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ABSTRACT

STATE SPACE AXIOMS AND STATE DESCRIPTIONS
IN CANONICAL FORM
By

izzet Cem Gdoknar

Although 1t dates back to Newton's use of positions
and momenta, the concept of "State" has only been given
an abstract and rigorous definition in the last decade
by Zadeh.

In this thesils, starting with improved versions of
Zadeh's "State Axioms," the necessity of another minor
modification 1s shown and the different axiom sets are
discussed. With the axlioms modified, the important con-
cept of "Equivalence Classes of Inputs" (the major tool
of the behavioral approach) is used to lnvestigate the
properties of "Reduced and Half Reduced State Descrip-
tions."

Then, the essential properties that "State Descrip-
tions" acqulire when the system 1s "Linear" and/or "Time-
Invariant" are examined, and "State-Equations" in canoni-
cal form are obtained for a large class of distributed
systems. The problem of approximating more general sys-
tems, with only minor restrictions on the input space,
by systems that possess finite dimensional "State Spaces"

1s given a solution.



STATE SPACE AXIOMS AND STATE DESCRIPTIONS

IN CANONICAL FORM

By

izzet Cem Goknar

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1969



7

‘r




ACKNOWLEDGMENTS

I would like to take this opportunity to formally
acknowledge some people whose efforts, perhaps not
directly related to the thesis, brought me to the state
in which I am, influenced my thoughts, and therefore
contributed to thils work.

Listed in the chronological order I met them, I
wish to thank my mother, Vedide Goknar, and my father,
Saim Goknar, to whom I owe my exlistence and my educa-
tion, my wife, Aytag¢ Goknar, whose love and support made
"those moments" bearable, my Professor Taraik 6zker,
devoted to hils country and the education of his students,
who caused an evolution in my thoughts, and finally to
my daughter, Elif Goknar, whose addition to the family
has been a source of joy and strength.

I am indebted to Professor James A. Resh for his
guidance of this thesis and for his unique advising, and
to Professor Yilmaz Tokad for his valuable suggestions
and discussions.

Finally I extend my gratitude to the institutions
of Michigan State University and the Technical University
of Istanbul for the fine education and the support they

have provided.

i1



"The men where you live," said the little prirnce,
"raise five thousand roses in the same garden--
and they do not find in it what they are looking

for."
"They do not find it," I replied.

"And yet what they are looking for could be found
in one single rose, or in a little water."

"Yes, that is true," I said.

And the little prince added: "But the eyes are
blind. One must look with the heart. ., . ."

The Little Prince .
Antoine de Saint-Exupery

iii



TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . . .+ + « « v v o « o . ii
LIST CF FIGURES . . . « « + « « « o « vi
Chapter
I. INTRODUCTION. . . + « v o v & o . 1
I.1 The Mcdern 3tzte Concept. . . . 2
I.2 Some Gen=ral Concepts and
Terminzlogy . . 10
I.3 Previous Work on the Subjee* . 15
I.4 A Brief Summary of the Fzllowing
Chapters . . . « + .+« < . . 24
II. AXIOM SETSA1,#42, s3 AND STATE
DESCRIPTIONS IN GENERAL . . . . . . . 26
IT.1 Intrcduztion. . . 26
IT.2 An Example of Deficiency and the
Axiom Set A3. . . 27
II.3 Interrelations of the Axioms
Sets s4l,%2, #3. . . b2
II.4 About Reduﬂed and Half Reduced
State Descriptions. . . . . . 56

ITI. LINEAR, TIME-INVARIANT OBJECTS. . . . . 71

IITI.1 Introduction. . . AN 71
IITI.2 Linear Objects and Pvcpe”tleo of

the State Description. . . . . 73
ITI.3 Time-Invariant Objects and

Properties of the State

Description . . . e 87
III.4 An Application cf Equivalence

Classes of Inputs to Lumped

Objects . . . . .« < . . . 96

iv



Chapter Page

IV. SOME CANONICAL FORMS AND PROPERTIES OF THE
STATE DESCRIPTIONS FOR LINEAR, TIME
INVARIANT, CONTINUOUS OBJECTS . . . . . 110

IV.1l Introduction . . . . 110
IV.2 Convolution Representation of
Linear, Time Invariant and

Continuous Objects . . 112
IVv.3 A Countable-Differential State
Description. . . . 115

IV.4 Approximation of a Large Class of
Objects Having Finlite Dimensional

State Descriptions . . . . . . 135

V. CONCLUSIONS . . . « « « « « « « 147

LIST OF REFERENCES . . . . . « « « « « . 150

APPENDIX A . . . . L] . . . L] . . L] . L] 15Ll

A.1 About Distribution Theory. . 154
A.2 A Brief Review; Some Definitions and Results

in Distribution Theory. . . . . . . . 158

A.3 Some New Results. . . . .. .+ .+ .+ .+ . 170

APPENDIX B . . .+ « « « « « e e e e e 185

Hilbert Matrices. . . . . « .+ .+ .« . 185



LIST OF FIGURES

Flgure

Page
I.3.2 A circuit for which some inputs may become 17
inadmissible. . . . o e e
II.2.1 Input Output pairs <f the objezt 1in the
example of dericiency. .. . . . .+ . . 34
II.4.1 Half Reduced Partitioning of the Input
Space . . . .« e a0 e e e 6U

vi



e e ! N4 o » (1
R s - i

-
]




CHAPTER I

INTRODUCTION

In order to present the results accomplished in this
thesis and to lay down the general background for the sub-
ject considered in the thesis the present chapter is
divided into four sections. The first section 1s de-
voted to the history of the concept of state and the steps
toward its abstractization in the framework of modern sys-
tem theory. We feel that before a meaningful discussion
can be glven for the findings of the thesis, some general
concepts and terminology should be introduced. This is
done 1in section 2. In section 3 the State Axioms pro-
posed by various authors are outlined and some known re-
sults are given. Finally, in section 4 the remaining
chapters of the thesis are summarized.

If some idea has to be given shortly about the re-
sults of the thesis, we can divide our accomplishments
into three main groups.

The first group of results is about the State Axioms
and what can be said about the State Descriptions in gen-
eral without any restriction on the system under consider-

ation. An improvement on the State Axioms is given and



questions about the size of the State Space and about the
nature and system-independent properties of the State
Description are answered.

The second group is obtalned by placing some re-
strictions on the nature of the system and then inquiring
about the State Descriptlion. The basic properties of the
State Descriptions of linear, time-invariant systems are
investigated and results are obtained by using tools
developed in the first group.

In the final third group, we develop analytical
formulations of the State Description for some broad
classes of systems. These representations can be used in
the Theory of Distributed Parameter Systems, or in approxi-
mating them by systems with finite dimensional State Des-
criptions.

Outside the maln goals of this thesis, some new
Theorems are obtalned in the Appendix that center about
Orthonormal Series Expansions of Distributions as pre-

sented in [ZE2].

I.1--The Modern State Concept

The concept of "state," which dates back to Newton's
introduction of positions and momenta as basic mechanical
variables, has been used 1n analytical dynamics, celestial
mechanlics and quantum mechanics as tied to the concept of

stored energy 1n such physical systems.



The following short discussion, that stems from a
treatment on the historical background of the "modern con-
cept of state," appeared in the literature in 1962 [ZAl].
As 1mplied in this reference this modern concept was first
used by Turing 1n his time-discrete machine. Briefly if
Xyis Ups ¥y denote, respectively the state, the input and
the output at time t, then the machine can be charac-

terized by

ol
|

g1 = T (xgsup)
t =0, 1, 2, ——- (1)
yt =g (xt’ut)

Shannon [SH] in 1948 used equations in the form (1)
to characterize probabilistic systems in the sense that Xy
and Uy determine the jolnt probability density function,
p(xt+1, Yi/%¢» U.) instead of x. and y,.

Two important notions, namely, equivalent states and
equivalent machines were then introduced by Moore [MO] and
by Huffman [HU] independently, but in a somewhat re-
stricted form by the latter.

All the above work 1s in the discrete-state systems
context. In the case of differential systems, the equa-
tions (1) take the form:

4

at x(t)

£ (x(t), u(t))

(2)

y(t) = g (x(t), u(t))



where x(t), u(t), y(t) are vectors representing the '"state,"
the "input" and the "output." Equations (2) have been
used, under different forms, in such fields as ordinary
differential equations, analytical dynamics, celestial
mechanics, quantum mechanics, etc. Their wide use in the
field of automatic control was initiated almost twenty
years ago, in Russia, by A. T. Luré, M. A. Aizerman, Ya.
Z. Tsypkin, A. A. Fel'dbaum, A. Ya. Lerner, A. M. Letov,
N. N. Krasovskii, I. G. Malkin, L. S. Pontryagin and
others, and in the United States by Bellman, Kalman,
Bertram, LaSalle, Laning, Battin, Friedland and others.
General methods of setting up the state equations for RLC
networks were later described by Bashkow [BA] and Bryant
[BR]. These methods are extended to time varying net-
works by Kinarawala [KI].

Until recently, the concept of "state" was strongly
connected with the specific physical identification of
state variables as measurable quantities 1inside a specific
system structure. For example, "the state vector" in an
electrical network contains the variables corresponding
to the branch capacitor voltages and the chord inductor
currents. Thus the "initial state" at the "initial time"
is physically the initial charge and the initial flux
carried by those elements, and is reflected as the "ini-
tial conditions" on the differential equations modeling

the network. This notion of state, namely that the state
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is a set of internal variables from which everything else
about the system can be calculated, is referred to as the

"structural approach" to the concept of state [RE5]. 1In

this apprcach an important property of the state that has
to be singled out,1s that it ensures a unique output for
e ach given input.
Another approach to the concept of state 1is in the
fTramework of modern system theory and 1s introduced in
+ he following.
In Zadeh's view [ZAl], the importance of system
t heory lies in its abstract generality and in its concern
wil th the mathematical properties of systems and not their
physical form. Such an abstraction, however, should be
reached from a number of known examples of such systems
as physical, socio-economic, biological and others. If
the state concept is not to be abandoned during this
generalization, one has to be certain whether all the
Various instances of the state notion that appear in
Specific systems are sufficiently similar in meaning and
Usage to be covered by a single abstract definition; if
So, what are the essentials of the notion? To elaborate
this point further, we consider two examples, one in
Socio-economic, the other 1n biological systems.
For the first example, let the community of the
Greater Lansing Area be our system, with the price of a

certaln good, say for example of Nehru jackets, and the



advertisement expenditures as inputs and the demand for
the same good as output. We shall concern ourselves with
an important variable that affects the input-output rela-
tionship of the system: "the taste" of the community.
It is true that, at different times, for the same price
and advertisement expenditures, our community may not have
the same demand for Nehru jackets. This 1s due to a
change in "the taste" of the Greater Lansing Area; a taste
more in favor of the good will create a larger demand for
a gliven price and advertisement expenditures than a taste
less in favor of the good. Thus i1f the price and the
advertisement expenditures were given, as a function of
time, one could determine the demand for Nehru jackets, as
a function of time, if the taste of the ccmmunity were
known. Equally important is the tie existing between the
taste and the past history of the community: the taste
will certainly vary depending on the kind and intensity
Of the advertisement and the past fluctuations of the
Price. For example: fashion shows, ccnstant T. V. com-
mercials, larger numbers of people wearing Nehru jackets
because of low prices, will prcbably push the taste to be
more in favor of the good.
For the second example, we quote from Manning [MA]:

It 1s a common observation that the same stimulus

glven to the same animal at different times does

not always evoke the same response. Something

inside the animal must have changed and we invoke

an "intervening variable." Thils 1s something

which comes between two things we can measure--
in this case the stimulus we give and the response



we get out--and affects the relationship between
them. . . . Already 1in this book we have men-
tioned two factors with different characteristics
which alter the relationship between stimulus and
response. These were "fatigue" and "maturation."
To these we may add two others: "learning" and
"motivation" . . .

From these examples we immedlately recognize the
important property that we noticed in the structural
a;ﬁproach to the state, 1.e., to make correspond a unique
output to a given input, when the input and the state are
known. We may therefore conclude that all the various
Instances of the state notion that appear in specific sys-
tems have a very important common property that may lead
to a single abstract definition. What can better sum-
marize "the mood of a human being (or an animal)," "the
social conditions of a society," "the political condi-
tions of a country" than "the state of the system"?

These examples also bring light to another important
aspect of the state notlon that was not clearly visible
in the structural approach: the strong connection between
the history of fhe system and the state. In fact "the
taste of the soclety,”" "the fatigue, maturation, . . . of
the animal," "the mood of the human being" at a given
ti-l'ne, are all results of the past experiences of the sys-
tem. Even in networks, the flux and the charge at time
t are the 1integral of the voltage and of the current up

O’
o time to, which certainly bear a relation to the past.



To conclude, the state, in this new context makes
a unique output correspond to a given input by at least
contailning a minimum amount of information that consists
in those features of the past experience of the system
affecting its future behavior. This experiential aspect

is named as "the behavioral approach" to the concept of

state [RE5].
In 1962, Zadeh wrote [ZAl]:

Despite the extensive use of the notion of state in

the current literature, one would be hard put to

find a satisfactory definition of it 1n textbooks

or papers. A reason for this is that the notion of

state is essentially a primitive concept, and as

such 1s not susceptible to exact definition.
However, 7adeh in 1963 [ZA2] and Kalman in 1963-64 [KA,
WE ] have independently tackled the precise formulation of

"state descriptions," and Resh in [RE 1-3] "exposed and

eliminated a syndrome of shortcomings in these general
formalizations of the state notion" [RE1l], and offered
two somewhat related though different sets of "State
Ax3ioms." Of these syndromes, some important ones were:
Kalman's formulation, besides being cumbersome
(at least to this author) had the obscurity of de-
fining what is to be called a "system" in terms of
his state axioms,
in Zzadeh's (and XKalman's) formulation,
The gross properties of the "state space" of a

system were not uniquely determined by the system,



The states and the past histories of a system
bore no necessary strong relation to one another,
All systems, causal and noncausal alike, pos-

sessed state descriptions.
Resh, when modifying Zadeh's axioms, also intro-

duced a powerful tool, "the equivalence classes of pre-

to inputs" which summarizes the history of the system

up to time to and which bears strong relations to the
states of the system at time to'

All the works summarized above being about the
gross properties of the state descriptions, some analy-
tilcal results are also obtained. It has first been
pointed out in [ZA2], that for linear, time-invariant
sy stems, the state space is a finite dimensional vector
space iff the system can be characterized by ordinary
dil f ferential equations. The finite dimensional case has
then been extended by Balakrishnan, introducing some
Assumptions on the nature of the state space and the in-
Put space in [BA 1-3] and he derived a state description
Starting from the input-output description with some
Testrictions in [BAL4]. The restrictions are the linearity
and time-invariance of the system, except in [BA3] where
tkhay were allowed to be time varylng. The main tool
Bal akrishnan used was the analytical theory of semi-
EXroups of linear operators as developed by Hille-Phillips

And Yesida to obtain results of the form:
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x(t) = T(t)-x(0) + S T(t-s)-Lu(s)-ds
o
where T(t) 1s a one-parameter semigroup of linear bounded
transformations on the state space, and L a linear
bounded transformation on the input space.
Finally, Resh [RE4] and very recently Resh and
GSknar [RE5] have given a non-reduced state description

of the form:

dx _(t)
73t_=s°xs('t) + u(tr) se(C
\ K (k)
y(t) = J Cts)*x_(t)eds + I d,-u (t),
S k
V\i_l k=0

where the dimension {(sic) of the state space is a two-

dimensional continuum.

I.2--Scme General Concepts
and Terminology

In this and the following section, we specialize 1in
the definitions of systems, objects, existence intervals,
uni form objects, etc., and give the different "State
Ax31 oms," discuss them more in detall and state some
kKnown results. It is our feeling that here is the right
pl&ice, although it may not be very usual, to do thils since
We talk of general concepts that underlie our work and

Present some known theorems for later references.
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Webster defines a "SY3STEM" as ". . . an aggregation
or assemblage of objects united by some form of inter-
action or interdependence," which is close to our en-
gineering understanding although still remaining unde-
f'fined because of the use of the synonymsus "object."
The "Mathematics Dictionary" of James and James
defines it as:
(1) A set of quantities having some commsn pro-
perty, such as the system of even integers, the
system of lines passing through the origin, etc.
(2) A set of principles concerned with a central
objective, as, a coordinate system, a system of
notation, etc.

which has no bearing to cur concept of system whatsoever.

From an engineering point of view, the "system"
definition can be given from two aspects; their main dif-
ference being the existence of the concept of "Terminals"

in one and not in the other. As an example of the first

One, "system" in [NE] is defined by:
S a <(u,,; : uCSy}

where u = [uj(t)], y = [yj-’;t)], J = 1;. . ., k are the
Qdmissible pairs at the k terminals of the system with
Cs denoting the determining constraints imposed by the
Sy s ten.

As we will be using the s=cond definition of '"sys-
tem" in our context, we will give it in its greater

details.
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DEF.I1.2.1:

T A a collection of half open intervals, (+,+], of
the real line, i.e.,

T A {(,+] : (+,+]JCR}, the intervals in T are called
OBSERVATION INTERVALS.

R; A a set of ordered pairs of time functions de-
ffined on IET, i.e.,

Ry A {(u,y) : Dem u = Dom y = Ij

A A is the family of ali RI when I€T, i.e.,

A A {R IET}.

I

A CONTINUOUS-TIME SYSTEM (as oppocsed to discrete-
time system) is an ordered pair (T,A, where T and A are
def'ined as above, satisfying:

(Cl) If I€ET and (to,tl]Cl then (:O,tlJET

(C2) If I€T then RI + ¢

(C3) If I'€T and ICI' then RI ;>RI,/I
If the first member u of the ordered pair is called an
INPUT, and the second one OUTPUT, the SYSTEM is then said
to be ORIENTED.

For an oriented system, UI will denote the set of
211 inputs whose domain is I and Y; the set of all out-
Puts whose domain is I, YI(u) will be the set of all out-
Puts that can occur as a response to u. u.ou will mean
that two inputs ugUcy are in concatena-
Tion.

r] and u€U

1,4 (t,te]



DEF.I.2.2:

Let a system (T,A) be given; for each cbservation

interval I we define:

R} A {(u,y)éRI : u,y are not the restriction to I

of pairs in some R 3 Ici';

; .
F o},

I'

Then: T A {I:I€T and R}

The intervals in @ are called the EXISTENCE INTERVALS.

An oriented system is UNIFORM i:f T is a unit set,

i.e., contains a unique existence interval.

NOTE I.2.1: Thus for a uniform system it is clear that

all pairs (u,y)ERI, for all IET except cne are the re-
strictions to I of some (G,&)éRI,, IcI'.
It has been shown in [RE1l]:

. . . portions of a system (T,A) derived from
different existence intervals lead rather inde-
pendent lives. 1In fact, one might consider

them to be different systems which it has merely
been convenlent to describe 1in language sultable
for treating them in some unified way.

Thus the loss of generality that entailed by the restric-
tion of our concentration to uniform systems 1s very

little.

E!5CVT I1.2.1: The description of a uniform system is com-

pl&ately known when the unique existence interval I€T and

the input-output list Ri is given, due to the conditions

Cl, c2 and c3.
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CON.I.2.1l: From now on we will talk of OBJECTS and not of
systems. No real difference exists between the two things
these names describe. However, we will make the following
distinction: an object is always a system, but not vice-
versa. An object for us will consist of a single Rz,
whereas a system may consist of a combination of many
objects or systems each given by a different Ri' Briefly
we are saying that we do not consider prcblems arising
from the interconnection of systems when we use the name

"object."

CON.I.2.2: Def. 1 of a system allows only time functions
as inputs and outputs. We think that it would cause no
real difficulties, to allow distributions in our input

and output spaces, excepting possibly some philosophical
arguments that we will try to discuss in the Appendix (see
A.1.). Thus we will refer to the elements of the input and
output spaces as inputs and outputs meaning distributions
or functions, and I-0 will be an abbreviation for "input-

output pair."

CON.I.2.3: By an OBJECT we will always understand a "con-
tinuous-time, uniform oriented, object. We will denote it

by "®," its unique existence interval by I. will be given

A
.

I
We close this sectlon with the following important

by 1ts I-0 1list R

definition:
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DEF.I.2.4:

The objecté? is called DETERMINATE Zff for each
uels there is a unique erf such that (u,y)GRT. It is
sald to be NONANTICIPATIVE iff for any IET that starts
where I does and for anyll,LNEUi satlisfying u/I = u'/I
there always exists pairs (u,y) and (u',y')eRi such
that y/I = y'/I. Finally'cyis said to be CAUSAL iff it

1s determinate and nonanticipative.

I.3--Previous Work on the Subject

We start with Zadeh's state axioms [ZA 2-3]:

Zadeh's STATE AXIOMS:

The STATE DESCRIPTION of the objectﬁ?, given by the

list R, of I-O0 pairs, is the pair (IZ,A) that satisfies

I
the conditions listed below. Here I 1s a set called the
STATE SPACE and A a relation called the INPUT-OUTPUT-
STATE-RELATION (which will be abbreviated as I-0-S-R).
More precisely, K is a subset of {(I,o,u,y):Ici, oez,
(u,y)ERi}. The axioms are:

(M1)--For each ICI, (u,y)€R; iff 3o€L 3(I,o,u,y)ER.
(S1)--For each Icf, 0€Z and u€lU; Jexactly one

y 93(I,o,u,y)ER.

Denoting by KI(c,u) the unique response guaranteed

by (S1l), we can define a family of single valued INPUT-

OUTPUT-STATE FUNCTIONS AI : DI - YI, for ICE, which com-

pletely characterizes the I-0-S-R. The domain of KI is

D; 4 Z x Ug.
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(83)--For each (t,,t;]CI and (OO’HO)GD(tO,tl]’a

at least one 0162 with the property that if (oo,uooul)

€D then (o, ,u,)éD and A (0,,u,)
(to,t2] 1°71 (tl’t2] (tl’t2] 1°71

)y (o,,unpu-)/ .
(tgst,1770 0071 (tl,t2]

NOTE I.3.1: The MUTUAL CONSISTENCY CONDITION (M1l) estab-

lishes the relation of the object © to the state descrip-
tion. The first of the two SELF CONSISTENCY CONDITIONS
(81) and (S3) guarantees the uniqueness of the output for
a given input and state, the property that we were after,
from the beginning; the second one classifles the states

of the description at time tl.

NOTE I.3.2: To require DI to be Z x UI for each I was
shown to be a very important shortcoming by Resh [RE 1-2].
That DI A x UI means no matter what state the system is
left in, one can apply any input. Many existing systems,
however, do not admit this property. To the examples
given by Resh, that extend from the systems of the type
homosapiens and certaln kinds of inputs termed propagénda,
to the very technical one given by Fig. 1, and that in-
clude examples such as rocket engines whose fuels can be
depleted by the initial input segments, we can add the
example of the brain of an animal which became blind as a
result of blast (an input). Any form of 1light, for that
matter, any video-input at this state of the system (the

animal) are simply not admissible to the brain.
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In Fig. 1, the switch closes exactly one second
after the applied input u exceeds 1 volt in magnitude

and remains closed there-

1Q
VWV after. Thus, an input that
+<> L was admissible before the
u vy
closing of the switch is

not admissible anymore,

Figure I.3.2 since only 0 volt can be

applied once the switch
has been closed. As in the above example the system 1is
left 1n such a state that all inputs, except 0, are no

longer admissible.

NOTE I.3.3: As it is not desirable to deny a state des-

cription to such a large class of obJects, since the
importance of system theory lies 1n its abstract generality
(page 5), Resh modified axiom (S1), the source of the
shortcoming, to read:
(S1')--For each ICf, 0€Z and uGUI, 3 at most one y 3
(I,0,u,y)ER
This means that the domain Dy of EI is a subset of
LI X UI consisting of pairs (o,u) for which there exists

a y such that (I,o,u,y)EAR

NOTE I.3.4: Unfortunately the replacement of (S1l) by

(S1'), while eliminating the above shortcoming, introduced

some other inconveniences:
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All systems had a trivial state description,

where the state space Z' was the set Y7 of all

outputs defined on the existence interval of the

objeet, and the I-0-S-R, A' was {(I,o,u,0/I):

IcI, o€L' and u = 4/I for some GS(G,G)GRE}.

As a result of the state description (Z',A'),

a unit resistor had two reduced (Def. II.2.4) state

descriptions: one with a unit state space, the

other with a gigantic state space, the set of all
outputs of the resistor.

To eliminate the difficulties caused by the change
of (S1) to S1') Resh proposed a SECOND MUTUAL CONSISTENCY
AXIOM, in two different ways that are not exactly equlva-
lent, to be incorporated in the modified set. Since there
are some mlnor changes 1n the language of presentation, we
present the two axiom sets, proposed in [RE3] and [REl]
respectively:

Let for each t, a set I(t) be assigned to the object

O as a conjectured state space of O at time t. Let K, a

subset of {(I,oq,u,y): I = (to,t]CT,ooez(to),
uGUI,erI}, be the conjectured I-0-S-R of & meaning:

(I,oo,u,y)GK implies the object in state o, at time t

0 0

subject to the input u from to to t will respond by pro-
ducing the output y from t_ to t. (£,K) will be a valid
state description iff the following four conditions are

satisified:
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FIRST AXIOM SET (denoted #1):
(M1)--For each I = (t,,t]1CI, (u,y)eR; <=0 £I(ty)
AI,04,u,y)€A

(M2)--2(€0) is a unit set, where I = (€O’€1] is

the existence interval

(S1)--For each I = (to,t:]Cf, OOEZ(tO) and U€U|,
3 at most one erIQ(I,oo,u,y)éA.

(s2)--Letting Dy = {(oo,u): 3 yeyl_g(l,oo,u,y)EA}
then defining KI:DI-*YI by KI(U ,u) =y it is re-

quired that: for each Iy = (t,, t;] and (o4,u,)

EI)(tO’tlj there exists at least one olez(tl) 3:
4
(o,,u) €D
1 (ty,t]
and
(OO’uOOu)GD(tO,t] = Jﬁ(tl’t](cl,u)
gK(tO,t](OO’uOOu)/(tl,tJ

SECOND AXIOM SET (denoted #2):

(M1), (S1) and (S2) remain unaltered but (M2) takes

the form:

(M2')--For each to € (f,,t £, = I and each

uy€U 2 , Jo.€2
(t st 0~%(ty) 3
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yeﬁ(to,t]("o’u) = 3yo€Y(€o,toja(uoou’yooy)eR(eo,t]

With the introduction of (M2) (or (M2')), the
trivial state description (I',A') given on page 18 was

not a state description anymore [RE2].

NOTE I.3.5: 1In order to state some more results, we have

to introduce the very important concept of equlivalence

classes of inputs [RE3] which has a strong connection to

the past history of the system and which, later, turns
out to be a very useful tool in the computation of reduced

state descriptions.

DEF.I.3.1:

Let the object O ve given with the 1list Rf’ f =

A
(£5,£,1. The inputs UEU o ] and uéerO’tO] are

0°%o

said to be EQUIVALENT, denoted uguj, iff:

(1) upw 1s admissible <==d>u,'ow 1s admissible, for
(11) In case ypow and ujow are admissible, 3 y and
! A o

y' 3 (ugow,y) and (u'yow,y')ER$ then y/(to,t

1]
1
must equal y /(to’ElJ

It is trivial to verify that "=" is an equivalence
relation. Therefore we define: H_ [ulA{u'€Uu, g
u'=u} which are mutually exclusive, collectively inclusive

EQUIVALENCE CLASSES OF INPUTS anthOA{Hto[u]

ueU & o ]} as the FAMILY of equivalence classes of 1nputs,
(to, 0



DHR(tO,tJ A {(OO’u)ED(tO,t] o€ R(E)} and
KHR(tO,t] A K(to,t]/DHR(to,t] for each
(tg,tl]
DEF.II1.2.5
(XHR,KHR) will be called a HALF REDUCED STATE

DESCRIPTION undersfi iff it satisfies ﬂ-‘lfi, i=1, 2, 3.

NOTE II.2.3: Under State Axioms.ﬂl, there 1s nothing to

guarantee that (ZHR’KHR) or (ZR,AR) is still a State

Description under A1. However under #42 (and 43) this 1is
not the case. M2' inA2 (and s2" in 43) guarantees us

the existence of enough non singular states, so that

(ZR,KR) and (I KHR) are still valid State Descrip-

HR?
tions.

NOT. II.2.4: will indicate an input (or -an

u A\ Z
0o b1 trts

output) which consists of segments u defined on (to,tl],

t

v defined on (tl,t2] and z defined on (t2,t3]. utlv
will mean t, = EO and t, = El where the existence
interval I = (€o,€1]. Now we give a State Description
for a very simple object, getting payment for the effort;
the payments being discussed after the example, the

effort 1s made right now.
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DEF.I.3.2:

Here we define a special state description (I¥*, A#*)

as follows:

Z*(to), for each t is any set of the same

0’

cardinality as the family?ft . 2*(€0), for I =
0

£ , s any unit set,.
(t5,8,1 1 i t

To define A¥, we choose a function C

ra (g y 1ol 0
0 ont3 t that such a function exists 1s

0,
guaranteed by the choice of I¥(t,). (I,oo,u,y)éﬂ*

with I = (tg,t] 1ff: for t, > t, .3(u0,y0)€R(€0’t]
Quo/(go,tojecto(co) and (uO/I,yO/I) = (u,y) and

for t, = AO, 0, is the single element of Z*(EO) and
(u,y) is arbitrary in R

The results can be summarized in the followlng two

theorems:

THM.I.3.1: If an object has a state description under

state axioms.ﬂ2 then it is causal.

PROOF: [RE1]

THM.I.3.2: The following statements are all equivalent:
(1) © has a state description under sl

(11) & 1is causal

(111) (L*,A*) 1s a state description under #1,

PROOF: (1)= (11) [RE2]
(11)=>(i111i) [RE3] (in this reference, to show

that a causal object always has state
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description i1t is proved that (ZI¥,6A¥)
satisfies#1 for causal objects).
(111)==)(1) 1is trivial.

NOTE I.3.6: Thus, the state axioms A1 andNAQ, compared

to Zadeh's axioms extending their domain of applicability
to such important classes of existing physical systems as
in the various examples of pages 16 and 17, have denied
state descriptions to non-causal systems, non existing
physical systems. However, this is a point much in favor
of state axioms #1 and #2 since we can, without hesita-

tion, qualify them as being "more realistic.”

CON.I.3.1l: Here we make the distinction between AI and
)\

T° As we sald earlier, KI denotes the function from DI

into YI whereas AI or AI(t) denotes the values that the

function KI takes on i.e., y KI(G,u) but y(t) =

AI(o,u).

NOTE I.3.7: When we write I (€O,€l], the case I =

(=o,o) is also included.
Finally, State Axioms of Kalman listed merely for
completeness close thils section.

Kalman's STATE AXIOMS: [KA]

A dynamical system 1s a mathematical structure de-
fined by the following axioms:
(D1)--There is a given STATE SPACE I and a set of

values of time @ at which the behavior of the
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system 1s defined: I 1is a topological space and 0 is
an ordered topological space which is a subset of
the real numbers.

(D2)--There 1is given a topological space Q of
functions of time defined on ©, which are the
admissible INPUTS to the system.

(D3)--For any initial time t, €0, any initial state

0~ELZ and any input u€f defined for t > tO’ the

0
future states of the system are determined by the
transition function ¢ : Qx0x0xI -» I which 1s written
as ¢u(t;t0,00) = ¢, This function is defined

only for t > ¢t Moreover, any to < tl < t2 in

O‘
0, any OOEO, and any fixed u€ defined over

[t tl]ne the following relations hold:

0°?
(D3-i)—-¢u(t0;to,00) = g,

(D3-11)--0,(t,3t4505) = ¢, (L 58,0 (t,t4,04))
In addition, the system must be NONANTICIPATORY,
if u,vé€QR and u = v on [to,tljne we have
(D3-111)--¢ (t3t4,04) = ¢, (t3t5,04)

(D4)-=Every output of the system is a function V¥
©xZI~->R

(D5)=-The functions ¢ and ¥ are continuous, with

respect to the topologies defined for L, © and @

and the induced product topologles.
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I.4--A Brief Summary of the
Following Chapters

In Chapter II, after introducing some new concepts
and modifying some o0ld ones and after presenting an
example of deficiency, we conclude that a minor change 1s
necessary in the axiom sets s#1 and #2, obtaining axiom set
A3 which is stated, for matters of presentation, at the be-
ginning of Sec. II.2. Then, i1n Sec.II.3 we discuss the
interrelations of %1, #2 and #3, and show that #3 1is al-
most equivalent to #2. Finally, Sec. II.4 concentrates on
reduced and half reduced state descriptions, ylelding im-
portant results, for a given object ®, such as: the cardi-
nality of any two reduced state space 1s the same, or any
reduced state description is nothing but (IZ*,A*) obtained
by use of equivalence classes of inputs (DEF.I.3.2), etc.

In Chapter III, we investigate how the propertiles
of the objecttg--its linearity, time-invariance--are
reflected 1in the propertles of its state space. We show
that the state space can be constructed to possess cor-
responding nice properties. An important point about this
chapter is that the properties of the system are defined,
not in terms of its state description, but rather 1in terms
of 1ts I-0 pairs, and then their implications on the state
space deduced.

Considering linear, time invariant and continuous

objects in Chapter IV, the use of convolutional
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representation for such objects 1s justified, and a state

description of the form:

dx_(t)
—gr— = £ apxp(t)+pu(e) DLE) - p x(t)+But)
i.e
¥ PNCD NS
y(t) = Zc x (£)+ I du ™ (t) (t) = C X(t)+ Z 4 (t)
n=1 ® % " k=0 ¥ ’ k=0 K"

is given for a large class of distributed systems re-
spectively 1n sectlons 2 and 3, where X(t) 1s a square
summable sequence for each t and A an infinite Hilbert
Matrix. In the final section of this chapter, the
important problem of "approximating a system having a
continuum of states with obJects having a finite dimen-
sional vector space as their state space" is discussed
and solutions offered.

Finally in the Appendix, Chapter V being "the
conclusions" chapter, first a justification for using
distribution theory, then the "Orthonormal Series Ex-
pansions of Distributions," recently developed by
Zemanian and others, 1s given in 1ts general lines.
Thirdly some new theorems that are necessary for Chapter
IV, such as the convolution of distributions inQOl', the
proof that shows certain types of functions are in Ol

are presented.



CHAPTER II

AXIOM SETS &1, 42, 43 AND STATE

DESCRIPTIONS IN GENERAL

ITI.l--Introduction

This chapter sets the basic rules, matures the
necessary background and develops some very useful tools
to be used in Chapters III and IV. Many theorems are
proved about State Descriptions in closed form, few of
which may be considered as ends by themselves. We con-
sider this chapter of prime importance for the rest of
the work and apologize for some long and tedious proofs.

In section 2 we define certain important concepts
such as Reachable States, Singular States, Equivalent
States, Reduced and Half Reduced State Descriptions, etc.,
some of which are new, some of which are the modifications
of the o0ld ones, in the light of the new Axiom Sets.

An example in the same section shows the insuffi-
ciency of the State Axioms;Ll and thatsil 1s not equiva-
lent tos2. To remedy the situation, a modification is
introduced tcLAl.giving rise to 43. The latter, besides
being justified physically, deserves attention because of

i1ts consequences.

26
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In section 3, we deal mostly with formalities of
investigating the interrelations of the Axiom Sets and
prove that most former results do still hold under543.
One of these surviving results is the very useful and
important State Description of an object, based on the
equivalence classes of inputs.

In section 4, we investigate and bring to light
the nice properties of Reduced and Half Reduced State
Descriptions. We show that Reduced State Descriptions
are basically unique and strongly related to equivalence
classes of i1nputs. It 1s here that we obtain the result
"any two Reduced State Spaces for a gilven object have
the same cardinality" which is an end by itself.

Thus briefly section 2 sets the basic rules, sec-
tion 3 matures the necessary background and section U
develops the useful tools to be used later.

II1.2--An Example of Deficiency
and the Axiom Set 43.

Because of the new State Axioms &1, d2 1t is
necessary to revise the definitions of some important
concepts. Some of the subsequent definitions are modi-
fications and some are new. No explicit reference being
made with respect to which Axiom Set they are given, they
remailn the same for A—l, 42 and 43 (;4-3 to be introduced

later). Let in the following (£,R) be a State Descrip-

A
.

tion of & given by Rs
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DEF.II.2.1:

A state OlEZ(tl) is said to be REACHABLE FROM A
STATE OOEZ(tO), t, > t, if there exists an input

u1eU(t0,tl) such that:

(1) (OO’ul)ED(to,tlj

(11) (00,u10WED(y 76> (91,WED (¢ 75

for ueU(tl,t]

(111) K(to,t](GO’ulou»Qtl,t] = A(t t](cl,u)

o’
Then "the input u.€U takes the state o, into the
177 (ty,tq] 0

"
state cl.

DEF.II1.2.2:

A state oléz(tl) is SINGULAR iff it is not reachable
from a state 0052(€0). Or equivalently: a state oléz(tl)
is NON-SINGULAR iff it is reachable from a state 0062(50),

where I = (€O’El] is the existence interval.

DEF.II.2.3:

A state OO'GZ(tO) is SUBSUMED by the state oo"éZ(tO)
iff:
1 1
(1) (cO ’u)ED(to,t]:=? (oO ’u)eD(to,t]’ for

all t > tg in T

(11) K(to,t](co',u) = K(to,t](co",u) holds for all

u described in (1).
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Two states OO'GZ(tO) and cO"GZ(tO) are EQUIVALENT iff

0,' 1s subsumed by co" and 00" is subsumed by oo', i.e.,

0
(1) (00"u)€D(tO,t] —> ("o"’u)ED(to,t]
and tef, and
(11) K(to’t](co',u) = K(to’t](oo",u) is true for
all u described in (1).
We believe that these definltions are self ex-
planatory and need no further justification or physical

interpretation. We now prove a simple fact.

FACT II.2.1: Let 0262(t2) be reachable from oléz(tl)

and °1€z(t1) be reachable from oOEZ(tO). Then 02€Z(t2)

is reachable from cer(to).

PROOF : ol is reachable from 00 and 02 is reachable from

0, Implies respectively that there is an input u,€U
1 1 (to,tlj

that takes °0 into 01

that takes cl into 02. Now we claim that:

u,ou, is admissible. Since (01’u2)€D(tl,t2]¢=>

and another input u2EU(t1,t2]

(OO’ulOu2)ED(t0,t2]’ which can happen only if

u,qu~€U
u;o4s is an input that takes 9 into PR

(1) (00,u10u2)€D(to’t from above,

5
(11) (oo,u10u20u)éD(tO,t]¢ﬁ> (Ol’u2ou)ED(tl,t]

= (02,u)€D for u€u

(ty,t] (t,,t]
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(111) K(to’t](°oau10“20u)/(t2,t] )
{A(to,t](Oo’ulou.?ou)/(tl,t]}/(t

(tl,t](ol’u2ou)/(t2,t] =

K(t t](02’u) proving the fact.
2’

Another simple fact that can be proved easily is the

following one:

FACT II.2.2: The equivalence of the states defined in

Def.II.2.3 is an equivalence relation and thus parti-
tions the state space I(t) into equivalence classes of
states for each tel.

Now we proceed to the "CONSTRUCTION OF REDUCED

STATE DESCRIPTION."

NOT.II.2.1l: Let (22,52) be a State Description of &

under the Axiom Set #2. In this case the Reduced State
Description has to be obtalined 1in two steps, as com-
pared to a State Description under 41 (or 43), because of
(M2') that allows more than one state at the creation
instant. We obtain a new State Description (Z,A) from
(22,K2) proceeding as follows:
£

I(t) A 22(t) vt > € the creation instant.

0’ "0

Z(%O) A any unit set.
Pty,t] A Pa(t,,t] Veg > %o

D,p A {(op ,u) : o7 €z(f,) and ueU,p }
(£55t] £y’ ty 0 (£gst]



AR vty > €O' K(E

>

0st]

{((€0’t]’ ogo’u’y) . O’goez(go), (U,y)ER(EO’t]}

NOTE II.2.1: The definition of KI’ makes sense for I =

(t ,t]. TFor, to each u€U,: ,'there corresponds a
0 (th,t]
unique y€Y ¢ 4, since O has a State Description under
O’

#2 and must therefore be causal by Thm.I.3.1.

NOTE II.2.2: The pair (I,AE) obtained from (Zz,Kz), as

explained in Not.II.2.1l, is a State Description of &,
under 42,

(M1), (M2'), (S1) are trivially true since (22,K2)
satisfies 42, and by Note II.2.1, (S2) is also true for

IO = (to,tl], to > tp» by the same reasons. For I, =
(to,tl] and (Geo’uo)éD(EO’tl] let 01€Z(tl), as re-

quired by (S2'), to be the state 01€Z(t1) guaranteed by

(M2'). Then:

(02 ,u,Qu)eED, 2 u,QuEU,
ty’ 0 (to,t2] = 0 (- ,t2]

= ayOOer(Eo,t2]

) (uoou,yOOY)ER(EO’t2]

L ———1 = i
v = Boe,,e,10000W

proving (S2).
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NOT.II.2.2: Let (I, E) be a State Description of ®

under 1, A2 (or 43), (if under 42 the description con-
tains more than one state at €0, we apply the procedure
of Not.II.2.1l. to obtain one that possesses a unique
state). Then for each t, we form:

I (t) A {oex(t) : o is singular}

Ec(t) A {o'€Z(t) : o' = c}f)E:(t), the complement
being with respect to Z(t). Note that the classes Zo(t)
are mutually exclusive.

ZR(t) A a subset of I(t) obtained by taking only

one element from each class Zo(t).
DR(tO,tJ A {(UO,U)GD(tO’t] : UOGZR(tO)} for each
interval (t,,t]

AR

IR(to,t] AR for each interval

(to,t].

DEF.II.2.4:

(ZR,KR) will be called a REDUCED STATE DESCRIPTION
UNDER A1, 1 = 1, 2, 3 iff it satisfies the Axiom Set

A, 1 =1, 2, 3.

NOT.II.2.3: Let (Z,R) be a State Description of & under

41, 1 =1, 2, 3. We obtain I_(t) as in Not.II.2.2, then

we define:

c-
ZHR(t) A Zs(t) for each t, i.e., we only keep non-

singular states for each t 1n our state space.
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AN EXAMPLE OF DEFICIENCY

Let the object & be given by the list Rs, T =
(-=,©), shown in Fig.II.2.1. Rp = {(000,000),
(041,040), (150,151), (1,0,151)}.

Inputs ' Corresponding Outputs
000 000
0‘ 7 IO 7
100 10
0 ” 0 7
001
0 0
101 lo
d > 5 ->

Figure II.2.1.

Z(-=) = {o}
Let our conjectured $(t) = {01,02} ce <t < O
state space be: $(t) = {a,B,y,a} £ > 0

together with the conjectured I-O-S-R which 1s defined as

follows for I = (to,t]:
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For
ty = =® *t <0, R ={(L,0,0,0), (I,0,1,1)}
‘t >0, K = {(I,o,OOO,OOO), (I,0,0,1,040),
(1,0,1,0,1451), (I,0,1,1,1,1)}
tp$ 0 *tso0, A= {(I,ol,0,0), (I,0,,1,1),
(1,01,1,1)}
‘t > 0, & = {(I,ol,ooo,ooo), (I,04,041,040),
(I,0,,150,141), (1,02,101,101)}
t, > 0 , K = {(1,0,0,0), (1,8,1,0), (I,y,0,1),

(I,8,1,1)}

We first bring to attention that the need for
parametrization (i.e., the need for a State Description)
shows up, as discussed in Chapter I, when I = (to,t]
with to > 0. If we were given, e.g., the input 0 on I =
(1, 3] we would not know what output to make correspond

to 1t. But 1if we are given the 1nput 0, with the state

0, we now can say that the corresponding output is 0.

A--The conjectured State Description (Z,A) of & satisfies
AL:

(M1) Let I = (to,t], then I must be in one of the
five categories, i.e., either (t0 = -0, t L O0Oort>0)
or (to <0, tg0o0rt>0)or (t;> 0). In all the
five cases: (u,y)ERI &> Ja state (elther o, or one

of o or one of o,B,Y,8) 94 9(I,oo,u,y)éK.

1292
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(M2) 1is satisfied by definition of the state space.
(S1) By checking the 1list defining A one can see
that for each coez(to), each uEUI 3J at most one output
y 3 (I,04,u,y)€ER.
(S2) is the most tedious one to check. We must go

through all possibilities.

Let I, = (to,tl] with its position indicated at the
beginning of each case.
to = o, tl £ 0 Consider (G,O)EDIO, then Ch is
X N | the state required by (S2). 1In
t1 0 t2 fact:
For t, < 0, (0,0_ u_ )ED, u=_20
(o 0. )ED and A (0,,0) =
12 66,70 (8,t,] (ty,t5,1° 712
Iy (0,0, 0, )/ = 0.
(==,6,17 7276, 76,7 (5,1,

For t2 >0 (0,0t ug )GD(_m,t ]‘=9 elther u =
1 72 2
0,0 or u = 0,1, .
tl 0 t2 tl 0 t2
In either case (cl,tlutZ)GD(tl’tz':| and again in either

case A (o,5u) = A, (0,0, u_ )/ = 0.
(tl,t2] 1 (- ,t2] tl t2 (tl,t2]

For the same Io, but for (c,l)GDIO we can go through

the same arguments by replacing "0 inputs" with "1
inputs" and vice versa in the above discussion, the

state required by (S2) being o, this time.
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t, = - tl > 0 Consider (O,OOOtl)eDIO. The

state (S2) requires, 1is

aéz(tl). In fact:

(0,0, u, )eD = u = 0 since that 1s the
BRI IS NPy £t
only possible concatenation. Then (a,_ O_ )ED
IS PIN ST P

and A (a,0) = K, (0,0, 0, )/ = 0.

For the three possibilities (o0,0,1, ), (6,1.0, ) and
0 tl 0 tl

(c,lolt )EDI the states required by (S2) are re-

1 0
spectively B, Y and 6, the proof remaining the same.

<0 Let us take (o,,, O, )ED
1 t0 tl IO.

The state required by (S2)

1
to 1 2 1s 0.€5(t;). Since:

For t, < 0, (o O, u_ J)ED _ u=_0 -
2 17ttty (to,t2] t,t

(0,,, 0. XD and A (0,,0)
126, 6, Pty ,t,] (t1,t,1°°1
(07,
t2] 1s¢

A(t = 0.

0, 0,_ )/
0° 0 F1 B (t5t5,]

0, u
o t1

u = 0,0 or u = 0,1, .
tl 0 t2 tl 0 t2

For t, > 0, (0,

In either case: (ol,u)ED(t ] and K(t

(0,,u) =
12t 1ot51072

Ot = 0.

u, )/
0 1 Ep " (Ey,t,]

A o
(to,t2]( 1°¢t
For the same I,, but elther for (cl,l) or for

(0,,1)€D; , 0,€X(t,) this time is the state required
0
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by (S2). 1In fact for I t ] and (02,1)6D s

= (t,,
0 O 0

both 01 and 02 work.

For t, < 0, (0,,, 1_u_ )ED —_ u = 1
2 1 to tl t (to,t2] tl t2’
is the only choice = both (01, tllt )ED(t 2] and
(02’t 1p )GD(t Lt and for both’A( ,t ](01,1)
1l "2 2 l
)y (0,,1) = (o 1.1, )/ 1.
(tl’t2] 2°? ( O’ ] l’to tl t2 (tl,t2]
For t., > 0,7 u€u 3(o,,, 1, u, )ED
2 ? (tl,t2] l’to tl t2 (t t2]’

so there is nothing to be checked and (S2) is auto-
matically satisfied.

0 < 0, t; >0 Consider (Ol,tooootl)eDIO.

Then aéZ(tl) satisfies the

2 requirements of (S2). For:

(ol,t OOOt Ot )ED(t ,t2] = u = 0t is the only

0 1 1 72

possible sequel to 0,0 Then (&,0)€D
b 07ty (£t

(o sg 04 0 )/ = 0.
PR Sd g She PRa - sty

] and

)y (,0) = A
(o

0pl, ), 1.0, ),

0 1 0 97t

1.1, )ED the states required by (S2) are re-
0 t1 IO

spectively: B, vy, 8, the proof being the same as above.

For the remaining (o

1°¢t 2°t

(o
2’to

tg > O Finally for (a, O  )ED; ,
0 "1 0
N \ \ 0 o 1s the state that satisfies
L] L T L
0 o ty % (s2). 1In fact:
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(a,, O, u_. )D = u = _ 0. and thus
ty ty s (to,t2] £t

(a,, O_ J)ED with & (a,0) =
ty 7t (ty,t,] (t1,8,1"77

)\ (o 0, 0, )/ = 0.
(tgstprl 2ty by E57 (E,t,]

Similarly the states required by (S2) for the
pairs (B,1), (y,0) and (§,1) in D; are B, v,

0
Géz(tl) respectively.

B--(Z,E) is not a State Description of & under 42:

Since (M1l), (S1) and (S2) are the same in#1 and
42, the only possible contradiction can be to (M2').
To show this we consider the case: tO < 0 and Ug =

0€U then what must be proved 1is:

(—m’to:] >

'WOOEZ(tO)Q{y = K(to,t](OO’u)¢$ 3yOeY(—“’,to]
Q(UOOU,YOOY )ER(._co,t]} -

As 00 = ol and UO = 0, are the only two possible

states at time to < 0:

Let first o, = 0,€I(t,). Note that (Ol’l)ED(to,t]

0

for t < 0 which implies y = 1 = K(t t](ol’l)’ But
O’

since ty 1s negative it 1s clear that ugu = Ot lth(-w,t]

0
and hence there cannot be any y, 3(u,gu,y,0Y)ER . We
O O O (_oo,t]

conclude that oy is not the state required by (M2').

Let now o, = °2€z(t0)' The only possible input

u such that (OO’u)GD(tO,t] is u = tOlt for t < 0.
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But again Ot 1, is not admissible = o0, 1s not the

0 t 2
state required by (M2').
The following Notes discuss the State Axioms 41,
1 =1, 2, 3 1in the 1light of the above example, providing

the promised payments.

NOTE II.2.4: It is clear, since there are no singular,

and equivalent states, that the State Description of the
object @ in the above example is a reduced State Descrip-
tion. Besides that, our example serves two main pur-
poses:

It shows that the two sets of axioms&1 and 42
are not equivalent.

It proves that the next Axiom Set we are going to

define cannot be obtained froms1l.

NOTE II.2.5: One could also introduce into the I-0-S-R,

K, many other quadruples, as we did for the case: to-< 0,

t< 0and I

(to,t] by introducing (I,ol,l,l), that are
not reglly necessary to get a State Description. For
example, for the case, to < 0, t > 0 we could include in
K the quadruples (I,ol,loo,lol), (1,01,101?101) and still
get a State Description which is valid under #41. This
turns out to be a deficiency of:‘l, which does not occur
under State Axioms.42, as we have seen and will see. We

call this a deficiency of d1 for two reasons:
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Even after including such "superfluous" quadruples
in A, we still have a reduced State Description and can
have many different ones by adding such quadruples at
will. There 1s no way of getting rid of these quad-
ruples by throwing out some states. '

Whenever we tried to prove the key results of this
chapter (such as Thms. II.4.2, II.4.3, II.4.5) we

were always stopped by the presence of such superfluous
quadruples.

All this trouble owes lts presence to (S2) of #1,
and was not present ind2 due to (M2') which requires more
than (M2). We will give a new Axiom Set 43 which will be

Justified by its physical interpretation and by its ends.

NOTE II.3.2: Let us suppose an observer wants to experi-

ment at time tl, tl not a creation instant, on the objJect

O which 1s left at state olez(tl). Let us further assume

the object & came to the state ¢ from a state OOEE(tO),

1’
to < tl by an input Ugs i.e., 9, is one of the states

required by (S2) for the pair (oo,uOXED Now if

, 1.e., 1f
(ol’u)ED(tl,ta]’ that means u can follow u,, that also

the observer can apply the input u€U

means the concatenation u,ou, besldes being admissible,
can be taken as an input pairable with the state oOEZ(tO).

What we are trying to say 1s that (ol,u)éD should

(tl,t2]
imply (OO’uOOu)éD(tO,t2] This property is not
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reflected in (S2) of 41 and constitutes the only change
in 3.

We 1list all of 43 for ease of reference.

THIRD AXIOM SET #3:

(M1)-For each I = (to,t]Cf, (u,y)ER; iffE’OOEZ(tO)
B(I,oo,u,y)é K.

(M2)-Z(to) is a unit set, I = (to,tlj

(S1)=For each I = (to,t], for each UOéZ(tO) and

for each u€uU there exists at most one ocutput y such

I’
that (I,co,u,y)EK.

(S2")-For each Iy = (to,tl] and (OO’uO)éD(to,tl]

there exlists at least one chZ(tl)

(i) (OO’uOOu)ED(tO:t] = (Ol’u)eD(tl,t]
(ij_) K(tl,t](cl,u) = K(to,t](GO’uoou)/(tl,t],

VYV u that satisfy (i) where D. and KI are as

I
defined for}4l.

IT.3--Interrelations of the
Axiom Sets Al, 42, 43

NOTE II.3.1: ABOUT &1 and #3. It is obvious that_A3 is

a restriction of &1, in the sense that any State Descrip-
tion of @ that satisfies 43, satisfies 41. That the
converse 1s not true 1s easily established by the Example

of II.2:
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PROOF of A1 %> A3: We take the object & of p.34 with

the conjectured state description (Z,E) of p.35. We
show this (I,K), already a State Description under &1,
does not satisfy 43, the contradiction being to (S2').

Consider, I, = (-w,tl], t, < 0 and (o,O)GDI

0
0y = olEZ(tl) cannot be the state reguired by (S2')

1

since: (ol,l)éD ] say for t, < t, £ 0, but

(t,,t 1 2 N
1272

(0,0, 1, )¢D as 0, 1_ 1s not an admissible input.
Bp 7 (==st,] b1t

= 0262(t1) is also not the state required by

ty

%

(S2'), since again: (o0,,1)€ED for t, < t, < O
2 (ty,t

2] 1 2~

but 0t11t2 is not admissible.

Thus we conclude, there exists no state at tl that
satisfies (S2') for the pair (c,O)eDIO and therefore
d1 = 43.

Finally we would like to note that the same pair
(£,R), only without the quadruple (I,ol,l,l) for t, < 0,
tg 0, I-= (to,t], is a State Description under #1, 42
and 43 for .

Now before anything else we have to proceed through
the formalities of proving the previous results, Thm.
I.3.2, under our new Axiom Set g43. In order to do this
we demonstrate two simple facts, already mentioned in

[RE3] for #1, about the State Description (I*,E*) ob-

tained by use of equivalence classes of 1nputs (Def.I.3.1).
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Let in the following the object ®& be given by

I = (€O,€l] the existence interval.

FACT II.3.1: Two 1nputs veU

o and ueU,? are
equlvalent iff: ‘

(1) Vt > t. and Y weU

0 £]> UOW 1s an admissible
3

(t,
input 1iff vow is.

t]> uov and vow are admissible
3

and §’2€Y(€0,t] are the corresponding outputs

(11) If for wEU(tO

PROOF:

= Let v=u in U(€O’t]

(1) Let ugw be admissible for w€U = JUEU?
(tg,t] I
Su = uowou/(t,gl] = VOWOu/(t,€1] 1s admis-
sible (since u = v) = vgw 1s admissible.
And vice-versa.
(11) Using the input u of (1), quOu/(t,€1] and

vowoﬁ/(t £ q are admissible. —= by equivalence
>71

of u and v, y/ A.=12/ ~ . where y and Z
* V(.84 (tgstq]
are the corresponding outputs to uowoﬁ/(t g ]
gt

and VOWOu/(t,El]' Hence clearly y/(to,t] =

Z/(to,t]°
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& Now let (1) and (ii) be true for u, véU(t 1
O

Then for t = € we obtain the definition

0
of u = v.

FACT II.3.2: Let DI* be the domain of A,*. Then

* *
(OO’u)ED(tO,t] iff coez (t ) and uoouéU

(t t] for any

uOECtO(oo) and t; > t,.

PROOF : (oo,u)éD*(t t] e aer(t £19Y T A*(to,t](co,u),
(by def. of D) &> Q(u,y)éR gst] _91.1/,t ’t]ecto(oo)
and (G,§)/(to’t] = (u,y), (by def. of A*)).

= Let (co,u)éD*(tO’t] = 0,€I*¥(t,) and

uoouGU(%o,t] for any uOECtO(oO), by Fact II.3.1, since

"any two Inputs in C (00) are equivalent.

o

&= Assume 0 EL¥(t ) with uoOuEU(t ¢ for any

UgECy (00)- Ugou€U(t ¢ = 3FEY (T 57 I(UgOWTIER(E 47

Note that (O,u)éD*I iff 3y 3 (I,0,u,y)EA*, So by def.

T - T% *
of A¥, ((to,t], oo,u,y/(to,tjeA and hence (OO’u)GD(tO,t]'

The following Thm.II.3.1 is the counterpart of

Thm.I.3.2 under;¢3.
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THM.II.3.1l: Under the State Axioms 43 the following are

equivalent:
(1) & has a State Description underd3.
(11) ® 1s causal.
(111) (£*,E*) is a State Description under 43.

PROOF: (1) = (11) (& has a State Description under
43 = @has a State Description under &l
(Note II.3.1) =2 @is causal (Thm.I.3.2)
(i1) = (1i1) To show (r*,KA*) is a State
Description undersiB, the only axiom that
needs verification is (3S2'), the others
being verified in (Thm.I.3.2).

be given.

Let I t,] and (c U )JED* (t. .t

0°? l]
¢ ] @:%rcoéz*(to) and

o = (tgsty

Th

en(ao,uo)ED (t .
0ou EU(t 1] for any u Oecto(oo) by Fact II.3.2. o, =
¢ [Ht (u'oouo)] is the state required by (S2'). 1In
1 1

fact: (0,,uyou)€D* (t for any

0’ ] = u OOuOOuEU(tO,tZJ
u'oécto(oo) (by Fact 1I.3.2).

= u ouEU(t t,] for any u'thl(u'Oouo)
(by definition of H l(u'oouo)) -

(by Fact II.3.2).

t

(Ul,u)éD ( l’t ]



b

* -
(ol,u)ED (t t2}‘=$ u'ouéU(to,t for any u'ECtl(ol),

5]
! 1
i.e., for any u EHtl(u 004g)

l’

= u',qu,0utU, and hence
09%0 (thst,]
n ~ ! !
uOOuOOueU(to,t2] for any uotho(u o)
= (0, upow)€Dy o ] (by Fact II.3.2).
02-2

Let u be such that (co,uoou)éD* and

-1
. As o, =C_"[H_ (u'n)]) and o, =
1:t5] 0 ty to 0 1
[H, (u',ou,)] we have y = A%

1oty 0% (tgs

~ . T b3 ' L
tgj(olsu) are such that: 3y 3(¥,u Oouoou)eR(tO’tZ:I

(ol,u)eD*(t

-1
t

E*

\ [ -
C tz](oo,uoou; and y

(tl,

and i/(to,t and

=y and 3y' 3(¥',0.0u)ER, 2
2] 0 (tO’t2]

y'/ = y' with u
(tl,t2]

uy = u'OouO, the (tl,t2] portions of the outputs cor-

0 ° u'OOuO' By definltion of

responding to the inputs ﬁoou and u'yguyou are equal.

==$'y/(tl,t2] = y'. Hence (32') 1s satisfied.

(11i) = (1) is a triviality.
The next theorem is one that was promised in
Note II.2.3. It shows that the reduced State Descrip-

tion of Def.II.2.4 satisfies &3.

THM.II.3.2: Let (£,E) be a State Description of (& under

#43. Then the reduced State Description (Ip,A;) obtained

from (£,K) always satisfies #43.
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PROOF: We verify each axiom to get the proof.

(M1) For each I = (to,t]ci

309€Zg(ty) 3 (I,04,u,y)€h = (ﬁqy)éRI since
0, €L(ty) and (I,R) satisfy 43.

(u,y)ER; = 3(1'1,57)6R(,E ;6] 2 W)/ = (wy),

€D :
O’

! ~ ’l—rl A we h
Applying (S2') to (ct ,%,(t 6 ], we can say

0 t]

Jos€Z(ty) 3
(1) (°t‘:o’ﬁ/(t to]ou )ED o,t]<_—_->(oo,u')£D(t t]
and

(11) K( ,6109¢ ’u/(EO,tJOu')/(tO,t] = A

for any u' that satisfies (1).
Since u/(E ,t]04 is admissible,
(OE ,u/(E ,t ]OU)ED(E ,t] = (UO’U)ED(t ,t] and
0 0270 0 0
b - K A onr G. A = K g u = .
A G R NN LR TR Bl CHNR AL R
Now ooez (t ) (di.e., 9 is not a singular state) since

it is reachable from 0ﬂ~€2&t ) by u/(t ,£.1 due to (1)
0

and (1i) above. Then the only way for 00¢ZR(tO) to occur
is when we throw all states in g%fto) but one. If ever

0, 1s thrown out there must exist a state o,'€I (t,) 3

0

o ! = ]
o 0p'- In this case y K(to,t](oo ,u) by definition

of equivalence of states. Ek)Hob'GZR(tO)9(00',u)EDR(tO’t]
= ! '

and y KR(to,t](co su) .
(M2) and (S1) are trivially true since (Z,A) satis-

fied them.
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(S2') Let I = (to,tl] and (cO,uO)ED hen

t
R(ty,tq]°

(co,uo)ED and o EE(tO).

(tgstq] 0
Since (I,R) satisfies 43, for I = (to,tl]
and (oo,uo)eDI there exists at least one olez(tl)

such that:
(i) (OO’uOOu)éD(to,t] é__—; (Ol’u)eD(tl,t]

(A1) Aee Lt

VYV u satisfying (1).

From (1) and (i1) it is cbvious that o, 1is reachable

1
from 9, by uy. As GOEZR(tO) it is non-singular and thus
reachable from o, , say by u'o. Then by Fact 1I.2.1
0
olEZ(tl) is reachable from oL . Thus the only way for
0

01¢2R(t1) is that it be thrown out when we keep a single

state from ch(tl). 1

and o,' 1s the state required by (s2') for (ZR,KR). In

! ~
In that case 301 GZR(tl) 3 cl' o]

fact:
(1) (OO’UOOU)EDR(tO,t] — (GO’uOOu>ED(tO,t]
since oOéZR(tO)
= (01,0)€ D(tl,t] by
(S2') for (ZI,R)

¢==9(01',u)eD(tl’t] since
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—_— (ol',u)eDR(t t] since
l’

]
01.€2R(tl) and by def.

of DR(tl,t]

(11) KR(tO,t](OO’uOOu) = K(to,t](co,uoou) by def.

cf AR. Hence

A

R(to,t](OO’uOOu)/(tl,t] A(tl,t](°1’U) by

by (S2') for (I,R)
= i (o;', u)
(tl,t] 1

1 ~
since 01 = ol

EICHRS LS RELY
since

(o,',u)ED
proving (S2'). 1 R(tl,t]

NOTE II.3.3: ABOUT 42 and 43. The example in II.2 has

already shown us that the two Axiom Sets are not obtain-
able one from another. So now we concentrate our atten-
tion on the relation between 42 and 43 and show that those
two sets are almost equivalent, with a minor restriction

on the State Descripticns satisfying;¢2.

THM.II.3.3:

(1) Let (L,E) be a State Description of & under
43. Then (Z,A) is a State Description of &

under ni2 .
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(11) Let (Z£,E) be a State Description of @ under
#42. Then (ZygsAyg) obtained from (z,R) as

defined in Def.II1.2.5, is a State Description

of & under 43.

PROOF:
(1) (M1) and (S1) are the same for both #2 and #3, and

(S2) is trivially implied by (S2').
(M2') is (S2') applied to the interval Io =

<£O’tO]’ In fact: .uOEU(go’tO]€==$(c€0,u0)6D(Eo,t0];
then (S2') requires there be a state oOeZ(to) such
that: (1) (ogo,uoou)ED(go,t]<==b (GO’u)eD(to,t]

(11) I(to,t](OO’u) = [K(go,t](do,uoou) = §J/(t0,t]
Naturally OOGZ(tO) is the state required by (M2').
Verifying: y = K(to,t](GO’u) = (OO’u)eD(to,t]”ﬂ
(ogo’uOOU)ED(EO’t] =’3§C‘Y(€O,t] 30y =
K(Eo’t](cgo,uoou)]/(to,t] =¥ =37, namely Vo =

t]”

y/(go,toj P) (yooy,uoou;€ R(Eo’

HyoeY(go’t] 9(“00“’y00y)63(€0,t] =) Y0¥ =
R . (op ,usqu) = (gp ,ungu)ED, 2 =
(£, 7,270 £, 00 (£55t] =

(OO,U)GD(t t] = [yooy = K(€o,t](oeo’uoou)]/(to,t]
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(11) We have shown in Note II.2.2, on our way to the con-
struction of reduced State Descriptlons, that a State
Description (Z,A) was obtainable from a given one,
undern42, such that Z(EO) was a unit set. Very little
modification was necessary and indicated. Here then,
we assume that this modification is already made and
Z(EO) is a unit set.

(M2') is satisfied by the above comment and (S1) is
automatically satisfied since (,A) was already a State
Description.

(M1) needs verification since there may not be
enough states left after obtaining ZHR' Let I =
(to,t]ci.

Joelyg(ty) Q(I,oo,u,y)EKHR =) (u,y)€R; clearly.

Let (u,y)éRy = 3(5,§>6R(€0’t3 3(T,§7)/1 = (u,y).

By (M2'), as Z(EO) is a unit set, 30,€L(t,) for u, =
u/ 2 3
(£5t]

(1) (og sug0u' €Dy 112 (0gau" €D g g

(2) Iy = B¢ (op ,unou')l/ vy =
(£5,t1° "¢, 00 (tgst']

From (1) and (2), 94 is reachable from o2 ; hence
0

9o€Lyr(ty) and (°€O’u00“')€DHR(EO,t'] =
<°€0’“00u')ED(€O,t'J<=?'(°o’u')€D(to,t'] S

t']



'y = [ ~ (A _=
Ate,e11090ow") = [A(g ¢rglog sugou’) =y
0 0 0
AHR(EO,t'](OEO,uOOU )J/(to,t'] Hence for u' = u we

(S2') We let IO = (to,tl] and bo,uO)GDlHR.

(OO’quDHR(tO,t]¢:9 0y 1s non singular and (oo,uo\eDl

by def. of DHR’

(3) (Ogo’uoou')éD(to’t,]<==;

(0,,u')ED

= 3Iu ~ 0° (thst']

HllOEU(to’to] 9.< 0
R A

- (Tg»

Applying (M2') tO(OEO’uOOu)ED(EO,tl]’ goleze(tl) 3

t'](°€o’u00u')/(to,t']

~ O 3\ A ~ 11 ~
(5) (oto,uoouoou/eDHR(to,t]g:ﬁ;(oto,uoouoou)ED(to,t]
) Ojl,u)ED(tl’t] > (01’u>€DHR(tl,t]’ since
clearly 9, 1s non singular and
(6) [AHR(go,t](ogo,uoouoou)
K(Eo,t](c’Eo’uoouoO“)]/(tl,t] = A(ul,t](°1’u)
AHR(tl,t](ol’u)‘
Thus (OEO’uOOuOOuXEDHR(€O,t]¢=$'(OO’uOOu)EDHR(tO,t]
by (3) and since 0, is non singular. Combining this
with (5) we obtain:

(7) (°o’u00u)€DHR(tO,t]G=9 (Ol’u)eDHR(tl,t]
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And (L) put together with (6) yields:

(8) {KHR(tO,t](OO’uOOu) = E(to’t](oo,uoou)

’t](cgo’uoouoou)]/(to,t]'+/ <t1’t] =

/ A _
t]\oo,uoou)/(tl,t] =

(7) and (8) prove (32') and ccmplete the theorem.

COR.II.3.1: The half reduced State Description (ZHR’AHR)

obtained from the pair (IZ,R) satisfying #2 is a State

Description under 2.

PROOF: (I,R) satisfiesd?2 = (ZHR,KHR) is a 3State
Description under #3 = (Zyp-B4g) is a State Description
under 42, the implications following from parts (ii)
and (1) respectively.

In order to emphasize more the equivalence of &2 and

43 we can restate Thm.II1.3.3 as follows:

THM.II.3.3': A conjectured State Description (Z,A) for

an object & with Z(%O) a unit set and I(t) containing
no singular states for each t, 1s a State Description

under 42 iff it is a State Description under 43.

NOTE II.3.4: ©Nothing stronger than that has been ob-

tained about the equivalence of the two Sets of Axioms

54-2 and ;43. However as we always will be dealing with
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State Descriptions that are at least half-reduced, this

much is what 1is needed.

NOTE II.3.5: The next two simple corcllaries of

Thm.II.3.3, together with Thm.II.3.2, Thm.I1I.3.3,

constitute an answer to the problem posed in Note II1.2.3.

COR.II.3.2: Let (L,A) be a State Description of & under

42. Then the reduced State Description (ZR,KR) of &

satisfies.42.

PROOF: By Thm.II.3.3 (Z Iy obtained from (Z,R)

HR*“HR'»
is a State Description cf & under 43. Then by Thm.II.3.2

the reduced State Description (ZR,KR) obtaired from

(z KHR) satisfies ¢3. Hence, again by Thm.II.3.3

HR?

(2z,Ez) 1s a State Description of © under 42.

R,

COR.II.3.3: A conjectured, reduced State Description

(£,,E.) satisfies 42 1ff it satisfies #43.
R*“R

PROOF: This is a direct result of Thm.II.3.3 and

Cor.II.3.2.

NOTE II.3.6: From now on, only Axiom Set &3 will be used

as the basic one. We will briefly say "let (L,A) be a
State Description” or "let I(t) be the State Space and
R the I-0-S-R." These will mean "satisfying #43." How-
ever for reduced or half-reduced State Descriptions the

set.#Q can be referred tc as a Theorem.
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IT.4--About Reduced and Half-Reduced
State Descripticns

NOTE II.4.1: With the fzllowing theorems we harvest the

fruits of our efforts in the previous two sectiocns. That
these fruits are very nutritious will be appreciated as
we proceed into the next chapters. One must have re-
marked in the Example of IL.2 that to test whether a
conjectured State Description 1s one that satisfies;43
may be a very difficult task fcr some oblects. The
following theorems give us some algorithms to ease this

task.

THM.II.4.1: The State Descripticn (L*,E¥), obtained by

use of equivalence classes 2f inputs, for an object &,

is reduced.

PROOF :

(1) First we show that L¥(t), fcr each t, contains only

non-singular states. Let GOéZ*(tO), than by defini-

* A =
tion of I (tO), BuOEU(t e ] 3C, (oo) He [uO]. This
0270 0 0
input u,, or any u'.€H, [u,] is the input that takes
0 0 tO v
ogo into 04« For:

u~ouel, 2 =) Za unigue (unique since®1is
0 (to,t]
causal by Thm.1I.3.1) output ytoyt EY(go,t]

v ~ — T * N
3 (uoou,ytoyt)eR(tO,t].._) ((to,t],oo,u,y)EA . Since
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by definition of A* (I',c'o,u',y')éﬁ* >
| |l A 1 ~
0 0 0 0
(u'y,y'g)/1 = (u',y') which is clearly the case

R . *
here. Hence uOOuGU(to,t] => (0,,u)€D (vg,t]"

==>uOOuEU(€ £] again by definition >f A¥. Thus
O’
. * T oA
we have proved: (oo,u)éD (to’t]¢=¢. uOOPGU(tO,t]

S— A * A = ~ A I~

(..;(oto,uoou)ED (tO’t] since Oto is unique.
e = _* A
[y vg = A¥ (g

. t](OA ,uoou)]/(t

0° Yo

K*(t t](oo,u) from above.
0’

(i1) Second we prove that IZ¥(t) does not contain equiva-
lent states for each t. We do this by showing:

' ~ n = n 1 " *
a'y o'y => 0'0 "y for o 0 and o 062 (to),

to arbitrary.
r ! ) * 1" *
(o g>UJED I¢=$ (o o,u)éD [ and
0'y ® 0" o= 4 where I = (t,,t].
y = K*I(o'o,u) = K*I(o"o,u) Yu in (1).
\

y = K*I(o'o,u) = B(u'o,y'o)éR(Eo,t]gLvo/(go,tO] =

Cto(o'o) and (u’o,y'o)/I = (u,y).

y = K*I(Ono’u> = 3(u"0,y"0) R(gostj 3u"0/(€0,t0] i

1" =
Cto(o 0) and (u"o,y"O)/I (u,y).
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~

= ! ~
We will be done if we can show u O/(tO’tO]
u"./, 2 which would imply the equality of the
07 (£,,t,]
equivalence classes Ct (0'0) and Ct (c"o), since the
0 0

equlvalence classes have to be mutually exclusive.

Then, as C is one-to-one by definitiocn Ct (o

0 0
" ' = "
Cto(o O) will yield o 0 "y

~ 1" N
To prove u'O/(EO,tO] = U 0/(t

t 0)

ty]
(a) Consider any wEU(tO’glj 9u'0/(go’to]ow 1s

admissible. Then: 3Jye€Ys3 a(u'o/(go,to]ow,y)eﬁi.

But, as Z(EO) is a unit set § =
*
~ A ~ ' €
A I(Oto’u'o /(3,,t10%) By (82 ) 30,£2(t;) and by

|
[RE3], 0g = C¢ (H [u'o/(g ,

= A% ~
A (t ,tl](c O,w) and by state

1), which is o' itself,

t ] 0

SR NN

equivalence (2) §/(t0,€1] = K*(to,g ](O"O’W)' (2) =>

3(uo""’o)eR(f:O,Elj3uo/(?:o,t 1€ Ce (%) and wo/ (g |

0 €17

w. As u"./,2 E€C,_ (o" ), u / =
(EgstgdT Tty O (t stg]

n/n = u"./, 2 issible.
u /(tO’tOJ > u 0/(t0,t0]0w is admissible

The same proof can be used to show: u" /(t ,£.10v is
0

' A
admissible = u 0/(t 6] is admissible.

(b) Equations (1) and (2) show that whenever

n A -
u 0/(Eo,t0]0W and u O/(to,t jow are admissible then
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the part of the response corresponding to w is

S?/(t £ 7 due to state equivalence.
0270

1
Hence u O/ 0]

LI = n
o 0'——> 0'0 "y

A ~ " A ] ~
(tO’t u 0/(t0,t0] proving o 0

THM.II.4.2: For a given object®, any two reduced State

Spaces have the same cardinality at time t.

PROOF: By Thm.II.3.1 an object & has a State Description
iff (L*,A*) is one. By Thm.II.4.3 Z*(to) is a reduced

State Description for each t What we will do then is

0
to establish a well defined, one-to-one, onto corres-
pondence between any reduced State Space Z(to) and the
equivalence classes of inputs which will imply a well-
defined, one-to-one, onto correspondence between Z(to)
and Z*(to).

Given any cOEZ(tO), 0, must be reachable from og
since Z(to) is reduced, i.e.,

0

(1) uOOuEU(ﬁo,t] = (oo,u)GD(tO,t]
BuOGU(EO,t 13

0
< 2 K A~ ~
(2) (to,tj(oto’uoou)/(to,t]
A(to,t](co,u)
\
We define: Bto pZ(ty) +~Mto to be : Bto(oo) A

Ht [uo], where u, is the above input guaranteed to exist
0

by reachability.



Bt is well-defined:
0

to
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l.e., o'y =0"y = B (0')) =

0

" ' = g ' =
B, (o 0) or equivalently o', o O._4> Hy (u 0)

0

H, (u".) where u', and u", are the inputs that take
to 0 0 0
oz into 0'0 and o"o respectively. In fact:
0
' A '
u oouGU(to,t]<-$ (o O’u)eD(tO,t] by (1)

Hence

Al

by Fact II.3.1, u'o

B is one to one: 1i.

o

o" . which is true iff

0
g!',. = 0"0 which is true iff

where

since o', = o"
0 0

(1).

= A(to’t](o'o,u) by (2).

=l

" P "
(to,t](o O,u) since 0’0 =a"

K ~ (O"\ un O'Ll)/ .
(to,t] ty’ O (to,tJ

by (2).
u"o.
- n
-— 1"
Hto(u'o) = Hto(u 0) =
u'y = u'y => o'y = 0"0,

] ~ " .
We prove o 0 AR

u'o.and u"o are as before.
; 1 A U " ~
(o O,u)eD(to’t]<==9 u OouéU(tO,t]<—4> u OOuGU(tO,t:]<=i>

(O"O’u)ED(to,t] and A(to,t](o'O’u) =

K, . g~ u'-.ou) = A, A o~ u"-.ou)l/ -
(to,t]( to’ OO ) (to’t]( t0> OO ] (to’t]
" ~ "
K(to,t](o gsu). So o'y = ¢", and I(t,) belng a reduced

State Space o'
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BtO is onto: 1i.e., given any Hto[uo], Booéz(to)
3 Bto(oo) = Hto[uO]. This means given any uOEU(EO,tO]

1s leaves the obJect 1n some state. This 1s guaranteed

by (S2') applied to I0 = (to,to] and (OEO,uO)ED(gO,tO]

(or by (M2')).

NOTE II.4.2: The following theorem is a simple corollary

of Thm.II.4.2. But yet 1t is a very important one in
that it shows for a given object & the reduced State

Description is unique in a sense eliminating the ambi-
guities posed by the example of Section II.2 about the

reduced descriptions.

THM.II.4.3: Any reduced State Description (Z,E) of &

is nothing but (I*,A*) defined by use of equivalence

classes of inputs.

PROOF: We have seen in Thm. II.4.2 the existence of a

one to one, onto mapping Bto: Z(to) > %to 3 Bto(oo) A
H, [u,], where u, was the input that took o2 into

to 0 0 to

9. The existence of u, was guaranteed Z(to) being

reduced. Actually this makes Bt , the mapping Ct
0 0
and Z(to), the State Space Z*(to) since by definition

2*(t0) is any set of the same cardinality as ﬂ% and
0
C any one of many one to one, onto mappings between

to

two sets of same cardinality (Def.I.3.2).
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Let now ((tO’t]’OO’u’y)EK(t £ consider that u,

O’

taking op into 95- By definition of reachability
0

uOOuEU(ﬁo,tO] and‘gyoa(uoou,yooy)éR(€o,t]. Clearly

(uOOu’yOOy)/(to,t] = (u,y) and uoou/(go,t = uy€B. (9.

O:l 0

being satisfied K( = K*(

P e
The definition of A tO’t]

I thst]

0’
and hence (L,R) = (ZI%*,E%),

COR.II.4.1: A State Description of & is reduced iff it

is the description (Z*¥,A*) obtained by use of equilvalence

classes of 1inputs.

PROOF: The corollary is a direct result of Thms.II.4.1

and II.4.3.

NOTE II.4.3: As we go along, in Chapter IV especially, we

will see that some results about Half Reduced State Des-
criptions can be conveniently used to prove some descrip-
tions are State Descriptions and half reduced. We first
give the definition of a particular State Description
(already defined in [RE5]) then prove it is a half re-
duced description. But unfortunately the converse will
not necessarily be true as will be explained in Note

I1.4.6.
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DEF.II.U.1:

For t,€ i, a partitioning of U, into classes
0 (to,to]

H' [uOJ of inputs is called a HALF EQUIVALENCE PARTITION-

t

0
ING iff:
(1) u € U,p = u €H'_ [u_]
0% “(£,,t,] 0 ty  ©
s 1 ~ — ' =
(11) Upysu OeU(t t ]_> either H ‘ [uO]
0270 0
' ' ' ' ' =
H' [u O] or H', [uOJF\H . (u O] 0.
0 0 0
{ ' 1 ~
(1ii) u OG}ItO[uo] = u'y = u,.
The family 3' is: H'. A {H'_ [u,] : u,€U,p }
to to to 0 0 (to,to] ’
for to > EO’ As before we take Z'(to) to be any set with
the same cardinality as?@t , for to > EO and assign
0
UOEZ'(tO) to H'to[uo] by C'tO : Z'(to) > H'to[uo], where
C't is one of the many one to one, onto mappings between

0
two sets of same cardinality.

The I-0-S-R is defined as before: for Io = (to,t],

tg > tys

uOE(S'tO(oO) and y = yO/I’ where (uoou,yo)eRI for ty =

Z'(%o) is any unit set with ((€O,t],o€0,u,y) being

(I,oo,u,y)eﬂ' iff uyou is admissible for some
tO’

such that 0€0€Z(t0) and (u’y)GR(go,t]'

NOTE II.4.4:

What we did in Def.II.4.1 was to partition the

equivalence classes of inputs into some mutually
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exclusive classes of pre—t0 inputs, and then take these

classes as describing the states, everything else remain-

ing the same. EQUIVALENCE CLASSES OF PRE-t _ INPUT

This is a parti- INPUTS SPACE

tion based on a

sufficient condi-

tion, rather than

a necessary and

sufficient condi-

tion for equiva-

lence of pre-to

inputs. That we HALF REDUCED PARTITIONING
are now provided

with a Half Re- Figure II.4.1
duced State

Description 1s the why of the next theorems.

THM.II.4.4: The description (Z',A') of Def.II.4.1 is a

Half Reduced State Description (ZHR’AHR)‘

PROOF: First of all it is a State_Description since:

(M1) Let I = (to,t]cf (the case t, = Eo being

trivial we consider to > E ) :

0
(u,y)ER; = a(ﬁ,:?)eR(gO,t] 3 (4,5)/7 = (u,y).

Consider o, = Czl(H'

0 0
R, (I,co,u,y)éﬂ'.

0 [u/(“ to]). Then by definition of
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(I,04,u,y)ER' = (u,y)ER; 1s obvious.
(M2) is fulfilled by definition of Z'(EO). (S1)
is automatically satisfied, since for I = (to,t],

0062'(t0) and u€U. we have a unique output that can

I
f =

correspond to Ugous where Cto(co) = H'to[uoj, if uy0u

is admissible.

(S2') As in Fact II.3.2 the domain D'_ of A'_ is:

I I

D'(to,t] = {(oo,u) : 0062'(t0) and uooueU(go’t:| for

' £ t A =
uy€c to(oo)}, ty > £,, and D (£5t]

{(ogo,u) : OEGZN(€O) and u€U s (q}. For I 0

0 (tgst

and (OO,uO)ED'I the state required by (S2') becomes:

-1 A
- 1 1 14
o, = C'y (H'tl[u'oouo]) where u Oe;Ct (00), if t, > tos

1 1 0 0
-1 _ 2 )
or g, = C'tO(H'tl[uO]) if to = to. In fact:
1
(1) (°0’u00“)eD'(to,t]<F==>°o€2 (ty) and
] A
u OO(uOOu)EU(tO,t] for

(o
0

= (u'oouo)ouéu(go’t]

u'g€Cy (o4)

and 01 =

cr Gy TutqougDE ()

(=>(Ol,u)éD'(t for

15%]

tO > tO'
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62'(€O) and
0

A | N " A
(cto,uoou)ED (to,t:l (—') Gt
(————)uooueU(Eo,t] and Ol =

-1
t)

) (Ol’u)ED'(tl,t]’ for

cry, (g Tugdentey)

t. = ¢

0 0°

(11) A'(to,t](OO’uOOu) = yO/(to,t] where

(u'OO(uOOu)’yO)ER(EO,t] with u'oec'to(oo).

' o~
A (tl,t](cl’u) = yo/(tl,t] where

(o
0° 1

1 ' i ~ it =

(ﬁoou,§o)6R(€ ] for some GOGC'

t g (91) =

yo/(t £] by definition of equivalence. Thus
1,
. Rt -
we have: A (to,t](co’uoou)/(tl,t]

= A _"
By g7(0q5u) for ty > t,. For t, = tg,

A A ~ = A
A (to,t](ot ,uoou) Yo where (uoou,yO)ER(t t]

and ap EX(
0

where (uoou’yO)ER(Eo,t] for some, hence for

0 0°
£ K

0)- (t

> ' = ' N
any uoéc tl(01) H tl[uo] = ug ug and
= o '
hence yO/(tl,t] yO/(tl,t] giving us (S2').
Now we prove that (Z',A') is half reduced. To show

there are no singular states in 2'(t0) for any tos we
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consider 0062'(t0). Then aquU(Eo,t] 3 C'to(oo) =

H't [uo]. uy is the input that takes of into o,. For:

0 ‘o 0
(1) Clearly (op ,u,)ED', 2 .
ty’ 0 (tgy,tyd
(11) (OEO’uOOu)GD'(EO,t]‘¢=9'u00ueU(€0,t] and

cgoéz(to) by def. of

> uOOueU(ﬁo,t] for

1
uOEC t (00) from above

0
= (Oo,u)ED'(to,tJ by
definition of D'I.
' A =
(111) & (go,t](oto,uoou) Yo» for
yo 3(u00u,y0)ER(€o’t] and K'(t
va/ since u',gu is admissible for any
07 (ty,t] 00

' = ' >
u OéC'tO(oO) H tO[uo] and since u', Ugs

the (to,t] portions of the outputs correspond-

ing to u'oou and ujou are equal.

NOTE II.4.5: That the State Description (L',A') is not a

reduced one can be observed by the following fact, if

(£2',E') 1is based on a GPt that is finer than ¥, (the

0 0
condition "finer" 1is necessary because equivalence
classes of inputs are by definition a Half Reduced Par-

titioning). The fact now is there are states that are
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equivalent, namely the ones corresponding to the classes

1 ?
H to[uo], H tO[ul], e e H'to[un], . . . such that

& o~ = U E~

U.O ul o e s n

NOTE II.4.6: The converse of Thm.II.4.4 (the counterpart

of Thm.II.4.2) is unfortunately not true unless some
extra hypothesis is added. Any Half Reduced State
Description 1s not based on a Half Reduced Partitioning
for the following reason. Consider a Half Reduced State
Description (ZHR’KHR) and define Zoo(to) A

{o'OEZHR(tO) POty = oo} for a fixed 0 €I (ty). If we

had thrown all of ZG (to) but 9 from ZHR(tO) then o

0

0

would correspond to an equivalence class Ht [uo] for

0
some ug, making Zo (to) correspond to the same class.
0

Now we compare card 20 (to) with card Ht [uo]. We can
0 0

always assume card 20 (to) > card Ht [uOJ (1f 1t were
0 0

not we could always add as many equlvalent states to

0, as we wish without disturbing the State Description)
for the purposes of our note. Then card Zoo(to) >

card Hto[uo] would make 1mpossible the existence of a
one to one, onto correspondence between Z(to) and any

Half Reduced Partitioning QUt , since equivalent states
0
can come only from the partitioning of an equivalence

class Ht [+] and the most Ht [+] can be partitioned to,
0 0
is 1nto its individual inputs.
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NOTE II.4.7: We close this section, and the chapter,

with a theorem that constitutes an answer to a problem
posed in [RE2], concerning a property that State Des-

criptions should have.

THM.II.4.5: The following is true for a Half Reduced
R

State Description (Iyp, HR)

(1) (°o’“o°u)€DHR(t0,t] = (UO’uO)eDHR(tO,tlj

where tlé(to,t] is arbitrary.

(11) KHR(tO,t](OO’uOOu)/(tO,tl] = KHR(tO,tl](OO’uO)

PROOF: As all states are non singular, Bu'o 300 is

reachable from og by u'o and
0

(OO’UOOu)EDHR(tO,t]¢==D u'oouOOuEU(to,t] by definition of

reachability

! ~
==$onouO€U(t0’tl] the restriction
of an input to IcT is admissible.

= (OO’uO)éDHR(tO,t ] by reachability

1
again.

KHR(tO,t](OO’uOOu)

4 both by reachability

) (o.,u,) =
HR(tO,tl] 0°70

R

2 (op ,u',oun)/
HR(Ey,t,1 €420 007077 (t,t,]

-
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A .2 (op ,u',ousou)/ = A (o2 ,u'.gun)
HR(£,,t1°7t,°" 09%0 (tgsty] HR(£,,t,] ty?" 00%0
by causality (Thm.II.3.1). Hence:

A =K

(oysuy0u)/ (0,5uq) -
HR(t,,t]1°70°70 (ty-tq] HR(t,,t,1770°70



CHAPTER III

LINEAR, TIME-INVARIANT OBJECTS

IJIT.1--Introduction

Many authors including Zadeh and Balakrishnan give
the definition of '"Linearity," "Time-Invariance," etc.,
for objects, in terms of the State Descriptions of
objects [ZA2], [BAL4]. However, whether an object has
these properties or not, does not depend on 1ts State
Description, a machinery introduced by us. In fact
state descriptions are ambivalent: even if an object is
linear or time-invariant, there are state descriptions in
which the State Space and the I-0-S-R are not linear or

time-invariant. Consider:

- [ [+

y(t) = [o 1][§ﬂ+ ult) ;

This certainly is a Linear Object, but the state descrip-
tion is non-linear (for an example of time-invariant case,

Substitute x; by t in the 2 x 2 matrix).

1
71
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In Sections 2 and 3 of this chapter, we start with
the basic definitions of "Linearity" and "Time-Invariance"
and proceed to show that state descriptions can be choosen
to provide the object with "Linear" and "Time Invariant"
Reduced Descriptions. Then Zadeh's definitions are ob-
talned as results of these natural definitions. Also some
nice results, such as "Separation Property of the I-O0-S-R"
for linear systems, "I(t) is the same set at any time t"
for time-invariant objects, are attained among others.

As another application of equivalence classes of

inputs, the linear, time 1lnvariant system given by the

equations:
axlt) - ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

is investigated and conditions are found for its State
Space to be reduced when A is in Jordan form. These
conditions will prove useful in the last section of
Chapter IV.

To close this section we would 1like to add that the
whole chapter 1llustrates the lmportance of "the equiva-
lence classes of inputs" and exhibits how much can be
accomplished with the help of this concept without going

into deep mathematical analysis.
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II1.2--Linear Objects and Properties
of the State Description

NOTE IITI.2.1: We start the basic definition of "Linear

Objects" and after stating some facts, we show that
equlivalence classes of inputs can be given some linear
structure, which will be very useful in showing the
"Linearity of the State Description." As usual, we have

to stand some tedious Lemmas.

DEF.III.2.1:
The object &, given by the 1list Rf of I-0 pairs, is
a LINEAR OBJECT iff:
(u;,¥1)€R?
and - (ul + auy,y, t ay2)6Ri, for a€R .
(u2’y2)€Rf
FACTS IITI.2:
(u,,y4)ER
1. ®& is linear 1ff 1 1771
(us,y,)€ERy
(u; + au,,y; + ay,)ER; VICI, a€R .
2. (0,0)€R,, YICI. But (0,0)€R, s is the unique
I (t,t]

pair with 0 first element, for all t due to causality.

3. & is Linear — U. and Y. are linear function

I I
spaces VI.

DEF.III.2.2:

al, [uyl 2 {aué : uéEHto[uOJ and a€R} for a # 0

0
aHto[uoj A HtO[O] for a = 0.
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1 2 1
1 = {u; + aus : ureH, [u',]
0 0 0 0 0 0 tO 0-?

2 "
uoéHto[u O] and a€R }

] "
Ht [u O] + aHt [u

LEMMA III.2.1l: Let ® be linear, u and

and u'.€U0,2
0 0 (to,tOJ

' ~ A
weu Then (u, + u O)OweU(tO,tl] = 3w, and

(tgst,]

~ ' PN ~
w26U(t L2 3u00W1 and u 00W26U(t EIRE and Ugn0Wq +
0’71 0’71
' = '
u'yow, (uy + u'ylow.

PROOF: " & " is trivial.
n "
=" ueUv, & 3Jw,€U 2 Jusow.EU, 2 2 4.
05" (£5,t,] 157(ty, 8] 00"1= (¢, ]
As the input space is linear (Fact III.2.1), (uO + u’o)ow -

A ~ ! - A A
1.100w1€U(tO’tl:| = u'yolw wl)EU(to,t Now if we let

14
— ~ ! ~
wy A w wle'U(tO’tl] then obviously u OOW2EU(t0,tl] and

(uO + u'o)ow = ugowy t+ u'gow,.

LEMMA III.2.2: For a linear object G, u'y = u"O and

1 . ..2 1 . 2 . |
= u, - u'0 + u 0 = Uy + u 0° for u 02 Uge Uy

PROOF :
(1) Let (u'y + u’)ow be admissible, by Lemma III.2.1.

1 . P 1 -
Jw' and w EU(tO,tl] 3(u'y + uTydow

u'oow' + uloowl.
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!
' ~ le)

u 40w GU(tO’tlj iff

" [} ~ A ' ~ n
u'yow EU(tO’tlj, since u 0 u
> Using linearity and

1 1
uT,ow EU(EO’{;I] iff

2 1 - 1 2
U, 0w eU(EO’Elj’ since u 0 ug

R

o/
2 1
1" 1 A ~
Lemma III.2.1 u",ow' + u”,ow GU(tO’tl]
2
1" A A
(u 0 + u O)OWEU(tO,tl] In exactly the same manner
2
1" + A A
we can show (u o tu O)OWEU(tO,tIJ >

1
' ~ ~
(u g tu O)OWEU(

to,tlj
We must now show that the portion corresponding to
w, of the response to (u"o + uzo)ow is identical with

the portion corresponding to w of the response to

(u'O + ulo)ow. In the following all concatenations

occur at to. There exlsts unique, since causal

1

(Thm.I.3.2), y'ooy' and y

1 ~ A
00Y éY(to,t 5

J
1
(u'OOW',y'ooy')eR(go,gl] and

1 1.1 1 .

(u 00W Y 0¥ )GR(€O’€11 Using linearity
11 1.1 o

(uvoowv + u” 0w ’y'ooy' + ¥y o0y )ER(tO,tl]. As

u'oow' + uloowl = (u'0 + ulo)ow, by uniqueness of

the outputs for I = (€O,€l] to given inputs, we
1 1 nA
can write ((u'0 + u O)Ow, (u'O + u O)Oy)eR(to,t

l]
where v A y' + yi. Using u'. = u". and ul. = u?
y Ay 4y, g u'y 0 0 0>

the outputs to u",ow' and u200w1 are such that
1.2

2 1
" 1 " ' A A n Iy
(u Oow sy Ooy )ER(to,tl] and (u OOW s OOy )GR(to’tlj
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where y' and yl are as above due to equivalence of
inputs. As u" ow' + u200wl = (u"y + u20)ow we have

2 - 2 1
((u"y + uy)ow,y"qoy' + ¥y 5097) =
n 2 " 2 ~ ~
((u o T u oWy ¥ y-o)oy)éR(to’tl] proving the

Lemma.

LEMMA III.2.3: For a linear object @, u'0 = u"o -

' ~ " ' " ~
au', au" Ya€éR , u o and u OEU(tO,tOJ'

PROOF: For a = 0 the Lemma is trivially true. So let
a # 0, then:

(au'O)OWEU(tO,tlj < a "[(au'y)owl = u'yola W)GU(tO’tl]

by linearity.
" -1 A 1 ~ 1"
& u Oo(a w)éU(to,EI] by u 0 u"y

" -1 = " -~
&> alu"gola "w)l = (au"q)ow€U ¢
by linearity.

Then there exists a unique y'OOyEY(go,El] 3

((au'o)ow,y'ooy)ER(go’el]. NOW:

_ -1 -1,., .

Linearity — (u'oo(a w), a ~(y OOy))GR(tO’tlj
~ " ] -1 -1 n A A n
uvo =u", = (u Oo(a w), a (y Ooy))GR(to,tl] where y" g

is 3 (au" )ER

y 1" ~
0°Y 0 (to,to]
n " I 2
Linearity =5 ((au"j)ow, ¥ OOV)ER(tO,tl]'

That the t, to El portions of the responses, to (au'o)ow

0
and (au"o)ow, corresponding to w are equal proves this

Lemma.
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NOTE III.2.2: Our aim is to show the linearity of the

collection of equivalence classes of inputs and all the
machinery of the previous three Lemmas has been intro-

duced for this purpose. Although Ht [u'o] + aHt [u"o] is
0 0

well defined for each t in Def.II1I1.2.2, there 1s nothing

0,
that guarantees it 1s an equivalence class. Once this

is established, the linearity of Rt for each t, 1s then

0

0
reached with respect to the operations defined in Def.
ITII.2.2. On the other hand, u'o + au"O being an input
1
to[u
class. The next theorem is central, in that it estab-

for a€R , H o * au"o] is a well defined equivalence

lishes the linearity of 'Rt
0

THM.III.2.1: For a linear object®, He [u'o + au"O] =
0

H, [u'.] + aH, [u".] Vvt.eI. Hence the equivalence

to 0 tO 0 0
classes of 1nputs form a linear space Ht VtOET.
0

PROOF:

" = '
(1) First we show H [u'o + u 0] Ht [u O] + H

0 0

[u "
0
" ~ 1 ”"
+ u O] then ug u'y + u 0" We

t t 0]'

1
Let uOEHt [u
0
_ .1 2
can write uo as follows: uO = U 0 + u 0 where

1 _ 2  _ 1
uty = u'o and u 0= Yo - u'o. Then u Otho[u’OJ

obviously. Also ug u'0 + u"o = Uy - u'0= u"O

0

2 . _ ' n
by Lemma III.2.2 = u 0 % Yg u OéHtO[u 0]. So
1 '
where u OthO[u 03>

we obtained u0 = ul + u2

0 0
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2 1"
u OEHtO[u O]. By Def.IIT.2.2 uOEHtOEu'O] +

1" ] " ] 1"
Hto[u 0] - Hto[u g tu o]CIHtO[u 0] + Hto[u O].

1 " -

Now we let Uy € Hto[u 0] + Hto[u O]. Then uy =
2

0

and u 0= u"o, (Def.III.2.2).

1 2 L o "
0 o T Uy =ugtuly =

] " 1 n
uoe Hto[u 0 + u 0]. Thus Hto[u 0 + u O]

1 2 1
u’y, + u 0 Su 0= u'

By Lemma III.2.2 u

u

H. [u',] + H_ [u",].
tO 0 to 0

Second we show Ht [auO] = aHt [uOJ for 0 # a€R ,
0 0

since for a = O,Hto[auo] = Hto[OJ and aHtO[uOJ =

Ht (0] by Def. III.2.2.
0

1
' ' =~
Let u otho[auoj = u'y * auy. Define u™, A

-1, _ 1 1 _ _-1
a "u 0° Then u'O = au 0 and u 0= a

Lemma III.2.3. Hence u'.€aH, [u.] =
0 to 0

' ]
u 0~ Yo by

Ht [auOJC aHt [uo].
0 0
1
1 ! =
Now let u OGaHtO[uOJ = u 0 au”, for

1 1
u”EH, [uo]. Using Lemma III.2.3 u™y = uy =

0

1 o~ ' o~ '
au™, auy = u'y au, = u OthO[auo]. Thus

H, [au.] = aH, [u.].
tO 0 to 0

[u! (au"
0 0 0

Ht [u'O] + aHt [u"O] proving the theorem.
0 0

n -
Finally H, + au 0] = H [u'OJ + Hy o]

0 t
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DEF.III.2.3:

Z*(to) will be called a COMPATIBLE STATE SPACE for
the linear object® 1iff I*(t,) 1s a vector space iso-

morphic to Rt for each toéi.
0

NOTE III.2.3: When defining Z*(to), the one to one,

onto mapping C Z*(to) > Ht was chosen to be any
0

t
one of such mapgings among many others existling between
two sets of the same cardinality (Def.I.3.2). To get a
compatible state space we also require Cto be chosen in
such a way that, it be an isomorphism between Z*(to)
and tho, which is always possible due to Thm.III.2.1.
Now we are sure, at least, that a linear obJect can be

provided with a reduced state space that 1s linear.

NOTE III.2.4: The answer to the question of whether a

half reduced state space, based on a half reduced parti-
tioning (Def.II.l4.1), can be chosen to be a linear space,
may not be affirmative. The reason 1s the lack of a
theorem similar to Thm.III.2.1 providing us with some
linear structure for H'to. For example, 1f we take as
half reduced partitioning, the equivalence classes of
with only one equivalence class partitioned

t
0
into two nonempty subclasses (the others remaining the

inputs ¥

same), then this M't has not a linear structure in the
0
sense of Def.III.2.2. However, we can with no difficulty

assert that there are special ways of partitioning }Ct
0
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in a manner that can provide us with a linear structure.
One way of doing 1t 1s to take each input as a half
reduced partitioning; other ways will be seen in
Chapter IV.

The next theorem is a result about the dimension
of the state space and illustrates the usefulness of

equivalence classes of inputs.

THM.III.2.2: If the input space of & is finite dimensional

of dimenslion n, then the dimension of the compatible
state space 2*(t0), dim Z*(to), is such that dim Z*(to) <

£ n, for all t

dim U, .
PROOF: It 1is enough to show dim Y, < dim U
F tg (t 0:to
Vtoei, since Z*(to) is isomorphic to }ft —> dim Z*(to) =
0
dim ¥, . It is also clear that dim U, is less than
to (to,to]
dim U(% ,g ] vtc)EI, since every uOEU(g Lt ] 1s the
0°°1 0°~°0
restriction of some input ueU to (t,,tna]. Let
(t >ty 0°°0
Lqys Uss s u EU(t ,t.] be a basls for U(t ] Then
070 0
the classes Hto[ulj, t0[u2], C e e HtO[un] spans Ito

For any equivalence class He [uo] in]{t we have:
0 0

uOEU(€0’tO] and ug, can be expressed in terms of the basis

Uy = ? a;uy;. Using Thm.III.2.1 Hy [uo] = Hy C 2 a;u i] =
0 0 i=1

z a,H_ [u,]. Hence dim ¥, <« dim U,2 .

1= 71 i to i to (to,tO]



81

NOTE III.2.5: Fortunately, dim Z¥*(t.) = dim U, o does
0 (to,to]

not generally hold, since there is a multitude of known
examples where the dimension of the state space is less

than the dimension of the input space. In order to show

dim ¥ = dim U, we need to show that the set
H, [u,], . . . , H [u_ ] is linearly independent.
to 1 to n
Equivalently then, we must show that Ht [uk] =
n , 0 n
z a;Hy [ui] for at least one a; # 0 — U T I aguy.
i=1 0 i=1
1#k 1#k
n
However we can only infer Up = I 84Uy, which does not
i=1

necessarlily give equality. 17k

NOTE III.2.6: Thm.III.2.3 .that follows is as close as we

can get to Zadeh's definition of linearity [ZA2] without
further assumptions on our object. It also demonstrates

a linearity property of the I-0-S-R, KI.

THM.III.2.3: The object & is linear iff it can be given

a reduced state description (ZR,KR) such that the follow-
ing are true:

(1) ZR(tO) is the compatible state space (Def.III.2.3),
AT

(11) D ] is a linear space for t, > t,, i.e.,

R(to,t

" "
(o'o’u'o)eDR(to,t] and (o oY O)EDR(tO,t] -
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1 " 1 1"
(o o t ag"yu'y + au O)EDR(tO,t] for

(to,t]CI(go,el] and for any a€R .
#

(1ii) & : D £] is a linear trans-

R(to,t] R(t

0’

formation, i.e., KR(t ](o'o + ac"o,u' + au") =

e 1
KR(to,t](o'O’u') + aAR(to,t](O"o’u') for (a'g,u’)

and (o".,u")eD for (t,,t] C(t,,t,] and for
0 0 # 0271

R(t

all a€R.

PROOF:
"e= " Only (ii) and (iiil) are enough to imply that

& is linear. 1In fact (ii) implies that the input space

is linear and (1ii) implies that the object is linear.
"—" 1s somewhat tedious to prove.

(1) is true by Thm.II.2.1 and Def.III.2.2. By
Cor.II.4.1 any reduced state description is nothing
but (L*,A*) and its properties will be used in the
proof of (ii) and (iii).

" n
(11) Let (070,u"€Dg(y g7 and (9"g,u"g)Dp(y ¢+ BY

Fact II.3.2 we can write

(O'O’u'o)EDR(to,t] & o' €I (t,) and
uoou'éU(go,t] for any
uoecto(c'o)

&> Ju'.EU,nr 3¢, (a',) =
0~ (Eg,t5] 2 1, % 0
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(6%9su"0EDR (¢ 47 <= F"g€U(E ¢ 13% (0"9) =

0
" " " -~
Htotu 0] and u",ou eU(to,t]
The object being linear u'oou' + a(u"oou“) =
(u'0 + au"o)o(u' + au")eu, s . The equivalence

(ty,t]

1 " = ' " -

class Ht [u o t au O] Ht [u O] + aHt [u O] cor
0 0 0

responds to the state 0'0 + ac"o since

C : L _(t.) = H is defined to be an isomorphism.
to R*°0 to

Hence 3 uOEU

= U n
’to]’ namely u, u'y + au 0 E

(to

' " = ' "
Cto(c ot ac O) Hto[u g + au O] and

(u', + au"o)o(u' + au")eU({; £7° This implies
O’

" ] "
+ ac"y, u 0 + au 0)€DR(to,t] by Fact II.3.2.

0

1
(o 0

1" n "
Let y' A KR('CO,'C](O'O’U") and y" A KR(to,t](c 02 ).

] " 1 "
From part (ii) (o g t as"y, u' + au )EDR(tO,tl].
Therefore we will be done if we can show y' +

-

ay" = & + ao" u' + au"), i.e., we have

R(to,t](°'o 0°
to show: 3(ﬁ,§)ER(EO’t]9
3/, 2 €C, (o', + ac" ) and (4,y)/ =
(tgstpd~ "ty 0 0 ’ (to,t]

(u' + au", y' + ay"). y' = KR(to,t](°'o’u') &
(o

3 (u',Y')éR(go,t] 3 ﬁ'/(€

(G"Q')/(to,t] = (U.',Y'). y" = KR(t

S(u",y")éR(go,t] au"/(g £1€C (a",) and

0

R TIT = no n A*_ .
(u",y )/(to’t] (u",y") by definition of A%,
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If we take U A Q' + aﬁ"eU(E ¢] then y' +
0’

ay"ey, will be the unique response such that
(£4,t]

(' + aa",y' + a§")ER(€ £]° by linearity and by
0’

] ~n ~ "
causality. Now, (u' + au )/(t ,t ]G Ct (0'0 + ao o)
0°"0 0
since
ﬁ
'/, 2 €c, (o')) = H,_ [U'/ s ] =
(to,toj tg O to (to,to]
Cto(°'o)
y S——
a"/ ¢ €c, (o" ) = H_ [1"/,2 ] =
(Egstg1% "ty " O ty (tgstq]
c, (o"
tO( O) J
H, [Q'/ ¢ + a(d"/ s )] = H,_ [Q'/, ¢ ]+
aH, [Q"/,2 ] =¢C,_ (o', + ac"_.). Hence
ty (tgstyl ty O 0

Dy ~ + T ~ =
u /(to’toj au /(tO’tO]

~ T A 1 n
(u' + au )/(tO’tOJG Ct (o 0 + ao 0) and also

0

M N MR T Sn
[(u’y) (U' + au :y' + ay )]/(to’tl]

(u' + au",y' + ay") which is what we had to show.

NOTE III.2.7: As we sald in the previous note Thm.II.Z2.3

is the closest result to Zadeh's definition of linear
obJects under State Axioms 43 and the basic definition of
"Linear Objects." One extra condition on the nature of

®, namely:
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(cl) "u,r =2 is so that u_ 0 is admissible
for any u€U,p and any t as well as 2 0_ up 1is
(£g5t] 0° ty to £

admissible for any uéU(t £ ]" gives us the property of
0°"1

the I-0-S-R, A., that Zadeh uses to define his 1linear

I’
objects [ZA2]. For a linear object (Cl) is equivalent

to:

(c2) "Uct 1s so that ¢ u. u's 1s admissible
0 0

l] 0
1 A "
] and for any u eU(to,tlj, for any to.

0’

for any ueU(E t

0’70
That (Cl) 1s equivalent to (C2) 1is easy to show:

(C2) = (C1) trivially

(Cl) — (C2) since 2 u_ O0p and s 0_ u' are admissible
ty to £ tyty £ : )
by linearity s u_ 0p + 2 0, up =2 u_ u'ys 1is
to to tl to t0 tl tO to tl

A ! ~ A
admissible for any uEU(t £.]° u éU(t .10
: 0270 071
(C1l) or (C2) imply via equivalence classes of input the
condition (C3).
(C3) "Any reduced state description of a linear

object & is such that (o,u)éD

R(to,t] for any oéZR(to)
and any u€U . 4, t arbitrary in T,1f (Cl) (or (C2)) 1is
0 3
" n = "
satisfied by ®" 1.e. briefly DR(tO,t] ZR(to) X U(to,t]'

The proof of (C3) is simple: (ER,KR) is a reduced state

description and oéZR(to) > 3u0€U(€0’tO] 3 u, takes

op into o, since 0 must be reachable. As u, can be
0
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followed by any u€-U(t £] = (o,u)GDR(t £] by definition
0, 0,

of reachability, for any uEU(t £7°
0’

From all these discussions for a linear object ®&
satisfying (Cl), we obtain the separation property and
the linearity of the I-0-S-R as defined by Zadeh [ZA2].

Thilis is summarized in the next theorem.

THM.III.2.4: Let & be a linear object that satisfies

((C1l) Note III.2.7). Then the object & can be given a
reduced state description (ZR,KR) with the following
properties:

(1) KR has "the separation property" i.e.

KR(to,t]("’u) = Rpe L5100 AR (¢

O’

for all cGZ(tO) and for all uEU(to,t]’
(to,t]ci is arbitrary.

(11) KR is "zero input linear" 1i.e.
AR(tO,t](ol + ao2,0) = AR(to,t](cl’o) +

aAR(to,t](°2’o)

(i11) KR is "zero state linear" i.e.

KR(to,t](o’ul + au2) = KR(to,t](o’ul) +

aKR(tO,t](O’ug) both (i?) and (iii) are for

all o) 02€ZR(t0), for all u,, u2€U(t0,t]
and for all a€R.
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PROOF: The proof follows directly from Thm.III.2.3, the

condition (Cl) and the discussion of Note III.2.7.

NOTE III.2.8: That (Cl) has to be assumed is shown by

the example of the object "with complete memory." Let

& be given by: A {u(t) : u(t) = a€R

U(to,tlj

s 2 o and {a : Ju(t)eUu,s 2 -3u(t) = a}l =R
VE€(Tg,t) { (£4,8,2 } =R}
1] 4 {(u,ku) : uev ¢
object & defined by Rt

R ~ ~ A .
(£5,F 05£,] and k€R is fixed}. The

is linear but clearly
O’tl]

ﬂuOEU(go,t ] 3u0006U(€0,t], t > t, unless ugy = 0.

III.3--Time-Invariant Objects and
Propertlies of the
State Description

NOTE III.3.1l: According to Zadeh and Balakrishnan, and

although Zadeh defines the concept of "weak time-
invariance," the same way we define our "time invariant
objects," the definition of a time invariant object is
based on the I-0-S-R. That I(t) 1is the same set for all
t is part of this definition [BA4]. Our task here is
ggain to start with the more basic deflinition of time-
invariant objects and get the afore-mentioned definition
as a result under143. Contrary to the definition of
linearity, Def.III.2.1, where the existence interval
could be any finite or semi-finite interval and not hurt

linearity, the concept of time invariance requires from
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the object, I = (=»,») as the existence interval. From
a time invariant object we at least expect that it does
not change its main properties as regard to the inputs and
outputs, 1.e., for example an lnput u admissible from tl
on, must be admissible from any t2 on and must yield the
same output y whenever applied. As the existence interval
is finite means that all basic I-0 palrs are defined on
I=(t

El], where both £. and El are finite, one cannot

0° 0
speak of an input being admissible for t2 < EO or for

t2 > tl.

properties reflecting the time varying aspect of anything

Starting to exist and dying are such important

that even theoretical objects possessing these properties
must be expected to be time varying. Thus, although some
"semi time-invariance" can be defined for objects with
finite existence interval, the only real (expected) defi-
nition of time invariance can be given for objects that

exist forever.

NOT.III.3.1l: From now on, the existence interval T will

be (-»,») for the objects under consideration (this was

already mentioned in Note I.3.7).

NOT.III.3.2: Let f(*) be a function defined on the domain

DCR . Ar i1s the operator deflined on the space of func-
tions with domain D by A f(t) A f(t-1) Vt€D and where T
can be any finite real number. The domaln of Arf is the

set D+ 1 A {t + 1 : teD}.
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DEF.III.3.1:
An object & whose existence interval I = (=w,o) is

called TIME-INVARIANT iff (u,y)éRs <> (A u,A y)€Rs.

FACT III.3.1: The object & is time invariant iff

(u’Y)ER(to’tlj =>(ATu,ATy)eR(tO Tty + 1] for all
intervals (to,tlj.
PROOF :
"e=" 1s trivial.
"— " If & is time invariant then:
= (u,y). But

(u,y)ER — 3(4,¥)ERs 3 (1,¥)/
(tgsty] T (tgstq]

we have (ﬁ,§)€Ri :::;(ATG,AT§)€Ri by time invariance.

Hence (ATu,ATy)/(tO + Tty 4 1] T (ATu,ATy)éR(tO +T,t, + T]°

DEF.III.3.2:

The TRANSLATE AT OF AN EQUIVALENCE CLASS 1s defined
. 1 . |

to be: A_THtO[uO] A {u EU(—w,tO 4] U A ug}

NOTE III.3.2: The minus sign in A—THt [uo] i1s strictly

0
notational, we could as well have used AT. The reason

which made us choose A_T is, when AT is applied to a
function f(t) 1t changes its argument to f(t-t), however

as we shall soon see in Thm.III.3.1, A-rHt [uO] is the

0
same equivalence class as Ht' [ATuOJ where this time
0
+ 1, 1.e., the argument has been modified by

t', =t

0 0
T instead of -t.
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NOTE III.3.3: It will make more sense to speak of "the

translate of an equivalence class" once the next theorem
is proved. We have to show that ATHto[uo] is an equi-
valence class, however, it may be clear intuitively for
a time invariant object. So we prove that when an
equivalence class is shifted, it still contalns nothing
but the shifted version of the inputs 1t had before the
translation.

THM.III.3.1: For a time invariant object &, u' GEH, [uOJ —
0

AQJ%JEA-THto[uO]’ i.e., ATHto[uo] = Hto + T[ATuO], for

any T€R.

PROOF: Let u'OEHto[uOJ. By definition of Hto[uo],
u'otho[uOJ = u'y * uy. Then
(1) (ATU'O)OUEU(_w’t]¢=:>u'00(A_TU)€U(_m, t-r] BY
time invariance.
—= uoo(A_Tu)EU(_w’t_T]

o~ 1
since uo u 0

@ (ATuO)OuEU(—W’t] by
time invarilance

for ue€uU is t > t, + 1, proving (ATu'O)ou is

(ty + 1,80 0

admissible iff (A ujlou is.
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(11) Since they are admissible there exists y' and
y such that: ((ATu'O)Ou,y')GR(_“’t] —
(u'go(a_,u), A-Ty')ER(-w,t-r] and
((ATuO)ou,y)ER(_m,t] =
(uoo(A_Tu),A_Ty)ER(_w,t_T] both by time in-
variance. But A—Ty'/(to,t—T] = A-Ty/(to,t—T]
since u'y = ugy. Thus y'/(to y T, "
y/(tO +oT,t] which proves ATu'O = ATu' and

]
therefore ATu €A_THtO[uO].

]
Letting ATu 06 A—THto[uOJ’ which 1is true iff

ATu'O =ATu0 (Def.III.3.2), we can proceed as

"~ '
above to show u 0 Yo giving us u OthO[uo].

That A—THtO[uO] = Hto +T[ATu0] clearly

follows from above.

NOTE III.3.4: For a time invariant object &, a shifted

equivalence class is still an equivalence class, Justify-
ing Def.III.3.2. It would be nice to show that this
property alone makes & time invariant, that is a converse
to Thm.III.3.1. However, this 1s not true 1n general as
the following counter example shows: Let G be given by
the unique pair, R(_m’w) = (u(t),e_ltl) where u(t) =

C, Vt. Then Hto[uo] = {c/('“:to3} is the unique



o
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equivalence class Vto€ T, and trivially uEHt [uo] —
0

ATuGA__THt [uo]. But the object is not time invariant,
0

Itl 1s not an admissible output.

for A_e”
T
Of the following two corollaries, the second one is

a result we were aiming for.

COR.III.3.1: A_T(ATHto[uOJ) = AT(A_THto[uO]) = Hto[uOJ.

COR.III.3.2: The reduced state space I(t) for a time

invariant object can be taken the same set Yt€(-=,»),

PROOF: All we need to show is that Ht and Ht have the
0 1

same cardinality for any to and tl. That there exists
a well-defined and 1-1 (since invertible) mapping
T : Xto *-Hzl defined by T(Hto[uoj) A A_THto[uo], where

T = tl - to is clear by Thm.III.3.1 and Cor.III.3.1. It

is also clear that T is onto, since any H, [uO]em% is
0 1

the image of the equivalence class Ht (A _u,J€H because

o T 0 to
of T(HtO[A—TuOJ) = A-THtO[A—TuOJ = Htl[uo]. This proves
card?ﬁ: = card Rt . As by Thm.II.4.3 any reduced state
0 1
space 1s nothing but I¥(t), the one obtained by use of

equlivalence classes of inputs, the same set can be put

into 1-1, onto correspondence with bothHEt and'J(t for
0 1

any to # t i.e., a unique set suffilces to be taken

l’
the state space Vtef.
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NOTE III.3.5: Of course we are completely free to select

the set ZR(t) for each t as long as it has the same

cardinality as H but any other choice, than the same

£
set Yt seems to be artificial, unless there be a neces-
sity.

We achieve our next goal with Thm.III.3.2 by showing
the form the I-0-S-R takes when the object is time-

invariant. It 1s here that we have to remember the dis-

tinction made between AI and KI in Con.I.3.1.

NOT.III.3.3: Let oo(to)éz(to) denote the state corres-

ponding to the class Ht [uO] for the time-invariant
0
object @, where I(t) is reduced Vt€I. Then

oo(tO +T)€Z(t0-+'w will denote the state corresponding
to the class A-THtOEuO]’ V1€(-»,»2), 1.e., oo(tO + 1) =

-1
(A _H, [u.l).
to + T -T tO 0

C

THM.III.3.2: An object ® existing over (-«,») is time

invariant iff it has a reduced state description

(Z KIR) such that:

R?®

(Oo(to + T),ATu)GD VYt, and

R(to + T,t 4 T)

TE (-, =)

(11) A (o, (tq)u) =
R(to,tl] 0'"0

AR(t P T](oo(to + r),ATu) Vte(to,tl]

0 1
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PROOF :

"—" Let & be time invariant. Then:
(1) Using Thm.II.4.3, as usual, we do the proof for

(Z%,R%). By Fact II.3.2 (0(tq),uED%( ¢ g

eC

0

uooueU(-w,tl] for any u t

(0.) = H_ [1d].
o O o

By Fact III.3.1 1.1001,1GU(_°°’1_11:| g::?AT(uoou) =

(AruO)O(ATu)EU(—m,t and by Thm.III.3.1

1 + 1]

uOGHto[u] — ATuOEA_THto[LIO]AC .

] |
Thus we have (ATu O)O(ATU)GU(—w,tl] for any u 0°

e 4 (0(Ey + ).

the quantifier "for any" being well-placed due to

Thm.III.3.1. Thus, again by Fact II.3.2

(a(ty + 'r),ATu)ED*(t

ot Tety T]

(11) y = B*, tl](c(to),u)(:> 3(ﬁ,§)eR(_m,t1] 3

0°
u/(_m,to]ecto(oo) and (u’y)/(to,t] =(U.,Y) by

definition of K*I. By Fact III.3.1

(u,y)GR(_m’tqu:zé (Aru’Ary)éR(-w,t + 1] and hence

1
(ATu,ATy)/(tO + T’tl + 1] = (ATu,ATy). Moreover,

Jiev, 30/, €c, (o,) = H_[d]. By
(_ ,t0] (_ ,to] to 0 to

Thm.III.3.l, AT(U/(_oo’to])E A—THto[u] =
C + T(G(to + 1)). And agailn by definition of

- - Tx
A*I’ Ay A ( + T](o('co + r),ATu) which

t, + T,t

0 1
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* =
implies A (to,tl](o(to)’u)

A*(t + T,t, + T](O(tO - T)’Aru)°

0 1
"¢e—=" Let (1) and (ii) be true. Then:

by axiom (M1l). Then (ii) — A% (o(t,),u) =
(tg,t,] 0

A¥ + T](o(tO + 1),4 u) for any T€ (-=,»), or

(th + T,t

=

0
= A%
that Ary A (to,tlj(o(to + T),ATu) —

(ATu,ATy)ER(tO FT,t 4T proving the theorem.

NOTE III.3.6: A word about half reduced state descrip-

tilons closes this section. A proof in the same lines as

Thm.III.3.1 can be given to show that the familylﬁ't
0
based on any half reduced partitioning can be translated

by t, to yleld the family R't which has the same

0+T
structure as #', . More precisely, any H'. [u.]€ X'
t t 0 t
0 0 0
can give rise to a A—TH't [uoj, which can be shown to be

0

]
+ T[ATuO]EJEtO + and to constitute a

equal to H't -

0

half reduced partitioning of U(_°° £ This then
3

0 + 1]

will allow us to keep the same half reduced state space

ZHR(t), Vté(-»,») and to have a property of Aiyr that 1s

similar to the one in Thm.III.3.2.
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III.4--An Application of Equivalence
Classes of Inputs to Lumped Objects

NOTE III.4.1l: 1In this section we shall deal with objects

which have a representation of the form:

dxX(t) _
It = AX(t) + Bu(t)
I1I.4.1
y(t) = CX(t) + Du(t)
where Anxn’ anl’ Clxn’ Dlxl are constant matrices.

Our concern here will be to see under what conditions on
A, B, C and D equations III.4.1 yield a reduced state

description with minimal dimension. This result will be
useful in section IV.5. We start with the precilse defi-

nition of the object under consideration.

DEF.III.4.1:

A linear, time-invariant object will be called.GE
iff it satisfies:

(1) UL (e, ) & {u(t) : u(t) is a regular distribu-
tion with support bounded at left and which is
summable on (-~,b), for all finite b€ER },
1s the 1nput space.

(11) Rp(_w oy & {(ugsyg) = UEUL (w,e0) 204 ¥
satisfles III.U4.1 for this uo}. For a given
ueUL, we will denote by T, the point such that

u(t) =0 VYt < T.
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FACT III.4.1: It follows from our definition of U, that

L
any input can follow and can be followed by any other,

i.e., all concatenations are permissible. For:

uerL(-w,tOJ and ueUL(to,t] implies both are summable

making u,gu summable on (-»,t].

0

LEMMA III.4.1: Let (uoou,yooy)eRL(_m’tl3 where

(uo,yo)eRL(_w,tOJ with t, < t;. Then: y(t) =

- t -
cef*Folx(e ) + . [TceP(*Bu(r)ar + pule) III.
0 to
Vté(to,tl]where the integrals are in the Lebesgue sense
and X(t,) = _dftOeA(tO'T)BuO(T)dT I11.
PROOF : ax(t) _
Tt— = AX(t) + B(uoou)(t)
IIT.4.1 gives: III.
(yo0¥) (£) = CX(t) + D(uyou)(t)
Since we are talking of distributions we can write (see
[ZE1] or [SC2]):

IS'(t)#X(t) = AS(t)*X(t) + B(uoou)(t) I1I
where 6(t) 1s the delta-distribution, I the identity-
matrix and * denotes the convolution operation (A.2.9).
Then III.4.5 yields:

[I8'(t) - AS(t)]*X(t) = B(uoou)(t) ITI.

b,

y.

R

b,

3

4

5

6
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l(t)eAt, where 1(t) 1s the unit step distribution, is
the convolution inverse of I§'(t) - AS(t) as one can

easlly verify. Therefore:

£
X(t) = 1(t)e*Bx(uyou) (t) T[ A UBu gu)(t)ar 1I1.4.7

since the convolution of two locally summable regular
distributions can be written as the right hand side of

ITI.4.7 (Thm.A.2.7). Moreover:

(yo0¥) (t) = CeAtBl(t)*(uoou)(t) + D(ugou) (t) =
chteA(t‘T)B(uoou)(r)dr + Dlugou) (t),
Vt€(-=,t,]
= CeAtTJtOe"ATBuO(T)dT +
t
ctdf At =gy (1)ar + puct) , V€ (ty,t,]
= CeA(t_tO)TftoeA(tO-T)Buo(r)dT +
ctdfteA(t‘T)Bu(r)dr + Du(t). III.4.8
Using III.4.7 at t = t, we obtain IIT.4.2 and III.4.3.

NOTE III.4.2: The expression III.L.8 can also be written

as:
y(t) = [cePB1(t) + Ds(t)I*u(t) for any (u,y)€R,, III.4.9

Ath1(t) + Ds(t), can be viewed

where this form, namely Ce
as the convolution representation of the objecté?L. This
gave us the initial idea in Chapter IV about how to find
a state description for more general objects of the form

y = w*u.
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NOTE III.4.3: The restriction in Def.III.4.1 that any

input has support bounded at left, is necessary for the
existence of the integral in III.4.7 and alike, since A
may have positive eigenvalues. Another alternative
then would be to assume that A has negative eilgenvalues
and then let the input space be the space of regular
distributions that are summable on (-~,b] for all finite
b.

We would also like to note that III.4.2 and III.4.3
are true for any t€(t,,~) when (uoou,yooy)ERL(_m’m) are

such that (u,y)éRL(to’m).

. ! ~ |
LEMMA III.4.2: Let Ugsu OeUL(—m,tO]' Then ug u'y &

t
_wf OCeA(t-T)B[uO(T)—u'O(T)]dr =0, Vt>t III.4.10

o,

o \
PROOE: u,ou and u'jyou are admissible for any ueUL(to,w)

by Fact III.L.1.

Now let (ujou,y,) and(u'oou,yo')eRL(_w’m). Then

A

expression III.4.9 gives: yo(t) = Ce tBl(t)*(uoou)(t) +

A

D&(t)#*(ujou)(t) and y',(t) = Ce tBl(t)*(u'oou)(t) +

Dé(t)*(u'pou)(t) Vt. As the object is linear:

CeA

*BL(t)*[ (uyou) (£)=(u' jou) ()] +

DL(ugou) (t)=(u'you) (£) ], VEe(-=,=).

Yo(t) = ¥' ()

cetPBL() ([ (ug-u'y)o0l(t) +

Dl (ug-u'y)g0l(t) Vt€(-=,=).
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o~ ' — =
In our case, as indicated above, ug u'y _;>y0/(t0,m)
?
y O/(to,m), 1.8.,
- At -
uy * u'y & Ce Bl(t)*[(uo—u'o)ooj(t) =0 VYt> ty III.4.11
A(t-1)

t
uy = u'y <::>—wf Ce B[(uo-u'o)OO](r)dT 0 Vvt > t, or

é::?_wthCeA(t_T)B[uo(r)—u'o(r)]dr 0 Vt>t¢t

0
which is III.4.10

THM.IIT.N.1: Let I;(ty) A {X(t)ERT : Jug€U t ]ax(t )

jO A(t T)Bu (T)dT} for t > -~ and L (t ) A {0} for

0

ty = -=. Also let y(t) = AL(tO,t](X(tO)’u)’ for

X(tO)GZL(tO) and u€U be the expression III.4.2.

L(to,t]’
Then (ZL,AL ) 1s a half reduced state description ofG}L
I

and I (t;) is a linear subspace of R™.

PROOF: To prove the theorem we show that (ZL,AL) is based
on a half reduced partitioning. Then Thm.II.U4.l4 com-

pletes our task.

Consider }f'to = H'to[uo:l : uOGUL(-w,tO] where we
define:
¢ Tugl & {urgev . o SR OJtoeA(tO—T)Bu'O(T)dT -
O
fo Alty-Tpy, (T)dr} ITT.4.12

(1) uOEH't [uO] trivially.

(1i) If u, and u OGUL(-w t ] then either

0
j 0 A(t T)Bu (t)dtr = Jto A(t T)Bu'o('r)dr
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' = '
in which case H t0[u0] H tO[u'o], or

t
_mftoeA(tO-T)Buo(T)dT # _mf OeA(tO-T)Bu'O(t)dT

in which case H'to[uoj/\H'to[u'o] = 4.

(1ii) Let u'oéH't [uo]. Then

t t
J 0eh 80Dy (1)ar J Peht0=pur ()ar
t
3 _wf Oe_ATBuO(T)dT
t
:::;CeAt_wf Oe'ATBuO(T)dT =

t
eAt-m[ 0,-AT

t
f Oe_ATBu'O(T)dT

- 00’

C Bu'O(T)dT Yyt —

_mJtOCeA(t-T)B[uO(T)—u'O(T)]dT = 0 in par-

ticular Vt > ty =—>uy = u', by Lemma III.4.2

0

proving that R't is indeed a half reduced
0
partitioning.

Moreover each X(tO)GZL(tO) represents one and only

one H't [uO] due to expressions III.U4.3 and III.4.12.
0
This is to say that there exists a one to one, onto

] ]
mapping C', ZL(tO) + H to[uo]. Thus using Thm.III.4.L4,

0
ZL(tO) qualifies for the state space of(&L.

The I-0-S-R, y(t) = A (X(t,),u), defined by
tgst] 0

L(
III.4.2 is such that clearly y(t) 1s the (to,w) portion

of the response to Uyous for any uOEC't (X(to)), due to
0

IIT.4.8. Hence A £ t] qualifies for the I-0-S-R based
0.’

L(

on the half reduced partitioning III.4.12.
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Finally it is simple to see that ZL(tO) is a linear

space since: Xl(to), X2(t0)EZL(tO) ——
t
' - 0 A(t.~-T)
Juy, U OGU(-w,to] Qxl(to) _wJ e 0 Buo(r)dt and
t
X2(to) = _mf OeA(tO'T)Bu'O(T)dT. As(9L is linear u, +

au'OEU Fact III.2.3, which implies Xl(to) +

(—°°,t0]’
ax2(t0)62L(t0), for a€R .

NOTE III.4.4: However it is not generally true that

ZL(tO) as defined in Thm.III.4.1 is a reduced state

space. The necessary and sufficient condition III.4.10
does not require the defining relation of III.4.12 to
hold, for the inputs ug and u'o to be equivalent. Con-
dition III.4.12 is a sufficient one for III.4.10 or

for that matter for ugy = u'o. The following theorem and
its corrollaries tell us when III.4.12 becomes also neces-
sary for III.4.10, i.e., when ZL(tO) becomes reduced, or

if not, what 1s the dimension of the reduced state

description, etc.

NOTE III.4.5: We assume that in the equations III.4.1

the matrix A 1s in, or has been brought to, its Jordan
Canonical form. This 1s no restriction at all, at least
theoretically, since every matrix has a Jordan equivalent

[HO]. We further assume that:



T T (k) .
Al 0 0 Jl 0 -0
(k)
? é2“n9 9 q2. ...... 9
A=l s A Lo
0 0---- Ak 0 0..o..... :Jn
for k = 1, 2,
IIT.4.13
. (k)
In Ak the size of JJ

Ak corresponds to a different eigenvalue Ak.
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Ak 1

0 A

k) |+

I
(k) 0 0.
s K for J

2’.

If the

decreases as J lncreases and each

matrix A has a diagonalizable part, with or without dis-

tinct eigenvalues, we view each entry on the dlagonal as

a l x 1 Jordan block.

We also partition the row and

column vectors C and B conformal to the partition of A, 1.e.

By
B2
c = [C,C, . C,land B = |:

_Bk-

such that the product CkAkBk is defined for k =

1, 2,...,K. |

THM.II{.M.Z: Suppose that:

(1) Ak is formed of a unique elementary Jordan
block J¥), ana
(i1) Ck(l)bk(dk) # 0, where Ck(l) is the first

element of C

and b

k k

(dk) is the last element

ITI.4.12




104

of B d, being the multiplicity of A

k? "k
cause of (1).

K be-

Then (ZL,KLI) is a reduced state description,
where I, (t,) as defined in Thm.III.4.1 isR"

Vt%)E(—m,w), and KL is as defined in III.4.2.
I

PROOF: Using Lemma III.4.2 for u, and u'.€eU , the
—— O 0 (—w,toj

expression III.4.10 takes the form u, = u'0 —_—

IIT.4.14

ty k
S kﬁlckeAk(t—T)Bk[“o(T) - u'g(r)]dTt = 0, vt>t,

At

since the matrix e has the submatrices eAkt on 1ts

diagonal and 0 submatrices elsewhere, like A had the
Ak's on its diagonal. Ck Bk is conformal by Note
IITI.4.5. It was pointed out in the same note that each

A, corresponds to a different eigenvalue A so that two

k K?

different terms of the summation in III.4.13 corresponding
A

to, say k; and k, will yileld terms containing e kK1t ana

Aenat
e k2 as factors. By summing up such terms there 1is no

)\klt }\kzt

chance of cancelling one e by another e for all

t > to. Thus:

t
uy = u'y ¢==;_mf OCkeAk(t_T)Bk[uo(r)—u'o(r)]dr =0
vt > tg III.L4.15
t (k)
<:::;_wf 0CkeJ (t"T)Bk[uO(T)—u'O(T)]dT =0
vt > tO III.4.16

since by (i) each A, 1is constituted of a single elementary

Jordan block.
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(k)
Using the matrix form of eJ t as given by [CO],

ITI.4.16 reduces to:

k J-1
fO(t 1:) (- T)[uO(T)

u'O(T)]dT =0 VWVt >t, k=1,2,...,K III.4.17

0

We consider now the term which contains the highest
power of t in the summation of III.4.16. t has the

highest power when j = dk and k = 1, ylelding the term

t d,-1
c (l)b (dg) 0 (t-1) . k eAk(t_T)[uO(T)-u'O(T)]dT,

k k - de-li'

where ck(l)bk(dk) # 0 by hypothesis.
If we expand (t—T)dk-l and consider the term that
d, -1
contains t K ~, it is of the form
dr-1 At [0 _=Apt
a t ek f e "K' [u. (1) - u'.(t)ldT, o # 0.
dk-l - 0 0 dk-l

and 1t is the only term in III.4.17 with t3k™1 as
factor. Thus if the left hand side of III.4.17 has to

be zero VYt > t the only way this can happen 1s to

o,

have:

t
_wfioe’AkT[uo(r) - u'g(m)ldt = 0 III.4.18
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Proceeding in this manner at each step we will be

left with a term of the form _“Jtone-AkT[uo(T)-u'o(r)]dT

that must equal

zero, considering the results of the pre-

vious steps. Thus we will obtain:

t
u, ¥ u'y <= _wf Orme"AkT[uo(T)-u'o(r)]dT =0 I1I1.4.18

The defini

cancellation of

0

i.e., u'OEH'tO[u

0 for k =

since Ak = J(k)

t
_wf oe-J(k)er[u

wg€H'y Lug) &=

for m = 0,1...,4,-1
k = 1,2,...,K
ng relation III.4.12 for H'. [uo], after

Atg 0

e , can be rewritten as:

H', = {u'OeU(-m,to] : _mftoe'ATB[uo(T)-u'O(T)]dr = 0}

ITII.4.19
(k)
0 -J T ' _
0’ <::¢_wjt e B [uy(t)-u'y(r)]dr =
1,2,...,K III.4.20
by hypothesis. Writing the column vector

O(T)—u'O(T)]dT, we get

G dk
_ f Oe=2k™ I'p (i)(-T)i'l[uo(T)-u'o(T)JdT
® 1

=1 % -
£
S 0kt £ () (oyi=2ry (o)t (1) Tan
oo i=

2 (I-2)!

£ .
j'oe-AkT Qk bk(i)(-T)i-dk[uo(T)_ub(T)]dt
= 00 i1=4d zE:d—_Y!

k k

L —

for k = 1,2,...,K I11.4.21
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Starting with the last row of III.4.21 which has the
t
unique term b (dy) f Oe'AkT[u (1)-u',(t)]dT with
k - 0 0
bk(dk) # 0 by hypothesis, we see that
0_-AyT . ,
o e [uo(r)-u O(T)]dT must equal zero. Moving up-
wards, each previous step eliminating all terms except,
b (dy) Jtoe'AkTrm'l[u (t)-u',(t)]dt at the m-th step,
k - 0 0
m = 1,...,dk we finally obtain (changing m-1 to m):
O_m_-ApT
]
u OeH'tO[uOJ ¢:=;_th T e fug()-ury(r)ldr III.4.22

form = 0,1,...,4,-1

k
k =1,2,...,K
Combining III.4.18 with III.lL.22 we see that

] [~
u OEHvto[u0]¢==bli'0 uy, making the classes H'to[uo]

equivalence classes of inpufs, i.e., the sufficient
condition has turned out to be a necessary condition in
this case, as 1t was indicated by Note III.4.4. Thus
under the hypothesis (ZL,ALI) becomes based on equivalence
classes of inputs. As equivalence classes are also a
half reduced partitioning Thm.III.l4.1l proves that
(ZL,ALI) is a reduced state description under (i) and
(11).

That ZL(to) is the n-dimensional Euclidean Space
VtDE(-w,w) is quite obvious. It was proved in Thm.
IIT.4.1 that ZL(tO) was linear (it had dimension n by
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definition), it became reduced here, giving these pro-
perties to the reduced state description Vtoe(-w,w),

s.‘aneGL is time invariant (Cor.III.3.2).

NOTE III1.4.6: The following corollaries follow Thm.

III.4.2. The proofs follow the same lines as the proof
of Thm.III.4.2 and are not given. The results are for
more general cases, the last one being the most general.
Let the vectors C and B be partitioned as in III.4.12.
and B

The vectors C that pre- and post-multiply A

k k
are partitioned 1nto submatrices:

k

c, = [C C

K K,1 k,2"'Ck,nk] and Bk =( IIT.4.23

COR.III.U.1: If the first entry c(l) of C and the

k,1 k,1
last entry of the vector Bk 1 are nonzero for k = 1,
3
kKo (k)
2,...,K then: dim Z,_(t,.) = 3 size J III.4.24
LR*70 k=1 1

i.e. the dimension of the reduced state space is equal to
the sum of the sizes of the largest elementary Jordan

blocks for different eigenvalues.

COR.III.H.2: Let again each Ak consist of a single

elementary Jordan block and let the Yk + 1 th element of

C, be nonzero, the first Yi being zero and the

k
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Bk + 1 th element of Bk be nonzero, the last Bk elements

being zero, i.e.

- -
'k
i (By+1)
C = [00--.0 ¢, Yk*1) o (k) pg B =] K II1.4.25
K Kk K Kk 0
Y, -zeroes §
k 0
¢ (Yk*1) gng b (Bktl) 4 o,
K Kk
X 4,26
Then: dim I, (t,) = kgl[dk—yk-sk} III.4.2

where [dk-yk-Bk}

>

{dk_yk_ek 1f dp-vp-Bp > 0

0 otherwise.

COR.III.4.3: 1In the most general case, let for each

be the size of J (k) such that

k, k = 1,2,...,K, d'} ]

C (k)B is non-zero and C eJJ(i)tBk 3 gives rise
b

J
k:J J k,j k’J
to the highest power of t. If the numbers ?k and Bk
denote the number of first consecutive and last con-

secutive zeros in C and B , as in Cor.III.4.2 then:
k,J K,J

K
dim I o (tg) = D [d'k-yk—Bk} III.4.27

k=1



CHAPTER IV

SOME CANONICAL FORMS AND PROPERTIES OF
THE STATE DESCRIPTIONS FOR LINEAR,

TIME INVARIANT, CONTINUOUS OBJECTS

IV.l=-=Introduction

In the previous chapters we have only dealt with
the gross properties of the state description, without
trying to generate any analytic description of the
I-0-S-R, except maybe in section III.4. So, Chapter IV
gives us some analytical forms for the I-0-S-R and a good
knowledge about the interesting properties of the state
space, when, as the title indicates, the object under
conslderation is a linear, time-invariant and continuous
one.

Of the two strategy procedures available to reach
the goal, the less mathematically sophisticated and more
engineering approach, of first guessing what the I-0-S-R
and the state space might be and then showing that they
satisfy the axioms, 1s chosen, rather than building up to
the result by using the state axioms and mathematical
tools as does Balakrishnan in [BA 1-4]. However, we
would also like to point out that by proceeding as such,

it should not be understood that we are being

110
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mathematically irrigorous. Our main tool in these investi-
gations is the theory of distributions and their

orthogonal series expansion as developed by Zemanian in
[ZE2], a brief exposé of which is gilven in Appendix A.

The next section of the present chapter tries to
justify the use of convolutional objects as our starting
point by means of arguments that stem from the refer-
ences [ZEl, A4].

In sectlion 3, we give an 1infinite but countable
state description of a large class of convolutional ob-
jects, namely the ones with an impulse response which has
an infinite series representation. Then we investigate
and prove some very important properties of the I-0-S-R
and the state space such as: "The infinite A-matrix
associated with the I-0-S-R 1is a Hilbert Matrix," "The
state space IL(t) 1s a closed linear subspace of the
Hilbert Space L2," etc.

The last section deals with the most general con-
volutional objects and shows that it is possible to
approximate any such object with objects that have a
finite dimensional reduced state space. This, as noted
in [ZAl], happens to be a very important problem in that
it may provide us with some tools of approximating a
large class of distributed systems with passive, lumped

RLC networks.
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IV.2--Convolution Representation of
Linear, Time Invariant and
Continuous Objects

NOTE IV.2.1: In Fact I.2.1 we noted that a uniform ob-

ject was completely defined when the input-output list
RT over the existence interval I was known. Furthermore,
Thm.I.3.2 stated that the object & had a state descrip-
tion iff it was causal. We thus have a single valued
mapping from the input space Uf into the output space
Yf due to causality.

Taking I = (=»,»), if we restrict our attention,
for the moment, to objects with inputs in the space &
of testing functions and outputs from the space $' of
distributions over &, we then have a single valued mapping
from ® into £' (for the definition of 2,2 and notions
related to distributions see Appendix A). Moreover we
have a linear, time invariant mapping from & into &' if
we let our object be linear and time invariant. To
these properties of single valuedness, linearity and time
invariance possessed by many systems we will add one more
property, "continuity," which is more difficult to
interpret physically and which can crudely be described
by: "in the input-output list Ri of the object &, to two
different inputsthat are almost the same, correspond two

outputs that are almost the same." A precise definition

of "almost the same'" would require a discussion of the
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neighborhood concept in £ and ', and that would lead us
to Topological Vector Spaces (see, e.g., [TR], [HOR]).
To avoid that, and as we already have a concept of con-
vergence in ', we define "continuity" as follows (a

slightly modified version of the definition in [ZE4]).

DEF.IV.2.1:
An object is sald to be CONTINUOUS (or a CON-
TINUOUS MAPPING FROM & INTO £') iff the convergence of

{un}°° to u, in & — the convergence of {yn}°° to y,
n=1 n=1

in &' with (u,y)eRi.

THM.IV.2.1: SCHWARTZ'S KERNEL THEOREM [TR]. The mapping
from$ into &', that the object & given by Rf describes,
is single valued, linear and continuous iff there

exists a unique w(t,t)€®' defined on the real plane such
that (u,y)ERf<::>y(t) = w(t,t)xu(t) Vuesd, where
w(t,t)xu(t)€$' 1s defined by <w(t,T)xu(t),$(t)> A

<w(t,t),ul(t)d(t)> Y oesd .

THM.IV.2.2: [SCl, vol.II, pp. 53-54] The object
satisfies the hypothesis of Thm.IV.2.1 and is time in-
variant iff there exists a unique w(t)€#' such that
(u,y)€Rz <& y(t) = w(t)*u(t) Yuegp, where w(t)xu(t)

is defined in Def.A.2.7.

NOTE IV.2.2: [ZE4, p. 8] Now, because of this convolu-

tion representation, the input space Uf of & can be
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extended to the space f' of distributions with compact
support, i.e., for u€Us = £ (u,yXERT & y(t) =
w(t)¥u(t). As ®is dense in £' this extension of the
convolution representation is unique. Moreover, if w
happens to be sultably restricted the input space Uf
can be further extended to larger spaces of distributions.
If for example wéﬁ'R the space of distributions with
support bounded at left then Uf can be taken as all of
g'R, or for that matter any subspace of it. Also, if
weg', then Uf can be taken to be all of $'. In both cases,
as & 1is dense inQ'R and ', the extensions are unique.

In case the object & is not time invariant, the

same extensions can be made by using the kernel represen-

tation of&-.

THM.IV.2.3: [ZE4, p. 9, THM.3] Let ® be defined by

y(t) = w(t,t)xu(t), where u belongs to the extended Uz;
then & is causal (Def.I.2.4) 1iff supp y(t,t) is contained
in the half plane {(t,t) : t » t}.

If in addition & is time invariant then & is causal

iff supp w(t)C[0,=).

NOTE IV.2.3: In the light of the above discussions, the

following two sections concentrate on convolutional ob-
jects with supp w(t)C[0,»). These will be defined more

precisely at the beginning of each section.
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IV.3--A Countable-Differential
State Description

NOTE IV.3.1: In this section we will obtain the state

description of a linear, time 1lnvariant continuous object
whose impulse response w(t) is a distribution in OU
(Def.A.2.9). This state description can be viewed as

the generalization of the familiar state equations in
IIT.4, to include state descriptions for distributed
systems. In fact they ressemble very much the form in
IIT.4.1 except that the matrices and the vectors involved
are infinite in size.

The idea in developing the state description is
simple and 1its root lies in the fact that for a lumped
network we obtain a state description via the decomposi-
tion of w(t) into different exponomial terms (see Def.
IV.4.2 for a description of "exponomial term"), as we
have already remarked in Note III.4.2.

First we precisely define the object, for which the
description can be given then proceed to obtain the state

description.

DEF.IV.3.1:

The convolutional object under consideration is

D p; &

{u(t) : U(t) is real and square summable over (-«=,b]

called an 0. object iff its input space U

for any real finite b}. We further assume that w(t)
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is a real distribution in Ot' and that the I-0O list is:

Rps & {(u,y) : uélUps and y(t) = w(t)su(t)}.

NOTE IV.3.2: The convolution of w(t)E QL' with

u(t)EUDi is well defined (Thm.A.3.1). Furthermore
supp w(t)Z[0,») due to causality by Thm.IV.2.3. As the
input space, w(t) and the eigenvalues An (Not.A.2.1) are

real, we can take {¥ (t)}n ; to be real.

THM.IV.3.1: Any E}D object can be given the following

dynamic description (a conjectured I-0-S-R):

dxn(t)

= 3 ax(t) _
" = mElanmxm(t) + bnu(t) 5 = AX(t) + Bu(t) IV.3.1
n=1,2,... i.e.
K (k)
y(t) = z c x (£) + 3 du’(t) y(t) = CX(t) + DU*(t)

where in IV.3.1 the convergence is pointwise and in

IV.3.2 in ®$' together with

[~ . — —_ - _
Xl(t) allal,2 ........... Fbl o
>E<2(t) ?215}22 .......... b, ¢,
X(t) = , A = . , B = , CT _ .
— F —
dl U(t)
(1)
92 ? (t)
pT = | |ana U*(t) ;
: (k)
d Wt (t)
|k . |
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PROOF: As w(t)EOL', w(t) = §1<w,wn>wn(t) by Thm.
n=

A.2.15 where {Wn} ® are as given by Not.A.2.1. Using
n=1

Thm.A.3.3, y(t) = w(t)*u(t) =

a 6 £y euct). IV.3.3

© K
[ F <w,¥ ¥ (6)1(8) + 5 dy

n=1 k=0

By Thm.A.3.2, the infinite summation in IV.3.3 can be

taken outside and Thm.A.2.8 can be used to yield:

© K
y(t) = n21[<w,wn>wn(t)l(t)*u(t)] + kEOdku(k)(t)' IV.3.4

Now we define xn(t) A Wn(t)l(t)*u(t) for n=1,2,... IV.3.5

Differentiating IV.3.5 according to Thm.A.2.9 we obtain

dxn(t) 4
—_— = [ag(wn(t)l(t))]*u(t) = W'n(t)l(t)*u(t) +
dt
Wn(t)é(t)*u(t)
= W'n(t)l(t)*u(t) + Wn(o)u(t). IV.3.6

But W'n(t)ECﬂ(Lemma A.3.3) and can be expressed as

oo .
W'n(t) = m£1<W'n,Wm>Wm(t), Thm.A.3.11. This time the

convergence being in Ol , and certainly in L2(_°° w)+ So
3

for each n we can write

dxn(t)

" [m§1<w'n,wm>wm(t)1(t)]*u(t) + ¥ (0)u(t)  IV.3.7

t
_wf m£1<W'n,Wm>Wm(t-T)u(T)dT + Wn(O)u(t)
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dx_(t)
n = < T o<¥r vy (e-1),uln)/ g £700> + ¥ (0)u(t)
dt m=1 ’ "

for each t. IV.3.8

Now as convergence in L2 defined by the norm is continuous

with respect to the inner product, i.e., as strong con-
vergence implies weak convergence [RI, p. 69], the
infinite summation can be taken outside the inner product

in IV.3.8 and

dxn(t)

dat m£1<w'n’wm><wm(t-T),u(T)/(_B,t]OO> + Wn(O)u(t)

for each t.

t
= m£1<W'n,Wm>_ﬂi %nw—ﬂu(r)dr + Wn(o)u(t)

= m§1<w'n,Wm>[Wm(t)1(t)*u(t)] + Wn(O)u(t)

for each t, IvVv.3.9

can be obtained. Using IV.3.5 in IV.3.4 and IV.3.9 and

defining the coefficients

a A <Y' ,¥ >, b AY (0)and ¢ A <w,¥ > IV.3.10
dxn(t) -
——— = (]
" m£1<w n,\l/m>xm('c) + Wn(o)u(t)
= mglanmxm(t) + b u(t) Iv.3.1
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-9 K k
T <w,Wn>xn(t) + ¢ d u( )(t)

n=1 k=0 ¥

v(t)

K
T e X (t) + 3 dku(k)(t). IV.3.2
n=1 k=0

That the convergence, in IV.3.1 is pointwise is clear
since IV.3.9 converges for each t and that in IV.3.2 it
is in ®' 1is clear by IV.3.4, where the convergence is in

.

NOTE IV.3.3: The following theorem obtains a certain half

reduced partitioning (Def.II.4.1) that 1s compatible with
the dynamic description of Thm.IV.3.1. The theorem after
that using this half reduced partitioning and Thm.II.4.l4
shows that the expressions IV.3.1 and IV.3.2 provide us
with a half reduced state description.

THM.IV.3.2: The family 2bt A {H' Tugl : usev
0o~ 0

D(-o,t 1)

of classes of inputs where for any toe(—w,w) H't [uO] A
0

{u'OGUD(_°° £ 1" _mjtown(to-T)u'o(T)dr =
>0

t
0 -
_mj Wn(to—r)uo(r)dr for u,eU and n = 1,2,...}

D(—Oo,to:]
Iv.3.11

1s a half reduced partitioning.

PROOF: We verify (Def.II.4.1):

(1) H't [uo] # ¢, 1if nothing else one such class may
0

contain only the defining input.
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* ] " 1 n
(1i) Let u 0 and u OeUD(-m,tO] and H to[uvd/\Hvto[u O) #
- - "
¢. Then 3“06UD(-w,toJ'9“0€H't0[“'o]f\H't0[u O].
For any uOGH'tO[u'O] we have:

t t
J % (t,-T)ug(t)ar ol %% (t,-T)ur (1)ar =

t t
_mf O (£ -8 (tar = __[ %% (to-t)u" (t)dr

n=1,2,...
" 1 " 3
Thus uOEH'to[u O] and H'to[u'o]CH to[u 0]. Similarly
] " 1 1
H tO[u O]CH tO[u O] can be shown, giving
H' [u' ] - H' [un ].
tO 0 to 0
1 2 1 . .2
(1i1i) Let u OEHtO[u 0]. We have to show u 0 % U i.e.,

as all concatenations are allowed all we need to

prove 1is: for any uéUD(tO,w), tO < « such that

1 1 2 2
(u g0U»Y ) and (u oQ4>Y¥ )GRD(_W,M) we must have

=y /(t o) * Going back to expression
0,

yhe) = we)ut oud )

1[<w,wn>wn(t)1<t)*<uioou)(t)] +

L}
ne8

n

i (k)
Odk(u Oou) (t)

=

k

= § <w,¥ >[ ftw (t-1) (ul qu)(t)ar +
nEl >’n"t-ot 'n 00

=

I a, (ul o) ¥ (t) for 1 =1,2.  1v.3.12

k=0
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i _ = 0 i
y (t)/(to’w) = n£l<w,‘!’n>[__uft v (t-muT(t)dT +

t
toj ¥_(t-t)u(t)dr] +

d u(k)(t) for t > t

K IV.3.13

o =X

0

k=0

- 2 -
As ¥ (t-1) is in L (=0, ) and as ¥ (t,-1) forms a
ccmplete orthonormal basis for L2(_0o ) we can use
3

Fact A.3.2 in IV.3.13 to obtain:

i
yie)/,, .
(tg,)

t
) 0 o i
E <w,Wn>[_wf 5 <Wn(t—T),Wm(tO—T)>Wm(tO—T)u O(T)dr +

n=1 m=1

K
e u(k)(t)

t
tf Wn(t—T)u(T)dT] + .

0 k=0 ¥

for i=1,2 and t > ¢t IV.3.14

0

Using once more the continuity of i1nner product

with respect to convergence in LZ(_°° ©)
5

t .
0 = i _
_mj m£l<wn(t—T), Wm(to—r)>wm(t0—r)u O(T)dT =

b 1
= <m£1<Wn(t-T), Wm(to-r)>wm(t0—r), (u OOO)(T)>
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o i
m£1<wn(t-r),Wm(to-r)><wm(to-r),(u O00)(r)>

® 0 i
m§1<wn(t—T),Wm(t0—1)>_wjt Wm(to-r)u O(T)dT

Iv.3.15

Using IV.3.14 in IV.3.14 we finally obtain:

r_<w,¥ >[ g <¥ (t-1),

1
v/ w) =
(tgs=) o1 m=1

t
0 i
Wm(to-1)>_mJ Wm(to-r)u O(T)dT +

tjtw (t-t)u(t)ar] + 3 a,u®(t) 1v.3.16
o ™ k=0

t
As _mfiown(to-r)ulo(r)dr = _wjtown@o-r)u2o(1)dr

for n=1,2,... by IV.3.11, it follows that

1
y / o0 = y / o) *
0" (ty,%) 07 (ty,=)

DEF.IV.3.2:

We define the set ZD(t) (a conjectured state space)
by :
Ip(t,) A {X(to) P X(tg) = (x7(t4),x,(t5),...) where

t
0
xn(to) _wf Wn(to-r)uo(r)dr for each n and for some

quUD(-w,tO]} IV.3.16
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The mapping (C' )—1
o 0

follows, for any class H', [u,Je¥', : (C' )_l(H'
to 0 tO t

0

X(to) where the defining input u'o

u'OEH'tO[uo].

DEF.IV.3.3:

We define the INFINITE TRANSITION MATRIX by

. 1
4 £ ZD(tO) is defined as

tO[uOJ)

for X(to) is any

Q(t,to) A [<Wn(t-r),Wm(t0—T)>]nm and the conjectured

I-0-S~-R, where 9

A X(t )EI'(ty) and C 1is the infinite

vector whose components are defined by the expression

IV.3.10, with:

KD(to,m)(OO’u) A C@(t,tO)X(tO) + w(t)*u(t) on (to,°°

).
Iv.3.17

THM.IV.3.3: (ZD,KD) as given by Def.IV.3.2 and IV.3.3

is a half reduced state description of the object Gb'

PROOF: We verify Def.II.U.1 where the half reduced

partitioning is that of Thm.IV.3.2.

(1) For XD(tO) to be a half reduced state description

all we have to show is that (C't )_1 (Def.IV.3.2)

0
is one to one and onto.

It 1s onto: by definition any X(tO)GE(tO

such that there exists a uOEUD(-w,to]

t
- ‘ 0 -
xn(to) = Wn(to-T)uo(T)dT for n=1,2,...

' -1 '
thus x(to) = (C ¢ )"~ (H to[uoj).

0

) is

for which
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. [] "
It 1s one to one: let u'y and u OGUD(-w,to]

be such that H't [u'0] # H't [u"o]. By definition
0 0

of H't [uo] this means that there exists ny such
0

o
that: _m] Wnl(tO-T)u'o(T)dT #

£
0
—m] Wnl(to—r)u"o(r)dr, which then implies:

X'(t.) = (cr, )"YH', [u' 1) # (c', )“Y(H', [u".]) =
0 to tO 0 to to 0

X"(to). With the above proof the use of the

inverse notation for C' is also Justified.

o

That KD( y as in Def.IV.2.3 1s the I-0-S-R

to,°°

can easily be shown. In the previous theorem,

expression IV.3.16 gave us the (to,w) portion of

the response to UgQu-

oo ]
r_<w,¥ >[ ¢ <¥ (t-1),
n=1 m=1

v/ ©
(to, )

t
Wm(t0—1)>_mj OWm(tO—T)uO(T)dT +

§ au'K (), t > ¢

t
tj Wn(t—r)u(r)dt] + ok

0 k 0

<w,¥ >[ T <¥ (t-1), ¥ (t,-1)>x (ty)] +
1 m=1

= 3

n

T o<w,¥>[¥ (£)1(t)wult)] +
n=1
£ a6 (t)xule)

k=1
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Cal_ <Wn(t—r),Wm(t0-1)>xm(t0)] +

n
N8

c [T

n 1

[o o]

K
[ <w,¥ >¥ (£)1(t) + 1 d
n=1 k=0

8 () Dxuce)

can be achieved using the definitions of xm(to)
and o and Thm.A.3.2. Finally using the in-

finite matrix notation and Thm.A.3.3:

y/(to’“) = Co(t,t)X(ty) + wl(t)su(t) =

KD(to’m)(oo,u). IV.3.17

Clearly for any u,eC, (OO)/00=X(tO)’ ugou 1is

0
admissible and AD(to,w) is the (to,w) portion of

the response to Ugous thus making IV.3.17 an
I-0-S-R by Def.II.4.4 and (ZD,KD) a half reduced

state description by Thm.II.4.4,

NOTE IV.3.4: Thm.IV.3.2 and Thm.IV.3.3 have shown that

(ZD,KD) constitutes a state description and in their
light, the dynamic equations IV.3.1 and IV.3.2 can be
viewed as the state equations of the object(?D. To make
the tie between the state description and the state equa-
tions stronger and to justify the name "Infinite Transi-
tion Matrix" for ¢(t,t0), we prove the following two

theorems which also improve the I-O-S-R, IV.3.17.

THM.IV.3.4: The infinite transition matrix ¢(t,t0),

Def.IV.3.3, is the FUNDAMENTAL MATRIX of the infinite
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dx(t)

differential equation system 3t

= AX(t), with

®(ty,t,) = I.

PROOF: ¢ (¢t ty ) A [<w (t-1),Y¥ (t -r)>] = [d__1], where

0? mn

dpn 1S the Kroenecker delta, since {‘i’n(to—'r)}n=1 forms

a complete orthonormal system (Fact A.3.2). To show
¢(t,t0) is a fundamental matrix:
(1) we first show that every column of ¢(t,t0) is a
vector solution of the iInfinite differential system.
To pick a column of ¢(t,t0) = [<Wn(t-r),wm(qrr)>]mn

we fix the column index m at an arbitrary My s

then we substitute the vector so obtalned by X(t)

aX

in 3t = AX(t) to get:

d

EE<Wn(t-T),Wm (t

=T <Y LY ><¥ (t-T),¥ (t >
0 —T)>= 1 n*'m” S Tm Tty O_T)

m=1 0
IV.3.18

0

using IV.3.10, definition of A. Now we have to

verify the identity IV.3.18. 1In fact:

d

T, (b-T), Y (tg-1)> Eéi f ¥ o(t-1)¥  (ty-1)dr

Mo )

_meW'n(t—T)Wmo(to—T)dT

since Wn(-) is infinitely

smooth.

W'n(t—T),Wmo(to—T)> =

<W'n(t-1),Wm(t-T)>Wm(t-T),Wm (t0-1)>
1 0

IV.4.19

A
Il ™8

m
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Using the continuity of the inner product and

noting that: <W'n(t—r),Wm(t—T)> =
_wf;'n(t—T)Wm(t—ﬂdT = _“S W'n(r)wm(r)dT =

d
\ — - - =
<y¥' ¥ >, IV.3.19 becomes dt<w (t-1),¥ O&b T)> =

® 1 - -
m£l<w n,wm><wm(t T),Wmo(to T)> verifying the

identity IV.3.18.
We now show that the columns of ¢(t,t0) are linearly
independent for all t. To do this select any k

(k also arbitrary) columns of @(t,to) and suppose

for some t, there exists scalars al,ae,...,ak such
that not all a, are zero and al<Ti(t—T),Wnl(t0-T)> +
a2<Wi(t-T),Wn2(t0-T)> + ...+ ak<Wi(t-T),

Yo (to-r)> =0 or

k

k
<Wi(t—T), 5 aJWn (tO—T)> =0 for i=1,2,... IV.3.20
J=1 J

As {Wi(t—r)}izl is a complete orthonomal basis,

IV.3.20 gives (tO—T) = 0; but this cannot

K o.Y
z
j=1 9 1

Lo}

be true since {Wj(to—r)}J 1 also forms a complete

orthonormal basis. This contradiction implies the
columns of ¢(t,t0) are linearly 1independent for

any t.
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THM.IV.3.5: The I-0-S-R, A

D of the object GD is also

given by:

£
= *
W/ (e oy = CO(ES8X () ¢ ctO] ¢ (t,t,)Bu(t)dr + DU*(t)
Iv.3.21
PROOF: Combining IV.3.16 with IV.3.17 we can write:
w ft
= + -
y/(to,w) C@(t,tO)X(to) n£l<w,wn>to Wn(t T)u(t)dr +
K
5 dku(k)(t) IV.3.22
k=0
For fixed n consider Wn(t-1+z) which can be written for

[e o]
each t,T as: Wn(t—T+z) = m£l<Wn(t-T+s),Wm(s)>wm(z)

where s is the dummy variable, i.e.,
. o

Tn(t—1+z) = 7 [_mf Wn(t—r+s)Wm(s)ds]Wm(z) IV.3.23

m=1
by Thm.A.2.12, Wn(t—r+z) and the convergence being in Ol .
Then by Cor.A.2.1 1t follows that the convergence is
uniform or compact subsets of (—w;w); therefore we can
evaluate IV.3.23 at z = 0. Also doing the change -x =

-Tt+s of variables

T [_mfwwn(t—x)wm(T—x)dx]?m(0)

¥ (t-1)
n m=1

= m£l<‘l’n(t—x),‘Pm(T-—x)>‘Pm(0) IV.3.24

follows from IV.3.23. Substituting IV.3.24 in IV.3.22:
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E’ <‘yn(t-X) s

Y/ o= COt,t )X(t.) + 3 <w,¥ > dft
(g >) s t)X(tg ntd I

n=1

Wm(T—x)>?m(0)u(T)dT + % d u(k)(t)

k=0 ¥

and using IV.3.10 and Def.IV.3.3

t
y/(to,w) = Co(t,t)X(ty) + Ctﬁr ?(t,ty)Bu(t)dr + DU*(t)
Iv.3.21

is finally obtained.

NOTE IV.3.5: We, thus, have shown the strong resemblance
A(t-tg)

between the exponential transition matrix e for

a square A of finite size and our transition matrix
®(t,t0). Now we will investigate the nature of our state
space and an essential property of our infinite A matrix
that may bear strong relation to the stabllity of the
objectG?D under consideration. The following theorem is
the main reason for all the work we had to go through in
A.3 when defining the convolution of a distribution in

L', with an input from U it makes it possible to show

D’
that Z(to) is a closed linear subspace of the classical

Hilbert space {2, which could not be proved if U. was

D
not taken as the space of sgquare summable functions over

(-»,b) for any finite b.

THM.IV.3.6: TFor each toe(-w,w), the state space ZD(tO)

of the object Gb is a closed linear subspace of the

classical Hilbert space 12.
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-] © 2
:x |ai| <o}, To prove
i=1 i=1

this let X(tO)GZ'(tO),then by Def.IV.3.2 xn(to) =

PROOF : ZD(tO)Cf2 A {{a;}

€
0 -
_mf Wn(to-T)uO(T)dr for some uOEU(-w,tOJ’ n=1,2,...

where xn(to) is a component of X(to). Thus: xn(to) =
- i 2

<¥ (tg-1),(uyp0) (1)> since uygO€L (—o,e)+ Thus

x (ty) 1s the Fourier coefficient of uyo0 for each n

with respect to the complete orthonormal basis
{Wn(to—r)}n:l. Invoking a classical theorem (see e.g.,

[PO, p. 36]) we can write: nglk&kﬁtO’T)’(uOOO)(T)>|2 =

®© 2 2 2 s
n£1|xn(t0)l < |lugo0l [“<> since uyp0€L (=) MaKiNg

X(to) a square summable sequence and proving ED(tO)€{2.

Z'(to) is a linear subspace. Let Xl(to) and

1

X2(to)€ZD(to) and a, a scalar. Then there exists u~,

2
n(t

2 ) 1
and u OGU(-w,tO] such that: ax n(to) + x 0)

v
a_wf‘own(to—T)ulo(T)dr + _thOWn(tO-T)u2o(r)dr =

t
_mj.own(to—r)[aulo(r) + uZO(T)]dT. Since the input space
is linear, aulo + u2er( = t ] (Fact III.2.3) which gives
-5t

1 2
that aX (to) + X (to)ezD(tO).

i ®
Z'(to) is closed. Let {X (to)}1=1 =

{(xli(to),x2i(t0),....)} be a sequence in ZD(to) and let

lim Xi(to) = X in {2.. We want to show that X is a state,

130
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i.e., that there exists uEU( such that X, =

_oo,toj
o th
_mj Wn(to-r)u(T)dT for n=1,2,... where x, 1s the n

component of the infinite 1limit vector X.

1im x1(t,) = X(t) e=>1im |[X(t,) - x (s )]] = 0

i ) js>oo

by definition of convergence in {2.

® 1
«—1im ) X (t ) - X (t ) = 0
15w n=1| n o0 n' "0 |

by definition of the norm in {2.
Iv.3.24

For each i, as Xi(tO)EZD(tO), there exists an input

1 _J’to
uiEU(—w,to] such that x n(to) = _ Wn(to—r)ui(r)dr

_wf Wn(to-r)(uioo)(r)dr for n=1,2,... Since €° is

isomorphic to Lz(_m,m), given any element of 22, e.g.,
X(to), there is a corresponding element, uEL2(_oo ) such
3

00
that [BE]: xn(to) = _wf Wn(to—r)u(T)dT for n=1,2,... Then:

o i 2 _ . ®
lim L |xn(t0) - x rl(to)l = 1im L | ‘ Wn(to—r)[u(r) -
i+ n=1 jr n=1

(uiOO)(T)]dT|2

= 1im 3 |<¥_(t.-1), ult) -
i+ n=1 n*-0
(uiOO)(T)>|2

= 1lim |]u(t) - (uiOO)(‘r)H2
>0

by Parseval's equality.
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= lim _mfmlu(r) - (uioo)(T)|2dT

>

by definition of L2

(_oo,oo)
norm.

= 1lim _mjtolu(T) - ui(t)|2dr +

i

t'[ lu(t)|%dr = 0
0

Therefore u(t) must equal zero i.e., for t > t so that

0,
the convergence in IV.3.24 holds. Thus, the function

a(t) = u(t)/(_m ¢ will certainly be in U(_m £] and
3 b
0

0!
_ 0

will be such that xn(to) = _wjt Wn(to-r)u(r)dr,

n=1,2,... proving that ZD(to) is closed for any

tOE(_OO,OO) .

NOTE IV.3.6: 1In concluding this section, our aim now is

to show that the infinite matrix A in the state equations
IV.3.1 is a Hilbert matrix (Def.B.3). As our infinite
state vectors are from {2, that makes A a bounded operator
mapping {2 into 42 (Note B.2), thus enabling us in the
future to investigate about the spectrum of A and its
other properties and carry out some important analysis of
the object(&D such as 1its stability.

However we could only prove that A 1s a Hilbert
matrix, under an assumption for the eigenvalues {An}nzl
of the operator 41, in Not.A.2.1 used to generate the
testing function space & (Def.A.2.8) and their dual space

A of distributions, to which w belongs. The eigenvalues
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{An}nzl were already real and no value of A was assumed
more than a finite number of times. The numbering was so
chosen that |A1|<|A2|< ... . This clearly implies that
|)\n|->oo as n »», Now, although we conjecture that Thm.
IV.3.7 is true without any further assumption, we assume
that there exists a finite integer p, such that n§l|xn|‘p0<w
converges. This assumption is not too An#0

restrictive, since the eigenvalues of many M operators

seem to possess this property (see [ZE2] for some examples).

THM.IV.3.7: In the dynamic equations IV.3.1 and IV.3.2 of

Op> the infinite matrix A is a Hilbert matrix and the

coefficients c, are such that there exists an integer

[oe]

qy > 0 for which nZ1 | A

Ap#0

|7%%0]c | %<
n n

PROOF: That the cn's are such is given by Thm.A.2.16

since ¢ A <w,¥ >, n=1,2,... To show that A is a Hilbert
n = n

matrix we proceed in five steps:

[}

(1) <¥r ¥ > = [y (v (0)d =¥ (oY (6) | -

_wf Wn(t)W'm(t)dt = —<Wn,W'm> since Wn(tw) = 0 for

n=1,2,... by Fact A.3.3.

e 8

(11) From (i) it follows that 1<Wn,W'm>Wm(t) converges

m

in Ol as well as 1

|
m <Y n,Wm>Wm(t). Then using

1

o]

Thm.A.2.13 we have that _Z [A_|

2k 2
o1 |a converges

nml
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for every k = 1,2,... and for every n = 1,2,.

whereas ngllkm|2k|a 2 converges for every

nmI
k =1,2,... and for every m = 1,2,..., since

, 1
qam & <Yty
z

Now we will show that <
m=1

< i -
lanml M, where M is inde

prendent of n. By Note IV.3.6 there exlsts a finite

oo

such that _Z. |A_|"°K0 converges. But

kO m=1 m

An=0
OZO bkg . .
m=l|>\m| Iamrl converges for every n, since it is

convergent for any integer power of the Am's. Thus
given € = 1, there exists a finite My such that

|2<1 as the Am's have finite

multiplicity and no finite point of accumulation.

“kl |2 < 1 and that

oo

It then follows that IAml

a
mn

|amn|<lxm|_2k0 fer all m » my. Thus, mgmolamnl <

0
mgm Ikml—zko whichi is certainly bounded independent
O 0
of n. Su we have L J|a

< M
m=mg mnl X

1 independent of n.

Mo

Now we have to show that mgl 1s bounded

la,, |
independent of n. This time looking at the series
EATWELIPNE

a__|“ which converges for every m and in
n=1"'"n mn
Ap#0

particular for m = l,2,...,mO we can proceed as
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: -2k
above to obtain that |amn|<|An0| for all n

greater than some np. As the Xn's are so ordered

that |An <X whenever n; < n, (Not.A.2.1) we

o

1 2
can write lamn|<lkn0|'2k0 for all n > n,. Now:
T 2k
for n > ng, mEllamn|<mo|>\n0| O, and for n < ng,

we have finite number of terms of the form
mo

Z c
m=1|amn| for each n. So defining M, 4

m mg

-2k
max{molxno| 0

[e o}

X
m=1|amn| independent of n. Finally

the bound on

co

I<Ml + M, = M proves (iii).

z
m=1|amn 2

(o0}
(iv) In exactly the same fashion, that _LI.|a__|<M'
n=1'"mn

independent of m, can be shown.
(v) The hypothesis of Thm.B.2 being satisfied it follows

that A i1s a Hilbert matrix.

IV.U--Approximation of a Large Class of
Objects Having Finite Dimensional
State Description

NOTE IV.4.1: 1In this section we are dealing with a very

general class of linear, time invariant, contilnuous
objects, 1.e., with convolutional objects (Thm.IV.2.2 and
Note IV.2.2), without any restriction on their impulse

response w(t), but with some restrictions on their
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input space. The approximating objects all have reduced
state descriptions of the form:

dx(t)

T = AX(t) + Bu(t) IV.4.1

dku(k)(t) IV.4.2
0

y(t) = CX(t) +
k

o=

where all vectors and matrices are finite.

Again we start with the definition of the object
under consideration and continue with the definition of
the term exponomial, an expression which is the combina-

tion of "exponential" with "polynomial."

DEF.IV.4.1:

The linear, time invariant, continuous (therefore
convolutional) object under consideration is called an

G, object iff its input space: ka A{u(t) : u(t) is a
regular distribution with support bounded from the 1eft}

and the I-0 pairs are given by: R, A {(u,y) : uey, .,
I I

y(t) = w(t)*u(t) and supp w(t)C[0,>)}.

DEF.IV.4.2:

A SIMPLE EXPONOMIAL IN t is a polynomial in t
multiplied by the exponential in t (e.g., EXPOL(t) =
vt Yt n vyt
0€ + alte + ... + ant e'”). An
EXPONOMIAL is the sum of simple exponomials.

eYtP(t) = g
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THM.IV.4.1: Let Q be an open subset of R™. Any distri-

bution in @ 1s the limit of a sequence of exponomial

functions.

PROOF: The proof is really trivial 1f we consider
Thm.A.2.3 and that the polynomials are a subset of
exponomials. Therefore exponomials are dense in &',
in the topology of &', since the polynomials are dense

in B'.

NOTE IV.4.2: Due to Thm.IV.4.1, and if we take Q =

(-=w,o), w(t) can be written as:

a4 kui 5
. i -1 vyttt
w(t) = 1im & Z ol gV7ieYu where the convergence
{50 =1 v=1 "uv 4
is in ®'. Iv.4.3

Using Note A.3.5, as supp w(t)C[0,»), w(t) can also be

written as:

1 K
w(t) = 1lim £Vl Yu t1(1:) + 3

(k)
v . dké (t) in b°'.

0
IV.4.4

We would like to note that in IV.4.4, the form that we
will be using for w(t), the integers qy and kui are

finite for each i and for each u.

NOTE IV.4.3: It would be much nicer if w(t) was given by

o k]J

a summation of the form w(t) = ¢ T C
v
u=1l v=1

£V 1eYubty ()

where either ku is finite for each u, in which case
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we have an infinite number of poles with finite multi-
plicity, or ku is allowed to be infinite for some u,

in which case we have poles of infinite multiplicity.

In such a case of infinite serles expansion for w(t),
the development is much in the same lines as the follow-
ing development for IV.4.4, The question is to find out

what impulse responses w(t) have such a series expansion.

THM.IV.4.2: Let an (& object be given with

k
gy el oy 1 K (k)
w(t) = 1im g y ¢ vt e'™ "1(t) + ¥ dk6 (t) IVv.4.4
{+e p=1 v=1 " k=0

Then the object(% can be given the following generalized
dynamic description. For each 1, where 1 denotes a

superscript and not an exponent:

ax~ ,(t)
RS B xi(t) +y 11 () + pt .u(t) where
ar u(g+yy P M "
j=1,2,...,k: and u=1,2,...,q, IV.4.5
1
a; Ky K
y(0) = 1m gl z k(0] + 3 a,u® (v). V. 4.6
i u=1 J:l j k=1

PROOF: By Def.IV.4.1 of an & object and IV.4.4 the
output to u(t)EU(_°° ») 1s glven by:
3

1
q, kup _ i
y(t) = w(t)su(t) = 1im [ £t 3 civtv TeYu t1(eysu(t)] +
1+® p=1 v=1 ¥

K dku(k)(t) V. 4.7
k=0
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where the limit can be taken after the convolutilon due to
Thm.A.2.10 since all distributions involved have support
bounded from the left.

For each i1, we define the coefficlents biv as

follows:
i i i i i
b, & (v-l)!cuv - Vvler 4y Where ¢, 0y 4 0 for vil>k,

Iv.4.8

with these new coefficients, rememberlng that i denotes
a superscript not an exponent the summation over v in

IV.4.7 takes the form:

i i.1 v=1
ky i kym b t
T civtv LeYu t1(t) =[ 5 QE; . +
v=1 H v=1
kui biuvtv—2 v
T - +...+ Db Je 1(t)
= (v=2)! uki
u IVou‘g
i v-J
kpl kyl b=t 1
- UV tyu
= 3 5 —, Je 1(t) 1IVv.4.10
§21 v=j (v 35.

To verify that the right hand side of IV.4.9 with IV.4.8
gives the left hand side of IV.4.9, we note that for
every coefficient of every power of t, i.e., the coeffi-

cients of tY"! from v = 1 to v = kui, we have:
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gd-1 i 1 1

_edt i
Gy Lo g PP (qepyte -0 ukiu]- Gy L=t -

i o1
RIS PACLIRTE TS Py

(j+1)1ct 4

p(g+2)”t

i i .
(k™. =1)!'c i ]
u pk "

i

= C -1

J
th

for v = j, J arbitrary, all the terms in the brackets
except (j-l)!ciuj cancelling each other. Now, for each

i again, we define:

k1 opt gV i
j(t) A0z o e M 11 (t)*u(t) IV.4.11
v=] :

Differentiating IV.4.11, as given by Thm.A.2.9, in the

distributional sense

i 1
dx~. . (t) kpl b c i
uJ - d YY) v-3 _Ty*yu
dt[ T m!t e 1(t)]xu(t)
dt v=]
ki . opi
W g UV v-J ty u
vz el g 1(t)I*u(t) IV.4.12
5 v-j-1
= ¥ ————-—7 u
v=j+1l (v-J-1
v-J
kyl bl 5
i UV ty
OIS o= TSRS
1 vt V7
u ;
R o S ICORPINGS IV.4.13
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In IV.4.13 the first and second summations are easily

i i :
recognized to be x u(j+l)(t) and X uj(t) respectively
due to IV.4.11. 1In the third summation of IV.4.13 all

v-J tyi
the terms are zero since t e H§(t) = 0, except for

V = j in which case we have the term

3
bipjety Hs(t)su(t) = biuju(t). Thus IV.4.13 becomes:

axt ()

AT R
at

i i

(t) + b uju(t) where

i
p(ge) (B YT xT

j=1,2,...,k1u for u=1,2,...,q; IV.L.5

Substituting IV.4.10 into IV.U4.7 we obtailn:

1 v-J
a; kpt ket 67T g
y(t) = 1lim g~ [ ¢ x = e’ ! Ml(t)xu(t)] +
Tow el jo1 yeg (VI
K
5 dku(k)(t) TV.4.14

k=1

Finally using the definition for xiuj(t), IV.4.11 in

IV.4.14 we get IV.L.6.

NOTE IV.4.L4: The next theorem, the main result of this

section, is the one advertised much earlier. It shows
that any object @h , can be approximated with objects
having a finite dimensional state space. We think this
result is important because we are thus given the possi-
bility of approximating closely distributed systems,

with lumped RLC networks that have a finite number of
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elements. However, what subset ofC% cbjects can be
approximated by such RLC networks is still an important

question that remains open.

DEF.IV.4.3:

Let the objects & and @3 for i=1,2,... be given by
their I-0 list R and Rif' Then & is said to be the
LIMIT of the objects (9'1, G = 1im (91, iff:

)
(1) O and ®; for 1=1,2,... all have the same
input space Uf‘
(ii) If ueUf and (u,y)eRi, (u,yi)éRii for
i=1,2,... then y = lim y, in b'.
i+
THM.IV.U4.3: Every GE object is the 1limit of objects
AP which have a finite dimensional reduced state descrip-

tion of the form IV.4.1 and IV.4.2.

PROOF: For each i, the expressions IV.4.5 and IV.4.6

can be written in the matrix form:

1 L1 o T [« i
xt Y1 oo 0 x* g ot 4
1 T i k
Xe 0 vy de 0 * 2 22
4 = T : + | u(t
dat | : : : . *i ; ) (t),
X i . : - X i b 1
uk " 0 0 ou.u.yiu uk u uk u
e — — _J — — — —

for u = l,2,...,qi. IV.4.15
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We write IV.4.15 in the more compact matrix form:

—u_ i Xiu + B ult) IV.4.16

where the definitions of the involved entitilies is self-
explanatory. Now combining IV.4.16 for different values

of u, we obtain:

(1] 1 vt 7] [at 7
X* Jt, 0 0 X7 BY,
i 1 i i
X7 O dTy0 X7, By
d _ |- Co : ; :
Tt = |: ; L : + : u(t), for
xi 0 0" Jiq Xiq Biq each 1.
4] L i [ %] [ %
III.4.17

Equation IV.4.6 can also be written with matrix notation,

as:
1]
X7
i
X75
: : X (x)
y(t) = 1lim [1,4 1,3 ...1 1 1 | + I douti(t) IV.4.18
{+oo 1 %72 u : k=1
xiq
. i—J
i .
where 1_kJ A [1 1....1]lka is a row vector.

Now, defining the I-O 1list Ri by IV.4.17 and



: K (k)
y.(t) = [1 1,4 ...1. 3 11]: + v d,u (t) IV.4.19
i kil ki, k y : k=1 k

we obtain the objects B,, such that G = 1im G, since

i

y(t) = lim yi(t) in B'. Moreover, the state description

i+
obtained from the state equations IV.4.17 and IV.4.19 is
a reduced description for eadq&i by Thm.III.4.2, since:

(1) every matrix Jiu in IV.4.17 is an elementary

Jordan block, and

(i1) the leading entry of each 11 (ck(l) in

J
Thm.III.4.2) is 1, and the last entry of each

B (b ‘9K 4p Trhm.III.4.2) 1s bl 1 A
M k uk L

i . s
-1)! i S
(k " 1).cLJ , where Cukl is the coefficient

H H

t
of the term with the highest power of t in

each simple exponomial and therefore assumed

to be non-zero.

NOTE IV.4.5: Similar to the development in section IV.3,

it can again be shown that:
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t i
' ~ . . 0 p_TY HA -
H tO[uO] A {uOEU(—W,to] : for each 1,_wj- ™e uO(T)dT =

t i
_w[ 0. PTY uuO(T)dT where p = 1,2,...,k~ -1
and u = 1,2,...,qi} IV.4.20
or equivalently that:

Hto[uo] A {uOEU(-“,tOJ : for each i,

i
kyl b Jt . 1
UV 0+ yV-d (=t )y u =
vij =37 =o (1-ty) e 0 ug(t)dt
1.1
k,1b 1
H v ’ 0 v=j (1=t )y ua
ij 3! - (T-to) e 0 uo(r)dr
for J=1,2,...,kiu and u = 1,2,...,q;} IV.4.21
and ¥'y, = {H', [u,] : U0EU (o ¢ ]} constitutes a half
0 0 >0

reduced partitioning. The equivalence of IV.4.20 to

IV .4,21 follows from c, N # 0 and parts of the proof of
Koy

Thm.III.4.2. Now defining successively:

)&k T3%§7! —wjto(to‘T)v-Je(to—T)Yl“u(T)dr

i1,u,j as in IV.4.21, then
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i 1 i i T
X Ll(to) A [x ul(to) X u2(to)....x Wi (ty)]" for 1,u as
U
i i i i T
in IV.4.21, then X (to) A [X 1(to) X 2(to)....x qi(to)]
for i=1,2,... and finally the set Z'G(to) A
1 2 T
{x(ty) : X(ty) = [X7(t)),X(ty),.... 17}, IV.L4.22

we can show the existence of a one to one, onto mapping

C', between Z'L(to) and R't due to IV.4.21. Z'G(to) and
0 0

y(t) A KG(tO,w)(OO’u) =

1 i v=J
qi kpt kyt (t-ty) (t-t )yl 1
lim 7 y [t e 0/ Y ux (t)] +
{+ p=1 j=1 v=j V-3 MVl

w(t)*u(t), for t > t IV.4.23

0

constitute a half reduced state description of the object
BG (IV.4.23 is easily derivable from IV.4.11 and IV.4.14).
An important point of the state description (Z'G,EG) is

the countable dimension of its state vectors, Def.IV.4.22.



CHAPTER V

CONCLUSIONS

It is our hope that with the discussion in Chapter
I T, the state axioms have reached their final form. The
main contributions of thils chapter have been this final
fform of the state axioms and the establishment of the
Strong connection between equivalence classes of inputs
and reduced state descriptions. We have shown that the
reduced state description of a causal object is almost
unique. This chapter has also provided us with means of
constructing state descriptions that are half reduced.

Using the concepts and the results of Chapter II
in Chapter III, we proved that linear and/or time-
invariant objects can always be provided with linear
and/or time-invariant state descriptions; a result of
rather academic value which shows that properties of
objects need not, and it is our belief that they should
not, be given in terms of their state descriptions.

One of the contributions of Chapter IV has been to
ob taln a half reduced state description for a large class
of distributed objects based on the construction in
Chapter II, and to generalize concepts such as "Funda-

mental Matrix" used in lumped systems. The other main

147
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result of this chapter was to approximate very general

A dstributed systems by lumped objects possessing reduced

s tate descriptions using results from Chapter IV.

Many open questions that constitute a rich basis for

f"urther research arose during the development of the

+ hesis.

A few important ones, starting with the obvious

qguestion about the state description of non-linear and/or

£ Iime varylng objects, are:

1.

The reflection in the state description of
properties other than linearity and time-
invariance, such as continuity, of the system.
The forms the state descriptions willl take after
interconnections of different objects necessi-
tating a study of the equivalence classes of in-
puts from the individual classes of each system.
Studies about the stability of the system using
the Hilbert matrix representation obtained in
Chapter IV and spectral theory.

The approximation of distributed systems by
stable and lumped (or lumped RLC) :wtjects by
placing restrictions on their convolutional

representation.

Finally, the synthesis procedures obtained in [DA],

for the state description in [RES5] (given in Chapter I),

constitute another solid justification and application of
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t he State Space Theory. It is strongly possible that some
syntehsis procedures can also be derived from the state

Adescriptions in Chapter IV of this thesis.



LIST OF REFERENCES

L AR] Arsac, J. Fourier Transforms and the Theory of
Distributions. Englewood Cliffs, N.J.: Prentice-
Hall, 1966.

C BA1] Balakrishnan, A. V. "Linear Systems with Infinite
Dimensional State Space." Symposium on System Theory,
Polytechnic Institute of Brooklyn, April 20, 21, 22,
1965.

(BA2] . "On the Problem of Deducing States and States
Relations from Input-Output Relations for Linear
Time Varying Systems." SIAM Journal on Control,
Vol. 5, No. 3 (1967), pp. 309-325.

[BA3] . "On the State Space Theory of Linear Systems."
Journal of Mathematical Analysls and Applications,

[(BA4] . "Foundations of the State Space Theory of
Continuous Systems 1." Journal of Computer and
System Sciences, Vol. 1 (1967) pp. 91-116.

[(BA] Bashkow, T. "The A Matrix, New Network Description."
IRE Transaction on Circuit Theory, Vol. CT-4
(September, 1957), pp. 117-119.

[(BEL] Beltrami, E. J. and Wholers, M. R. Distributions and
Boundary Values of Analytic Functions. New York:
Academic Press, 1966,

[(BE] Berberian, S. K. Introduction to Hilbert Space.
New York: Oxford University Press, 1961.

[BRE] Bremermann, H. J. "Some Remarks on Analytic Repre-
sentations and Products of Distributions.”" J.
SIAM Appl. Math., Vol. 15 (1967), pp. 929-943.

BPR] Bryant, P. R. "Order of Complexity of Electrical
Networks." 1Ins. Elec. Engrs. (London). Monograph
No. 335 E, June, 1959,

150



151

[ COL] Coddington, E. A. and Levinson, N. Theory of
Ordinary Differential Equations. New York:
McGraw-Hill, 1955.

C co] Cooke, R. G. Infinite Matrices and Sequence Spaces.
London: Macmillan, 1950,

C DA] Daryanani, G. T. and Resh, T. A. "Foster Distributed-
Lumpted Network Synthesis." IEEE Transactions on
Circuit Theory, and the 1968-IEEE International
Symposium on Circult Theory, Miaml Beach, Florida,
December, 1968.

CDO01] Dolezal, V. Dynamic of Linear Systems. Prague:
Publishing House of the Czechoslovak Academy of
Sciences, 1964,

[ Do2] . "On Linear Passive n-parts with Time-Varying
Elements." J. SIAM Appl. Math, Vol. 15 (1967), pp.
1018-1029.

LGU] Guttinger, W. "Generalized Functions in Elementary
Particle Physics and Passive System Theory: Recent
Trends and Problems." J. SIAM Appl. Math., Vol. 15
(1967), pp. 964-1000.

[(HE] Hewitt, E. and Stromberg, K. "Real and Abstract
Analysis." Springer-Verlag, New York, Inc., 1965.

(HO] Hoffmann, K and Kunze, R. Linear Algebra.
Englewcod Cliffs, N.J.: Prentice Hall, 1961.

[HOR] Horwath, J. Topological Vector Spaces and Distri-
butions. Reading, Mass.: Addison-Wesley, 1966.

[KA] Kalman, R. E. "Mathematical Description of Linear
Dynamical Systems." J. SIAM Control, Ser. A,
Vol. 1, No. 2 (1963), pp. 152-192.

[HU] Huffman, D. "The Synthesis of Sequential Switching
Circuits." J. Franklin Inst., Vol. 257 (April,
1954), pp. 161-190.

[KE] Kestelman, H. Modern Theories of Integration.
Oxford at Clarendon Press, 1937.

LRI] Kinarawala, B. "Analysis of Time Varying Networks."
1961 IRE International Convention Record, pt. U4,
pp. 268-276.



CLI]

(MA)

LMol

[ NE1]

LNE2]

CPA]

[PO]

[RE1]

[RE2]

[RE3]

(RE4]

(RE5]

152

Liverman, T. P. G. "Physically Motivated Definitions
of Distributions." J. SIAM Appl. Math., Vol. 15,
(1967), pp. 1048-1076.

Manning, A. An Introduction to Animal Behavior,
A series of student texts in Contemporary Biology.
London: Addison-Wesley, 1967.

Moore, E. F. '"Gedanken Experiments on Seguential
Machines." Automata Studies. Princeton, N. J.:
Princeton University Press, 1956, pp. 129-153.

Newcomb, R. W. "The Foundations of Network Theory."
The Inst. of Engr., Elec. and Mech. Trans., Vol.
EM-6 (1964), pp. 7-12, Australia.

. Linear Multiport Synthesis. New York:
McGraw-Hill, 1966.

Papoulis, A. The Fourier Integral and its Applica-
tions, Electronic Science Series. New York: McGraw-
Hill, 1962.

Porter, W. A, Modern Foundations of Systems Engineer-
ing. New York: The Macmillan Company, 1966.

Resh, J. A. "An Improvement in the State Axioms."
Report No. R-282, Coordinated Science Laboratory,
University of Illinois, Urbana, Illinois, March, 1966.

. "Improvements in the State Axioms." Con-
ference Record, Tenth Midwest Symposium on Circuit
Theory, Purdue University, Lafayette, Indiana, May,
1967.

. "On the Constructicn of State Spaces."
Proceedings Fifth Annual Allerton Conference on
Circuit and System Theory, University of Illinois,
Urbana, Illinois, October, 1967.

"On Canonical State Equations for Dis-
tributed Systems." Conference Record, Eleventh
Midwest Symposium on Circuit Theory, University of
Notre Dame, Notre Dame, Indiana, May, 1968.

, and GGknar, I. C. '"Derivation of Canonical
State Equations for A Class of Distributed Systems."
Proceedings Sixth Annual Allerton Conference on
Circuit and System Theory, University of Illinois,
Urbana, Illinois, October, 1968.



[RI]

[(sc1]

[sc2]

[SH]

[(TR]

[(WE]

(wo]

[ZAl]

[ZA2]

[zA3]

[ZE1]

(ZE2)]

[ZE3]

(ZE4 )

153

Riesz, F. and Nagy, G. S. Z. Legons d'Analyse
Fonctionelle, Budapest: Academie des Sciences de
Hongrie, 1953.

Schwartz, L. Theorle des Distributions. Vols. I
and II. Actualités Scientifiques et Industrielles.
Paris: Hermann et Cie., 1950-1951.

. Methodes Mathématiques pour les Sclences
Physiques. Paris: Hermann et Cie., 1961.

Shannon, C. E. "A Mathematical Theory of Communica-
tion." Bell Sys. Tech. J., Vol. 27 (1948), pp. 379-

Treves, F. Topological Vector Spaces, Distributions
and Kernels., New York: Academic Press, 1967.

Weilss, L. and Kalman, R. E. "Contributions to
Linear System Theory." RIAS Tech. Report, No. 64-69
(April, 1964).

Wohlers, M. R. and Beltrami, E. J. "Distribution
Theory as the Basis of Generalized Passive Network
Analysis." IEEE Trans. on Circuit Theory, Vol.

CT-12 (1965), pp. 16H-170.

Zadeh, L. A. "From Circuit Theory to System Theory."
Proceedings of the IRE, Vol. 50, No. 5 (May, 1962),
pp. 656-865.

, and Doscer, C. A. Linear System Theory.
New York: McGraw-Hill, 1963.

"The Concept of State in System Theory."
Views on General System Theory. Edited by M. O.
Mesarovic. New York: John Wiley and Sons, 1963

Zemanian, A, H., Distribution Theory and Transform
Analysis. New York: McGraw-Hill, 1965,

. "Orthonormal Serilies Expansions of Certain
Distributions and Distributional Transform Calculus."
Journal of Math. Anal. Appl., Vol. 14, No. 2 (May,
1966), pp. 263-275.

Zemanian, A. H. "An Introduction to Generalized
Functions and the Generalized Laplace and Legendre
Transformations." SIAM Review, Vol. 10, No. 1
(January, 1968).

. "Applications of Generalized Functions to
Network Theory." Summer School on Circuit Theory,
Prague, Czechoslovakia, June-July, 1968.



APPENDIX A

A.l--About Distribution Theory

It has been some twénty years since Schwartz intro-
duced and developed his theory of distributions, a theory
that owes its birth to physicists, who have used the delta
function since the nineteenth century [ZEl preface].

Mathematicians have plunged into it and a large
body of mathematical literature has been published 1in areas
such as ordlnary and differential equations, operational
calculus, transformation theory and functional analysis.
This impetus mathematics has gained from physics did not
prevent the more and more abstractization of distribution
theory, which is now going the entangled paths of topology
and topological vector spaces [TR, HOR].

In mathematical sciences, the most notable applica-
tion of distribution theory has been to quantum field
theory [ZE4, p. 1]. 1In network and system theory it has
been extensively used in the axiomatic foundation of
system theory [ZEl, 4], in the time-domain theory of linear
n-ports, in obtaining a frequency-domain criterion for
the causality of active networks [ZE4, secs. 4, 5, 6], in
the theory of generalized Bode equations and in the

characterization of various broad classes of systems by
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their real frequency behavior, [AR], [BEL], [WO0], [GU],
etec. Distributions have also been used in an essential
way in the analysis and synthesis of time varying net-
works, see e.g. [NE1-2], [DO1-2]. 1In other subjects,
various classical problems which had been solved in terms
of classical mathematics, become open problems once again
when reformulated in terms of distribution theory [ZEY4,
pp. 11.

There exists a serious drawback to distribution

theory and this 1s its uselessness in the theory of non-

linear systems, which 1s due to the fact that the product S
of two distributions cannot be defined in general, but

only when one of the distributions is a special one. How-

ever, efforts are being made to generalize the product of

distributions which are used in quantum field theory [BRE].

This may render possible the application of distributions,

at least to special classes of nonlinear systems.

Despite this extensive use of distributions, some
applied scientists are reluctant to accept the description
of physical quantities by a concept that is not an
ordinary point function, but 1s something of functional
nature [PA]. That this objection of philosophical nature
is not Justifiable, can be shown as follows. First of
all we can take the attitude of Newcomb when, he assumes
physical variables are infinitely differentiable, and

Justifies it with: "since no physical measurement can
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prove otherwise" [NE2, pp. 6]. We can equally well say
"all physical quantities are distributilions since no
physical measurement can prove otherwise." However we
shall try to do more, since such reasonings can prove
anything (i.e. nothing).

To begin with, the assumption that a physical

variable F can be characterized with an ordinary function il
f(t) is a convenient idealization [PA]. Why should we not

characterize F with a distribution, if that is also a

convenient idealization (which we think it is)? A propos,

Zemanian writes: "It is impossible to observe the instan- .

tanecus values f(t) of F. Any measuring instrument would
merely record the effect that F produces on it over some
nonvanishing interval of time" [ZEl]. Now, it may be that
this uncertainty about F being representable by a function,
is due to the imperfecticn cf our measuring instruments.
The fact is that the imperfection will always be there
since indicators will always be subject to parasitic
effects such as mass, and we will always Jjustify our
theories with measurements using such instruments. Thus,
it is a more realistic assumption, as we can infer that
much from the physical measurements, to characterize F by
a distribution.

Finally, Liverman in a recent Article [LI], gives a
physical motivated definition of distributions, by showing

that one obtains the same space of distributions when one
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confines himself to the testing functions that are pro-
bability densities, i.e. p(x) 20, p(x) is infinitely smooth
and fp(x)dx =1, instead cf considering the space & of all
testing functions. As physical background Liverman roughly
says: if f(x,t) is the characterization of the physical
variable F, where x and t are the space and time variables,
a measurement of F yields a quantity f(x,t)+en(x,t), where
ek's are error functions and a particular one e, is in
effect during the experiment. Furthermore, a measurement
of the location (x,t), actually occurs in (§,E+dg)x(T,T+dT)
with probability p(g,t)d&.dt . Then the expected value of
a measurement of F, intended to be at (x,t) is the welghtead
average: <f+en,p> = <f,p> + <en,p>. The functions e, are
random and we assume the expected value of <e,sp> over

various k, to be zero, Thus:
<fte ,p> = <f,p> = Sf(E,1)p(E,T)dE.dT.

Finally Liverman points that, tc say l%m fv(x,t) exists
pointwise or uniformly becocmes a physically non-verifiable,
mathematical assertion. The statement l%m <fv,p> exists
for every probability density is operationally much more
relevant, and consistency requires that we include into

our list all functionals f such that <f,p> = l%m <fv,p>

for all prcbability densities p. This leads us to gen-

eralized functions, which turns out to be a better pencil
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and paper depiction of physical phenomena, in the
presence of errors in the experimental determination of
physical variables.
In the following sections of the Appendix we intro-
duce the necessary definitions and already proven results
in A.2., and prove some new results in A.3. mainly about
the orthonormal series expansions of distributions, that el

are needed in Chapter IV.

A.2--A Brief Review; Some Definitions
and Results in Distribution Theory

NOTE A.2.1: The definitions and notatlons used are con-
sistent with those used in [ZE1,2]. Known results are
given without procf, where a reference to the proof is
made with the page and thecrem number of the corresponding

theorem in the literature.

DEF.,A.2.1:
A function is INFINITELY SMOOTH ON A SET iff it has

continuous derivatives of all orders on that set.
The space of all complex valued functions p(t) that
are infinitely smooth and zero outside some finite interval

1 s called THE SPACE OF TESTING FUNCTIONS, and is denoted

by ».

DEF.A.2.2:
A sequence of testing functions bY(t)}:=l CONVERGES

IN % iff the py(t) are all in®, are all zero outside some
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THM.A.2.5 [ZEl, pp. 115, Thm. 5.2.1]
The direct product f(t)xg(t) of two distributions

f(t) and g(t) is a distribution in $Jt i
3

DEF.A.2.5:
The CONVOLUTION of two distributions f and g over R

is given by the expression

<fxg,p> A <f(t)xg(r),p(t+1)> A <f(t),<g(t),p(t+1)>> A.2.3

NOTE A.2.5: A problem arises in the definition of the con-

volution. In A.2.2, p(t,t) and thus <g(t),p(t,T)> had

bounded support, but in A.2.3 p(t+1) is infinitely smooth
without having bounded support and therefore it 1s not a

testing function. However a meaning can be attached to

A .2.3 if elther the supports of f and g are suiltably
restricted or some conditions are placed on the behavior
Of the distributions as their arguments approach infinity
(we will not give the theorems related to this last

S ituation because definitions c¢f new testing function and
d i stribution spaces are required; they may be found in

[Sc1, vol. II])). The following theorem illustrates when

the convolution process can be given a meaning. In section

A. 3 we investigate another case that is not given in the

11 € erature where the convolution can be defined.

-
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fixed finite interval I and for every fixed nonegative
interger k, the sequence {pY(k)(t)}:=l converges uniformly

for —o<t<w,

FACTS A.2. [ZEl, pp.5]

1: $ is closed under convergence in $ i.e. the limit
of every sequence that converges in®, is also in®.

2: {pY(t)}oYo=l converges in®, to p iff all the DY
are in £ and are zero outside a flixed finite interval and

the sequence {pY—p}:::l converges to zero in$& .

DEF.A.2.3:
Denoting the functional by f, the number it assigns
to any pé€® by <f,p> a DISTRIBUTION is a functional on ¥

such that:

<f,pitap,> = <f,p;> + a<f,p,> for p,, p,€H and a€l

if {pY(t)}:=l converges to O in#® then the numbers
<f,pY> converge to 0. The space of all distributlons on

$, dencted by &', is called the DUAL SPACE OF &.

NOTE A.2.2: In most of our discussions we will deal with
"~ distributions that are defined over the real line R, How-
ever for some theorems, especlally the ones about the
convolution of distributions, we will have to use distri-
butions over n-dimensional spaces. Thus we have to

expand our definitions to multi-dimensional cases. For this
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n
let xé(xl,xz,.,.,anHR, The TESTING FUNCTIONS are those
that vanish outside a compact set in R™ and for which all
partial derivatives exist and are continuous for all x.

Denoting the partial derivative by

e 0o .+
. akl+k2+ k
D7p(x) & —¢ " T P(X X550 ee,X))
N T
xl x2 xn ol

where k A kl + k2 + o0 + kn a sequence of testing functilons

{pY(x)}:=l CONVERGES IN & TO ZERO iff all pY(x) are zero

outside a fixed compact subset of R™ and {kaY(x)}:=l con-
verges to zero for any cholce of k.

Again, a DISTRIBUTION ON R” 1s a linear, continuous
functional on $ defined over R" (continuous in the sense

Py + 0 in ::;<f,pY> +0ind).

DEF.A.2.4:

Two distributions f and g are said to be EQUAL iff
<f,p> = <g,p>, YpESD.

The SUPPORT of a testing function pé$ 1s the closure
of the set of all points where p(t) is different than
zero, and 1s denoted by supp p(t).

Two distributions f and g are EQUAL OVER THE OPEN
SET Q@ iff <f,p> = <g,p> for every testing function p,
with supp p(t)CQ.

The complement of the union of all open sets, over

each of which a distribution f equals zero, is called the
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SUPPORT of f, denoted supp f(t). If a set O contains the
support of a distribution, that distribution is said to be

CONCENTRATED ON ©.

THM.A.2.1: [ZEl, pp. 30, Thm. 1.8.1.]
If a distribution is equal to zero on every set of
a collection of open sets, then it is equal to zero on

the union of these sets.

THM.A.2.2: [TR, pp. 266, Thm. 24.6]
The distributions in R which are concentrated on a
point, are the finite linear combinations of the §-

functional and its derivatives.

DEF.A.2.5:
A sequence of distributions {f }7_ ) CONVERGES IN &

iff for every pé$ the sequence of numbers {<fY,p>}:=l

converges. The LIMIT <f,p> of {<fY,p>}:=l defines a
functional on&®, and the next theorem proves that f is a
distribution.

00
A series §=lfy of distributicns CONVERGES in &' iff

m
the sequence h __A_%_ f_ of partial sums converges in &',

m 1y

THM.A.2.2: [ZEl, pp. 37, Thm. 2.2.1]

v=1
tc the functional f, then f is also a distribution i.e. the

If a sequence of distributions {fY} converges in &'

Space ' is closed.
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NOTE A.2.3: One way of generating an important class of
distributions is to imbed locally summable functilons into

$' thrcugh the convergent integral [ZE2, pp. 264]

<Tf,p>=§_£f(t)°p(t5'dt VpES A.2.1

More precisely, the distribution T because of A.2.1,

f’
represents the equivalence class of functions that equal

f almost everywhere. It is also worthwhile to note that

if Tf = Tg in $' then fi;i‘g is also true. Thus we shall

denote Tf by f, any function in the equilvalence class

that T, represents, and call such distributions REGULAR

f
DISTRIBUTIONS,

A.2.1 1s not the only way to generate distributions
from functions. Another standard procedure that leads to
the concept of PSEUDOFUNCTION is given in [ZEl1], [TRJ].

1/t which do

Hcwever there also are functions such as e
not define distributions no matter what procedure one
tries on them [TR, pp. 226].

The above simple discussion is useful since we con-
sider regular distributions frequently in our work and

is necessary for the next theorem that is of importance

in section IV.4.

THM.A.2.3: [TR, pp. 304, Thm. 38.3]
Let Q be an open subset of R™. Any distribution in Q

is the 1limit c¢f a sequence of polynomial functions in &'.
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NOTE A.2.4: Now we concentrate on the convolution of dis-
tributions which is a very general process. Various types
of differential equations, difference equations and
integral equations are all special cases of convolution
equations [ZEl, pp. 114]. The convolution is also a very
general way of characterizing linear, time-invariant and
continuous systems that we use in our developments of

Chapter 1IV.

THM.A.2.4: [ZEl, pp. 74, Cor. 2.7.2a]

Let x be an n-dimensional real variable and y an m-
dimensional real variable. Also, let p(x,y) be a testing
function in ® defined over?Rn+m. If f(x) is a distribution
defined over Rn, then 0(y) A <f(x),p(x,y)> 1s a testing
function of y in$® and an arbitrary partial derivative

D;O(y) with respect to the components of y is given by:
po(y) = <£(x), Dyp(x,y)>.
DEF.A.2.6:
Let p(t,T) be a testing function iIlQE o defined
L]
over*RQ, and let f(t)€#! g(T)E.S—'T be distributions over

ml' Then by THM.A.2.4. <g(1),p(t,T)> is a testing function

in.Qf and the DIRECT PRODUCT f(t)xg(t) is defined by

<f(t)xg(t),p(t,1)> A <£(t), <gl1), p(t,T)>>

A.2.2
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THM.A.2.5 [ZEl, pp. 115, Thm. 5.2.1]
The direct product f(t)xg(t) of two distributions

f(t) and g(t) is a distribution in $Jt T
3

DEF.A.2.5:
The CONVOLUTION of two distributions f and g over R

is given by the expression

<frg,p> A <f(t)xg(t),p(t+1)> A <f(t),<g(1),p(t+1)>> A.2.3

NOTE A.2.5: A problem arises in the definition of the con-
volution. In A.2.2, p(t,T) and thus <g(t),p(t,t)> had
bounded support, but in A.2.3 p(t+1t) 1is infinitely smooth
without having bounded support and therefore it 1s not a
testing functlon. However a meaning can be attached to
A.2.3 1f elther the supports of f and g are suitably
restricted or some conditions are placed on the behavior

of the distributions as theilr arguments approach infinity
(we will not give the theorems related to this last
situation because definitions of new testing function and
distribution spaces are required; they may be found 1n
(SC1, vol. II]). The following theorem illustrates when
the convolution process can be glven a meaning. In sectilon
A.3 we investigate another case that 1s not given in the

literature where the convolution can be defined.
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THM.A.2.6 [ZEl, pp. 124, Thm. 5.4.1]

Let f and g be two distributions over® . Then f#g
exists as a distribution over R, under any one of the
following conditions:

(i) Either f or g has a bounded support
(ii1) Both f and g have supports bounded on the left

(or on the right).

THM.A.2.7 [ZEl, pp. 124, Ex. 5.4.1]

If £ and g are locally summable functions whose
supports satisfy one of the conditions stated in THM.A.2.6,
then their distributional convolution h(t) = f(t)xg(t) is
given almost everywhere by the regular distribution cor-

responding to the locally integrable function

h(t) = £: f(1).g(t-1)dr.

THM.A.2.8: [ZEl, pp. 127, Ex. 5.4.3]
The convclution of ém)(t—a) with any distribution in

&', is given by: d(m)(t—a)*f(t) = f(m)(t—a) Mmly2,...

THM.A.2.9: [ZEl, pp. 132]

A convolution may be differentiated, by differentiating

either one of the distributions in it, i.e.

(r(t)ag(6)) ™ = £ (e)ng(e) = r(e)xe’™ (o)
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THM.A.2.10: [ZEl, pp. 136, Thm. 5.6.1]

Let the sequence of distributions {fy}:=l converge

in®' to f. Then {fY*g}:=ionverges in &' to f#*g if
[+ ]

{fY}Y=1’ f and g all have supports bounded from the left.

NOTE A.2.6: The remaining part of this section is devoted

to the orthonormal series expansion of certain distribu-
tions as given by Zemanian [ZE2] and which constitutes the
main tool in obtaining an infinite dimensional state
description of a large class of systems in section 1IV.3.
We first give the necessary notation, then state the

theorems that we use later.

NOT.A.2.1: [ZE2, pp. 262-265]

I = (a,b) denotes an open interval on the real line
and the case a = ~®, b =* is not excluded. Li 1s the

space of square summable functions on I with the usual
inner product <f,g> = Zf(t)ETETHt for f,g&L%.

9I denotes the space of all testing functions in %,
whose supports are contained in I..Q'I is the space of
distributions defined on $I.

With ek(t)# O and infinitely smooth on I, n denotes

the linear differentiation operator: n 4 O D™ 9, Dn2 co

Dnv Gv, where the n, are nonnegatlve integers and

K dk _ n,,

D™ = azﬁu The @k and n, are so chosen that n = @v(-D) v
n n

(=D) 2 §v(-D) 1 56. Moreover it is assumed that n
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possesses real eigenvalues An and normalized eigenfunctions
Wn, n=1,2,... with the properties that {wn}n=1 is a com-
plete orthonormal sequence in L% and the An are real, have
no finite point of accumulation (this also means no value
of An is assumed more than a finite number of times) and

are so numbered that |r,]|g|X

<ol e
The use of the symbol <.,.> to denote the inner pro-

duct in L%

distribution makes correspond to a testing function, since

conforms with its use to denote the number, a

m —
for a regular distribution f, <f,p> =_J f(t)p(t)dt

(Note A.2.3).

DEF.A.2.8:
The set of all infinitely smooth, complex valued
functions on I, such that yk(p)A[é|nkp(t)I2dt]%<m,k=o,1,2,...

and <nkp,Wn} = <D,nan> for each n and k, 1s the space

Ol OF THE TESTING FUNCTIONS with ﬁgs taken as seminorms
of O,

A sequence {pY}°Y°=1 i1s a CAUCHY SEQUENCE IN OL if
each Py is in Ol and for each k, yk(pY-pi)+O as y and i
tend independently to infinity. The corresponding con-

vergence 1s referred to as CONVERGENCE IN O,

FACT.A.2: [ZE2, pp. 265]
3: QI is contained in U and convergence in ‘bI
implies convergence in OL.

4: Each Wn is in oOL.



Anp 8

"
cuane N
PSS

-



168

THM.A.2.11: [ZE2, pp. 265, Thm. 1]

Ol 1s a sequentially complete space.

COR.A.2.1: [ZE2, pp. 268]

[}

If {p_}

nfn=1 is a sequence of testing functions that

converges in Ol , then {pn}:=l converges uniformly on every

compact subset of I.

THM.A.2.12: [ZE2, pp. 267, Lem. 1]

If p is in Ol then op(t) = I, <p,¥ > Wn(t) where the

=1

series converges inOL .

THM.A.2.13: [ZE2, pp. 268, Lem.2]
Let {an}§=l denote a sequence of complex numbers.,

2k
|“"a

|2
n

Then, ¥ a ¥ ~converges in Ol iff I | A

n=1 n n=1 n

converges for every k.

DEF.A.2.9:

The set of all linear, continuous functionals on Ot
1s the SPACE OF DISTRIBUTIONS Ot', and the number that feOU
assigns to any p€éOlis denoted by <f,p>. (By a continuous
functional on 0Ol we again mean if pY+O in Ol then the
numbers <f,pY>+O).

A sequence of distributions {fy}:=l CONVERGES INOU'
iff for every p€EM the sequence of numbers {<fY,p>}°Y°=l

converges i.e. Ol' has the weak topology generated by the

seminorms n¢(f) = |<f,p>
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THM.A.2.14: [ZE2, pp. 269, Thm. 2]

Ol' is a sequentially complete space.

FACT A.2 [ZE2, pp. 269]

5: By FACT A.2.3 the restriction of feor to,Bi is
in%}, and convergence in Ot' implies convergence in 2&.

6: By the above fact, L% and therefore Ot is imbedded

into Ot' by defining the number f€L2

I assigns to pelrt as

a
<f,p> A éf(t)a(t)dt.

NOTE A.2.7: Another subspace of OU' is the space of all

distributions with compact support in I. This with FACT
A.2.6 give us an idea about the size ofOl'. FACT A.2.6
also confirms us of the consistency to use the symbol
<.,.> in DEF.A.2.9.

The next theorem is the result which required all

this preparation.

THM.A.2.15 [ZE2, pp. 270, Thm. 3]

7
If fEQ! then f = % <f,wn>wn(t) where the series con-

=1
verge in Ot'.

THM.A.2.16 [ZE2, pp. 270, Thm.5]

Let b, denote complex numbers. Then §=lbn wn(t)

converges 1in OU' 1ff there exlsts an integer q 2 O such
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that £ |A
h)

-2 2
7% |
n¥0

n converges. Moreover, if f denotes

[e o]
the sum g=1 bn wn(t) in OU' then b, = <f,y,>.

A.3--Some New Results

NOTE A.3.1:

In this section we start by stating some facts, which
are already well known, then we continue with some lemmas
and theorems that are necessary to define the convolution
of a distribution inOl', with inputs from the input space

U( ) of section IV.3. The interval of interest 1s

-00 00
3

A

I = (-o,©), Not.A.2.1 and the 0, 's in the definition of

k
the differential operator n are assumed to be bounded on

(Tk,w) for some Tk’ k=0,1,....
FACT A.3.1:
u(t)eUD ——u(t) is locally summable. U

(—o,) Plcm,w)

is as in DEF.IV.3.1.

FACT A.3.2:

{wrgt)}:=l 1s a complete orthonormal sequence for

2

(_oo’w)

L ¢:${wn(r-t)}:=l is one for any finite T.
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FACT A.3.3:

©o

J If(t)|2dt <o and f(t) is infinitely smooth = f(t)

- 00

is bounded everywhere and }iT f(t) = 0.
t >

FACT A.3.4:

oo

J |f(t)[2dt <o and f(t) is infinitely smooth =

- 00

o

I l dkf(t) |2

-0 dtk

dt <= for k = 1,2,....

NOTE A.3.2: The following two lemmas are necessary for the

result of the convolution, to be later defined, to be in &.
The first one exhlbits a special kind of testing function
in Ol. The second one provides us with a certain convergence,

both to be used in the definition of the convolution.

UD we use in these lemmas is the one given by Def.
(-w,w)

Iv.3.1.

LEMMA A.3.1:

Let u(t)EUDA, p(t)EH and let O(t) be infinitely
I

smooth, bounded with supp 0C(b,») for some finite b. Then

h(t) A I O(t).u(t). p(t+t)dr A.3.1

(o]
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is a testing function in Ol and
2 . 2
|[h(t)|“dt ¢ K | |p(t)|"dt A.3.2

J
-0 -00

K a constant.

PROOF:

First we note that h(t) is well defined for each t
since p(t+1) has ccmpact suppert for each t and u(t) is
lccally integrable by fact A.3.1.

We have three things to be shown for h(t) to be inOl .

(i) That h(t) is infinitely smccth; which is true

since 0(t) and p(t+1t) are infinitely smocth.

oo

(1i) That [ In¥n(t)|%dt <® ; which will be shown as

J
- 00

fcllows. First we claim:

A
8

|h(t)|2dt In ract:

8g+-—3

[+ <]

f|h(t)|2dt

d
= 00 -

| J@(t)=u\t)p(t+r)dtl2dt

s ]

|e(c)|2| Ju(z-t)p(z)dz|2dt A.3.3

- 00

]
§——8 8——38

by letting z T + 1.
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As p has compact support, supp pClla,B] with a,B finite

A.3.3 becomes: J|h(t)[2dt = [Ie(t)]2|Ju(z-t)p(z)dz|2dt°
-5 % a

u(z-t) is certainly square summable on [a,B] fcr each t.
3]

Applying CBS inequality to I[ u(z-t)p(z)dzlz, we cbtain
P

a
[e] oo B B
J|h(t)[2dt < Jle(t)|2[J|u(z-t)|2dz][J|p(z)|2dz]dt
~-00 ~c0 [0} Q
8 ° B
< JID(Z)|2dZ[I|@Lt)|2I|u(z—t)12dz dt ] A.3.4
a - o

All we have left to be shcwn is the convergence of

o B
[ J1o(e)1® [lutz-t)]?

dz dt] in A.3.4 Fcr this we consider

—_

[Jle(z—t)u(t)|2dt]dz A.3.5

e

B oc
[[ (I@(t)u(z—t)l2dt]dz =
4 dJ
Q [ee]

e

By hypcthesis 0(z-t) = 0 for z-t<b 1i.e. for z-b<t. A.3.5

then gives:

B o© B’ z-b
J[ Jle(t)u(z-t)|2dt]dz = | Jle(z-t)u(t)lzdt]dz
a R o oo
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B-b

B
< j [ J |O(z—t)u(t)|2dt]dz since z Db
R
8 B
< [ ( J Mlu(t)|2dt]dz since 0 is bounded
a4 - everywhere
B
< J C.dz = K < « since u(t)éL%_m’b) for any
o finite b.

By [KE, pp. 206, Thm. 280],

T|@(t)|2[

[oe]

QY—W

B o0
|u(z-t)|2dz]dt = [[ Jle(t)u(z-t)l2dt]dz<K
a oo

A.3.6

and A.3.6 combined with A.3.4 gives A.3.2.

To show:

oc

f|nkh(t)|2dt = f|nk{G(t)fu(T)p(t+I)dr}|Cdt < o A.3.7

[e<]

note that nkh(t) is a finite sum of terms of the form

y(t) 2h(r)¢(t+r)dt , where y(t) has as factor either O(t)
or one of 1ts derivatives, multiplied by some Ok or its
derivative of some order. Therefore y(t) is infinitely
smooth, bounded due to Note. A.3.1 with supp y(t)d (b,=),
since supp 0(t)T (b,x).

¢(t) 1s a testing function in since ¢(t) =p(i)(t)

for some integer i _,o. Thus y(t) Ju(t)¢(t+t)dt satisfy

[e e}
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the hypothesis of the lemma and the procf we used to show

f|h(t)|2dt <o can be applied to each term of "“h(t) to

- 00
[oe]

obtain finally J|nkh(t)|2dt < o, since a finite sum of

-0

square summable terms is square summable,.

i inally at <n"h,y_> = <h,n is shown as
(1ii) Finally that kh wn h kwn> i h

follows:

[e ]

b > 4 [nce) FLTET.ac

o0}

nl n2 nv
[h(t) [0, (t)D 0, (t)D 2 ...D Yo _(t)y (t)ldt  A.3.8

- 00

1

Since the Ok's and wn are functions of the real variable
t, A.3.8 can be written as:

[e e}

<h,n ¥ > = J h(t). 0,(t) D[D

[Sge o}

nl n n

1= 2 V— —
5,0 “6,...D VB .y _Jat

A.3.9

To integrate by parts we let v(t) = h(t)OOItS and

ni—l Dnv

du = D[D ©, ¥,) dt in A.3.9. To get
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. P1a1— P2 Py——
<h,ny > = h(t)Oo(t)[D e, "...D Ov(t)wn(t)]

- OO0

n n n
1-17=, 2 VIV
KHD es.D Ov(t)wn(t)]dt A.3.10

- ‘[Dtéo(_t)hu:)]D
But h(=) = 0 by FACT A.3.3 since h(t) is square summable
and infinitely smooth, h(-«) = 0, since h(t) has support
bounded at left. So the first expression on the right side
of A.3.10 is zero and:

<hony > = J(-D) (T (E)n(t) 10 1-1{aD 2 b V5 (t)y_(t)ldt
N - 1D %...0 V8 (v,

A.3.11

As in (ii) —D[@ST??h(t)] is composed of two terms each of
which, satisfying the hypothesis of the present lemma, is
square summable making —D[@ZTEjh(t)] square summable. Thus
integration by parts can be used for A.3.11 again, with the

same reasoning as for A.3.9, to yield:

n n n
l=-2—_."2 v
[OlD ceeD Ov(t)wn(t)]dt

~

mv> = [(-D)2 I8 TEn(e) 10

With exactly the same arguments, repeating this process

n; + n, + ... + n, times we will end up with:

n

* n n
. v 2= 1
<h,nwn> J wn(t)tév(-n) ce.(=D) Gv(-D) Ooitih(t)]dt

<nh, lpn>



177

due to the assumed form for n, Not. A.2.1. In order to

show <h,nkwn> = <nkh,wn> we note that the operator nk has
n n
the same form as n i.e. nk = [OOD Lo..p Vev]..,
n, n

[OOD «eD Vev] where the bracketed term occurred ktimes in
succession. The integration by parts can be repeated as
many times as we want ylelding <nkh,wn> = <h,nkwn> for

finite k.

LEMMA A.3.2

Let u(t)EUD and 0(t) be as in Lemma A.3.1, and

(_w,m)

let {pY(t)}:=1C9' converge to zero in$®. Then

-~}

{hY(t) A IG(t)u(T)pY(t+r)dT}Y=l converges to zero in Ot .

- Q0

PROOF :

From Lemma A.3.1 we have that:
J |hY(t)|2dt < K jle(t)|2dt y=1,2,.... We note that K
[e¢]

~—00 -—

is independent of y, due to expressions A.3.4 and A.3.6,
and due to the definition of convergence in & (Def. A.2.2)

which requires supp pYC:[a,BJ for =1,2,.... Thus

B o
lim JIpY(tﬂzdt = 0, implying 1lim J|hY(t)|2dt = 0.

Yoo % Yoo

k

Again, n h(t) is the sum of a finite number of terms each
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of the form y(t)/ u(T)¢Y(t+T)dT with y(t) and ¢Y(t) as in

- 0O

Lemma A.3.1 for y=1,2, .... Moreover

- o B
le(t)|2[ flu(r)¢Y(t+;)|2d1]dt < C J|pY(i)(t)|2dt for
-0 -0 o

some i1 and for y=1,2,.... As the convergence of py(t)'s

is inB’,pY(i) converges to zero for any i. So
B [

1im f lo. Y (t)[%at = 0 =

>0 Y

Y72 a

o oo

lim J Iy(t)|2[ Jlu(T)¢Y(t+T) |2dr]dt = 0. Using Minkowski's

Yy>o —oo -

inequality, as we have a finite number of terms we conclude

oo [e o}

lim Jlnk{e(t)[u(T)pY(t+T)dT}lzdt = 0 for each k.

'Y+oo -—C0 =00

NOTE A.3.3: Now we define the convolution of a distribution

in Ol' having support bounded from the left with u(t)€ UD(_m,w)
of Def. IV.3.1l. We need the twc previous lemmas to prove

the outcome of the convolution to be in$'. This defini-
tion coincides with the usual definition of convolution if

supp u(t) is bounded from the left.

DEF.A.3.1:
Let w(t)EQU! be such that supp w(t) C[b,~»], b finite,

and let u(t)€EU Choose an infinitely smooth 0(t)

(-O0,00) ’
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such that it equals one over some neighborhood of supp w(t)
and zero outside this neighborhood. Finally let p(t)e$H
be arbitrary. The CONVOLUTION of w(t) with u(t), denoted

w(t)su(t) is defined by:

<w(t)#u(t), p(t)> A <w(t),0(t) Ju(T)p(t+T)dT> A.3.12

THM A.3.1:
Let w(t), u(t), 0(t), p(t) be as in Def. A.3.1.
Then w(t)su(t) as given by A.3.12 is well defined and is

a distribution in H'.

PROOF:

First we note that as 0(t) is infinitely smooth

w(t)o(t) is well defined and w(t)o(t) = w(t). Then by Lem.

A.3.1 O(t)[ u(t)p(t+t)dt 1is a testing function in Ol and

as w(t)e o', <w(t),o(t) Ju(T)p(t+L)dI> is well defined.

-0

Morecver:

<w(t)*u(t),p(t)> A <w(t),0(t) Ju(r)p(t+r)dt>

- 00

o]

= <w(t)o(t), Ju(r)p(t+1)d1>

- 00

= <w(t), <u(t),p(t+T)>> A.3.13

Since u(t) 1s locally summable it is imbedded in $'. The
€Xpression A.3.13 verifies that A.3.12 is indeed a convolu-

tion where 0(t) is necessary in making h(t) a function in Ot .
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Since p(t)€H was arbitrary, we will be done if we can
show w(t)gu(t) is linear and continuous on % .
w(t)gu(t) is linear, since for p, and p2€1> and a€elR

we have:

oo}

<w(t)su(t), ap)(t)+p,(t)> A <w(t),0(t)fult)fap, (t+1)

—00

+p, (t+1)ldT>

[+ ]

<w(t),o(t) Ju(T)apl(t+r)dT>

o]

+ <w(t),0(t) Ju(1)e§t+r)dr>

—00

a <w(t)*u(t),pl(t)> + <w(t)*u(t),p2(t)>

w(t)#u(t) is continuous on $. If {pY(t)}::=l

is a zero convergent sequence in & then:

<]

<w(t)*u(t),pY(t)> - <w(t),0(t) Ju(r)pY(t+r)dr> converges

-0

to zero as y+» since 0(t) Tu(r)pY(t+T)dr converges to zero

in Ol by Lemma A.3.2 and w(t)EQU.

NOTE A.3.4: The next lemma, may be one that does not

require a proof. Although 1t is not explicitly mentioned
in [ZE2], it must be true for OL' to be a distribution
Space. Since we use it in our proofs we felt to prove

it briefly would be adequate.
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LEM.A.3.3:

V(t)eoL = y'(t)eat

PROOF :

(1) v'(t) is infinitely smooth.

(11) f|w'(t)[2dt <o by Fact A.3.4. As in Lemma

- 00
A.3.1 nkw'(t) is composed of a finite number of terms

0(t)¢(t) where 0(t) is infinitely smooth with

o(t) = [w'(t)](n) n=20,1,2,.... Thus by Fact A.3.4
¢(t) and hence 0(t)¢(t) are square summable for every
finite k. Again using Minkowski's inequality we can
obtain Jln w'(t)|2dt <o k=0,1,2,....
-0

. K, , _ ., .k

(1iii) To prove <n ¥y sV, > = <¥',n"y > we can proceed
exactly as we did in Lem. A.3.1, i.e. using integration by

parts.

THM.A.3.2:
Let w(t) be in Q' with supp w(t)C[b,»] and let

u(t)&U(_m )" Suppose w(t) = 1lim wY(t) in Ol' also with
E]

Y+

supp wy(t)C[b,w] for y=1,2,...,b finite. Then:

w(t)xu(t) = 1lim [wY(t)*u(t)] in &'.

Y+
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PROOF:

w(t)su(t) is well defined by Thm. A.3.1 and so is
wY(t)*u(t) for each y. Then for p(t)€$ and an infinitely
smooth ©(t) which equals one over a neighborhood of

supp w(t) and zero outside we have:

o2}

<w(t)su(t),p(t)> A <w(t),o(t) Ju(r)p(t+r)d1> by Def.A.3.1.

-0
o

<lim wY(t),O(t) Ju(r)p(t+r)dt>

Y*® -

1lim <wY(t),O(t) Ju(r)p(t+1)dt> A.3.14

-+>00
Y -

[+ -]

Since 0(t) Ju(r)p(t+r)dt and by definition of convergence

inOl i.,e. limw_(t) = w(t) inOU 1iff
Y+

1lim <wy(t),¢> = <w(t),e(t)> Yoeot. Thus A.3.14 gives:
Y+

<w(t)su(t),p(t)> lim <wY(t)*u(t),p(t)> VoED

Y+

<lim [wY(t)*u(t)],p(t)> V o€H

Y>>

THM.A.3.3:

Let w(t)EOU! with supp w(t) C[b,»]. Then w(t) can be

written as:

K (k)
WY > wn(t)l(t-b) + 1§=o 4,6 (t-b) A.3.15

w(t) =

S ™8

=0

Wwhere K is finite.
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PROOF:

Since w(t)eO! we can write w(t) = Wy > ¥ ()

S ™8

=0
by Thm. A.2.11]. Then we define

£f(t) A w(t) - 2 <w,wni>wn(t)l(t-b). In order to prove
n=0

the theorem all we have to show is: f(t) can at most
have 1its support concentrated at the point b.
Let p(t) be any testing function with supp pC(-»,b).
We can easlly write
©
<£(t),p(t)> = <w(t),p(t)> - <z <w,p.> ¥ (£)1(t-b),p(t)> =0
n=0
since both terms defining f have their support in [b,«).
Let f(t) have its support in (b,®). Then:

<w(),0(6)> = <T  <w, b >0 (8)1(5-b),p(t)>
n=0

<f(t),p(t)>

<w(t),p(t)> - <I <w,wn>wn(t),p(t)> =0
n=0

Since 1(t) = 1 and 1(t-b) is infinitely smooth on (b,=).
Thus f(t) = 0 on (-»,b) and on (b,») hence it is
zero on the union of these open sets Thm. A.2.1. There-
fore f(t) has support concentrated to the origin. As only
finite linear combinations of the delta functional and its

derivatives are concentrated at a point, Thm. A.2.2,

£ty =, a,.6%)(t) and 4.3.15 follows.
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NOTE.A.3.5: The last two theorems are of importance iﬂ
section IV.3 when obtaining the state description of a
large class of objects. Another result, exactly similar
to Thm. A.3.3 is useful in section IV.4 and 1is stated
in this note.

Let a sequence of infinitely smooth functions OY(t)
converge in $' to the distribution w(t)E®',H ' defined on

(-2,), with supp w(t)C[b,»]. Then

w(t) = 1im © (£)1(t) + & 4, 6,(t), K finite. A.3.16
Y-»oo k:o

The proof 1s exactly in the lines of the proof of Thm.
Ao3.3o



APPENDIX B

HILBERT MATRICES

NOTE B.l: Although they are a natural extension of finite
matrices, infinite matrices, i.e. matrices with infinite
rows and columns, do not occupy much place in today's
literature, possibly because they are preempted by the
theory of abstract transformatiqns and operators. A good

book available on the subject is Cook's Inflinite Matrices

and Sequence Spaces [CO] written in 1950 from where stems

the following short discussion.
As the theorems willl show a Hilbert Matrix, a name
that seems to be abandoned in general but for the matrix
-1
+
[ (p+q) ]pq,

sequence space. Bounded operators are important and much

1s nothing but a bounded operator on a

is known about them. Moreover as every linear operator
on the Hilbert space 22 of square summable sequences can
be written as an infinite matrix [PO, pp. 412, Ex.1l], that
makes the Hilbert Matrices important, especially if we
encounter them in technical characterizations as we did

in section IV.3.

185



186

DEF.B.1l:
Let a double series L C be given. We form the
m,n m,n
sequence S of partial sums by finite rectangles, i.e.

p,q

Sp q is obtained by adding all terms whose first index
3
is £ p and whose second index £ q. Then %,n Cm,n is said

to be PRINGSHEIM-CONVERGENT iff for every €>0 there is a
number s, independent of €, and two numbers P(e) and Q(e)

such that p > P(e), q >Q(e) implies |S s| < €. The

p,q
number S is called the INNER (or PRINGSHEIM) LIMIT of the

double sequence S .
4 p,q

DEF.B.2:

For an infinite matrix A = [amn] a BILINEAR FORM is

8

T

T T_
defined as x Ay A ﬁ,n=lxm a_ . ¥, where x -(xl,x2,...), y

= (yl,y2,...) and the convergence is Pringsheim.

DEF.B.3:
Let E denote the unit hypersphere, i.e.
® 2
E A fx = (xpuxy,..000 [lxlla 08 Ix 1°1% < 1}.
n=1
An infinite matrix A = [amn] is called a HILBERT MATRIX

ifrre xTAy is Pringsheim convergent on E.

THM.B.1: [CO, pp. 253, Cor. 2]
A necessary and sufficient condition that A should

be a Hilbert matrix is that:
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THM.B.2: [CO, pp. 260, Thm. 9.5.V]

[}
A = [amn] 1s a Hilbert matrix 1if %
independent of n and if §=l|amn|< N independent of m.

NOTE B.2: Thm.B.l shows that a Hilbert Matrix is a
bounded operator on 22 and THM.B.2 1s the one we use to
show that the infinite matrix A in IV.3.1 is a Hilbert
Matrix.

That Hilbert matrices are not compact operators
(bounded linear operators that map bounded sets into
relatively compact sets) 1is easily seen since the identity
matrix I 1s a Hilbert matrix but not a compact operator
since 1t maps the unit hypersphere, whose closure is not

compact, into itself.
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