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ABSTRACT

STATE SPACE AXIOMS AND STATE DESCRIPTIONS

IN CANONICAL FORM

By

lzzet Cem Goknar

Although it dates back to Newton's use of positions

and momenta, the concept of "State" has only been given

an abstract and rigorous definition in the last decade

by Zadeh.

In this thesis, starting with improved versions of

Zadeh's "State Axioms," the necessity of another minor

modification is shown and the different axiom sets are

discussed. With the axioms modified, the important con-

cept of "Equivalence Classes of Inputs" (the major tool

of the behavioral approach) is used to investigate the

properties of "Reduced and Half Reduced State Descrip-

tions."

Then, the essential properties that "State Descrip-

tions" acquire when the system is "Linear" and/or "Time-

Invariant" are examined, and "State-Equations" in canoni-

cal form are obtained for a large class of distributed

systems. The problem of approximating more general sys-

tems, with only minor restrictions on the input space,

by systems that possess finite dimensional "State Spaces"

is given a solution.
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"The men where you live," said the little prince,

"raise five thousand roses in the same garden--

and they do not find in it what they are looking

for."

"They do not find it," I replied.

"And yet what they are looking for could be found

in one single rose, or in a little water."

"Yes, that is true," I said.

And the little prince added: "But the eyes are

blind. One must look with the heart. . . ."

The Little Prince ,

Antoine de Saint—Exupery
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CHAPTER I

INTRODUCTION

In order to present the results accomplished in this

thesis and to lay down the general background for the sub-

ject considered in the thesis the present chapter is

divided into four sections. The first section is de—

voted to the history of the concept of state and the steps

toward its abstractization in the framework of modern sys—

tem theory. We feel that before a meaningful discussion

can be given for the findings of the thesis, some general

concepts and terminology should be introduced. This is

done in section 2. In section 3 the State Axioms pro-

posed by various authors are outlined and some known re-

sults are given. Finally, in section “ the remaining

chapters of the thesis are summarized.

If some idea has to be given shortly about the re—

sults of the thesis, we can divide our accomplishments

into three main groups.

The first group of results is about the State Axioms

and what can be said about the State Descriptions in gen-

eral without any restriction on the system under consider-

ation. An improvement on the State Axioms is given and



questions about the size of the State Space and about the

nature and system-independent properties of the State

Description are answered.

The second group is obtained by placing some re-

strictions on the nature of the system and then inquiring

about the State Description. The basic prOperties of the

State Descriptions of linear, time-invariant systems are

investigated and results are obtained by using tools

developed in the first group.

In the final third group, we develop analytical

formulations of the State Description for some broad

classes of systems. These representations can be used in

the Theory of Distributed Parameter Systems, or in approxi-

mating them by systems with finite dimensional State Des—

criptions.

Outside the main goals of this thesis, some new

Theorems are obtained in the Appendix that center about

Orthonormal Series Expansions of Distributions as pre-

sented in [2E2].

I.l--The Modern State Concept

The concept of "state," which dates back to Newton's

introduction of positions and momenta as basic mechanical

variables, has been used in analytical dynamics, celestial

mechanics and quantum mechanics as tied to the concept of

stored energy in such physical systems.



The following short discussion, that stems from a

13reatment on the historical background of the ”modern con-

czept of state," appeared in the literature in 1962 [ZAl].

1X3 implied in this reference this modern concept was first

Lised by Turing in his time—discrete machine. Briefly if

act, ut, yt denote, respectively the state, the input and

tshe output at time t, then the machine can be charac-

‘terized by

x = f (x u
t+l t’ t)

t = o, 1, 2, —-— (1)

yt = g (xtaut)

Shannon [SH] in l9“8 used equations in the form (1)

to characterize probabilistic systems in the sense that xt

and ut determine the joint probability density function,

I>(xt+l, yt/xt, ut) instead of x and yt.
t

Two important notions, namely, equivalent states and

equivalent machines were then introduced by Moore [MO] and

by Huffman [HU] independently, but in a somewhat re-

stricted form by the latter.

All the above work is in the discrete-state systems

context. In the case of differential systems, the equa-

tions (1) take the form:

52.
dt X“)

f (x(t), u(t))

(2)

y(t) g (x(t), u(t))



where x(t), u(t), y(t) are vectors representing the "state,"

the "input" and the "output." Equations (2) have been

used, under different forms, in such fields as ordinary

differential equations, analytical dynamics, celestial

mechanics, quantum mechanics, etc. Their wide use in the

field of automatic control was initiated almost twenty

years ago, in Russia, by A. T. Luré, M. A. Aizerman, Ya.

Z. Tsypkin, A. A. Fel'dbaum, A. Ya. Lerner, A. M. Letov,

N. N. Krasovskii, I. G. Malkin, L. S. Pontryagin and

others, and in the United States by Bellman, Kalman,

Bertram, LaSalle, Laning, Battin, Friedland and others.

General methods of setting up the state equations for RLC

networks were later described by Bashkow [BA] and Bryant

[BR]. These methods are extended to time varying net-

works by Kinarawala [KI].

Until recently, the concept of "state" was strongly

connected with the specific physical identification of

state variables as measurable quantities inside a specific

system structure. For example, "the state vector” in an

electrical network contains the variables corresponding

to the branch capacitor voltages and the chord inductor

currents. Thus the "initial state" at the ”initial time"

is physically the initial charge and the initial flux

carried by those elements, and is reflected as the "ini-

tial conditions” on the differential equations modeling

the network. This notion of state, namely that the state
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is a set of internal variables from which everything else

about the system can be calculated, is referred to as the

"structural approach" to the concept of state [RES]. In
 

this approach an important property of the state that has

to be singled out,is that it ensures a unique output for

eeach given input.

Another approach to the concept of state is in the

.ffiramework of modern system theory and is introduced in

1:11e following.

In Zadeh's view [ZAl], the importance of system

tsraeory lies in its abstract generality and in its concern

vvfi.th the mathematical properties of systems and not their

lorlysical form. Such an abstraction, however, should be

Ireaached from a number of known examples of such systems

8&3 physical, socio-economic, biological and others. If

‘tkie'state concept is not to be abandoned during this

generalization, one has to be certain whether all the

\faarious instances of the state notion that appear in

Srbecific systems are sufficiently similar in meaning and

uSage to be covered by a single abstract definition; if

SC), what are the essentials of the notion? To elaborate

‘this point further, we consider two examples, one in

SOcio-economic, the other in biological systems.

For the first example, let the community of the

Greater Lansing Area be our system, with the price of a

certain good, say for example of Nehru jackets, and the



advertisement expenditures as inputs and the demand for

the same good as output. We shall concern ourselves with

an important variable that affects the input—output rela—

tionship of the system: "the taste” of the community.

It is true that, at different times, for the same price

and advertisement expenditures, our community may not have

the same demand for Nehru jackets. This is due to a

change in ”the taste" of the Greater Lansing Area; a taste

more in favor of the good will create a larger demand for

a given price and advertisement expenditures than a taste

less in favor of the good. Thus if the price and the

advertisement expenditures were given, as a function of

time, one could determine the demand for Nehru jackets, as

a function of time, if the taste of the community were

lcnown. Equally important is the tie existing between the

isaste and the past history of the community: the taste

unill certainly vary depending on the kind and intensity

of‘ the advertisement and the past fluctuations of the

pIfiice. For example: fashion shows, constant T. V. com—

Umircials, larger numbers of people wearing Nehru jackets

tnecause of low prices, will probably push the taste to be

“More in favor of the good.

For the second example, we quote from Manning [MA]:

It is a common observation that the same stimulus

given to the same animal at different times does

not always evoke the same response. Something

inside the animal must have changed and we invoke

an "intervening variable." This is something

which comes between two things we can measure——

in this case the stimulus we give and the response



we get out—-and affects the relationship between

them. . . . Already in this book we have men-

tioned two factors with different characteristics

which alter the relationship between stimulus and

response. These were "fatigue” and "maturation."

To these we may add two others: "learning" and

"motivation" . . .

From these examples we immediately recognize the

ianortant property that we noticed in the structural

amiproach to the state, i.e., to make correspond a unique

Otrtput to a given input, when the input and the state are

.krnown. We may therefore conclude that all the various

iJistances of the state notion that appear in specific sys-

tsenns have a very important common property that may lead

tc> a single abstract definition. What can better sum-

Inaiéize "the mood of a human being (or an animal)," "the

scuoial conditions of a society," "the political condi-

tixons of a country" than "the state of the system"?

These examples also bring light to another important

Eisxoect of the state notion that was not clearly visible

irl the structural approach: the strong connection between

thue history of the system and the state. In fact "the

‘taéste of the society," "the fatigue, maturation, . . . of

thfia animal," "the mood of the human being" at a given

itinne, are all results of the past experiences of the sys—

'tefifl. Even in networks, the flux and the charge at time

t are the integral of the voltage and of the current up03

tC> time to, which certainly bear a relation to the past.



To conclude, the state, in this new context makes

a tinique output correspond to a given input by at least

cxontaining a minimum amount of information that consists

ir1 those features of the past experience of the system

euffecting its future behavior. This experiential aspect

is; named as "the behavioral approach" to the concept of

state [RES] .

In 1962, Zadeh wrote [ZAl]:

Despite the extensive use of the notion of state in

the current literature, one would be hard put to

find a satisfactory definition of it in textbooks

or papers. A reason for this is that the notion of

state is essentially a primitive concept, and as

such is not susceptible to exact definition.

iiovvever, Zadeh in 1963 [2A2] and Kalman in 1963—6“ [KA,

WEX] have independently tackled the precise formulation of

T§j;ate descriptions," and Resh in [RB 1-3] ”exposed and

81:1ndnated a syndrome of shortcomings in these general

fYDrunalizations of the state notion" [RBI], and offered

tvvc> somewhat related though different sets of ”State

-AX:Ioms." Of these syndromes, some important ones were:

Kalman's formulation, besides being cumbersome

(at least to this author) had the obscurity of de—

fining what is to be called a "system" in terms of

his state axioms,

irl Zadeh's (and Kalman's) formulation,

The gross properties of the "state space" of a

system were not uniquely determined by the system,



The states and the past histories of a system

bore no necessary strong relation to one another,

All systems, causal and noncausal alike, pos—

sessed state descriptions.

Resh, when modifying Zadeh's axioms, also intro—

duced a powerful tool, "the equivalence classes of pre—
 

to inputs" which summarizes the history of the system
 

u;> to time to and which bears strong relations to the

st:ates of the system at time to'

All the works summarized above being about the

gross properties of the state descriptions, some analy—

‘tixoal results are also obtained. It has first been

pcxinted out in [ZA2], that for linear, time-invariant

Sytstems, the state space is a finite dimensional vector

Spuace iff the system can be characterized by ordinary

d1JFferential equations. The finite dimensional case has

‘thuen.been extended by Balakrishnan, introducing some

assumptions on the nature of the state space and the in-

PLrt space in [BA 1—3] and he derived a state description

starting from the input-output description with some

restrictions in [BA“]. The restrictions are the linearity

arm: time-invariance of the system, except in [BA3] where

thuay were allowed to be time varying. The main tool

Balakrishnan used was the analytical theory of semi-

Srfloups of linear operators as developed by Hille—Phillips

arui Yesida to obtain results of the form:



lO

x(t) = T(t)-x(o) + ftT(t—s)-Lu(s)-ds

o

wrnere T(t) is a one—parameter semigroup of linear bounded

tiaansformations on the state space, and L a linear

bcnanded transformation on the input space.

Finally, Resh [RE“] and very recently Resh and

Géiknar [REB] have given a non-reduced state description

of‘ the form:

dxs(t) ,

'“Efi7—'= s-xs(t) + u(t) sec:

. . K (k)
y(t) = f C(S)-xs(t)~ds + Z dk-u (t),

f—l k=O

wheare the dimension (sic) of the state space is a two-

ditnensional continuum.

I.2-—Some General Concepts

and Terminology

 

 

In this and the following section, we specialize in

thus definitions of systems, objects, existence intervals,

Urhiform objects, etc., and give the different "State

ltxi_oms," discuss them more in detail and state some

lcnfirwn results. It is our feeling that here is the right

I3161ce, although it may not be very usual, to do this since

‘Ne talk of general concepts that underlie our work and

pIV38ent some known theorems for later references.



11

Webster defines a "SYSTEM" as ". . . an aggregation

01° assemblage of objects united by some form of inter-

euotion or interdependence," which is close to our en—

ggineering understanding although still remaining unde-

ffiined because of the use of the synonymous ”object.”

The "Mathematics Dictionary" of James and James

defines it as:

(1) A set of quantities haVIng some common pro-

perty, such as the system of even integers, the

system of lines passing through the origin, etc.

(2) A set of principles concerned with a central

objective, as, a coordinate system, a system of

notation, etc.

WTLiCh has no bearing to our concept of system whatsoever.

From an engineering point of view, the "system"

deifinition can be given from two aspects; their main dif—

feloence being the existence of the concept of "Terminals"
 

irt one and not in the other. As an example of the first

Orue, "system” in [NE] is defined by:

where u = [uj(t)], y = [yJ{t)], J = 11’ . ., k are the

acimissible pairs at the k terminals of the system with

(38 denoting the determining constraints imposed by the

System

As we will be using the second definition of "sys—

tefin" in our context, we will give it in its greater

‘ietails.
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£3?F.I.2.1:

T A a collection of half open intervals, (°,°], of

tine real line, i.e.,

T g {(°,-] : (°,°]CflR}, the intervals in T are called

CHBSERVATION INTERVALS.

R A a set of ordered pairs of time functions de-
I

fined on IGT, i.e.,

RI g {(u,y) : Dom u = Dom y = I}

A A is the family of all RI when IET, i.e.,

A A {RI IET}.

A CONTINUOUS—TIME SYSTEM (as opposed to discrete-

‘tiJne system) is an ordered pair (T,A) where T and A are

(deifined as above, satisfying:

(Cl) If IET and (t0,t1]Cl then (120,1;116'1‘

(C2) If IET then RI e O

(C3) If I'ET and ICI' then RI QRI,,/‘I

31f” the first member u of the ordered pair is called an

INPUT, and the second one OUTPUT, the SYSTEM is then said

to be ORIENTED.

For an oriented system, U will denote the set of
I

aldl inputs whose domain is I and YI the set of all out—

erts whose domain is I, YI(u) will be the set of all out-

FNJIZS that can occur as a response to u. UGOU will mean

truat two inputs u are in concatena-

tion.

0 l,o (t,t2]



DEF.I.2.2:

Let a system (T,A) be given; for each observation

irrterval I we define:

I

R A {(u,y)€RI : u,y are not the restriction to I
I

of pairs in some RI' 3 131'}

Then: T A {I IeT and Rf r e}.

Tfioe intervals in T are called the EXISTENCE INTERVALS.

 

An oriented system is UNIFORM iff T is a unit set,

i..ea., contains a unique existence interval.

NCXPEZI.2.1: Thus for a uniform system it is clear that

alfil pairs (u,y)6RI, for all IET except one are the re-

stloictions to I of some (G,§)eRI,, ICI'.

It has been shown in [REl]:

. portions of a system (T,A) derived from

different existence intervals lead rather inde-

pendent lives. In fact, one might consider

them to be different systems which it has merely

been convenient to describe in language suitable

for treating them in some unified way.

 

Trnas the loss of generality that entailed by the restric—

‘tiibn of our concentration to uniform systems is very

little.

EEBZEngijg The description of a uniform system is com-

pliately known when the unique existence interval IET and

true input-output list RE is given, due to the conditions

01—, c2 and c3.



l“

CON.I.2.l: From now on we will talk of OBJECTS and not of
 

systems. No real difference exists between the two things

these names describe. However, we will make the following

distinction: an object is always a system, but not vice-

versa. An object for us will consist of a single RA,

whereas a system may consist of a combination of many

objects or systems each given by a different RI' Briefly

we are saying that we do not consider problems arising

from the interconnection Of systems when we use the name

"Object."

CON.I.2.2: Def. 1 of a system allows only time functions
 

as inputs and outputs. We think that it would cause no

real difficulties, to allow distributions in our input

and output spaces, excepting possibly some philosophical

arguments that we will try to discuss in the Appendix (see

A.l.). Thus we will refer to the elements of the input and

output spaces as inputs and outputs meaning distributions

or functions, and 1-0 will be an abbreviation for "input-

output pair."

CON.I.2.3: By an OBJECT we will always understand a "con-
 

tinuous-time, uniform oriented,object. We will denote it

by "6h" its unique existence interval by I. will be given

A

o

I

We close this section with the following important

by its I-o list R

definition:
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DEF.I.2.“:
 

The object‘9'is called DETERMINATE iff for each

uEUi there is a unique erf such that (u,y)GRf. It is

said to be NONANTICIPATIVE ET for any IéT that starts

A

where I does and for any u, uTEUi satisfying u/I = u'/I

there always exists pairs (u,y) and (u',y')GRf such

that y/I = y'/I. Eina11y<3’is said to be CAUSAL iff it

is determinate and nonanticipative.

I.3--Previous Work on the Subject

We start with Zadeh's state axioms [ZA 2-3]:

Zadeh's STATE AXIOMS:
 

The STATE DESCRIPTION of the chjecté?, given by the

list RI of 1-0 pairs, is the pair (Z,A) that satisfies

the conditions listed below. Here 2 is a set called the

STATE SPACE and A a relation called the INPUT-OUTPUT-

STATE—RELATION (which will be abbreviated as I-O-S—R).

More precisely, A is a subset of {(I,O,u,y):ICI, 062,

(u,y)ERf}. The axioms are:

(Ml)-—For each ICI, (u,y)eRI iff 3062 3(I,c,u,y)eA.

(Sl)--For each ICI, 092 and uEUI aexactly one

N'9(I,o,u,y)EI.

Denoting by AI(o,u) the unique response guaranteed

by (81), we can define a family of single valued INPUT-

OUTPUT—STATE FUNCTIONS AI : DI + YI, for ICI, which com—

pletely characterizes the I—O—S—R. The domain of AI is

DI A Z x UI'



l6

(S3)--For each (to,tl]<:I and (OO’UO)ED(tO,tl]"3

at least one 0162 with the property that if (oo,u00ul)

6D then (0 u )ED and A (O u )
(t0,t2l 1’ 1 (tl,t2l (tl,t2] 1’ 1

A (O ,u u )/ -
(t0,t2] O OO 1 (tl,t2]

NOTE I.3.1: The MUTUAL CONSISTENCY CONDITION (M1) estab-
 

lishes the relation of the object O'to the state descrip—

tion. The first of the two SELF CONSISTENCY CONDITIONS

(SI) and (S3) guarantees the uniqueness of the output for

a given input and state, the prOperty that we were after,

from the beginning; the second one classifies the states

of the description at time t1.

NOTE 1.3.2: To require DI to be 2 x UI for each I was

shown to be a very important shortcoming by Resh [RE 1-2].

 

That D A Z x U means no matter what state the system is
I I

left in, one can apply any input. Many existing systems,

however, do not admit this property. To the examples

given by Resh, that extend from the systems of the type

homosapiens and certain kinds of inputs termed propaganda,

to the very technical one given by Fig. l, and that in-

clude examples such as rocket engines whose fuels can be

depleted by the initial input segments, we can add the

example of the brain of an animal which became blind as a

result of blast (an input). Any form of light, for that

matter, any video—input at this state of the system (the

animal) are simply not admissible to the brain.
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In Fig. l, the switch closes exactly one second

after the applied input u exceeds 1 volt in magnitude

and remains closed there-

 

  

IQ

- flWN after. Thus, an input that

+ L\ was admissible before the

u Vy

1 closing of the switch is

7 not admissible anymore,

Figure 1'3-2 since only 0 volt can be

applied once the switch

has been closed. As in the above example the system is

left in such a state that all inputs, except 0, are no

longer admissible.

NOTE 1.3.3: As it is not desirable to deny a state des-
 

cription to such a large class of objects, since the

importance of system theory lies in its abstract generality

(page 5), Resh modified axiom (81), the source of the

shortcoming, to read:

(Sl')-—For each ICI, 062 and uEUI,,3 at most one y 3

(I,o,u,y)€A

This means that the domain D of A
I I

consisting of pairs (O,u) for which there exists

is a subset of

X x UI

a y such that (I,O,u,y)€A

NOTE I.3.“: Unfortunately the replacement of (81) by
 

(81'), while eliminating the above shortcoming, introduced

some other inconveniences:
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All systems had a trivial state description,

where the state space 2' was the set YI of all

outputs defined on the existence interval of the

object, and the I—O—S-R, A' was {(I,c,u,c/I):

ICI, 062' and u = fi/I for some 859(G,O)€Ri}.

As a result of the state description (Z',A'),

a unit resistor had two reduced (Def. II.2.“) state

descriptions: one with a unit state space, the

other with a gigantic state space, the set of all

outputs of the resistor.

To eliminate the difficulties caused by the change

of ($1) to 81') Resh proposed a SECOND MUTUAL CONSISTENCY

AXIOM, in two different ways that are not exactly equiva-

lent, to be incorporated in the modified set. Since there

are some minor changes in the language of presentation, we

present the two axiom sets, proposed in [RE3] and [REl]

respectively:

Let for each t, a set E(t) be assigned to the object

fias a conjectured state space of Gat time t. Let A, a
 

subset of {(I,oo,u,y): I = (to,t]CI,OO€Z(tO),

uEUI,y€YI}, be the conjectured I—O-S—R of<9’ meaning:
 

(I,oo,u,y)€A implies the.object in state 00 at time tO

subject to the input u from tO to t will respond by pro-

ducing the output y from tO to t. (£,A) will be a valid

state description iff the following four conditions are

satisified:
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FIRST AXIOM SET (denoted A1):

(Ml)--For each I = (t0,t]CI, (u,y)€RI <=>3OOEZ(tO)

3(I,oo,u,y)€A

(M2)--Z(t0) is a unit set, where I = (t0,tl] is

the existence interval

(Sl)--For each I = (tO,t;]CI, 0062(t0) and uEUI,

3 at most one y€Y19(I,oO,u,y)€A.

(S2)--Letting DI = {(Oo,u): EJerl;9(I,oO,u,y)€A}

then defining AI:DI+YI by AI(cO,u) = y it is re-

quired that: for each IO = (t0,tll and (OO’uO)

 

EIUtO’tl] there exists at least one 0162(tl) 3:

f
(01,11) €D(tl,t]

and

(OO’uOOu)€D(tO,t] ____-> (A(tl’tj(ol,u)

\K(t0,tl(00’u00u)/(tl,t3

SECOND AXIOM SET (denoted 42):

(M1), (81) and (S2) remain unaltered but (M2) takes

the form:

(M2')——For each to €(t0,tl] == I and each

u EU A , 30 62 3

0 (t0,t01 0 (to)
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K<t0,t](oo’ui <I"?EWOESQEO,tolamoou’yooy)'ER(tO,tJ

With the introduction of (M2) (or (M2')), the

trivial state description (Z',A') given on page 18 was

not a state description anymore [RE2].

NOTE 1.3.5: In order to state some more results, we have
 

to introduce the very important concept of equivalence
 

classes of inputs [RE3] which has a strong connection to
 

the past history of the system and which, later, turns

out to be a very useful tool in the computation of reduced

state descriptions.

DEF.I.3.l:
 

Let the object Ctbe given with the list RA, I =

t E ‘
(tt0,t1]. The inputs d§U(€ ,t J and uo U(€ ’tOJ are

said to be EQUIVALENT, denoted ugué, iff:

(i) uow is admissible<fi=—>u0' 0W is admissible, for

EU(tO,tll

(ii) In case %OW and uéow are admissible, 3 y and

I l A A

must equal y'/ A

It is trivial to verify that "2" is an equivalence

relation. Therefore we define: H [u]A{u'EU A

u'=u} which are mutually exclusive, collectively inclusive

EQUIVALENCE CLASSES OF INPUTS antht A{Ht0[u]

O

uéU ]} as the FAMILY of equivalence classes of inputs.

(Eo’t



 

DHR(tO,t] A {(OO’u)ED(tO,t] : COEZHR(%)} and

KHR(tO,t] A K(to,t]/DHR(tO,t] for each

(t0,t1

DEF.II 2 5

(ZHR’KHR) will be called a HALF REDUCED STATE

DESCRIPTION underfidi iff it satisfies 5241, i = 1, 2, 3.

NOTE II.2.3: Under State Axioms,41, there is nothing to
 

guarantee that (ZHR’KHR) or (ZR’AR) is still a State

Description under Ail. However under142 (and 43) this is

not the case. M2' in142 (and S2" 111.43) guarantees us

the existence of enough non singular states, so that

 

(2R,AR) and (EHR’KHR) are still valid State Descrip-

tions.

NOT. II.2.“: t ut vt Zt will indicate an input (or an

O l 2 3

output) which consists of segments u defined on (t0,tl],

v defined on (tl,t2] and 2 defined on (t2,t3]. ut v

1

will mean t0 = to and t2 = t1 where the existence

interval I = (to,tl]. Now we give a State Description

for a very simple object, getting payment for the effort;

the payments being discussed after the example, the

effort is made right now.
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DEF.I.3.2:

Here we define a special state description (2*, K*)

as follows:

2*(t0), for each t is any set of the same
0’

cardinality as the family“t . 2*(EO), for i =

O

(tO’ElJ is any unit set.

To define K*, we choose a function Gt

0

2*(t ) 1-1

0 onto t that such a function exists is
O,

guaranteed by the choice of 2*(to). (I,oo,u,y)€K*

with I = (to ,t] iff: for to > to, 3(u0,y0)€R(EO,tJ

'auO/(EO t Mject (oO ) and (uO/I’yO/I) = (u,y) and

for t = t is the single element of 2*(tO ) and
O 0’ O

(u,y) is arbitrary in RI.

0'

The results can be summarized in the following two

theorems:

THM.I.3.1: If an object has a state description under
 

state axioms.£2 then it is causal.

PROOF: [REl]

THM.I.3.2: The following statements are all equivalent:
 

(i) 9’ has a state description underfl'l

(ii) 6? is causal

(iii) (Z*,A*) is a state description under.4l.

PROOF: (i)==9(ii) [REZ]

(ii)==$(iii) [RE3] (in this reference, to show

that a causal object always has state
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description it is proved that (Z*,A*)

satisfiesAl for causal objects).

(iii)==$(i) is trivial.

NOTE 1.3.6: Thus, the state axiomsx¢l and142, compared
 

to Zadeh's axioms extending their domain of applicability

to such important classes of existing physical systems as

in the various examples of pages 16 and 17, have denied

state descriptions to non—causal systems, non existing

physical systems. However, this is a point much in favor

of state axioms.4l and.42 since we can, without hesita—

tion, qualify them as being "more realistic."

I and

KI. As we said earlier, AI denotes the function from DI

into YI whereas AI or Al(t) denotes the values that the

 

CON.I.3.l: Here we make the distinction between A

function KI takes on i.e., y = KI(o,u) but y(t) =

AI(o,u).

NOTE 1.3.7: When we write f (€0,91], the case T =
 

(-m,w) is also included.

Finally, State Axioms of Kalman listed merely for

completeness close this section.

Kalman's STATE AXIOMS: [KA]
 

A dynamical system is a mathematical structure de—

fined by the following axioms:

(Dl)-—There is a given STATE SPACE Z and a set of

values of time O at which the behavior of the
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system is defined: 2 is a topological space and O is

an ordered topological space which is a subset of

the real numbers.

(D2)--There is given a topological space 9 of

functions of time defined on O, which are the

admissible INPUTS to the system.

(D3)—-For any initial time tOGEO, any initial state

theo 62 and any input ueQ defined for t a t
O 0’

future states of the system are determined by the

transition function ¢ : QxOxOxZ + 2 which is written

as ¢u(t;t0,oo) = o. This function is defined

only for t a to. Moreover, any to~s tl s t2 in

0, any 0060, and any fixed uEO defined over

[t tIJAO the following relations hold:0’

(D3-i)-—¢u(t03to,oo) = 00

(D3-ii)--¢u(t2;to,oo) = ¢u(t2stl,¢u(tl,t0,oo))

In addition, the system must be NONANTICIPATORY,

if u,,vEQ and u E v on [t0,tl]/\O we have

(D3—iii)-—¢u(t;t0,00) = ¢V(t;t0,oo)

(DM)--Every output of the system is a function W

O x Z + R

(D5)--The functions ¢ and W are continuous, with

respect to the topologies defined for Z, O and Q

and the induced product topologies.
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I.M--A Brief Summary of the

Following Chapters

 

 

In Chapter II, after introducing some new concepts

and modifying some old ones and after presenting an

example of deficiency, we conclude that a minor change is

necessary in the axiom.sets.*l.and.42, obtaining axiom set

A3 which is stated, for matters of presentation, at the be-

ginning of Sec. II.2. Then, in Sec.II.3 we discuss the

interrelations of 94-1, :42 and 43, and show that .43 is al-

most equivalent to.#2. Finally, Sec. 11.4 concentrates on

reduced and half reduced state descriptions, yielding im-

portant results, for a given objectC?, such as: the cardi—

nality of any two reduced state space is the same, or any

reduced state description is nothing but (Z*,A*) obtained

by use of equivalence classes of inputs (DEF.I.3.2), etc.

In Chapter III, we investigate how the properties

of the object<9-—its linearity, time-invariance--are

reflected in the properties of its state space. We show

that the state space can be constructed to possess cor-

responding nice properties. An important point about this

chapter is that the properties of the system are defined,

not in terms of its state description, but rather in terms

of its I-O pairs, and then their implications on the state

space deduced.

Considering linear, time invariant and continuous

objects in Chapter IV, the use of convolutional
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representation for such objects is justified, and a state

description of the form:

 

dx (1:)

__3t__ = mElamnxm(t)+bnu(t) dfiét) = A X(t)+Bu(t)

i.e.

K (k) K (k)
y(t) = nglcnxnwwkiodku (t) y(t) = c X(t)+kiodku (t)

is given for a large class of distributed systems re-

spectively in sections 2 and 3, where X(t) is a square

summable sequence for each t and A an infinite Hilbert

Matrix. In the final section of this chapter, the

important problem of "approximating a system having a

continuum of states with objects having a finite dimen-

sional vector space as their state space" is discussed

and solutions offered.

Finally in the Appendix, Chapter V being "the

conclusions" chapter, first a justification for using

distribution theory, then the "Orthonormal Series Ex-

pansions of Distributions," recently developed by

Zemanian and others, is given in its general lines.

Thirdly some new theorems that are necessary for Chapter

IV, such as the convolution of distributions infil', the

proof that shows certain types of functions are in 01

are presented.



CHAPTER II

AXIOM SETS 41, 42, A3 AND STATE

DESCRIPTIONS IN GENERAL

II.l-—Introduction
 

This chapter sets the basic rules, matures the

necessary background and develops some very useful tools

to be used in Chapters III and IV. Many theorems are

proved about State Descriptions in closed form, few of

which may be considered as ends by themselves. We con-

sider this chapter of prime importance for the rest of

the work and apologize for some long and tedious proofs.

In section 2 we define certain important concepts

such as Reachable States, Singular States, Equivalent

States, Reduced and Half Reduced State Descriptions, etc.,

some of which are new, some of which are the modifications

of the old ones, in the light of the new Axiom Sets.

An example in the same section shows the insuffi-

ciency of the State Axioms 41 and that £41 is not equiva-

lent toflv2. To remedy the situation, a modification is

introduced to .41 giving rise to .43. The latter, besides

being justified physically, deserves attention because of

its consequences.

26
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In section 3, we deal mostly with formalities of

investigating the interrelations of the Axiom Sets and

prove that most former results do still hold under543.

One of these surviving results is the very useful and

important State Description of an object, based on the

equivalence classes of inputs.

In section A, we investigate and bring to light

the nice properties of Reduced and Half Reduced State

Descriptions. We show that Reduced State Descriptions

are basically unique and strongly related to equivalence

classes of inputs. It is here that we obtain the result

"any two Reduced State Spaces for a given object have

the same cardinality" which is an end by itself.

Thus briefly section 2 sets the basic rules, sec-

tion 3 matures the necessary background and section A

develops the useful tools to be used later.

II.2--An Example of Deficiency

and the Axiom Set 543.
 

Because of the new State Axioms .41, 912 it is

necessary to revise the definitions of some important

concepts. Some of the subsequent definitions are modi-

fications and some are new. No explicit reference being

made with respect to which Axiom Set they are given, they

remain the same for 5L1, 542 and .43 (14.3 to be introduced

later). Let in the following (Z,A) be a State Descrip-

tion of 6' given by R A

O

I
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DEF.II.2.1:

A state 0162(t1) is said to be REACHABLE FROM A

STATE 0062(t0), tl > tO if there exists an input

u 6U
l (t t1) such that:

O,

(i) (o ,u )eD
O l (t0,tl]

(ii) (Cogulou)eD(tO’t]¢: (Ol’U)ED(tl,t]’

for uéU

(t1.t1

(iii) K(t0,t](oo’u10u”Qtl,tJ = A<t0’t](ol,u)

Then "the input ufEU(tO,tl] takes the state 00 into the

state 01."

DEF.II.2.2:
 

A state 0162(tl) is SINGULAR iff it is not reachable

from a state 0062(t0). Or equivalently: a state “I62(t1)

is NON—SINGULAR iff it is reachable from a state aoez(€0),

where I = (EO’EIJ is the existence interval.

DEF.II.2.3:

A state oO'€Z(tO) is SUBSUMED by the state oo"eZ(t0)

iff:

(i) (00',u)ED(tO t] 2:7 (00',u)ED(tO t], for

all t > t0 in i

(ii) A(t0’t](oo',u) = X(to,t](oo",u) holds for all

u described in (i).
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Two states oo'ez(to) and co"62(t0) are EQUIVALENT iff

00' is subsumed by 00" and 00" is subsumed by 00', i.e.,

(i) (o ',u)€D (0 ",u)ED
O (tOJCJ‘: O (t0,t]

and tEI, and

" _" H '

(ii) A(to,t](00"u) - A(to,t](00 ,u) is true for

all u described in (i).

We believe that these definitions are self ex-

planatory and need no further justification or physical

interpretation. We now prove a simple fact.

FACT II.2.l: Let 0262(t2) be reachable from 0162(tl)

and 0152(tl) be reachable from 0062(t0). Then o2€£(t2)

is reachable from 0062(t0).

PROOF: Cl is reachable from 00 and 02 is reachable from

0 implies respectively that there is an input u EU
1 l (t0,tl]

that takes 0 into 01 and another input u2€U
O

that takes 01 into 02. Now we claim that:

ulou2 is admissible. Since (Ol’u2)€D(tl,t2]¢:>

(c ,u Ou )ED , which can happen only if

0 1 2 (to,t2]

uou EU

1 2 (t0,t2].

ulou2 is an input that takes 00 into 02:

(i) (GO’ulOu2)ED(tO,t from above,
2]

(ii) (00’u10u20u)éD(tO,t]¢=>
(Ol’uZOu)6D(t1’t]

¢==» (02,u)€D for uEU<
(t2,t] t t]

2,
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(iii) X(to’t](OO,ulOu2Ou)/(t2,t] =

X(t t3(02,u) proving the fact.

2’

Another simple fact that can be proved easily is the

following one:

FACT 11.2.2: The equivalence of the states defined in
 

Def.II.2.3 is an equivalence relation and thus parti-

tions the state space X(t) into equivalence classes of

states for each tEI.

Now we proceed to the "CONSTRUCTION OF REDUCED

STATE DESCRIPTION."

 

NOT.II.2.l: Let (Z2,A2) be a State Description ofGV

under the Axiom Sete#2. In this case the Reduced State

Description has to be obtained in two steps, as com-

pared to a State Description under.Al (or’43), because of

(M2') that allows more than one state at the creation

instant. We obtain a new State Description (Z,A) from

(Z2,A2) proceeding as follows:

E the creation instant.X(t) A 22(t) vt > t
O’ O

X(to) g any unit set.

D(t0,t] A D2(t0,t] Vto > to

D(Eo’t] g {(oE0,u) : o€0e2(t0) and ueu(go’t]}
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A éA t>E.AA A
(t0,t] — 2(to.tJ V o o (t0.t] —

{((t0.tl. og0,u,y) : ogoez(t0>. <u.y>eR(gO,t]}

NOTE II.2.l: The definition of AI, makes sense for I =
 

(t ,t]. For, to each u€U A , there corresponds a
o (t0.t]

unique yEY A since O’has a State Description under

(togtj’

.A2 and must therefore be causal by Thm.I.3.l.

NOTE II.2.2: The pair (E,A) obtained from (Z2,A2), as
 

explained in Not.II.2.l, is a State Description ofG?,

under #2 .

(M1), (M2'), (Sl) are trivially true since (22,A2)

satisfies.d2, and by Note II.2.l, (S2) is also true for

I = (t0,tl], tO > to, by the same reasons. For IO =
o

(E O’tl] and (oto’u0)6D(tO,tl] let 0162(tl), as re-

quired by (82'), to be the state 0162(tl) guaranteed by

(M2'). Then:

(0c u Ou)ED A u OuéU m

to’ 0 (t0,t2] ¢=:> o (- ,t2]

:> 3 y OyEY A

3(u00u9y00Y)€R(E ,t J

O 2

a = -

y A2<tl,t2](°l’u)

proving (S2).
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NOT.II.2.2: Let (Z, A) be a State Description of G“
 

under :41, .42 (or .43), (if under 42 the description con-

tains more than one state at E0, we apply the procedure

of Not.II.2.l. to obtain one that possesses a unique

state). Then for each t, we form:

28(t) A {OeZ(t) : O is singular}

20(t) A {O’EZ(t) : O' = O}f12:(t), the complement

being with respect to X(t). Note that the classes 20(t)

are mutually exclusive.

ER(t) A a subset of X(t) obtained by taking only

one element from each class 20(t).

DR(tO,t] A {(OO’u)ED(tO,t] : OO€2R(tO)} for each

interval (t0,t]

AR(tO,t] A A(t tJ/DR(t for each interval

(120.12].

DEF.II.2.A:
 

(2R,AR) will be called a REDUCED STATE DESCRIPTION

UNDERWAi, i = l, 2, 3 iff it satisfies the Axiom Set

Ad, 1 = l, 2, 3.

NOT.II.2.3: Let (Z,A) be a State Description of G?under
 

4i, i = l, 2, 3. We obtain zs(t) as in Not.II.2.2, then

we define:

c-

ZHR(t) A 28(t) for each t, i.e., we only keep non-

singular states for each t in our state space.
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AN EXAMPLE OF DEFICIENCY

Let the object Grbe given by the list Rf, I =

(-w,w), shown in Fig.II.2.l. R3 = {(000,000),

(001,000), (100,101), (100,101)}.

 

 

  

 

  

 

 

 

 

 

 

 

 

 

Inputs Corresponding Outputs

000
000

O 7 b ’

100 101

O ’ b 27

001

A 090 A;

O
0

lol 101

d > ‘o ’

Figure II.2.l.

2(-°°> = {0}

Let our conjectured X(t) = {01,02} -m (“t g 0

state space be: X(t) = {a,B,Y,5} t > 0 

together with the conjectured I—O—S—R which is defined as
 

follows for I = (t0,t]:
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For

to = -w .t s o, A = {(I,0,0,0), (I,o,l,l)}

-t > O, A = {(I,O,OOO,OOO), (I,o,OOl,OOO),

(I,O,lOO,lOl), (I,O,lOl,lOl)}

t0.5 O -t s O, A - {(I,ol,0,0), (I,O2,l,l),

(I,Ol,l,l)}

-t > O, A = {(I,o1,OOO,oOO), (I,Ol,OOl,OOO),

(1,02,100,lol), (1,02,lol,lol)}

tO > O , A = {(I,d,O,O), (I,B,l,0), (I,Y,O,l),

(I,6,l,l)}

We first bring to attention that the need for

parametrization (i.e., the need for a State Description)

shows up, as discussed in Chapter I, when I = (t0,t]

with t > 0. If we were given, e.g., the input 0 on I =
O

(l, 3] we would not know what output to make correspond

to it. But if we are given the input 0, with the state

a, we now can say that the corresponding output is O.

A--The conjectured State Description (Z,A) of(9 satisfies

AA:

(Ml) Let I = (t0,t], then I must be in one of the

five categories, i.e., either (t0 = -w, t.< O or t > O)

or (t0 6 O, t < O or t > O) or (tO > O). In all the

five cases: (u,y)ERI ¢=> 53a state (either 0, or one

Of 01,02 or one of a,B,y,6) OO 9(I,Oo,u,y)éA.
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(M2) is satisfied by definition of the state space.

(81) By checking the list defining A one can see

that for each 0062(t0), each uEUI 3.at most one output

ya (I,oo,u,y)EA.

(S2) is the most tedious one to check. We must go

through all possibilities.

Let I = (t0,tl] with its position indicated at the
0

beginning of each Case.

 

t0 = -m, tl < 0 Consider (0,0)EDIO, then 01 is

. A, . the state required by (S2). In

t1 0 t2 fact:

For t s O (0 O u )GD m u = O
2 ’ ’ t1 t2 (- ,t2] = t1 t2 =

(o 0 )ED and A (o ,0)
1’ t1 t2 (tl,t2] (tl,t2] l

A m (o 0 0 )/ = 0.
(- ,t2] ’ t1 t2 (tl,t

> 0 (0,0

2]

For t u )ED .=:, either u =

(-m,t2]

l 2

or u = O 1

t1 0 t2

2 t t

O 0
t1 0 t2

u )ED ' and again in either

1 t2 (tl’t2J

In either case (cl,t

u )/ =
t2 (tl,t2]

case A (O ,u) = A m (0,0
(t1,t2] l (- ,t2] t1

For the same IO, but for (O,l)€DIO we can go through

the same arguments by replacing "0 inputs" with "1

inputs" and vice versa in the above discussion, the

state required by (S2) being 02 this time.
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t0 = -W, tl > 0 Consider (0,000tl)€DIO. The

, , 1 state (S2) requires, is
‘V f I

0 t1 t2 0L€Z(tl). In fact:

(0,0 u )ED m -==> u = 0 since that is the
t1 t2 (- ,t2] t1 t2

only possible concatenation. Then (a, 0 )6D
t t (t ,t J
l 2 l 2

and A (d O) = A m (0 O O )/ _ = O.
(tl,t2] ’ (— ,t2] ’ t1 t2 (tl,t2]

For the three possibilities (0,0 l ),(0,1 0 ) and
0 t1 0 tl

(0,101 )EDI the states required by (S2) are re-

1 O

spectively B, Y and 6, the proof remaining the same.

t

tO < 0, t1 < 0 Let us take (Gl’tootl)EDIO°

1 The state required by (S2)
 

is 0162(tl). Since:

For t < 0,

2 )ED(toat2] =’ u = 1: 0t =>
(0 , O u

1 t0 t1 t2

0 and K (O ,0) =

l ] (tl.t2J 1
(0 )ED

l’t t2 (tl,t2

A (0 O O )/ = O.
(t0,t2] l’to t1 t2 (tl,t2]

(0 O u )6D 22' either
13 t0 t1 t2 (t0,t2]

For t2 > O,

In either case: (0l,u)ED(t J and A(t
t t2](ol’u) =

l’ 2 l’

A (0 O u )/ = O.
(t0,t2] l’tO t1 t2 (tl,t2]

For the same IO, but either for (01,1) or for

(o2,l)€DI , 0262(tl) this time is the state required

0
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by (S2). In fact for I = (t0 t1] and (02,1)EDI ,
3

O 0

both 01 and 02 work.

For t2 < O, (0l,toltlu

is the only choice =¢> both (01: tllt2)5D(tl,t2]

] and for both’A(t

)GD 2 u = 1

t2 (to,t2] t1 t2’

and

(°2’t lt )ED(tl,t (0 ,1) =

l 2 t2J 12

>
l

1t 1(0 ,l) = A

(tl.t2l 2 (t O lO,t2](°l’t

For t > 0,2uEU 3(0 , l u‘ )ED ,
2 (tl,t2] 1 t0 t1 t2 (t0,t2]

so there is nothing to be checked and (S2) is auto-

matically satisfied.

 

tO s 0, t1 > 0 Consider (01,t OOOt )eDI .

O l O

_L. 1 . . Then a€2(tl) satisfies the

I I l 1

t0 0 t1 t2 requirements of (S2). For:

(0 , O O 0 )6D :2; u = O is the only
1 to 0 t1 t2 (t0,t2] t1 t2

possible sequel to t OOOt . Then (a,O)€D( and

O l t
t2]

= 0.

l9

t2](ol’t 0t
A (d,O) = A

(tl’t23 (t O l
O )/

0: t2 (tlat2j

O l (O l O )9)
0 0 t1 ’ 2’t0 O tl

lOlt )EDI the states required by (82) are re-

0 l O

spectively: B, y, 6, the proof being the same as above.

For the remaining (Cl,t

(O2’t

 

tO > 0 Finally for (a,t Ot )EDI ,

O l O

, , . J a is the state that satisfies

0 t t

1 t2 (S2). In fact:
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] u = Ot and thus

2 2

JWith A<tl’t2](a,0) =

(a, O u )ED
t0 t1 t2 (t0,t

(a 0 )ED
’t1 t2 (tl,t2

A = O.(a O O )/

O’t2] ’t0 t1 t2 (tl’t23

Similarly the states required by (S2) for the

(t

pairs (8,1), (y,0) and (6,1) in DI are 8, V,

O

662(tl) respectively.

B--(Z,A) is not a State Description Of(9-under;¢2:

Since (Ml), (SI) and (S2) are the same ins4l and

.42, the only possible contradiction can be to (M2').

To Show this we consider the case: tO < O and u0 =

O€U(_ then what must be proved is:
00,130],

"30062(t0) 9 {y = A(to,t](00,u)<=> 3y05Y(—°°,to]

9(u00u,yooy)ER(_w,t]}.n

As 00 = Cl and 00 = 02 are the only two possible

states at time tO < 0:

Let first 0 = 0162030). Note that (01,1)ED(tO,t]
O

for t < O which implies y = l = A(t t](ol’l)' But

0’

since tO is negatlve it is clear that uou = Otolt¢U(-m,t]

and hence there cannot be anyyO3(uOOu,yOQy)€R(_oo t]' We

’

conclude that 01 is not the state required by (M2').

Let now 00 = 0262(t0). The only possible input

u such that (00,u)ED(tO,t] is u = tolt for t < O.
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But again 0t 1t is not admissible==$ 02 is not the

0

state required by (M2').

The following Notes discuss the State Axioms;4i,

i = l, 2, 3 in the light of the above example, providing

the promised payments.

NOTE 11.2.“: It is clear, since there are no singular,
 

and equivalent states, that the State Description of the

Object(9'in the above example is a reduced State Descrip-

tion. Besides that, our example serves two main pur—

poses:

It shows that the two sets of axiomsfll and 14—2

are not equivalent.

It proves that the next Axiom Set we are going to

define cannot be obtained from .41.

NOTE II.2.5: One could also introduce into the I-O-S-R,
 

A, many other quadruples, as we did for the case: tO-< O,

t < O and I = (t0,t] by introducing (I,0l,l,l), that are

not really necessary to get a State Description. For

example, for the case, tO s O, t > O we could include in

A the quadruples (I,01,100,lol), (I,0l,lol,lol) and still

get a State Description which is valid under.4l. This

turns out to be a deficiency ofrtl, which does not occur

under State Axioms.42, as we have seen and will see. We

call this a deficiency Offi4l for two reasons:
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Even after including such "superfluous" quadruples

in A, we still have a reduced State Description and can

have many different ones by adding such quadruples at

will. There is no way of getting rid of these quad—

ruples by throwing out some states.

Whenever we tried to prove the key results of this

chapter (such as Thms. 11.4.2, 11.4.3, 11.4.5) we

were always StOpped by the presence of such superfluous

quadruples.

All this trouble owes its presence to (S2) ofs4l,

and was not present in142 due to (M2') which requires more

than (M2). We will give a new Axiom Sets43 which will be

justified by its physical interpretation and by its ends.

NOTE 11.3.2: Let us suppose an observer wants to experi-

ment at time t1, t1 not a creation instant, on the Object

O'which is left at state 0152(tl). Let us further assume

the object G'came to the state 0 from a state 0062(t0),
13

t0 < tl by an input uO, i.e., 01 is one of the states

required by (S2) for the pair (0O,uo)€D(t Now if

O’tl

(tlgt2j’

that means u can follow uO, that also

10

the observer can apply the input uéU i.e., if

(0 ,u)ED ,
1 (tl,t2]

means the concatenation uoou, besides being admissible,

can be taken as an input pairable with the state 0062(t0).

What we are trying to say is that (01,u)€D should

(tl,t2]

imply (OO’uOOu)ED(tO,t2] This property is not
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reflected in (S2) ofJ4l and constitutes the only change

in443.

We list all of1¢3 for ease of reference.

THIRD AXIOM SET 43:
 

(Ml)-For each I (to,tJCI, (u,y)ERI 1173005sz)

3(I,00.u,y)6 A.

(M2)-2(t0) is a unit set, I = (t0,tl]

(Sl)-For each 1 = (tO,t], for each 0052(t0) and

for each uEUI, there exists at most one output y such

that (1,00,u,y)EA.

(S2)-For each 10 = (to,tl] and (GO’uO)ED(tO,tl]

there exists at least one 0162(tl)

(i) (OO’uOOu)ED(tO,t] (=> (OI’U)ED(tl,t]

(ii) X(tl,t](ol’u) = K<t0,tl(00’”OOU)/(tl.tl’

Vu that satisfy (i) where D and AI are as
I

defined farfl4l.

II.3-—1nterrelations of the

Axiom Sets .414, :42, J43

NOTE 11.3.1: ABOUT :41 and A3. It is obvious that .43 is
 

a restriction Oftil, in the sense that any State Descrip-

tion ofO that satisfies 94.3, satisfies .41. That the

converse is not true is easily established by the Example

of 11.2:
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PROOF of :41 3e» .43: We take the objectO of p.34 with
 

the conjectured state description (Z,A) of p.35. We

Show this (2,A), already a State Description under54l,

does not satisfyji3, the contradiction being to (82').

Consider, 1 = ('m’tlj’ tO < O and (0,0)éDI

O

00 = 0162(tl) cannot be the state required by (82')

since: (01,1)ED

1

say for t < t < 0, but
\

(tl,t2] 1 2

(0,0 l )QD m as O l is not an admissible input.

t1 t2 (‘ "‘2:J t1 t2

00 = 0262(tl) is also not the state required by

for t < t2 { O
i ' ° 0

(S2 ), Since again. (02’1)ED(tl,t l

2]

but 0t 1t is not admissible.

l 2

Thus we conclude, there exists no state at tl that

satisfies (S2') for the pair (0,O)€DIO and therefore

41 sis) 113.

Finally we would like to note that the same pair

(Z,A), only without the quadruple (1,01,l,l) for tO < o,

t f O, I = (t0,t], is a State Description under $41,942

and .43 for (9'.

Now before anything else we have to proceed through

the formalities of proving the previous results, Thm.

1.3.2, under our new Axiom SetJAS. In order to do this

we demonstrate two simple facts, already mentioned in

[RE3] for.4l, about the State Description (Z*,A*) ob-

tained by use of equivalence classes of inputs (Def.1.3.l).
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Let in the following the object(9’be given by

Rf, I = (EO’EIJ the existence interval.

FACT 11.3.1: Two inputs vEU A and uEU A are

(t0,tol (t0.tol 

equivalent iff:

(i) Vt > t and VwéU t]’ uow is an admissible

3
0 (t0

input iff vow is.

(ii) If for wEU
(t0,t]’ uov and vow are admissible

and §’2€Y(€O’t] are the corresponding outputs

then y/(to’tJ Z/(t0,t]

PROOF:

L = A==> et v u in U(t0,t]

(i) Let uow be admissible for WEU(tO,t] ==>.HUEUE

Bu = quOu/(t,tl] =:> vaOu/(t,gl] is admis-

sible (since u = v) =:> vow is admissible.

And vice-versa.

(ii) Using the input u of (i), quOu/(t,gl] and

V0W03/(t,El] are admissible. ==:- by equivalence

A

of u and v, y/(t t where y and z

0,

= 2/ A

l] (toatlj

are the corresponding outputs to uowofi/ A
(t,tl]

and V0w0a/(t,El]' Hence clearly y/(to t] =

Z/(t0,t]°
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<2: Now let (i) and (ii) be true for u, VEU(E t J'

O’ 0

Then for t = t0 we obtain the definition

of u = v.

FACT 11.3.2: Let D * be the domain of A *. Then
 

I l

* * A
(OO’u)ED(tO,t] iff 0062 (to) and uOOUEU(tO,t] for any

uOECtO(0O) and t0 > to.

PROOF: (00,u)éD*(tO’t] (i, 3ygy(to,t]9y = A*(t0,t](00,u),

(by def. of DI)(=? 3(u’y)€R(tO,t] Qu/(to’tjectowo)

and (u’y)/(t0,t] = (u,y), (by def. of A*I).

—_...:) 0062*(130) and;=§ Let (00,u)€D*(t t]

O,

uOOu€U(EO,t] for any uOECtO(00), by Fact 11.3.1, Since

'any two inputs in Ct (00) are equivalent.

0

¢== Assume 0062*(t0) with uOOuEU for any
(E0,t]

Note that (O,u)€D*I iff3y 3 (1,0,u,y)€A*. So by def.

_* - "'*
*

of A , ((t0,t], 00,u,y/(t0,t]€A and hence (OO,u)ED(t t]'

O,

The following Thm.11.3.l is the counterpart of

Thm.1.3.2 under :43.
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THM.11.3.l: Under the State Axioms.43 the following are
 

equivalent:

(i) &has a State Description under¢13.

(ii) (9 is causal.

(iii) (Z*,A*) is a State Description under;43.

EEOO_F: (i) =—) (ii) 9 has a State Description under

343 ==$ €?has a State Description underfiil

(Note 11.3.1) ==P C?is causal (Thm.1.3.2)

(ii) ==9 (iii) To show (2*,A*) is a State

Description underuAG, the only axiom that

needs verification is (82'), the others

being verified in (Thm.1.3.2).

Let 1 = (t t1] and (00 ,uO )€D* (t t be given.

0 O) 1]

Then (00,uO)ED*(tO’tl] c—_—.) 0062*(t0) and

O,

for any u'O€C+ (00) by Fact 11.3.2. 01 =OuOEU
0 (t0 ,tlJ to

CE [Ht (u'00u0)] is the state required by (82'). In

1 l

' * _.___. Y A

fact. ©0,uoou)€D (t0,t2]'__9 u OOuOOUEU(tO,t2] for any

V

u OECtO(00) (by Fact 11.3.2).

V '_—> u 'ouEU(tO t2] for any u EHtl(u Oouo)

(by definition of Ht (u'OOuO)) ===$

l

(0l,u)ED* (t 2] (by Fact 11. 3. 2).

l’t
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* V i A 1(0l,u)ED (t t2]‘=$ u OUEU(tO,t for any u ECtl(0l),
2]

1 I
i.e., for any u éHtl(u OOuO)

l,

I A

———§u OOUOOUEU(tO,t2J and hence

"' t
2] for any uoéHtO(u O)

ou)6D*. (by Fact 11.3.2).
(to,t2]

u00u00u6U(tO,t

—_? (OO’uO

Let u be such that (00,u00u)éD* and

(t0.t2]

-l
. As 0 = C [H

l’ 21 0 t0 t0

Ctl[Htl(u Oou0)] we have y — A(t0,t2](00’u00u’ and y -

(01,u)eD*( (u'0)] and 0 =
t t l

*
_.. . - - I AA (tl’t2](01,u) are such that. 3373(y,u.Oouoou)eR(tO,t2]

and y/ = y and ay',;(y' G ou)€R c and
(t0,t2] ’ O (t0,t2]

y'/(t t J = y' with GO 2 u'OouO. By definition of

l’ 2

u0 = u'OOuO, the (tl,t2] portions of the outputs cor-

responding to the inputs uOOu and u'OOuOOu are equal.

=9y/(tl,t2] = y'. Hence (S2') is satisfied.

(iii) ==9 (i) is a triviality.

The next theorem is one that was promised in

Note 11.2.3. It shows that the reduced State Descrip-

tion of Def.II.2.4 satisfiesfiFB.

THM.II.3.2: Let (Z,A) be a State Description ofl9’under A
 

.43. Then the reduced State Description'(ZR,AR) obtained

from (Z,A) always satisfieSJ43.
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ed

EEQQE; We verify each axiom to get the proof.

(Ml) For each I = (to,tk:l

30052R(t0)9(l,00,u,y)€1§R => (u,.’>’)ERI since

0062(t0) and (2,23) satisfy43.

(u,y)ERI =97 3(fi,§)éR(E 9(fi,§)/I = (u,y).

0’”

6D A

to,

' A T." A ' D ‘Applying (S2 ) to (ot ,u/(to t 0], w- can say

0 1‘]

gooeuto) 9

(i) (“to’fi/(EO ,tolou )eDt t1<=>(00’u')5D(t t]

and

(11)K(EOHJ<oo,a/(E

for any u' that satisfies (1).

Since fi/(t t Jou is admissible,

3

(0A ,fi/ A Ou)€D A __. (o ,u)eD and
to (t0,tO] (to,t] ——> o (t0,t]

[y = x(EO,t](OEO’U/(EogtOJOU)J/(to,t] = A(to,t](00’u) = y.

Now GOEZS (tO ) (i.e., 00 is not a singular state) since

it is reachable from 0E€Z(t0 ) by u/E( due to (1)

t0 t0’

and (ii) above. Then the only way for GO¢ZR(tO) to occur

,t O],

is when we throw all states in gkfto) but one. If ever

0 is thrown out there must exist a state OO'EXR(tO) 3
0

2 ' = vo 00 . In this case y X(t0,t](00 ,u) by definition

' V

of equivalence of states. 80300 €2R(to) 9 (GO ’u)EDR(tO,t]

and y = K 1(00',u).
R(t0,t

(M2) and (81) are trivially true since (2,3) satise

fied them.
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(82') Let I = (t t1] and (oO,uO)éD then
0’

and 0062(t0).

R(t0,tl]’

(o ,u )ED

0 o (t0,tl]

Since (2,K) satisfies A3, for I = (to,tl]

and (oO,uO)EDI there exists at least one 0162(tl)

such that:

(i) (OO,uOOU)ED(EO,t] 4-“:9 (Ol’u)eD(tl,t]

(ii) K(tl,t] (ol,u) = A(t0,t]K°O’uOOu)/(tl,t]

VLlsatisfying (i).

From (i) and (ii) it is obvious that Cl is reachable

from o by u As 0062R(t0) it is non-singular and thus
0 O'

reachable from 0t , say by u'o. Then by Fact 11.2.1

0

0162(t1) is reachable from cg . Thus the only way for

O

01¢2R(tl) is that it be thrown out when we keep a single

state from 201(tl). 1

' is the state required by (82') for (ER,KR). In

' v ._~_.
In that case 301 €ZR(tl) 3 01 o

and Cl

fact:

(1) (co,u00u)éDR(tO,t] ¢==9 (OO’uOOu>ED(tO,t]

since oOéZR(tO)

¢==e (01’”)eiD(tl,tl by

(82') for (Z,K)

(.~==9(ol',u)6D(tl’t since
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‘22:§ (o ',u)€D since

1 R(tl,t]

(ii) A

AR(tO,t](OO’uOOu)/(tl,t]

proving (82').

NOTE 11.3.3: ABOUT242 end.d3. The
 

already shown us that the two Axiom

of D

R(t0,t](00’u00u) = K(t0,

of AR

V

01 €ZR(tl) and by def.

R(t t]
l)

t](00,u00u) by def.

. Hence

A(tl,t](ol’u) by

by (S2') for (E,A)

- A (o ', u)
(tl,t] 1

since 0 ' = o

l l

I

KR(tl,t](Ol ,u)

since

(01' ,u)EDR(tl,tJ

example in II.2 has

Sets are not obtain-

able one from another. So now we concentrate our atten-

tion on the relation between542 and.&3 and show that those

two sets are almost equivalent, with a minor restriction

on the State Descriptions satisfying1¢2.

THM.II.3.3:
 

(i) Let (2,A) be a State Description of(9'under

443. Then (LA) is a State Description ofG—

under 42 .
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(ii) Let (2,A) be a State Description of(9'under

5¢2. Then (2 KHR) obtained from (2,K) as
HR’

defined in Def.II.2.5, is a State Description

of (9' under 43 .

PROOF:
 

(i) (MI) and (SI) are the same for both 42 and 43, and

(S2) is trivially implied by (82').

(M2') is (82') applied to the interval IO =

(tO,tO]. In fact: uO€U(€O’t ;¢==3(O“ ,u )6D A
O] to O (t

then (82') requires there be a state 0062(t0) such

O’to]

that: (i) <0g0,uOOU)€D(EO,t]“==b (Go’u)5D(tO,t]

(11) x(t0,t](00’u) = [A(E0’t](oo,uoou) = yl/(t0,t]

Naturally 0062(t0) is the state required by (M2').

Verifying: y = K(t0,t](OO’U) =7 (OO’U)ED(tO,t] =§

(Oto’uoou)ED(EO,tJ fia§eY(gO,t] 9W =

K(Eost](0€o’u00u)J/(toat] = y ==933y0, namely yo =

§/ “ .9(y oy,u OUDGZR A .
(t0.tO] o o (t0,t1

3ybeY(EO,t] a(”0011’5’003’)6R(t‘o,t] ==? yO0y =

A A (0A ,u Ou) ==9 (0A ,u Ou)ED A __
(t0,t] to 0 t0 0 (to,t] -47

t] ==b [yooy = A(Eo,t](ot‘o’u00u)]/(t0,t] =



52

(ii) We have shown in Note-II.2.2, on our way to the con-

struction of reduced State Descriptions, that a State

Description (Z,A) was obtainable from a given one,

underyi2, such that X(to) was a unit set. Very little

modification was necessary and indicated. Here then,

we assume that this modification is already made and

X(to) is a unit set.

(M2') is satisfied by the above comment and (81) is

automatically satisfied since(E,A) was already a State

Description.

(Ml) needs verification since there may not be

enough states left after obtaining 2 Let I =
HR'

(t0,t]ci.

EJOOQZHR(tO) 9(I,oo,u,y)EAHR ==9 (u,y)ERI clearly.

Let (u,y)ERI => 3(fi,§)ER(€O,tJ 9(u,y)/I = (u,y).

By (M2'), as X(to) is a unit set, 300€Z(t0) for u0 =

u/ A .3

(l) (OEO’uOOu')€D(t0,t'](=>(oo,u')€D<t t1]

0’

(2) [§ = X(E0,t](0€ ’u00u')34to,t']

o

t'](°o’u') = y'2:(t

From (1) and (2), 00 is reachable from GE 3 hence

O

ooezHR(tO) and (0g ,uoou')€DHR(tO,t'] «=9
0

(0E ,uoouv)ED(€O,t,]<:.—> (OO’u')ED(tO,t'] (z)

0

and A(GO’u')€DHR(tO,t']
HR<tO,t'](OO’u')

=



_ ' - A = - :
A(t0,t'](00’u ) [A(t0,t'])0t0’u00u') y

- A A ' =

AHR(tO,t'J(OtO’uOOu )J/(t0,t'] Hence for u u we

(82') We let IO = (to,tl] andCOO,uOXEDlHR.

(OO’UOXDHR(tO,t]¢:$ c%)ls non singular and (oo,u0)éDI

by def. of D .

 

HR

((3) (O€O,u00u')ED(tO,t']<=_>

(0 u')6D
<_..> - A 0’ (t ,t']

31106U(t0’t019.< O

(u) A(t0,t'](00’u') =

A(€0,t'](0t ’uoou )/(t0,t']
L

Applying (M2') to(o€0,uoou)€D(EO,tl], 301622(t1) 9

(5) (oto’fioouoou)eDHR(€

<=) (O‘l’u)ED(tl,t] (=9 (Ol’u)€DHR(tl,t]’ since

clearly Cl is non singular and

(6) [KHR(EO,t](OtO’aOOuOOu)

A<€O’t](GEO,uoouOou)]/(tl,tj = A<t t](ol,u)

AHR(tl,t](Ol’u)'

Thus (OtO’uOOuOOu)€ DHR(tO ,t] 4.2:) (OO’uOOu)€DHR(tO,t]

by (3) and since 00 is non singular. Combining this

with (5) we obtain:
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And (A) put together with (6) yields:

(8) {KHR(tO,t](GO’uOOu) = K(t0,t](00’u00u)

’o l .

HR(tl,t](Ol’u)’ 1'e° AHR(t tJ‘ O’uOOu’/(tl,t]

( .

t].ol,U).

(7) and (8) prove (32') and complete the theorem.

COR.II.3.l: The half reduced State Description (ZHR’AHR)

obtained from the pair (Z,A) satisfying.42 is a State

 

Description under 94 2 .

PROOF: (Z,A) satisfiessfl2 :=? (Z AHR) is a State
HR’

Description under.43 ==a (2 THE) is a State Description
HR’

undernAQ, the implications following from parts (ii)

and (1) respectively.

In order to emphasize more the equivalence ofs42 and

A3 we can restate Thm.11.3.3 as follows:

THM.II.3.3': A conjectured State Description (Z,A) for
 

an object 9with X(to) a unit set and X(t) containing

no singular states for each t, is a State Description

under.*2 iff it is a State Description under543.

NOTE 11.3.“: Nothing stronger than that has been ob—
 

tained about the equivalence of the two Sets of Axioms

£2 and.43. However as we always will be dealing with
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State Descriptions that are at least half-reduced, this

much is what is needed.

NOTE 11.3.5: The next two simple corollaries of
 

Thm.11.3.3, together with Thm.II.3.2, Thm.11.3.3,

constitute an answer to the problem posed in Note 11.2.3.

COR.11.3.2: Let (Z,A) be a State Description oft9’under
 

42. Then the reduced State Description (ZR,AR) ofG>

satisfies.42.

PROOF: By Thm.11.3.3 \ZHR,AHR),

is a State Description of G'under543. Then by Thm.11.3.2

obtained from (Z,A)

the reduced State Description (ZR,AR) obtained from

(2 A ) satisfies_43. Hence, again by Thm.II.3.3
HRHR’

(2 AR) is a State Description oft9'under542.
R,

COR.11.3.3: A conjectured, reduced State Description
 

(2 ,A ) satisfies.42 iff it satisfie5y43.
R R

PROOF: This is a direct result of Thm.11.3.3 and

Cor.II.3.2.

NOTE 11.3.6: From now on, only Axiom SetgA3 will be used
 

as the basic one. We will briefly say ”let (£,A) be a

State Description" or "let X(t) be the State Space and

A the I-O-S—R." These will mean ”satisfying543.” How-

ever for reduced or half-reduced State Descriptions the

set #2 can be referred to as a Theorem.
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II.A—-About Reduced and Half—Reduced

State Descriptions

 

 

NOTE 11.A.l: With the following theorems we harvest the
 

fruits of our efforts in the previous two sections. That

these fruits are very nutritious will be appreciated as

we proceed into the next chapters. One must have re-

marked in the Example of 11.2 that to test whether a

conjectured State Description is one that satisfiess43

may be a very difficult task for ~ome objects. The

following theorems give us some algorithms to ease this

task.

THM.Il.u.l: The State Description (2*,K*>, obtained by
 

use of equivalence classes of inputs, for an objectd},

is reduced.

PROOF:
 

(1) First we show that 2*(t), for each t, contains only

non—singular states. Let 0062*(t0), then by defini-

* A = .
tion of Z (to), BuOEU(t ,t J act (00) Ht [uo]. This

0 O O 0

input uO, or any u'OEHt [uo] is the input that takes

0

GEO into 00. For:

u ouéU c 2:.) 321 unique (unique sinceGis
o (t0,t]

causal by Thm.11.3.l) output it ytEEY(€ t]

O 0"

- A ....- —* n
3 (uOOu,ytOyt)€R(tO’tJ..u9 ((tO,t],oO,u,y)€A . Since
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by definition of A* (I',o'0,u',y')EA* ¢==9

3(‘1'0’3"0)€R(1’50,t'] 9u'O/(‘c‘o’t'olect' (0'0) and
O

(u'O,y'O)/I = (u',y') which is clearly the case

A __ *here. Hence uOOU€U(tO,t] .1) (oO,u)ED (.
t t]°
O,

x : __ - . _*

(003U)ED (t0,tJ —) aer(tO’t] 3((t09tJ3003u3y)€A

==>u00uEU(E t] again by definition of A*. Thus

03

° * 11 A

we have proved. (GO,u)€D (tO,t]<=é' u Ou€o(t

¢==9(0E ,uoou)ED*(E t] since Go is unique.

0 O’

[y y = A* A (0A ,u ou)]/ - y —
tO t (to,t] to O (to,t]

A*(t t](oo,u) from above.

0 ’

(ii) Second we prove that 2*(t) does not contain equiva-

lent states for each t. We do this by showing:

1 2 n 1 = u 1 n .x.
o O o 0 :=9 0 O o O for o O and o 062 (t0),

t0 arbitrary.

F. (O'O,u)€D*I(-—-:> (cr"o,u)€D*I and

0'0 8 o"0<==9 4 where 1 = (t0,t].

 
y -_- K*I(O"O,u) = A.*I(O‘"O’LI) V1.1 111(1).

K

y = A*I(o'0,u) ==$ 3(u'0’y'O)ER(tO,t]39u'O/(EO,tO] =

Ct0(o'o) and (u'0,y'o)/I = (u,y).

3’ = Ke61(0"0’u)==9 3(u"0,y"0) R(EO,tJ 3uno/(Eo,tol =

Ct0(o"o) and (u"0,y"0)/l = (u,y).
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We will be done if we can show u'O/(A =

n A

u /(t0.tol

equivalence classes Ct (

O

equivalence classes have to be mutually exclusive.

Then, as C

to

n 1 =
Ct0(o 0) will yield 0 0

To prove u'O/<€ O’tO] =

(a) Consider any wéU(to

admissible. Then: 3 yéYi

'

o O) and C

is one—to-one by definition Ct

u" /

Su' /
,tll o

toato]

which would imply the equality of the

to

(0' )
O O

O"

O'

(tO,tO]

A ow is

(tO’tO]

3 (u'O/(E0,to]ow’y)eRi.

But, as X(EO) is a unit set y =

9(-

K WE :U'
w).

O ’to JO
o/(EO

—lO
:1 O"[RE3], 00 Ct (Ht [u' 0/[(t ,ttOJJ) which is O itself,

0 t0 0

A = —*

3 (l) y/(t ,t J A (t ,ttl](0 O,w) and by state

0 l O

A = -* A H

equivalence (2) y/(t0,tl] A (tO’tl ](U O,w). (2)==€>

A A A H

3(u03yO)ER(t ,t Jauo/(t ,to :16 Ct (0 ) and uOO/(t: ]

O l O 0 t1

w. As u / A 613 (0" ), u 0/
(t0,t0] t0 0 (t0 ,to]

u" / c =é> u” / c Ow is admissible.
O (tO,tO] 0 (t0 to]

The same proof can be used to show: u" / CV is
o (t1:00.12 J

admissible ==b u' /A
O (tto, t 0]

By (32'):3Oc€z(to) and by

is admissible.

(b) Equations (1) and (2) Show that whenever

u O/(EO,tO]OW and uHO/(t

O’t0]

(0"0), since the

OW are admissible then
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the part of the response corresponding to w is

9/(t t ] due to state equivalence.

O’ 0

Hence u' / A = u" / o proving o' =
O (tO,tO] O (tO,tO] O

n _ 1 = n
o O ——> o O o O‘

THM.II.M.2: For a given objectG}, any two reduced State
 

Spaces have the same cardinality at time t.

33993: By Thm.II.3.l an object<9vhas a State Description

iff (2*,K*) is one. By Thm.ll.u.3 2*(t0) is a reduced

State Description for each to. What we will do then is

to establish a well defined, one-to-one, onto corres-

pondence between any reduced State Space X(to) and the

equivalence classes of inputs which will imply a well-

defined, one-to-one, onto correspondence between X(to)

and 2*(t0).

Given any 0062(t0), 00 must be reachable from at

since X(to) is reduced, i.e.,

O

 
 

H1) u uEU-A (o ,u)€D
00 (toms): 0 (120,121

E"10":U(Eo,tol=3

4(2) K A (0A u, ou)/
(t0,t] to o (t0,t]

X(to,t](00’u)

k

We define: B : 2(t ) +39 to be : B (o ) A
to o to to o

Ht [no], where no is the above input guaranteed to exist

0

by reachability.
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_ . v = H v
Bto is well defined. i.e., o O o O ==> Bt0(o O)

Bt0(o O) or equivalently o O o O __) Ht0(u O)

H (u" ) where u' and u” are the inputs that take
to O O 0

0E into 0'0 and ONO respectively. In fact:

0

u'OOu€U(EOat]<_-? (o'O,u)ED(tO’ by (l)

n i. .. . = n

¢=9 (O O’u)ED(tO,t] since 0'0 0 O

t]

H A I
g::§ u OOUEU(tO,t] by \1).

K A (CA ,u' Qu)/ = A . (o' ,u) by (2).
(to,tl to 0 (t0,t] (t0,t] o

= - n y ._. n
A(to,t](0 O,u) since 0 O o

= K A (CA ,u" Ou)/

(t0,tl to o (t0,t]

by (2)

Hence by Fact 11.3.1, u'O : u"O.

. ° v = n
Bt is one to one. i.e., Bt (o O) Bt (o O)===$

O O O

1 = H ° 1 = H
o O o O which is true iff Ht0(u O) Ht0(u 0) =5?

_ n - z n __ y = n
0'0 - o O which is true iff u'O u 0 -—) o O o 0’

where u'O and u"O are as before. We prove o'O = o"0:

' V A

(o O,u)ED(tO’t](==9 u OouEU(t
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Bt is onto: i.e., given any Ht [uo], 30062(t0)

O O

59Bt (00) = Ht [uo]. This means given any uOEU(E ,t ]

O O O O

is leaves the object in some state. This is guaranteed

' = A A A

by (S2 ) applied to lo (tO,tO] and (oto’uO)ED(tO,tO]

(or by (M2')).

NOTE II.H.2: The following theorem is a simple corollary
 

of Thm.II.A.2. But yet it is a very important one in

that it shows for a given object<9'the reduced State

Description is unique in a sense eliminating the ambi—

guities posed by the example of Section II.2 about the

reduced descriptions.

THM.II.U.3: Any reduced State Description (Z,A) of<9
 

is nothing but (Z*,A*) defined by use of equivalence

classes of inputs.

PROOF: We have seen in Thm. II.U.2 the existence of a

one to one, onto mapping BtO: Zkto) 9-Wto 9 Bt0(oo) A

H [u 3, where u was the input that took oo into
t0 0 O to

0' The existence of uO was guaranteed X(to) being

reduced. Actually this makes Bt , the mapping Ct

0 O

and X(to), the State Space 2*(t0) since by definition

0'

3*(to) is any set of the same cardinality as'Jft and

0

Ct any one of many one to one, onto mappings between

0

two sets of same cardinality (Def.I.3.2).
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Let now ((tO,t],oO,u,y)6A( t]’ consider that u
t O
0’

taking OE into 00. By definition of reachability

O

uOOuEU(tO,tO] and 3y09(u00u,y00y)€R(€0’t]. Clearly

= u 6B (0

OJ 0 to

= 3*

(uOOu’yOOy)/(to,t] = (u,y) and uOOu/(€O,t O).

The definition of A*
I

being satisfied K(t

t] (t t]
O’ O’

and hence (£,A) = (E*,A*).

COR.II.A.l: A State Description of<9 is reduced iff it
 

is the description (Z*,A*) obtained by use of equivalence

classes of inputs.

PROOF: The corollary is a direct result of Thms.II.A.l

and II.U.3.

NOTE II.A.3: As we go along, in Chapter IV especially, we
 

will see that some results about Half Reduced State Des—

criptions can be conveniently used to prove some descrip-

tions are State Descriptions and half reduced. We first

give the definition of a particular State Description

(already defined in [RE5]) then prove it is a half re-

duced description. But unfortunately the converse will

not necessarily be true as will be explained in Note

11.4.6.
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DEF.II.u.l:

For t 6,3, a partitioning of U A into classes
0 (tO,tO]

H't [uO] of inputs is called a HALF EQUIVALENCE PARTITION—

O

ING iff:

A _._' '(i) uOE U(t0’t03 _) uOEH tOEuO]

' Y A __ ' =

(ii) uO,u O€U(t ,t 1") either H t [uo]

O O O

t v v v v =
H tOEu O] or H O[u0](\H tOEu 0] ¢.

” ' ' 1 9;
(iii) u 06H to[uo] -._=) u O uO.

t

The family 39' is: W A. {H' [u 1 : u eU ,. },
to to to o o (tO,tO]

for tO > EO‘ As before we take Z'(tO) to be any set with

the same cardinality as fl?t , for to > £0 and assign

O

t . 1 !

[uo] by C t . Z (to) + H t [uO], where

O O O

C'to is one of the many one to one, onto mappings between

two sets of same cardinality.

1 I

0062 (to) to H t

The I-O-S—R is defined as before: for IO = (t0,t],

t > t Cu is admissible for some
0 O’ O

1%)ECUtO(oO) and y = yO/I, where (uoou,yo)€RI for t0 =

t Z'(to) is any unit set with ((E0,t],o€0,u,y) being

(I,oO,u,y)€A' iff u

03

such that 0€552(t0) and (u,y)éR(EO,t].

EQTE II.4.M:

What we did in Def.II.u.l was to partition the

equivalence classes of inputs into some mutually
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exclusive classes of pre—tO inputs, and then take these

classes as describing the states, everything else remain-

ing the same° EQUIVALENCE CLASSES OF PRE—tO INPUT

SPACE

 

This is a parti—

tion based on a

sufficient condi—

tion, rather than

a necessary and

sufficient condi-

tion for equiva—

lence of pre-tO

inputs' That we HALF REDUCED PARTITIONING

are now provided

with a Half Re- Figure II.M.l

duced State

Description is the why of the next theorems.

THM.II.4.4: The description (Z',A') of Def.II.u.l is a
 

Half Reduced State Description (EHR’AHR)°

PROOF: First of all it is a State Description since:

(Ml) Let I = (t0,t]ci (the case to = 80 being

trivial we consider tO > to):

(U,y)€RI # 3(U,Y)€R(€O’t] 9 (u,y)/I = (u,y)-

l_ :-
Consider GO — Ct (H't

O O

A', (I,oO,u,y)€A'.

[u/(E t ])' Then by definition of

O’ O
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(I,oO,u,y)6A' ——=)(u,y)€RI is obvious.

(M2) is fulfilled by definition of 2*(EO). (81)

is automatically satisfied, since for I = (t0,t],

COEZ'(tO) and uEU we have a unique output that can
I

t ___ 1
correspond to uOOu, where Cto(oo) H tOEuO], if uOOu

is admissible.

(82') As in Fact 11.3.2 the domain D' of A' is:
I I

v ___ . l A

D (t0,t] {(oo,u) . 0062 (to) and uOOu€U(tO,t] for

v A t A =
uOGC to(00)}, tO > to, and D (t0,t]

{(ogo,u) : oEéEZ'(tO) and uEU<€O’t]}. For IO = (t0,tl]

and (CO,uO)6D'I the state required by (82') becomes:

-1 A

_ I V I 1 '

-1 A

= ' ' = I

(i) (Go,uoou)6D'(tO,t](=2)oro€£'(t0) and

u700(uOOU)EU(’£O’t] for

u'OEC'tO(oO)

<—__:> (U'OOUO)OUEU(EO’t]

and 01 =

c';:<H'tltu'OouOl>ez'<tl>

<:=£>(ol,u)éD'(tl’t] for

to > to.
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A ' A — A ' A
(oto,uoou)ED (t0,t]<"> otégz (to) and

t t]
O,

<=:>u00u€U(EO,t] and Cl =

"'1 I v(H tlEuO])EZ(tl)
C'

tl

for

(ii) A'(t0’t](oo,uoou) = yO/(t

(u'00(u00u),yO)ER(EO’tJ with u'OEC'tO(CO).

v = ~
A (tl,t](ol’u) yO/(tl,t] where

(uoou,yO)ER(E for some uOEC' (o

0’ t1

1 v ~ z 1 ~ =

H tltu oOuoJ ==? uo u OOuO =55 yo/(tl,tJ

t] l)

y / by definition of equivalence. Thus
0 (t1,t]

. —t _we have. A (t0,t](00’u00u>/(tl,t] _

A'(tl,t](ol,u) for tO > to. For t0 = to,

t](0t ,uOOu) = y0 where (uOOu’yO)ER(tO,t]

. A' O u = ~
0 o) (tl,t]( 1’ ) yo/(tl,t]

where (uoou,yo)€R for some, hence for
(tom

any uoéc'tl(ol)

= ~ 7
hence yO/(tl,t] yO/(tl,t] giving us (S2 ).

H'tlEuO] 2:; GO 2 uO and

Now we prove that (Z',A') is half reduced. To show

there are no singular states in Z'(t0) for any to, we
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consider COEZ'(tO). Then 3u06U(EO,t] 9 C't0(oo) =

H't [no]. uO is the input that takes 0“ into 0 . For:
0 to O

(i) Clearly (CA u )6D' A .
tO’ O (t0,tol

A ' A A(ii) (oto,u00u)éD (120,,“ (2:) uOOueU(tO,t] and

o€€2(to) by def. of

O

¢=;> u00u6U(EO,t] for

I

uOEC to(CO) from above

(74'? (<30,u)€D'(t t] by

0,

definition of D'I.

_' A =

(iii) A (to,t](0t ,uoou) yo, for

0

yo 59(“00u’yo)53(€0,t] and A'(to’t](oo,u)

, . .
yO/(t0,t] since u OOu is admissible for any

to O

the (t0,t] portions of the outputs correspond—

u’OQC't (00) = H' [uo] and since u' = uO,

0

ing to u' Ou and uoou are equal.
0

NOTE II.U.5: That the State Description (£‘,A') is not a
 

reduced one can be observed by the following fact, if

(Z',A') is based on a QPt that is finer than m% (the

O 0

condition "finer" is necessary because equivalence

Classes of inputs are by definition a Half Reduced Par—

titioning). The fact now is there are states that are
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equivalent, namely the ones corresponding to the classes

I I I

H tOEuO], H tOEul], . . . , H to[un], . . . such that

a u z 0 O O z 2 O

uo 1 un

NOTE 11.4.6: The converse of Thm.II.u.A (the counterpart
 

of Thm.II.A.2) is unfortunately not true unless some

extra hypothesis is added. Any Half Reduced State

Description is not based on a Half Reduced Partitioning

for the following reason. Consider a Half Reduced State

Description (Z AHR) and define 200(t0) A
HR’

v . v :2
{o OezHR(tO) . o 0 do} for a fixed oOezHR(tO). If we

had thrown all of Z (t ) but 0
GO 0 0

would correspond to an equivalence class Ht [uo] for

0

some uO, making 20 (to) correspond to the same class.

0

from £HR(tO) then 00

Now we compare card 20 (to) with card Ht [no]. We can

0 0

always assume card 2 (t ) > card H [u J (if it were
00 O to 0

not we could always add as many equivalent states to

00 as we wish without disturbing the State Description)

for the purposes of our note. Then card 200(t0) >

card HtOEuO] would make impossible the existence of a

one to one, onto correspondence between X(to) and any

Half Reduced Partitioning ’JI't , since equivalent states

0

can come only from the partitioning of an equivalence

class Ht ['1 and the most Ht E-] can be partitioned to,

0 O

is into its individual inputs.
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NOTE II.H.7: We close this section, and the chapter,
 

with a theorem that constitutes an answer to a problem

posed in [RE2], concerning a property that State Des-

criptions Should have.

THM.II.A.5: The following is true for a Half Reduced
 

State Description (ZHR’AHR)

(i) (Co’uoou)eDHR(tO,t] =fi> (oo’uo)eDHR(tO,tl]

where tl€(t0,t] is arbitrary.

(ii)
AHR(tO,t](OO’uOOu)/(t0,t = AHR(tO,tl](OO’uO)ll

PROOF: As all states are non singular, Bu'o 300 is

reachable from CA by u' and
t0 0

I

(GO’uOOu)€DHR(tO,t]‘==°'u OOuOOueU(tO,t] by definition of

reachability

I A=>u OOuOEU(tO,tl] the restriction

of an input to ICE is admissible.

=9 (CO’uO)eDHR(tO,t by reachability

lJ

again.

AHR(to,t](OO’u00u)

> both by reachability

A (o ,u )
HR(tO,t1] o o

 
A A (CA ,u' Ou )/
HR(tO,tl] t O O (t0,tl]

J

O
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A A (0A u' ou ou)/ = A A (0A u' ou )
HR(t0,t] to’ O O (tO’tlJ HR(tO,tl] tO’ O O

by causality (Thm.II.3.l). Hence:

A (o ,u 0u)/ = A (o ,u ).
HR(tO,t] o o (tO,tl] HR(tO,tl] o o



CHAPTER III

LINEAR, TIME—INVARIANT OBJECTS

III.l--Introduction
 

Many authors including Zadeh and Balakrishnan give

the definition of "Linearity," ”Time-Invariance," etc.,

for objects, in terms of the State Descriptions of

objects [ZA2], [BAA]. However, whether an object has

these properties or not, does not depend on its State

Description, a machinery introduced by us. In fact

state descriptions are ambivalent: even if an object is

linear or time—invariant, there are state descriptions in

which the State Space and the I-O—S-R are not linear or

time—invariant. Consider:

db] [’51 “SIAM

y(t) [:0 1]l-:%]+ u(t) ;

This certainly is a Linear Object, but the state descrip-

tion is non-linear (for an example of time-invariant case,

substitute x by t in the 2 x 2 matrix).
1

71
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In Sections 2 and 3 of this chapter, we start with

the basic definitions of "Linearity" and "Time-Invariance"

and proceed to show that state descriptions can be choosen

to provide the object with "Linear" and "Time Invariant”

Reduced Descriptions. Then Zadeh's definitions are ob-

tained as results of these natural definitions. Also some

nice results, such as "Separation Property of the I-O-S-R"

for linear systems, "X(t) is the same set at any time t"

for time-invariant objects, are attained among others.

As another application of equivalence classes of

inputs, the linear, time invariant system given by the

equations:

Qgé—Q = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

is investigated and conditions are found for its State

Space to be reduced when A is in Jordan form. These

conditions will prove useful in the last section of

Chapter IV.

To Close this section we would like to add that the

whole chapter illustrates the importance of "the equiva-

lence classes of inputs" and exhibits how much can be

accomplished with the help of this concept without going

into deep mathematical analysis.
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III.2—-Linear Objects and Properties

of the State Description

NOTE III.2.l: We start the basic definition of "Linear

Objects" and after stating some facts, we show that

equivalence classes of inputs can be given some linear

structure, which will be very useful in showing the

"Linearity of the State Description." As usual, we have

to stand some tedious Lemmas.

DEF.III.2.1:
 

The objectG}, given by the list Rf of I-O pairs, is

a LINEAR OBJECT iff:

(ul,yl)€Ri(

and k 2:: (ul + au2,yl + ay2)ERA, for aER .

 

 

(”2’y2)5Ri)

FACTS III.2:

(u ,y )ER

1. (9 is linear iff 1 l I

(u2,y2)ERI

(ul + au2,y1 + ay2)eEI vici, aenz.

2. (0,0)ERI, VICI. But (0,0)€R is the unique

(19.12]

pair with 0 first element, for all t due to causality.

3. (9 is Linear 2:? UI and YI are linear function

spaces VI.

DEF.III.2.2:

l , l
aHt [uO] g {auO . uOEHtOEuO] and aEIR} for a 7‘ O

aHtOEuO] HtOEO] for a = O.

|
|
l
>
O



n ___ 2.1 :
J + aH [u 0] {uO + auO . quHt [u 0],

O O O

2 n
uoéHtOEu O] and aéml}

I

u o t

LEMMA III.2.l: Let(9 be linear, u and u'OEU and
0 (t0

 

,tOJ

' A AWEU(tO’t1] Then (uO + u O>OWEU(tO,tl] 2:; gwl and

A ' ’ A Aw26U(tO’tlJ auoowl and u OOW2EU(tO,tl]’ and uoowl +

u'OOw2 = (uO + u'O)OW.

PROOF: "<:::" is trivial.

H H

2:: u EU A ¢::; 3w éU A 3L1ereU o A .

O (tO,tO] l (tO’tlJ O l (tO’tlJ

As the input space is linear (Fact III.2.l), (uO + u'0)0w —

Now if we let

 

Owl6U ::$u Mo(wwl )EU
uo (to ,tl] (1:O ,tll

— A o ' AW2 A w wleU(t ,t 3 then obv1ously u 00w2.€-U(t at J and

O l O l

v = v
(uO + u O)ow uOOWl + u OOWZ'

LEMMA III.2.2: For a linear objectd}, u'O : u”O and

1 ~ 2 , l N n 2 , n l
u 0 - u 0 :=> u 0 + u 0 — u 0 + u 0’ for u 0’ u 0’ u 0

2
and u O€U(t0,t0]'

PROOF:
 

(i) Let (u'O + ulo)ow be admissible, by Lemma III.2.l.

l ,1 1 _
3w' and w EU(t ,E ] 3 \u'O + u O)Ow -

u'Oow' + uloowl



(ii)
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1

u OwiéU A A iff
O (to,tl]

R

C, since u'u" ow'eU A A
o (t0,tl] 0 o

> Using linearity and

l l .
u 00w EU(EO’€l] iff

2 l l 2

u 00W €U<eo,e
since u = u

’ ° 0 q 1]

Lemma III 2 1 u" w' + u2 wléU A A
° ° 00 00 (t0,tl]

2
H A A

(u 0 + u O)OWEU(tO’tl] In exactly the same manner

2
O + u O>OWEU(tO,tl] 2:;we can show (u"

l
t A A

We must now show that the portion corresponding to

w, of the response to (u" + u20)0w is identical with
O

the portion corresponding to w of the response to

(u'O + ulo)ow. In the following all concatenations

occur at to. There exists unique, since causal

l l

(Thm.1.3.2), y'ooy' and y 00y €Y<EO’E 3
J

l

1 i Y V A A

(u Oow ,y 00y )€R(t0’tl] and

1 l 1 1 ,
(u 00w ,y 00y )GR(€O,€ Using linearity

J
l

l l l l
(quva + u 00w ’y'OOy' + y 00y )€R(£O,€l]. AS

1 I l l _ y l , f

u 00w + u 00w - (u 0 + u O)0w, by uniqueness o

the outputs for I = (EO’EIJ to given inputs, we

can write ((U'O + ulO)OW’ (“'0 + ulO)Oy)6R(g

l
where y A y' + y Using u'O = u”O and u 0 = u 0’

thecmflputs to u"Oow' and u200w1 are such that

2 l 2 l
H 1 H l A A A A

(u 00W ,y 00y )€R(' ,| J and (u 00W ,9 00y )6R(t ,t ]
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where y' and y1 are as above due to equivalence of

inputs. As u"00w' + u200wl = (u"O + u2o)0w we have

2 - 2 l

((u"0 + u O)Ow:y"00y' + y 00y ) =

H 2 " 2 A A((u 0 + u O)Ow,(y O + y O)0y)eR(tO,tl] proving the

Lemma.

LEMMA III.2.3: For a linear objectc9, u'O = u"O :::;
 

1 a n 1 n A
au 0 an O Vaeflk, u 0 and u OEU(tO’tO].

PROOF: For a = O the Lemma is trivially true. So let

a # 0, then:

' A A _1 Y = ' -1 A A(au O)OW€U(tO,tl] e::>a [(au O)Ow] u O0(a W)6U(t0’tl]

by linearity.

by u' = u"
n ’1

¢::>U.Oo(a W)€U( O O

tofill

n “l = n A
<;:3 a[u O0(a w)] (au O)OwEU(t

by linearity.

Then there exists a unique y'Ooy5Y(gO,€l] 3

Y ' A A -

((au O)ow,y 00y)ER(tO,tl] Now.

—1 —l
_ v ' A A

Linearity :::>(u O0(a w), a (y 00y))6R(tO,tl]

t N n H ‘1 “l n A A u

u 0 _ u 0 ::s (u O0(a w), a (y OOy))€R(tO’tl] where y 0

is 3 (au"
o’y"o (E t]

0’ o

.
n H A ALinearity 22$ ((au O)OW: y 00y)ER(tO,tl]°

That the t to £1 portions of the responses, to (au'0)0w

O

and (au" Ow, corresponding to w are equal proves this0)

Lemma”
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NOTE III.2.2: Our aim is to show the linearity of the
 

collection of equivalence classes of inputs and all the

machinery of the previous three Lemmas has been intro-

duced for this purpose. Although Ht [u'o] + aHt [u"0] is

O 0

well defined for each t in Def.III.2.2, there is nothing
0,

that guarantees it is an equivalence class. Once this

is established, the linearity ofiflt for each tO is then

0

reached with respect to the operations defined in Def.

+ au"III.2.2. On the other hand, u' 0 being an input
0

for aEfi , H [u' + au"0] is a well defined equivalence
t O
0

class. The next theorem is central, in that it estab-

lishes the linearity of Rt

0

 

THM.III.2.l: For a linear object6>, Ht [u'o + au"O] =

0

Ht [u'o] + aHt [u"0] Vtoél. Hence the equivalence

0 0

classes of inputs form a linear space'fl£ VtOEI.

O

PROOF:

(1) First we show H [u' + u" = H [u'O] + H
J Eu"

0 O 0 t0
0

V H 2: I H

Let uOEHt [u 0 + u 0] then uO u 0 + u 0' We

0

_ l 2

can write uO as follows. uO - u 0 + u 0 where

l _ 2 _ l ,

u 0 — u'0 and u 0 — uO - u'O. Then u OEHtOEu 0]

~ n _ v 2 n
obviously. Also uO - u'O + u 0 :2; uO u 0 u 0

t t O]°

Eu"

0

we obtained u = u1 + u2 where u1 EH [u' J
O O O O to O ’

2 ~ .
by Lemma III.2.2 ::$ u 0 - uO - u OEHt 0]. So



(ii)

(iii)
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2 u v
u OEHtOEu OJ. By Def.III.2.2 uOEHtOEu O] +

H t H 1 H

Ht [u OJ :29 Ht [u 0 + u OJC:Ht [u OJ + Ht [u OJ.

0 O O O

1 n =
Now we let u E HtOEu OJ + HtOEu OJ. Then uO

l 2 1 ~ 2 ~ n
u 0 + u 0 Bu 0 - u'O and u 0 - u 0’ (Def.III.2.2).

_ l 2 z 1 H

By Lemma III.2.2 uO — u 0 + u 0 u 0 + u 0 :2:

t n y n =
uOEHtOEu O + u OJ. Thus HtOEu 0 + u OJ

H [u' J + H [u" J.
to O to 0

Second we show Ht [aqu = aHt [uOJ for O # aER ,

0 0

since for a = O,Ht0[auOJ = HtOEOJ and aHtOEuOJ =

Ht [OJ by Def. III.2.2.

0

~ 1
Let u'OEHtOEauOJ :29 u'O - auo. Define u 0 A

-l , , _ l l = -l , z
a u 0' Then u 0 - au 0 and u 0 a u 0 uO by

Lemma III.2.3. Hence u' EaH [u J 2:;
0 t0 0

HtOEauOJCIaHtOEuOJ.

1 7 =
Now let u OEaHtOEuOJ :::>u O au 0 for

l 1 ~
u OEHtOEuOJ. Using Lemma III.2.3 u 0 - u0 :=;

l g Y I: '
au 0 auo : u 0 8.1.10 fi U. OéHtOEauOJ . Thus

H [au J = aH [u J.
to O to O

t n = 1 n =
Finally H [u 0 + au OJ Ht [u 0] + Ht [au OJ

0 0 O

H [u' J + aH Eu" J proving the theorem.
to 0 t0 0

t
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DEF.III.2.3:
 

2*(t0) will be called a COMPATIBLE STATE SPACE for

the linear objecté> iff 2*(t0) is a vector space iso-

morphic to Rt for each toéi.

0

NOTE III.2.3: When defining 2*(t0), the one to one,

onto mapping Ct : 2*(to) +‘H was chosen to be any
0 .t

0

one of such mappings among many others existing between

two sets of the same cardinality (Def.I.3.2). To get a

compatible state space we also require Ct be chosen in

0

such a way that, it be an isomorphism between 2*(t0)

and Hit , which is always possible due to Thm.III.2.l.

0

Now we are sure, at least, that a linear object can be

provided with a reduced state space that is linear.

NOTE III.2.4: The answer to the question of whether a
 

half reduced state space, based on a half reduced parti-

tioning (Def.II.u.l), can be chosen to be a linear space,

may not be affirmative. The reason is the lack of a

theorem similar to Thm.III.2.l providing us with some

linear structure for'X'to. For example, if we take as

half reduced partitioning, the equivalence classes of

inputs‘xeo with only one equivalence class partitioned

into two nonempty subclasses (the others remaining the

Sanka), then this‘M't0 has not a linear structure in the

sense of Def.III.2.2. However, we can with no difficulty

assert that there are special ways of partitioning 3%

O
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in a manner that can provide us with a linear structure.

One way of doing it is to take each input as a half

reduced partitioning; other ways will be seen in

Chapter Iv.

The next theorem is a result about the dimension

of the state space and illustrates the usefulness of

equivalence classes of inputs.

THM.III.2.2: If the input space of(9’is finite dimensional
 

of dimension n, then the dimension of the compatible

state space 2*(to), dim 2*(t0), is such that dim 2*(t0) S

dim U(t ,t J S n, for all to.

O O

PROOF: It is enough to show dimfik AS dim U A
_____ t (t ,t l

O O 0

VtOET, since 2*(t0) is isomorphic to It :2) dim 2*(t0)

O

dhngfi . It is also clear that dim U A is less than
t (t ,t l
O O O

dim U6 ,{3‘ J VtOEI, since every uOEU(tO J is the

O 1 t0

restriction of some input uEU to (t ,t J. Let
(to ,tlJ O 0

1L1, u2, , unEU(tO J be a basis for U(to to] Then

the classes HtOEulJ, HtOEu2J, . . . , Ht0[unJ spanszmto

For any equivalence class Ht [uOJ in let we have:

0 O

u 6U A and u can be expressed in terms of the basis
0 (t0 ,tOJ O

1%) = ga1. Using Thm.III.2.l Ht [uOJ = Ht [ Z aiuiJ -

i=1 0 t0 i=1

? II [ J H di 1% di Ua u . ence m < m A .
i=1 i to i to (t0,tol
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NOTE III.2.5: Fortunately, dim 2*(t ) = dim U A does
0 (tO,tOJ

not generally hold, since there is a multitude of known

 

examples where the dimension of the state space is less

than the dimension of the input space. In order to show

dim H = dim U(A we need to show that the set

0 to’to]

HtOEulJ, . . . , HtOEunJ is linearly independent.

Equivalently then, we must show that Ht [ukJ =

O

t

n n

E ath [uiJ for at least one a1 7 O :2; uk = E aiui.

i—l O i-l

ifik ifik

n

However we can only infer uk = 2 aiui, which does not

i=1

i¢k
necessarily give equality.

NOTE III.2.6: Thm.III.2.3 that follows is as close as we
 

can get to Zadeh's definition of linearity [2A2] without

further assumptions on our object. It also demonstrates

a linearity property of the I—O—S-R, AI.

THM.III.2.3: The object @—is linear iff it can be given

a reduced state description (ZR’KR) such that the follow-

ing are true:

(i) 2R(t0) is the compatible state space (Def.III.2.3),

vtOeI.

(11) D is a linear space for to > to, i.e.,
R(t0,tJ

' Y H H

(0 O,u O)EDR(tO,tJ and (o O,u O>EDR(tO,tJ 2:;



(iii)

PROOF:

82

' H I H

(o O + ao O,u O + au O>EDR(tO,tJ for

(t0,tJ<:(tO,tlJ and for any aGR .

g

AR(t tJ DR(t t] 15 a linear trans-

O’ 0’

" g n t H _
formation, i.e., AR(tO,tJ(O O + ao O,u + au ) _

A ,u') + aA ,u") for (o'o,u')
(01 (0."

R(t0,tJ 0 R(t0,tJ o

and (0" ,u")ED for (t ,tJ C:(t ,t J and for
O O # O lR(t0,tJ

all aEIR .

"<=: " Only (ii) and (iii) are enough to imply that

G?is linear. In fact (ii) implies that the input space

is linear and (iii) implies that the object is linear.

(i)

(ii)

":=;" is somewhat tedious to prove.

is true by Thm.II.2.l and Def.III.2.2. By

Cor.II.u.l any reduced state description is nothing

but (Z*,A*) and its properties will be used in the

proof of (ii) and (iii).

' H H

Let (o'O,u )EDR(tO,tJ and (o O,u O>eDR(tO,tJ' By

Fact 11.3.2 we can write

(O'O’u'O)EDR(tO,tJ ¢:j'°'OEZR(tO) and

uoou'6U(EO,t] for any

uOECt (0'0)

0

élj 3u'06U(€0,tO] 901:0(0'0) =

V V ' A
H [u OJ and u Oou eU(tO,tJ

to



(iii)
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(0H0,u"0)€DR(tO,t] @ auner(E0,tO] 3Ct0(0"0) =

u u n A
HtOIu OJ and u Oou'eU(tO,tJ

The object being linear u'OOu' + a(u”Oou“) =

(u'O + au"0)o(u' + au")6U(tO,tJ° The equivalence

! n = v n _
class HtOEu O + au OJ Ht0[u OJ + aHtOEu OJ cor

responds to the state 0'0 + ao"0 since

C : Z (t ) + H is defined to be an isomorphism.
tO R 0 t0

Hence 3 uOEU ’to], namely u0 = u'O + au"O 3
(t0

f '1 .-

Ct0(o O + ao O) — HtOEu'

(u' + au"ohflu' + au”)6U(€ tJ° This implies

C) 3

v n‘ v n
(o O + ao O’ u 0 + au O>EDR(tO,tJ by Fact II.3.2.

1!

O + au OJ and

O

' 9 l '1 I! I!

Let y A KR(tO,tJ(O O,u ) and y A KR(tO,tJ(O O,u ).

i I' ! 1'

From part (ii) (0 O + ao 0’ u + au )EDR(tO,tl].

Therefore we will be done if we can show y' +

ay" = A + a0" u' + au"), i.e., we have
R(t0,tJ(G'O o:

to show: 3(fi,y)6R(EO’t]9

fi/(EO’tOJECtOW'O + ao"o) and (fi’§)/(t0,tJ =

(u' + au", y' + ay"). y' = §R(t0,tJ(O'O’u') ¢==$

3(3',§')€R(€O’t] air/(g 1:35 c:t (0'0) and

(fi"§')/(t0,tj = (u',y'). y” = KR<t

3(u",y")ER A ,t] au"/(€0,13350t (Ono) and

(t0 0

An An = n n "*
(u ,y )/(t0’t] (u ,y ) by definition of A I’
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If we take a A G' + aG"6U g J then §' +

0’t

ay"&Y(€ tJ will be the unique response such that

0’

(G' + au",§' + a§")ER(£ tJ’ by linearity and by

0’

causality. Now, (3' + afi")/ A 6 C (0' + a0" )
(tO,tOJ t o o

 

0

since

A D

u'/ A e<3 (o' ) ==e H [G'/ A l =
(t0,tOJ to 0 t0 (tO,tOJ

Cto(0'0) J
‘5 ___..-

G"/ A e c (0" ):==a H [fi"/ A J =
(t0,tOJ to o to (tO,tOJ

O"

Ct0( O) J

H [G'/ A + a(fi"/ A )J = H [G'/ A J +

aH [fi"/ A J = C (0' + a0" ). Hence
to (tO,tOJ to o 0

A! A An A =

u /(t0,tol + 3” /(to,tol

(u' + au")/ A 6'0 (0' + ao" ) and also

(tO,tOJ t O 0
O

[(6 §> = (8' + afi",§' + a§">1/
, (tO’tlJ

(u' + au”,y' + ay") which is what we had to show.

NOTE III.2.7: As we said in the previous note Thm.II.2.3
 

is the closest result to Zadeh's definition of linear

objects under State Axioms A3 and the basic definition of

"Linear Objects." One extra condition on the nature of

6; namely:
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(Cl) "U A is so that u 0 is admissible

" (t 11 E0 to E1

for any uEU A and any t , as well as O uA is
(to,tOJ 0 o to t1

admissible for any u€U<t € J" gives us the property of

0’ 1

that Zadeh uses to define his linear

E

the I—O—S-R, KI,

objects [ZA2J. For a linear object (Cl) is equivalent

to:

(9g) "U(E is so that t ut u'€ is admissible

O O0’ 1J O

A ' A H
for any uEU(tO’tO] and for any u'eU(t0,tlJ’ for any to.

That (Cl) is equivalent to (C2) is easy to show:

(C2)::=$ (Cl) trivially

A A A '(Cl) 2:; (C2) since t ut 0t and t 0t u t are admissible,

O O l O O O

A A A A = A 'A

by linearity t ut Ot + t Ot ut t ut u t is

O O l O 0 l O O l

A ' A A
admissible for any uEU(t ,t J’ u 6U(t ,t J'

- O 0 O 1

(Cl) or (C2) imply via equivalence classes of input the

condition (C3).

(9;) "Any reduced state description of a linear

object G'is such that (o,u)eDR(t0,tJ for any OEZR(tO)

and any u€U(t tJ’ t arbitrary in I,if (C1) (or (C2)) is

O 3

n n = n
satisfied by19 i.e. briefly DR(tO,tJ ZR(tO) x u(to,tJ'

The proof of (C3) is simple: (ZR’KR) is a reduced state

description and oéZR(tO)A::§ audEU(tO,tOJ 3 L10 takes

0E into 0, since 0 must be reachable. As u0 can be

0



86

followed by any uEU<tO’t] :::>(o,u)EDR(tO,t] by definition

of reachability, for any uEU(t t]°

0,

From all these discussions for a linear object 6»

satisfying (Cl), we obtain the separation prOperty and

the linearity of the I-O—S-R as defined by Zadeh [ZA2].

This is summarized in the next theorem.

THM.III.2.M: Let G}be a linear object that satisfies
 

((01) Note III.2.7). Then the object Gycan.be given a

reduced state description (ZR’KR) with the following

properties:

(1) ER has "the separation property" i.e.

KR(tO,t](G’u) = KR(t t ’ —R(t
O,

for all 062(t0) and for all uEU

(t0,t]Cl is arbitrary.

(ii) K is "zero input linear” i.e.
R

AR(tO,t](Ol + ao2,0) = AR(t

aAR(tO,tJ(G2’O)

(iii) ER is "zero state linear" i.e.

KR(tO,t](O’ul + au2) = KR(tO,tJ(O’ul) +

aKR(tO,t](O’u2) both (ii) and (iii) are for

all 01, o2EER(tO), for all ul, u2eU(tO,t]

and for all aETR.



87

PROOF: The proof follows directly from Thm.III.2.3, the

condition (Cl) and the discussion of Note III.2.7.

NOTE III.2.8: That (Cl) has to be assumed is shown by
 

the example of the object "with complete memory." Let

G'be given by: U A {u(t) : u(t) = aER

VtE(E0’E1] and {8 :3u(t)€U(EO,€l]9u(t) = a} =18}

‘ A {(u,ku) : uEU A A and kEHiis fixed}. The

object (9 defined by R(A t J is linear but clearly

1

guOéU(E0,t J 3u0006U(E t]’ t > tO unless u0 = O.

R0903

III.3--Time-Invariant Objects and

Properties of the

State Description

 

 

NOTE III.3.1: According to Zadeh and Balakrishnan, and

although Zadeh defines the concept of "weak time-

invariance," the same way we define our "time invariant

objects," the definition of a time invariant object is

based on the I—O-S-R. That X(t) is the same set for all

t is part of this definition [BAH]. Our task here is

again to start with the more basic definition of time-

invariant objects and get the afore—mentioned definition

as a result under .43. Contrary to the definition of

linearity, Def.III.2.l, where the existence interval

could be any finite or semi-finite interval and not hurt

linearity, the concept of time invariance requires from
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the object, 3 = (—m,W) as the existence interval. From

a time invariant object we at least expect that it does

not change its main properties as regard to the inputs and

outputs, i.e., for example an input u admissible from tl

on, must be admissible from any t2 on and must yield the

same output y whenever applied. As the existence interval

is finite means that all basic I—O pairs are defined on

i=(E t1], where both E and t1 are finite, one cannot
0’ O

speak of an input being admissible for t2 < to or for

t2 > t1.

properties reflecting the time varying aspect of anything

Starting to exist and dying are such important

that even theoretical objects possessing these properties

must be expected to be time varying. Thus, although some

”semi time-invariance" can be defined for objects with

finite existence interval, the only real (expected) defi-

nition of time invariance can be given for objects that

exist forever.

NOT.III.3.l: From now on, the existence interval T will
 

be (—w,w) for the objects under consideration (this was

already mentioned in Note 1.3.7).

NOT.III.3.2: Let f(-) be a function defined on the domain
 

DCHR. AT is the operator defined on the space of func—

tions with domain D by ATf(t) g f(t-T) VtED and where T

can be any finite real number. The domain of ATf is the

set D + T g {t + T : tED}.
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DEF.III.3.l:
 

An object G’whose existence interval T = (-w,w) is

called TIME—INVARIANT iff (u,y)ERi <:_—_> (ATu,ATy)€-Ri.

FACT III.3.l: The object (915 time invariant iff
 

(u,y)ER(tO,tlJ :==$(ATu,ATy)€R(tO + T,t + T] for all

1

intervals (t0,tlJ.

PROOF:

"¢:::" is trivial.

" => " If G is time invariant then:

(u,y)€R(tO,tl] :1» 3(fi,§)ERi 3 (mm/(120,1: ] =(u,y). But

1

we have (u,y)ERi :::>(A1fi’AT§)€Ri by time invariance.

Hence (ATu’ATy)/(t0 + T,tl + r] = (ATu’ATy)eR(tO +I,tl + 11°

DEF.III.3.2:
 

The TRANSLATE AT OF AN EQUIVALENCE CLASS is defined

o '

to be. A-THt [uo] A {u EU0 u' = ATuO}
(—°°,tO + T]

 

NOTE III.3.2: The minus sign in A—THt [uo] is strictly

O

notational, we could as well have used AT. The reason

which made us choose A_T is, when AT is applied to a

function f(t) it changes its argument to f(t-T), however

as we shall soon see in Thm.III.3.l, A-THt [no] is the

0

same equivalence class as H [ATuo] where this time

0

t!

t'O = t0 + T, i.e., the argument has been modified by

T instead of -T.
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NOTE III.3.3: It will make more sense to speak of "the
 

translate of an equivalence class" once the next theorem

is proved. We have to show that ATH [no] is an equi-
t

valence class, however, it may be clegr intuitively for

a time invariant object. So we prove that when an

equivalence class is shifted, it still contains nothing

but the shifted version of the inputs it had before the

translation.

 

THM.III.3.1: For a time invariant object (9, u'OEHt [uo] <=a

o

v =
ATu O€A_THt [uO], i.e., ATHt [uo] Ht + T[ATuO , for

O 0 0

any TETR .

0 V

PROOF. Let u OEHtOEuO]. By definition of HtOEuO],

u'OEHt [uo]‘==$ u'O = uo. Then

0

<1) (ATu'O)Ou€U(_m’t](=>u'00(A_Tu)EU(_m’ 1H] by

time invariance.

@ uOO(A—TU)EU(-°°,t—T]

since u = u'

0 O

¢::>(A1u0)0ueU(-agt] by

time invariance

for uEU( is t > t + T, proving (ATu'O)Ou is
t + T,t]’ O
O

admissible iff (Aru0)0u is.
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(ii) Since they are admissible there exists y' and

y such that: ((ATu'O)Ou,y')ER(_m’t] @223

1

(u O0(A_Tu), A_Ty')ER and
(-°°,t-T]

((ATuO)Ou,y)ER(_m,tJ ¢::b

(uOO(A_ u),A_Ty)€R both by time in—
T (-w,t—T]

! =variance. But A_Ty /(to,t-T] A—Ty/(to,t-T]

since u' = u ' =

° ' z '

y/(to + T,t] which proves ATu O ATu and

9

therefore ATu € A-THtOEuO] .

OE A-THtO[uO]’ which is true iff

(Def.III.3.2), we can proceed as

Letting ATu'

' a:ATu O ATuO

v 2 1
above to show u 0 u giving us u OEHtOEuO].

That A-THtOEUO] = Hto +T[ATuO] clearly

follows from above.

NOTE III.3.U: For a time invariant object(9, a shifted
 

equivalence class is still an equivalence class, justify—

ing Def.III.3.2. It would be nice to show that this

prOperty alone makes G'timm invariant, that is a converse

to Thm.III.3.l. However, this is not true in general as

the following counter example shows: Let G—be given by

the unique pair, R(_m,w) = (u(t),e—|t|) where u(t) =

C, Vt. Then HtOEuO] = {c/(_m,to]} is the unique
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equivalence class Vtoé l, and trivially uEHt [uO] (:2)

O

ATuEAqHt [no]. But the object is not time invariant,

O

ltl is not an admissible output.for A e-
T

Of the following two corollaries, the second one is

a result we were aiming for.

COR.III.3.l: A—T(ATHtO[uOJ) = AT(A-THt0[uO]) = HtOEuO].

COR.III.3.2: The reduced state space X(t) for a time
 

invariant object can be taken the same set Vté(-W,w).

PROOF: All we need to show is that Ht and Ht have the

O 1

same cardinality for any t0 and t1. That there exists

a well—defined and l-l (since invertible) mapping

T :tho + th defined by T(HtOEuOJ) A A-THtOEuOJ’ where

T = t1 - tO is clear by Thm.III.3.l and Cor.III.3.l. It

is also clear that T is onto, since any Ht [uo]€]% is

O l

the image of the equivalence class H [A u 36H because
tO -T 0 t0

of T(HtO[A_TuO]) = A_THtO[A_Tu0] = HtlEuO]. This proves

card Wt = card 3ft . As by Thm.II.M.3 any reduced state

0 1

space is nothing but 2*(t), the one obtained by use of

equivalence classes of inputs, the same set can be put

into l—l, onto correspondence with both3€ and 36,5 for
t
O 1

any tO # t1, i.e., a unique set suffices to be taken

the state space VtEl.



 (
I
)

l
l
:

 

'In.

1)].
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NOTE III.3.5: Of course we are completely free to select
 

the set 2R(t) for each t as long as it has the same

cardinality as H but any other choice, than the samet’

set Vt seems to be artificial, unless there be a neces-

sity.

We achieve our next goal with Thm.III.3.2 by showing

the form the I-O—S—R takes when the object is time-

invariant. It is here that we have to remember the dis-

tinction made between AI and AI in Con.I.3.l.

NOT.III.3.3: Let 00(t0)62(t0) denote the state corres—
 

ponding to the class Ht [uo] for the time—invariant

O

object(93 where X(t) is reduced Vtél. Then

00(tO +T)EZ(t04-T) will denote the state corresponding

to the class A_THtO[uO],‘VT€(—w,w), i.e., 00(tO + T) =

c—1 (A_THt [u01>.
tO + T O

THM.III.3.2: An object(9'existing over (-w,m) is time
 

invariant iff it has a reduced state description

(2 AIR) such that:
R)

(1) (00(t0)’U)€DR(tO,t] e==a

(00(t0 + T),ATu)€DR(tO

TE(_oo,oo)

(ii) A (O (t ),u)
R(t0,tl] 0 o

A (00(tO + T),ATU) Vt€(t0,tl]
R(t + T,t + T]

O l
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PROOF:

 

":::;" Let Gfbe time invariant. Then:

(i) Using Thm.II.H.3, as usual, we do the proof for

(11)

(Z*,A*). By Fact 11.3.2 (0(t0),u)ED*(tO’tl] (:2,

uOOu€U(-w,t1] for any u act (00) = HtOEu].

0

By Fact III.3.1 uOOu€U(-w,tl] ¢::;AT(uOou) =

O

uOEHtO[uJ <2) ATuOEA-THtOD‘IO:l A C

1

Thus we have (ATu O)Q(ATU)EU(

T] and by Thm.III.3.l

to + T(o(tO + 1)).

for any u'
-m,tl] 0’

the quantifier "for any" being well-placed due to

Thm.III.3.l. Thus, again by Fact II.3.2

(c(tO + T),ATu)€D*(
t + T,t + T]‘
O l

y = K*(t0,tl](o(t0),u)<::> 3(fi’§)ER(-°°,tl] 9

U/(-m’t0]ECtO(OO) and (u,y)/(130,123 =(uay) by

definition of A* By Fact III.3.lI'

(u,Y)€R(_w,tl]<::; (Aru’ATy)ER(-m,tl + T] and hence

+ T] = (ATu,ATy). Moreover,
(ATu,ATy)/(t0 + T,t

l

afieu m 33/ 00 ac (o ) =H [a]. By
(- 31:0] (- 31:0] to O to

Thm.III.3.l, AT(u/(_m’to])€A_THtO[u] =

Ct + T(o(tO + T)). And again by definition of

’* = ‘x -
A I’ ATy A (t + T,t + T](o(t0 + T),ATu) which

0 l
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*
implies A (to,tl]<o(t0)’u)

A*(t + T,t + T](O(t0 - T)’ATu)'
O 1

"¢:::" Let (i) and (ii) be true. Then:

(u’Y)€R(tO,tll<:>3°€z*(to) 3 y(t) = A*(t0,tl](°(to)’u)

by axiom (Ml). Then (ii) :::>A* (0(t ),u)
(t0,tl] O

A* + T](o(t0 + T),ATU) for any TE (-w,W), or
(t + T,t

HO

= -*
that ATy A (toatl](0(t0 + T),ATu) :3

(ATu,ATY)ER proving the theorem.
(tO + T,t + T]

NOTE III.3.6: A word about half reduced state descrip-
 

tions closes this section. A proof in the same lines as

Thm.III.3.l can be given to show that the familyIR't

0

based on any half reduced partitioning can be translated

by T, to yield the family 18": + T which has the same

0

structure as W't . More precisely, any H't [uo]€ I't

O O O

can give rise to a A_TH'tO[uO], which can be shown to be

'

to + TEAIuOJEQEtO + T and to constitute a

half reduced partitioning of U(_0° t

3

equal to H'

O + T]. This then

will allow us to keep the same half reduced state space

ZHR(t),‘VtE(-m,m) and to have a property of AIHR that is

similar to the one in Thm.III.3.2.
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III.U--An Application of Equivalence

Classes of Inputs to Lumped Objects

 

which have

where Anxn’

 

1: In this section we shall deal with objects

a representation of the form:

dfiét) = AX(t) + Bu(t)

III.A.l

y(t) = CX(t) + Du(t)

anl’ Clxn’ Dlxl are constant matrices.

Our concern here will be to see under what conditions on

A, B, C and D equations III.A.1 yield a reduced state

description with minimal dimension. This result will be

useful in section IV.5. We start with the precise defi-

nition of the object under consideration.

DEF.III.4.1:
 

A linear, time—invariant object will be calledC}L

iff it sati

(i)

(ii)

sfies:

UL(_m,m) g {u(t) : u(t) is a regular distribu-

tion with support bounded at left and which is

summable on (-w,b), for all finite béfl?},

is the input space.

RL(—oo,oo) A {(uo’yo) L(—w,w)

satisfies III.A.1 for this uo}. For a given

uOEU and y0

uEUL, we will denote by T, the point such that

u(t) 5() Vt < T.
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FACT III.A.1: It follows from our definition of UL that

any input can follow and can be followed by any other,

 

i.e., all concatenations are permissible. For:

uO€UL(-w,t0] and uEUL(t t] implies both are summable

0’

making uoou summable on (-w,t].

 

LEMMA III.u.1: Let (uoou,yOOY)6RL(_m,tl] where

(uO’y0)€RL(-w,t0] with tO < t1. Then: y(t) =

CeA(t—t A(t-T)
O)X(t0) + toftCe BU(T)dT + Du(t) III.

Vt€(t0,tl]where the integrals are in the Lebesgue sense

 

and X(to) = _wftOeA(tO'T)BuO(T)dT III.

PROOF‘ Qgéil = AX(t) + B(u00u)(t)

III.A.l gives: III.

(yooy)(t) = CX(t) + D(uOQU)(t)

Since we are talking of distributions we can write (see

[2E1] or [8C2]):

I6'(t)*X(t) = A6(t)*X(t) + B(u00u)(t) III.

where 6(t) is the delta-distribution, I the identity—

matrix and * denotes the convolution Operation (A.2.9).

Then III.N.5 yields:

[I6'(t) - A6(t)]*X(t) = B(u00u)(t) III.
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1(t)eAt, where 1(t) is the unit step distribution, is

the convolution inverse of 16'(t) - A6(t) as one can

easily verify. Therefore:

. At t A(t—T)
X(t) = l(t)e B*(u00u)(t) = TI e B(u00u)(T)dI III.A.7

since the convolution of two locally summable regular

distributions can be written as the right hand side of

III.A.7 (Thm.A.2.7). Moreover:

(yooy>(t) = CeAtBl(t)*(uOOu)(t) + D(u00u)(t) =

CTfteA(t-T)B(u00u)(r)dr + D(u00u)(t),

Vt€(—°°,tl]

= CeAtTJtOe-ATBuO(T)dT +

CtoarteMt-flBuHMI + Du(t) , Vt€(t0,t1]

= CeA(t-tO)Tft0eA(tO-T)BuO(T)dT +

CtdfteA(t-T)BU(T)dT + Du(t). III.A.8

Using III.H.7 at t = t0 we obtain III.H.2 and III.A.3.

NOTE III.U.2: The expression III.U.8 can also be written
 

as:

y(t) = [CeAtBl(t) + D5(t)]*u(t) for any (u.y)6RL, 1:1.u.9

AtB1(t) + D6(t), can be viewedwhere this form, namely Ce

as the convolution representation of the objectCPL. This

gave us the initial idea in Chapter IV about how to find

a state description for more general objects of the form

y = w*u.
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NOTE III.4.3: The restriction in Def.III.N.l that any
 

input has support bounded at left, is necessary for the

existence of the integral in III.A.7 and alike, since A

may have positive eigenvalues. Another alternative

then would be to assume that A has negative eigenvalues

and then let the input space be the space of regular

distributions that are summable on (-w,b] for all finite

b.

We would also like to note that III.A.2 and III.A.3

are true for any t€(t0,w) when (uoou,y00y)ERL(_m,m) are

such that (u,y)éRL(tO,m).

o ' g '
LEMMA III.A.2. Let uO,u OEUL(-m,to]° Then no u 0 $22;
 

t

_mf|OCeA(t-T)B[uO(T)-u'0(r)]dT = O, Vt> t III.A.lO
O,

PROOF: uOOu and u'Oou are admissible for any uEU
 L(t0,w)

by Fact III.A.1.

' Y

Now let (uoou,y0) and(u Oou,yO )éRL(_m’m). Then

A
expression III.A.9 gives: y0(t) = Ce tBl(t)*(u00u)(t) +

D6(t)*(u00u)(t) and y'O(t) = CeAtBl(t)*(u'OOu)(t) +

D6(t)*(u'oou)(t) b’t. As the object is linear:

CeAtBl(t)*[(uoou)(t)-(u'oou)(t)] +

D[(u00u)(t)-(u'oou)(t)], VtE(-w,m).

CeAtBl(t)([(uO-u'O)OO](t) +

Dt<uO-u'0)001<t> x/te<-w,w).
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_._. t _
In our case, as indicated above, uO u 0 QyO/(tom)

I

3’ o/(to,°°)’ i‘e"

u0 = u'O (2:)CeAtBl(t)*[(uO-u'O)OO](t) = o Vt>t0 Ill.u.1l

A(t—T)B[(uO-u'O)OO](T)dT

t

z '

uO u 0 <-_—_>_°J Ce 0 Vt > to or

A(t-T)

¢:=?_mftOCe B[u0(T)-u'O(T)]dT O Vt > t
O

which is III.4.10

THM.III.A.l: Let 2L(t0) A {x(to)emn :BuOEU(__m’tO]3X(tO)

t
-mj OeA(t0'T)BuO(T)dT} for t > _m and 2L(t0) A {0} for

0

t0 = -m. Also let y(t) = AL(tO,t](X(tO)’u)’ for

X(tO)EZL(tO) and uEU e the expression III.A.2.
L(t0,t]’ b

Then (XL,AL ) is a half reduced state description ofG}L

I

and ZL(tO) is a linear subspace offRn.

PROOF: To prove the theorem we show that (ZL’AL) is based

on a half reduced partitioning. Then Thm.II.A.A com-

pletes our task.

v = v .
ConsiderIW t H t [no] . uOEUL(-m,t0] where we

define:

t

H't [uo J A {u' OEU(-m t O] :_wI’OeA(tO-T)Bu'o(1)dt =

0

if0eA<t0T)Bu0(T)dT} III.u.l2

(i) uOEH'to [no] trivially.

(ii) If u and u' OEUL(-m t 0] then either
0

II0eA(tOT)Buo (T)dT = if0eA<tOT)Bu' O(T)dT
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t ___ v t
in which case H t [uo] H t [u 0], or

O O
t

_mItOeA(tO_T)BuO(T)dT # _mf OeA(tO-T)Bu'o(r)d1

' 7 V —

in which case H t0[uO]/\H to[u O] - $-

1 1

(iii) Let u 06H t [uo]. Then

t t

_mf OeA(to’T)BuO(T)dr _mf OeA(to‘T)Bu'o(r)dr

3 t

_wj Oe-ATBuO(T)dT

t

:::;CeAt_wf Oe"ATBuO(T)dT =

t

_mf Oe_ATBu'O(T)dT

t

CeAt_m].Oe-ATBu'O(T)dT Vt ':::>

_mJtOCGA(t-T)BEUO(T)-u'0(T)JdT = O in par-

ticular Vt > tO :::>uo = u' by Lemma III.H.2
O

proving that “Ht is indeed a half reduced

0

partitioning.

Moreover each X(tO)EZL(tO) represents one and only

one H't [no] due to expressions III.U.3 and III.U.12.

O

This is to say that there exists a one to one, onto

mapping 0' : 2 (t ) +‘H' [u ]. Thus using Thm.III.U.4,
to L O to O

2L(t0) qualifies for the state space ofc9L.

The I—O-S—R, y(t) = AL(t0,t](X(tO)’u)’ defined by

III.M.2 is such that clearly y(t) is the (to,w) portion

of the response to uoou, for any uOEC't (X(to)), due to

O

III.H.8. Hence A qualifies for the I-O—S-R based
L(t0,t]

on the half reduced partitioning III.N.12.
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Finally it is simple to see that £L(t0) is a linear

space since: Xl(t0), X2(t0)6£L(tO) :::>

t

_ O A(t —T)
3u0, u'0€U(—w,t0] 9Xl(t0) - _mf e O BuO(T)dT and

t

_ O A(t -T)
X2(t0) — _mf e O Bu'O(T)dT. AsC9L is linear uO +

au'OEU Fact III.2.3, which implies Xl(t0) +

(-mgtoj,

aX2(tO)E£L(tO), for aEFR.

NOTE III.U.4: However it is not generally true that
 

2L(t0) as defined in Thm.III.H.l is a reduced state

space. The necessary and sufficient condition III.H.10

does not require the defining relation of III.M.12 to

to be equivalent. Con-hold, for the inputs u and u'
0 O

dition III.H.12 is a sufficient one for III.N.10 or

for that matter for u0 = u'o. The following theorem and

its corrollaries tell us when III.U.l2 becomes also neces-

sary for III.H.lO, i.e., when £L(t0) becomes reduced, or

if not, what is the dimension of the reduced state

description, etc.

NOTE III.N.5: We assume that in the equations III.4.1
 

the matrix A is in, or has been brought to, its Jordan

Canonical form. This is no restriction at all, at least

theoretically, since every matrix has a Jordan equivalent

[HO]. We further assume that:
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- - F (k) ‘ -
Al 0 -----0 J1 o o Ak 1 o ----- o

(k)
0 fiéu.g 0 J2. ...... o o 5k 1 ......o

.2 : k - :-.

A: i ..s ’ Ax“ ’ JJ( ) § 1

o o~~ AK 0 0 Jn (k) c 0 AK

_ A _ k 4 —

for k = 1, 2,...,k for J = 1,

III.4.l3

In Ak the size of JJ(k)

Ak corresponds to a different eigenvalue Ak' If the

matrix A has a diagonalizable part, with or without dis-

decreases as J increases and each

tinct eigenvalues, we view each entry on the diagonal as

a l x 1 Jordan block. We also partition the row and

column vectors C and B conformal to the partition of A, i.e.

P -

C = [ClC2 . . . Ck] and B = 2 III.H.12

  
such that the product C A Bk k k is defined for k =

1, 2,...,K.

THM.IIT.H.2: Suppose that:

(i) Ak is formed of a unique elementary Jordan

block J(k), and

(ii) Ck(l)bk(dk) # 0, where Ck(l) is the first

element of 0k and bk(dk) is the last element
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of B d being the multiplicity of A be—
k’ k k

cause of (i).

Then (ZL’KLI) is a reduced state description,

where zL(tO) as defined in Thm.III.A.1 islzn

VtOE (-°°,°°), and AL is as defined in III.N.2.

I

PROOF: Using Lemma III.H.2 for u and u' EU , the
———-——

O O <‘w3t03

expression III.U.10 takes the form u0 = u'O :22;

t k
0 A (t— , _

_ I kElcke k T)Bk[uO(T) - u 0(1)]dT - o, Vt>t0 III.u.1u

At Akt
since the matrix e has the submatrices e on its

diagonal and 0 submatrices elsewhere, like A had the

Ak's on its diagonal. CkeAktBk is conformal by Note

III.A.5. It was pointed out in the same note that each

A corresponds to a different eigenvalue A so that two
k

k’

different terms of the summation in III.4.l3 corresponding

Aklt

to, say k and k and
l 2

A t

e k2 as factors. By summing up such terms there is no

A t A t

k1 by another e k2

will yield terms containing e

chance of cancelling one e for all

t > to. Thus:

Ak(t-T)
~ v mftoc B [u (1)-u' (T)]d - 0

U0 “ u o @229— ke k 0 o T ”

Vt;> t III.A.15

t (k)

<:::;_mJbOCkeJ (t“T)Bk[uO(T)-u'O(T)]dT = O

O

Vt > t III.4.16
0

since by (1) each A is constituted of a single elementary
k

Jordan block.
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(k)

Using the matrix form of eJ t as given by [CO],

III.U.16 reduces to:

dk j--i

u0 = u'O $22: 2 ck(i gjt0(t_iI)! exk(tT)[uO(I) _

J,i=l

1<J

u'O(T)]dT = o Vt > tO k=l,2,...,K III.u.17

We consider now the term which contains the highest

power of t in the summation of III.U.16. t has the

highest power when 3 = (1k and k = l, yielding the term

(l)b (dk) to (t_1) dk'leAk(t-T)[uO(T)_qu(T)]dT,

Ck k -m (dk—15'

where c (l)b (dk) # O by hypothesis.
k k

If we expand (t-T)dk-l and consider the term that

d -l .

contains t k , it is of the form

dk—l A t to -A T
d t e k I. e k [u (T) - u' (1)]dr, a # 0.
d -l -m 0 0 d —l

k k

and it is the only term in 111.u.17 with tdk'l as

factor. Thus if the left hand side of III.H.17 has to

be zero Vt > t the only way this can happen is to
0,

have:

t

-mr-Oe-AKTEUO(T) - u'O(T)]dT = 0 III.A.18
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Proceeding in this manner at each step we will be

left with a term of the form _dftOTme-AKTEuO(T)-u'0(t)JdT

that must equal zero,

vious steps.

~

uo

Thus we will obtain:

for m

k-

11' Kw"; Itorme_kkT[u (T)—u' (T)]dT = O
O V”’ -w 0 O

considering the results of the pre-

III.N.18

O,l...,dk—l

l,2,...,K

The defining relation 111.4.12 for H't [uo], after

cancellation of eAtO

H!

t = {u'OEUO (—°°,t0]

to -J
i.e., 11' EH' [u] <: I e

O for k

= J<k>

1,2,...

since Ak

JtOe—J(k)T

-oo

u'OEH'tO[uO]<::>

t
_mI-Oe-XKT

I... 
for k

,K

F t
I Oe-XkT

i

by hypothesis.

dk

E b

=1

, can be rewritten as:

(k)

TBk[u0(T)-u'O(T)ldT

O

_mftOe-ATBEUO(T)-U'O(T)JdT = O}

III.N.19

III.U.2O

Writing the column vector

Bk[uO(T)-u'O(T)]dT, we get

k (1115:

t

_mf’Oe-AKT gkbk(i)(—T)i-2[u
i=2 i"? !

gk

i=d (i—d 5!
k k

= 1,2,...,K

(i)<-r>i‘1[uO(T)-u'o<r)1dr

O

bk(i><¥w>i'dk[u0<r>-ub<T>Jdr

(T)-u'O(T)]dT

 
III.U.21
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Starting with the last row of III.N.21 which has the

t

unique term b (dk)_wj-Oe-kaEuO(T)-u'0(r)]dr with
k

bk(dk) # O by hypothesis, we see that

0 “ART ' .

_m e [uO(T)-u 0(1)]dr must equal zero. Moving up-

wards, each previous step eliminating all terms except,

b (dk)_mJtOe-AkTrm—l[u0(r)-u'O(T)JdT at the m—th step,
k

m = l,...,dk we finally obtain (changing m-l to m):

u' GH' [u 1 :22; jtotme—AKTEu (1)-u' (T)]dT III.H.22
0 t0 0 -w 0 O

for m = O,l,...,dk-l

k= l,2,...,K

Combining III.M.18 with III.H.22 we see that

v v t 2
u 06H tO[u0]<:==$,>u O uO, making the classes H'tOEuO]

equivalence classes of inputs, i.e., the sufficient

condition has turned out to be a necessary condition in

this case, as it was indicated by Note III.H.H. Thus

under the hypothesis (ZL’ALI) becomes based on equivalence

classes of inputs. As equivalence classes are also a

half reduced partitioning Thm.III.u.l proves that

(XL’ALI) is a reduced state description under (1) and

(ii).

That 2L(t0) is the n-dimensional Euclidean Space

V’tO€(-w,w) is quite obvious. It was proved in Thm.

III.M.1 that 2L(t0) was linear (it had dimension n by
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definition), it became reduced here, giving these pro-

perties to the reduced state description Vtoe(-m,w),

sinceG'L is time invariant (Cor.III.3.2).

NOTE III.H.6: The following corollaries follow Thm.
 

III.h.2. The proofs follow the same lines as the proof

of Thm.III.H.2 and are not given. The results are for

more general cases, the last one being the most general.

Let the vectors C and B be partitioned as in III.u.l2.

and BThe vectors C that pre- and post-multiply A
k k

are partitioned into submatrices:

k

C = [C C III.U.23
k k,l k,2'°'Ck,

nk] and Bk =

  _Bk’md

COR.III.u.l: If the first entry 0(1) of C and the
k,l k,l

are nonzero for k = l,

 

last entry of the vector Bk 1

’

K .

2,...,K then: dim z (t ) = 2 size J (k) III.u.2u
LB 0 k=1 1

i.e. the dimension of the reduced state space is equal to

the sum of the sizes of the largest elementary Jordan

blocks for different eigenvalues.

COR.III.H.2: Let again each A consist of a single
k

elementary Jordan block and let the Yk + 1 th element of

Ck be nonzero, the first Yk being zero and the
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Bk + 1 th element of Bk be nonzero, the last Bk elements

being zero, i.e.

  

(1)

9k

5 (Bk+l)

C = [00 ..... o c (Yk+ll.nnc (dk)] and B = k 111.“.25
k k k k 0

Yk-zeroes ;

0

g _l

c (Yk+l) and b (Bk+1) # o.
k k

K * u 6Then. dim 2LR(tO) — kiltdk—Yk-Bk} Ill. .2

where [dk-yk-Bk} A dk—Yk-Bk if dk‘Yk‘Bk > O

0 otherwise.

COR.III.4.3: In the most general case, let for each
 

be the size of Jj(k) such that

' (k) J (1) .
C J B . is non-zero and C e 3 tB ives rise

k,3 J k,J k,J k.J g

to the highest power of t. If the numbers yk and Bk

k, k = 1,2,...,K, d'k

denote the number of first consecutive and last con-

secutive zeros in C and Bk 3’ as in Cor.III.u.2 then:

3k,J

K

dim 2LR(tO) k§l[d'k—yk—Bk} III.u.27



CHAPTER IV

SOME CANONICAL FORMS AND PROPERTIES OF

THE STATE DESCRIPTIONS FOR LINEAR,

TIME INVARIANT, CONTINUOUS OBJECTS

IV.l--Introduction

In the previous chapters we have only dealt with

the gross properties of the state description, without

trying to generate any analytic description of the

I—O-S—R, except maybe in section III.“. So, Chapter IV

gives us some analytical forms for the I-O-S-R and a good

knowledge about the interesting properties of the state

space, when, as the title indicates, the object under

consideration is a linear, time—invariant and continuous

one.

Of the two strategy procedures available to reach

the goal, the less mathematically sophisticated and more

engineering approach, of first guessing what the I-O—S-R

and the state space might be and then showing that they

satisfy the axioms, is chosen, rather than building up to

the result by using the state axioms and mathematical

tools as does Balakrishnan in [BA 1—u]. However, we

would also like to point out that by proceeding as such,

it should not be understood that we are being

110
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mathematically irrigorous. Our main tool in these investi—

gations is the theory of distributions and their

orthogonal series expansion as developed by Zemanian in

[ZE2],eabrief expose of which is given in Appendix A.

The next section of the present chapter tries to

justify the use of convolutional objects as our starting

point by means of arguments that stem from the refer-

ences [ZEl, A].

In section 3, we give an infinite but countable

state description of a large class of convolutional ob-

jects, namely the ones with an impulse response which has

an infinite series representation. Then we investigate

and prove some very important properties of the I-O-S-R

and the state space such as: "The infinite A—matrix

associated with the I—O-S-R is a Hilbert Matrix," "The

state space X(t) is a closed linear subspace of the

Hilbert Space [2," etc.

The last section deals with the most general con-

volutional objects and shows that it is possible to

approximate any such object with objects that have a

finite dimensional reduced state space. This, as noted

in [ZAl],happens to be a very important problem in that

it may provide us with some tools of approximating a

large class of distributed systems with passive, lumped

RLC'networks.
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IV.2--Convolution Representation of

Linear, Time Invariant and

Continuous Objects

 

 

 

NOTE IV.2.l: In Fact 1.2.1 we noted that a uniform ob-
 

ject was completely defined when the input—output list

RI over the existence interval I was known. Furthermore,

Thm.1.3.2 stated that the object G’had a state descrip-

tion iff it was causal. We thus have a single valued

mapping from the input space UI into the output space

YA
I due to causality.

Taking I = (-W,W), if we restrict our attention,

for the moment, to objects with inputs in the spacef?

of testing functions and outputs from the space 9” of

distributions overnB, we then have a single valued mapping

from .9 into 3' (for the definition of 2,.9' and notions

related to distributions see Appendix A). Moreover we

have a linear, time invariant mapping from 9 into 9' if

we let our object be linear and time invariant. To

these properties of single valuedness, linearity and time

invariance possessed by many systems we will add one more

property, "continuity," which is more difficult to

interpret physically and which can crudely be described

by: "in the input-output list Ri of the object 9', to two

different inputsthat are almost the same, correspond two

outputs that are almost the same." A precise definition

of "almost the same" would require a discussion of the
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neighborhood concept in.9-and.9”, and that would lead us

to Topological Vector Spaces (see, e.g., [TR], [HOR]).

To avoid that, and as we already have a concept of con-

vergence in.9”, we define "continuity" as follows (a

slightly modified version of the definition in [ZEA]).

DEF.IV.2.1:
 

An object is said to be CONTINUOUS (or a CON-

TINUOUS MAPPING FROM b-INTO.9') iff the convergence of

my to u, in.B':=;>the convergence of {yn}co to y,

n=l n=l

in.$” with (u,y)ERi.

THM.IV.2.1: SCHWARTZ'S KERNEL THEOREM [TR]. The mapping
 

fromb into 9', that the object (5’ given by RI describes,

is single valued, linear and continuous iff there

exists a unique w(t,T)€$” defined on the real plane such

that (u,y)ERi<—::>y(t) = W(t,T)Xu(T) vueg, where

w(t,T)xu(T)6£' is‘defined by <w(t,T)xu(T),¢(t)> é

<W(t,T),U(T)¢(t)> vase.

THM.IV.2.2: [s01, vol.II, pp. 53—5u] The object
 

satisfies the hypothesis of Thm.IV.2.l and is time in-

variant iff there exists a unique w(t)E£f such that

(u,y)ERi {:2} y(t) = w(t)*u(t) V1169, where w(t)*u(t)

is defined in Def.A.2.7.

NOTE IV.2.2: [ZEA, p. 8] Now, because of this convolu-
 

tion representation, the input space UI of<9-can be
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extended to the space £' of distributions with compact

support, i.e., for uGUi = 2' (u,yXERi ¢::>y(t) =

w(t)*u(t). As Jiis dense in £' this extension of the

convolution representation is unique. Moreover, if w

happens to be suitably restricted the input space Uf

can be further extended to larger spaces of distributions.

If for example wébYR the space of distributions with

support bounded at left then UI can be taken as all of

gflR, or for that matter any subspace of it.‘ Also, if

wei', then UI can be taken to be all of.9”. In both cases,

as 9 is dense in9'R and9', the extensions are unique.

In case the object<9'is not time invariant, the

same extensions can be made by using the kernel represen—

tation ofG>.

THM.IV.2.3: [ZEA, p. 9, THM.3] Let(9’be defined by
 

y(t) = W(t,T)Xu(T), where u belongs to the extended U“;

then.®'is causal (Def.I.2.A) iff supp y(t,T) is contained

in the half plane {(t,T) : t > T}.

If in addition (9' is time invariant then G is causal

iff supp w(t)C[O,w).

NOTE IV.2.3: In the light of the above discussions, the
 

following two sections concentrate on convolutional ob-

jects with supp w(t)C[O,w). These will be defined more

precisely at the beginning of each section.
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IV.3—-A Countable-Differential

State Description

 

 

NOTE IV.3.l: In this section we will obtain the state
 

description of a linear, time invariant continuous object

whose impulse response w(t) is a distribution in CH'

(Def.A.2.9). This state description can be viewed as

the generalization of the familiar state equations in

III.A, to include state descriptions for distributed

systems. In fact they ressemble very much the form in

III.A.l except that the matrices and the vectors involved

are infinite in size.

The idea in developing the state description is

simple and its root lies in the fact that for a lumped

network we obtain a state description via the decomposi—

tion of w(t) into different exponomial terms (see Def.

IV.A.2 for a description of "exponomial term"), as we

have already remarked in Note III.A.2.

First we precisely define the object, for which the

description can be given then proceed to obtain the state

description.

DEF.IV.3.1:
 

The convolutional object under consideration is

called an 0D object iff its input space UDf A

{u(t) : U(t) is real and square summable over (-w,b]

for any real finite b}. We further assume that w(t)
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is a real distribution in Cn' and that the I-O list is:

RDf g {(u,y) : uéUDi and y(t) = w(t)*u(t)}.

NOTE IV.3.2: The convolution of w(t)E(1' with
 

u(t)EUDf is well defined (Thm.A.3.l). Furthermore

supp w(t)CI[O,w) due to causality by Thm.IV.2.3. As the

input space, w(t) and the eigenvalues kn (Not.A.2.l) are

00

real, we can take {‘i’n(t)}n=l to be real.

THM.IV.3.l: Any G}D object can be given the following
 

dynamic description (a conjectured I-O—S-R):

      

dxn(t) 0° dX(t)

___— : Z anmxm(t) + bnu(t) —a-t— : AX(t) + BU(t) IV.3.1

dt m=l

n = 1’2’ i.e.

_ e K (k) _
y(t) — cnxn(t) + z dku (t) y(t) — CX(t) + DU*(t)

“=1 k‘0 IV.3.2

where in IV.3.l the convergence is pointwise and in

IV.3.2 in 3' together with

r _ ‘F __ ._ _ _

Xl(t)[ aliaié"""""" F51 Ci

32(t) P21§22 ---------- P2 ?2

3 I f I T '

X(t) = I 3 A = : a B = j a C = ; a

_ _ _. : _J .1 _J __ _

._ fl ._

d Fu(t)
1

(1)
d2 u (t)

DT = 3 and U*(t) = :

‘ 3(k)
d u (t)

_ kJ ~__ J    
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PROOF: As w(t)ecm', w(t) § <w,vn>wn(t) by Thm.

n=l

A.2.15 where {Tn} m are as given by Not.A.2.l. Using

n=l

Thm.A.3.3, y(t) = W(t)*u(t) =

[ E <w,Tn>Tn(t)l(t) + E d 6(k)(t)]*u(t). IV.3.3

n=l k=
0 k

By Thm.A.3.?, the infinite summation in IV.3.3 can be

taken outside and Thm.A.2.8 can be used to yield:

m K

y(t) = n§l[<w,wn>wn(t)1(t)*u(t)J + kEOdku(k)(t)° IV.3.u

Now we define xn(t) A Wn(t)l(t)*u(t) for n=l,2,... IV.3.5

Differentiating IV.3.5 according to Thm.A.2.9 we obtain

dxn(t)

[g%<wn<t)1<t>>1*u<t> w'n<t>1<t>*u<t> +
dt

Wn(t)6(t)*u(t)

W'n(t)l(t)*u(t) + Wn(O)u(t). IV.3.6

But T'n(t)€OI(Lemma A.3.3) and can be expressed as

v = °° t
.

T n(t) m£1<w n,‘Pm>\Pm(t), Thm.A.3.ll. This time the

convergence being in<3[, and certainly in L2(_oo w). So
3

for each n we can write

dxn(t)

dt [m§l<T'n,Wm>Wm(t)l(t)]*u(t) + vn(o)u(t) IV.3.7

t

_mJ.mil<W'n,Wm>Wm(t-T)u(T)dT + Tn(O)u(t)
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dx (t)

11 _ °° l

for each t. IV.3.8

Now as convergence in L2 defined by the norm is continuous

with respect to the inner product, i.e., as strong con—

vergence implies weak convergence [R1, p. 69], the

infinite summation can be taken outside the inner product

in IV.3.8 and

dxn(t)

dt m£l<w'n,wm><wm(t-T),u(T)/(_B,t]oo> + Wn(0)u(t)

for each t.

t

._. m£l<yvn,ym>__i Wm(t—T)u(T)dT + wn(o)u(t)

= mgl<wvn,wm>[vm(t)1(t)*u(t)J + Wn(0)u(t)

for each t, IV.3.9

can be obtained. Using IV.3.5 in IV.3.A and IV.3.9 and

defining the coefficients

arm A <w'n,vm>, bn A wn(0) and on g <w,wn> IV.3.lO

dxn(t) m

= I
at m£1<w n,‘Pm>xm(t) + Tn(0)u(t)

= milanmeCt) + bnu(t) IV.3.l
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<w,wn>xn(t) + § d u(k)(t)

1 k=0 k

y(t) Z

n

K

cnxn(t) + E. d u(k)(t). IV.3.2

1 k 0 k

2

n

That the convergence, in IV.3.1 is pointwise is clear

since IV.3.9 converges for each t and that in IV.3.2 it

is in.9” is clear by IV.3.A, where the convergence is in

5?.

NOTE IV.3.3: The following theorem obtains a certain half

reduced partitioning (Def.II.A.1) that is compatible with

the dynamic description of Thm.IV.3.l. The theorem after

that using this half reduced partitioning and Thm.II.A.A

shows that the expressions IV.3.1 and IV.3.2 provide us

with a half reduced state description.

 

o ' Y Y .THM.IV.3.2. The family ”to A {H to[uO] . quUD(-°°,t01}

of classes of inputs where for any t0€(—W,w) H't [uO] g

0

{u' eU - JtOv (t T)u' (T)dT =
O D(-m,tO] ° —e n O‘ O

t

O

—

_mf wn(tO'T)uo(T)dT for uOEU and n — l,2,...}
D(—°°,toj

IV.3.11

is a half reduced partitioning.

PROOF: We verify (Def.11.u.1):

(i) H't [uO] # O, if nothing else one such class may

0

contain only the defining input.
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‘ t 11 1 1 1 11

(ii) Let u 0 and u OEUD(-m,t0] and H to[u dV\H to[u O) #

(111)

ch. Then BUOEUD(—w,t0] 3u0€H1t0[qu]/\Hvto[unoj .

1 1 o

For any uOEH t0[u O] we have.

t t

_mf'OWn(tO-T)u0(1)d1 _wf OWn(tO-T)u'0(r)dr =

t
t

_mj own(tO-T)G
O(T)dT

_oof OWn(tO_T)u
nO(T)dT

n = 1,2,...

1 11 1 1 1 11 °

Thus uOEH t0[u O] and H to[u OJCH to[u 0]. Similarly

1 11 1 1

H t0[u OJCH to[u O] can be shown, giving

H' [u' J = H' [u"

0 0 130

Let u1

01.

2 1 ~ 2

OEHtO[u 0]. We have to show u 0 - u 0’ i.e.,

as all concatenations are allowed all we need to

prove is: for any UEUD(to:m)’ to < m such that

1 l 2 2

(u Oou,y ) and (u OOu’y )éRD(-W,m) we must have

1 _ 2 .

y /(t m) - y /(t w). Going back to express1on

O’ O’

IV.3 A

y1(t) = w(t>*<uloou><t>

m i
= ngl[<w,Tn>Tn(t)l(t)*(u Oou)(t)] +

K o

z dk(uloou)(k)(t)

k=O

00 t i

= Z <W,Wn>[—mf Wn(t—T)(u Oou)(T)dT +

n=l

K i (k) .
k20dk(u OOu) (t) for 1 = 1,2. IV.3.12
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yi(t)/(t0,“) = n§1<w’wn>[—mftovn(t—T)uiO(T)dT +

t

tdf-Wn(t—T)U(T)dTJ +

K

2 dku(k)(t) for t > t

=O

IV.3.13
k 0

_ ' 2 _As Wn(t T) 18 in L (_m,m) and as Tn(tO T) forms a

complete orthonormal basis for L2(_oo m) we can use

3

Fact A.3.2 in IV.3.13 to obtain:

i

y (t)/ m
(to, )

t

O 1
<w,wn>[_wf m <Wn(t-T),Wm(tO—T)>Wm(tO—T)u O(r)dr +

I
I
M
8

I
I
M
8

n l l

t . K (k)
Tn(t—T)u(T)dT] + z dku (t)

O k=O

for i=1,2 and t > t IV.3.1A
0

Using once more the continuity of inner product

with respect to convergence in L2

t oo

.102
m-l

(—°°,°°)

<Tn(t—T), Tm(tO—T)>Tm(tO—T)uiO(T)dI =

‘._ a 1
..<mEl<Tn(t-T), Tm(tO-T)>Wm(tO-T), (u OQO)(T)>
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m i
mEl<Tn(t-T),Wm(tO-T)><Wm(tO-T),(u OoO)(T)>

w O i
mE1<‘Pn(t--T),‘Pm(tO—T)>_OJ-t Tm(tO-T)u O(T)dT

IV.3.15

Using IV.3.1A in IV.3.lA we finally obtain:

2 <w,Tn>[ z <Tn(t-T),y1/ =

(t0,w) n=l m=l

t

O i
Tm(tO—T)>_mj Tm(tO-T)u O(T)dT +

d u(k)(t) IV.3.16tgt‘l’n(t—T)u('r)dr] +— k

"
M
W

k 0

t

As _mJ.OTn(tO-T)ulo(1)dt = _mftownho-r)u20(t)dt

for n=1,2,... by IV.3.11, it follows that

1 _ 2

y O/(t0,w) ‘ y O/(t0,w)'

DEF.IV.3.2:

We define the set XD(t) (a conjectured state space)

by:

2D(t0) g {X(to) : X(to) = (xl(t0),x2(t0),...) where

t

O

xn(t0) _mJ- Wn(tO-T)uO(T)dT for each n and for some

quUD(_m,tOJ} IV.3.16
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The mapping (0' )'l :38' e-z (t ) is defined as
t0 t0 D o

I t . v '1 1 _
follows, for any class H t0[u01€x’t . (C t ) (H t [uo]) -

O O O

X(tO) where the defining input u'O for X(tO) is any

1 1

u 06H to[no].

DEF.IV.3.3:

We define the INFINITE TRANSITION MATRIX by

T(t,t0) A [<Tn(t-T),Wm(tO—T)>Jnm and the conjectured

I-O-S—R, where O A X(t0)62'(t0) and C is the infinite
0

vector whose components are defined by the expression

IV.3.10, with:

AD(tO,w)(GO’U) A C¢(t,tO)X(tO) + w(t)*u(t) on (t0,w).

IV.3.17

THM.IV.3.3: (ZD’KD) as given by Def.IV.3.2 and IV.3.3
 

is a half reduced state description of the object(}D.

PROOF: We verify Def.II.A.1 where the half reduced

partitioning is that of Thm.IV.3.2.

(i) For £D(t0) to be a half reduced state description

—1
all we have to show is that (C't ) (Def.IV.3.2)

O

is one to one and onto.

It is onto: by definition any X(to)€£(t0) is

such that there exists a uOEU for which

D(-m’tO]

t

- O -

xn(t0) - _ 1 Tn(tO-T)uO(T)dT for n—l,2,...

: "l 1

thus X(to) = (c to) (H to[110]).



(11)

12A

. 1 11

It is one to one. let u 0 and u OEUD(-w,to]

be such that H' [u' ] # H' [u" ]. By definition
to O to O

of H't [uO] this means that there exists nl such

0

t

. 0 _ 1
that. _mf Tnl(tO T)u 0(T)dT ¢

t

O

_mj. wnl(tO-T)U"O(T)dT, which then implies:

x'<t ) = (c' >‘1(H' [u' 1) a (c' >‘1<H' [u"1> =
O t t O t t O

O O O O

X"(tO). With the above proof the use of the

inverse notation for C't is also justified.

0

That AD( as in Def.IV.2.3 is the I-O—S-R
t0,w)

can easily be shown. In the previous theorem,

expression IV.3.16 gave us the (to,w) portion of

the response to uoou.

m < w > ” <w _

y/(tosm) nil W, n [mil n(t T),

tO
Tm(tO-T)>_mJ Wm(tO-T)uo(r)dr +

t

t; Tn(t—T)u(1)dt] +

O k 0
k

K

g d u(k)(t), t > t

=0

= nEl<w,Wn>[m£l<Wn(t—T), Tm(tO—T)>xm(to)] +

P <w,wl>[wn(t)1(t):u(t)1 +
n=l

§ d 6(k)(t)*u(t)

k=1 k
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= :10 [mEl<Tn(t—T),Tm(tO-T)>xm(t0)] +

E m K (k)
z <w,wn>wn(t)l(t) + Z d 6 (t)]*u(t)

n—l k=0 k

can be achieved using the definitions of xm(t0)

and on, and Thm.A.3.2. Finally using the in-

finite matrix notation and Thm.A.3.3:

y/(t0,w) = C¢(t,tO)X(tO) + w(t)*u(t) =

A IV.3.17m (0 ,u).
D(t0, ) 0

Clearly for any uOECtO(OO)/OO=X(tO)’ uoou is

admissible and A is the (t0,w) portion of
D(to,w)

the response to uOOu, thus making IV.3.17 an

I—O-S-R by Def.II.A.A and (2D,AD) a half reduced

state description by Thm.II.A.A.

NOTE IV.3.A: Thm.IV.3.2 and Thm.IV.3.3 have shown that
 

(ZD’KD) constitutes a state description and in their

light, the dynamic equations IV.3.1 and IV.3.2 can be

viewed as the state equations of the object<9D. To make

the tie between the state description and the state equa-

tions stronger and to justify the name "Infinite Transi—

tion Matrix" for T(t,t0), we prove the following two

theorems which also improve the I-O-S—R, IV.3.17.

THM.IV.3.A: The infinite transition matrix T(t,t0),
 

Def.IV.3.3, is the FUNDAMENTAL MATRIX of the infinite
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dx(t)
 

 

differential equation system dt = AX(t), with

®( tO,tO ) = I.

PROOF: T(t O,tO ) A [<‘Pn (t- T), Tm(t W—T)>] =[3mn], where

amn is the Kroenecker delta, Since {Tn(tO—T)}n=l forms

a complete orthonormal system (Fact A.3.2). To show

T(t,t0) is a fundamental matrix:

(1) we first show that every column of T(t,t0) is a

vector solution of the infinite differential system.

To pick a column of T(t,t0) = [<Wn(t-T),Tm(%rw)>]mn

we fix the column index m at an arbitrary m0;

then we substitute the vector so obtained by X(t)

dX
in 55 = AX(t) to get:

d
__ _ _ _ v _ -dt<‘¥n(t T),Wm (tO T)>: z <T n,Tm><Tm(t T),Wm (tO T)>

O m= l O

IV.3.18

using IV.3.lO, definition of A. Now we have to

verify the identity IV.3.18. In fact:

—<Tn(t—T), Tm (t O—T)> Eé%-_:fTn(t-T)Wm (t O-T)dT

mO mO

_meT’n(t—'0Tmo(tO-T)dt

since Tn(-) is infinitely

d

dt

smooth.

T'n(t—T),Wmo(tO-T)> E

' -— _- — —1 v n(t t),wm(t t)>wm(t t),TmO(tO r)>

IV.U.19

A

I
I
M
8

m
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Using the continuity of the inner product and

noting that: <W'n(t—T),Wm(t—T)> =

_wfg'n(t—T)Wm(t~0d1 = _«S T'n(I)Wm(I)dT =

d
' ___. _ .. :<¥ n,W >, IV.3.19 becomes dt<‘Pn(t T),Wmofib T)> _

§ <W'n,wm><wm(t—T),Wm (to-T)> verifying the

m=l 0

identity IV.3.18.

We now show that the columns of ¢(t,t0) are linearly

independent for all t. To do this select any k

(k also arbitrary) columns of ©(t,t0) and suppose

for some t, there exists scalars al,a2,...,ak such

that not all ak are zero and al<Wi(t-T),Wnl(tO-T)> +

a2<Wi(t-T),Wn2(tO-T)> + ... + ak<Ti(t-T),

Wnk(tO-T)> = O or

k

<Wi(t—T), Z a.W (t -T)> = O for i=l,2,... IV.3.2O

3:1

n. O

J J

As {Wi(t—T)}i: is a complete orthonomal basis,
1

k

IV.3.2O gives ; ajwn (t -T) = 0; but this cannot
. . o

J=l J

be true since {WJ(tO—T)}j:l also forms a complete

orthonormal basis. This contradiction implies the

columns of ©(t,t0) are linearly independent for

any t.
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THM.IV.3.5: The I—O—S—R, K of the object 9D is also
D

 

given by:

t

y/(t0,°°) = C<I>(t,tO)X(tO) + ctof <I>(t,tO)Bu(T)dT + DU*(t)

IV.3.2l

PROOF: Combining IV.3.16 with IV.3.l7 we can write:

t

y/(t0,m) = C®(t,tO)X(tO) + § <w,Wn>t~{ Wn(t-T)u(r)dt +

K n—l O

z dku(k)(t) IV.3.22

k=O

For fixed n consider Wn(t—T+z) which can be written for

00

each t,T as: Wn(t-T+z) = mEl<Wn(t-T+s),Wm(s)>Wm(z)

where s is the dummy variable, i.e.,

m w

Wn(t—T+z) = m:l[_mf Wn(t-T+s)wm(s)ds]Wm(z) IV.3.23

by Thm.A.2.12, Wn(t—T+z) and the convergence being inCfl .

Then by Cor.A.2.l it follows that the convergence is

uniform or compact subsets of (-w,m); therefore we can

evaluate IV.3.23 at z = 0. Also doing the change —x =

-T+S of variables

[_mfmwn(t—X)Wm(T—x)dXJWm(O)Wn(t—r) 1ll

I
I
M
8

m

m§l<wn(t—x),Wm(T—x)>¥m(0) IV.3.2“

follows from IV.3.23. Substituting IV.3.2“ in IV.3.22:
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<w,‘l’n>tf °§ <‘Yn(t—x),y/ m = C®(t,t )X(t ) +

(to’ ) O O o m=l"
M
8

n l

K

Tm(I—x)>Tm(O)u(T)dI + kEodku(k)(t)

and using IV.3.lO and Def.IV.3.3

t

y/(tO’m) = C®(t,tO)X(tO) + Ctar.¢(t’tO)Bu(T)dT + DU*(t)

IV.3.21

is finally obtained.

NOTE IV.3.5: We, thus, have shown the strong resemblance

A(t-t0)

 

between the exponential transition matrix e for

a square A of finite size and our transition matrix

©(t,t0). Now we will investigate the nature of our state

space and an essential property of our infinite A matrix

that may bear strong relation to the stability of the

objectC?D under consideration. The following theorem is

the main reason for all the work we had to go through in

A.3 when defining the convolution of a distribution in

Cl': with an input from UD; it makes it possible to show

that X(to) is a closed linear subspace of the classical

Hilbert space {2, which could not be proved if U was

D

not taken as the space of square summable functions over

(—m,b) for any finite b.

THM.IV.3.6: For each tOE(—m,M), the state space ED(tO)
 

of the object<9b is a closed linear subspace of the

classical Hilbert space Z2.
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00

g lai|2<”}- To prove

i=1 i=1

this let X(tO)EZ'(tO),then by Def.IV.3.2 xn(to) =

2
PROOF: ZD(tO)Cfl AHai}

t

0 _
_mj Tn(tO-T)uo(r)dr for some quU(_ n-l,2,...

oo,t0:| ’

where xn(t0) is a component of X(to). Thus: xn(t0) =

_ ' 2<Tn(tO T),(u000)(T)> Since uoOOEL (_m’w). Thus

Xn(t0) is the Fourier coefficient of u 00 for each n

O

with respect to the complete orthonormal basis

{Tn(tO—T)}n:l. Invoking a classical theorem (see e.g.,

[P0, p- 361) we can write: nglkflfiétO-T),(u000)(r)>|2 =

m 2 2 . 2 .
nEllxn(t0)| < IIuOOOll <m since uOOOEL (_m’m) making

X(to) a square summable sequence and proving ZD(tO)El2.

Z'(t0) is a linear subspace. Let Xl(t0) and

X2(tO)GZD(tO) and.a,a.scalar. Then there exists ul

2

O

2 , l
and u O€U(-w,to] such that. ax n(to) + x n(t

O)

t

awf OTn(tO-T)ulo(r)d1 + _me‘Pn(tO—T)u20(‘r)dt =

t

_ J OWn(tO-T)[aulO(T) + u2O(T)]dT. Since the input space

. . l
18 linear, au 0 + u2 eU (Fact III.2.3) which gives

1 2

i m _

Z'(t0) is closed. Let {X (t0)}i=1 _

1 i .
{(xl (to),x2 (to),....)} be a sequence in 2D(to) and let

lim Xi(t0) = X in {2.- We want to show that X is a state,
i+oo
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i.e., that there exists uEU(_oo t such that xn =

) O]

to
th

_mf Wn(tO-T)U(T)dT for n=l,2,... where xn is the n

component of the infinite limit vector X.

lim x?(to) = X(t0)¢:::ljm1llx(to) - Xi(t0)ll = o

1+°° i+oo

by definition of convergence in {2.

00 i _-

¢==$ii$ ngllxn(t0) - x n(t0)| - 0

by definition of the norm in {2.

IV.3.2A

For each i, as Xi(tO)EZD(tO), there exists an input

1 _ Ito
uiEU(-w,to] such that x n(to) - _w Tn(tO-T)ui(r)dt

_mf Wn(tO‘T)(uioO)(T)dT for n=l,2,... Since {2 is

isomorphic to L2(_m m), given any element of 82, e.g.,

’

X(to), there is a corresponding element, u6L2(_m m), such

9

that [BE]: xn(t0) = _mf Tn(tO-T)u(T)dT for n=l,2,... Then:

. m i 2 . m
lim 2 Ixn(t0) — x n(tO)I lim E I_ i Wn(tO—T)[u(T) —

i+00 n=l 1+°° n-l

(uioo)(T)]dT|2

= lim § I<T (t -T), u(t) —

1+0!) n=l n O

(u100)(1)>l2

= lim I]u(r) - (uiOO)(T)||2

i+oo

by Parseval's equality.
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= lim _mfmlu(T) — (uioo)(T)|2dT

1900

by definition of L2

<-oo,oo>

norm .

= lim _mjtolu(T) — ui(r)|2dt +

i->oo

t—f Iu(T)|2dT = O

0

Therefore u(t) must equal zero i.e., for t > t so that
O,

the convergence in IV.3.2“ holds. Thus, the function

u(t) = u(t)/(_oo t J will certainly be in U< and

’ O

-oo,to]

_ 0
will be such that xn(t0) - _mjt Tn(tO-T)u(1)dt,

n=l,2,... proving that ZD(tO) is closed for any

tOE(—°°,°°) -

NOTE IV.3.6: In concluding this section, our aim now is
 

to show that the infinite matrix A in the state equations

IV.3.l is a Hilbert matrix (Def.B.3). As our infinite

state vectors are from {2, that makes A a bounded operator

mapping {2 into £2 (Note 8.2), thus enabling us in the

future to investigate about the spectrum of A and its

other properties and carry out some important analysis of

the object GD such as its stability.

However we could only prove that A is a Hilbert

matrix, under an assumption for the eigenvalues {An}n:l

of the operator 11, in Not.A.2.l used to generate the

testing function space G>(Def.A.2.8) and their dual space

0(' of distributions, to which w belongs. The eigenvalues



133

{An}n:l were already real and no value of An was assumed

more than a finite number of times. The numbering was so

chosen that |A1I<|A2I< ... . This clearly implies that

Iknleco as n +m. Now, although we conjecture that Thm.

IV.3.7 is true without any further assumption, we assume

that there exists a finite integer pO such that nglllnl—p0<w

converges. This assumption is not too An#0

restrictive, since the eigenvalues of many’n operators

seem to possess this property (see [2E2] for some examples).

THM.IV.3.7: In the dynamic equations IV.3.l and IV.3.2 of
 

Gb’ the infinite matrix A is a Hilbert matrix and the

coefficients cn are such that there exists an integer

CD

qO > O for which n21 IA

An¢0

I‘2qOIc I2<w
n 1’1

PROOF: That the cn's are such is given by Thm.A.2.l6

since c A <w,W >, n=l,2,... To show that A is a Hilbert
n — n

matrix we proceed in five steps:

°‘ : V i = _(l) <w'n,wm> _wf w n(t)wm(t)d Tn(t)Tm(t)_i

I = _ V «3 w = '1

_mf ?n(t)w m(t)dt <Wn,W m> since Tn(: ) 0 fol

n=l,2,... by Fact A.3.3.

(ii) From (i) it follows that E <Tn,W'm>Tm(t) converges
m 1

Z 1
in(].as well as m=l<w n,W >Tm(t). Then using

m

iThm.A.2.l3 we have that m=llAm a
2k

I I converges
nml



(iii)

13“

for every k = 1,2,... and for every n = 1,2,...

00

E 2k

n=llxm| Ia

whereas converges for every
nml

k = 1,2,... and for every m = 1,2,..., since

. !

arm A <T n’wm>'

Z
6 ° ' _m=llanm| M, where M is indeNow we will show that

pendent of n. By Note IV.3.6 there exists a finite

. ' ' 2k0 such that m=l IAmI

Anfio

—2k0 converges. But

m

2 “k0 .
, ,

m=l|xml lamn converges for every n, since it is

convergent for any integer power of the Am's. Thus

given 6 = 1, there exists a finite mO such that

E IA Iukola I2<l as the A 's have finite
m-mo m m m

Amy! 0

multiplicity and no finite point of accumulation.

14kIa I2 s l and thatIt then follows that IA | mm
m

<|A l—2KO for all m a m . Thus, <la 0 E la |
m-m mn

x O

2 IA |‘ZKO which is certainly bounded independent
m=m0 m

of n. So we have 3 la
m-mo mn

mn' m

| < M independent of n.
1

m
. O .

Now we have to show that mEllamnl is bounded

independent of n. This time looking at the series

00

5 IA lukola I2 which converges for every m and in
n=l n mn

An#O

particular for m = 1,2,...,mO we can proceed as
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above to obtain that la _2k0 for all nmnlsl nol

greater than some no. As the An's are so ordered

that IAnllélAn2I whenever nl < r12 (Not.A.2.l) we

can write IamnI<IAnOI-2k0 for all n 2 no. Now:

m0 2k
for n > no, mEllamn|<mO|AnO| 0, and for n 6 no,

we have finite number of terms of the form

m0
Z s

m=llamnl for each n. So defining M2 A

2k m m0

- 0 Z Zmax{mO|AnO| , m=l|amll""’ m=l|amn0'} we find

the bound on méllamnl independent of n. Finally

2 =m=llamnl<Ml + M2 M proves (iii).

(iv) In exactly the same fashion, that E Ia I<M'
n-l mn

independent of m, can be shown.

(v) The hypothesis of Thm.B.2 being satisfied it follows

that A is a Hilbert matrix.

IV.A-—Approximation of a Large Class of

Objects Having Finite Dimensional

State Description

 

NOTE IV.A.l: In this section we are dealing with a very
 

general class of linear, time invariant, continuous

objects, i.e., with convolutional objects (Thm.IV.2.2 and

Note IV.2.2), without any restriction on their impulse

response w(t), but with some restrictions on their
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input space. The approximating objects all have reduced

state descriptions of the form:

dX(t)

dt

 

= AX(t) + Bu(t) IV.U.1

a u(k)(t) iv.u.2y(t) = CX(t) + k

"
M
W

k 0

where all vectors and matrices are finite.

Again we start with the definition of the object

under consideration and continue with the definition of

the term exponomial, an expression which is the combina-

tion of "exponential" with "polynomial."

DEF.IV.U.1:
 

The linear, time invariant, continuous (therefore

convolutional) object under consideration is called an

06 object iff its input space: UGfA {u(t) : u(t) is a

regular distribution with support bounded from the left}

and the I-O pairs are given by: RGi A {(u,y) : uéU¢i,

y(t) = w(t)*u(t) and supp w(t)C[O,w)}.

DEF.IV.H.2:
 

A SIMPLE EXPONOMIAL IN t is a polynomial in t

multiplied by the exponential in t (e.g., EXPOL(t) =

eYtP(t) = a eYt + a teYt + .... + a tneyt). An
0 l n

EXPONOMIAL is the sum of simple exponomials.



137

THM.IV.A.l: Let Q be an Open subset ofan. Any distri-
 

bution in Q is the limit of a sequence of exponomial

functions.

PROOF: The proof is really trivial if we consider

Thm.A.2.3 and that the polynomials are a subset of

exponomials. Therefore exponomials are dense in.9',

in the topology of 9”, since the polynomials are dense

in 9“.

NOTE IV.A.2: Due to Thm.IV.A.l, and if we take 9 =
 

(-w,W), w(t) can be written as:

qi kpi i

w(t) = lim El E1 ci tv_leYLl t, where the convergence

j_-+oo U" V- UV

is in 9'. IV.A.3

Using Note A.3.5, as supp w(t)C[O,w), w(t) can also be

written as:

q-s Kip ~

w(t) = lim 2‘ z c1

i K

tV-leY“ tl(t) + 2 d 6(k)(t) in.9'.

i+m u=l v=l =“V k 0 k

IV.H.U

We would like to note that in IV.A.U, the form that we

will be using for w(t), the integers qi and k“1 are

finite for each i and for each u.

NOTE IV.A.3: It would be much nicer if w(t) was given by
 

m ku _

a summation of the form w(t) = z z c tv leYUtl(t)

u=l v=l “V

where either ku is finite for each u, in which case
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we have an infinite number of poles with finite multi—

plicity, or ku is allowed to be infinite for some n,

in which case we have poles of infinite multiplicity.

In such a case of infinite series expansion for w(t),

the development is much in the same lines as the follow-

ing development for IV.A.M. The question is to find out

what impulse responses w(t) have such a series expansion.

THM.IV.N.2: Let an CE object be given with
 

R

Q: ui . _ i

w(t) = lim 21 Z cfivtv leYU t

K

l(t) + z o 6(k)(t) iv.u.u
i+m “=1 vzl k=0

k

Then the object (96 can be given the following generalized

dynamic description. For each i, where i denotes a

superscript and not an exponent:

dxi (t) i i i 1
——§%——— = x (t) +-y x .(t) + b Ll,u(t) where

u(J+l) P “J U

j=l,2,...,kfi and n=l,2,...,qi Iv.u.5

i
q0 kn K

y(t) = lim 21[ 2 x1“ (t)] + 2 dku(k)(t). iv.u.6
i+w “=1 j=l j k=l

PROOF: By Def.IVJLl of anO,s object and Iv.u.u the

output to u(t)EU(_0° m) is given by:
3

i
q ku _ i

y(t) = w(t)*u(t) = lim [ 21 z civtv leYu tl(t)*u(t)] +

i+m “=1 V=l u

E d u(k)(t) Iv.u.7
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where the limit can be taken after the convolution due to

Thm.A.2.lO since all distributions involved have support

bounded from the left.

For each i, we define the coefficients bfiv as

follows:

i , i i i i
buv A (v-l).cUV - v1cuu+l where cu(v+l) A O for v+l>ku

IV.U.8

with these new coefficients, remembering that i denotes

a superscript not an exponent the summation over v in

IV.H.7 takes the form:

i i i v-l

ku i ku b t
2 CivtV-leyu tl(t) = I: 2 v1.11) ' +

v=l
\)=1

kui b1 \)t"‘2 t i

z “2 ' +...+ b i ]e Y“ l(t)

v=2 V_ ' 11k

u IV.A.9

kui kui bi t"'3 i
_ UV tYp
- z z (-:—y, ]e l(t) Iv.u.io

j=l v=j v 3 °

To verify that the right hand side of IV.A.9 with IV.A.8

gives the left hand side of IV.A.9, we note that for

every coefficient of every power of t, i.e., the coeffi-

cients of tv-1 from v = l to v = kui, we have:
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tJ‘l [bi +bi i tj—l , i
O . ° + . . .+ . = C — . .—

(J-l)! uJ u(J+l> b uklu] 0—15!“3 1) C uJ

i . i
j!c u(j+l)+J!C LKJ+1)_

i

(3+1)!c u(j+2)+""

(klu-l)!cluki ]

_ i 3-1
c ujt

for v = j, j arbitrary, all the terms in the brackets

except (j—l)!ci cancelling each other. Now, for each
pi

i again, we define:

v-J
kui b1 v t i

Z VEJ ! 6 Yu 11(t)*U(t) IV.U.11

i

x Llj(t) A E J

V

Differentiating IV.A.ll, as given by Thm.A.2.9, in the

distributional sense

___£i___ = [ 2
_° 1

a? nu tv JetY ul(t)]*u(t) =

dt v—j

(V—j)!

 

v—° t i

z E€[(v—j)1t Je Y “l(t)]*u(t) iv.u.l2

kui bi t"‘J‘l

= z [T5:3:I71 etyl“l(t)l*u(t) +

v=j+l

i

Y i z [(3:§7, etY Ul(t)]*u(t) +

i

2 [73:37! etY u5(t)1*u(t) IV.A.l3
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In IV.u.l3 the first and second summations are easily

1 i .
recognized to be x u(j+l)(t) and x Uj(t) respectively

due to IV.A.11. In the third summation of IV.M.l3 all

. v-j tyi
the terms are zero Since t e L16(t) = 0, except for

v = j in which case we have the term

° 1

blujetY u6(t)*u(t) = biuju(t). Thus IV.U.13 becomes:

1

 

dx (t)
uj = i + i i + i
dt x u(j+l)(t) y ux u3(t) b “ju(t) where

j=l,2,...,klu for n=l,2,...,qi iv.u.5

Substituting IV.U.lO into IV.H.7 we obtain:

1 v-J
q. kui kui b t 1

. l mu ty u

y(t) = 11m 2 E z z _ , e l(t)*u(t)l +

i+m u=l 3:1 v=j (V 35'

K

2 dku(k)(t) IV.H.1A

k=l

Finally using the definition for xiuJ(t), IV.A.ll in

IV.A.1H we get IV.H.6.

NOTE IV.A.A: The next theorem, the main result of this
 

section, is the one advertised much earlier. It shows

that any object(%,, can be approximated with objects

having a finite dimensional state space. We think this

result is important because we are thus given the possi-

bility of approximating closely distributed systems,

with lumped RLC networks that have a finite number of
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elements. However, what subset ofCZ objects can be

approximated by such RLC networks is still an important

question that remains open.

DEF.IV.U.3:
 

Let the objects G’and.@3 for i=l,2,... be given by

their I—O list RA and R-A Then G’is said to be the
I 11‘

LIMIT of the objects Gi’ G= lim (91, iff:

i+oo

(i) Band 91 for i=l,2,... all have the same

input space Uf.

(ii) If uEUf and (u,Y)ERi, (U,yi)éRiE for

i=l,2,... then y = lim yi in.9'.

i+oo

THM.IV.H.3: Every(%; object is the limit of objects
 

91’ which have a finite dimensional reduced state descrip-

tion of the form IV.U.l and IV.U.2.

PROOF: For each i, the expressions IV.M.5 and IV.U.6

can be written in the matrix form:

r" i ‘ r i ....... "r ‘ 1 i .- i ‘x pl Y H 1 O O X 111 b 111

i i ...... i k

3 u2 9 Y P la 9 § “2 2 “2

£1 . = E I ':. 2- 3 3 + 3 u t

dt ; ; -. xi : : ( )’

i . ii 3
x i - X ki b i

IJk u 0 O O ...... Y1“ U U Mk U

__ a —— —J — — — _        
IV.A.15
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We write IV.A.15 in the more compact matrix form:

 “ = J1 x1u + B u(t) Iv.u.16

where the definitions of the involved entities is self—

explanatory. Now combining IV.A.l6 for different values

of u, we obtain:

        

P "' " . "1 _- . 1 — ‘1
i i i i

X 1 J 1 O O X 1 B 1

i i_, i i

X 2 O ;.2 O X 2 5 2

d _ I l I : :
a? _ . I z_ : E + I u(t), for

x1 o O-- qu xiq Biq each i.

_ qL c. i _ i_ _ i
111.4.17

Equation IV.H.6 can also be written with matrix notation,

  

as:

F i‘T

X l

i

X 2

. : K (k)
y(t) = lim [lki lki ...lki l . + z dku (t) iv.u.18

i+00 l 2 u E k=l

xi

. i .
where l'kj A [l l....l]lka is a row vector.

Now, defining the I—O list Bil by IV.u.l7 and



. . K (k)

y.(t) = [l l i ...l i J : + Z d u (t) IV.A.l9
l kil k 2 k u : k=1 k

qi  h

we obtain the objects Gi’ such that @’= limt9i, since

i+oo

y(t) = lim yi(t) in B“. Moreover, the state description

i+m

obtained from the state equations IV.U.l7 and IV.U.19 is

a reduced description for eaché}i by Thm.III.A.2, since:

(1) every matrix Jiu in IV.4.l7 is an elementary

Jordan block, and

(ii) the leading entry of each lki (ck(l) in

J

Thm.III.A.2) is l, and the last entry of each

kl A
B (bk(dk) in Thm.iii.u.2) is biU

L1

L1

, where Cuki is the coefficient(kin-l)!cLJ

U U

Ri

of the term with the highest power of t in

each simple exponomial and therefore assumed

to be non—zero.

NOTE IV.A.5: Similar to the development in section IV.3,
 

it can again be shown that:
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t o

' A . o O p TYlUA -

H to[uO] A {uOEU(—W,t0] . for each l,_wj. T e uO(T)dT -

t i

_wfioipeTY uuO(T)dT where p = 1,2,...,k

and u = 1,2,...,qi} iv.u.2o

or equivalently that:

HtOEuO] A {quU(_m,tO] : for each i,

 

kui bi . i

Z HY ftO(T-t )V—'Je(T_tO)Y uu (T)dT =
_ (v- ) -m 0 o

V-J

k 1b1 . 1
u “v ’t _ _ A

forJJ=l,2,...,kiu and u = 1,2,...,qi} Iv.u.2l

and M'to = {Hvt0[u0] : uOEU(-°°,tO]} constitutes a half

reduced partitioning. The equivalence of IV.U.2O to

TV.A.21 follows from CU i # O and parts of the proof of

k u

Thm.III.U.2. Now defining successively:

. kibiuv .

x:L (t ) a E .W_wlto<to->V‘3e(to‘T)Y1Uu(r>dt

i,u,j as in IV.A.21, then
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i i i i T .
X u(to) A [x u (to) X n (to)....x u i (tO)] for 1,u as

l 2 k U

. i i i i T
in IV.H.2l, then X (to) A [X l(to) X 2(to)....x qi(’60))

for i=l,2,... and finally the set Z'G(t0) A

{X(t ) - X(t ) = [Xl(t ) X2(t ) 1T} IV u 22O . O O , O ,.... , . .

we can show the existence of a one to one, onto mapping

c't between Z'L(t0) and H't due to Iv.u.21. Z'G(t0) and

o o

y(t) A AG<tO,°°)(OO’u)

1 i V-J .

Qi k“ k“ (t'to) (t—t ) 1 i
lim 2 z [ z T—-—TT e O Y “X (t )3 +

i+m u=l J=l v=J V_J ' “V l

w(t)*u(t), for t > tO IV.H.23

constitute a half reduced state description of the object

8C (IV.U.23 is easily derivable from IV.u.ll and IV.U.1U).

An important point of the state description (E'G’KG) is

the countable dimension of its state vectors, Def.IV.U.22.



CHAPTER V

CONCLUSIONS

It is our hope that with the discussion in Chapter

III, the state axioms have reached their final form. The

nnain.contributions of this chapter have been this final

fflorm of the state axioms and the establishment of the

stxrong connection between equivalence classes of inputs

arui reduced state descriptions. We have shown that the

Iweduced state description of a causal object is almost

uruique. This chapter has also provided us with means of

ccnqstructing state descriptions that are half reduced.

Using the concepts and the results of Chapter II

iri Chapter III, We proved that linear and/or time-

ileariant objects can always be provided with linear

audd/or time—invariant state descriptions; a result of

Ifiither academic value which shows that properties of

otujects need not, and it is our belief that they should

not, be given in terms of their state descriptions.

One of the contributions of Chapter IV has been to

ob tain a half reduced state description for a large class

of distributed objects based on the construction in

Chapter II, and to generalize concepts such as "Funda—

mental Matrix" used in lumped systems. The other main

147
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x°esult of this chapter was to approximate very general

Ciistributed systems by lumped objects possessing reduced

estate descriptions using results from Chapter IV.

Many open questions that constitute a rich basis for

f”urther research arose during the development of the

thesis. A few important ones, starting with the obvious

cyuestion about the state description of non—linear and/or

tzime varying objects, are:

l. The reflection in the state description of

properties other than linearity and time-

invariance, such as continuity, of the system.

The formstflxzstate descriptions will take after

interconnections of different objects necessi-

tating a study of the equivalence classes of in—

puts from the individual classes of each system.

Studies about the stability of the system using

the Hilbert matrix representation obtained in

Chapter IV and spectral theory.

The approximation of distributed systems by

stable and lumped (or lumped RLC) ubjects by

placing restrictions on their convolutional

representation.

Finally, the synthesis procedures obtained in [DA],

SX>r the state description in [RES] (given in Chapter I),

constitute another solid justification and application of
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tshe State Space Theory. It is strongly possible that some

ssyntehsis procedures can also be derived from the state

ciescriptions in Chapter IV of this thesis.
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APPENDIX A

A.l——About Distribution Theory
 

It has been some twenty years since Schwartz intro-

duced and develOped his theory of distributions, a theory

that owes its birth to physicists, who have used the delta

function since the nineteenth century [ZEl preface].

Mathematicians have plunged into it and a large

body of mathematical literature has been published in areas

such as ordinary and differential equations, operational

calculus, transformation theory and functional analysis.

This impetus mathematics has gained from physics did not

prevent the more and more abstractization of distribution

theory, which is now going the entangled paths of topology

and topological vector spaces [TR, HOR].

In mathematical sciences, the most notable applica-

tion of distribution theory has been to quantum field

theory [ZEA, p. 1]. In network and system theory it has

been extensively used in the axiomatic foundation of

system theory [ZE1, A], in the time-domain theory of linear

n-ports, in obtaining a frequency-domain criterion for

the causality of active networks [ZEA, secs. A, 5, 6], in

the theory of generalized Bode equations and in the

Characterization of various broad classes of systems by

15A
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their real frequency behavior, [AR], [BEL], [WO], [GU],

etc. Distributions have also been used in an essential

way in the analysis and synthesis of time varying net-

works, see e.g. [NE1-2], [DOl-2]. In other subjects,

various classical problems which had been solved in terms

of classical mathematics, become open problems once again

when reformulated in terms of distribution theory [ZEA,

pp. 1].

There exists a serious drawback to distribution

theory and this is its uselessness in the theory of non—

 
linear systems, which is due to the fact that the product 5,!

of two distributions cannot be defined in general, but

only when one of the distributions is a Special one. How—

ever, efforts are being made to generalize the product of

distributions which are used in quantum field theory [BRE].

This may render possible the application of distributions,

at least to special classes of nonlinear systems.

Despite this extensive use of distributions, some

applied scientists are reluctant to accept the description

of physical quantities by a concept that is not an

ordinary point function, but is something of functional

nature [PA]. That this objection of philosophical nature

is not justifiable, can be shown as follows. First of

all we can take the attitude of Newcomb when, he assumes

physical variables are infinitely differentiable, and

justifies it with: "since no physical measurement can
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prove otherwise" [NE2, pp. 6]. We can equally well say

"all physical quantities are distributions since no

physical measurement can prove otherwise." However we

shall try to do more, since such reasonings can prove

anything (i.e. nothing).

To begin with, the assumption that a physical

 

variable F can be characterized with an ordinary function “.i

f(t) is a convenient idealization [PA]. Why should we not

characterize F with a distribution, if that is also a

convenient idealization (which we think it is)? A propos, ,

Zemanian writes: "It is impossible to observe the instan- l_A

taneous values f(t) of F. Any measuring instrument would

merely record the effect that F produces on it over some

nonvanishing interval of time" [ZEl]. Now, it may be that

this uncertainty about F being representable by a function,

is due to the imperfection of our measuring instruments.

The fact is that the imperfection will always be there

since indicators will always be subject to parasitic

effects such as mass, and we will always justify our

theories with measurements using such instruments. Thus,

it is a more realistic assumption, as we can infer that

much from the physical measurements, to characterize F by

a distribution.

Finally, Liverman in a recent Article [LI], gives a

physical motivated definition of distributions, by showing

that one obtains the same space of distributions when one
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confines himself to the testing functions that are pro-

bability densities, i.e. p(x):>0, p(x) is infinitely smooth

and fp(x)dx =1, instead of considering the space.9 of all

testing functions. As physical background Liverman roughly

says: if f(x,t) is the characterization of the physical

variable F, where x and t are the space and time variables,

 

a measurement of F yields a quantity f(x,t)+en(x,t), where ffi

ek's are error functions and a particular one en is in

effect during the experiment. Furthermore, a measurement

of the location (x,t), actually occurs in (§,§+d€)x(T,T+dT)

with probability p(£,T)d€.dT . Then the expected value of ;__

a measurement of F, intended to be at (x,t) is the weighted

average: <f+en,p> = <f,p> + <en,p>. The functions ek are

random and we assume the expected value of <ek,p> over

various k, to be zero. Thus:

<f+en,p> = <f,o> = ff(£,T)p(€.T)d€.dI.

Finally Liverman points that, to say lim fv(x,t) exists

pointwise or uniformly becomes a physically non—verifiable,

mathematical assertion. The statement lim <fv,p> exists

for every probability density is operationally much more

relevant, and consistency requires that we include into

our list all functionals f such that <f,p> = lim <fv,p>

for all probability densities p. This leads us to gen-

eralized functions, which turns out to be a better pencil
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and paper depiction of physical phenomena, in the

presence of errors in the experimental determination of

physical variables.

In the following sections of the Appendix we intro-

duce the necessary definitions and already proven results

in A.2., and prove some new results in A.3. mainly about

the orthonormal series expansions of distributions, that

are needed in Chapter IV.

A.2--A Brief Review; Some Definitions

and Results in Distribution Theory

 
NOTE A.2.l: The definitions and notations used are con-
 

sistent with those used in [ZE1,2]. Known results are

,given without proof, where a reference to the proof is

Inade with the page and theorem number of the corresponding

theorem in the literature.

IZEF.A.2.1:

A function is INFINITELY SMOOTH ON A SET iff it has

Guantinuous derivatives of all orders on that set.

The Space of all complex valued functions p(t) that

Eixse infinitely smooth and zero outside some finite interval

is called THE SPACE or TESTING FUNCTIONS, and is denoted

by .9.

QIEIP.A.2.2:

A sequence of testing functionS'EpY(t)}:)=l CONVERGES

In] 1? iff the pY(t) are all inii, are all zero outside some
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THM.A.2.5 [ZEl, pp. 115, Thm. 5.2.1]

The direct product f(t)xg(1) of two distributions

f(t) and g(r) is a distribution in $Jt T.

3

DEF.A.2.5:

The CONVOLUTION of two distributions f and g over R

is given by the expression

<f*g,p> A <f(t)xg(T),p(t+T)> g <f(t),<g(T),p(t+T)>> A.2.3

NOTE A.2.5: A problem arises in the definition of the con-

volution. In A.2.2, p(t,T) and thus <g(T),p(t,T)> had

bounded support, but in A.2.3 p(t+T) is infinitely smooth

lvithout having bounded support and therefore it is not a

izesting function. However a meaning can be attached to

£1.2.3 if either the supports of f and g are suitably

Icestricted or some conditions are placed on the behavior

C>f the distributions as their arguments approach infinity

(Ive will not give the theorems related to this last

Siituation because definitions of new testing function and

(ij_stribution spaces are required; they may be found in

[801, vol. II]). The following theorem illustrates when

tries convolution process can be given a meaning. In section

A-Z3 we investigate another case that is not given in the

liftéerature where the convolution can be defined.
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fixed finite interval I and for every fixed nonegative

interger k, the sequence {pY(k)(t)}:=l converges uniformly

for —w<t<w.

FACTS A.2. [ZEl, pp.5]
 

1: 19’ is closed under convergence in? i.e. the limit

of every sequence that converges inB, is also inb. “......

2: {py(t)}:=1 converges inir, to 0 iff all the DY

are in.9'and are zero outside a fixed finite interval and

the sequence {py'p}:=l converges to zero in.9' .

 DEF.A.2.3: ___,
 

Denoting the functional by f, the number it assigns

to any p69 by <f,p> a DISTRIBUTION is a functional on 33

such that:

<f,pl+dp2> = <f,pl> + a<f,p2> for pl, p269' and dEC

if {py(t)}:=1 converges to O in£? then the numbers

<f,pY> converge to O. The Space of all distributions on

.9, denoted by 9', is called the DUAL SPACE OFQ.

NOTE A.2.2: In most of our discussions we will deal with
 

‘ distributions that are defined over the real linelR. How-

ever for some theorems, especially the ones about the

convolution of distributions, we will have to use distri-

butions over n—dimensional Spaces. Thus we have to

expand our definitions to multi—dimensional cases. For this
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11

let xé(xl,x2,...,anHR. The TESTING FUNCTIONS are those

that vanish outside a compact set in Rn'and for which all

partial derivatives exist and are continuous for all x.

Denoting the partial derivative by

000+kl+k2+ kn

k 8

D p(x)$ lc lc k: p(xl,x2,...,xn)

n

 

where k A k1 + k2 + ... + kn a sequence of testing functions

{DY(X)}:=1 CONVERGES IN B‘TO ZERO iff all py(x) are zero

outside a fixed compact subset of’Rn and {kaY(x)}:=1 con-

verges to zero for any choice of k.

Again, a DISTRIBUTION ONIRn is a linear, continuous

functional on.9 defined overlRn (continuous in the sense

py + O in ::;<f,pY> + O in.C).

DEF.A.2.A:
 

Two distributions f and g are said to be EQUAL iff

<f,p> = <g,p>, vpeg,

The SUPPORT of a testing function p69 is the closure

of the set of all points where p(t) is different than

zero, and is denoted by supp p(t).

Two distributions f and g are EQUAL OVER THE OPEN

SET 9 iff <f,p> = <g,p> for every testing function p,

with supp p(t)co.

The complement of the union of all open sets, over

each of which a distribution f equals zero, is called the
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SUPPORT of f, denoted supp f(t). If a set O contains the

support of a distribution, that distribution is said to be

CONCENTRATED ON O.

THM.A.2.1: [ZEl, pp. 30, Thm. 1.8.1.]
 

If a distribution is equal to zero on every set of

a collection of open sets, then it is equal to zero on

the union of these sets.

THM.A.2.2: [TR, pp. 266, Thm. 2A.6]
 

The distributions ian which are concentrated on a

point, are the finite linear combinations of the 6-

functional and its derivatives.

DEF.A.2.5:
 

A sequence of distributions {fy}:= CONVERGES INS?‘
1

iff for every p69 the sequence of numbers {<fy,p>}:=1

converges. The LIMIT <f,p> of {<fy,p>}:=1 defines a

functional on£>, and the next theorem proves that f is a

distribution.

A series y=lfY of distributions CONVERGES in19' iff

m

the sequence hmé¥-lfY of partial sums converges in 3'.

THM.A.2.2: [ZEl, pp. 37, Thm. 2.2.1]
 

CD

If a sequence of distributions {f }Y Y=l converges in9'

to the functional f, then f is also a distribution i.e. the

Space 9” is closed.

 

M I

l
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NOTE A.2.3: One way of generating an important class of
 

distributions is to imbed locally summable functions into

3” through the convergent integral [ZE2, pp. 26A]

<Tf,p>=g_£f(t)op(t5edt Vpeb' A.2.l

More precisely, the distribution T because of A.2.l,
1",

represents the equivalence class of functions that equal

f almost everywhere. It is also worthwhile to note that

if Tf = Tg in 9” then f:;:fg is also true. Thus we shall

denote Tf by f, any function in the equivalence class

that T represents, and call such distributions REGULAR

f

DISTRIBUTIONS.

A.2.l is not the only way to generate distributions

from functions. Another standard procedure that leads to

the concept of PSEUDOFUNCTION is given in [ZEl], [TR].

l/t which doHowever there also are functions such as e

not define distributions no matter what procedure one

tries on them [TR, pp. 226].

The above simple discussion is useful since we con-

sider regular distributions frequently in our work and

is necessary for the next theorem that is of importance

in section IV.A.

THM.A.2.3: [TR, pp. 30A, Thm. 38.3]
 

Let Q be an open subset of Rn. Any distribution in Q

is the limit of a sequence of polynomial functions in£>'.
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NOTE A.2.A: Now we concentrate on the convolution of dis-
 

tributions which is a very general process. Various types

of differential equations, difference equations and

integral equations are all Special cases of convolution

equations [ZEl, pp. 11A]. The convolution is also a very

general way of characterizing linear, time-invariant and

continuous systems that we use in our developments of

Chapter IV.

THM.A.2.A: [ZEl, pp. 7A, Cor. 2.7.2a]
 

Let x be an n—dimensional real variable and y an m-

dimensional real variable. Also, let p(x,y) be a testing

1Rn+m. If f(x) is a distributionfunction inB defined over

defined overIRn, then C(y) A <f(x),p(x,y)> is a testing

function of y in£> and an arbitrary partial derivative

D§O(y) with respect to the components of y is given by:

DkO(y) = <f(x), D§p(x,y)>.

DEF.A.2.6:
 

Let p(t,T) be a testing function infilt I, defined

3

overlRZ, and let f(t)€£% g(T)€.9"T be distributions over

m1. Then by THM.A.2.A. <g(I),p(t,T)> is a testing function

11’19t and the DIRECT PRODUCT f(t)xg(T) is defined by

<f(t)xg(r),p(t,T)> g <f(t), <g(T), p(t,r)>>

A.2.2
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THM.A.2.5 [ZEl, pp. 115, Thm. 5.2.1]
 

The direct product f(t)xg(r) of two distributions

f(t) and g(T) is a distribution in $Jt 1‘

3

DEF.A.2.5:

The CONVOLUTION of two distributions r and g over R

is given by the expression

<f*g,p> g <f(t)xg(1),p(t+1)> A <f(t),<g(T),p(t+T)>> A.2.3

NOTE A.2.5: A problem arises in the definition of the con-
 

volution. In A.2.2, p(t,T) and thus <g(t),p(t,1)> had

bounded support, but in A.2.3 p(t+T) is infinitely smooth

without having bounded support and therefore it is not a

testing function. However a meaning can be attached to

A.2.3 if either the supports of f and g are suitably

restricted or some conditions are placed on the behavior

of the distributions as their arguments approach infinity

(we will not give the theorems related to this last

situation because definitions of new testing function and

distribution spaces are required; they may be found in

[SC1, vol. II]). The following theorem illustrates when

the convolution process can be given a meaning. In section

A.3 we investigate another case that is not given in the

literature where the convolution can be defined.
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THM.A.2.6 [ZEl, pp. 12A, Thm. 5.A.l]
 

Let f and g be two distributions over“?. Then fxg

exists as a distribution overlR, under any one of the

following conditions:

(i) Either f or g has a bounded support

(ii) Both f and g have supports bounded on the left

(or on the right).

THM.A.2.7 [ZEl, pp. 12A, Ex. 5.A.1]
 

If f and g are locally summable functions whose

supports satisfy one of the conditions stated in THM.A.2.6,

then their distributional convolution h(t) = f(t)*g(t) is

given almost everywhere by the regular distribution cor-

responding to the locally integrable function

h(t) = im f(T).g(t-T)dT.
co

THM.A.2.8: [ZEl, pp. 127, Exc 5.A.3]
 

r

The convolution of 8m)(t-a) with any distribution in

9', is given by: 6(m)(t—a)*f(t) = f(m)(t—a) m-1,2,...

THM.A.2e9: [ZEl, pp. 132]
 

 

A convolution may be differentiated, by differentiating

either one of the distributions in it, i.e.

(f(t)*g(t))(m) = f(m)<t)*e(t) = f(t>*g(m)(t)
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THM.A.2.10: [ZEl, pp. 136, Thm. 5.6.1]
 

Let the sequence of distributions {fy}:=l converge

in9' to f. Then {fy*g}:=ionverges in 9' to fxg if

f and g all have supports bounded from the left.{fY}Y=l’

NOTE A.2.6: The remaining part of this section is devoted
 

to the orthonormal series expansion of certain distribu—

tions as given by Zemanian [ZE2] and which constitutes the

main tool in obtaining an infinite dimensional state

description of a large class of systems in section IV.3.

We first give the necessary notation, then state the

theorems that we use later.

NOT.A.2.1: [ZE2, pp. 262-265]
 

I = (a,b) denotes an open interval on the real line

and the case a = -“3 b =G°is not excluded. L? is the

space of square summable functions on I with the usual

inner product <f,g> = Zf(t)g(€7dt for f,gEL§.

g: denotes the space of all testing functions infi},

whose supports are contained in I..$"I is the space of

distributions defined on $1.

With Ok(t)?§0 and infinitely smooth on I, n denotes

n

the linear differentmmion Operator: n A OD Dnl 01 D 2 ...

n

D V Ov, where the nk are nonnegative integers and

k n

Dk = d The O and n are so chosen that n = O (-D) v
th' k k v

n n

(-D) 2 O§(-D) l 56. Moreover it is assumed that n
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possesses real eigenvalues "n and normalized eigenfunctions

Tn, n=l,2,... with the properties that {Wn}z=l is a com-

plete orthonormal sequence in L? and the "n are real, have

no finite point of accumulation (this also means no value

of "n is assumed more than a finite number of times) and

are so numbered that llllsllzl

The use of the symbol <.,.> to denote the inner pro-

duct in Li conforms with its use to denote the number, a

distribution makes correspond to a testing function, Since

for a regular distribution f, <f,p> =_f f(t)3(t)dt

(Note A.2.3).

DEF.A.2.8:
 

The set of all infinitely smooth, complex valued

p

functions on I, such that Yk(p)A[élnk0(t)l2dt12<w’k=0’l’2"°°

k k .

and <n p,Vnp = <p,n Tn) for each n and k, 13 the space

CK OF THE TESTING FUNCTIONS with figs taken as seminorms

of 01.

oo

Y=l is a CAUCHY SEQUENCE IN 0L ifA sequence {Dy}

each pY is in 0L and for each k, yk(p -pi)+O as y and iY

tend independently to infinity. The corresponding con-

vergence is referred to as CONVERGENCE IN 0L.

FACT.A.2: [ZE2, pp. 265]

3: 91 is contained in 0!. and convergence in 91

implies convergence in 01.

A: Each Tn is in OL.
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THM.A.2.11: [ZE2, pp. 265, Thm. 1]
 

0.18 a sequentially complete Space.

COR.A.2.1: [ZE2, pp. 268]
 

If {on}:=1 is a sequence of testing functions that

converges in 01, then {pn}:=l converges uniformly on every

compact subset of I.

THM.A.2.12: [ZE2, pp. 267, Lem. 1]
 

If p is in 01 then p(t) = 6:1 <p,Wn> Tn(t) where the

series converges in(l .

THM.A.2.13: [ZE2, pp. 268, Lem.2]
 

Let {an}:=1 denote a sequence of complex numbers.

Then, a T converges in 01 iff I |An|2k|a I2

n n n=l5
M
8

:1 n

converges for every k.

DEF.A.2.9:
 

The set of all linear, continuous functionals on(m-

is the SPACE OF DISTRIBUTIONS OP, and the number that fECH'

assigns to any péOLis denoted by <f,p>. (By a continuous

functional onCX we again mean if py+O in 01 then the

numbers <f,py>+O).

A sequence of distributions {fy}:=l CONVERGES INcn'

iff for every pém.the sequence of numbers {<fY,p>}:=l

converges i.e.(X' has the weak topology generated by the

(f) = |<f,p>  
seminorms n

¢
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THM.A.2.1A: [ZE2, pp. 269, Thm. 2]
 

0U is a sequentially complete space.

FACT A.2 [ZE2, pp. 269]

5: By FACT A.2.3 the restriction of feov to BI is

infi”, and convergence inCMJ-implies convergence in.9;.

6: By the above fact, Li and thereforecn is imbedded

into<fi' by defining the number féL2I assigns to peoz as

a

<f,p> A éf(t)6(t)dt.

NOTE A.2.7: Another subspace of(l' is the space of all
 

distributions with compact support in I. This with FACT

A.2.6 give us an idea about the size ofCl'. FACT A.2.6

also confirms us of the consistency to use the symbol

<.,.> in DEF.A.2.9.

The next theorem is the result which required all

this preparation.

THM.A.2.15 [ZE2, pp. 2 O, Thm. 3]
 

7

If fEOU then f==§ <f,¢n>wn(t) where the series con-
=1

verge in 01.‘ .

THM.A.2.16 [ZE2, pp. 270, Thm.5]

Let bn denote complex numbers. Then g=lbn wn(t)

converges inCn' iff there exists an integer q a'O such
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that i IAnI-2qlbnl2 converges. Moreover, if f denotes

n#O

(D

the sum g=1 bn wn(t) in(l' then bn = <f,wn>.

A.3-—Some New Results
 

NOTE A.3.l:
 

In this section we start by stating some facts, which

are already well known, then we continue with some lemmas

and theorems that are necessary to define the convolution

of a distribution in(n', with inputs from the input space

U of section IV.3. The interval of interest is

(-00300)

I = (~w,w), Not.A.2.1 and the O 'S in the definition of
k

the differential operator n are assumed to be bounded on

 

(Tk,m) for some Tk’ k=O,1,....

FACT A.3.l:

u(t)€U :::eu(t) is locally summable. U

D(_m’oo) D(-°°,°°)

is as in DEF.IV.3.1.

_F_ACT A.3.2:
 

{wr§t)}:;l is a complete orthonormal sequence for

2

(_oo’oo)

L ¢:${wT§T—t)}:;l is one for any finite T.
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FACT A.3.3:

co

 

J If(t)|2dt <0° and f(t) is infinitely smooth :;f(t)

_oo

is bounded everywhere and ]1T f(t) = O.

t+oc

FACT A.3.A:
 

J lf(t)|2dt <w and f(t) is infinitely smooth ==:>

(I)

i | ———-—dka 12
_oo dtk

dt <w for k = 1,2,....

NOTE A.3.2: The following two lemmas are necessary for the
 

result of the convolution, to be later defined, to be inil.

The first one exhibits a Special kind of testing function

in(1. The second one provides us with a certain convergence,

both to be used in the definition of the convolution.

UD we use in these lemmas is the one given by Def.

<-oo,oo>

IV.3.1.

EEMMA A.3.1:
 

Let u(t)EUDA, 0(t)Ebvand let C(t) be infinitely

I

smooth, bounded with supp OC(b,w) for some finite b. Then

00

h(t) A I O(t).u(T). p(t+T)dI A.3.1

oo
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is a testing function in<3Land

00 (X)

I|h(t)|2dt s K [ |p(t)|2dt A.3.2

J

—(XJ .00

K a constant.

PROOF:

 

First we note that h(t) is well defined for each t

since p(t+I) has compact support for each t and u(I) is

locally integrable by fact A.3.1.

We have three things to be Shown for h(t) to be inCX .

(i) That h(t) is infinitely smooth; which is true

since C(t) and p(t+t) are infinitely smooth.

(D

(ii) That { Inkh(t)|2dt <0° ; which will be shown as

J

—<X)

follows. First we claim:

[lh(t)|2dt <oo . In fact:

J

2 r . . , 2
‘|h(t)| dt — J l O.t).u(I)p(t+I)dI| dt

IO(t)I2I Ju(z-t)p(z)dzl2dt A.3.3ll
.

8
“
—
-
w

by letting z = t + I.
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As Q has compact support, supp pC[d,B] with d,B finite

T w B

A.3.3 becomes: [Ih(t)l2dt = [lO(t)12|Ju(z-t)p(z)dz|2dt.

J 4

-oo -oo (1

u(z-t) is certainly square summable on [d,8] for each t.

8

Applying CBS inequality to I[ u(z—t)p(z)dz|2, we obtain

J

a

oo oo 8 B

[lh(t)l2dt < J|O(t)I2[J|u(z-t)l2dz][J|p(z)|2dz]dt

~00 --00 O} G.

3 w B

< J|D(Z)|2dZ[JIGQt)I2J|u(z-t)|2dz dt] A.3.A

d -w a

All we have left to be shown is the convergence of

.. B

[_glo(t)l2 é|u<z—t) 2 
dz dt] in A.3.A For this we consider

IO(t)u(z-t)l2dt]dz =

_
_
_
,
m

E

B

A
d 8

e
—
—
s
8

[J|O(z—t)u(t)l2dt]dz A.3.5

Q
.

By hypothesis C(z-t) = O for z—t<b i.e. for z-b<t. A.3.5

then gives:

8 .

l

G.

_—b

lO(z-t)u(t)l2dt]dz
 

8
k
—
3
N

B m

[E JIO(t)u(z-t)|2dt]dz =

a co
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8 B-b

3 J [ lO(z-t)u(t)l2dt]dz since z.{ b

a .00

B 8

g { [ I M|u(t)|2dt]dz since O is bounded

& _m everywhere

3.

S J C.dz = K < m Since u(t)EL%_oo b) for any

3

a finite b.

By [KE, pp. 206, Thm. 280],

00 B 8 00

z 2 , 2 _ . 2

IOxt)| [[quz-t)l dz]dt — [ |O(t)u(z-t)l dt]dz<K

.. a a ..

A.3.

and A.3.6 combined with A.3.A gives A.3.2.

To Show:

CI)

flnkh(t)l2dt = flnk{O(t)fu(I)p(t+I)dr}Iédt < w A.3.

00

note that nkh(t) is a finite sum of terms of the form

y(t) ZU(I)¢(t+I)dI , where y(t) has as factor either C(t)

or one of its derivatives, multiplied by some OR or its

derivative of some order. Therefore y(t) is infinitely

smooth, bounded due to Note. A.3.1 with supp y(t)<2(b,w),

since supp O(t)C:(b,w).

C(t) is a testing function in since ¢(t) =p(i)(t)

for some integer i190. Thus y(t) fu(I)¢(t+I)dI satisfy

00

6

7
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the hypothesis of the lemma and the proof we used to show

flh(t)l2dt <0° can be applied to each term of nkh(t) to

_co

co

obtain finally [Inkh(t)|2dt < w, since a finite sum of

.00

square summable terms is square summable.

(iii) Finally that <nkh,w > = <h,nkw > is shown as
n n

follows:

00

<h.nwn> g Jh(t) n wn(t5.dt

...oo

oo 

n1 n2 nu

Jh(t) [OO(t)D Ol(t)D ...D Ov(t)wn(t)]dt A.3.8

_(X)

Since the Ok's and wn are functions of the real variable

t, A.3.8 can be written as:

(I)

“1-1— “2 “v— _—
<h,n wn> = J h(t). 90(t) D[D - D G ..D ov.wn]dt

_oo

 

A.3.9

To integrate by parts we let v(t) = h(t)OO(t5 and

ri-l Dnt
du = D[D 9v wn] dt in A.3.9. To get
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—— r1l—l— r12 "u—
<h,nwn> = h(t)OO(t)[D OlD ...D Ov(t)wn(t)]

-m

nl-l-’n2 “v
HAD ...D Ov(t)wn(t)]dt A.3.1O

 

— {D[Oo(t)h(t)]D

But h(w) = O by FACT A.3.3 Since h(t) is square summable

and infinitely smooth, h(—w) = 0, since h(t) has support

bounded at left. So the first expression on the right side

of A.3.lO is zero and:

00

n nn

_ 1-1 —— 2 v

(h,n¢n> _ J(-D) [Oo(t)h(t)]D [olD ...D Ov(t)wn(t)]dt

 

..oo

A.3.ll

As in (ii) -D[O;(t)h(t)] is composed of two terms each of

which, satisfying the hypothesis of the present lemma, is

square summable making -D[O;Tg]h(t)] square summable. Thus

integration by parts can be used for A.3.11 again, with the

same reasoning as for A.3.9, to yield:

00

n1 n

_ 2 ————— "1-2 —— c .
<h,nwn> - (-D) [Oo(t)h(t)]D [OlD ...D Ov(t)wn(t)]dt

 

R

—00

With exactly the same arguments, repeating this process

nl + n2 + ... + nv times we will end up with:

n

00 n n

. v 2—— l
<h,n¢n> J wn(t)[6v(-D) ...(-D) Ov(-D) Oo(t5h(t)]dt

(nh, ¢n>
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due to the assumed form for n, Not. A.2.l. In order to

show <h,nk¢n> = <nkh,wn> we note that the Operator nk has

k nl

the same form as n i.e. n = [OOD

n n

l...D vOV] where the bracketed term occurmdlctimes in

nu
000D evjooo

[GOD

succession. The integration by parts can be repeated as

many times as we want yielding <nkh,wn> = <h,nkwn> for

finite k.

LEMMA A.3.2
 

Let u(t)€UD and C(t) be as in Lemma A.3.1, and

("'00,”)

let {py(t)}:=lC9’ converge to zero infb. Then

00

{hy(t) A [9(t)u(T)pY(t+T)dT}Y=l converges to zero inCX .

_oo

PROOF:
 

From Lemma A.3.1 we have that:

J IhY(t)I2dt < K JIpY(t)|2dt y=l,2,.... We note that K

is independent of y, due to expressions A.3.A and A.3.6,

and due to the definition of convergence in $'(Def. A.2.2)

ivhich requires supp pyc:[a,8] for =1,2,.... Thus

8 oo

lim ley(tfl2dt = o, implying lim thy(t)|2dt = o.

y+oo 0L
Y"‘°° _

Again, nkh(t) is the sum of a finite number of terms each
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(X)

of the form y(t)f u(T)¢Y(t+T)dT with y(t) and ¢y<t> as in

-00

Lemma A.3.1 for y=l,2, .... Moreover

m m B

J|Y(t)|2[ I|u(t)¢Y(t+¢)|2dt]dt s C [IOY(1)(t)I2dt for

-m -w a

some i and for y=l,2,.... AS the convergence of py(t)'s

is in9,py(i) converges to zero for any 1. So

8

lim Jlo (i)(t)l2dt = o I)

Y+°° a Y

lim J |y(t)|2[ JIU(T)¢Y(t+T) |2dT]dt = 0. Using Minkowski's

y+m —m —m

inequality, as we have a finite number of terms we conclude

oo oo

lim [Ink{O(t)Ju(T)py(t+T)dT}I2dt = O for each k.

y+oo -oo —00

NOTE A.3.3: Now we define the convolution of a distribution
 

inCX' having support bounded from the left with u(t)E UD(_m,w)

of Def. IV.3.1. We need the two previous lemmas to prove

the outcome of the convolution to be in1>'. This defini-

tion coincides with the usual definition of convolution if

supp u(t) is bounded from the left.

QEF.A.3.1:

Let w(t)60v be such that supp w(t)(:[b,w], b finite,

and let u(t)EU Choose an infinitely smooth C(t)

(-oo,oo>°
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such that it equals one over some neighborhood of supp w(t)

and zero outside this neighborhood. Finally let p(t)€9-

be arbitrary. The CONVOLUTION of w(t) with u(t), denoted

w(t)*u(t) is defined by:

<w(t)*u(t), p(t)> A <w(t),O(t) Iu(1)p(t+1)di> A.3.12

—oo

THM A.3.1:
 

Let w(t), u(t), O(t), p(t) be as in Def. A.3.1.

Then w(t)*u(t) as given by A.3.12 is well defined and is

a distribution in 9”.

PROOF:
 

First we note that as C(t) is infinitely smooth

w(t)O(t) is well defined and w(t)O(t) = w(t). Then by Lem.

A.3.1 O(t)[ u(I)p(t+I)dI is a testing function inCfl. and

as w(t)E(I', <w(t),O(t) Ju(T)p(t+t)dI> is well defined.

—oo

Moreover:

-CD

<w(t)*u(t),p(t)> A <w(t),O(t) Ju(t)p(t+r)dt>

= <w(t)O(t), Iu(T)p(t+T)dT>

—oo

= (w(t), <u(T),p(t+T)>> A.3.l3

Since u(t) is locally summable it is imbedded in.9'. The

expression A.3.l3 verifies that A.3.12 is indeed a convolu-

tion where C(t) is necessary in making h(t) a function inCm .
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Since p(t)€9'was arbitrary, we will be done if we can

show w(t)*u(t) is linear and continuous on.B

w(t)*u(t) is linear, since for pl and p269 and aETR

we have:

(D

<W(t)*u(t), apl(t)+02(t)> A <W(t),@(t)fu(r)[apl(t+l)

—<D

+p2(t+T)]dT>

oo

<w(t),O(t) Ju(T)apl(t+T)dT>

00

+ <w(t),O(t) Ju(1)q§t+1)dt>

-00

a <W(t)*u(t),pl(t)> + <W(t)*u(t),92(t)>

w(t)*u(t) is continuous onMSz If {pY(t)}:=1

is a zero convergent sequence in.9'then:

CD

<w(t)*u(t),py(t)> _ <w(t),O(t) Au(1)py(t+r)dr> converges

—oo

to zero as y+w since O(t) Tu(T)pY(t+T)dT converges to zero

iIIOIDy Lemma A.3.2 and.w(t)EOU.

NOTE A.3.A: The next lemma, may be one that does not
 

require a proof. Although it is not explicitly mentioned

in [ZE2], it must be true for OL' to be a distribution

Space. Since we use it in our proofs we felt to prove

it briefly would be adequate.
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LEM.A.3.3:
 

W(t)€Ol =7'JJ' (H601

PROOF:
 

(i) w'(t) is infinitely smooth.

(ii) flw'(t)|2dt <oo by Fact A.3.A. As in Lemma

A.3.1 nKW'(t) is composed of a finite number of terms

O(t)¢(t) where O(t) is infinitely smooth with

O(t) = [w'(t)](n) n = o,1,2,.... Thus by Fact A.3.A

O(t) and hence O(t)¢(t) are square summable for every

finite k. Again using Minkowski's inequality we can

obtain [In w'(t)|2dt <w k=O,1,2,....

—00

(iii) To prove <nkw',wn> = <w',nkwn> we can proceed

exactly as we did in Lem. A.3.1, i.e. using integration by

parts.

THM.A.3.2:
 

Let w(t) be in OL‘ with supp w(t)C[b,°°] and let

u(t)EU(_m m). Suppose w(t) = lim WY(t) in(]} also with

3
y+oo

supp wY(t)c:[b,w] for y =1,2,...,b finite. Then:

w(t)*u(t) = lim [wY(t)*u(t)] in .9'.

y-mo
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PROOF:
 

w(t)*u(t) is well defined by Thm. A.3.1 and so is

wy(t)*u(t) for each y. Then for p(t)€$rand an infinitely

smooth O(t) which equals one over a neighborhood of

supp w(t) and zero outside we have:

00

<w(t)*u(t),p(t)> A <w(t),O(t) Ju(1)p(t+r)dt> by Def.A.3.l.

—(X)

00

<lim wy(t),O(t) Ju(T)p(t+T)dT>

Y+m _m

lim <wY(t),O(t) Ju(T)p(t+T)dT> A.3.1A

+oo

Y -m

(D

Since O(t) IU(T)p(t+T)dT and by definition of convergence

in 01' i.e. lim w (t) = w(t) inOL' iff

Y+w Y

lim <wy(t),¢> = <w(t),¢(t)> V¢EOLo Thus A.3.1A gives:

y-mo

<W(t)*u(t),p(t)> lim <WY(t)*U(t),p(t)> V069

y+oo

<lim [wY(t)*u(t)],p(t)> VpEb

y-roo

_EfiM.A.3.3:

Let w(t)EOU with supp w(t)c:[b,w]. Then w(t) can be

written as:

K (k)

<w,mn> wn(t)l(t-b) + 2 d d (t-b) A.3.15w(t) =

k=0 k3
M
8

=0

Where K is finite.
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PROOF:
 

Since w(t)€0fl we can write w(t) = <w,wn> wn(t)

5
M
8

=0

by Thm. A.2.ll. Then we define

f(t) A w(t) — Z <w,wn2>wn(t)l(t-b). In order to prove

n=O

the theorem all we have to Show is: f(t) can at most

have its support concentrated at the point b.

Let p(t) be any testing function with supp pCK—w,b).

We can easily write

<f(t),p(t)> = <w(t),p(t)> - <2 <w,wn> wn(t)1(t-b),p(t)> =0

n=O

since both terms defining f have their support in [b,w).

Let f(t) have its support in (b,w). Then:

<w<t>,p<t>> - <§ <w,wn>wn(t)1<t-b),p<t>>
n=0

<f(t),p(t)>

<W(t),p(t)> - <2 <w,wn>wn(t),p(t)> = 0

n=0

Since l(t) = l and l(t-b) is infinitely smooth on (b,w).

Thus f(t) = O on (—w,b) and on (b,w) hence it is

zero on the union of these open sets Thm. A.2.l. There-

fore f(t) has support concentrated to the origin. As only

finite linear combinations of the delta functional and its

derivatives are concentrated at a point, Thm. A.2.2,

f(t) = i=0 dk.6(k)(t) and A.3.15 follows.
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NOTE.A.3.5: The last two theorems are of importance in
 

section IV.3 when obtaining the state description of a

large class of objects. Another result, exactly similar

to Thm. A.3.3 is useful in section IV.A and is stated

in this note.

Let a sequence of infinitely smooth functions Oy(t)

converge in b" to the distribution w(t)€$fi,£?' defined on

(-m,”), with supp w(t)CI[b,W]. Then

K

w(t) = lim O (t)l(t) + Z d 6 (t), K finite. A.3.16

y-Hao Y k=0 k k

The proof is exactly in the lines of the proof of Thm.

A0303.



APPENDIX B

HILBERT MATRICES

NOTE 8.1: Although they are a natural extension of finite

matrices, infinite matrices, i.e. matrices with infinite

rows and columns, do not occupy much place in today's

literature, possibly because they are preempted by the

theory of abstract transformations and operators. A good

book available on the subject is Cook's Infinite Matrices

and Sequence Spaces [CO] written in 1950 from where stems

the following short discussion.

As the theorems will Show a Hilbert Matrix, a name

that seems to be abandoned in general but for the matrix

[(p+q) llpq.

sequence space. Bounded Operators are important and much

is nothing but a bounded Operator on a

is known about them. Moreover as every linear Operator

on the Hilbert space R2 of square summable sequences can

be written as an infinite matrix [P0, pp. A12, Ex.l], that

makes the Hilbert Matrices important, especially if we

encounter them in technical Characterizations as we did

in section IV.3.

185
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DEF.B.1:

Let a double series 2 C be given. We form the
m,n m,n

sequence Sp q of partial sums by finite rectangles, i.e.

3

Sp q is obtained by adding all terms whose first index

3

is s p and whose second index-s q. Then 8,n Cm,n is said

to be PRINGSHEIM-CONVERGENT iff for every e>O there is a

number 3, independent of s, and two numbers P(e) and Q(e)

such that p ;.P(s), q_acxe) implies IS sl s e. The
p.q"

number S is called the INNER (or PRINGSHEIM) LIMIT of the

double sequence S .

ps9

DEF.B.2:

For an infinite matrix A = [amnl a BILINEAR FORM is

8

T T

defined as x Ay A Z a yx where xT=(x x ) y
m,n=1 m mn 1’ 2"" ’n

(yl,y2,...) and the convergence is Pringsheim.

DEF.B.3:

Let E denote the unit hypersphere, i.e.

co 1

E A {x = (xl,x2,...): IIxIIA [Z lIx I216‘§ 1}-

n:

An infinite matrix A = [amn] is Called a HILBERT MATRIX

T
iff x Ay is Pringsheim convergent on E.

THM.B.1: [00, pp. 253, Cor. 2]

A necessary and sufficient condition that A should

be a Hilbert matrix is that:
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THM.B.2: [00, pp. 260, Thm. 9.5.V]

A = [a ] is a Hilbert matrix if f
mn m

independent of n and if i=llamnl< N independent of m.

NOTE B.2: Thm.B.l shows that a Hilbert Matrix is a

bounded Operator on 22 and THM.B.2 is the one we use to

show that the infinite matrix A in IV.3.1 is a Hilbert

Matrix.

That Hilbert matrices are not compact operators

(bounded linear operators that map bounded sets into

relatively compact sets) is easily seen since the identity

matrix I is a Hilbert matrix but not a compact operator

since it maps the unit hypersphere, whose closure is not

compact, into itself.
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