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ABSTRACT

ON THE CONTROLLABILITY OF

DISCRETE STATE SYSTEMS

by Jeffrey L. Goodnuff

The idea of controllability was presented by R. E. Kalman in

1960. His definition was one which gave a specific mathematical

meaning to an otherwise intuitive concept.

This thesis develops, from that definition, necessary and

sufficient conditions for a plant to be controllable. From these conditions

it is shown that there is a certain minimum time in which a plant may

be controlled. This time is a function of the dimension of the state vector.

In addition it is shown that if a plant is- not controllable in the minimum

time it is never controllable.

In the last section observability is defined and the relationship

between observability and controllability is shown.
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I

INTRODUCTION

In 1960 the concept of state controllability was introduced by

Kalman. 1 He went on to state a necessary condition for state controll-

ability in terms of the Jordan Canonical form of the transition matrix.

He also required the inverse of the transition matrix to exist. In the same

year the idea of output controllability was presented by Bertram and

Sarachick. 2 They did not develop the concept beyond a mere definition.

I This thesis develops a necessary condition for state controll-

ability in terms of the minimal polynomial of the transition matrix. The

transition matrix may be singular. A necessary and sufficient condition

for both state and output controllability is also developed in terms of the

Jordan Canonical form.

From these conditions it is shown that there exists a certain

minimal time in which a plant may be controlled, and that if the plant

cannot be controlled in that minimal time it cannot be controlled in any

finite time.

Finally the concept of observability is considered, and necessary

and sufficient conditions for it are established. These conditions are

1R. E. Kalman, On The General Theory of Control Systems,

First International Congress On Automatic Control, Moscow, 1960-

2J. E. Bertram and P. E. Sarachik On Optimal Computer

Control, First International Congress On Automatic Control, Moscow,

TW—
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related to the controllability conditions, and this relationship is shown.

A brief discussion of the problem of non-zero compute time is presented

in the conclusion .



II

CONTROLLABILITY WITH A SINGLE INPUT

Consider a discrete state plant which is linear and has one

input. The state model of the plant is then

_x_[kT] = §_)_(_[(k-1)T] + 51d (k-1)T]; k = 1, z, T > o. (2.1)

where X and A are n dimensional column vectors, u is a scalar, and <1

is an n by n square constant matrix.

The outputs are given in the form

gkr] = M_)_<_[k'r] (2. 2)

where I is an m (m in) dimensional vector, and M is an m by n con-

stant matrix. At this point it should be noted that (2. 2) is not the most

general form for the outputs of a linear plant. In this discussion only

the case where there are no direct transmission terms will be consi-

dered. However, this is not as severe a restriction as it may at first

seem, as output controllability is not affected by direct transmission

terms.

The two fundamental definitions pertaining to controllability

are as follows:



Definition 2. 1: A plant is said to be state controllable if and only if the
 

state vector, _)_(_[ kTJ , can be brought to any desired state in a finite time.

A plant is completely state controllable if and only if every state is

controllable.

Definition 2. 2: A plant is said to be output controllable if and only if the
 

output vector, l[kT] , can be brought to any desired output in a finite

time. A plant is completely output controllable if and only if every out-

put vector is controllable.

The input sequence u(nT), n = 0, 1, . . . , N-l, required to

move the plant from an initial state at t = 0 to a given state at time

t: NT is determined by the solution of the system of equations

_DSINT]= sNx[o] +[§NA1s__N'2£ . . . @£ {1] u[0] (2.3.1)

u[T]

u[ 2T]

  u((N-1)T]

obtained as the recursive solution of (2. 1). In symbolic form (2. 3. 1) is

represented as

 

3This same definition was used by Kalman.

This same definition was used by Bertram and Sarachick.



9g NT] = §N_x_[o] + H (2.3.2)
NEN ‘

In equations (2. 3) N is not to be confused with n, the order of

the state vector. In equation (2. 3. 2) EN is the Nth order vector repre-

senting the scalar inputs at the N time intervals, and HN is the n by N

composite matrix composed of the column vectors §i_A_, i = 0, l, . . . , N-l.

Substituting equation (2. 3. 2) into equation (2. 2) yields

yNT] = MeNggo] + MH (2.4)
NEN'

The following three cases are of interest.

Case I. N = n. That is, the number of iterations is equal to the num-

ber of variables in the state vector. Since HN is square it is possible

to solve (2. 3. Z) for EN if HN is nonsingular.

_ -1 -1 N
g-N-HN _)_{_[NT] -HN e 2‘10] (2.5)

The square matrix H is nonsingular if and only if the columns of HN

N

are linearly independent. Therefore the following trivial lemma can

be stated.

LEMMA 2. l: A discrete state plant, with state model given in equation
 

(Z. l), is completely controllable in N = n steps if and only if the vectors

sn‘lé, en'zé, . . ., ii, .4.» are linearly independents

 

A similar result arrived at in a much less direct manner and

requiring the inverse of Q, is obtained by Kalman. It is at this point that

this paper departs from Kalman's treatment of the subject.



Case II. N <.n. That is, it is required to transfer a given state vector

to some desired point in less than n steps. It can be seen that this is

not possible in general. That is, it can be done only if )_(IO] is of a spe-

cial form. This can be shown simply by writing equation (2. 3. 2) in par-

titioned form. If we let

    

[I = _13[ NT] - sNzgto]. (2. 6)

then (2. 3. 2) becomes

._ .1 _ ..

‘11 H1

W = : )J. (2. 7.1)
_.

-N

‘12 H2

where H1 is a square, N by N matrix. If lHll ,! 0 then from the top

equation in (2. 7. l) we have

_ -1
EN-Hl V11, (2.7.2)

and from the bottom equation

W2 = HZE-N' (2. 7. 3)

Therefore,

v_v =HH'1W. (2.8)



It can be seen from (2. 8) that any vector, _}5[ O] , can be transferred to

lg NT] in N -< n steps if and only if W, as given in (2. 6), can be written

in the form of equation (2. 8), and the following lemma follows.

LEMMA 2. 2: A discrete state plant is never completely controllable
 

with N < n iterations.

Case III. N." > 11. That is, it is desired to transfer the state vector to a

desired point in N time intervals, where N is greater than the number of

\

variables in the state vector. Let equation (2. 3. 2.) be rewritten as

(2. 9)

I
s I) II
!

:1
1

where W is defined in (Z. 6). Here H is a square, n by n matrix and H1
2

is n by N-n. If |H2| a! 0 we may write

it =H w-H‘Hu. (2.10)

It can immediately be seen that the N-n scalars in El can be chosen inde-

pendently of the rest of the vector E. This corresponds to independent

selection of the first N-ninputs. Since these inputs are arbitrary let

£1 '3 0, so that (2.10) becomes

,. =H. 1:, (2.11)



and E: is given by

(2. 12)

[
1
: n o

The above establishes the following lemma.

LEMMA 2. 3: A discrete state plant completely controllable in N = n
 

time intervals is controllable in NT> n intervals.

From the above three lemmas, and the fact that H2 in equation

(2. 9) is exactly the same as H in equation (2. 5) the following theorem
N

may be stated.

THEOREM 2. l: A general discrete state plant with state equations of
 

the form in (2. l) is completely state controllable in N Z n intervals if

and only if H is of maximum rank (i. e. , rank of H = n).

N N

By a careful examination of equation (2. 4) and through a develop-

ment exactly analogous to that used to establish theorem 2. l we may

draw the following conclusion.

THEOREM 2. 2: A general discrete state plant with output equations of
 

the form in (2. 2) is completely output controllable in N _>_ m intervals if

is of maximum rank (i. e. , rank of MH = m).

N
and only if MHN



With the above two theorems along with theorem A. l in the

appendix, the following theorem relating output and state controllability

may be proved.

THEOREM 2. 3: If a discrete state plant is completely state controllable
 

then the rank of M, in equation (2. 2), being equal to m is a necessary

and sufficient condition for complete output controllability.

PROOF: The hypothesis assures us that HN is of maximum rank. There-

fore theorem A. l is applicable and we see that the rank of MH is equal
N

to the rank of M. Since the maximum rank of MH is m, the product
N

MHN is of maximum rank if and only if the rank of M is m. Therefore

a necessary and sufficient condition for complete output controllability

is that the rank of M equals m.

Note, however, that complete output controllability does not

always imply complete state controllability.

Although theorems 2. l and 2. 2 are certainly necessary and

sufficient conditions for complete controllability, they leave much to be

desired. To say the least it is a tedious task to raise i to successive

powers, postmultiply by the vector A, and then check the independence

of the resulting vectors. Further, if this were done and the resulting

vectors were found to be dependent it is not apparent what 'changes need

to be made to i and A in order to achieve an independent set of vectors.

It is this thought that motivates the following discussion.

It will be useful to make the following change of variable. Let
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_Z_[kT] = ngr], (2.13)

where the square, non-singular, n by n matrix, P, is the matrix that

transforms é, in equation (2. 1), into its upper triangular Jordan-Canon-

ical form. Denote this form by J. That is,

J=P§P'l . (2.14)

Equation (2. 1) then becomes

_Z_[k‘I‘J = Psp'l_z_[ (k-1)T] + PAu[(k-1)TJ (2.15.1)

or, with e = PA,

_Z_[kT] =J_Z_[(k-1)TJ +éu[(k-1)TJ. (2.15.2)

It immediately follows then that equations (2. 3. l), (2. 3. 2), and (2. 4)

become

- _ T '7

£[NT] =JN£[O]+[JN12_} JN 29 . . . Jé é] u[o]

u[ T]

 __u[(N—1)T_]_ 
(2.16)
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or in the symbolic form,

z[ NTJ = JNgjo] + sNgn. (2.17)

and the output is given by,

M NT] = KJNgo] + KS (2.18)
NEN’

where, of course, W: P1, and K = MP-l. Since P is nonsingular the

transformations between W and I and between éand _}_C are one to one,

and an inverse exists. From this point on the properties of equations

(2. 16), (Z. 17), and (2. 18) will be considered.

The matrix SN is composed of N column vectors, each of which

is of the form JIA. The Jordan form, J, is quasidiagonal, i. e. , of the

form

J = “ ' (2.19)

L  1'

where r is the number of distinct eigenvalues and block Li is of order

si with si equal to the multiplicity of Ni in the characteristic polynomial,

DR), of Q. Each Li has the following form.
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L = 1 . (Z. 20)

  
That is, the main diagonal has entries hi, and the upper diagonal con-

tains ones and zeros. The remaining entries in Li are zero. The

exact number of ones and zeros on the upper diagonal depends on the

elementary divisors of the matrix (Lu - Q), and cannot be determined

from knowledge of only the characteristic polynomial, D(A.), and the

minimal polynomial, M0). However, knowledge of M0) andDM) does

allow partial determination of the off diagonal entries. The upper

diagonal in the ith block has all zeros if and only if the (K - ti) term

in M(A) is linear. Also, the upper diagonal in the ith block has all

ones if and only if the (k - ti) term in -M(k) is of the same degree as

6

the corresponding term in D(k).

Examining the vector Jlé we see that

 

6V. N. Faddeeva, Computational Methods of Linear Algebra

(New York: Dover Publications, Inc., T959). P752.



  
where,

rki (I) kl-l i “.2

j I J (2) j °

«.3 (w
L; = L;

 

with the convention that (3)

If MM) 7! D(IL) then (2. 22) has the following form.

(.
i

s.-

.)
i-s.+l

(2.21)

 .J.

(2.22)

= O for j >—i, if and only if MM) '3 DUN).



- 14 -T

i1 (1)).1‘1 . . o o . o
J 1 J

. x1 o o . . . o (2.23)

L}: J .
x1 (1)X1

J 1 J

L ..  
In general the Lj is itself quasidiagonal with the order of the xj

factor in the minimal polynomial equal to the order of the largest

sub-block in Lj' 7 Of course L; remains quasidiagonal.

' an:

The product L; A. is

1 * i i. i-l

LA = x. u +[ )x. u + o o o ' 2024

3—, J5Jk-1 1 )_ BJk ( )

i

x- o

J 5Jk

  
r

Ibid.
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Since (2. 24) represents sj rows of the i + 1 column, it is apparent that

in general the jk row of S is a multiple of the jsj row, and therefore

N

the rank is down by at least one. In fact it can be seen that the k-l row

is a linear combination of the last two rows. The k- 2 row will be a

linear combination of the last three rows, and so on. It can be verified

that the number of dependent rows is exactly equal to the difference in

degree between M0.) and D()~). Theorems 2. 4 and 2. 5 are then

established.

THEOREM 2. 4: A necessary condition for complete state controllability
 

of a discrete state plant is that the minimal polynomial, M0), and

characteristic polynomial, DR), of the matrix Q, in equation (2. 1),

be identical.

EEOEM 2. 5: Let the difference in degree between the minimal

polynomial, MM), and the characteristic polynomial, DO), for the

lj term be denoted by Bj. Then a necessary condition for complete

output controllability of a discrete state plant is that 2‘. B. < n-m.

j J

Consider, now, the case where Q has distinct eigenvalues.

It is immediately apparent that the necessary condition in theorem 2. 4

is satisfied, since each diagonal block, Li’ in the Jordan form is

diagonal and of order one, i. e. , J is diagonal with diagonal elements

equal to the distinct Xi. In this case the product Jlé is



l6

and the composite matrix SN,

N-l N-Z

x1 61 x1 51

N-l N-Z

x2 52 x2 62

SDI:

tN‘la xN'za
n n n n 

F.

n-1 n-2

*1 51 N1 52

n-1 n-2

 

  
N > n, is given by,

 

(2.25)

‘51

‘52

(2. 26)

6
n

N.

‘51

52

(2.27)

6
n  
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S n may be written as the product of two matrices,

S = D V . (2.28)

where D‘5 is the diagonal matrix with dii = 6i and Vn is the nth order

Vandermonde matrix. It is a well known fact that the-Vandermonde

determinant does not vanish for distinct Li. In fact the Vandermonde

determinant is easy to compute and is given by

n

= “IT. (xi .. xj), (2.29)

1 >3  

whichis obviously not zero for Ni 7‘ Kj, i 7! j. 8

Since the determinant of a product is equal to the product of

 

     

determinants, ISn can be written as

' ' n n

= = = k - k 0sn Inévn lDéan F511 .||.(i j)

. 1-J 1 > J

(2. 30)

Equation (2. 30) obviously implies 8n = 0 if and only if 6i = 0 for

  

at least one i, i = l, 2, . . . , n. Now, noting the form of S in equation

N

(2. 26) itis seen that if any 6i = 0 there is an entire row of zeros in

SN. The following lemma may therefore be stated.

8Edward T. Browne, Introduction to the TheorLof Determinants

and Matrices (Chapel Hill, North Carolina: The University of North

Carolina Press, 1958), P. 34.
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LEMMA 2. 4: If a discrete state plant, with distinct eigenvalues and
 

with state equations of the form shown in (2. l), is not completely

state controllable in N = n intervals then it is not completely state

controllable in N >- n intervals.

Consider now the situation with output controllability and

distinct eigenvalues. Again it is seen that the necessary condition

for complete output controllability is satisfied (theorem 2. 5).

Assume that the plant is not controllable in n steps. This implies the

rank of KSn is less than m. This may occur in three ways. (1) The

rank of K may be less than m, (2) the rank of Sn may be less than m,

or (3) the rank of Sn is at least m, but the rank of the product, KSn,

is less than m.

Case (1): When the rank of K is less than m, the rank of

KSN is always less than m, because the rank of the product of two

matrices is never greater than the rank of either matrix.

Case (2): The rank of Sn is less than m if and only if less

than m rows are independent. It has been shown that Sn = D Vn’ and
6

an 3‘ 0. Therefore from theorem A. 1 it can be seen that the

 

rank of Sn is equal to the rank of D Therefore the rank of D is
6' 6

a):

less than m. However, from (2. 26) it is seen that SN = D6VN’

*

where VN is the nth order Vandermonde matrix, Vn’ augmented

with N-n columns. Since is always maxi-

N

mum (i. e. , equal to n) for all Nan. Again theorem A. l is appli-

 

an" o the rank of v

cable and it is seen that the rank of SN equals the rank of Sn which is



les 5 than m.

 

 

Case (3): Consider the product KSN = awhere

l9

 
  

KS k11 12 kln 11 h12 th

k21 22 k2n 21 h22 th

kml m2 kmn

n1 hn2 hnN__

an 12 alN

a21 22 aZN

= a (2.31)

aml m2 amN

__ _J 
Let the m, N dimensional row vectors of a, be denoted by

0.1, 0.2, . . . , am. Each of these m vectors is a linear combination of

the n row vectors, Oi , of SN. It is known that there exists at least

rn rows, (11, that are dependent. Since the combining vectors (i. e. , the

rows of K) are all independent this implies that at least m of the row

vectors, “ai, are partly composed of the dependent vectors in the

set {93, Also note that the relationship of K to S is unaltered by

N
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the magnitude of N. It therefore follows that in order to increase the

rank of a , the rank of S must be increased, i. e. , some dependent

N

rows must be made independent by adding another column. However in

case (2) it was shown that the rank of SN equals the rank of D6 for all N.

Therefore the rank of SN cannot be increased by increasing N.

The above discussion together with lemma 2. 4 and theorems

2. l and 2. 2 imply the following.

THEOREM 2. 6: A discrete state plant with state [output] equations as
 

in (2. l) [ (2. 2)] and with distinct eigenvalues is completely state [output]

controllable in N> n steps, if and only if it is completely controllable in

N = n steps.

And from the conclusion in case (2) of the above development,

a necessary and sufficient condition for state controllability is

apparent

THEOREM 2. 7: A discrete state plant with state equations of the form
 

of (2. l) and distinct eigenvalues, is completely state controllable in

N = n steps if and only if 6i # 0 for all 6i as defined in (2. 30).

Now consider the case where the transition matrix, Q, has

multiple eigenvalues, and MM) =5 D(L). Each column vector of the

matrix QN is of the form shown in (2. 21) and (2. 22). It can be seen

that the matrix, S , may be factored into the product of two matrices,
N

~~

S=DN 5 vn (2.32)
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where

Bl

Ba

N —

D6 —

with

[—6. 6.

is. 13,-1

1 1

6.

is.

1

B. =

1

and

A

N

V =

n .

  

il

is.-l

1

is

9

 f4

 

(2.33)

(2. 34)

(2.35)
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where

_/\., = ' . (2. 36)

 

1

(ml) 16"?” k. 1 0
l 1 1

h?'1 13"2 a 1
l. 1 _i 

Obviously the determinant of D5 is dependent only on each 61 s

i

and on nothing else. That is,

’13 = "IT (5. .1? (2.37)

 

The determinant of the modified Vandermonde matrix can be shown

 

 

to be

5N r 8.8.

Ivn = (hi - a.) 1 .3 (2.38)

i>j 3

Therefore

~ N r 3. r 3.5.

_ _ 1 _ 1 J

Is.| - |v.||v. - Tr <6...) IT. a. ’3)-
1=l 1 1 >3
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N N

Note that for distinct A, D6 = D6 and Vn = Vn. Then theorem 2. 8

immediately follows.

THEOREM 2. 8: A discrete state plant with state equations of the form
 

in (2. 1) is completely state controllable in N = 11 steps if and only if

(a) M(k) = D(I\) and (b) all 6.1 s 35 O as defined in equation (2. 24).

1

The following theorem is also easy to prove.

THEOREM 2. 9: A discrete state plant with state equations of the form
 

in (2. l) is completely state [output] controllable in Nf> n steps if and

only if it is completely state [output] controllable in N = n steps.

PROOF: The "if" part is shown by lemma 2. 3. For the "only if" part

it needs to be shown that a plant not controllable in N = n steps is not

controllable in»N.‘> n steps.

First consider state controllability. If the plant is not state

controllable in N = n intervals then IsnI = o. This implies some

6i 3. = 0. Which, from (2. 24), implies that S

1

hence it cannot be of maximum rank.

N has a row of zeros;’

Next consider output controllability. This development is

parallel to the discussion in the case of distinct eigenvalues. Case (1)

and Case (3) do not use the fact that the eigenvalues are distinct.

Therefore it is only necessary to establish case (2). That is, it is

necessary to show that the rank of S equals the rank of Sn for

N

N,‘> n, hence the rank of Sn: < n implies the rank of SN < n.

It was shown above that



(UN

5 =DV. (2.40)

 

N

It can be seen from (2. 38) that Vn 7! 0. Therefore theorem A. l

 
N

implies that the rank of S equals the rank of D . Note that S can
n 6 N

be written,

~N*

S =DVN a N (2.41)

a):

where VN is the nth order modified Vandermonde matrix Vn augmented

N :1:

with N-n columns. Since 7‘ O the rank of VN is maximum and

N

theorem A. 1 again applies. Therefore the rank of SN = D6’ - from which

  

N

V

n

follows that the rank of SN equals the rank of Sn and the theorem is

proved.



III

CONTROLLABILITY WITH MULTIPLE INPUTS

Consider the discrete state plant with state equations of the

following form.

ng] = Q_)£[(k-1)TJ + Au[(k-1)T] (3.'l)

Here, as before, X is an n dimensional vector and Q is an n by 11 square

constant matrix. HoweverA is no longer a column vector, it is an n by

q matrix. The column vector u is q dimensional.

The outputs are given in the form

l[kT] = Mgng] , (3. 2)

where _Y_ is an m dimensional vector and M is an m by n constant matrix.

Again, as in the single input case, (3. 1) can be solved recur-

sively yielding

3] NT] = sijo] + [sN'lA QN'ZA . . . QA A] u[o] T

U[ T]

  E[(N-1)Tl_

3.325 ( )
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or in symbolic form

3:] NT] = sNgo] + H (3.4)
NE-N'

Each of the products QIA results in an n by q matrix, thus making HN

an n by Nq matrix. Although I: is a vector, the elements, U, are
N

each q dimensional column vectors. Thus, )1--N is an Nq dimensional

vector. Let us again consider three cases.

Case I. Nq : n. In this case H is a square matrix and if lHNl f 0,

N

_ -1 -1 N
gN-HN _JgNT] -HN a _x_[o]. (3.5)

Of course

 

HNl )4 0 if and only if its columns are linearly independent.

Case 11. Nq < n. In this case W is defined by

N
V_V=_)_(_[NT] -§ go]. (3.6)

With this definition equation (3. 4) may be written as

w ' *
—1 H1

= s .7
E W H»: EN, (3 l

-2 2

a):

where H1 is a square Nq by Nq matrix. Solving for W2 from the bottom

equation of (3. 7) and substituing it for I: in the top equation of (3. 7)

#0.

N

H*

1   

yields, for



27

at at -1

v12 = HzHl v11. .(3. 8)

It can be seen that if Nq is no greater than the number of variables in

the state vector, only certain special initial vectors, 2(_[ 0] , may be

controlled.

Case III. Nq > n. With the definition given in (3. 6), (3. 4) can be

written as

v_v-.-[nl e2] E1 . (3.9)

  .9 ZJ

Here 02 18 .n by n, a1 15 n by Nq-n, and E2 is n by 1, while El 18 Nq-n

by 1. If IezI go,

se‘lw—a'le g (310)
92 — 2 1 1' °

It can be seen that the Nq-n constants in El are arbitrary. Therefore

choose £1 = 0. Then

(3 sez'lig, ' (3.11)

whe re

it = o . (3.12)
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Note that for any given case, if q and n are such that n/q is an integer,

E2 is identical with H in equation (3. 5).
N

Here, as in the case of a single input, the following theorem ‘

may be stated.

THEOREM 3. 1: A discrete state, multiple input plant with state
 

equations of the form in (3. l) is completely state controllable in

N Z n/q time intervals if and only if HN, in equation (3. 4) is of maxi-

mum rank (1. e. , of rank 11).

Output controllability is concerned with the system

_Y;[NT] = M §N_)_(_[o] + MH (3.13)
NE-N ’

for which we have the following theorem.

THEOREM 3. 2: A discrete state, multiple input plant with output
 

equations as given in equation (3. 2) is completely output controllable

in N 3.. m/q time intervals if and only if the product MHN. in equa-

tion (3. 13), is of maximum rank (1. e. , of rank m).

The similarity between the single input case and multiple input

case terminates with the above theorems. ‘Recall now that the N groups

of q columns which compose HN .are products of the form Qi A. As in

the single input case, an equivalent system of equations may be consi-

dered by using the Jordan Canonical form of Q. The Jordan Canonical

form of (3. 3) is
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N [o]+[JN'1A JN'ZA . . . JA A] Go]§_[NT] = J

U[ T]

  URN-11'1"]

(3.14)

withé = P_}_(_, and A = PA. Here, of course, the terms JIA each repre-

sent a band of q column vectors instead of a single column vector as in

the single input case. It can be shown that theorem 2. 4 is not true

under these conditions. For example, let

  

T o o o—
1

o 1.1 o o

J = (3.15)

o 0 a2 0

_o o 0 kg

and let

bl o—

o 1

A = . (3.16)

1 o

.0 13  
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Obviously

2
2) (3.17)D(A) = (x - 1.1)2 (k - 1.

and

Mo.) = (A - 5.1) (:1 - a (3.18)
2"

If k = O, k = 1, and N = 2 the matrix HN can be written

0
]

o H o

H = [JA A] = (3'19)

  

from which it is seen that

IHN| = 1 g o. (3.20)

Therefore Hfi'l exists and the plant is controllable. However it is

seen from equation (3.17) and (3. 18) that MM) # D(A).

It is also easy to show that theorem 2. 9 does not remain true

in the multiple input case. For example, choose J with four distinct

eigenvalues and let



—1 1—

1 1

A = . (3.21)

1 1

1 1  

Then, for N = n/q = 2,

  

2 2

H = . (3. 22)

N
k3 £3 1 1

k4 X4 1 1

Obviously lHNl = 0. However if N = 4

"—3 3 2 2 —
kl k1 x1 kl k1 XI 1 1

3 3 2 2
L2 L2 k2 k2 k2 K2 1 1

HN = . (3. 23)

  w
i
t
h
)

.
p
.

t
h

.
p
.

.
p
.

.
4
;

It is easily seen that the rank of H is maximum. Therefore by
N

theorem 3. l the plant is controllable in N > n/q time intervals.

From the above discussion it can be seen that the results of

the previous section do not trivially extend to the case of multiple

inputs. Moreover, they are not true in general.



IV

OBLSERVABILITY

In the previous two sections it was shown that there are

certain necessary and sufficient conditions on the transition matrix,

Q, and the coefficient matrix, 56:, for state and output controllability.

However, examination of equations (2. 4) and (2. 5) reveals that for

both state and output controllability the entire state vector evaluated

at t = O, i. e. , 2(_[0], is required. In general it may be very difficult,

inconvenient, or impossible to measure 2{_[0]. It is this thought that

motivates the following discussion.

DEFINITION 4. l : A discrete state plant is said to be observable if
 

the exact value of the state vector at time zero can be determined, in

a finite time, from the measurements of the output signal. If every

9
state is observable the plant is completely observable.

In order that some definite conclusions may be drawn let the

plant have a single input and single output. That is let M, in equation

(2. 2), be a row matrix of dimension n. Equation (2. 4) with N = k becomes,

Y[kT] = Mek3<_[01+ MHktk (4.1)

 

9
This same definition was used by Kalman.

32
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where, of course, Y[0] is a scalar. Writing equation (4.1) for

    

k: 0,1, . . . , n-l, one obtains

,. ._ _ ..

Y[O] M

Y[T] Mo

= . £[0] + 1\(1Hn)_1__n , (4.42)

Y[(n-1)T] Mon'l

.. 4 .. 3

or in symbolic form,

3).:

Yn = Gn_}_{_[0] + MHn 'in' (4. 3)

If IG I 4 o
n

.. * _

3(_[01= GnlY - G lMHn& . (4.4)

The analog of lemma 2. 1 follows immediately.

 

LEMMA 4. 1 : A discrete state plant with one input and one output is

completely observable in N = n intervals if and only if the row vectors

M<Dn-l, mon’z, . . . , M are linearly independent.

LEMMA 4. 2 : A discrete state plant with a single output is never
 

completely observable in N < n time intervals.

In a similar manner theorem 2. l carries over as:
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THEOREM 4. l : A discrete state plant with a single input and a
 

single output is completely observable in N _>_ n time intervals if and

only if Gn is of maximum rank.

A careful examination of Gn reveals that it is of the same form

as the transpose of Hn. In fact (in is a row permutation of H: with At

replaced by M and Qt replaced by 4?. Since the operation of transposition

and row permutation does not affect the singularity of a matrix, all the

theorems proved in section II will carry over, and theorems 2. 4 and

2. 5 become:

THEOREM 4. 2 : A necessary condition for complete observability
 

of a discrete state plant with one output is that the minimal polynomial,

M(X ), and the characteristic polynomial, D().), of the matrix Q be

identical .

THEOREM 4. 3: A discrete state, single output, plant with distinct
 

eigenvalues is completely observable in N > n intervals if and only if

it is completely observable in “N = n steps.

With 5i defined in equation (2. 30) and with _A_ : Mt, we may state the

analog oftheorem 2. 7.

(THEOREM 4. 4 : A discrete state plant with a single output and distinct
 

eigenvalues .is completely observable in N = n time intervals if and only if

ai¢0foralli:1, 2, . . . ,n.
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In the case of repeated eigenvalues , theorem 2. 8 and theorem 2. 9

be come:

THEOREM 4. 5 : A discrete state plant with a single output is
 

completely observable in N = n time intervals if and only if (a)

MO.) 3 DOK) and (b) all 51 3 qt 0 as defined in equation (2. 24) with

i

£=Mt.

THEOREM 4. 6: A discrete state plant with a single output is
 

completely observable in N >n steps if and only if it is completely

observable in N = n steps.



V

CONCLUSION

In the previous four sections the concepts of output and state

controllability as defined by Kalman have been given. It was found

that for a linear, stationary, discrete state plant with one input

and one output the minimal polynomial, M().), must be identically

equalto the characteristic polynomial, D0. ), if we are to achieve

state controllability. 10 In addition the input vector, _A_, must be such

that when premultiplied by the Jordan transforming matrix, P, the

result is free from zeros in certain positions. In addition to the above,

the state-vector at t = 0 must be known.

This last requirement motivates the development in Section IV

where the concept of observability is given. It is shown that in order

to compute _)_{_[O] (that is, the plant is observable) Gn must be non-

singular. However the matrix Gn has properties very similar to Hn’

the inverse of which is required for controllability. It is therefore

easy to check Gn from the information used to investigate the rank of Hn'

To make a complete check of controllability the Jordan trans—

forming matrix, P, must be found. In general this is a very laborious

task to say the least. Even more serious is the fact that if the compu-

tation is to be done on a digital computer the round-off errors, for large

matrices may accumulate to such an extent that the result is useless.
I

 

10This necessary condition was given in a different form by

Kalman .

36
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If an analysis is performed on the system, other factors,such

as stability, will also be of interest. Much of the information required

for a controllability investigation will also be required for these other

purposes and therefore the increase in work to investigate controllability

will not be as great as first may appear.

As a further application to control systems it should be noted

that in order to achieve controllability it is necessary to compute the

solution to equation (2. 5) with £[O] given. Even if this is to be done

on a high speed digital computer, it will require some non-zero compute

time. Let this time be denoted by (3T, where T is".the sampling period.

Since the solution to (2. 5) gives, among other things, the input at the next

time interval it is impossible to control the plant, with zero error, in

N = n time intervals. Also note from equation (2. 12) that the first N - n

intervals are completely arbitrary, say zero. Therefore we are

assured that we may control the plant in N = n + 5 intervals.

If the state vector is not directly measureable, but the plant is

completely controllable, we are assured that it can be controlled in at

most ' N = 2n + (5 intervals.

The question of controllability with multiple inputs and the prob-

lem of observability with multiple outppts is essentially the same, but

it is one that is not easily answered. Certainly it would appear that the

answer lies in the relationship between Q and A in the controllability

case and between ¢ and M in the observability case. Counter examples

to the theorems in the single input-output case are easy to give for the

multiple input-output case. As yet it has not been possible to draw any

specific conclusions in the multiple input, multiple output plant.



APPENDIX

THEOREM A. l : Given the matrix product MH, where M is an m
 

by n matrix, n: m; and H is an n by N matrix with N: n, if H is of

maximum rank (i. e. , n) then the rank of MH equals the rank of M.

  
  

  

PROOF: Let MH = 9. Then

511m12m13 ' ' ' m1; 1111’12' ° "’11:

m21m22 m23 ' m2n h21 h22 ° ° ' th

h31 h32 ° h3N =

h__nl n2 ° ' hnli_

:11 “’12 “’13 “1N—

“’21 “’22 “’23 ' “’2N

= :2 . (A. 1)

:ml mewm3' ° 'wmli

It can be seen that

(31 =m11W1+m12 \If2+. . . +mln\Ifn

[32 =m21\IIl +m2‘2 \IIZ+. . . +1112an

(A.2.)

6m = mmlq’l + mmZ \Ifz + . . . ~+ mman
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Where [31: (cl)1 wiZ wiN) for 1 2 l, 2, . . . , m, and

‘Ifi=(hil hi2 . . . hiN) for1=l,2, . . .,n.

It is clear that the vectors BI, (32, . . . , [3m are linear

combinations of the vectors \Ifl, \Irz, . .

maximum rank, and \Ili is the ith row of H, the vectors {iii} are linearly

. , \Irn. Note that since H is of

independent.

Assume that the rank of S2 is less than the rank of M. Then

any j rows of Q are dependent, where j is the rank of M. Then

j

Zaifiizo ; ai¢0forsomei=l,2,...,j, (A.3)

i=1

or

al(m11\1[r:l + leWZ + . . . + mlnwn)

+ a2(m21\lil + mZZWZ + . . . +m2nfl'fn)

(A.4)

+ aj(mj1‘IIl + mjziliz + . . . + mjnwn) = 0

Rearranging and combining terms one obtains

(alrn11 + a2m21+ . . . + ajmj1)\I’1

+ (alm12 + azm22 + . . . + ajijHVZ

(A. 5)

+ (alm1n + azm2n + . . . + ajmjnhlfn = 0

However, it has been shown that {Wig is a set of linearly inde-

pendent vectors. Therefore equation (A. 5) implies that
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alm11+ a2m21+. . . + ajmjl : 0

almlz+a2m22+ +ajm32 -O

(A. 6)

alm1n + azm2n + + aJmJn = 0

Let pi = (mi1 mi2 . . . min)° That 18, Hi 18 the 1th row of

M. With this definition the equations in (A. 6) may be written

a1)J.1+ azpz + . . . + ajllj = 0 . (A.7)

Equation (A. 7) must hold for any set of j rows of M. Since the

rank of M is j , there must exist j linearly independent rows of M.

Therefore (A. 7) can only be true if

ai=0 forall i=l,2,...,j. (A.7A)

This is a contradiction to the original hypothesis that ai =# O _

for some i. It is therefore concluded that the rank of 9 is greater than

or equal to the rank of M.

However, since the rank of M equals j, j 3 mg n, and thelrank

cf H is n, it is concluded that the rank of S2 is at most j. Hence the

rank of (2 equals j.
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