 on Form Y equal to a score of 0 on Form X 

2. Set a score of 
:

j

j Y

c on Form Y equal to a score of 
:

i

i X

c on Form X 

3. Apply linear interpolation to find equivalents between these points 

4. Set of score of KY on Form Y equal to a score of KX on Form X. 

Because TS equating is theoretically population invariant and straightforward to 

implement, it has been used widely in equating research and practice. 

 

2.5.4. IRT observed score equating method (OS) 

IRT observed score equating (OS) method consists of two steps. The first step is to 

estimate the distributions of observed number-correct scores on Form X and Form Y on the 

target population T. The second step is to conduct traditional equipercentile equating on these 

estimated distributions. 

For Form X, the recursion formula presented in Lord and Wingersky (1984) can be used 

to obtain the conditional distribution of observed scores at each  value. Define fr(x|) as the 

distribution of the number-correct scores over the first r items for examinees with ability , and 

pr as the probability for those examinees getting r
th

 item correct. For r >1, the recursion formula 

is as follows (Kolen & Brennan, 2004): 

fr(x|) =  fr-1(x|).(1 – pr) x = 0 

=  fr-1(x|).(1 – pr) + fr-1(x-1|).pr 0 < x < r (2.22) 

=  fr-1(x-1|).pr x = r 

To use this recursion formula, begin with r=1 and repeatedly apply the formula by 
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increasing r on each repetition. The process is stopped after r=K, the number of items on the test 

form. That is fX(x|). These conditional observed score distributions are accumulated over the 

target population T to obtain the marginal distribution of observed scores, which, when the 

ability distribution is continuous, can be calculated as 

 ( ) ( | ) ( )X Xf x f x f


    (2.23) 

where f() is the distribution of . In the NEAT design, the target population is the synthetic 

population defined in (2.1). 

 In practice, a posterior distribution of  , which is estimated from the calibration process, 

is often used. In such a situation, the marginal distribution can be calculated as 

 ( ) ( | ) ( )X Xf x f x f


   (2.24) 

where f() represents the posterior weight at the quadrature point. 

For Form Y, the same procedure is used to obtain fY(y). From fX(x) and fY(y), the 

cumulative distribution functions, FX(x) and FY(y), can be obtained and a conventional 

equipercentile equating is conducted using framework (2.2). 

An advantage of OS equating is that it defines the equating relationship for observed 

scores and can be applied directly to the observed score. However, OS equating function is 

population dependent because the target population score distribution has to be specified. 

 

2.6. Equating criteria 

 One important step in any equating process is to determine whether the scores are really 

interchangeable and comparable after they were equated. When choosing an appropriate 
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procedure to evaluate equating results, it is very important to consider the operational definition 

of equating adopted by the testing program. The goal of equating evaluation should be to 

determine the degree to which the definition of equating holds. Any evaluation process requires 

selection of a criterion or criteria. In order to obtain a fair evaluation of equating results, the 

selected criteria must be closely linked to the adopted definition of equating. 

 Two basic operational definitions of equating have been proposed in the equating 

literature: equipercentile definition and equity definition. The following sections provide more 

details about the two definitions and related criterion. 

 

2.6.1. Equipercentile criterion 

The equipercentile definition of equating, also called the definition of observed-score 

equating, was proposed by Angoff (1971) as “two scores, one on form X and the other on form Y 

(where X and Y measure the same function with the same degree of reliability), may be 

considered equivalent if their corresponding percentile ranks in any given group are equal” (p. 

563). This definition implies that score distributions on the two test forms to be equated must be 

identical after equating (Kolen & Brennan, 2004, p.12). The equipercentile definition is often 

referred to as the equipercentile equating property and its corresponding criterion is called 

equipercentile criterion. Algebraically, the equipercentile criterion requires that 

 ( ) ( )Y e Xe
F y F x  (2.25) 

where FYe and FX  represents cumulative distribution functions (cdf) of Ye and X, respectively. 

 In evaluating equating with equipercentile criterion, the cdf of Ye is compared to the cdf 

of X. To quantify the difference between two cdfs, the Kolmogorov statistic (Conover, 1999), 

which is the largest difference between the two cdfs across all score levels, can be used. Another 
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approach is to use the area between the two cdf curves. The smaller the Kolmogorov statistic or 

the area between two cdfs, the more accurate the equating is. 

 

2.6.2. Equity criteria 

The equity definition of equating, also called the definition of true-score equating, was 

proposed by Lord (1980) as “if an equating of test X and Y is to be equitable to each applicant, it 

must be a matter of indifference to applicants at every given ability level  whether they are to 

take test X or test Y” (p.195). Equity requires that for every  in the range of interest, the 

conditional distributions of scores on the two test forms to be equated must be identical after 

equating. 

The equipercentile and equity definitions are not unrelated. If one applies the 

equipercentile definition to a group of examinees with the same ability  level, it is equivalent to 

the equity definition (Divgi, 1981). 

The equity definition is commonly referred to as the equity property, or simply equity. 

Equity is closely related to test fairness. If the two conditional distributions differ, a test taker 

may be advantaged by taking one test rather than the other. For example, a low-ability test taker 

with a larger variance of his observed score on Form Y than on Form X has a better chance of 

passing a certain cutoff score on Form Y than on Form X.  

Algebraically, equity property can be stated as 

 
( | ) ( | )Y e Xe

F y F x  ,  for all  (2.26) 

where „| ‟ denotes „conditioning on ‟.  

However, Lord (1980) also showed that equity is never satisfied unless the tests being 

equated are perfectly reliable or strictly parallel, in which case equating is unnecessary. In 



32 
 

practice, test forms are never perfectly reliable nor strictly parallel. In other words, equity is 

unlikely to be fully satisfied in practice. Nevertheless, it can be considered as a gold standard for 

equating in the sense that it represents an ideal equating. Therefore, the issue is not one of 

determining whether the equity is fully satisfied, because it is never, but rather of describing the 

extent to which the equity holds, or fails to hold. 

Like equipercentile criterion, equity criterion can be used to evaluate equating by 

comparing two score distributions, one for equated scores of Form Y and one for scores of Form 

X, but conditioning on  and the evaluation must be conducted at every  value in the range of 

interest. The most popular method for obtaining the conditional distribution is to apply the 

compound binomial method proposed by Lord and Wingersky (1984) presented in the equation 

(2.22). The difference between the two conditional cdfs can be quantified by the Kolmogorov 

statistic or the area between two cdf curves. 

Since full equity is unlikely to be satisfied in practice, researchers have proposed some 

weaker versions focusing on the equivalence of some specific moments instead of on the 

equivalence of the full conditional distributions of scores. Two popular weakened versions of 

equity are the first-order equity (Divgi, 1981) and the second-order equity (Morris, 1982).  

The first-order equity, also called weak equity as opposed to full equity as strong equity, 

requires only the first-order moment (i.e., expected value) of the two conditional distributions be 

the same across all levels of . In other words, first-order equity refers to the true scores on two 

test forms. Algebraically, the first-order equity can be stated as 

 
( | ) ( | )eE Y E X  ,  for all  (2.27) 

where E denotes expected value. 
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 The first-order equity is satisfied when each examinee is expected to obtain the same test 

score (after equating) regardless of which test form is administered.  

The second-order equity requires the second-order moment (i.e., variance or standard 

deviation) of the two conditional distributions be the same across all s. That is, 

 
| |Y Xe    ,  for all  (2.28) 

where  denotes standard deviation, which is also called standard error of measurement (SEM). 

The second-order equity holds if, conditional on ability, examinees have the same SEM 

on the two forms after equating (Morris, 1982). Kolen, Hanson, and Brennan (1992) argued that 

the second-order equity should be nearly satisfied in order for the two forms being equated to be 

used interchangeably. 

The first-order equity can be assessed by comparing the means of two conditional 

distributions  FYe(ye|) and FX(x|). Similarly, the standard deviations of these distributions 

are compared to evaluate the second-order equity. 

 

2.7. Summary of related research 

 This section reviews prior research relevant to this dissertation. It is divided into two 

subsections. The first subsection reviews prior research on comparing equating methods used in 

this study. Although the NEAT design was the focus of this study, several studies conducted on 

other designs are also included. In the second subsection, research on using equipercentile and 

equity criteria to evaluate equating is reviewed. 

 

2.7.1. Prior research on comparing equating methods 

 Research on comparing equating methods is fairly rich but not many studies 
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simultaneously comparing FE, CE, TS, and OS or comparing between IRT equating and OSE 

were found in the literature. Most studies reported in the literature compared two, usually FE vs. 

CE or TS vs. OS, or three methods. 

 Several studies compared FE and CE using real and simulated data. Braun and Holland 

(1982), Livingston, Dorans, and Wright (1990), and Marco, Petersen, and Stewart (1983) used 

real data from admission tests. Sinharay and Holland (2007) used both IRT-based simulated and 

real data from a certification test. Wang, Lee, Brennan, and Kolen (2008) used several simulated 

data sets. These studies found that FE and CE produced quite different results. CE method 

performs better than FE method in terms of smaller bias, especially when group differences are 

large. When two groups are similar, FE method performs slightly better than CE. However, those 

studies lacked a clear criterion for evaluation preventing these from providing a clear and 

conclusive comparison of FE and CE.  

In another study, von Davier, Holland, and Thayer (2004b) showed that both FE and CE 

are special cases of the OSE framework and that they may lead to similar results under special 

conditions. It is not clear from their conclusions what conditions are deemed special. 

Holland, von Davier, Sinharay, and Han (2008) compared FE (called post-stratification 

method in their study) and CE using a special data set. By manipulating a large data set, they 

mimicked the NEAT design to test the assumptions of the two methods. They found that CE 

performed slightly better than FE. However, this study lacked control over differences in group 

ability and test item difficulty. 

Harris and Kolen (1990) used real data from a licensure test to compare FE, CE, and OS. 

They concluded that FE and OS provide better results than CE but the CE method required less 

computation. 
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Recently, Sinharay and Holland (2010) conducted a study comparing FE, CE, and OS 

methods in the NEAT design. They found that in general, the CE method is somewhat more 

satisfactory than the others. 

Only a few studies comparing TS and OS were found in literature. Kolen (1981) used 

random samples of examinees to cross-validate his comparisons of IRT methods with traditional 

equipercentile and linear equating methods. His criterion was the mean squared difference 

between scores with equivalent percentile ranks in the cross-validation and equated distributions. 

He found that OS is the best method. However, using a circular equating design as their criterion, 

Lord and Wingersky (1984) found no difference between two methods. Tsai, Hanson, Kolen, and 

Forsyth (2001) compared TS and OS in the NEAT using bootstrap technique. Their criterion was 

standard errors of equating (SEE). They found that when item parameters were estimated 

separately, both methods produced similar SEE. 

Research studies comparing IRT and traditional equating methods appear to be somewhat 

less prevalent in the literature. Using real data from a college admission test, Harris and Kolen 

(1986) compared equipercentile and TS methods under the 3PL model in the random groups 

design. They found that the two methods performed similarly, concluding that both methods 

were relatively invariant to the group proficiency levels. 

Another study by Han, Kolen, and Pohlmann (1997) also used operational test forms in 

the random groups design. They compared IRT and equipercentile methods using results from 

equating a test to itself as the criterion. Among major findings are: TS produces most stable 

results, however the mean differences in equating stability are small; OS produces more stable 

results than equipercentile, larger equating differences exist when form differences are larger. 

Lord (1977) also found that IRT and traditional equipercentile methods produced 
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different results. 

 

2.7.2. Prior research using equipercentile and equity criteria 

Of the two basic criteria, equipercentile criterion has been used widely in research. 

Because the equipercentile criterion requires the marginal distributions of scores be identical 

after equating, any study which used an equipercentile method on a large sample as its criterion 

in fact used the equipercentile criterion, although it may not have explicitly stated. Among 

studies that used the equipercentile criterion, either implicitly or explicitly stated, to evaluate 

equating are Holland et al. (2008); Kim et al. (2010); Kim, Brennan, and Kolen (2005); 

Livingston and Kim (2010); Sinharay and Holland (2007); Skaggs (2005); Tong and Kolen 

(2004); von Davier et al. (2006). 

Although it is one of the most important equating criteria, equity has rarely been used in 

evaluating equating. This might be due to the fact that the equity is computed based on the 

conditional distributions of the test scores which are difficult to obtain and interpret. Most 

studies that used the equity criterion employed the first-order equity or second-order equity. 

Harris (1991) used the first-order and the second-order equity criteria to compare 

Angoff‟s Design I and Design II in a vertical scaling situation.  

In a simulation study with the NEAT design, Thomasson (1993) found that IRT equating 

methods are superior to traditional equating methods with respect to the first-order and second-

order equity, provided that the test data are unidimensional.  

In a study comparing IRT equating and beta 4 equating in the random groups design, 

Kim, Brennan, and Kolen (2005) found that when forms differ, the equipercentile method 

performs well relative to the equipercentile criterion and poorly relative to first-order equity 

criterion. They also concluded that the TS method performs well relative to first-order equity and 
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poorly relative to second-order equity.  

In an equating study using random groups design, Tong and Kolen (2005) found that 

when test forms are similar, equipercentile methods and IRT methods lead to adequate equating 

regardless of the criterion used. When forms are different, however, they found that TS method 

performs best in terms of first-order equity and both equipercentile and OS methods perform 

well in terms of the equipercentile criterion and second-order equity.  

In a study on equating evaluation, Bolt (1999) used the first-order and second-order 

equity criteria to investigate whether the TS method is affected by the presence of 

multidimensionality. He found that the TS method performs as well as the traditional methods 

when the correlation between dimensions is high (≥ .7) and slightly inferior to the equipercentile 

method when the correlation is moderate or low (≤ .5). 

Currently, Wyse and Reckase (prepublished online) developed an index based on the 

first-order equity and used it to compare various IRT linking methods under the NEAT design. 

They found that the Stocking-Lord and fixed-parameter methods perform well and the use of 

concurrent calibration is not recommended. 

 

2.7.3. Summary 

It is increasingly obvious from the equating literature that the CE method may be 

preferable to the FE method when group differences exist. In case of equivalent groups, they 

may produce similar results. Contradictory results were found regarding the two IRT methods. 

Some studies found they may produce different results while others found no difference. There is 

not enough evidence from the literature about how OSE methods and IRT equating methods are 

compared to each other, especially in the NEAT design.  

From a limited number of studies using equiprcentile and equity criteria to evaluate 
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equating results, the observed score equating methods have been found to perform well relative 

to the equipercentile criterion. The IRT methods, however, perform well relative to the first- and 

second-order equity. It is unknown if the full equity criterion has ever been used in evaluating 

equating results, either in research or in practice, but no research of that kind has been found in 

the literature, at least up to the time this dissertation was written. 
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CHAPTER 3 

RESEARCH METHOD 

 

This chapter describes the research method used in this study. Main topics include the 

overall research design, simulation conditions, test form and data generation, equating processes, 

and procedures for calculating evaluation indices. 

 

3.1. Purpose of the study and research questions 

 As presented in Chapter 1, the main purpose of this study was to use equipercentile and 

equity-based criteria to evaluate the performances of four commonly used equating methods 

under the NEAT design. Those methods are: 

 Presmoothed frequency estimation equipercentile method (FE) 

 Presmoothed chain equipercentile method (CE) 

 IRT true score equating method (TS) 

 IRT observed score equating method (OS) 

In addition, identity equating method was also employed to examine possible conditions 

when no equating is preferred. The performance of those equating methods was investigated in 

various conditions of test form and group differences. Particularly, the study aimed to address the 

following research questions: 

Question 1: Overall, how do the equating methods compare to one another in terms of 

equipercentile and equity criteria? 

Question 2: How do test form differences affect equating results for each method? 

Question 3: How do group differences affect equating results for each method? 

Question 4: Are there interaction effects between test form differences and group 
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differences for each method? 

Question 5: In what conditions is the identity equating preferred to the others? 

 

3.2. Overall research design 

3.2.1. General framework 

The general framework of this study consists of the following main points: 

 The NEAT design was modeled. Two test forms with equal lengths, which share 

internal anchor items, were administered to two samples with equal sample sizes, 

randomly drawn from two different populations, P and Q.  

 The old form, Form X, was fixed. The new form, Form Y, was varied to simulate 

form differences. 

 Form Y number-correct (NC) scores were equated to Form X NC scores on the 

simulated sample data using the investigated methods. An equating function  was 

obtained for each method. 

 Marginal and conditional population distributions of NC scores on the two forms 

were generated using the adopted IRT model to be used in assessing criteria. The 

cumulative distribution functions of those distributions (on target population T) are 

denoted as FX(x), FY(y), FX(x|), and FY(y|). 

 Each obtained equating function  was applied to the population NC score 

distributions of Form Y to obtain the distributions FYe(ye) and FYe(ye|) of the 

equated score ye, where ye = (y). 

 FYe(ye) was compared to FX(x), and FYe (ye|) was compared to FX(x|) to evaluate 
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equipercentile and equity criteria, respectively. 

Details of those steps are presented in the following sections. Many factors may affect 

equating results in the NEAT design. Some factors were fixed while others were varied in this 

study. 

 

3.2.2. Data source 

 Simulated data were used in this study to reduce possible effects of model misfit (Davey, 

Nering, & Thompson, 1997) and to facilitate manipulation of various experimental conditions. 

Data were simulated in such a way as to exhibit a wide range of form and group differences in 

the NEAT design. 

 

3.2.3. IRT model 

The 3PL model for dichotomous items was adopted for data simulation, IRT equating, 

and criterion evaluation. This model was chosen because it fits common testing situations with 

multiple-choice tests when guessing is possible and items may have different discrimination 

power. In the 3PL model, the probability of a correct response to item i by examinee j is given by 

 
exp[ ( )]

( ) (1 )
1 exp[ ( )]

i j i
i j i i

i j i

Da b
p c c

Da b







  

 
 (3.1) 

where ai, bi, and ci are item difficulty, discrimination, and guessing parameters, respectively, 

and D is the scaling constant equal to 1.7. 

 

3.2.4. Fixed factors 

 Some factors were fixed to reduce the number of conditions and sources of random 

variations.  

 Test length. Each form had 60 dichotomous items. This length is typical in practice 
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and research. 

 Anchor items. The anchor was internal and had 20 items, which was one third of the 

total test. The anchor was created as a miniversion of the total test in terms of 

statistical characteristics. According to Kolen and Brennan (2004), the anchor should 

have at least 20% of the test items and should be a mini version of the test in order to 

function well. 

 Sample size. Each group had 2,000 examinees, randomly drawn from the two 

populations. This sample size was large enough to provide stable estimation of all 

four equating methods (see Hulin, Lissak, & Drasgow, 1982; Jarjoura & Kolen, 

1985). It was also within the range used in other studies (e.g., Hanson, & Beguin, 

2002; Wang et al., 2008). 

 

3.2.5. Varied factors 

Two main factors were manipulated in this study to simulate common conditions in the 

NEAT design. The magnitude of variations was chosen to demonstrate a wide range of 

conditions, some of which might have been extreme. This allowed the examination of how 

equating methods performed in extreme cases rather than just in typical cases. 

 Test form difference. Form X was fixed throughout the study. In order to simulate 

form difference, Form Y was varied. Since Form X was fixed and the anchor A was 

shared by the two forms, thus, fixed, the set of unique (non-common) items of Form 

Y, denoted as YU, was varied. At the beginning, YU was simulated to be similar to 

XU, the set of unique items of Form X. To simulate the difference in item difficulty 

between the two forms, a constant b was added to the b-parameter of all items of the 
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initial YU. To simulate the difference in item discrimination power between two 

forms, a constant a was multiplied with the a-parameter of all items of the initial 

YU. Seven values of b (-1.2, -.8, -.4, 0, .4, .8, 1.2) and three values of a (.5, 1, 2) 

were used. Using these values made YU either easier or more difficult and either less 

or more discriminating relative to XU. All levels of a and b were fully crossed, 

resulting in 21 (3x7) different conditions of form difference, denoted as (a,b). 

 Group difference. Population P  distribution was fixed standard normal N (0, 1) 

throughout the study. Population Q  distribution was also normal with unit variance 

but mean , that is N (, 1). The ability difference between two populations was 

quantified by . Five different values of  were used: 0, .25, .5, .75, 1. Thus, Q was 

set to be as equally able as or more able than P. In test equating, mean differences 

larger than .5 are generally considered very large. Some values of  used in this 

study were very large, but the purpose was not only to look at typical cases but also to 

see how equating performs in extreme cases. 

 

3.2.6. Simulation conditions 

 Form and group difference conditions were fully crossed, resulting in 105 different 

(21x5) conditions. These conditions are referred to by a combination of three numbers 

(,a,b). For example, in the condition (.5, 2, .-4), the mean difference between two 

populations was half of the standard deviation,YU a-parameters were twice as large as those of 

XU, and YU b-parameters were .4 less than those of XU. 
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3.2.7. Equating methods 

Five equating methods were used in this study 

 Presmoothed frequency estimation equipercentile equating (FE) 

 Presmoothed chain equipercentile equating (CE) 

 IRT true-score equating (TS) 

 IRT observed-score equating (OS) 

 Identity equating (IE) 

 All equating methods were conducted following the description of equating methods 

described in Chapter 2. In the FE and CE methods, NC scores were presmoothed by a loglinear 

model before equating. 

Because the two groups had equal sample sizes (2,000), equal weights were given to each 

population in defining the target population T. 

 

3.2.8. Replications 

 For each of 105 (a,b, ) simulation conditions, 50 replications were used. Note that 

within each condition, two forms were fixed across all replications. This served to eliminate 

possible random effects due to sampling different forms within each condition. 

 

3.3. Test form generation 

 As presented previously, each test form consisted of two blocks. Form X consisted of 

common-item block A and unique-item block XU. Similarly, Form Y consisted of block A and 

unique-item block YU. XU and A were fixed throughout the study, YU was varied to simulate 

form differences. XU and YU consisted of 40 items. Anchor A consisted of 20 items. The test 

forms were generated as follows 
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Table 3.1. Descriptive statistics for item parameters of three initial blocks 

Item block Parameter N M SD Min Max 

Anchor items 

(A) 

a 20 0.936 0.368 0.443 1.632 

b 20 -0.022 0.837 -1.704 1.585 

c 20 0.163 0.054 0.058 0.273 

Form X unique 

items (XU) 

a 40 0.928 0.261 0.368 1.651 

b 40 -0.020 0.763 -1.765 1.660 

c 40 0.147 0.044 0.026 0.263 

Form Y unique 

items (YU) 

a 40 0.907 0.253 0.392 1.591 

b 40 -0.077 0.678 -1.648 1.744 

c 40 0.138 0.054 0.052 0.275 

 

 First, three initial blocks of XU, YU, and A were generated. The a-, b-, and c-

parameters were randomly sampled from lognormal LN(-.15, .30), normal N(0, .7), 

and beta BETA(7, 43) distributions, respectively. Note that although the same 

distributions were used, item parameters for the three initial blocks were generated 

independently. XU and A were combined to produce Form X which was fixed 

throughout the study. The descriptive statistics of item parameters of the three initial 

blocks are presented in Table 3.1. As shown in Table 3.1, the three initial blocks were 

similar. 
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 Block YU was varied by adding a constant b to all b-parameters and multiplying a 

constant a with all a-parameters of the initial YU. Seven values of b (-1.2, -.8, -.4, 

0, .4, .8, 1.2) and three values of a (.5, 1, 2) were used. All levels of a and b were 

fully crossed, resulting in 21 (3x7) different YU blocks. Each YU block was combined 

with block A to create one Form Y, which then was paired with Form X for equating. 

Therefore, there were 21 XY pairs representing 21 conditions of form difference. 

 

3.4. Data simulation 

 Data were simulated using the 3PL model. Data for the group taking Form X were 

simulated in the following steps: 

 2,000 simulees were randomly drawn from the  distribution of the population P, 

which was N(0,1). 

 The probability of a correct response to item i by simulee j, pi(j), was calculated by 

the equation (3.1) using item parameters of Form X. The calculated pi(j) was then 

compared to a randomly drawn number from a uniform [0,1] distribution. If pi(j) was 

greater than the random number, the answer to that item by that simulee was coded as 

1 (correct). Otherwise, it was coded as 0 (wrong). This process was repeated for all 

items in the form and all simulees in the sample. 

 The NC scores for the whole test and for the anchor items were calculated by summing 

item scores for all items and for the anchor items only, respectively. Therefore, each 

simulee had a string of binary responses to all items, a total score x and an anchor 

score a. 
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Similarly, data for the group taking Form Y were simulated using 2,000 simulees 

randomly drawn from the population Q and item parameters of Form Y. 

For each group, simulated data were divided into two different data sets. One data set 

contained only binary item responses to be used for IRT equating. The other data set had total 

and anchor NC scores to be used in FE and CE methods. 

 Therefore, for each replication, four data sets were produced. Because there were 105 

simulation conditions, each had 50 replications, 21,000 data sets were simulated (105x50x4).  

 

3.5. Equipercentile equating procedures 

 Two equipercentile OSE equating methods commonly used in the NEAT design, FE and 

CE, were used in this study. Prior to equating, loglinear presmoothing techniques were applied to 

smooth out irregularities of the sample observed score distributions. Two bivariate distributions 

(X, A) and (Y, A) were smoothed using several different models in a trial. A loglinear model 

which preserved the first two univariate moments and the first cross-moment was selected due to 

good smoothing results. This model was used for all observed-score equating processes in this 

study to avoid possible effects due to using different loglinear models. 

 Since the two groups had equal sample sizes, equal weights were given to two 

populations in defining the target population. 

 FE and CE equating processes were conducted using the R-package equate (Albano, 

2010). This package, which was written in R language, can perform various equating methods in 

the NEAT design with embedded loglinear presmoothing functions. 
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3.6. IRT equating procedures 

 Two IRT common equating methods, TS and OS, were used in this study. The IRT 

equating consisted of three sequential steps: calibration, scale linking, and equating. 

 

3.6.1. Calibration 

Two simulated binary data sets of a XY pair were used for IRT equating. Each data set 

was calibrated separately using the computer program BILOG-MG (Zimowski, Muraki, Mislevy, 

& Bock, 1996). From the calibration, item parameter estimates were obtained. In addition, 40 

equally spaced  quadrature points were also obtained from each calibration. These quadrature 

points and their relative frequencies provided an estimated posterior distribution of ability, 

sometimes referred to as the true  distribution, in the corresponding population. These 

quadrature points and their weights were needed for the OS method. 

 

3.6.2. Scale linking 

 Because parameter estimates were obtained separately for Form X and Form Y, they 

were not on the same scale due to the model indeterminacy problem (see Chapter 2 for more 

details). Therefore, a linking process was performed to place item and ability estimates for Form 

Y on the scale of Form X. Particularly, parameter estimates of Form Y were linked to the scale 

of Form X using the common Stocking-Lord (Stocking & Lord, 1983) linking method. This 

process was conducted using the computer program ST (Hanson, Zeng, revised by Cui, 2004). 

 

3.6.3. Equating 

 After parameter estimates were placed on the same scale, TS and OS methods were 

performed.  Details about these methods were presented in Chapter 2. 

 For  the TS method, Kolen‟s (1981) ad hoc procedure was used for the scores below the 
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limits set by the item guessing parameters and for the all-correct score. 

 For the OS method, the   distribution for the target population had to be defined. As 

previously mentioned, equal weights were given to two populations P and Q, resulting in the 

posterior  distribution for the target population T as 

 ( ) .5 ( ) .5 ( )P Q          (3.2) 

where ( )P  , ( )Q   were the weights for the quadrature point   obtained from BILOG-MG 

calibrations for P and Q, respectively, and ( )   was the weight for the target population T. 

( )  was used in the place of f() in equation (2.24) for OS equating. 

 Both TS and OS equating processes were conducted using the computer program PIE 

(Hanson & Zeng, revised by Cui, 2004) 

 

3.7. Procedures for assessing criteria 

3.7.1. Equating criteria 

 Four equating criteria were used to evaluate the accuracy of equating results in this study: 

 The equipercentile criterion 

 The full equity criterion 

 The first-order
 
 equity criterion 

 The second-order
 
 equity criterion 

 

3.7.2. Population score distributions 

 In order to assess those criteria, the following distributions were required: 

 The conditional population distributions of NC score on Form X and Form Y at each 
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predetermined  value in the range of interest. 

 The marginal population distributions of NC score on Form X and Form Y. 

Those distributions were defined for populations. They were created by using the 

generating (true) item parameters, population   distributions instead of the item and ability 

parameter estimates obtained from the calibration of the simulated sample data. For simplicity in 

the subsequent sections, the term „population‟ is dropped when it does not cause any confusion. 

In this study, 41 equally spaced  values in the interval [-4, 4] were used. The following sections 

describe the ways those distributions were produced and used to evaluate the criteria. 

 

Conditional distributions. 

Conditioning on a given , the NC score distribution of Form X, denoted as fX(x|), was 

produced by applying the Lord and Wingersky‟s (1984) recursive formula (as presented in 

equation (2.22)), using the generating item parameters of Form X and the 3PL model. Similarly, 

the conditional NC score distribution of Form Y, fY(y|), was produced. 

 

Marginal distributions.  

The conditional NC score distributions of x were integrated across the  distribution to 

produce the marginal NC score distribution of x, denoted as f(x). The marginal NC score 

distribution for Form Y, f(y), was produced in a similar process. That is, 

 ( ) ( | ) ( )f x f x f d



     (3.3) 

 
( ) ( | ) ( )f y f y f d



     (3.4) 

where f() represents the probability distribution function of  in the target population T. These 
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integrations were done numerically using 41 quadrature points  with corresponding weight 

( )   computed from the   distribution for the target population. 

 ( ) ( | ) ( )f x f x


    (3.5) 

 
( ) ( | ) ( )f y f y



    (3.6) 

 The term ( )  in (3.5) and (3.6) were computed in two steps: 

 Calculating the probability distribution function (pdf) for  in the target population T 

with equal weights given to two populations P and Q as 

( ) .5 ( ) .5 ( )P Qf f f     (3.7) 

where fP() and fQ() represents the pdfs of  on P and Q as specified in each 

simulation condition. 

 Calculating ( )   using the following formula 

( )
( )

( )

f

f



 





 (3.8) 

 

3.7.3. Evaluation indices 

 As mentioned previously, each equating method produced an equating function (y) to 

equate Form Y to Form X. Those equating functions were applied to the conditional and 

marginal NC score distributions of Form Y, as described in Section 3.8.2, to obtain the marginal 

and conditional distributions for the equated Form Y score, denoted as Ye. Those distributions of 

Ye were compared to the distribution of X to evaluate equating results with different criteria. 
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Particularly, the marginal distribution of Ye was compared to the marginal distribution of X to 

assess equipercentile criterion. The conditional distribution of Ye at a specific  was compared to 

the conditional distribution of X at the same  to assess equity criteria. Details on evaluation 

indices follow. 

 

Equipercentile index. 

 Equipercentile property requires that marginal distributions of X and Ye be identical. To 

determine how this requirement was satisfied, the area between the two cumulative distribution 

function (cdf) curves of X and Ye was used the evaluation index for equipercentile criterion. This 

index was denoted as EP. The equating method that produced the smallest area was considered to 

best preserve the equipercentile property. Because X and Ye were discrete, their cdfs were step 

functions. Therefore, the area between the two cdf curves was the sum of the areas of the 

rectangles between the two curves. 

 To illustrate how the index EP was calculated, an example similar to the one used by Kim 

(2000) is presented here. Let‟s assume Form X and Form Y each consist of three items. 

Therefore, the possible NC scores on the two forms are 0, 1, 2, and 3. Table 3.2 shows scores x, y, 

and ye along with cumulative distributions of X and Ye. Note that the scales of X and Y are equal. 

In this example, there are eight discrete scores (four scores for X and four scores for Ye) because 

none of ye and x are identical. Figure 3.1 shows the cdfs of X and Ye and the area between them. 

The EP index can be calculated as 
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 EP = 

7

1

i

i

A


 = (.3)(.2) + (.7)(.1) + (.4)(.2) + (.6)(.1) + (.5)(.1) + (.5)(.1) + (.4)(.2) = .45  

Table 3.2. Illustrative example: x, y, ye, and cumulative distributions 

x or y ye F(X) F(Y) or F(Ye ) 

0 0.3 0.2 0.3 

1 1.4 0.5 0.6 

2 2.5 0.7 0.8 

3 3.4 1.0 1.0 
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Figure 3.1: Illustrative example of area between cumulative distribution 

functions of X and Ye 
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Equity indices. 

 Full equity property requires that conditioning on  , distributions of X and Ye be 

identical. Like in the case of equipercentile criterion, the area between two (conditional) cdf 

curves of X and Ye was calculated, denoted as EP. The EP was calculated at each of 41 

quadrature points  and then weighted across all  to create the evaluation index for the full 

equity criterion, denoted as E. That is,  

 E = ( )EP


   (3.9) 

where ( )   was defined previously. 

 For the first-order equity criterion, the difference between the expected values of X and 

Ye at each   was calculated, then weighted across all  to create the index for the first-order 

equity criterion, denoted as E1. That is, 

 E1 = ( | ) ( | ) ( )eE Y E X


      (3.10) 

 Similarly for the second-order equity criterion, the index E2 was calculated as 

 E2 = ( | ) ( | ) ( )eY X


        (3.11) 

where  denotes standard deviation. 

 

3.8. Simulation steps within each condition 

 In each of 105 simulation conditions, after test forms were produced, the following steps 

were carried out: 
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1. Calculating 41 conditional NC score distributions of Form X and 41 conditional NC 

score distributions of Form Y at 41 values of . 

2. Calculate marginal NC score distributions of Form X and Form Y using the 

conditional distributions obtained from step 1. 

3a. Simulating data for two groups from P and Q populations, taking Form X and Form 

Y, respectively. 

3b. Performing equating using FE, CE, TS, and CE methods, resulting in four equating 

functions. 

3c. Applying the equating functions obtained from step 3b and the identity equating to 

the conditional and marginal distributions of Y to produce the distributions of equated 

score Ye. 

3d. Calculating evaluation indices EP, E, E1, and E2. 

4. Repeating steps 3a through 3d 50 times. 
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CHAPTER 4 

RESULTS 

 

This chapter presents the results obtained from the study. For completeness and 

convenience, the results are presented in both numerical and graphical forms.  

The chapter begins with a quick review of the research purpose and research questions, 

followed by a review of the evaluation indices used to evaluate equating results based on the 

equipercentile and equity criteria. A general framework for presenting the results is described 

next. After that, the results are presented. The chapter concludes with a brief summary of the 

main findings. 

 

4.1. Review of research purpose and questions 

 This study evaluated the performance of four commonly used equating methods in the 

NEAT design, using evaluation criteria related to the equipercentile and equity definitions of 

equating as presented in previous chapters. The methods under investigation are the presmoothed 

frequency estimation equipercentile (FE), the presmoothed chain equipercentile (CE), the IRT 

true score equating (TS), and the IRT observed score equating (OS). In particular, the study 

aimed to address several research questions on how those methods perform across all studying 

conditions, how difference between test forms being equated and difference between groups 

taking the test forms affect the equating results, and whether no equating should be done in some 

certain circumstances because doing equating in those cases may introduce more errors than it 

may removes. 
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4.2. Review of evaluation indices 

 The evaluation indices used in this study are based on two common definitions of 

equating. Let X and Y represent scores on the two forms to be equated. Y is equated to the scale 

of X, resulting in equated score Ye. The equipercentile definition requires the marginal 

distributions of X and Ye be identical. The equity definition requires that conditioning on ability 

, the distributions of X and Ye be identical. Two weaker forms of equity are the first-order 

equity and the second-order equity which require the equivalence of expected values and of 

standard deviations of those two conditional distributions. 

 Based on those definitions, four evaluation indices were developed and used in this study. 

They are the equipercentile index EP, the full equity index E, the first-order equity index E1, and 

the second-order equity index E2, each reflects the degree the corresponding property holds. The 

smaller the index value, the better the associated property holds. Note that although equity is 

defined at  levels, the equity-based indices (E, E1, E2) are weighted across  values for 

reporting. Analysis of variance (ANOVA) was performed to determine if investigated factors 

had significant effects. Index means for each condition over replications (i.e., cell means) were 

also computed and reported, both numerically and graphically. 

 

4.3. General framework for presenting the results 

 The results are presented centering on two main themes: (1) the overall comparison 

among the investigated methods, and (2) the effects of form and group factors on the 

performance of each method. For each theme, the ANOVA results are presented first do indicate 

if the effects were statistically significant. Then, the cell means are presented, in both numerical 
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and graphical forms, for further discussion. The cell means are presented graphically in the main 

text. Their numerical values are presented in tables in the Appendix. On those tables, for each 

index in each specific condition, the smallest index value is boldfaced to indicate the best method 

(i.e., producing the smallest index value). 

 Graphical presentations are used throughout this chapter to facilitate the presentation of 

the results for a specific focus. The same format is used in the figures (for an example, see Figure 

4.1). The vertical axis displays the mean index value (averaged over replications within each 

condition). The horizontal axis presents 105 studying conditions (21 conditions of form 

difference are fully crossed with five conditions of group difference).  The group difference 

(reflected on the mean difference between the two generating populations P and Q) increases 

from left to right, from the smallest (0) to the largest (1.0). Within each group condition, the ratio 

a between the a-parameters of Form Y unique items (YU) and of Form X unique items (XU) 

increases from left to right, form the smallest (.5) to the largest (2.0). Within each a section, 

moving from the left to the right, the difference in b parameters (b) between YU and XU 

changes from the smallest (-1.2) to the largest (1.2). Due to limited space in the figures, the 

values of b are not presented in the figures. 

 Except when the comparison is needed, the scale for the vertical axis may not be the 

same. They are modified according to the values of the index in discussion to facilitate clearer 

presentation, especially when a pattern is of interest. 

 

4.4. Overall comparison among methods 

 In this section, the overall comparison on the performance of the investigated methods is 

presented.  Repeated measures ANOVA was used for each index to compare results from 
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different methods. Repeated ANOVA was used because different equating methods were applied 

to the same data in each replication. Accordingly, equating method was treated as within-subject 

factor (or repeated factor) while group and form factors were treated as between-subject factors. 

Since the Mauchly‟s sphericity test was very significant (p <.0001) for all indices, either 

multivariate test results or ANOVA tables with adjusted significance levels could be used. 

Results from these two approaches have the same significance level. The ANOVA tables are 

presented here mainly because they allow an easier way to interpret the results, especially 

difference among methods.  

 Tables A1 through A4 in the Appendix display the repeated measures ANOVA results 

for each index. The terms „between conditions‟ and „within conditions‟, instead of „between 

subjects‟ and „within subjects‟, are used in those tables to reflect the context of the current 

analyses. As shown in those tables, difference among methods was significant for all indices 

(p<.0001). Results from Tukey‟s post-hoc analyses revealed that the methods performed 

(significantly) differently from one another for all indices. For the EP and E indices, the OS 

method performed best, followed by the TS, CE, FE, and IE methods in that order.  For the E1 

index, the order is TS, OS, CE, FE, and IE with the TS as the best. For the E2 index, the best-to-

worst order is (IE, OS, TS, CE, FE). Those results can also be seen from Tables A5 through A8 

in the Appendix, which contain values for all indices in all conditions for five methods, including 

the identity equating (IE) (i.e., no equating). The graphical presentations for the cell means, 

separately for each index, are presented next for more detailed results. All the cell means 

presented in Tables A5 through A8 in the Appendix have positive values. Accordingly, the 

corresponding curves presented in the figures do not touch the zero line although in some cases 

they are very close to the zero line. The main reason is that the index value is the absolute value 
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of difference as presented in Section 3.7.3. Therefore, the cell mean of index values is always 

positive. 

 

4.4.1. Index EP 

 The results for EP are presented in Figure 4.1 and Table A5 in the Appendix. The results 

for IE are excluded from the figure because its index values are much larger than those from 

other methods across all conditions and it would not be meaningful to present those in the figure. 

Some patterns can be seen from the figure. 

 

 

 

Across all conditions, the OS performance was the best. This observation can also be 

seen in Table A5 where the values for the OS are all boldfaced. Except for some conditions, 

especially when group difference was small, the TS method was the second best. In most of 
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Figure 4.1: Means of index EP for FE, CE, TS, and OS methods in all conditions 
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conditions, the CE method came in third, fairly close to the OS and the TS. When group 

difference existed, the FE method was the worst, producing much large index values. In the 

extreme cases when group difference was one standard deviation, the FE led to index EP values 

five times larger than those from the other methods. 

 When groups were similar, those curves stay close to one another, indicating that all 

methods performed similarly. When groups became different, those curves separate, especially 

the FE curve. The two IRT methods maintained similar difference when the groups became more 

different. The CE method slightly departed from the two IRT methods but its deviation was very 

small compared to that of the FE method. 

 There are some conditions where the CE suddenly produced much larger EP values. 

Those cases are associated with the easiest YU (b = -1.2). Another interesting observation is that 

the FE curve appears stepped while crossing different group conditions. 

 

4.4.2. Index E 

 The results for index E are presented in Figure 4.2 and Table A6. Again, the results for IE 

are excluded from the figure because of its large index values. Some patters can be seen from the 

figure. 

 A clear observation seen from Figure 4.2 is that the OS curve is almost always the lowest 

one which means that the OS performed best among the four methods when evaluated with the E 

index. This observation can also be noted from Table A6 where all values for the OS are 

boldfaced. The TS and CE methods came in very close to each other and to the OS. When group 

difference was small, it appears that the CE performed slightly better than the TS. However, 

when group became more distinct, the TS was better. 

 As in the case of the index EP, when group difference existed, the FE method produced 



62 
 

much larger E index values. Those were almost three times larger than those resulted from the 

other methods. 

 

  

When groups were similar, all four curves stay together, which means that when the 

groups did not differ, results from the four methods were very similar. When groups deviated 

from each other, the difference among the method increased. However, the increment among the 

CE, TS and OS was not very large in comparison to the difference between the FE and the rest. 

There are some conditions with the easiest YU (b = -1.2) where the CE suddenly 

produced much larger index E values as in the case of the index EP mentioned previously. Also, 

a step appearance for the FE curve is observed again while it crosses group difference conditions. 
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Figure 4.2: Means of index E for FE, CE, TS, and OS methods in all conditions 
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4.4.3. Index E1 

 The results for index E1 are presented in Figure 4.3 and Table A7. Again, the results for 

IE are excluded from the figure because of its large index values. 

 

 

 

 In almost all conditions, the TS performance was the best. In Table A7, most of values 

associated with the TS are boldfaced. The OS came in second, fairly close to the TS. In a few 

conditions, particularly when Form Y was more difficult than Form X, the OS outperformed the 

TS. The CE stayed close to the two IRT methods when group difference was small but produced 

larger index values when groups became more distinct. 

 Once again, except when groups were similar, the FE produced the largest index values 

among the four methods. In the extreme cases when group difference was one standard 
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Figure 4.3: Means of index E1 for FE, CE, TS, and OS methods in all conditions 
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deviation, the FE led to index E1 values fives time larger than those created by the other 

methods. 

 When groups were similar, those curves stay close to one another, indicating that all 

methods performed similarly. When groups become different, those curves separate, especially 

the FE curve. The two IRT methods maintained similar difference when the groups became more 

different. The CE method departed from the two IRT methods and its departure was larger when 

groups became more dissimilar. 

 Two other observations that were obtained for EP and E were also noted here. The CE 

suddenly produced much larger index E1 values in some conditions with the easiest Form Y 

(b=-1.2). The FE curve appears stepped while crossing different group conditions. 

 

4.4.4 Index E2 

 The results for index E2 are presented in Figure 4.4 and Table A8. There is a noted 

difference between Figure 4.4 and the previous figures. The curve for IE is included in the Figure 

4.4 because its index E2 values were comparable to those of the other methods. Therefore, there 

are five curves instead of four curves in the Figure 4.4. Interestingly, the IE curve appears to 

have different patterns compared to the other curves. 

 First of all, unlike the other indices, there was not a single method that performed the best 

under the E2 index across all conditions. If the OS was clearly the best under the EP and E 

indices, and the TS was dominant under the E1 index, the situation here was more complex 

although the post-hoc analysis showed that the IE method was the best. The difference among 

the methods were smaller than those for the other indices. A careful look at Table A8 in the 

Appendix reveals that the IE and OS methods were dominant in majority of the conditions. 
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The IE tended to produce smallest index E2 values when Form Y had smaller a-

parameters than those of Form X. When Form Y a-parameters were equal to or larger than those 

of Form X, the performance of those two methods depended on the difficulty of Form Y. If Form 

Y was equal to or easier than Form X, the OS performed the best. If Form Y was more difficult, 

the IE led to smaller E2 index values. 

 In general, the four investigated methods either performed equally well or worse than the 

IE method under the E2 index. The four investigated methods performed similarly across all 

conditions. Unlike in the case of the other indices, the FE method did not lead to worse E2 values 

compared to the CE, TS, and OS methods. 

 From this point on, effects of group and form differences on equating results are 

presented for each method separately. 
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Figure 4.4: Means of index E2 for FE, CE, TS, OS, and IE methods in all conditions 
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4.5. Effects of group and form factors on the performance of the FE method 

 To investigate the effects of group and form factors on the indices, the following three-

way ANOVA was used: 

( ) ( )ijkl i j k jk ijk ijklI               (4.1) 

where 

 Iijkl: index value in the condition (µi, aj, bk) for replication l 

 µ: overall mean of the index 

 i: effect of being in µi condition 

 j: effect of being in aj condition 

 k: effect of being in bk condition 

 ()jk: interaction effect of (aj, bk) condition 

 ()ijk: interaction effect of (µi, aj, bk) condition (group*form interaction) 

 ijkl: error term 

 The ANOVA results for the FE method are displayed in Table 4.1.  In order to examine 

the results in more details, cell means are displayed, in the numeric form, in the Appendix and in 

Figures 4.5 through 4.8. Note that those figures are the graphical presentation of the values 

presented in Tables A5 through A8 in the Appendix. They are used here for a clearer 

presentation. The effects of the group and form factors are examined next.  
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Table 4.1. ANOVA results for the FE method for each index 

Index Source SS df MS F Sig. 

EP 

 
µ 3425.90 4 856.47 2939.68 < .0001 

 
a 1.17 2 0.59 2.01 0.1343 

 
b 0.48 6 0.08 0.28 0.9486 

 
a*b 0.80 12 0.07 0.23 0.9971 

 
µ*a*b 7.27 80 0.09 0.31 0.9978 

 
Error 1498.99 5145 0.29 

    Total 4934.61 5249       

E 

 
µ 2250.93 4 562.73 1753.97 < .0001 

 
a 6.61 2 3.31 10.31 < .0001 

 
b 4.82 6 0.80 2.51 0.0201 

 
a*b 1.06 12 0.09 0.27 0.9931 

 
µ*a*b 76.57 80 0.96 2.98 < .0001 

 
Error 1650.70 5145 0.32 

    Total 3990.69 5249       

E1 

 
µ 3519.69 4 879.92 10033.83  < .0001 

 
a 0.63 2 0.32 3.60 0.0274 

 
b 1.54 6 0.26 2.93 0.0074 

 
a*b 0.80 12 0.07 0.76 0.6954 

 
µ*a*b 31.68 80 0.40 4.52  < .0001 

 
Error 451.19 5145 0.09 

    Total 4005.53 5249       

E2 

 
µ 184.46 4 46.12 30.05 < .0001 

 
a 377.39 2 188.70 122.97 < .0001 

 
b 109.84 6 18.31 11.93 < .0001 

 
a*b 50.99 12 4.25 2.77 0.0009 

 
µ*a*b 165.32 80 2.07 1.35 0.0221 

 
Error 7895.07 5145 1.53 

    Total 8783.07 5249       
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Figure 4.5: Means of index EP for FE method in all conditions 
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Figure 4.6: Means of index E for FE method in all conditions 
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Figure 4.8: Means of index E2 for FE method in all conditions 
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Figure 4.7: Means of index E1 for FE methods in all conditions 
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4.5.1. Group effects for the FE method 

From Table 4.1, it is clear that the group factor had statistically significant effects on all 

four indices. A closer look at the graphic reveals more details. 

Figures 4.5, 4.6, and 4.7, which present results for the EP, E, and E1 indices, respectively, 

look similar. Those curves have stepped shapes and they jump where the group condition 

changes, reflecting strong group effects.  The more different the groups were, the larger the index 

values were. In other words, when groups became more distinct, the equating results became 

worse under those indices. Except when the groups were similar, the index values were fairly 

stable within each group condition. 

However, a different story can be said about the E2 index as seen in Figure 4.8. Although 

the group factor still had effects on E2, those effects were much smaller. The E2 curve has 

completely different shape compared to those for the other indices and does not go up steeply 

when groups became more different. In other words, group difference did not have much impact 

on the values of E2. The E2 values even went down to some very small values in some 

conditions. This phenomenon will be discussed later when effects of form difference are 

examined. 

 

4.5.2. Form effects for the FE method 

The form effects can be examined by looking at the effects by a (i.e., a-parameter 

difference), by b (i.e., b-parameter difference), and by their interaction a*b in Table 4.1. As 

seen from the table, the form factor had no significant effects on EP but had strong effects on the 

other indices, both by a- and b-parameter differences. The interaction effect of a and b were 

found on E2, but not on E and E1.  
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 More details are revealed from Figures 4.5 through 4.8. Note that the differences between 

Form X and Form Y are determined by the differences between two sets of the unique items, XU 

and YU, of Form X and Form Y, respectively. Those differences were made by changing a-

parameters and b-parameters of the items in YU. Also note that in the figures, within each a 

section, the a parameters of Form Y were unchanged, only the b-parameters changed making 

Form Y more difficult when moving from the left to the right. When moving to the next a 

section, the same pattern repeats. 

 Effects of form difference can be examined by a two-step process. The first step is to 

look at the portion of the curve in each a section to see the trend when b-parameters change. 

The second step is to see if the portions in different a sections (but within a specific group 

condition or a µ section) differ. The effects of form difference are examined for each method 

and each index. 

 For the EP index (see Figure 4.5), there were some small fluctuations within a a section 

meaning that form difficulty difference did not have much impact on EP. When moving from 

one a section to another a section, the curve remains the same, which means difference in the 

a parameters did not have effects, either. These results are consistent with those seen from the 

ANOVA table (e.g., Table 4.2). 

 From Figures 4.6 and 4.7, a similar pattern can be observed for E and E1 as for EP 

presented above, except when groups were similar (i.e., µ = 0). For each a section within the 

„µ = 0‟ section, the curve has a local minimum in the middle where the b = 0 (i.e., no 

difference in form difficulty). Comparing among the three a sections, the middle one (where a 

= 1) was lowest and the left one (where a = .5) was highest. Therefore, when groups were 
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similar, equating similar forms led to the best results and a better result was obtained by using 

higher rather than lower a-parameters in the new form. 

 For E2, form effect was clearer. When groups did not differ much, using similar forms (in 

both a- and b-parameters) led to the best results. However, when group difference was large, 

using similar b-parameters with higher a-parameters in the new form was the best choice. 

 

4.5.3. Group and form interaction effects for the FE method 

As seen from Table 4.1, the interaction effects of the group and form factors were 

significant for all but the EP index. Again, more detailed can be obtained from the graphics. 

 The interactive effects can be examined by checking whether the pattern changed from 

one group condition to another. If the pattern remained the same or similar across group 

conditions, there was no interaction between form and group effects. 

 From Figure 4.5 (for EP), the pattern appeared similar across all five group conditions. 

Therefore, there was no interaction between form and group effects for EP. 

 For E (Figures 4.6) and E1 (Figure 4.7), the pattern did not change in the conditions 

where group difference existed (µ ≠ 0) but the pattern where groups were similar (µ = 0) was 

different from the other conditions. Form difference had effects when groups were similar but 

did not have effects when groups became different. 

 For E2, presented in Figure 4.8, form effects changed when group difference increased, 

especially after µ =.25. When µ ≤  .25, using similar forms led to the best results. When µ > 

.25, using Form Y with similar b-parameters as Form X and higher a-parameters resulted in 

better results. 
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4.6. Effects of group and form factors on the performance of the CE method 

 All procedures that were conducted for the FE method were also used with the other 

methods, including the ANOVA model presented in (4.1). 

 The ANOVA results for the CE method are displayed in Table 4.2. The cell means are 

presented in Figures 4.9 thorough 4.12 and in Tables A5 through A8 in the Appendix. 

 

4.6.1. Group effects for the CE method 

From Table 4.2, it is clear that the group factor had statistically significant effects on all 

four indices. A closer look at the graphic reveals more details. 

 Results for indices EP, E, E1, and E2 for the CE method are presented in Figures 4.9, 4.10, 

and 4.11, respectively. Those figures have different shapes from those for the FE method. They 

show that the curves go up slightly from the left to the right. That means when groups became 

more different, the equating results by the CE method became worse. However, the effects of 

group difference on EP and E1 were slightly stronger than on E, and much stronger than on E2. 

In summary, although the effects of the group factor were found to be significant, they 

were smaller for the CE method than for FE method. 

 

4.6.2. Form effects for the CE method 

 The ANOVA table (Table 4.2) clearly indicates that the form factors have statistically 

significant effects on all indices for the CE method. A review of Figures 4.9 through 4.12 

provides more information. 

For EP (Figure 4.9) and E1 (Figure 4.11), there are some high index values indicating 

unsatisfactory results in some conditions. Those conditions were when group difference existed, 

and Form Y was much easier than Form X (b=-1.2) and at the same time had higher a 
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Table 4.2. ANOVA results for the CE method for each index 

Index Source SS df MS F Sig. 

EP 

µ 120.54 4 30.14 338.23 < .0001 

a 24.20 2 12.10 135.83 < .0001 

b 39.75 6 6.62 74.35 < .0001 

a*b 51.51 12 4.29 48.18 < .0001 

µ*a*b 59.03 80 0.74 8.28 < .0001 

Error 458.41 5145 0.09 

  Total 753.45 5249       

E 

µ 34.04 4 8.51 38.98 < .0001 

a 177.44 2 88.72 406.43 < .0001 

b 101.92 6 16.99 77.81 < .0001 

a*b 32.25 12 2.69 12.31 < .0001 

µ*a*b 35.55 80 0.44 2.04 < .0001 

Error 1123.11 5145 0.22 

  Total 1504.31 5249       

E1 

µ 146.89 4 36.72 394.57 < .0001 

a 50.05 2 25.03 268.90 < .0001 

b 55.45 6 9.24 99.29 < .0001 

a*b 67.21 12 5.60 60.17 < .0001 

µ*a*b 90.00 80 1.12 12.09 < .0001 

Error 478.86 5145 0.09 

  Total 888.45 5249       

E2 

µ 6.34 4 1.59 3.45 0.0081 

a 489.32 2 244.66 531.69 < .0001 

b 66.91 6 11.15 24.23 < .0001 

a*b 50.74 12 4.23 9.19 < .0001 

µ*a*b 37.11 80 0.46 1.01 0.4597 

Error 2367.49 5145 0.46 

  Total 3017.91 5249 
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Figure 4.9: Means of index EP for CE method in all conditions 
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Figure 4.10: Means of index E for CE method in all conditions 
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Figure 4.12: Means of index E2 CE method in all conditions 
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Figure 4.11: Means of index E1 for CE method in all conditions 
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parameters (a = 2). Except for those conditions, the form effects on EP and E1 were not very 

strong and clear. However, from those figures, equating similar forms (in terms of a- and b-

parameters) appeared to produce good results. 

 For E (Figure 4.10) and E2 (Figure 4.12), the same observation can be made. For both 

indices, when forms were similar (a = 1, b = 0), the best results were obtained. When Form Y 

a-parameters were higher than those on Form X, the results were better than when Form Y had 

lower a-parameters. 

 

4.6.3. Group and form interaction effects for the CE method 

 The ANOVA table (Table 4.2) indicates that significant group-form interaction effects 

were found for all but E2 index. 

However, from Figures 4.9 through 4.12, except for some surprisingly high index values 

mentioned previously, it appears that the group-form interaction effects were not strong. The 

interaction effects found may have been produced by those spikes. 

 

4.7. Effects of group and form factors on the performance of the TS method 

 The ANOVA results for the TS method are displayed in Table 4.3. The cell means are 

presented in Tables A5 through A8 in the Appendix. They are also graphically displayed in 

Figures 4.13 thorough 4.16. 

 

4.7.1. Group effects for the TS method 

 The ANOVA table (Table 4.3) clearly indicates that the group factor did not have 

statistically significant effect on all indices for the TS method. This result can be verified by the 

graphical presentation in Figures 4.13 through 4.16. Although the shapes and the index values 
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Table 4.3. ANOVA results for the TS method for each index 

Index Source SS df MS F Sig. 

EP 

µ 0.52 4 0.13 1.18 0.3195 

a 4.75 2 2.38 21.42 < .0001 

b 19.45 6 3.24 29.22 < .0001 

a*b 4.73 12 0.39 3.56 < .0001 

µ*a*b 4.20 80 0.05 0.47 0.9981 

Error 570.62 5145 0.11 

  Total 604.28 5249       

E 

µ 0.84 4 0.21 1.61 0.1699 

a 237.21 2 118.61 901.90 < .0001 

b 116.31 6 19.39 147.41 < .0001 

a*b 19.40 12 1.62 12.30 < .0001 

µ*a*b 3.98 80 0.05 0.38 0.9975 

Error 676.60 5145 0.13 

  Total 1054.35 5249       

E1 

µ 1.31 4 0.33 1.82 0.1223 

a 15.24 2 7.62 42.45 < .0001 

b 6.92 6 1.15 6.43 < .0001 

a*b 4.77 12 0.40 2.22 0.0089 

µ*a*b 10.58 80 0.13 0.74 0.9618 

Error 923.20 5145 0.18 

  Total 962.02 5249       

E2 

µ 3.26 4 0.82 1.48 0.2066 

a 507.11 2 253.55 458.98 < .0001 

b 216.22 6 36.04 65.23 < .0002 

a*b 47.89 12 3.99 7.22 < .0003 

µ*a*b 4.93 80 0.06 0.11 0.9999 

Error 2842.26 5145 0.55 

  Total 3621.67 5249       
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Figure 4.13: Means of index EP for TS method in all conditions 
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Figure 4.14: Means of index E for TS method in all conditions 
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Figure 4.16: Means of index E2 for TS method in all conditions 
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Figure 4.15: Means of index E1 for TS method in all conditions 
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for the curves in those figures are not the same, they share one common pattern. That is the 

curves do not change when group difference changed. In other words, group difference had no 

effects on equating results of the TS methods evaluated by the four indices. 

 

4.7.2. Form effects for the TS method 

 As seen from Table 4.3, the form effects were statistically significant. The interaction 

effects of a and b were also significant. More details are obtained from the figures. 

Similar conclusions can be made for E and E2 (see Figures 4.14 and 4.16). The best 

results were obtained when forms were similar (in terms of both a- and b-parameters). When 

Form Y a-parameters were higher than those on Form X, the results were better than otherwise. 

 For EP (Figure 4.13), the best results were obtained if the two forms had similar b-

parameters unless Form Y a-parameters were smaller than those of Form X. 

 For E1 (Figure 4.15), the pattern was more complicated. Nevertheless, using similar 

forms still led to the best results. When a-parameters on the two forms differed, the results were 

worse no matter which form had higher a-parameters. 

 

4.7.3. Group and form interaction effects for the TS method 

 The ANOVA did not find significant group-form interaction effects (see Table 4.3). 

Figures 4.13 through 4.16 display similar patterns in all group conditions, indicating that for the 

TS methods, there were no interaction effect between the group and form factors. 

 

4.8. Effects of group and form factors on the performance of the OS method 

 The ANOVA results for the OS method are displayed in Table 4.4. The cell means are 

presented in Tables A5 through A8 in the Appendix and in Figures 4.17 thorough 4.20. 
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Table 4.4. ANOVA results for the OS method for each index 

Index Source SS df MS F Sig. 

EP 

µ 0.41 4 0.10 1.81 0.1233 

a 1.15 2 0.58 10.18 < .0001 

b 4.81 6 0.80 14.13 < .0001 

a*b 2.58 12 0.21 3.79 < .0001 

µ*a*b 1.44 80 0.02 0.32 0.9979 

Error 291.70 5145 0.06 

  Total 302.09 5249       

E 

µ 0.76 4 0.19 1.78 0.1292 

a 185.12 2 92.56 866.21 < .0001 

b 67.61 6 11.27 105.45 < .0001 

a*b 11.84 12 0.99 9.23 < .0001 

µ*a*b 2.34 80 0.03 0.27 0.9981 

Error 549.78 5145 0.11 

  Total 817.45 5249       

E1 

µ 1.12 4 0.28 1.55 0.1836 

a 36.79 2 18.39 102.37 < .0001 

b 25.15 6 4.19 23.33 < .0001 

a*b 16.43 12 1.37 7.62 < .0001 

µ*a*b 10.52 80 0.13 0.73 0.9651 

Error 924.48 5145 0.18 

  Total 1014.49 5249       

E2 

µ 1.42 4 0.35 1.56 0.1832 

a 413.51 2 206.76 909.30 < .0001 

b 100.22 6 16.70 73.46 < .0001 

a*b 23.52 12 1.96 8.62 < .0001 

µ*a*b 3.07 80 0.04 0.17 0.9999 

Error 1169.87 5145 0.23 

  Total 1711.61 5249       
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Figure 4.17: Means of index EP for OS method in all conditions 
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Figure 4.18: Means of index E for OS method in all conditions 
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Figure 4.19: Means of index E1 for OS method in all conditions 
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Figure 4.20: Means of index E2 for OS method in all conditions 
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4.8.1. Group effects for the OS method 

 Like the TS method, results from the OS method were not affected by the group factor. 

Table 4.5 clearly shows that the group effects were not statistically significant. 

In Figures 4.17 through 4.20, which present results for the OS method, the curves do not 

change their shape when moving from one group condition to another. Therefore, it is obvious 

that group difference did not have effects on equating results of the OS methods evaluated by the 

four indices. 

 

4.8.2. Form effects for the OS method 

 As seen from Table 4.4, the form effects were statistically significant. The interaction 

effects of a and b were also significant. More details are obtained from the figures. 

 A review of Figures 4.18, 4.17 and 4.20 reveals more information. When similar forms 

were used, the best results were produced. When Form Y a-parameters were higher than those on 

Form X, the results were better than otherwise. 

 For EP (Figure 4.17), using forms with similar b-parameters resulted in the best results as 

long as Form Y a-parameters were not smaller than those on Form X.  

 

4.8.3. Group and form interaction effects for the OS method 

 It is clear from Table 4.4 that the group-form interaction effects were not statistically 

significant. Figures 4.17 through 4.20 display similar patterns in all group conditions, indicating 

that for the OS methods, there were no interaction effect between the group and form factors. 

 

4.9. To equate or not to equate? 

 The IE method (i.e., identity equating or no equating) was used in this study to determine 

if there was any condition among those studied when no equating would be the best choice. It 
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came from a concern that sometimes, equating might introduce more errors than it can remove. 

In such a case, using the directly observed score Y instead of the equated score Ye would be 

better.  

 In order to address this issue, the IE was used as a regular equating and its index values 

were calculated for all conditions. Those results are included in Tables A1 through A4 in the 

Appendix. The IE results were also used in the ANOVA procedure comparing equating methods 

presented in Table 4.1. As previously mentioned, the IE performed poorly in terms of the EP, E, 

and E1 indices. Therefore, in all conditions used in this study, if equating results were evaluated 

using either EP, E, or E1 index, the IE should not have been recommended. In other words, doing 

equating was absolutely better than not equating at all. Even using the FE method, which was the 

worst method among those used in this study, would have led to better results than using the IE 

method. 

 However, there is an exception. The IE surprisingly produced comparable values for E2 

as discussed previously. In fact, the IE method produced the best in terms of the E2 index. A 

closer look at the cell means, presented in Table A1 through A4, reveals that the IE outperformed 

the other methods when Form Y had smaller a-parameters than Form X. Therefore, if the 

equating purpose is to satisfy the second-order equity, which is associated with E2, then not 

equating would be preferred. 

 

4.10. Summary 

 In the Table 4.5, some main results are presented. When groups were similar, all four 

methods performed similarly. When groups became distinct, results produced by different 

methods were different to various degrees. The overall performance of the four investigated 
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methods are ranked for each index. The best method is ranked number 1, the next is number 2, 

and so on. Based on the results presented above, the OS was ranked the best in three indices EP, 

E, and E2 while the TS method outperformed the others in terms of the index E1. The FE method 

was ranked last due to its higher index values. The CE method, although ranked third in all 

indices, performed fairly well, coming close to the two IRT methods. 

 

Table 4.5. Summary of major results 

_____________________________________________________________________________ 

 Factor Effects (**) 

 __________________________________________________ 

 Overall Performance (*) Form Group Form * Group 

 _________________ _______________ _______________ ______________ 

Index FE CE TS OS FE CE TS OS  FE CE TS OS  FE CE TS OS 

 _____________________________________________________________________________ 

EP 4 3 2 1 N Y Y Y Y Y N N N Y N N 

E 4 3 2 1 Y Y Y Y  Y Y N N Y Y N N 

E1 4 3 1 2 Y Y Y Y  Y Y N N Y Y N N 

E2 4 3 2 1 Y Y Y Y  Y Y N N Y N N N 

_____________________________________________________________________________ 

Note. (*) number representing the ranking where 1 is the best, 4 is the worst 

(**) Y: yes, N: no 

 

 Table 4.5 also summarizes the results on the effects of form difference and group 

difference as well as their interactive effects. In the table under the Factor Effect heading, a Y 

(yes) indicates a significant effect and a N (no) indicates non-significant effect. Form difference 

was found to have effects on equating results under different indices except for EP in the case of 

the FE method. In general, equating similar forms tended to produce the best results. Effects of 
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group difference were found for the OSE methods (FE and CE) but not for the IRT methods (TS 

and OS). Small interactive effects of form and group difference were found for the FE method 

for the equity indices (E, E1 and E2). 

 This chapter presents the results obtained from this study. Those results will be discussed 

in more details in the next chapter where practical implications of the obtained results will also 

be addressed. In addition, the next chapter will present some perceived limitations of the study. 

Some related issues will also be presented along with recommendations for further studies. 
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CHAPTER 5 

SUMMARY AND DISCUSSION 

 

In this final chapter, the overall structure of the study is briefly reviewed, followed by the 

summary of major findings. The discussion of the results will be provided next. The subsequent 

sections are reserved for the recommendations, limitations of the study, and ideas for further 

research. 

 

5.1. Brief overview of the study 

 Testing programs often use multiple test forms of a single test due to test security and 

exposure concerns. Despite the efforts to make them parallel, these forms are usually not parallel 

and their sores cannot be used directly before being adjusted to be comparable. Equating is a 

statistical process of making scores from different test forms of the same test comparable. 

However, this definition does not explicitly state what it means for the scores to be comparable. 

Therefore, an operational definition of equating is needed and the equating results must be 

evaluated by the criteria directly linked to the adopted operational definition. 

 This study used the criteria derived from two common operational definitions of equating 

to evaluate results from some equating methods in the NEAT design. The two operational 

definitions of equating used in this study are called the equipercentile and the equity definitions 

in the literature. The equipercentile definition requires that the distributions of scores on the two 

test forms being equated be the same after equating. The equity definition requires that 

conditioning on ability , the distributions of scores on the two forms be the same after equating. 

Four evaluation indices based on the two definitions were used: (1) the equipercentile index EP, 
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(2) the full equity index E, (3) the first-order equity index E1, and (4) the second-order equity 

index E2. 

 Four commonly used equating methods were evaluated: (1) the presmoothed frequency 

estimation equipercentile equating (FE), (2) the  chain equipercentile equating (CE), (3) the IRT 

true score equating (TS), and (4) the IRT observed score equating (OS). In addition, the identity 

equating (i.e., no equating) (IE) was also employed to determine if there is any situation where 

not equating at all is even better than equating. 

 The IRT 3PL model was used to simulate the data and to compute the evaluation indices. 

Two factors were varied in this study. The first factor was the difference between the test forms, 

which was manipulated by changing the a- and b-parameters of the new form. The second factor 

was the difference in ability of the two groups taking the two test forms. This factor was 

manipulated by changing the population mean of the ability  for the group who took the new 

form. 

 A summary and discussion of major results, centering on the research questions presented 

in Chapter 1, are provided next. 

 

5.2. Summary of major findings 

 Detailed results were presented in the previous chapters. Some major results are 

presented here. 

 

5.2.1. Overall performance 

 When groups were similar in the ability measured by the test, the four methods produced 

similar results, evaluated by the values of all four indices. When group difference 

increased, the results produced by different methods diverged, especially in terms of the 
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EP, E, and E1 indices. The difference in terms of the E2 index was not large even when 

groups became dissimilar. 

 In general, the OS method outperformed the others in regarding to the EP and E indices 

across all studying conditions. The TS method produced the smallest values of the E1 

index in almost all conditions. However, the difference between these two IRT methods 

was small. Surprisingly, the IE method produced the best results in terms of the E2 index 

although the results from the OS method were close. 

 Between the two OSE methods, the CE method produced much better results and they 

were close to those from the two IRT methods. 

 The FE method produced the worst results. Its values for the EP, E, and E1 indices were 

far higher than those from the other three methods. 

 

5.2.2. Effects of form difference 

 Form difference had clear effects on all methods with all indices. When test forms were 

dissimilar (the new form was either easier or more difficult than the old form), the 

equating results became worse. 

 

5.2.3. Effects of group difference 

 For the two IRT methods, group difference did not have clear effects. When the groups 

became dissimilar, the index values produced by those methods did not change. 

 The two observed OSE methods (FE and CE) were clearly affected by group difference. 

Larger group differences led to larger index values. The impacts of group difference were 

much stronger for the FE method than for the CE method. 
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5.2.4. Interaction effects of form difference and group difference 

 No group-form interaction effects were found for the IRT methods.  

 Although significant group-form interaction effects were found for the FE and CE 

methods, those had small magnitudes. 

 

5.2.5. To equate or not to equate? 

 The identity equating (IE) method produced huge values of the EP, E, and E1 indices 

compared to those from the four investigated methods.  

 For the E2 index, the IE method produced values either equal to or better than those from 

the other methods. 

 

5.3. Discussion of the results 

 In this section, the obtained results are discussed in more details. Again, the discussion is 

organized around the research questions. 

 

5.3.1. Overall performance 

 The finding that when groups were similar all four equating methods produced similar 

results was not unexpected. Research has already shown that different equating methods tend to 

lead to comparable results when the groups taking the forms come from the same or similar 

populations (Kolen & Brennan, 2004; Sinharay & Holland, 2007; Wang et al., 2008). When 

groups are distinct, group difference may produce confounding effects with form difference 

making equating, which is supposed to adjust for form difference, more complicated. Different 

methods behave differently in these situations. Each method makes, either implicitly or 
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explicitly, some assumptions which may be violated to various degrees when groups are 

different, leading to various results. 

 It is reasonable that the two IRT methods were found to perform well compared to the 

two OSE methods. The same IRT model was used for data simulation, IRT equating, and for 

producing the population distributions of scores, which were used to compute the index values. 

This gave the two IRT methods advantages. 

 It was also expected that the TS method outperformed the others in regarding to the E1 

index. The TS method is based on matching the true scores on the two forms which share the 

same . The true score is in fact the expected score at a given . Matching two expected values 

with the same  is the first-order equity property, which is evaluated by the index E1. In other 

words, the purpose of the TS equating is perfectly matched with the property associated with the 

E1 index. That explains why the TS was found to be the best method to satisfy the first-order 

equity. 

 The OS method is the equipercentile equating on two distributions which were produced 

in the same way the population distributions of scores on two forms were produced for 

computing the index EP. Therefore, it is explainable why the OS was found the best method in 

regarding to the EP index. Perhaps for the same reason, the OS performed well in regarding to 

the full equity index E, which was calculated based on the same model used by the OS method. 

 Between the two OSE methods, research has found that the CE tends to produce better 

results than the FE, especially when groups differ (Wang et al., 2008). This result was confirmed 

again in this study. 
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5.3.2. Effects of form difference 

Equating is supposed to adjust for unintended form difference. The degree to which this 

adjustment can be made depends on how large the difference is. The form difference cannot be 

as large as possible and the equating is still able to adjust for it. There must be some point where 

the equating can no longer adjust for the form difference, simply because the difference is too 

large to be adjusted. Research has found that although equating is used to adjust for form 

difference, it works best when the forms are similar, and larger form difference tends to result in 

larger equating errors (Kolen & Brennan, 2004; von Davier et al., 2004b). This was confirmed 

again in this study. In an equating study using evaluation indices associated with the 

equipercentile and equity definitions, Tong and Kolen (2005) also found that the evaluation 

index values increased when form difference increased. 

 

5.3.3. Effects of group difference 

In the IRT framework, the item parameters are assumed to be population invariant. In 

other words, they are assumed to remain unchanged across different examinee populations. The 

TS method is conducted using only item parameters. Thus, its results are not affected by group 

difference. 

The OS method uses the estimated  distribution (from empirical data) of the target 

population and the assumed IRT model to produce two marginal score distributions and then 

conducts a regular equipercentile equating on those distributions. The evaluation indices were 

calculated using the distributions of X and Y as presented in Section 3.7 of Chapter 3. Those 

distributions are also produced from the assumed IRT model and the theoretical  distribution of 

the target population. The difference between the two  distributions, one used in the OS method 

and one used in computing the indices, is that the former is estimated from empirical data and the 
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latter is theoretically hypothesized. The latter was also used to simulated data in this study. 

Therefore, is it reasonable to assume that those two  distributions are close. This and the fact 

that the same IRT model was used in the OS method and in the computation of the indices may 

be one reason why group differences had no clear effect on the OS results. More research is 

needed to shed more lights on this issue. 

For the two OSE methods, the results were affected by group differences but to different 

degrees. The CE method was affected less than the FE method. Although the CE method consists 

of two equating steps, from Y to A and from A to X, it does not make any strong assumption. The 

FE, on the other hand, makes a strong assumption about the equality of the conditional 

distributions in the two involved populations (Section 2.3.2 in Chapter 2). When group 

difference is substantial, this assumption may not hold. This can be illustrated as follows. 

Let ( )Gf  be the distribution of  and | . ( , | )XA Gf x a   be the joint conditional 

distribution of X and A in a population G. The distribution of X conditioning on A in G is 

| .

| .

| .

( , | ) ( )
( | )

( | ) ( )

XA G G

X A G

A G G

f x a df
f x a

f a df





 

 




 (5.1) 

It is obvious from the equation (5.1) that | . ( | )X A Gf x a depends on ( )Gf  , which means 

that | . ( | )X A Gf x a is not likely to be population invariant. In other words it is likely that 

| . | .( | ) ( | )X A P X A Qf x a f x a  (5.2) 

| . | .( | ) ( | )Y A P Y A Qf y a f y a
  (5.3) 
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if P and Q are different. Therefore, the assumptions made in the FE method (i.e., equations (2.5) 

and (2.6) in Chapter 2) may not hold. This may explain why the FE performed poorly compared 

to the CE method when groups were different. 

 

5.3.4. Interactive effects of form difference and group difference 

 In the NEAT design, there are two sources of differences that need to be adjusted. The 

equating process is supposed to adjust for form difference. The group difference is supposed to 

be adjusted by a set of common items (or anchor). Those two sources of difference are 

confounded and may create interactive effects on equating results. In this study, the interactive 

effects were not found. That can be explained by looking at the quality of the anchor. The anchor 

was created in such as way that it was a mini-version of the two test forms in terms of statistical 

characteristics with a reasonable length (i.e., one third of the total test). In other words, the 

anchor used in this study was fairly ideal. As a result, it performed well in adjusting group 

differences. This may explain why the interactive effects between form difference and group 

difference were either small (in case of the OSE methods) or not founded (in case of the IRT 

methods) in this study. 

 

5.3.5. To equate or not to equate? 

 The IE method was used in this study to see if there was any condition when not doing 

equating would be a good solution. The IE produced large values for the indices EP, E, and E1. 

Therefore, if those indices are used to evaluate equating results, the IE is not recommended. In 

other words, doing equating is always, in the conditions of this study, better than not doing 

equating at all. 
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 When it comes to using the index E2 to evaluate the equating results, the IE method may 

be a good choice because it produced E2 values either equal to or better than those from other 

methods. However, as recommended by Harris and Crouse (1993), the second-order equity 

should not be used alone but in combination with the first-order equity. If this recommendation is 

followed, the IE method is no longer preferred because it produced huge values for E1 index, 

which is associated with the first-order equity. Combining E1 and E2 would render the IE method 

unacceptable. 

 

5.3.6. Order effect of a-parameter difference 

 In several cases, it appears that the direction of a-parameter difference between the two 

forms has effects on equating results. Particularly, in those cases, index values tend to be smaller 

when Form Y a-parameters are larger than those of Form X. To investigate this issue further, two 

special cases were selected and equating was conducted in both directions: from Y to X, and 

from X to Y. Results are presented in Figure B in the Appendix. For each case, two figures are 

presented, one for each equating direction.  Those figures seem to be mirrored to each other. 

From these results, it seems that equating a form with larger a-parameters (i.e., more reliable) to 

a form with smaller a-parameters (i.e., less reliable) would results in smaller errors than the 

conducting equating in the opposite direction. Apparently, more research needs to be conducted 

to shed more lights in this issue. 

 

5.3.7. Unusual high index values for CE method 

 As seen from Figures 4.9 and 4.11, there are some unusually high values of EP and E1 in 

the CE method. Those spikes are associated with µ > 0, a = 2, and b = -1.2. In other words, 

in those conditions, the new form was much easier and more reliable than the old form but was 
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taken by a more able group (group Q). That might have produced a huge difference between two 

score distributions of the two forms. This may be a reason for those spiked values. It is desirable 

that more research needs to be done to further understand the reasons of those unusual values. 

 

5.4. Recommendations 

 Results from this study have some practical implications on equating, especially in the 

NEAT design. Some recommendations on selecting appropriate equating methods in the NEAT 

design and on communicating equating results are made as follows. 

 

5.4.1. Recommendation on the selection of equating methods in the NEAT design 

 Group difference should be assessed before the selection of equating methods. The 

magnitude of group difference can be determined by comparing scores of the two groups 

on the common items. 

 If groups are similar, either FE, CE, TS, or OS method can be used. 

 When groups are different, the FE method is not recommended. The results obtained in 

this study show that even when the group difference is one fourth of the standard 

deviation, the index values are more than one score point for the FE method which 

suggests that it should not be used. The IRT methods, especially the OS method, are 

highly recommended. If satisfying the first-order equity is the priority, the TS method is 

the best choice. The CE method can also be used if the group difference is not too large. 

The use of IRT method may require some strong assumptions such as unidimensionality. 

Some researchers argued that in practical situations, tests are multidimensional (Reckase, 

1985; Reckase & McKinley, 1991). However, the unidimensional model is believed to be 

somewhat robust to some violations of the unidimensionality assumption (Reckase, 1979; 
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Thissen, Wainer, & Thayer, 1994). Therefore, unless there are strong reasons to switch to 

multidimensional models, unidimentional IRT equating is suitable. 

 When form difference is substantial, it is recommended that various methods should be 

used and the results be compared before the final decision is made. 

 

5.4.2. Recommendation on the communication of equating results 

 Equating reports should explicitly state the operational definitions of equating that was 

adopted and how it was determined if the results were accurate relative to the selected 

definitions. 

 The Standards (AERA, APA, NCME) should clarify how the equating accuracy is 

evaluated and require this information be reported to the clients by the organizations that 

conduct equating. 

 

5.5. Limitations 

Any study has limitations and this dissertation is not an exception. Several limitations are 

perceived and listed as follows: 

 Only simulated data were used in this study. Although using simulated data allows the 

factor manipulation, the applicability of the obtained results to real data remains 

somewhat unclear. 

 Some important factors which were found to have significant impacts on equating, 

especially in the NEAT design, were not studied. Among those are anchor characteristics, 

test length, sample size, IRT linking method, and presmoothing technique. 

 The study depended heavily on an IRT model. The 3PL model was used to simulate data 

and to produce the population distributions of scores on two test forms for calculating the 
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evaluation indices. This may have given the IRT methods advantages. In addition, the 

selected IRT model was assumed to be true so the conclusions are limited to the 

situations in which the IRT model fits the data. 

 Within each condition, two test forms were fixed across replications while in practice test 

forms are constantly changed. The main purpose for fixing the test forms in each 

condition was to eliminate random errors due to sampling items for test forms in each 

replication. To determine if using randomly generated forms would have led to different 

results, additional simulations were conducted for four extreme conditions where form 

and group differences were largest. For each replication, Form X and Form Y were 

randomly created by sampling their item parameters from the corresponding distributions 

according to the condition specifications. The results from using random forms, along 

with those from using fixed forms, are presented in Table A9 in the Appendix. The 

notable differences in the results from the two approaches suggest that using random 

forms should be considered in future research. 

 This study assumed that tests are unidimensional (i.e., measuring a single latent ability). 

In practice, tests tend to be multidimensional. For example, a mathematical test can 

measure both mathematical and verbal abilities. When tests are multidimensional, an 

equating framework which takes into account the nature of multimendionality should be 

used. 

 

5.6. Directions for future research 

Some directions for future research have been planned as follows 

 Extend the current study to examine effects of other important factors such as anchor 

characteristics, test length, sample size, IRT linking method, presmoothing technique, 
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and other equating methods  such as linear equating, local equating (van der Linden, 

2010), kernel equating (von Davier et al., 2004a), and modified FE (Wang & Brennan, 

2009). 

 Investigate effects of equating direction to see if equating a more reliable form to a less 

reliable form results in smaller errors than the opposite direction. 

 Investigate the possible relationship between the framework used in this study and the 

concept of population invariance in equating (Holland & Dorans, 2006). 

 Extend the study to multidimentional tests (Reckase, 2009). 

 Apply the current research framework to real data. 
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Table A1. Repeated ANOVA results for index EP
 (a)

 

 
Adjusted Sig. 

Source SS df MS F Sig. G-G
(b)

 H-F
(c)

 

Between conditions 
    

 
 

 

 707.45 4 176.86 439.72 <.0001 
 

 

a 1012.00 2 506.00 1258.04 <.0001 
 

 

b 6674.74 6 1112.46 2765.82 <.0001 
 

 

*a 5.21 8 0.65 1.62 0.1141 
 

 

*b 55.32 24 2.31 5.73 <.0001 
 

 

a*b 793.24 12 66.10 164.35 <.0001 
 

 

*a*b 46.74 48 0.97 2.42 <.0001 
 

 

Error 2069.40 5145 0.40 
 

 
 

 

Within conditions 
    

 
 

 

method 89735.51 4 22433.88 58849.10 <.0001 <.0001 <.0001 

method 2967.17 16 185.45 486.47 <.0001 <.0001 <.0001 

method*a 3395.39 8 424.42 1113.36 <.0001 <.0001 <.0001 

methodb 23259.46 24 969.14 2542.28 <.0001 <.0001 <.0001 

method**a 66.70 32 2.08 5.47 <.0001 <.0001 <.0001 

method**b 203.52 96 2.12 5.56 <.0001 <.0001 <.0001 

method*a*b 2452.11 48 51.09 134.01 <.0001 <.0001 <.0001 

method**a*b 118.52 192 0.62 1.62 <.0001 0.0004 0.0003 

Error (method) 7845.31 20580 0.38 
 

 
 

 

Total 141407.80 26249 
  

 
 

 

Note. (a) The multivariate tests are significant at the same level. 

(b) Greenhouse-Geisser Epsilon = 0.4225 

(c) Huynh-Feldt Epsilon = 0.4312 
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Table A2. Repeated ANOVA results for index E
 (a)

 

 
Adjusted Sig. 

Source SS df MS F Sig. G-G
(b)

 H-F
(c)

 

Between conditions        

 327.89 4 81.97 65.13 <.0001 
 

 

a 950.82 2 475.41 377.73 <.0001 
 

 

b 8079.97 6 1346.66 1069.97 <.0001 
 

 

*a 10.59 8 1.32 1.05 0.3941 
 

 

*b 50.05 24 2.09 1.66 0.0231 
 

 

a*b 911.60 12 75.97 60.36 <.0001 
 

 

*a*b 34.07 48 0.71 0.56 0.9935 
 

 

Error 6475.51 5145 1.26 
 

 
 

 

Within conditions 
    

 
 

 

method 77813.63 4 19453.41 15631.10 <.0001 <.0001 <.0001 

method 2087.78 16 130.49 104.85 <.0001 <.0001 <.0001 

method*a 3837.49 8 479.69 385.43 <.0001 <.0001 <.0001 

methodb 21392.96 24 891.37 716.23 <.0001 <.0001 <.0001 

method**a 108.89 32 3.40 2.73 <.0001 0.0021 0.002 

method**b 217.11 96 2.26 1.82 <.0001 0.0038 0.0035 

method*a*b 2410.33 48 50.22 40.35 <.0001 <.0001 <.0001 

method**a*b 104.49 192 0.54 0.44 1.0000 1.0000 1.0000 

Error (method) 25612.55 20580 1.24 
 

 
 

 

Total 150425.73 26249 
  

 
 

 

Note. (a) The multivariate tests are significant at the same level. 

(b) Greenhouse-Geisser Epsilon = 0.3195 

(c) Huynh-Feldt Epsilon = 0.3260 
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Table A3. Repeated ANOVA results for index E1
 (a)

 

 
Adjusted Sig. 

Source SS df MS F Sig. G-G
(b)

 H-F
(c)

 

Between conditions        

 715.01 4 178.75 417.35 <.0001 
 

 

a 1142.13 2 571.07 1333.32 <.0001 
 

 

b 6922.09 6 1153.68 2693.60 <.0001 
 

 

*a 8.08 8 1.01 2.36 0.0157 
 

 

*b 52.14 24 2.17 5.07 <.0001 
 

 

a*b 824.59 12 68.72 160.44 <.0001 
 

 

*a*b 61.92 48 1.29 3.01 <.0001 
 

 

Error 2203.63 5145 0.43 
 

 
 

 

Within conditions 
    

 
 

 

method 95408.05 4 23852.01 64200.70 <.0001 <.0001 <.0001 

method 3083.11 16 192.69 518.66 <.0001 <.0001 <.0001 

method*a 3143.25 8 392.91 1057.56 <.0001 <.0001 <.0001 

methodb 22349.48 24 931.23 2506.52 <.0001 <.0001 <.0001 

method**a 88.74 32 2.77 7.46 <.0001 <.0001 <.0001 

method**b 215.94 96 2.25 6.05 <.0001 <.0001 <.0001 

method*a*b 2522.67 48 52.56 141.46 <.0001 <.0001 <.0001 

method**a*b 122.78 192 0.64 1.72 <.0001 <.0001 <.0001 

Error (method) 7645.93 20580 0.37 
 

 
 

 

Total 146509.53 26249 
  

 
 

 

Note. (a) The multivariate tests are significant at the same level. 

(b) Greenhouse-Geisser Epsilon = 0.4033 

(c) Huynh-Feldt Epsilon = 0.4116 
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Table A4. Repeated ANOVA results for index E2
 (a)

 

 
Adjusted Sig. 

Source SS df MS F Sig. G-G
(b)

 H-F
(c)

 

Between conditions        

 22.98 4 5.75 3.99 0.0031 
 

 

a 1393.21 2 696.61 483.39 <.0001 
 

 

b 418.29 6 69.71 48.38 <.0001 
 

 

*a 13.97 8 1.75 1.21 0.2872 
 

 

*b 45.26 24 1.89 1.31 0.1432 
 

 

a*b 182.99 12 15.25 10.58 <.0001 
 

 

*a*b 8.27 48 0.17 0.12 1 
 

 

Error 7414.32 5145 1.44 
 

 
 

 

Within conditions 
    

 
 

 

method 379.63 4 94.91 280.15 <.0001 <.0001 <.0001 

method 179.06 16 11.19 33.03 <.0001 <.0001 <.0001 

method*a 531.04 8 66.38 195.94 <.0001 <.0001 <.0001 

methodb 244.42 24 10.18 30.06 <.0001 <.0001 <.0001 

method**a 24.27 32 0.76 2.24 <.0001 0.0032 0.003 

method**b 84.73 96 0.88 2.61 <.0001 <.0001 <.0001 

method*a*b 370.52 48 7.72 22.79 <.0001 <.0001 <.0001 

method**a*b 41.39 192 0.22 0.64 1.000 0.9978 0.998 

Error (method) 6972.07 20580 0.34 
 

 
 

 

Total 18326.42 26249 
  

 
 

 

Note. (a) The multivariate tests are significant at the same level. 

(b) Greenhouse-Geisser Epsilon = 0.4964 

(c) Huynh-Feldt Epsilon = 0.5066 
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Table A5. Means of index EP for five equating methods in all conditions 

a b 

  µ = 0   µ = 0.25 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

0.54 0.43 0.50 0.40 6.35 

 

1.45 0.46 0.52 0.39 5.91 

-0.8 

 

0.45 0.40 0.47 0.36 4.59 

 

1.38 0.42 0.54 0.38 4.25 

-0.4 

 

0.42 0.36 0.46 0.33 3.10 

 

1.38 0.39 0.47 0.34 2.91 

0 

 

0.44 0.40 0.44 0.36 2.34 

 

1.35 0.41 0.49 0.37 2.34 

0.4 

 

0.44 0.37 0.47 0.37 2.72 

 

1.44 0.41 0.49 0.36 2.91 

0.8 

 

0.46 0.40 0.51 0.38 4.19 

 

1.36 0.42 0.48 0.37 4.50 

1.2 

 

0.44 0.38 0.52 0.35 6.12 

 

1.28 0.41 0.56 0.35 6.49 

  

 

          

 

          

1 

-1.2 

 

0.48 0.42 0.52 0.38 9.08 

 

1.44 0.46 0.51 0.38 8.77 

-0.8 

 

0.45 0.39 0.42 0.34 6.54 

 

1.42 0.41 0.42 0.35 6.36 

-0.4 

 

0.48 0.35 0.34 0.31 3.63 

 

1.42 0.38 0.35 0.31 3.56 

0 

 

0.41 0.34 0.31 0.29 0.51 

 

1.39 0.35 0.33 0.31 0.50 

0.4 

 

0.34 0.27 0.33 0.27 2.77 

 

1.46 0.30 0.34 0.29 2.75 

0.8 

 

0.47 0.35 0.44 0.32 5.89 

 

1.45 0.39 0.41 0.31 5.93 

1.2 

 

0.47 0.37 0.57 0.34 8.73 

 

1.50 0.38 0.55 0.35 8.86 

  

 

          

 

          

2 

-1.2 

 

0.50 0.43 0.54 0.39 10.85 

 

1.45 1.54 0.53 0.40 10.57 

-0.8 

 

0.41 0.37 0.45 0.33 7.99 

 

1.41 0.44 0.45 0.35 7.92 

-0.4 

 

0.40 0.35 0.40 0.33 4.65 

 

1.42 0.43 0.41 0.33 4.74 

0 

 

0.37 0.28 0.34 0.25 2.15 

 

1.41 0.36 0.34 0.25 2.17 

0.4 

 

0.35 0.31 0.41 0.30 3.60 

 

1.42 0.31 0.42 0.29 3.39 

0.8 

 

0.42 0.33 0.48 0.31 7.24 

 

1.45 0.37 0.48 0.30 7.07 

1.2 

 

0.45 0.39 0.65 0.37 10.51 

 

1.41 0.41 0.61 0.36 10.53 

                          

Note. Boldface represents an equating method that produces the smallest value of EP in a 

specific condition. 
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Table A5. (cont‟d) 

a b 

  µ = 0.50   µ = 0.75 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

1.83 0.48 0.47 0.40 5.47 

 

2.33 0.59 0.53 0.39 5.05 

-0.8 

 

1.87 0.52 0.49 0.36 3.93 

 

2.38 0.56 0.43 0.36 3.64 

-0.4 

 

1.89 0.44 0.44 0.34 2.75 

 

2.38 0.55 0.44 0.34 2.64 

0 

 

1.89 0.49 0.47 0.37 2.38 

 

2.35 0.55 0.46 0.39 2.45 

0.4 

 

1.90 0.45 0.49 0.39 3.11 

 

2.32 0.58 0.50 0.38 3.30 

0.8 

 

1.83 0.47 0.50 0.38 4.79 

 

2.39 0.54 0.50 0.38 5.03 

1.2 

 

1.90 0.44 0.52 0.35 6.81 

 

2.37 0.51 0.50 0.33 7.07 

  

 

          

 

          

1 

-1.2 

 

1.89 0.57 0.53 0.41 8.39 

 

2.37 0.64 0.49 0.41 7.98 

-0.8 

 

1.94 0.51 0.42 0.36 6.12 

 

2.44 0.67 0.42 0.36 5.85 

-0.4 

 

1.81 0.45 0.33 0.29 3.45 

 

2.39 0.66 0.34 0.30 3.31 

0 

 

1.91 0.44 0.37 0.34 0.48 

 

2.43 0.69 0.34 0.32 0.46 

0.4 

 

1.87 0.41 0.35 0.30 2.72 

 

2.39 0.56 0.31 0.26 2.66 

0.8 

 

1.92 0.48 0.42 0.33 5.90 

 

2.42 0.62 0.47 0.33 5.81 

1.2 

 

1.87 0.47 0.58 0.35 8.91 

 

2.40 0.57 0.54 0.34 8.85 

  

 

          

 

          

2 

-1.2 

 

1.91 1.41 0.62 0.45 10.19 

 

2.44 1.31 0.58 0.44 9.73 

-0.8 

 

1.99 0.95 0.46 0.36 7.75 

 

2.43 0.90 0.45 0.38 7.49 

-0.4 

 

1.90 0.55 0.42 0.33 4.75 

 

2.37 0.74 0.44 0.35 4.70 

0 

 

1.84 0.49 0.39 0.31 2.19 

 

2.42 0.69 0.38 0.28 2.21 

0.4 

 

1.91 0.48 0.37 0.27 3.16 

 

2.40 0.64 0.40 0.27 2.95 

0.8 

 

1.92 0.50 0.53 0.30 6.82 

 

2.37 0.64 0.39 0.29 6.49 

1.2 

 

1.90 0.51 0.63 0.36 10.40 

 

2.33 0.63 0.58 0.33 10.13 

                          

Note. Boldface represents an equating method that produces the smallest value of EP in a 

specific condition. 
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Table A5. (cont‟d) 

a b 

  µ = 1.00 

 
FE CE TS OS IE 

0.5 

-1.2 

 

2.71 0.67 0.46 0.40 4.67 

-0.8 

 

2.72 0.66 0.45 0.36 3.40 

-0.4 

 

2.68 0.59 0.45 0.36 2.57 

0 

 

2.75 0.68 0.45 0.37 2.53 

0.4 

 

2.72 0.66 0.48 0.37 3.47 

0.8 

 

2.72 0.64 0.52 0.38 5.21 

1.2 

 

2.69 0.80 0.57 0.37 7.25 

  

          

1 

-1.2 

 

2.69 0.82 0.50 0.41 7.55 

-0.8 

 

2.74 0.80 0.40 0.37 5.55 

-0.4 

 

2.75 0.84 0.34 0.31 3.15 

0 

 

2.76 0.75 0.35 0.32 0.43 

0.4 

 

2.78 0.75 0.39 0.31 2.58 

0.8 

 

2.76 0.74 0.49 0.33 5.67 

1.2 

 

2.76 0.59 0.54 0.33 8.70 

  

 

          

2 

-1.2 

 

2.82 1.24 0.65 0.51 9.23 

-0.8 

 

2.83 0.87 0.52 0.43 7.17 

-0.4 

 

2.85 0.79 0.50 0.41 4.58 

0 

 

2.79 0.94 0.38 0.29 2.22 

0.4 

 

2.81 0.87 0.59 0.35 2.75 

0.8 

 

2.75 0.82 0.46 0.31 6.11 

1.2 

 

2.76 0.80 0.61 0.33 9.74 

              

Note. Boldface represents an equating method that produces the smallest value of EP in a 

specific condition. 
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Table A6. Means of index E for five equating methods in all conditions 

a b 

  µ = 0   u = 0.25 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

1.27 1.10 1.14 1.00 6.38 

 

1.46 1.12 1.16 1.00 5.96 

-0.8 

 

1.15 1.03 1.07 0.93 4.67 

 

1.39 1.05 1.12 0.95 4.34 

-0.4 

 

1.11 0.99 1.05 0.89 3.24 

 

1.39 1.01 1.06 0.90 3.05 

0 

 

1.10 1.00 1.01 0.90 2.51 

 

1.35 1.00 1.05 0.90 2.52 

0.4 

 

1.14 1.01 1.06 0.92 2.87 

 

1.45 1.02 1.07 0.92 3.05 

0.8 

 

1.24 1.11 1.17 1.01 4.27 

 

1.37 1.11 1.14 0.99 4.57 

1.2 

 

1.38 1.23 1.30 1.11 6.14 

 

1.31 1.22 1.30 1.09 6.51 

  

 

          

 

          

1 

-1.2 

 

0.84 0.75 0.80 0.67 9.08 

 

1.44 0.77 0.80 0.68 8.77 

-0.8 

 

0.69 0.60 0.61 0.53 6.54 

 

1.42 0.60 0.61 0.54 6.36 

-0.4 

 

0.60 0.46 0.45 0.41 3.63 

 

1.42 0.48 0.46 0.41 3.56 

0 

 

0.43 0.36 0.32 0.30 0.53 

 

1.39 0.36 0.34 0.32 0.52 

0.4 

 

0.37 0.30 0.35 0.30 2.77 

 

1.46 0.33 0.36 0.31 2.75 

0.8 

 

0.67 0.54 0.61 0.49 5.89 

 

1.45 0.55 0.57 0.47 5.93 

1.2 

 

0.93 0.81 0.96 0.75 8.73 

 

1.51 0.79 0.90 0.72 8.86 

  

 

          

 

          

2 

-1.2 

 

1.02 0.92 0.97 0.83 10.85 

 

1.46 1.73 0.95 0.82 10.57 

-0.8 

 

0.87 0.78 0.81 0.70 8.01 

 

1.42 0.80 0.80 0.69 7.94 

-0.4 

 

0.78 0.70 0.73 0.64 4.72 

 

1.43 0.72 0.71 0.62 4.80 

0 

 

0.75 0.65 0.69 0.58 2.27 

 

1.41 0.67 0.67 0.56 2.28 

0.4 

 

0.76 0.68 0.75 0.63 3.65 

 

1.43 0.67 0.75 0.61 3.45 

0.8 

 

0.95 0.84 0.95 0.77 7.24 

 

1.48 0.85 0.93 0.74 7.08 

1.2 

 

1.33 1.20 1.36 1.09 10.51 

 

1.49 1.16 1.28 1.04 10.53 

                          

Note. Boldface represents an equating method that produces the smallest value of E in a specific 

condition. 
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Table A6. (cont‟d) 

a b 

  µ = 0.50   u = 0.75 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

1.83 1.14 1.14 1.01 5.53 

 

2.33 1.20 1.16 1.00 5.12 

-0.8 

 

1.87 1.10 1.09 0.94 4.03 

 

2.38 1.10 1.05 0.93 3.75 

-0.4 

 

1.89 1.03 1.03 0.90 2.90 

 

2.38 1.06 1.03 0.89 2.79 

0 

 

1.89 1.02 1.02 0.89 2.55 

 

2.35 1.04 1.01 0.89 2.61 

0.4 

 

1.90 1.03 1.05 0.92 3.24 

 

2.32 1.06 1.03 0.89 3.42 

0.8 

 

1.83 1.11 1.12 0.97 4.85 

 

2.39 1.11 1.10 0.95 5.08 

1.2 

 

1.90 1.21 1.24 1.06 6.82 

 

2.37 1.20 1.20 1.02 7.08 

  

 

          

 

          

1 

-1.2 

 

1.89 0.82 0.81 0.70 8.39 

 

2.37 0.87 0.79 0.69 7.98 

-0.8 

 

1.94 0.67 0.61 0.54 6.12 

 

2.44 0.80 0.61 0.55 5.85 

-0.4 

 

1.81 0.53 0.43 0.39 3.45 

 

2.39 0.71 0.44 0.39 3.31 

0 

 

1.91 0.45 0.38 0.34 0.49 

 

2.43 0.70 0.35 0.32 0.47 

0.4 

 

1.87 0.43 0.37 0.32 2.72 

 

2.39 0.58 0.33 0.28 2.66 

0.8 

 

1.92 0.62 0.57 0.47 5.90 

 

2.42 0.74 0.59 0.46 5.81 

1.2 

 

1.87 0.83 0.89 0.69 8.91 

 

2.40 0.87 0.84 0.65 8.85 

  

 

          

 

          

2 

-1.2 

 

1.91 1.61 1.00 0.85 10.19 

 

2.44 1.52 0.99 0.84 9.73 

-0.8 

 

1.99 1.14 0.80 0.69 7.76 

 

2.43 1.10 0.79 0.69 7.50 

-0.4 

 

1.90 0.78 0.69 0.59 4.81 

 

2.37 0.88 0.70 0.59 4.75 

0 

 

1.84 0.73 0.69 0.59 2.30 

 

2.42 0.83 0.67 0.56 2.31 

0.4 

 

1.91 0.76 0.71 0.59 3.23 

 

2.40 0.85 0.73 0.58 3.02 

0.8 

 

1.92 0.92 0.93 0.72 6.83 

 

2.37 0.99 0.83 0.70 6.50 

1.2 

 

1.91 1.19 1.26 1.00 10.40 

 

2.33 1.22 1.19 0.96 10.13 

                          

Note. Boldface represents an equating method that produces the smallest value of E in a specific 

condition. 
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Table A6. (cont‟d) 

a b 

  µ = 1.00 

 
FE CE TS OS IE 

0.5 

-1.2 

 

2.71 1.21 1.10 0.99 4.75 

-0.8 

 

2.72 1.14 1.04 0.91 3.52 

-0.4 

 

2.68 1.06 1.01 0.87 2.71 

0 

 

2.75 1.08 0.98 0.86 2.68 

0.4 

 

2.72 1.09 0.99 0.86 3.57 

0.8 

 

2.72 1.13 1.08 0.91 5.26 

1.2 

 

2.69 1.25 1.20 0.99 7.26 

  

          

1 

-1.2 

 

2.69 1.00 0.80 0.70 7.55 

-0.8 

 

2.74 0.90 0.59 0.54 5.55 

-0.4 

 

2.75 0.87 0.44 0.40 3.15 

0 

 

2.76 0.75 0.36 0.33 0.44 

0.4 

 

2.78 0.76 0.41 0.33 2.58 

0.8 

 

2.76 0.83 0.60 0.45 5.67 

1.2 

 

2.76 0.86 0.83 0.63 8.70 

  

 

          

2 

-1.2 

 

2.82 1.47 1.04 0.89 9.23 

-0.8 

 

2.83 1.07 0.83 0.72 7.18 

-0.4 

 

2.85 0.93 0.74 0.62 4.63 

0 

 

2.79 1.00 0.66 0.55 2.30 

0.4 

 

2.81 1.00 0.85 0.62 2.83 

0.8 

 

2.75 1.09 0.87 0.71 6.13 

1.2 

 

2.76 1.31 1.18 0.93 9.74 

              

Note. Boldface represents an equating method that produces the smallest value of E in a specific 

condition. 
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Table A7. Means of index E1 for five equating methods in all conditions 

a b 

  u = 0   u = 0.25 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

0.63 0.47 0.31 0.51 6.38 

 

1.45 0.46 0.20 0.42 5.96 

-0.8 

 

0.60 0.43 0.27 0.46 4.67 

 

1.38 0.36 0.16 0.34 4.34 

-0.4 

 

0.52 0.41 0.19 0.37 3.23 

 

1.38 0.43 0.16 0.36 3.05 

0 

 

0.44 0.40 0.22 0.40 2.51 

 

1.35 0.41 0.13 0.31 2.52 

0.4 

 

0.50 0.38 0.23 0.41 2.87 

 

1.44 0.41 0.15 0.35 3.05 

0.8 

 

0.58 0.44 0.17 0.40 4.27 

 

1.36 0.45 0.17 0.39 4.57 

1.2 

 

0.60 0.49 0.16 0.45 6.14 

 

1.28 0.48 0.11 0.38 6.51 

  

 

          

 

          

1 

-1.2 

 

0.43 0.33 0.15 0.25 9.08 

 

1.44 0.29 0.23 0.29 8.77 

-0.8 

 

0.27 0.21 0.20 0.24 6.54 

 

1.42 0.28 0.19 0.29 6.36 

-0.4 

 

0.38 0.19 0.18 0.23 3.63 

 

1.42 0.25 0.17 0.20 3.56 

0 

 

0.18 0.13 0.07 0.08 0.53 

 

1.39 0.22 0.16 0.16 0.52 

0.4 

 

0.10 0.10 0.08 0.07 2.77 

 

1.46 0.22 0.07 0.08 2.75 

0.8 

 

0.27 0.16 0.16 0.17 5.89 

 

1.45 0.33 0.12 0.16 5.93 

1.2 

 

0.43 0.40 0.15 0.29 8.73 

 

1.50 0.43 0.14 0.26 8.86 

  

 

          

 

          

2 

-1.2 

 

0.37 0.35 0.32 0.40 10.85 

 

1.45 1.65 0.28 0.43 10.57 

-0.8 

 

0.32 0.31 0.22 0.28 8.01 

 

1.41 0.24 0.28 0.33 7.94 

-0.4 

 

0.19 0.18 0.20 0.27 4.72 

 

1.42 0.28 0.21 0.27 4.80 

0 

 

0.32 0.24 0.18 0.24 2.27 

 

1.41 0.29 0.12 0.18 2.28 

0.4 

 

0.26 0.23 0.29 0.36 3.65 

 

1.43 0.26 0.24 0.30 3.44 

0.8 

 

0.38 0.42 0.32 0.49 7.24 

 

1.47 0.43 0.29 0.43 7.08 

1.2 

 

0.71 0.69 0.43 0.73 10.51 

 

1.45 0.68 0.45 0.70 10.53 

                          

Note. Boldface represents an equating method that produces the smallest value of E1 in a 

specific condition. 
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Table A7. (cont‟d) 

a b 

  µ = 0.50   µ = 0.75 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

1.83 0.52 0.28 0.51 5.53 

 

2.33 0.48 0.11 0.35 5.12 

-0.8 

 

1.87 0.49 0.17 0.38 4.03 

 

2.38 0.51 0.29 0.49 3.75 

-0.4 

 

1.89 0.42 0.22 0.41 2.90 

 

2.38 0.52 0.17 0.36 2.78 

0 

 

1.89 0.45 0.16 0.34 2.55 

 

2.35 0.51 0.19 0.35 2.61 

0.4 

 

1.90 0.47 0.25 0.42 3.24 

 

2.32 0.58 0.10 0.26 3.42 

0.8 

 

1.83 0.46 0.14 0.35 4.85 

 

2.39 0.55 0.22 0.39 5.08 

1.2 

 

1.90 0.57 0.14 0.41 6.82 

 

2.37 0.63 0.17 0.36 7.08 

  

 

          

 

          

1 

-1.2 

 

1.89 0.42 0.32 0.38 8.39 

 

2.37 0.53 0.17 0.30 7.98 

-0.8 

 

1.94 0.42 0.21 0.25 6.12 

 

2.44 0.62 0.17 0.28 5.85 

-0.4 

 

1.81 0.38 0.09 0.17 3.45 

 

2.39 0.62 0.10 0.17 3.31 

0 

 

1.91 0.35 0.17 0.17 0.49 

 

2.43 0.66 0.15 0.16 0.47 

0.4 

 

1.87 0.35 0.13 0.13 2.72 

 

2.39 0.53 0.08 0.06 2.66 

0.8 

 

1.92 0.48 0.05 0.12 5.90 

 

2.42 0.63 0.14 0.09 5.81 

1.2 

 

1.87 0.55 0.26 0.26 8.91 

 

2.40 0.65 0.18 0.23 8.85 

  

 

          

 

          

2 

-1.2 

 

1.91 1.52 0.43 0.49 10.19 

 

2.44 1.39 0.34 0.46 9.73 

-0.8 

 

1.99 0.99 0.29 0.34 7.76 

 

2.43 0.89 0.23 0.34 7.50 

-0.4 

 

1.90 0.47 0.16 0.20 4.81 

 

2.37 0.68 0.24 0.27 4.75 

0 

 

1.84 0.44 0.26 0.30 2.30 

 

2.42 0.66 0.17 0.18 2.31 

0.4 

 

1.91 0.48 0.17 0.26 3.23 

 

2.40 0.66 0.19 0.19 3.02 

0.8 

 

1.92 0.60 0.23 0.33 6.83 

 

2.37 0.73 0.24 0.40 6.50 

1.2 

 

1.90 0.77 0.38 0.61 10.40 

 

2.33 0.88 0.41 0.61 10.13 

                          

Note. Boldface represents an equating method that produces the smallest value of E1 in a 

specific condition. 
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Table A7. (cont‟d) 

a b 

  u = 1.00 

 
FE CE TS OS IE 

0.5 

-1.2 

 

2.71 0.61 0.25 0.46 4.75 

-0.8 

 

2.72 0.62 0.21 0.39 3.51 

-0.4 

 

2.68 0.57 0.15 0.32 2.71 

0 

 

2.75 0.67 0.19 0.33 2.68 

0.4 

 

2.72 0.65 0.16 0.29 3.57 

0.8 

 

2.72 0.59 0.18 0.27 5.26 

1.2 

 

2.69 0.78 0.17 0.29 7.26 

  

          

1 

-1.2 

 

2.69 0.77 0.22 0.33 7.55 

-0.8 

 

2.74 0.77 0.17 0.26 5.55 

-0.4 

 

2.75 0.82 0.10 0.18 3.15 

0 

 

2.76 0.73 0.19 0.18 0.44 

0.4 

 

2.78 0.74 0.15 0.12 2.58 

0.8 

 

2.76 0.75 0.20 0.11 5.67 

1.2 

 

2.76 0.65 0.23 0.20 8.70 

  

 

          

2 

-1.2 

 

2.82 1.31 0.47 0.53 9.23 

-0.8 

 

2.83 0.85 0.37 0.44 7.18 

-0.4 

 

2.85 0.72 0.31 0.33 4.63 

0 

 

2.79 0.93 0.24 0.23 2.30 

0.4 

 

2.81 0.89 0.33 0.18 2.83 

0.8 

 

2.75 0.91 0.35 0.43 6.13 

1.2 

 

2.76 1.04 0.30 0.48 9.74 

              

Note. Boldface represents an equating method that produces the smallest value of E1 in a 

specific condition. 
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Table A8. Means of index E2 for five equating methods in all conditions 

a b 

  u = 0   µ = 0.25 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

1.15 1.19 1.28 1.04 0.30 

 

1.27 1.21 1.33 1.10 0.29 

-0.8 

 

1.07 1.11 1.20 0.99 0.24 

 

1.24 1.16 1.27 1.05 0.24 

-0.4 

 

1.05 1.07 1.18 0.98 0.35 

 

1.15 1.09 1.19 1.00 0.36 

0 

 

1.07 1.07 1.14 0.96 0.49 

 

1.10 1.09 1.18 1.00 0.52 

0.4 

 

1.10 1.12 1.19 1.01 0.58 

 

1.15 1.12 1.21 1.02 0.62 

0.8 

 

1.19 1.22 1.34 1.12 0.61 

 

1.19 1.20 1.30 1.09 0.67 

1.2 

 

1.34 1.36 1.51 1.24 0.59 

 

1.32 1.35 1.51 1.24 0.67 

 
  

          

 

          

1 

-1.2 

 

0.59 0.61 0.78 0.59 0.95 

 

0.85 0.65 0.77 0.59 0.98 

-0.8 

 

0.47 0.47 0.56 0.42 0.63 

 

0.68 0.47 0.52 0.39 0.65 

-0.4 

 

0.25 0.29 0.32 0.24 0.32 

 

0.54 0.30 0.33 0.25 0.34 

0 

 

0.08 0.11 0.13 0.11 0.05 

 

0.37 0.14 0.09 0.07 0.05 

0.4 

 

0.13 0.12 0.20 0.14 0.22 

 

0.18 0.11 0.18 0.13 0.24 

0.8 

 

0.45 0.42 0.55 0.39 0.43 

 
0.24 0.37 0.49 0.36 0.46 

1.2 

 

0.78 0.77 1.03 0.73 0.60 

 
0.52 0.72 0.96 0.70 0.63 

    

 

          

 

          

2 

-1.2 

 

0.84 0.84 0.98 0.74 1.57 

 

0.58 0.48 0.96 0.72 1.62 

-0.8 

 

0.70 0.70 0.78 0.62 1.20 

 

0.92 0.71 0.75 0.58 1.27 

-0.4 

 

0.63 0.62 0.66 0.56 0.87 

 

0.84 0.60 0.62 0.52 0.92 

0 

 

0.62 0.61 0.67 0.55 0.60 

 

0.65 0.60 0.66 0.54 0.63 

0.4 

 

0.65 0.65 0.75 0.53 0.41 

 

0.53 0.62 0.77 0.56 0.41 

0.8 

 

0.80 0.78 1.01 0.67 0.43 

 

0.53 0.74 0.99 0.68 0.41 

1.2 

 

1.16 1.13 1.51 1.02 0.66 

 

0.77 1.05 1.40 0.96 0.65 

                          

Note. Boldface represents an equating method that produces the smallest value of E2 in a 

specific condition. 
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Table A8. (cont‟d) 

a b 

  µ = 0.50   u = 0.75 

 
FE CE TS OS IE 

 
FE CE TS OS IE 

0.5 

-1.2 

 

1.46 1.22 1.29 1.07 0.29 

 

1.63 1.25 1.34 1.12 0.29 

-0.8 

 

1.31 1.16 1.24 1.04 0.25 

 

1.56 1.15 1.18 0.99 0.26 

-0.4 

 

1.27 1.10 1.16 0.98 0.38 

 

1.48 1.11 1.15 0.98 0.41 

0 

 

1.22 1.09 1.15 0.98 0.55 

 

1.32 1.05 1.12 0.96 0.59 

0.4 

 

1.19 1.11 1.17 0.99 0.67 

 

1.33 1.08 1.16 0.99 0.73 

0.8 

 

1.20 1.18 1.28 1.08 0.74 

 

1.27 1.14 1.22 1.02 0.82 

1.2 

 

1.31 1.29 1.43 1.18 0.75 

 

1.35 1.22 1.37 1.14 0.85 

 
  

          

 

          

1 

-1.2 

 

1.17 0.68 0.75 0.57 1.01 

 

1.42 0.69 0.77 0.60 1.03 

-0.8 

 

1.01 0.49 0.53 0.41 0.68 

 

1.28 0.52 0.52 0.40 0.69 

-0.4 

 

0.80 0.30 0.33 0.25 0.35 

 

1.06 0.32 0.32 0.25 0.36 

0 

 

0.62 0.13 0.07 0.05 0.05 

 

0.92 0.16 0.07 0.05 0.05 

0.4 

 

0.44 0.12 0.19 0.13 0.25 

 

0.69 0.08 0.17 0.12 0.27 

0.8 

 
0.26 0.35 0.49 0.35 0.49 

 

0.56 0.30 0.51 0.37 0.52 

1.2 

 
0.40 0.65 0.93 0.67 0.67 

 
0.41 0.62 0.86 0.62 0.72 

    

 

          

 

          

2 

-1.2 

 

0.75 0.49 0.96 0.73 1.66 

 

0.99 0.50 0.98 0.74 1.67 

-0.8 

 

0.79 0.56 0.74 0.57 1.31 

 

0.99 0.55 0.72 0.54 1.34 

-0.4 

 

1.07 0.59 0.61 0.49 0.97 

 

1.30 0.54 0.57 0.46 1.00 

0 

 

0.84 0.58 0.62 0.52 0.65 

 

1.07 0.53 0.61 0.49 0.68 

0.4 

 

0.64 0.61 0.73 0.55 0.40 

 

0.82 0.60 0.73 0.56 0.41 

0.8 

 
0.38 0.71 1.01 0.70 0.38 

 

0.51 0.71 0.88 0.64 0.36 

1.2 

 
0.43 0.96 1.40 0.95 0.63 

 
0.21 0.93 1.30 0.91 0.62 

                          

Note. Boldface represents an equating method that produces the smallest value of E2 in a 

specific condition. 
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Table A8. (cont‟d) 

a b 

  u = 1.00 

 
FE CE TS OS IE 

0.5 

-1.2 

 

1.86 1.23 1.26 1.06 0.29 

-0.8 

 

1.76 1.13 1.17 0.99 0.28 

-0.4 

 

1.67 1.06 1.12 0.95 0.45 

0 

 

1.58 1.04 1.08 0.93 0.64 

0.4 

 

1.51 1.04 1.09 0.94 0.79 

0.8 

 

1.41 1.12 1.19 1.01 0.90 

1.2 

 

1.43 0.43 1.33 1.10 0.95 

 
  

          

1 

-1.2 

 

1.71 0.71 0.77 0.60 1.03 

-0.8 

 

1.51 0.50 0.52 0.41 0.70 

-0.4 

 

1.36 0.33 0.31 0.24 0.37 

0 

 

1.16 0.14 0.06 0.04 0.04 

0.4 

 

0.93 0.11 0.23 0.16 0.29 

0.8 

 

0.77 0.29 0.51 0.36 0.56 

1.2 

 

0.62 0.61 0.84 0.60 0.77 

    

 

          

2 

-1.2 

 

1.32 0.56 0.99 0.75 1.67 

-0.8 

 

1.27 0.57 0.71 0.53 1.36 

-0.4 

 

1.22 0.61 0.54 0.43 1.03 

0 

 

1.34 0.50 0.57 0.45 0.70 

0.4 

 

1.06 0.57 0.81 0.60 0.42 

0.8 

 

0.77 0.68 0.92 0.67 0.35 

1.2 

 
0.38 0.85 1.32 0.94 0.62 

              

Note. Boldface represents an equating method that produces the smallest value of E2 in a 

specific condition. 
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Table A9.  Comparison of results obtained from using fixed and random test forms. 

Condition (µ = 1.00; a = 0.5, b = -1.2) 

Index 

  Fixed forms   Random forms 

 

FE CE TS OS 

 

FE CE TS OS 

EP 

 

2.71 0.67 0.46 0.40 

 

2.56 0.76 0.54 0.46 

E 

 

2.71 1.21 1.10 0.99 

 

2.62 1.09 1.02 1.10 

E1 

 

2.71 0.61 0.25 0.46 

 

2.89 0.73 0.31 0.43 

E2   1.86 1.23 1.26 1.06   1.76 1.44 1.50 1.23 

 

Condition (µ = 1.00; a = 0.5, b = 1.2) 

Index 

  Fixed forms   Random forms 

 

FE CE TS OS 

 

FE CE TS OS 

EP 

 

2.69 0.80 0.57 0.37 

 

2.90 0.85 0.65 0.32 

E 

 

2.69 1.25 1.20 0.99 

 

2.92 1.35 1.12 1.04 

E1 

 

2.69 0.78 0.17 0.29 

 

2.54 0.84 0.21 0.33 

E2   1.43 0.43 1.33 1.10   1.35 0.52 1.23 1.22 
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Table A9. (cont‟d) 

Condition (µ = 1.00; a = 2, b = -1.2) 

Index 

  Fixed forms   Random forms 

 

FE CE TS OS 

 

FE CE TS OS 

EP 

 

2.82 1.24 0.65 0.51 

 

2.92 1.34 0.68 0.49 

E 

 

2.82 1.47 1.04 0.89 

 

2.76 1.42 1.09 0.94 

E1 

 

2.82 1.31 0.47 0.53 

 

2.74 1.47 0.54 0.60 

E2   1.32 0.56 0.99 0.75   1.25 0.61 0.92 0.79 

 

Condition (µ = 1.00; a = 2, b = 1.2) 

Index 

  Fixed forms   Random forms 

 

FE CE TS OS 

 

FE CE TS OS 

EP 

 

2.76 0.80 0.61 0.33 

 

2.79 0.78 0.64 0.37 

E 

 

2.76 1.31 1.18 0.93 

 

2.84 1.40 1.13 0.91 

E1 

 

2.76 1.04 0.30 0.48 

 

3.01 1.12 0.34 0.56 

E2   0.38 0.85 1.32 0.94   0.41 0.79 1.45 0.89 
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Figure B: Comparing equating results from two directions in two selected cases 
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