(7]
vl
Wi

ON THE CONTROLLABILITY O!

a1 $ A :
role » & N i A
LNGSE {\':. @ :G;:‘SQ{‘ ar v, s




THESIS

This is to certify that the

thesis entitled

ON THE CONTROLLABILITY OF DISCRETE
STATE SYSTEMS

presented by

Jeffrey L. Goodnuff

has been accepted towards fulfillment
of the requirements for

M.S. degree in

Elect. Engrg.

Major professor

Date__August 9, 1963

0-169

LIBRARY

Michigan State
Univcrsity




ON THE CONTROLLABILITY OF

DISCRETE STATE SYSTEMS

By

)
1"~
l\l‘!"

Jeffrey L. | Goodnuff

AN ABSTRACT OF A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements

for the degree of
MASTER OF SCIENCE

Department of Electrical Engineering

1963



ABSTRACT

ON THE CONTROLLABILITY OF
DISCRETE STATE SYSTEMS

by Jeffrey L. Goodnuff

The idea of controllability was presented by R. E. Kalman in
1960. His definition was one which gave a specific mathematical
meaning to an otherwise intuitive concept.

This thesis develops, from that definition, necessary and
sufficient conditions for a plant to be controllable. From these conditions
it is shown that there is a certain minimum time in which a plant may
be controlled. This time is a function of the dimension of the state vector.
In addition it is shown that if a plant is not controllable in the minimum
time it is never controllable.

In the last section observability is defined and the relationship

between observability and controllability is shown.
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I

INTRODUCTION

In 1960 the concept of state controllability was introduced by
Kalman. 1 He went on to state a necessary condition for state controll-
ability in terms of the Jordan Canonical form of the transition matrix.

He also required the inverse of the transition matrix to exist. In the same
year the idea of output controllability was presented by Bertram and
Sarachick. 2 They did not develop the concept beyond a mere defipition.

| This thesis develops a necessary condition for state controll-
ability in terms of the minimal polynomial of the transition matrix. The
transition matrix may be singular. A necessary and sufficient condition
for both state and output controllability is also developed in terms of the
Jordan Canonical form.

From these conditions it is shown that there exists a certain
minimal time in which a plant may be controlled, and that if the plant
cannot be controlled in that minimal time it cannot be controlled in any
finite time.

Finally the concept of observability is considered, and necessary

and sufficient conditions for it are established. These conditions are

lR. E. Kalman,On The General Theory of Control Systems,
First International Congress On Automatic Control, Moscow, 1960

Z.'I. E. Bertram and P. E. Sarachik On Optimal Computer
Control, First International Congress On Automatic Control, Moscow,
1
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related to the controllability conditions, and this relationship is shown.
A brief discussion of the problem of non-zero compute time is presented

in the conclusion.



II

CONTROLLABILITY WITH A SINGLE INPUT

Consider a discrete state plant which is linear and has one

input. The state model of the plant is then

X[kT] = 8X[ (k-1)T] + Au[ (k-1)T); k=1, 2, ..., T>0,  (2.1)

where X and A are n dimensional column vectors, u is a scalar, and &
is an n by n square constant matrix.

The outputs are given in the form

Y[kT] = MX[kT] (2. 2)

where Y is an m (m i,n) dimensional vector, and M is an m by n con-
stant matrix. At this point it should be noted that (2. 2) is not the most
general form for the outputs of a linear plant. In this discussion only
the case where there are no direct transmission terms will be consi-
dered. However, this is not as severe a restriction as it may at first
seem, as output controllability is not affected by direct transmission
terms.
The two fundamental definitions pertaining to controllability

are as follows:



Definition 2. 1: A plant is said to be state controllable if and only if the

state vector, }_(_[ kT], can be brought to any desired state in a finite time.
A plant is completely state controllable if and only if every state is

contfollable.

Definition 2. 2: A plant is said to be output controllable if and only if the

output vector, _YL[ kT], can be brought to any desired output in a finite
time. A plant is completely output controllable if and only if every out-

put vector is controllable.

The input sequence u(nT), n=0, 1, ..., N-1, required to
move the plant from an initial state at t = 0 to a given state at time
t = NT is determined by the solution of the system of equations
X[NT] = & X[O] +[§N ! QN'Zé .. . A A] u( 0] (2.3.1)

u[T]

u[ 2T]

u[(N-1)T]

obtained as the recursive solution of (2. 1). In symbolic form (2. 3.1) is

represented as

3This same definition was used by Kalman.

4‘I‘his same definition was used by Bertram and Sarachick.



X[NT) = 8" x[0] +H (2. 3. 2)

NEN -
In equations (2. 3) N is not to be confused with n, the order of
the state vector. In equation (2. 3. 2) BN is the Nth order vector repre-
senting the scalar inputs at the N time intervals, and HN is the n by N
composite matrix composed of the column vectors Qié, i=0,1,...,N-1.
Substituting equation (2. 3. 2) into equation (2. 2) yields

¥[NT] = M3 X[0] + MHp (2. 4)

N’
The following three cases are of interest.

Case I. N =n. That is, the number of iterations is equal to the num-
ber of variables in the state vector. Since HN is square it is possible

to solve (2. 3. 2) for -&N if H ' is nonsingular.

N

gy -1 -1_N
by = Hy XINT] - H " & X[0] (2.5)
The square matrix HN is nonsingular if and only if the columns of HN

are linearly independent. Therefore the following trivial lemma can

be stated.

LEMMA 2.1: A discrete state plant, with state model given in equation

(2. 1), is completely controllable in N = n steps if and only if the vectors

§n-1§_, Qn-zﬁ, . . ., A, A, are linearly independent.5

5 . . . .

A similar result arrived at in a much less direct manner and
requiring the inverse of , is obtained by Kalman. It is at this point that
this paper departs from Kalman's treatment of the subject.



Case II. N <.n. That is, it is required to transfer a given state vector
to some desired point in less than n steps. It can be seen that this is
not possible in general. That is, it can be done only if X[0] is of a spe-
cial form. This can be shown simply by writing equation (2. 3. 2) in par-

titioned form. If we let

W = X[NT] - 2" X[0], (2. 6)
then (2. 3. 2) becomes
v, H
W = - " (2. 7. 1)
W EN
v, H,

where Hl is a square, N by N matrix. If |H1| # 0 then from the top

equation in (2. 7. 1) we have

I |
&N-Hl ‘1’1, (2.7.2)
and from the bottom equation
\_VZ = HZEN' (2.7.3)
Therefore,
&’ =H H -1 w.. (Z. 8)



It can be seen from (2. 8) that any vector, }_{[ 0], can be transferred to
2_([ NT] in N < n steps if and only if W, as given in (2. 6), can be written

in the form of equation (2. 8), and the following lemma follows.

LEMMA 2.2: A discrete state plant is never completely controllable

with N < n iterations.

Case III. N.>n. That is, it is desired to transfer the state vector to a
desired point in N time intervals, where N is greater than the number of

~

variables in the state vector. Let equation (2.3.2) be rewritten as

(2.9)

I1€
"
L
oL

R

.—1:

where W is defined in (2.6). Here H, is a square, n by n matrix and Hl

2
is n by N-n. If IHZI # 0 we may write

H K .. (2. 10)

It can immediately be seen that the N-n scalars in B, can be chosen inde-
pendently of the rest of the vector p. This corresponds to independent

selection of the first N-n inputs. Since these inputs are arbitrary let

LB 20, so that (2. 10) becomes

W, (2. 11)



and M is given by

(2. 12)

|7
"
(=}

The above establishes the following lemma.

LEMMA 2.3: A discrete state plant completely controllable in N =n

time intervals is controllable in N> n intervals.

From the above three lemmas, and the fact that HZ in equation

(2.9) is exactly the same as H_, in equation (2.5) the following theorem

N

may be stated.

THEOREM 2. 1: A general discrete state plant with state equations of

the form in (2. 1) is completely state controllable in N > n intervals if

and only if H. is of maximum rank (i. e., rank of H . = n).

N N

By a careful examination of equation (2.4) and through a develop-
ment exactly analogous to that used to establish theorem 2.1 we may

draw the following conclusion.

THEOREM 2.2: A general discrete state plant with output equations of

the form in (2. 2) is completely output controllable in N > m intervals if

is of maximum rank (i.e., rank of MH_. = m).

N

and only if MH N



With the above two theorems along with theorem A. 1l in the
appendix, the following theorem relating output and state controllability

may be proved.

THEOREM 2. 3: If a discrete state plant is completely state controllable

then the rank of M, in equation (2. 2), being equal to m is a necessary

and sufficient condition for complete output controllability.

PROOF: The hypothesis assures us that HN is of maximum rank. There-
fore theorem A.1l is applicable and we see that the rank of MHN is equal

to the rank of M. Since the maximum rank of MH_ . is m, the product

N

MHN is of maximum rank if and only if the rank of M is m. Therefore
a necessary and sufficient condition for complete output controllability

is that the rank of M equals m.

Note, however, that complete output controllability does not
always imply complete state controllability.

Although theorems 2.1 and 2.2 are certainly necessary and
sufficient conditions for complete controllability, they leave much to be
desired. To say the least it is a tedious task to raise ® to successive
powers, postmultiply by the vector A, and then check the independence
of the resulting vectors. Further, if this were done and the resulting
vectors were found to be dependent it is not apparent what .changes need
to be made to # and A in order to achieve an independent set of vectors.
It is this thought that motivates the following discussion.

It will be useful to make the following change of variable. Let
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2Z[kT] = PX[kT], (2.13)

where the square, non-singular, n by n matrix, P, is the matrix that
transforms &, in equation (2.1), into its upper triangular Jordan Canon-

ical form. Denote this form by J. That is,

1

J=P&P (2. 14)
Equation (2. 1) then becomes
2[kT] = PQP-IE[ (k-1)T] + PAu[(k-1)T] (2.15.1)
or, with A = PA,
Z[kT] =T Z[ (k-1)T] + Au[ (k-1)T]. (2.15.2)

It immediately follows then that equations (2. 3. 1), (2.3.2), and (2. 4)

become

ZINT] =3Vz[o] + 3N Pa N2a . L L sa alfulop ]
u[ T}
__u[ (N-l)T]_

(2. 16)
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or in the symbolic form,

_ 4N
Z[NT] =77 2[0] + S b , (2. 17)
and the output is given by,
N
WINT] = KJ" Z2[0] + KS I (2.18)

where, of course, W =PY, and K = MP-I. Since P is nonsingular the
transformations between W and Y and between Z and X are one to one,
and an inverse exists. From this point on the properties of equations
(2. 16), (2.17), and (2. 18) will be considered.

The matrix SN is composed of N column vectors, each of which
is of the form JiA. The Jordan form, J, is quasidiagonal, i.e., of the

form

J = o ‘ (2. 19)

L
| T

where r is the number of distinct eigenvalues and block Li is of order
8 with s, equal to the multiplicity of }'i in the characteristic polynomial,

D(A), of . Each L.1 has the following form.
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L. = 1 . (2. 20)

A,
i

- —

That is, the main diagonal has entries ki, and the upper diagonal con-
tains ones and zeros. The remaining entries in Li are zero. The
exact number of ones and zeros on the upper diagonal depends on the
elementary divisors of the matrix (Au - 8), and cannot be determined
from knowledge of only the characteristic polynomial, D(A), and the
minimal polynomial, M(A). However, knowledge of M(A) and D(A) does
allow partial determination of the off diagonal entries. The upper
diagonal in the ith block has all zeros if and only if the (A - ki) term
in M(A) is linear. Also, the upper diagonal in the ith block has all
ones if and only if the (A - ki) term in M(A) is of the same degree as

6

the corresponding term in D(A).

Examining the vector Jlé we see that

6V. N. Faddeeva, Computational Methods of Linear Algebra

(New York: Dover Publications, Inc., 1959), P. 52.




A = y , (2.21)

r—r

where,
r i i} ,i-1 i i-2 i i-s.,+1 ]
A LA At oo A8
3 (I) j (2 j sj-l j J
St i i-1
A (1) A
i
L. = i
A, !
) J
Ai
— J o §
(2. 22)
with the convention that (;} = 0 for j > i, if and only if M(A) = D(A).

If M(A) # D(A) then (2. 22) has the following form.
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AL (l)x?'l .. 0
J 1775
i AL 0
L; = ) .
- (
j

°_|

. 0} (2.23)

Cde b

In general the Lj is itself quasidiagonal with the order of the )‘j

factor in the minimal polynomial equal to the order of the largest

sub-block in Lj' 7 Of course L; remains quasidiagonal.

N
The product L; Aj is

i i\, i-1
A.D. +()x. . + . . R
JSJI 177 532

i i\ L i-1
. . + X' . + .
Mi %2 (1) i B3

iox i i\, i-1
L. A = ) +( )X . + . .
12 i% k-1 M1/ Bk

i

A os.

JBJk

(2.24)

"Ibid.
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Since (2. 24) represents sj rows of the i + 1 column, it is apparent that
in general the jk row of SN is a multiple of the jsj row, and therefore
the rank is down by at least one. In fact it can be seen that the k-1 row
is a linear combination of the last two rows. The k-2 row will be a
linear combination of the last three rows, and so on. It can be verified
that the number of dependent rows is exactly equal to the difference in
degree between M(A) and D(A). Theorems 2.4 and 2.5 are then

established.

THEOREM 2.4: A necessary condition for complete state controllability

of a discrete state plant is that the minimal polynomial, M(\), and
characteristic polynomial, D(MA), of the matrix ®, in equation (2. 1),

be identical.

THEOREM 2.5: Let the difference in degree between the minimal

polynox—nial, M(M), and the characteristic polynomial, D(N), for the
kj term be denoted by Bj. Then a necessary condition for complete
output controllability of a discrete state plant is that 2 B. < n-m.
J

Consider, now, the case where & has distinct eigenvalues.
It is immediately apparent that the necessary condition in theorem 2. 4
is satisfied, since each diagonal block, Li’ in the Jordan form is
diagonal and of order one, i.e., J is diagonal with diagonal elements

equal to the distinct Xi. In this case the product Jlé is



and the composite matrix S

16

N’ N > n,

' )

(2.25)

(2. 26)

(2.27)
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S , may be written as the product of two matrices,
S = D6 v, (2. 28)

where D‘5 is the diagonal matrix with dii = 6i and Vn is the nth order
Vandermonde matrix. It is a well known fact th_at the Vandermonde
determinant does not vanish for distinct ki. In fact the Vandermonde

determinant is easy to compute and is given by

n

' - (ki - kj), (2. 29)
i>j

which is obviously not zero for )‘i # hj' i#ij. 8

Since the determinant of a product is equal to the product of

determinants, Sn can be written as
i i n n
- = - k - k .
[sa = |osval| = [2e||val =TT o TT -
i=j i> j
(2. 30)
Equation (2. 30) obviously implies Sn = 0 if and only if 6i = 0 for

at least one i, i =1, 2, ..., n. Now, noting the form of SN in equation
(2. 26) it is seen that if any 6i = 0 there is an entire row of zeros in

SN. The following lemma may therefore be stated.

8Edward T. Browne, Introduction to the Theory of Determinants
and Matrices (Chapel Hill, North Carolina: The University of North
Carolina Press, 1958), P. 34.
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LEMMA 2.4: If a discrete state plant, with distinct eigenvalues and

with state equations of the form shown in (2. 1), is not completely
state controllable in N = n intervals then it is not completely state

controllable in N > n intervals.

Consider now the situation with output controllability and
distinct eigenvalues. Again it is seen that the necessary condition
for complete output controllability is satisfied (theorem 2.5).
Assume that the plant is not controllable in n steps. This implies the
rank of KSn is less than m. This may occur in three ways. (1) The
rank of K may be less than m, (2) the rank of Sn may be less than m,
or (3) the rank of Sn is at least m, but the rank of the product, KSn,

is less than m.

Case (1): When the rank of K is less than m, the rank of
KSN is always less than m, because the rank of the product of two

matrices is never greater than the rank of either matrix.

Case (2): The rank of Sn is less than m if and only if less

than m rows are independent. It has been shown that Sn = Dévn' ‘and

an # 0. Therefore from theorem A. 1l it can be seen that the

5 Therefore the rank of D6 is
&
less than m. However, from (2. 26) it is seen that SN = D6VN’

&
where VN is the nth order Vandermonde matrix, Vn’ augmented

rank of Sn is equal to the rank of D

with N-n columns. Since is always maxi-

VnI;‘ 0 the rank of VN

mum (i. e., equal to n) for all N > n. Again theorem A. 1 is appli-

cable and it is seen that the rank of S,. equals the rank of Sn which is

N
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less than m.

Case (3): Consider the product KSN = a,where

KSN= Kk, k, - - - k_||n, B, - - - By
Y S P B ST S S P ¢

K, ok, o+ .. Kk
_hnl hnZ o hnN___

a.ll alz o . K alN

a1 %2 LN

= . = a (2.31)

Let the m, N dimensional row vectors of a, be denoted by

a, ay, . - - nm. Each of these m vectors is a linear combination of

the n row vectors, 91 , of SN. It is known that there exists at least
m rows, a., that are dependenAt. Since the combining vectors (i.e., the
rows of K) are all independent this implies that at least m of the row
vectors,’ci, are partly composed of the dependent vectors in the

set {91} . Also note that the relationship of K to S, is unaltered by

N
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the magnitude of N. It therefore follows that in order to increase the

rank of a/ , the rank of S, must be increased, i.e., some dependent

N

rows must be made independent by adding another column. However in

N equals the rank of D6 for all N.

Therefore the rank of SN cannot be increased by increasing N.

The above discussion together with lemma 2.4 and theorems

case (2) it was shown that the rank of S

2.1 and 2.2 imply the following.

THEOREM 2. 6: A discrete state plant with state [ output] equations as

in (2.1) [ (2.2)] and with distinct eigenvalues is completely state [ output]
controllable in N> n steps. if and only if it is completely controllable in
N = n steps.

And from the conclusion in case (2) of the above development,
a necessary and sufficient condition for state controllability is

apparent.

THEOREM 2.7: A discrete state plant with state equations of the form

of (2.1) and distinct eigenvalues, is completely state controllable in

N = n steps if and only if 6.1 # 0 for all 61 as defined in (2. 30).

Now consider the case where the transition matrix, ®, has
multiple eigenvalues, and M(A) = D(A). Each column vector of the

matrix QN is of the form shown in (2.21) and (2. 22). It can be seen

that the matrix, S,,, may be factored into the product of two matrices,

N

~ N
S,,=D

N=DsV, (2. 32)



where

with

and

is.

w2d

wl

is.-1
i

18

<

21

2
6il
6is.-l
i
6,
is,
i
—_ -
1
AN
2
/\
- T

’

-

(2. 33)

(2. 34)

(2. 35)
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where

AN ' . (2.36)

Obviously the determinant of D6 is dependent only on each 6i s
i

and on nothing else. That is,

D.| - LB (2. 37)

The determinant of the modified Vandermonde matrix can be shown

to be
~ r 8. 8.
v | = (N, =A) P ) (2. 38)
i>; ' 9
Therefore
~ L~ r 8. r 8.8,
- - i ) i7j
[sa] = [Pl |Va] = T 60t TT
i=l i i>]



~
Note that for distinct A, D_ =D_and V_ = Vn. Then theorem 2. 8

immediately follows.

THEOREM 2. 8: A discrete state plant with state equations of the form

in (2. 1) is completely state controllable in N = n steps if and only if
(a) M(A) = D(A) and (b) all &, _ # 0 as defined in equation (2. 24).

1

The following theorem is also easy to prove.

THEOREM 2.9: A discrete state plant with state equations of the form

in (2. 1) is completely state [ output] controllable in N'> n steps if and

only if it is completely state [ output] controllable in N = n steps.

PROOF: The "if'" part is shown by lemma 2.3. For the '"only if" part
it needs to be shown that a plant not controllable in N = n steps is not
controllable in N > n steps.

First consider state controllability. If the plant is not state
controllable in N = n intervals then |Sn|'l = 0. This implies some
6i s = 0. Which, from (2. 24), implies that S

i

hence it cannot be of maximum rank.

N has a row of zeros;’
Next consider output controllability. This development is
parallel to the discussion in the case of distinct eigenvalues. Case (1)
and Case (3) do not use the fact that the eigenvalues are distinct.
Therefore it is only necessary to establish case (2). That is, it is
necessary to show that the rank of SN equals the rank of Sn for

N> n, hence the rank of Sn- < n implies the rank of S n.

N<

It was shown above that



) NI
S =D, V_ . (2. 40)

nJ
It can be seen from (2. 38) that Vn # 0. Therefore theorem A.l

~
implies that the rank of S equals the rank of D,. Note that S, can
n 6 N

be written,

~y N*
Sn = Dy Vy (2.41)

sk

where VN is the nth order modified Vandermonde matrix Vn augmented
~ %

with N-n columns. Since VN

~
theorem A. 1l again applies. Therefore the rank of SN = D6’ -from which

lad
v, # 0 the rank of is maximum and

follows that the rank of SN equals the rank of Sn and the theorem is

proved.



111

CONTROLLABILITY WITH MULTIPLE INPUTS

Consider the discrete state plant with state equations of the

following form.
X[kT] = #X[(k-1)T] + Au[(k-1)T] (3.1)

Here, as before, X is an n dimensional vector and ® is an n by n square
constant matrix. However A is no longer a column vector, it is an n by
q matrix. The column vector u is q dimensional.

The outputs are given in the form
l[kT] = Mi[kT] ) (3.2)

where Y is an m dimensional vector and M is an m by n constant matrix.
Again, as in the single input case, (3.1) can be solved recur-
sively yielding
X[NT] =8Vx[o] + [V 'a %A . . . 2a A] |u[0]

Ul T]

E[ (N-1)T] |

3.3
25 (3.3)
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or in symbolic form

§Dn1=§N[o]+H

X| N (3. 4)

B

Each of the products &' A results in an n by q matrix, thus making HN
an n by Nq matrix. Although EN is a vector, the elements, U, are

each q dimensional column vectors. Thus, B is an Nq dimensional

N

vector. Let us again consider three cases.

Case I. Nq =n. In this case H

N 1S @ square matrix and if IHNI #0,

-1
N

gNﬂ-H'%Ngm. (3.5)

Eny=H N

Of course

HNl # 0 if and only if its columns are linearly independent.
Case II. Nq < n. In this case W is defined by

N
W = X[NT] - 8 X[0]. (3. 6)

With this definition equation (3. 4) may be written as

W %
i |Hh
W = = * | (3‘ 7)
w EN
v, H,

*
where H1 is a square Nq by Nq matrix. Solving for Y{Z from the bottom
equation of (3. 7) and substituing it for E—N in the top equation of (3. 7)

£ 0,

H*
1

yields, for



*
W, = H, H W (3. 8)

It can be seen that if Nq is no greater than the number of variables in
the state vector, only certain special initial vectors, X[ 0], may be

controlled.

Case III. Nq > n. With the definition given in (3.6), (3.4) can be

written as

\_V = [0.1 02] El . (3. 9)

Here a, is n by n, a, is n by Ngq-n, and p_z is n by 1, while El is Ngq-n

by 1. If |a2| £ 0,
=a'1w -a'ln (3.10)
B, W-a, a8 :

It can be seen that the Nq-n constants in El are arbitrary. Therefore

choose El = 0. Then
B,=9e, W, (3.11)

where

k.= [07]. (3. 12)
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Note that for any given case, if q and n are such that n/q is an integer,

EZ is identical with H,. in equation (3. 5).

N

Here, as in the case of a single input, the following theorem -

may be stated.

THEOREM 3. 1: A discrete state, multiple input plant with state

equations of the form in (3. 1) is completely state controllable in
N > n/q time intervals if and only if HN, in equation (3. 4) is of maxi-

mum rank (i. e., of rank n).

Output controllability is concerned with the system

Y[NT] = M@ " x[o0] + MHP o (3.13)

for which we have the following theorem.

THEOREM 3.2: A discrete state, multiple input plant with output

equations as given in equation (3. 2) is completely output controllable
in N > m/q time intervals if and only if the product MHL. in equa-

tion (3. 13), is of maximum rank (i. e., of rank m).

The similarity between the single input case and multiple input
case terminates with the above theorems. Recall now that the N groups
of q columns which compose HN are products of the form §i A. Asin
the single input case, an equivalent system of equations may be consi-
dered by using the Jordan Canonical form of & The Jordan Canonical

form of (3. 3) is
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zio] + 0N 1a N2 . .. 18 4] [ulo)

z[NT] = 3N

u[ T]

U[ (N-1)T]

(3. 14)

with Z = PX, and A = PA. Here, of course, the terms J'A each repre-
sent a band of q column vectors instead of a single column vector as in
the single input case. It can be shown that theorem 2.4 is not true

under these conditions. For example, let

i 0 0 0 |
1
0 A 0 0
J = (3. 15)
0 0 A, 0
0 0 0 N
and let

B 0]
0 1

A = i (3. 16)
1 0
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Obviously

D(A) = (N - kl)z (N - kz)z (3.17)
and
M(A) = (A - A.l) (N - kz). (3.18)
If A =0, )‘2 =1, and N = 2 the matrix HN can be written

(0 o0 1 0

H_ = [Jaa] = (3.19)

from which it is seen that
'HNI =1 ;4 0. (3. 20)

Therefore HI\;I exists and the plant is controllable. However it is
seen from equation (3. 17) and (3. 18) that M(A) # D(A).

It is also easy to show that theorem 2.9 does not remain true
in the multiple input case. For example, choose J with four distinct

eigenvalues and let



1 1]
11
A = ) (3. 21)
11
11

Then, for N =n/q = 2,

1 1
VA N 1
H,_ = . (3. 22)
N
N, A1 1

Obviously IHNI = 0. However if N = 4

SO GO U L VN O
H.. = . (3.23)
N GO - U C R U G SR
3 Moo R A Ay
3 3 2 2
SN G G A VA VI S

It is easily seen that the rank of HN is maximum. Therefore by
theorem 3.1 the plant is controllable in N > n/q time intervals.
From the above discussion it can be seen that the results of

the previous section do not trivially extend to the case of multiple

inputs. Moreover, they are not true in general.
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OBSERVABILITY

In the previous two sections it was shown that there are
certain necessary and sufficient conditions on the transition matrix,
®, and the coefficient matrix, A, for state and output controllability.
However, examination of equations (2.4) and (2. 5) reveals that for
both state and output controllability the entire state vector evaluated
att=0,i.e., X[0], is required. In general it may be very difficult,
inconvenient, or impossible to measure X[0]. It is this thought that

motivates the following discussion.

DEFINITION 4.1 : A discrete state plant is said to be observable if

the exact value of the state vector at time zero can be determined, in
a finite time, from the measurements of the output signal. If every

9

state is observable the plant is completely observable.

In order that some definite conclusions may be drawn let the
plant have a single input and single output. That is let M, in equation

(2.2), be a row matrix of dimension n. Equation (2.4) with N = k becomes,

Y[KT) = M@"X[0] + MH,_p (4.1)

IThis same definition was used by Kalman.

32
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where, of course, Y[0] is a scalar. Writing equation (4. 1) for

k=0,1, ..., n-1, one obtains
- - — .
Y[0] M
Y[T] Mo
. = . 5[0] + MHn By oo (4. 2)
Y[(n-1)T) Mgt
or in symbolic form,
*
Yn = GnE[O] + MHn b (4. 3)
1 |c | 40
n
-1 % -1
E[O]- Gn Y -G MHn&n . (4. 4)

The analog of lemma 2.1 follows immediately.

LEMMA 4.1 : A discrete state plant with one input and one output is

completely observable in N = n intervals if and only if the row vectors

MQn-l, Mtbn-z, . +. +« , M are linearly independent.

LEMMA 4.2 ; A discrete state plant with a single output is never

completely observable in N <n time intervals.

In a similar manner theorem 2.1 carries over as;



34

THEOREM 4.1 : A discrete state plant with a single input and a

single output is completely observable in N > n time intervals if and

only if Gn is of maximum rank.

A careful examination of Gn reveals that it is of the same form
as the transpose of Hn. In fact Gn is a row permutation of H:’1 with ét
replaced by M and Qt replaced by . Since the operation of transposition
and row permutation does not affect the singularity of a matrix, all the
theorems proved in section II will carry over, and theorems 2.4 and

2.5 become:

THEOREM 4.2 : A necessary condition for complete observability

of a discrete state plant with one output is that the minimal polynomial,
M(\), and the characteristic polynomial, D(A), of the matrix & be

identical.

THEOREM 4. 3: A discrete state, single output, plant with distinct

eigenvalues is completely observable in N >n intervals if and only if

it is completely observable in N = n steps.

With 8; defined in equation (2.30) and with A = Mt, we may state the

analog of theorem 2.7.

‘THEOREM 4.4 : A discrete state plant with a single output and distinct

eigenvalues is completely observable in N = n time intervals if and only if

51#0f0ralli=1, 2, ... ,n.
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In the case of repeated eigenvalues, theorem 2.8 and theorem 2.9

become:

THEOREM 4.5 : A discrete state plant with a single output is

completely observable in N = n time intervals if and only if (a)

M(\) = D(\) and (b) all 8, ¢ # 0 as defined in equation (2. 24) with
i

A =M,

THEOREM 4. 6: A discrete state plant with a single output is

completely observable in N >n steps if and only if it is completely

observable in N = n steps.
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CONCLUSION

In the previous four sections the concepts of output and state
controllability as defined by Kalman have been given. It was found
that for a linear, stationary, discrete state plant with one input
and one output the minimal polynomial, M(\ ), must be identically
equal to the characteristic polynomial, D(\ ), if we are to achieve
state controllability. 10 In addition the input vector, A, must be such
that when premultiplied by the Jordan transforming matrix, P, the
result is free from zeros in certain positions. In addition to the above,
the state vector att = 0 must be known.
This last requirement motivates the development in Section IV
where the concept of observability is given. It is shown that in order
to compute X[0] (that is, the plant is observable) Gn must be non-
singular. However the matrix Gn has properties very similar to Hn’
the inverse of which is required for controllability. It is therefore
easy to check Gn from the information used to investigate the rank of Hn'
To make a complete check of controllability the Jordan trans-
forming matrix, P, must be found. In ~general this is a very laborious
task to say the least. Even more serious is the fact that if the compu-
tation is to be done on a digital computer the round-off errors, for large

matricés, may accumulate to such an extent that the result is useless.

1()Thiz-s necessary condition was given in a different form by

Kalman.
36
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If an analysis is performed on the system, other factors,such
as stability, will also be of interest. Much of the information required
for a controllability investigation will also be required for these other
purposes and therefore the increase in work to investigate controllability
will not be as great as first may appear.

As a further application to control systems it should be noted
that in order to achieve controllability it is necessary to compute the
solution to equation (2.5) with X[0] given. Even if this is to be done
on a high speed digital computer, it will require some non-zero compute
time. Let this time be denoted by BT, where T is.the sampling period.
Since the solution to (2.5) gives, among other things, the input at the next
time interval it is8 impossible to control the plant, with zero error, in
N = n time intervals. Also note from equation (2. 12) that the first N - n
intervals are completely arbitrary, say zero. Therefore we are
assured that we may control the plantin N =n +f intervals.

If the state vector is not directly measureable, but the plant is
completely controllable, we are assured that it can be controlled inat
most N = 2n +B intervals.

The question of controllability with multiple inputs and the prob-
lem of observability with multiple outths ié essentially the same, but
it is one that is not easily answered. Certainly it would appear that the
answer lies in the relationship between & and A in the controllability
case and between ® and M in the observability case. Counter examples
to the theorems in the single input-output case are easy to give for the
multiple input-output case. As yet it has not been possible to draw any

specific conclusions in the multiple input, multiple output plant.



THEOREM A.1:

APPENDIX

Given the matrix product MH, where M is an m

by n matrix, n> m; and H is an n by N matrix with N> n, if H is of

maximum rank (i.e., n) then the rank of MH equals the rank of M.

PROOF :

Let MH = Q. Then

It can be seen that

[31=rn ¥. +m

“m1®m2“m3° -

119 12
By =m,, ¥ +m,,
ﬁm = rnml\I’l + rrlrnZ

(A.1)

(A.2)



39

where [3i = (c.)i1 W o wiN) fori=1,2, ..., m, and
\Ifi=(hil hi2 e hiN) fori=1,2,.. ., n.
It is clear that the vectors ﬁl, [32, e e, ﬁm are linear

combinations of the vectors \Ifl, \Itz, ..

maximum rank, and A is the ith row of H, the vectors %1’1} are linearly

., \Irn. Note that since H is of

independent.
Assume that the rank of  is less than the rank of M. Then
any j rows of Q are dependent, where j is the rank of M. Then
J

> apf.=0 ; a.,#0 forsome i=1,2, ..., ] (A.3)
o] i i

or
al(mll\lll + le\PZ +. ..+ mlnwn)

+ az‘(mal\][t1 + mZZWZ +... 4+ mzn\Irn)

(A. 4)
+ aj (mjl\ll1 + mJ.Z\][l2 +. ..+ mjn\Iln) =0
Rearranging and combining terms one obtains
(a.lmll + a,m,, +.. .4 a.jmjl) \Ill
+ (alm12 + a,m,, +. ..+ ajmjz) \I(Z
(A.5)
+ (almln + a,m, +. ..+ ajmjn) \I/n =0 -

However, it has been shown that {\IIS is a set of linearly inde-

pendent vectors. Therefore equation (A.5) implies that
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ajm,, + a,m,, +. ..+ ajmjl =0
alm12+a2m22+. .. +ajmjZ =0
. (A.6)
am, + a,m, +. ..+ ajmjn =0
Let By = (mil m., . . . min). That is, b is the ith row of
M. With this definition the equations in (A. 6) may be written
ajpy tap, t. ot ajp.j =0 . (A.7)

Equation (A.7) must hold for any set of j rows of M. Since the
rank of M is j , there must exist j linearly independent rows of M.

Therefore (A.7) can only be true if

ai=0 forall i=1,2, ..., . (A.7A)
This is a contradiction to the original hypothesis that a, *+0
for some i. It is therefore concluded that the rank of @ is greater than
or equal to the rank of M.
However, since the rank of M equals j, j < m < n, and the rank
of H is n, it is concluded that the rank of 2 is at most j. Hence the

rank of 2 equals j.
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