
IMPROVEMENTS IN FINE-SCALE ESTIMATION  
AND EVALUATION OF GEOGRAPHIC VARIABLES  

USING CLIMATE DATA IN EAST AFRICA 
 

By 
 

Sarah L. Hession 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION  
 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
Geography 

 
2011 



ABSTRACT 

IMPROVEMENTS IN FINE-SCALE ESTIMATION AND EVALUATION OF 
GEOGRAPHIC VARIABLES USING CLIMATE DATA IN EAST AFRICA 

By 

Sarah L. Hession 

 

Global environmental change has surfaced as a critical issue to both the 

scientific community and the general public.  One aspect of particular concern involves 

climate change, which will exert impacts on ecosystems and economies, presenting 

considerable challenge to human adaptation.  In Africa, a continent that is vulnerable 

due to multiple stressors and low adaptive capacity, climate change is expected to 

significantly affect both people and ecosystems.  Adaptation strategies are being 

developed using information from studies that evaluate the impacts of climate variability 

and climate change in Africa.  Recommendations are made for local development of 

adaptation strategies due to the heterogeneity of climate change and its effects on East 

Africa’s climate.  However, global climate change models are coarse in scale and mask 

much of the local variation in regional climate, indicating the need for higher resolution 

climate data.  This dissertation addresses this need by comparing spatially explicit 

statistical methods of interpolation and prediction, both theoretically and empirically; 

expanding upon the method of universal kriging by incorporating complex feedback 

relationships that may produce simultaneity between precipitation and its covariates; 

and evaluating precipitation patterns over space in East Africa through a case study.  

Mechanisms of precipitation have been considered in detail, expanding upon many 

other spatially explicit applications of prediction methods to date.  Further, spatially 



explicit inferential regression models have been developed to better understand spatial 

patterns and variability in East African precipitation.  Predicted maps of precipitation, 

generated at a resolution of 1 kilometer, accurately reflect the mesoscale influences of 

topography and the presence of large water bodies (i.e., Lake Victoria) as well as the 

seasonal influences of the passing of the intertropical convergence zone (ITCZ).  In 

terms of prediction, the spatially explicit methods considered herein clearly 

outperformed a global data set (i.e., the CRU TS 3.1) in terms of error and ability to 

reflect local variability.  The method of local ordinary kriging generally outperformed the 

multivariate kriging techniques, indicating that precipitation patterns in areas of high 

topographic variability, such as East Africa, may be modeled as well or better using 

local search neighborhoods in the kriging process rather than using complex 

multivariate regression models.  However, additional work to improve the multivariate 

regression models and overall levels of correlation are expected to yield improved 

prediction results.  Furthermore, the case study successfully demonstrated that the 

newly developed method of universal kriging with instrumental variables performs 

similarly to other standard methods of estimation, and perhaps better in the presence of 

significant measurable simultaneity.  
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Chapter 1 

Introduction 

 

1.1  Modeling a changing climate 

Global environmental change has surfaced as a critical issue to both the 

scientific community and the general public.  One aspect of particular concern involves 

climate change, which will exert impacts on ecosystems and economies, presenting 

considerable challenge to human adaptation.  Widespread impacts due to climate 

change are expected in many regions of the world (Giorgi 2001; Hulme 1998; Lobell et 

al. 2008).   

In Africa, climate change is expected to result in warmer temperatures and 

changes in precipitation patterns, significantly affecting both people and ecosystems 

(Moore et al. 2005, 2006).  According to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC; Boko et al. 2007), “Africa is one of 

the most vulnerable continents to climate change and climate variability, a situation 

aggravated by the interaction of ‘multiple stresses’, occurring at various levels, and low 

adaptive capacity.” Some of these stresses and vulnerabilities are described below, with 

a focus on eastern Africa. 

In East Africa, studies have projected warmer and wetter conditions (Hulme et al. 

2001, Moore et al. in review) with possible decreases in precipitation during the northern 

hemisphere summer months of June, July, and August (Giorgi 2001; Hulme 1998).  

Warmer temperatures combined with higher potential evapotranspiration and variable 
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precipitation may already be causing decreased productivity of much of the East African 

savanna (Moore et al. 2005). 

Total rainfall in most areas has not significantly changed in the last 50 years, 

although increases in interannual variability have been observed after the 1970s (Boko 

et al. 2007, Fauchereau et al. 2003, Richard et al. 2001).  Increased variability in 

precipitation is due, in part, to changing climatic patterns.  Two such climatic patterns 

are the El-Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole.  ENSO has 

experienced a marked decrease in frequency, concurrent with an increase in the 

intensity and duration of this phenomenon (Camberlin et al. 2001, Mukabana and Pielke 

1996).  ENSO has a large impact on the variability of precipitation patterns; the impact 

is different based on the phase of ENSO that is occurring.  The two phases of ENSO, 

the negative or warm phase (El Nino) and the positive or cool phase (La Nina), 

generally influence the timing of seasonal precipitation in opposite ways (Majugu and 

Magezi 1985).  In La Nina years, the secondary rainy season generally occurs early in 

the season (i.e., the rainy season begins in August or early September and ends in 

October or early November).  The end of this early rainy season is usually followed by a 

marked decrease in rainfall, resulting in droughts throughout much of the region 

(Majugu and Magezi 1985).  Conversely, a typical El Nino year is characterized by a 

late onset of the second rainy season (i.e., the rainy season begins in late September or 

early October and ends in late November to early to mid December), with intense rains 

and potential flooding in parts of the region (Majugu and Magezi 1985).   

Distinct from ENSO, an intensifying dipole rainfall pattern has been identified that 

occurs in a decadal pattern.  The dipole is marked by increasing rainfall over the 
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northern sector and declining amounts over the southern sector (Boko et al. 2007, 

Schreck and Semazzi 2004).  This increased variability of precipitation over both time 

and space greatly impacts water availability, crops and vegetation, farmers and others 

who rely on these crops, livestock and wildlife that rely on vegetation and water 

availability, as described below. 

The eastern African region, like many regions within the tropics, experiences a 

disproportionate share of climate extremes (Majugu and Magezi 1985).  Changes in the 

frequency and magnitude of extreme events, such as droughts and floods, have major 

implications for numerous Africans.  For many years, droughts caused “human 

migration, cultural separation, population dislocation and the collapse of prehistoric and 

early historic societies” (Pandey et al. 2003).  Major impacts of drought include 

decreased food production and shortages of potable water, which will be discussed 

next. 

The long-term relationship between climate and vegetation in the region has 

been examined by Mworia-Maitima (1991, 1999) and colleagues, who show a clear 

relationship between plant species composition and climate.  Future climate change 

may dramatically affect agricultural production across space and time; for example, the 

length of the growing season in East Africa could increase in some areas and decrease 

in others primarily as a result of altered precipitation amounts and timing (Jones and 

Thornton 2003). 

Scholes and Biggs (2004) refer to Sub-Saharan Africa as the “food crisis 

epicenter of the world,” concluding that food security will worsen during the first half of 

the twenty-first century due to projected changes in climate.  Further challenges in 
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ensuring food security around the world, particularly in Africa, are expected due to the 

impacts of climate change on agriculture (Thornton et al. 2009).  In East Africa, much of 

the population is largely dependent on rainfed cropping and pasture (approximately 

80% of the population are agriculturalists); consequently, changes in productivity are 

expected to have a profound effect (Thornton et al. 2009)].  Vulnerability mapping has 

been used to identify areas that are presently vulnerable, both environmentally and 

socially, that are expected to be severely affected by climate change (Thornton et al. 

2009).  Parts of eastern Africa, such as arid-semiarid rangelands and coastal regions, 

are included as “hotspots” in these vulnerability maps (Thornton et al. 2009).   

Climate change and variability are also expected to impose additional pressures 

on water availability, water accessibility, and water demand in Africa (Boko et al. 2007).  

Currently, about 25% of the African population experiences high water stress.  

Furthermore, one-third of the people in Africa live in drought-prone areas and are 

vulnerable to the effects of droughts (World Water Forum 2000).  Although access to 

freshwater was improved during the 1990s, access to improved water supplies was 

available to only about 62% of the African population in 2000 (Boko et al. 2007, 

WHO/UNICEF 2000).  Women would be particularly affected by changes in the location, 

quality and quantity of available domestic water as well as fuelwood, declining crop 

yields, and changes in animal health and productivity (Wangui 2003, 2004). 

For many Africans, adaptation to climate change is not an option but a necessity 

(e.g., Thornton et al. 2006).  Increasing numbers of studies are being carried out to 

evaluate the impacts of climate variability and climate change in Africa, and to develop 

adaptation strategies (Boko et al. 2007). Adaptation has been shown to be successful 
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and sustainable when conducted together with effective government input, 

consideration of civil and political rights, and literacy (Brooks et al. 2005). 

Thornton et al. (2009) suggest that adaptation strategies to climate change be 

developed locally rather than for large, spatially contiguous regions, due to the 

heterogeneity of climate change and its effects.  Crop yield projections are highly 

variable due, in part, to large variations in soils, topography, and current average 

temperatures and corresponding variability in projected rainfall and temperatures 

(Thornton et al. 2009).  Consequently, adaptation strategies would best be informed by 

higher-resolution climate data and developed through localized, community-based 

efforts (Thornton et al. 2009). 

Development of a range of adaptation strategies may improve the ability of local 

populations to cope with climate change.  Recent evidence from East Africa suggests 

that diversification of coping mechanisms at the household level is greatest among the 

poorest and wealthiest sections of society (Campbell 1999, Smucker and Wisner 2008).  

Wealthy households have better access to non-farm activities and remittances that 

reduce reliance on local resources during drought.  The poorest increasingly rely on 

wage labor or extractive activities (charcoal or fuelwood sales), subsistence agriculture 

at the arable margins of the savanna, or food aid resulting in differential opportunities for 

adaptation and new patterns of resource use. 

Even if adaptation strategies are put in place, recent research suggests that, in 

tropical regions, human responses to droughts and more gradual declines in vegetative 

and livestock productivity, may lead to ‘tipping points’ in terms of the adaptive capacity 

of households to manage with change.  At some point, dependence on natural 
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resource-based livelihood options may not be able to satisfy households’ objectives and 

needs (Moore et al. 2005, 2006).   

Policy change or other higher level institutional responses could influence local 

adaptation by either enabling or constraining those adaptations.  Furthermore, 

adaptation at the local scale may heighten or lessen the vulnerability of some societal 

groups to future perturbations or stressors (Kates 2000, Wisner et al. 2004). 

Under the near-term and future climate changes projected by the Climate-Land 

Interaction Project (CLIP, funded by the NSF Biocomplexity Program, BE/CNH Award # 

03088420), savanna ecosystems will be one of the most negatively impacted 

ecosystems with large extents reaching ‘tipping points’ of dramatic changes in physical 

conditions, functions, and services (Moore et al. 2005, 2006).  Savanna areas are 

dominated by pastoralism and, in some areas, wildlife.  They are also at the expanding 

edge of cropped agriculture and are the location of the most rapid in-migration and land 

use change in the region over the past twenty years (Olson et al. 2004). 

The savanna ecosystem responds to the highly variable rainfall with 

disequilibrium, leading to heterogeneous vegetation that changes over space and 

through time (Oba et al. 2003, Sankaran et al. 2005).  This response will alter the 

distribution of savanna grasses, thus affecting grazing patterns of wildlife and domestic 

animals alike.  Further degradation of pasture may occur due to the progressive growth 

of bush that often results from increases in rainfall.  Conflicts between communities and 

ethnic groups over resource use have resulted from reductions in grazing lands (Oba et 

al. 2000).   
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An increase in health stresses may also be a consequence of climate change.  

Many contemporary African communities are affected by health stresses.  Incidences of 

malaria, including the recent resurgence in the highlands of East Africa, involve a range 

of causal factors.  Links to climate and other causal ‘drivers’ of change have recently 

attracted a great deal of attention and debate (e.g., Hay et al. 2002, Pascual et al. 

2006).  Results from the “Mapping Malaria Risk in Africa” project show a possible 

expansion and contraction, depending on location, of climatically suitable areas for 

malaria by 2020, 2050, and 2080 (Thomas et al. 2004).  However, new evidence 

regarding micro-climate change due to land-use changes, such as swamp reclamation 

for agricultural use and deforestation in the highlands of western Kenya, suggest that 

conditions for larvae are being created and therefore the risk of malaria is increasing 

(Boko et al. 2007, Munga et al. 2006). 

Biodiversity in Africa is also under threat from climate variability and change and 

other stress.  Africa’s development is constrained by climate change, habitat loss, over-

harvesting of selected species, the spread of exotic species, and activities such as 

hunting and deforestation, which threaten to undermine the integrity of the continent’s 

rich but fragile ecosystems (Boko et al. 2007, UNEP/GRID-Arendal 2002). 

Increased variation in rainfall related to effects of ENSO in East Africa also has 

wide ranging socioeconomic impacts, especially in the agriculture and water resources 

industries (Majugu and Magezi 1985).  Economic losses from drought in the 1980’s 

totaled several hundred million U.S. dollars (Boko et al. 2007, Tarhule and Lamb 2003).  

Although future climate change seems to be marginally important when compared to 

other development issues (Davidson et al. 2003), it is clear that climate change and 
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variability, and associated increased disaster risks, will seriously hamper future 

development (Boko et al. 2007). 

In efforts to plan for and mitigate these risks, powerful tools are being developed 

that utilize traditional information on climate and an emerging ability to predict future 

climatic events.  These tools can be used to assist planning and management across all 

socioeconomic activities and underpin sustainable development.  Advance knowledge 

of the probable climate extremes also plays a big role in mitigating the consequences of 

climate hazards such as drought, floods, and tropical cyclones (Majugu and Magezi 

1985).  A central goal of global change science is to obtain more reliable assessments 

of likely future climatic conditions and to assess the impacts on society, such as 

poverty, food production, and the incidence of disease (McCarthy et al. 2001).  Concern 

with issues such as rising sea levels, increased frequency and intensity of extreme 

climatic events, and variability in crop production is influencing policy discussions in 

vulnerable countries. 

To date, most research on climate change and its impacts has been global in 

scale (e.g., Lobell et al. 2008, Lobell and Field 2006).  The relatively coarse-scale data 

simulated by general circulation models (GCMs) are useful for evaluating global trends 

in climatic variables; however, the resolution of GCM simulated data is not sufficient for 

regional evaluations of climatic patterns, particularly in the presence of high landscape 

variability (Moore et al. in review, Thornton et al. 2009).  In concurrence, the Fourth 

Report of the Intergovernmental Panel on Climate Change (IPCC 4) stated, “Climate 

scenarios developed from GCMs are very coarse and do not usually adequately capture 

important regional variations in Africa’s climate.  The need exists to further develop 
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regional climate models and sub-regional models at a scale that would be meaningful to 

decision-makers.” 

East Africa’s climate is highly variable on a local scale due, in part, to highly 

variable topography.  Substantial differences in local terrain occur across the region, 

from Mount Kilimanjaro (5,895 m) and Mount Kenya (5,199 m), the two highest peaks in 

Africa, and the Kenya Highlands, to the Great Rift Valley, Lake Victoria, and the Indian 

Ocean coastline.  East African climate is also influenced by multiple sources of 

seasonality, such as the northerly and southerly migrations of the Intertropical 

Convergence Zone (ITCZ) throughout the year which, give rise to bimodal precipitation 

patterns at locations near the equator and unimodal patterns further north and south of 

the equator (Stock 2004, Mutai and Ward 2000, Hastenrath et al. 1993), and the 

complex seasonality resulting from Indian Ocean influences (Black et al. 2003).  This 

large variation in regional climate may be masked at the coarse scales of GCMs (Moore 

et al. in review) and is difficult to detect from the sparse networks of climate 

observations on the ground.  Furthermore, climate data measured at East African 

meteorological stations are sporadic over both time and space, and do not fully 

represent landscape variability (Hession and Moore 2010), thus demonstrating the need 

to develop higher resolution climate data.   

 

1.2  In search of higher resolution climate data 

Higher resolution climate information for impact assessment can be derived 

using two basic approaches: (1) downscaling of output from GCMs, and (2) estimation 

of conditions at unsampled locations using available measurements on the ground.  The 
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former approach is more commonly employed; simulated data sets are more complete 

over space and time, allowing for more straightforward evaluation of general climate 

trends.  Measured data are generally incomplete, but these direct measurements of the 

variable of interest can also be used to model trends using state-of-the-art statistical 

methods, the subject of this dissertation.  Downscaling of simulated climate data is 

described first.  Statistical analysis techniques and their use in modeling climate trends 

based on measured data are summarized in the following section.  

 
 

1.2.1  Downscaling of GCM results 

Downscaling methodologies developed over the last 30 years have begun to 

bridge the gap between global climate modeling and regional applications.  

Downscaling methods generally fall into one of two categories: statistical (empirical) 

downscaling and dynamical downscaling.  Statistical downscaling involves correlating 

GCM simulated data with data from observed variables measured at specific locations 

(e.g., temperature or precipitation) to downscale simulated GCM results (Rogers et al. 

2003).  A diversity of approaches are utilized in statistical downscaling (e.g, multiple 

stepwise regression, logistic regression, canonical correlation analysis, and artificial 

neural networks), deployed to predict localized conditions from large-scale atmospheric 

parameters and GCM-derived aggregate data (e.g., Kahn et al. 2006, Salathe et al. 

2007, von Storch et al. 1993).  Dynamical downscaling forms the basis for regional 

climate modeling.  Regional climate modeling uses GCM simulated data to drive limited-

area, high-resolution regional climate model (RCM) simulations (Mearns et al. 2003; 

Dickinson et al. 1989; Giorgi 1990, 2006) that are able to resolve smaller, regional scale 
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climatic forcings such as:  complex topography, land-water interfaces, and vegetation or 

land cover patterns.  High-resolution climate impact assessments avail of these higher 

resolution climate predictions to formulate regional adaptation strategies (e.g., Mearns 

et al. 1999, 2001a, 2001b).  Some major theoretical limitations impact both forms of 

downscaling, however, including the propagation of errors from GCMs (Mearns et al. 

2003).  The research presented herein makes use of observed climate data, rather than 

simulated data from GCMs or RCMs, and spatially explicit statistical techniques to 

develop improved methods for prediction of data in a data-scarce environment, and to 

apply these newly developed methods in East Africa.  Furthermore, the accuracy of 

results will be compared to a global interpolated data set generated at a spatial 

resolution of 0.5 degrees by the Climatic Research Unit at the University of East Anglia 

(Mitchell and Jones 2005). 

 

1.2.2  Use of statistical techniques with measured data 

Various statistical techniques have been used to generate higher resolution 

climate data from observations on the ground.  This dissertation focuses on techniques 

from geostatistics, particularly kriging, and new approaches in regression analysis that 

treat spatial problems to estimate higher resolution precipitation data.  The methods of 

greatest immediate relevance within these two broad categories are now briefly 

discussed in order to motivate the dissertation work.  The preferred techniques in this 

dissertation are multivariate, and utilize data on variables expected to influence the 

spatial distribution of precipitation (i.e., covariate data).  Consequently, a description of 

the scales and mechanisms of precipitation in East Africa is included in Chapter 2, 
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Literature Review.  This knowledge informs the selection of appropriate covariates in 

multivariate statistical analyses. 

Uses of Kriging in the Estimation of Precipitation.  Many climate studies have 

evaluated the ability of interpolation methods to estimate climatic variables over space.  

Historically, these studies have compared basic interpolation techniques (e.g., inverse 

distance weighting (IDW), Theissen polygons, and nearest neighbor interpolation) to 

various kriging techniques (e.g., Diodato 2005; Goovaerts 1999a, 1999b, 2000; Pardo-

Iguzquiza 1998).  Basic interpolators provide estimates of a variable of interest at 

unsampled locations; however, they do not assess uncertainty.  Kriging techniques 

have the added benefits of being spatially explicit (i.e., accounting for location and 

configuration of samples as well as spatial autocorrelation in the data) and providing 

estimates of uncertainty for the interpolated values.  Multivariate kriging techniques (e.g, 

universal kriging) incorporate covariate data to improve predictions and reduce 

uncertainty (Diodato 2005; Goovaerts 1999a, 1999b, 2000; Kyriakidis et al. 2001; 

Pardo-Iguzquiza 1998).  In the development of multivariate kriging models, many 

researchers have relied on establishing correlations between precipitation and elevation 

to improve estimates of precipitation at unsampled locations (Diodato 2005; Goovaerts 

1999a, 1999b, 2000; Kyriakidis et al. 2001; Pardo-Iguzquiza 1998).  Although it is 

certainly important, and linked closely to spatial distribution of precipitation in certain 

parts of the world, elevation does not encompass the full range of mechanisms 

impacting rainfall, particularly in East Africa. 

Regression Analysis.  Scientists studying rainfall mechanisms frequently use 

multivariate statistical techniques in the interest of hypothesis testing.  Many of these 
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researchers investigate climate on a more theoretical level with statistical inference and, 

consequently, rely on regression models.  In so doing, these researchers have 

elaborated on relationships between precipitation and a wide variety of variables, 

including elevation and its derivatives, vegetative cover, specific humidity, and 

geographic descriptors such as distance to coastline, a variable of relevance to regions 

such as East Africa which is heavily influenced by maritime conditions (Marquinez et al. 

2003, Oettli and Camberlin 2005, Anders et al. 2006, Propastin et al. 2006, Ji and 

Peters 2004).  Such modeling has identified variables that are correlated with 

precipitation and has thus improved the understanding of spatial patterns in rainfall, but 

it is not designed explicitly to produce optimal estimates of values for sites out of 

sample, the objective of many geostatistical exercises such as kriging.  Moreover, given 

the statistical estimation procedures generally used, these studies tend to neglect 

issues of spatial autocorrelation and endogenous feedbacks between precipitation and 

its covariates.   

Modeling of Feedback Mechanisms.  One widely noted feedback is the 

relationship between precipitation and vegetation.  Precipitation plays an obvious a role 

in vegetation dynamics given the requirements of photosynthesis.  But feedbacks to the 

atmosphere also exist (Rodriguez-Iturbe and Porporato 2004, p. 2).  A wide literature 

covers many aspects of the relationship between vegetation and rainfall and a variety of 

approaches have been used to characterize it (e.g., Lyon et al. 2008, Notaro et al. 2008, 

Wang et al. 2008).  To date, however, regression-based studies have tended to 

overlook endogenous relations between precipitation and vegetation, despite advances 
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in spatial econometrics that treat both simultaneity and spatial autocorrelation (Kelejian 

and Prucha 2004, Rey and Boarnet 2004).   

To inform the selection of independent variables or covariates for multivariate 

statistical analyses of spatial patterns in precipitation data, the scales and mechanisms 

of precipitation will be considered.  This knowledge will also inform hypothesis testing 

that will be conducted as part of the multivariate statistical analyses.  Scales and 

mechanisms of precipitation are described in detail in Chapter 2. 

 

Problem Statement:  In sum, the predictive models of spatially explicit kriging 

have not accounted adequately for the mechanisms of precipitation, and the inferential 

models of regression addressing these mechanisms have not addressed spatial 

relations affecting climate processes.  Further, neither approach has considered 

complex feedback relationships that may produce simultaneity between precipitation 

and its covariates.  This dissertation addresses these limitations in predictive modeling 

by developing a kriging approach that accommodates simultaneous relations through 

theoretical innovation.  Each of these methods will be applied in a case study of climate 

in East Africa, a data poor environment affected by climate change. 

 

1.3 Links and contributions to the Geographic traditions 

This dissertation spans and contributes to several strands of Geographic thought.  

The context of the work presented herein links Regional Geography of Africa, Physical 

Geography, and quantitative methods of spatial data analysis in an effort to answer 



15 
 

research questions that have been informed by Human-Environment researchers and, 

in turn, to inform their research (Figure 1-1). 

 

The results and findings of this dissertation add to the knowledge and 

understanding of the spatial patterns of precipitation in East Africa.  In addition, updated 

and improved maps of spatial patterns in precipitation within the study domain are 

generated, contributing to Physical Geography and Regional Geography of Africa.  

Results of this dissertation contribute to work conducted by Human-Environment 

researchers such as high-resolution climate impact assessments (Mearns et al.,1999, 

2001a, 2001b) which may be used in the evaluation of coupled human natural systems 

and formulation of associated policy.  Furthermore, this dissertation provides new and 

innovative techniques for spatiotemporal analysis of data which can be applied in any 

context when the goal is to understand spatial patterns in any continuous data, to 

predict data at unsampled locations, and/or to understand the relationship between a 

Figure 1-1. Relationships between the Geographic traditions represented in this research.  
For interpretation of the references to color in this and all other figures, the reader is 
referred to the electronic version of this dissertation. 

 

Physical 
Geography 

Human- 
Environment 

Spatiotemporal 
Methods of  

Analysis 

Regional 
Geography of 

Africa 
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variable of interest and other factors that may influence the spatial distribution of that 

variable.   

Lastly, this research is designed to complement ongoing NSF activities at 

Michigan State University: the Climate Land Interaction Program (CLIP; An Integrated 

Analysis of Regional Land-Climate Interactions, National Science Foundation Award 

Number BCS0308420) and East Africa Climate Land Interaction Program – Savanna 

Ecosystems (EACLIPSE; Dynamic Interactions Among People, Livestock, and Savanna 

Ecosystems under Climate Change, National Science Foundation Award Number 

BCS0709671).  Results of this dissertation can be incorporated in climate change 

studies such as these to inform adaptation strategies.     

 
 
1.4 Research objectives 

This dissertation research has four basic goals, which are to (1) contribute 

theoretically and methodologically to the prediction of variables in data-scarce 

environments utilizing improved kriging-based and spatial regression techniques; (2) 

apply these techniques in a case study based in East Africa; (3) evaluate case study 

results obtained using each technique and compare to those obtained from a gridded 

global climate data set interpolated to a 0.5 degree resolution; and (4) conduct 

hypothesis testing using selected spatial regression models to identify significant factors 

that influence the spatial distribution of precipitation.   
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This dissertation is organized as follows: 

 

Chapter 2 provides a review of literature that supports and expands the 

introductory background discussion.   

 

Chapter 3 presents the statistical modeling frameworks of kriging and spatial 

regression, demonstrates the theoretical links between these frameworks, and details 

the methodological innovations developed by this research.   

 

Chapter 4 presents the case study.  The case study area is described, including 

details of the physical precipitation mechanisms in East Africa, to provide a foundation 

for the selection of (1) independent variables for multivariate statistical analysis and (2) 

variables for which feedbacks will be modeled.  Precipitation estimates at unsampled 

locations are generated using selected kriging method(s) and various formulations of 

the spatial regression models described in Chapter 3 of this dissertation.  Error 

estimates from each analysis will be compared and evaluated for minimum error 

variance and the presence of spatial patterns not captured by the model.  Additionally, 

error estimates from each analysis will be compared to error estimates generated by a 

global climate data set interpolated to a 0.5 degree resolution (Mitchell and Jones 2005) 

for comparison to the methods presented herein. 

 

Chapter 5 focuses on understanding of spatial patterns in East African rainfall. 

Initial hypotheses related to variables that influence the spatial patterns of precipitation 
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and vegetation are described, followed by hypothesis testing using the spatial 

regression models developed in Chapter 4.  This chapter follows the case study as an 

extension to the case study.  The primary objective of the case study is to develop and 

compare prediction methods, some of which rely on multivariate regression models.  

Chapter 5 demonstrates the added benefit of spatial regression models: that of gaining 

an improved understanding of precipitation patterns in East Africa. 

 

Chapter 6 presents findings, conclusions, contributions of the work presented 

herein, and discusses limitations of this work and future research needs. 
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Chapter 2 

Literature Review 

 

This chapter will link climatic concepts with the use of statistics to better 

understand the spatial patterns of precipitation and the scales over which they occur, 

and to develop finer-scale estimates for climatic variables with sparse data 

observations.  The chapter begins with a discussion of the scales and mechanisms of 

precipitation in East Africa in order to motivate the need for higher resolution data in 

East Africa and the case study work in Chapter 4.  Next, a review of statistical methods 

historically used to evaluate climatic data for various purposes is presented.  The 

chapter ends with the identification of gaps in the literature and a discussion of how 

these gaps will be addressed by this dissertation. 

 

2.1  Scales and mechanisms of precipitation in East Africa 

Mechanisms of precipitation occur over various geographic scales around the 

world.  Mesoscale processes take place over regions ranging from a few kilometers to 

approximately one hundred kilometers in diameter (Ahrens 2007), including land/sea 

breezes and orographic uplifting over mountainous terrain.  Synoptic scale processes 

impact on the spatial distribution of precipitation over areas ranging from hundreds to 

thousands of square kilometers.  These processes include high and low pressure areas 

and associated weather fronts.  In East Africa, the presence of low pressure in January 

causes winds ranging from northeasterly (north of the Intertropical Convergence Zone 

(ITCZ)) to southeasterly (south of the ITCZ), coming in from the Indian Ocean (Mutai 
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and Ward 2000).  In July, the low pressure over Asia and India results in the summer 

monsoon season there, and south to southwesterly winds in East Africa (Mutai and 

Ward 2000).  In the tropics, the position of the global-scale ITCZ also plays a role in 

rainfall patterns.  Its associated bands of rainfall move northward and southward over 

the year, dominating the spatial pattern of precipitation on a global scale.  The passage 

of the ITCZ contributes to a generally bimodal seasonal pattern of rainfall near the 

equator, and a unimodal pattern at the northern and southern extents of the study area. 

Although the broad features of this climate system can be described, specific 

questions remain unanswered, and constitute the empirical basis of this dissertation.  

As demonstrated herein, rainfall processes at varying scales can be modeled through 

the use of predictive or independent variables in a statistical correlation and regression 

analysis.  Patterns in precipitation can be better understood through consideration of 

variables that are highly correlated with precipitation and for which data are more readily 

available, such as topographic variables including elevation and its derivatives 

(measures of mesoscale processes), geographic measures of location (proxies for 

synoptic and global scale processes), and season-specific analysis (allowing for 

seasonal variation in synoptic and global scale processes).  Multivariate techniques that 

utilize covariate information can make use of relationships between these variables and 

precipitation to more accurately estimate precipitation patterns over space and time 

(Diodato 2005; Goovaerts 1999a, 1999b, 2000; Kyriakidis et al. 2001; Pardo-Iguzquiza 

1998).  Furthermore, this dissertation will demonstrate that multivariate techniques able 

to characterize endogenous relations between precipitation and vegetation provide a 
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new and exciting alternative to existing methodologies for producing maps of 

precipitation over space. 

 

2.2  A review of statistical methods used in the analysis of precipitation data 

Various statistical techniques have been used to generate higher resolution 

climate data using measured data, primarily at meteorological stations, rather than 

simulated data from GCMs or RCMs.  This dissertation focuses on techniques from 

geostatistics, particularly kriging, and improved approaches in regression analysis that 

treat spatial problems to estimate higher resolution precipitation data.  The methods of 

greatest immediate relevance within these two broad categories are summarized briefly 

in this chapter, motivating the theoretical work presented in Chapter 3.  Given the vast 

literatures in question, the discussion in this chapter limits itself primarily to climate-

related applications.   

 

2.2.1  Kriging 

Kriging refers to a family of techniques developed in France by Matheron (1963) 

based on the dissertation work of the South African mining engineer D. G. Krige (1951).  

Since its origination, many forms of kriging have been developed to predict attribute 

values at unsampled locations.  Univariate kriging techniques consider only one 

variable, the variable of interest (e.g., simple kriging, ordinary kriging).  Multivariate 

kriging techniques utilize secondary information in the form of independent variables or 

covariate data (e.g., kriging with an external drift/regression kriging, cokriging).  All 

forms of kriging belong to a family of generalized least-squares regression algorithms, 
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four of which are described below.  Each kriging method is described in detail in 

Chapter 3.  A fifth form of kriging, developed in Chapter 3, is also briefly described 

below. 

(1) Simple kriging is a univariate technique which is based on the assumption 

that the mean value of the variable of interest is constant and known.   

(2) Ordinary kriging is also a univariate technique which differs from simple 

kriging in that the mean value, which is assumed constant, is unknown; to relax the 

assumption that the mean is constant through the entire study area, local 

neighborhoods can be established in which the mean is assumed constant. 

(3) Kriging with a trend surface model is a multivariate technique in which a 

trend surface model is used to estimate a varying mean across the study area; trends 

surface modeling uses location coordinates and functions of these coordinates to 

estimate the mean at each location with the assumption that the data point to be 

predicted and the observed data are uncorrelated. 

(4) Universal kriging (UK; Schabenberger and Gotway 2005), also known as 

kriging with an external drift (KED; Goovaerts 1997), is another multivariate technique in 

which the list of independent or explanatory variables is expanded to include other 

variables which are: (a) correlated with the variable of interest, and (b) measured at 

locations for which the variable of interest is to be estimated; estimators are developed 

using the p explanatory variables assuming a general linear model that holds for both 

the data and the unobservables, with the assumption that the data and the 

unobservables are spatially correlated. 
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(5) Universal kriging with simultaneity (developed herein) expands upon 

universal kriging by incorporating simultaneity between the variable of interest (i.e., the 

dependent or endogenous variable) and an explanatory variable (i.e., the independent 

or exogenous variable), such as that which occurs between precipitation and 

vegetation; this is accomplished by deriving and including an instrumental variable 

among the p explanatory variables in place of the variable that is simultaneously related 

to the dependent variable (e.g., vegetation). 

 

As the field of geostatistics has evolved, some inconsistencies have arisen with 

regard to terminology (Hengl Heuvelink and Stein 2003) as well as an understanding of 

mathematical similarities and distinctions between various kriging techniques.  This may 

be due in part to the fact that early developments in geostatistics generally occurred 

outside of mainstream statistics (Christensen 1991).  As succinctly stated by Hengl, 

Hevelink, and Stein (2003),  

 

“The most probable cause (for this confusion) is that similar applications 
have been developed among different professions with different goals.  
The second important cause of this confusion is that some authors, more 
involved in the practice of kriging (‘geostatisticians’), consider these 
techniques a special interpolation technique, while the other group 
(‘statisticians’) consider kriging to be only a case of regression analysis 
with spatially correlated data.” 
 

 

In addition, more than one school of thought has evolved, resulting in 

inconsistent naming conventions across kriging techniques.  For example, 

Schabenberger and Gotway (2005) describe ‘universal kriging’ as above.  However, the 
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technique termed ‘universal kriging’ by Journel and Huijbregts (1978, pg. 313) utilizes 

only polynomial functions of spatial coordinates, which is a method also known as 

‘kriging with a trend model’ (Christensen 1991, Goovaerts 1997, Journel and Rossi 

1989).  Many authors agree that the term ‘universal kriging’ should be reserved for the 

case when the only covariates used are polynomial functions of the spatial coordinates 

(Hengl Heuvelink and Stein 2003).  ‘Kriging with an external drift’ (e.g., Goovaerts 

1997), is mathematically identical to ‘universal kriging’ as defined by Schabenberger 

and Gotway (2005) and ‘regression kriging’ (Hengl Heuvelink and Stein 2003).  In 

mathematical terms it matters not which covariates are selected to model the mean 

function, ; the mathematical derivation of the best linear unbiased predictor (BLUP) is 

the same (Christensen 1991).  This dissertation develops a system of classification 

which recognizes this fact and seeks to clarify the links between forms of kriging as well 

as spatial regression (described below). 

 

2.2.2  Spatial regression 

A line of generalized least-squares regression models have arisen for analysis of 

spatial data: spatial regression models have been developed to explore causality using 

multiple independent (exogenous) variables (e.g., Anselin and Bera 1998, Anselin 2006, 

Caldas et al. 2007, Moore et al. 2007, Walker et al. 2000) and to account for 

simultaneity between multiple dependent (endogenous) variables (Kelejian and Prucha 

2004, Rey and Boarnet 2004).  Spatial regression models can also be used to generate 

estimates of dependent variables at unsampled locations taking into account 

information on independent variables and simultaneity between multiple dependent 
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variables.  This section first provides a brief summary of spatial regression models, 

followed by a review of their current use and a discussion of potential future uses in 

climate research. 

Three forms of spatial regression models provide the basis for the modeling of 

different forms of spatial autocorrelation:   

(1) The spatial lag model, also known as a spatial autoregressive (SAR) model, 

accounts for the presence of spatial autocorrelation in the dependent variable by 

incorporating a spatial lag operator; spatial independence of the error terms is assumed. 

(2) The spatial error model (SEM) allows for spatial dependence of the error 

terms, which may occur through the omission of a spatially varying covariate.  

(3) The general spatial model (SAC) can be employed when both forms of 

spatial autocorrelation are present by incorporating both a spatial lag term and a 

spatially correlated error structure. 

If neither form of spatial autocorrelation is present, an aspatial OLS regression 

model may be used.  More detailed descriptions of these models are provided in 

Chapter 3 and by Anselin (2006), Anselin and Bera (1998), LeSage (1998), and LeSage 

and Pace (2009).   

A decision process recommended by Anselin (2005) may be used to select 

between OLS, SAR, and SEM models for analysis of the data.  In summary, the process 

involves completing an OLS analysis and calculating diagnostics for spatial 

dependence.  The OLS results may be relied upon only if the assumptions underlying 

OLS are not violated.  First, the lagrange multiplier (LM) statistics for both a spatial lag 

and spatial error model are tested for significance.  If neither LM is significant, the OLS 
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results may be used.  If one of LM statistics is significant, the corresponding model 

should be used to evaluate the data (e.g., if the LM statistic for only the spatial lag 

model is significant, the spatial lag model should be used to evaluate the data).  If both 

of the LM statistics are significant, robust LM statistics should be tested for significance 

and the appropriate model selected.   

In the case that both robust LM statistics are significant, generalized spatial 

modeling (SAC) may be used to account for this more complex form of spatial 

autocorrelation (LeSage 1998). 

 

2.3  Historical use of methods to model climate patterns using measured data 

Recently-used methods for modeling and predicting patterns in precipitation and 

vegetation based on measured data are summarized in  

Table 2-1.  Methods vary widely from simple OLS regression to spatially explicit 

geostatistical methods, Laplacian smoothing splines, and process-based physical 

models.  The goals of many of these studies were to predict climatic variables over 

space and to compare the ability of various interpolation methods.  Other studies were 

conducted with the goal of better understanding patterns in climatic variables and 

factors that influence these patterns using regression models and formal hypothesis 

testing.  While some of these methods are univariate (i.e., they incorporate data from 

only one variable, the variable of interest), many others are multivariate and incorporate 

data from one or more independent or predictive variables (also known as covariates or 

exogenous variables).  This section first describes the independent variables that are 

used in the studies below.  Next, a review of past research is provided, with studies 
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grouped as follows:  (1) studies to generate precipitation estimates at unsampled 

locations, (2) studies to improve understanding of precipitation patterns, and (3) studies 

to improve understanding of vegetation patterns. 

 

Independent variables 

In the development of multivariate models, many researchers have relied on 

establishing a correlation between precipitation and elevation as a covariate to improve 

estimates of precipitation at unsampled locations (Arora et al. 2006; Daly et al. 1994; 

Diodato 2005; Goovaerts 1999a, 1999b, 2000; Hutchinson 1998b; Hutchinson and 

Bischof 1983; KeifferWeisse and Bois 2001; Kyriakidis et al. 2004; Marquinez et al. 

2003; Oettli and Camberlin 2005; Pardo-Iguzquiza 1998).  Relatively high levels of 

correlation have been identified; the relationship is generally an increasing one (Arora et 

al. 2006; Spreen 1947):  as elevation increases, precipitation increases.  This is mainly 

due to the “orographic effect” of the mountain terrain.  However, precipitation can have 

a very complex relationship with elevation (Arora et al. 2006), which can be complicated 

by station distribution and other factors (Hulme and New 1997).   

Many other factors have also been found to play a role in the distribution of 

rainfall.  Other researchers have expanded the list of potential predictive variables to 

include derivatives of elevation and other variables summarizing geographic location 

(Arora et al. 2006; Diodato 2005; Kieffer Weisse and Bois 2001; Kyriakidis et al. 2004; 

Hutchinson 1998b; Hutchinson and Bischof 1983; Marquinez et al. 2003; Oettli and 

Camberlin 2005; Spreen 1947).  For example, Spreen (1947) found that distribution of 

rainfall also depends on variables such as slope, exposure, and orientation.  Similarly, 
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Keiffer Weisse and Bois (2001) found that topographic variables were correlated with 

heavy rainfall events (e.g., 10- and 100-yr events), particularly when measured at short 

time steps (i.e., less than three hours).  Regional topographic variables (e.g., distance to 

the Mediterranean, characterization of the general shape of the Alps, distance to 

corresponding features of the Alps) were found to influence heavy rains, whereas local 

measures of topography (e.g., altitude, slope, or azimuth) were less influential.  

Marquinez et al. (2003) evaluated the relationships between precipitation distribution 

and distance to coastline, distance to a location in the relative west, and elevation at two 

geographic scales (i.e., local and sub-basin).  Hutchinson (1998b) derived the east and 

north components of the unit normal vector to represent slope and aspect for use as 

independent variables. 

In the vegetation studies described herein, normalized difference vegetation 

index (NDVI; Rouse et al. 1974) was used to represent overall vegetation health.  

Theoretically, NDVI ranges between -1 and +1, although values typically range between 

0 for bare ground to 0.7 for lush dense vegetation.  Independent variables which have 

been considered to impact patterns in vegetation include precipitation (Propastin et al. 

2006; Ji and Peters 2004), as well as potential evapotranspiration (PET), daily 

maximum and minimum air temperatures, soil temperature, and solar irradiation (Ji and 

Peters 2004).  As shown by Ji and Peters (2004), precipitation and PET were the most 

significant predictors of NDVI.   
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Prediction and mapping of precipitation 

Numerous studies predicting and mapping precipitation patterns have compared 

basic interpolation techniques (e.g., inverse distance weighting (IDW), proximal 

interpolation via Theissen polygons, and nearest neighbor interpolation) to various 

spatially-explicit kriging techniques that account for both location and configuration of 

samples as well as spatial autocorrelation (e.g., Diodato 2005; Goovaerts 1999a, 

1999b, 2000; Pardo-Iguzquiza 1998).  In general, spatially explicit kriging techniques 

outperformed basic interpolators.  Further, multivariate kriging techniques incorporating 

covariate data were generally shown to improve predictions and reduce uncertainty 

(Diodato 2005; Goovaerts 1999a, 1999b, 2000; Kyriakidis et al. 2001; Pardo-Iguzquiza 

1998).  For example, Pardo-Iguzquiza (1998) found that kriging with an external drift (a 

multivariate technique also known as universal kriging) performed better than Thiessen 

polygons and ordinary kriging (univariate techniques).  Goovaerts (1999a, 2000) found 

that kriging with an external drift and cokriging (multivariate methods) outperformed the 

basic interpolators (proximal interpolation with Thiessen polygons and IDW); however, 

simple kriging with varying local means (a univariate technique) outperformed both 

multivariate methods in this instance. 

OLS regression has also been used to predict and map precipitation patterns 

(Daly, et al. 1994; KeifferWeisse and Bois 2001).  KeifferWeisse and Boise (2001) used 

OLS regression to estimate heavy rainfall amounts at time steps ranging from 1 to 24 

hours.  Daly et al. (1994) stratified monthly and annual rainfall data over space into 

individual “topographic facets” to account for differences between facets in an effort to 

account for spatial autocorrelation.  Independent regression analyses of precipitation 
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versus elevation for each facet were then conducted.  It remains, however, that OLS 

regression methods do not explicitly account for spatial autocorrelation. 

Another group of methods has been used to estimate the spatial distribution of 

rainfall:  methods such as Laplacian smoothing splines and thin plate moving splines 

have been used to smooth and interpolate precipitation data over space using location 

coordinate information (Hutchinson 1998a; Hutchinson 1998b; Hutchinson and Bischof 

1983).  Rather than explicitly incorporating spatial autocorrelation into parameter 

estimation, however, these studies utilized a simplified approach in which one sample 

location was removed from close pairs of locations to avoid problems with short range 

correlation over space.  Hutchinson (1998a, 1998b) evaluated spatial patterns in one 

day of rainfall data.  Hutchinson and Bischof (1983) studied long-term mean seasonal 

(i.e., precipitation data were stratified into seasons) and annual precipitation.  Process-

based physical models have also been used to predict the spatial distribution of 

precipitation.  For example, Barros and Lettenmaier (1993) modeled the advection of 

moisture over topographic barriers utilizing a 4D Lagrangian model.  This model 

simulated orographically-induced precipitation at a scale sufficient to resolve dominant 

topographic features.  Although methods utilizing splines or process-based physical 

models were used to interpolate rain data over space, they are not easily adapted for 

formal hypothesis testing of relationships between precipitation and possible 

explanatory variables. 

 

  



31 
 

Hypothesis testing 

Hypothesis testing through regression analysis can be used to identify significant 

predictors of precipitation patterns over space.  Studies with this goal include those by 

Arora et al. (2006), Marquinez et al. (2003) and Oettli and Camberlin (2005).  These 

studies generally aimed to model and understand patterns in the mean precipitation 

function rather than generating estimates at unsampled locations, and they utilized 

aspatial OLS regression techniques to accomplish these goals.  If present, spatially 

autocorrelated observations violate an underlying assumption of OLS regression, that of 

independent observations (Haining 1990; Neter, Wasserman, and Kutner, 1990; Bailey 

and Gatrell 1995; Schabenberger and Gotway 2005).  Two major consequences of 

violating this assumption are (Ji and Peters 2004):  

 

1)  underestimation of the regression coefficients’ standard errors, leading to the 

identification of variables as significant when they are not; and  

2)  underestimation of the error variance term, yielding inflated coefficients of 

determination (R2).  Spatial regression techniques can account for spatial 

autocorrelation, and thus are expected to provide better results in these 

instances. 

 

Relatively few efforts have been made to apply spatially explicit regression 

techniques to climate data, probably because of the novelty of the methods.  In 

particular, the subject of spatial regression only enters the academic literature in the 

80’s and 90’s.  Early efforts in the analysis of spatial data include Ord (1975) and 
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Anselin (1988).  More recently, use of spatial regression expanded into ecological work, 

with applications to predicting the presence of species or species abundance (e.g., 

Augustin et al. 1996; Huffer and Wu 1998; Torbick, et al. 2010) and diseases (e.g., 

Gumpertz et al. 1997).  An extensive recent review of spatial regression and 

geostatistics as applied to ecological modeling is given by Miller, et al. (2007).  

Use of spatially explicit regression is relatively new to the modeling of climate 

variables and relationships with vegetation.  Anders et al. (2006) utilize a form of 

regression modeling that reflected spatial lags to estimate average annual precipitation 

(as measured by the Tropical Rainfall Measuring Mission or TRMM) as a function of 

surface saturation vapor pressure (Vp), slope (S), relative elevation (E), the product of 

slope and Vp (Svp), and the product of slope and E (Se).  This model incorporates two 

sets of OLS coefficients combined additively, with the second set incorporating a spatial 

lag.  Significant predictors of precipitation are surface saturation vapor pressure (Vp) 

and the product of Vp with slope (Svp).  Ji and Peters (2004) model NDVI as a function 

of precipitation, PET, maximum and minimum temperature, soil temperature, and solar 

irradiation.  They implement OLS with ridge regression for their initial model, then 

integrate spatial variability using linear mixed models with a variogram component.  

Significant predictors of NDVI are precipitation and PET, which account for relatively low 

fractions of overall variability (46% for grassland areas, 24% for croplands).  Propastin 

et al. (2006) compare OLS regression and geographically weighted regression (GWR) 

for modeling NDVI as a function of precipitation.  GWR outperforms OLS, yielding 

coefficients of determination (R2) of approximately 88%.  Although the value of R2 is no 

longer biased by the failure to account for spatial autocorrelation in the data, it is likely 
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that the reported values are overstated due to the handling of the precipitation data.  

Gridded maps of precipitation were created by interpolating data from nine climate 

stations using inverse distance weighting prior to performing the regression analysis.  

The resulting smoothed data are likely to underestimate true variability and 

overestimate the correlation between NDVI and precipitation.  Further, GWR is a 

spatially explicit regression technique that allows for spatially varying covariates, but 

does not address the issue of spatially correlated error terms (Schabenberger and 

Gotway 2005).  

In sum, work has begun on modeling climate using spatially explicit regression 

techniques; however, much remains to be done.  Standard spatial models (e.g., SAR, 

SEM) have not been widely applied, if at all.  Further, the studies cited (Ji and Peters 

2004; Anders et al. 2006; Propastin et al. 2006) involve modeling of climatic variables 

for the purpose of hypothesis testing, which is somewhat limited given that spatial 

regression also provides a potentially useful tool for generating predictions and 

estimates of uncertainty at unsampled locations.  Be this as it may, to date there are no 

direct applications of spatial modeling as proposed in this context.  Related efforts 

include the mapping of Malaria incidence (Kazembe 2007) and species habitat 

distributions (Gottschalk et al. 2007), but these applications do not utilize spatial 

regression models in the form proposed here.  Little used in the climate research 

domain, spatial regression is a method that may afford researchers a value-added 

approach to estimating climatic variables in data-sparse regions. 

Finally, the ability to model multiple endogenous variables simultaneously in 

spatial regression yields particularly useful and exciting possibilities in climate research 
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due to interactions among multiple climate variables.  In the climate research domain, 

an example of a feedback mechanism between climatic variables is that which occurs 

between precipitation and vegetation.  Precipitation clearly plays a role in vegetation 

dynamics; however, as noted by Rodriguez-Iturbe and Porporato (2004), “vegetation 

exerts important control on the entire water balance and is responsible for many 

feedbacks to the atmosphere.”  A wide literature covers many aspects of the feedback 

between vegetation and precipitation (e.g., Brunsell 2006; Dekker et al. 2007; Kim and 

Wang 2007; Mendez-Barroso et al. 2009; Notaro and Liu 2008; Roy 2009; Wang et al. 

2008; Zeng and Yoon 2009).  A variety of approaches have been used to detect and 

model feedbacks, ranging from fully-coupled physical climate models to ensemble 

simulations using climate models, simple correlation coefficient analysis, and aspatial 

statistical feedback approaches developed initially for studies of ocean-atmosphere 

interactions.  However, no one has yet incorporated new statistical approaches to 

simultaneity (e.g., Kelejian and Prucha 2004) to prediction, which is an objective of the 

proposed dissertation. 

 

2.4 Gaps in the literature and contributions to address them 

A gap exists that is not completely filled by the variety of statistical techniques 

most commonly used to evaluate climate data. The focus of the spatially explicit studies 

described above is often to develop the most accurate estimates of precipitation without 

necessarily understanding the role of various predictors or formally testing hypotheses 

about them.  Schabenberger and Gotway (2005) note that the use of predictive 

variables is not the primary focus of many of these types of studies: predictive variables 
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are often used to “account for a spatially varying mean and to avoid bias.”  In many 

cases, there is no intention of interpreting the relationships between the predictive 

variables and the dependent variable, or their significance.   

When hypothesis testing and understanding are of primary interest, 

Schabenberger and Gotway (2005) identify spatial regression as a form of data analysis 

“where the focus is on modeling and understanding the mean function.”  [Emphasis 

added.]  Understanding is gained when significant variables that play a role in 

precipitation patterns are identified through hypothesis testing.  However, as shown in 

Table 2-1, recent studies designed to test hypotheses regarding multiple predictors and 

their influence on rainfall rely heavily on OLS regression.  Since OLS regression does 

not account for spatial autocorrelation, results are biased in the presence of spatially 

autocorrelated data.   

More recently, spatially explicit regression techniques have begun to appear in 

climate-related literature; however, each of the applications is somewhat limited, either 

by the method used, the covariates selected, or the overall application (hypothesis 

testing or estimation).  Further, none of the approaches have characterized endogenous 

relations, such as those between precipitation and vegetation.  Accounting for these 

feedback mechanisms is expected to produce improved predictions of precipitation over 

space and refinements in the ability to separate sources of variability for the purpose of 

hypothesis testing.   

Spatial regression may thus provide a solution to multiple problems of interest in 

the climate research domain:  it allows for improved understanding through testing of 

hypotheses related to multiple independent variables while accounting for spatial 
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autocorrelation and it provides a method for estimating climate data in data sparse 

regions.  This dissertation addresses these issues by experimenting with spatial 

regression techniques, existing kriging algorithms, and by developing a kriging 

approach that accommodates simultaneous relations through theoretical innovation.   

From a theoretical perspective, much work has been done to mathematically 

compare and categorize generalized least-squares approaches such as kriging and 

spatial regression (e.g., Christensen 1991; Cressie 1993; Christensen 1996; 

Schabenberger and Gotway 2005).  However, this work has not been extended to 

simultaneous equations spatial regression.  Consequently, it is not known whether and 

to what extent recent developments in spatial regression reach beyond kriging 

capabilities. 

Thus, the gaps in the literature are both empirical and theoretical.  This 

dissertation will address these gaps as described in Chapter 3. 
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Table 2-1 
 

Author(s) 
 

Methods 
Application/Locat
ion  and Context 

 
Predictors 

Dependent 
variable 

 
Results 

Methods relating precipitation to elevation 
Goovaerts 
(1999a, 
2000) 
 

OLS regression 
Thiessen polygons 
Inverse square 
distance 
OK, SKlm, KED, CK 

Estimation / 
The Algarve, 
Southern Portugal, 
Atlantic Ocean to 
south and west 

Elevation Average monthly 
and annual 
precipitation 

SKlm outperformed KED, 
CK, and univariate methods 
(cross-validation); 
OK outperformed OLS 
regression when r<0.75. 

Goovaerts 
(1999b) 
 

OLS regression 
SKlm, KED, CK 

Estimation / 
The Algarve, 
Southern Portugal, 

Elevation (average of 
values at 4 discrete points 
in a 1 square kilometer cell) 

Erosivity data 
averaged on a 
monthly and 
annual basis 

CK outperformed other 
methods (cross-validation) 

Pardo-
Iguzquiza 
(1998) 

Thiessen polygons 
OK, CK, KED 

Estimation / 
Guadalhorce river 
basin in southern 
Spain 

Elevation Mean annual 
rainfall over 20 
year period 

KED outperformed others 
methods (cross-validation) 

Arora et 
al. (2006) 

OLS regression Hypothesis testing 
/ 
Chenab basin, 
western 
Himalayas 

Elevation 
Distance to lowest station 
 

Seasonal and 
annual precip; 
grouped by 
mountain range, 
windward and 
leeward side 

Different models generally 
resulted for different 
mountain ranges and for 
windward/leeward sides 

Diodato 
(2005) 

IDW, OK, CK Estimation / 
Benevento 
Province, S. Italy, 
Mediterranean 
reion, variable 
topography 

Elevation 
Smoothed elevation (DEM) 
Vegetation cover factor 
Topographic index 

Average 
seasonal and 
annual 
precipitation 

Highest correlation between 
topographic index and 
average annual precipitation 
(r2=0.542) 

Kyriakidis 
et al. 
(2004) 

1) time series at 
stations 
2) spatial regression of 
coeffs. with elevation 
and atmospheric data 
3) CK of residuals 
4) reconstruction of 
trend coefficients  
5) conditional 
stochastic simulation 

Estimation / 
Northern California 
coastal region, 
characterized by 
complex 
topography 

Elevation 
Large-scale specific 
humidity from NCEP/NCAR 
reassessment 

Daily 
precipitation 

Applicability of the method 
was demonstrated; the 
method was able to 
reproduce the spatiotemporal 
characteristics of observed 
rainfall measurements 
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Table 2-1 (cont’d) 
 

Author(s) 
 

Methods Application 
 

Predictors 
Dependent 

variable 
 

Results 
Methods relating precipitation to elevation 

Marquinez 
et al. 
(2003) 

OLS regression 
(backwards stepwise 
regression) 

 / 
central area of the 
Cantabrian Coast, 
northern Spain 

Distance from each station 
to coastline 
Distance from each station 
to relative west 
Elevation 
Avg. elevation per sub-
basin 
Average slope per sub-
basin 

Dry season 
Wet season 
Annual 

Adjusted correlation 
coefficients ranged between 
0.58 and 0.67 

Daly, et al. 
1994 

OLS regression over 
individual topographic 
facets 

Estimation / 
Willamette River 
Basin, Oregon 

Elevation Averaged on a 
monthly and 
annual basis 

PRISM exhibited the lowest 
cross-validation bias and 
absolute error when 
compared to kriging, 
detrended kriging, and CK 

Oettli and 
Camberlin 
(2005) 

OLS regression 
(forward stepwise 
regression) 
Cross-validation 
Calculation of 
estimates at gridpoints 
Calculation of residuals 
at gridpoints with 
stations 
Kriging of residuals 
(cubic interpolation) 

Hypothesis testing 
and estimation / 
East Africa, 
southern Kenya, 
northeastern 
Tanzania 

Topo. principal components 
For 35 different scaling 
windows: average and 
median elevation, 
standard deviation, 
amplitude, skewness, and 
kurtosis, slope 
Geographical locators (lat, 
long, distance from Lake 
Victoria) 

Averaged on a 
monthly and 
annual basis 

See text 

Anders et 
al. (2006) 
 

Regression model that 
accounts for spatial 
lags: utilizes OLS 
coefficients for the 
independent variables, 
and OLS coefficients 
for the spatial lags of 
those variables 

Hypothesis 
Testing / 
Himalayas 
 

Surface saturation vapor 
pressure (Vp), slope (S), 
relative elevation (E), 
product of slope and Sv 
(Svp), product of slope and 
relative elevation (Se); all 
variables were standardized 

Average annual 
precipitation 
generated from 4 
yrs of TRMM 
data (1998-2001) 

Best 1 parameter model 
uses Vp; best 2 parameter 
model uses Vp and Svp; 
mean average error is not 
substantially decreased by 
adding more parameters 
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Table 2-1 (cont’d) 
 

Author(s) 
 

Methods Application 
 

Predictors 
Dependent 

variable 
 

Results 
Methods relating precipitation to elevation 

KeifferWeisse 
and Bois, 
2001 

Multivariate OLS 
regression(forward 
stepwise regression) with 
kriging of residuals 

Estimation / 
French Alps 

Regional variables such 
as X and Y coordinates, 
distance to the 
Mediterranean; local 
variables such as 
elevation, smoothed 
elevation, exposure 
parameters, and slope 

Heavy rainfall 
amounts (10-yr 
and 100-yr 
rainfall events) 
at time steps 
ranging from 1 
hr to 24 hrs. 

Multivariate coefficients of 
determination ranging from 
0.77 for hourly data 
decreasing to 0.57 for daily 
100-yr data 

Hutchinson 
and Bischof, 
1983 

Laplacian smoothing 
splines 

Estimation / 
Hunter Valley, 
New South 
Wales 

Latitude 
Longitude 
Elevation 

Rainfall 
averaged on 
seasonal and 
annual basis 

Analysis is objective and 
explicit; prior record 
standardization not required; 
each surface is valid for 
entire catchment; surfaces 
are consistent apart from 
data points; method provides 
percent predictive error 
estimates 

Hutchinson, 
1998a 

Thin plate smoothing 
splines 

Estimation / 
Swiss Alps 

X and Y coordinates One day of 
rainfall data 

Estimates show good 
agreement with withheld 
data; short-range correlation 
dealt with by removing one 
point from close data pairs; 
square-root transformation of 
the data improved estimates; 
higher order splines were 
found to perform less well. 

Hutchinson, 
1998b 

Thin plate smoothing 
splines 

Estimation / 
Swiss Alps 

X and Y coordinates 
Elevation 
E and N components of 
the unit normal vector to 
represent slope and 
aspect 

One day of 
rainfall data 

Analysis confirmed the 
importance of incorporating 
topographic variables 
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Table 2-1 (cont’d) 
 

Author(s) 
 

Methods Application 
 

Predictors 
Dependent 

variable 
 

Results 
Methods relating precipitation to elevation 

Barros and 
Lettenmaier, 
1993 

Process-based physical 
approach utilizing a 4D 
Lagrangian model 

Estimation  Seasonal and 
annual runoff 
data 
Point estimates 
of monthly  
precipitation 
from snow     
courses and low-
elevation  
precipitation 
gauges 

Average areal precipitation 
was reproduced with errors 
in the range of 10-15%. 

Spatially explicit statistical methods relating vegetation and climatic variables 
Propastin, et 
al. (2006) 

OLS regression, 
Geographically Weighted 
Regression (GWR)  

Hypothesis 
testing / 
 

Dependent variable: NDVI 
Independent variable: 
Precipitation 

Summed 10-day 
rainfall for each 
of 17 years by 
land cover class; 
gridded maps 
created from 9 
climate stations 
using inverse 
distance 
weighting and 
resized to pixel 
resolution of 
NDVI 

OLS r2 ranged from 0.36 to 
0.67; GWR r2 averaged 0.88; 
much reduced spatial 
autocorrelation in residuals 
of GWR. 

Ji and Peters 
(2004) 

OLS model selection with 
ridge regression, 
integration of spatial 
variability using variogram 
method with mixed linear 
models (restricted 
maximum likelihood 
procedure)  

Hypothesis 
testing / 
Northern and 
central U.S. 
Great Plains 

Dependent var.: NDVI 
Independent vars.:  
precipitation, potential 
evapotranspiration (PET), 
daily max and min air 
temperature, soil 
temperature, solar 
irradiation

Averaged NDVI 
within a 10 km 
weather station 
buffer, by land 
cover class 

Precipitation and PET were 
most significant variables; 
stronger correlations for 
grassland than cropland; r2 
of 46% for grassland, 24% 
for cropland. 
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Table 2-1 (cont’d) 
 

Author(s) 
 

Methods Application 
 

Predictors 
Dependent 

variable 
 

Results 
Spatially explicit statistical methods relating precipitation, vegetation, and topography 

Hession 
(2011) 

Local OK, Universal 
Kriging, Universal Kriging 
with Instrumental 
Variables, and Spatial 
Regression 

Hypothesis 
testing and 
estimation 

Distance to Lake Victoria, 
distance to Indian Ocean, 
elevation, northern and 
eastern components of 
the unit normal vector, 
surface curvature, NDVI 

Total monthly 
precipitation 
representing 4 
seasons for 2 
years 

LOK performed best on the 
basis of RMSE, most 
consistent significant 
predictor was distance to 
water body, followed by 
NDVI and elevation. 

IDW-Inverse distance weighting; OK-Ordinary kriging; SKlm-Simple kriging with varying local means; KED-Kriging with an external drift, CK-
Cokriging 
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Chapter 3 

Statistical Theory and Derivations 

 

This dissertation will incorporate both theoretical and empirical research.  The 

theoretical component is described here through the development of a theoretical 

mapping between geostatistical kriging methods and spatial regression techniques, all 

of which belong to the family of generalized least-squares regression algorithms.  The 

theoretical mapping is followed by the development of an extension to universal kriging 

which accounts for simultaneity between two endogenous variables, such as that which 

occurs between precipitation and vegetation previously as described in Chapter 2.   

 

3.1 Background 

Prior to mapping theoretical similarities and differences between kriging and 

spatial regression techniques, each technique is presented in detail to provide a basis 

for the theoretical work. 

 

3.1.1  Kriging 

Many forms of kriging have been developed to predict attribute values at 

unsampled locations, including univariate techniques that consider only one variable 

(i.e., the variable of interest) and multivariate techniques that utilize secondary 

information in the form of independent variables or covariate data.   
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All forms of kriging belong to a family of generalized least-squares regression 

algorithms and can be derived via the basic linear regression estimator Z*(u) defined as 

(Goovaerts 1997):  

  

 ܼ∗ሺ࢛ሻ െ ݉ሺ࢛ሻ ൌ ∑ ఈሻݑሻሾܼሺݑఈሺߣ െ ݉ሺݑఈሻሿ
௡ሺ࢛ሻ
ఈୀଵ

 (1)
 

 

where λα(u) is the weight assigned to the individual realization z(uα) of the random 

variable (RV) Z(uα).  The expected values of RVs Z(u) and Z(uα) are represented by 

m(u) and m(uα).  The number of locations used in the estimate at location u is 

represented by n(u).  Further, all varieties of kriging are derived with the goal of 

minimizing the error variance 

 	

ாߪ   
ଶሺݑሻ ൌ ሻݑሼܼ∗ሺݎܸܽ െ ܼሺݑሻሽ (2) 

 

with the constraint E{Z*(u) - Z(u)} = 0 (Goovaerts 1997).  The model used to represent 

m(u) distinguishes between the forms of kriging.   

Several forms of kriging are summarized below using a common notation in 

which m(u) is represented more generally by μ.  A summary of the common notation 

used throughout the remainder of this chapter is provided in Table 3-1.  In general, 

vectors and matrices are represented in bold type, whereas constant terms are not 

bolded. 
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Table 3-1.  Summary of common notation. 

࢟   a vector of observations of the dependent variable at n locations 
 a constant, the mean value at a location, assumed to be known in simple   ࣆ ,ߤ

kriging; bolded, ࣆ represents a vector of means at n locations 
  a vector of error terms at n locations, with mean 0 and covariance ઱   ࢋ
઱  the n x n covariance matrix of ࢋ 
ો   a n x 1 vector of covariances between ࢟ at a single location to be predicted 

through kriging and the measured data at n locations 
૚  a n x 1 vector of 1’s 
 a n x (p+1) matrix of measured values for p covariates at n locations   ࢄ

preceded by a column of ones 
  a (p+1) x n vector of regression coefficients   ࢼ
࢞   a (p+1) x 1 vector  of measured values for p covariates at a single locations to 

be predicted preceded by an entry of one (1) 
 ௚௟௦   a (p+1) x n vector of regression coefficients derived through generalized leastࢼ

squares 
 a constant representing the autoregressive coefficient under the spatial   ߩ

autoregressive (SAR) 
 a n x n spatial weights matrix used in spatial regression   ࢃ
 a n x 1 vector representing the spatially lagged dependent variable   ࢟ࢃ
 for the SAR model, a n x 1 vector of independent and identically distributed   ࢿ

error terms at n locations, with a mean of 0 and variance σ૛; for the spatial 
error model (SEM), a n x 1 vector of spatially autocorrelated error terms  

 ௌ஺ோ   a (p+1) x n vector of regression coefficients for the SAR modelࢼ
 a n x n identity matrix   ࡵ
 a constant representing the autoregressive coefficient for the error terms   ߣ

under the SEM 
࢛   a n x 1 vector of independent and identically distributed error terms at n 

locations, with a mean of 0 and variance σ૛  
 ௌாெ   a (p+1) x n vector of regression coefficients for the SEM modelࢼ
 ௌ஺஼   a (p+1) x n vector of regression coefficients for the SAC modelࢼ
  used in the derivation of simple kriging ࢋ the n x n covariance matrix of  ࡯

estimators (same as ઱) 
 a n x 1 vector of covariances between ࢟ at a single location to be predicted   ܋

(same as ો) 
 the (n + p + 1) x (n + p + 1) augmented matrix used in the derivation of ࢑࢛ࡷ ,ࡷ

universal kriging estimators  
࢑, ࢑࢛࢑  a (n + p + 1)  x 1 augmented vector used in the derivation of universal kriging 

estimators 
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1) The theoretical model underlying simple kriging is presented below in matrix 

notation:   

 	

  ࢟ ൌ ߤ ൅ ,ࢋ ,ሺ૙~ࢋ ઱ሻ (3) 

 

where y is a vector of observations measured at n locations, e is a vector of error terms 

at n locations, ઱ represents the covariance matrix of the vector e and ઱ is known.  

Furthermore, the mean μ is assumed to be constant and known.  

The optimal linear predictor at an individual location developed under generalized 

least squares is  

 

ො௦௞ݕ  ൌ ߤ ൅ ࣌ᇱ઱ିଵሺ࢟ െ  ሻ (4)ࣆ

 

and the simple kriging variance is  

 

௦௞ߪ 
ଶ ൌ ଶߪ െ ࣌ᇱ઱ିଵ࣌ (5) 

 

where σ2 = Var[y] at a single location is a constant and σ is a vector of covariances 

between y at a single location to be predicted and the observed data at n locations 

(from Schabenberger and Gotway 2005, pp. 223-224). 
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2) The theoretical model serving as the basis for ordinary kriging is stated 

below.   

 

 ࢟ ൌ ૚ߤ ൅ ,ࢋ ,ሺ૙~ࢋ ઱ሻ (6) 

 

where μ is constant but unknown and ઱ is known.   

The generalized least-squares form of the ordinary kriging predictor is  

 

ො௢௞ݕ  ൌ ߤ̂ ൅ ࣌ᇱ઱ିଵሺ࢟ െ ૚̂ߤሻ (7) 

 

and the ordinary kriging variance is  

 

௢௞ߪ 
ଶ ൌ ଶߪ െ ࣌ᇱ઱ିଵ࣌ ൅ ሺ1 െ ૚ᇱ઱ିଵ࣌ሻଶ

૚ᇱ઱ିଵ૚ൗ
 (8) 

 

where 2ߪ = Var[y] (Schabenberger and Gotway 2005, pp. 226-227; from Cressie 1993, 

p. 123).  As previously noted, ordinary kriging estimators are developed with the 

assumption that μ is constant but unknown; however, local neighborhoods can be 

established throughout which μ is constant, relaxing the assumption that μ is constant 

through the entire study area.  This form of kriging is known as local ordinary kriging. 
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3) Universal kriging (UK; Schabenberger and Gotway 2005), also known as 

kriging with an external drift (KED; Goovaerts 1997), is based on an underlying 

theoretical model that allows for a varying mean throughout an area of interest.  The 

mean is modeled by a general linear regression model that holds for both the data and 

the unobservables and incorporates p covariates or explanatory variables: 

 

 ࢟ ൌ ࢼࢄ ൅ ,ࢋ ,ሺ૙~ࢋ ઱ሻ (9) 

ݕ  ൌ ࢼ࢞ ൅ ݁ (10) 

 

This model represents a linear mean function and a spatially correlated error process.  It 

is assumed that the data and the unobservables are spatially correlated with a variance-

covariance matrix ઱, Cov[y, y] = ࣌, and Var[y] = ߪ଴.   

The regression coefficients β are estimated using generalized least squares as 

follows: 

 

 
෡௚௟௦ࢼ ൌ ሺࢄᇱ઱ିଵࢄሻିଵࢄᇱ઱ିଵ࢟, (11) 

 

resulting in the following best linear unbiased predictor of y: 

 

 
ො௨௞ݕ ൌ ෡௚௟௦ࢼ࢞ ൅ ࣌ᇱ઱ିଵሺ࢟ െ ෡௚௟௦ሻ (12)ࢼࢄ
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with kriging variance 

 

௨௞ߪ
ଶ ൌ ଴ߪ െ ࣌ᇱ઱ିଵ࣌ ൅ ሺ࢞′ െ ࣌ᇱ઱ିଵ܆ሻ ∙ ሺࢄ′઱ିଵࢄሻିଵ ∙ ሺ࢞′ െ ࣌ᇱ઱ିଵ܆ሻ′ 

  (13) 

(from Schabenberger and Gotway 2005, pp. 241-242).  A similar approach, regression 

kriging, also known as kriging after detrending (Goovaerts, 1999b), is described by 

Hengl, Heuvelink, and Stein (2003) and is compared to UK/KED. 

 

3.1.2  Spatial regression 

Three forms of spatial regression models provide the basis for the modeling of 

different forms of spatial autocorrelation:  1) the spatial lag model, also known as a 

spatial autoregressive (SAR) model; 2) the spatial error model (SEM); and 3) the 

general spatial model (SAC).  The SAR model accounts for the presence of spatial 

autocorrelation in the dependent variable, but assumes spatial independence of the 

error terms.  The SEM allows for spatial dependence of the error terms, which may 

occur through the omission of a spatially varying covariate.  If neither form of spatial 

autocorrelation is present, an aspatial OLS regression model may be used.  If both 

forms of spatial autocorrelation are present, the SAC model may be employed.  Each of 

these spatial regression models is presented below.  More detailed descriptions are 

provided by Anselin (2006), Anselin and Bera (1998), LeSage (1998), and LeSage and 

Pace (2009). 
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1) SAR model:  The SAR model incorporates a spatial lag operator and can be 

theoretically represented as in (14) with its corresponding data generating process 

(DGP; from LeSage and Pace 2009) shown in (15): 

 

 ࢟ ൌ ࢟ࢃߩ ൅ ࢼࢄ ൅  (14) ࢿ

 ࢟ ൌ ሺࡵ െ ࢼࢄሻିଵࢃߩ ൅ ሺࡵ െ  (15) ࢿሻିଵࢃߩ

 

where y is a vector of dependent variable observations, ρ is the autoregressive 

coefficient, W is a weights matrix, W y is a spatially lagged dependent variable, X is a 

matrix of observations of the independent variables, β is a vector of coefficients for the 

regression model, and ࢿ is a vector of independent and identically distributed error 

terms. 

As described by LeSage and Pace (2009), estimates for β, σ2, and ρ can be 

obtained through maximum likelihood estimation.  A simplified approach is described in 

which a log-likelihood function that is “concentrated” with respect to β and σ2 is 

developed.  First, closed-form solutions for β and σ2 are derived and substituted into 

the log-likelihood function, yielding a log-likelihood that is concentrated with respect to β 

and σ2. This reduces the maximum likelihood to “a univariate optimization problem in 

the parameter ρ” and obviates the need to simultaneously solve the first order 

conditions for all three parameters.  The estimators for β and σ2 obtained using the 

concentrated log-likelihood function are identical to the form achieved by the full log-
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likelihood function (Davidson and MacKinnon 1993, pgs. 267-269).  The estimate for the 

parameter ρ is not achievable in closed form and must be derived computationally. 

The resulting estimator for β under the SAR model is: 

 

෡ௌ஺ோࢼ  ൌ ሺࢄ′ࢄሻିଵࢄ′ሺࡵ െ  ሻ࢟. (16)ࢃොߩ

 

Predicted values of y can be estimated completely at the n sampled locations: using 

Haining’s (1990) terminology, the complete estimation referred to here can be 

developed as the sum of the trend, signal, and noise (residuals) components, since the 

values of the response variable are known at the sampled locations (Bivand 2009).  

Thus, the complete estimator is: 

 

 ෝ࢟ ൌ ሺࡵ െ ෡ௌ஺ோࢼࢄሻିଵࢃොߩ ൅ ሺࡵ െ  (17) ࢿሻିଵࢃොߩ

 

obtained from the DGP or, replacing ࢿ with the residual term, 

 

 ෝ࢟ ൌ ሺࡵ െ ෡ௌ஺ோࢼࢄିଵ	ሻࢃොߩ ൅ ሺࡵ െ ିଵሺ࢟	ሻࢃොߩ െ  ෡ௌ஺ோሻ . (18)ࢼࢄ

 

Predicted values of y at unsampled locations, however, can be obtained using 

the trend component only of the SAR model: 

 

 ෝ࢟ ൌ  ෡ௌ஺ோ (19)ࢼࢄ
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Note that the dimensions of ෝ࢟ and ࢄ in (19) reflect the number of locations at which the 

response variable y will be estimated.  Since no observations of the response variable 

are available at unsampled locations, the signal component cannot fully reflect the 

spatial variation (Bivand 2009).  The following “feasible signal component” has been 

suggested by Bivand 2009: 

 

࢟ࢃߩ  ൌ ࡵሺࢃߩ െ  (20) ࢼࢄሻିଵࢃߩ

 

2) SEM model:  The SEM allows for spatial autocorrelation in the residual term. 

The theoretical form of the SEM follows (21) and (22), with a DGP of (23): 

 

 ࢟ ൌ ࢼࢄ ൅  (21)   ࢿ

ࢿ  ൌ ࢿࢃߣ ൅ ࢛ (22) 

 ࢟ ൌ ࢼࢄ ൅ ሺࡵ െ  ሻିଵ࢛ (23)ࢃߣ

 

where in this case ࢿ is a vector of spatially autocorrelated error terms, λ is the 

autoregressive coefficient for the error terms, and ࢛u is a vector of independent and 

identically distributed normal error terms. 

Estimates for β, σ2, and λ can be obtained through maximum likelihood 

estimation, using the concentrated log-likelihood approach previously described 
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(LeSage and Pace 2009).  Similar to the parameter ρ in the SAR model, λ is not 

achievable in closed form and must be derived computationally. 

The maximum likelihood estimator for β using the concentrated log-likelihood 

under the SEM is 

 

 
෡ௌாெࢼ ൌ ሺࢄ′ሺࡵ െ ࡵሻ′ሺࢃߣ െ ࡵሺ′ࢄሻିଵࢄሻࢃߣ െ ࡵሻ′ሺࢃߣ െ  ሻ࢟ (24)ࢃߣ

 

Estimation of y at the n sampled locations can be accomplished using (from Bivand 

2009): 

 

 ෝ࢟ ൌ ෡ௌாெࢼࢄ ൅ ൫ࡵ െ ൯ࢃመߣ
ିଵ
࢛ (25) 

 

obtained from the DGP or, replacing ࢛ with the residual term, 

 

 ෝ࢟ ൌ ሺࡵ െ ሻିଵࢃመߣ
	
ሺ࢟ െ ෡ௌாெሻࢼࢄ ൅  ෡ௌாெ   (26)ࢼࢄ

 

At unsampled locations, Bivand (2009) describes estimation of y using the trend 

component only of the SEM model: 

 

 ෝ࢟ ൌ  ෡ௌாெ (27)ࢼࢄ
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The signal component is set to zero because the spatial smoothing process in the SEM 

model is expressed only in terms of the error term u as shown in (25), for which the 

expectation is zero.  Again, the dimensions of ෝ࢟ and ࢄ in (27) reflect the number of 

locations at which the response variable y will be estimated.   

 

3) SAC model:  The SAC model incorporates both forms of spatial 

autocorrelation through a spatial lag term and a spatially correlated error structure, and 

is represented in (28) and (29).  The DGP for this model is shown in (30) 

 

 ࢟ ൌ ૚࢟ࢃߩ ൅ ࢼࢄ ൅  (28) ࢿ

ࢿ  ൌ ࢿ૛ࢃߣ ൅ ࢛ (29) 

 ࢟ ൌ ሺࡵ െ ࢼࢄ૚ሻିଵࢃߩ ൅ ሺࡵ െ ࡵ૚ሻିଵሺࢃߩ െ  ૛ሻିଵ࢛ (30)ࢃߣ

 

where again ࢿ is a vector of spatially autocorrelated error terms and W1 and W2 are 

weights matrices, ρ is the autoregressive coefficient for the dependent variable, λ is the 

autoregressive coefficient for the error terms, and u is a vector of independent and 

identically distributed normal error terms. 

Estimates for β, σ2,ߩ, and λ can be obtained through maximum likelihood 

estimation, using the concentrated log-likelihood approach described above (LeSage 

and Pace 2009).  However, in the case of the SAC model, a bivariate optimization in 
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two parameters (ߩ and λ) is required.  Neither parameter is achievable in closed form; 

therefore, both must be derived computationally.   

The maximum likelihood estimator for β using the concentrated log-likelihood 

under the SAC is: 

 

෡ௌ஺஼ࢼ ൌ ሺࢄ′ሺࡵ െ ࡵሻ′ሺࢃߣ െ ࡵሺ′ࢄሻିଵࢄሻࢃߣ െ ࡵሻ′ሺࢃߣ െ ࡵሻሺࢃߣ െ   ሻ࢟ࢃߩ

  (31) 

 

Estimation of y at the n sampled locations can be accomplished using (from 

Bivand 2009): 

 

 ࢟ ൌ ሺࡵ െ ෡ௌ஺஼ࢼࢄ૚ሻିଵࢃොߩ ൅ ሺࡵ െ ࡵ૚ሻିଵ൫ࢃොߩ െ ૛൯ࢃመߣ
ିଵ
࢛ (32) 

 

obtained from the DGP or, replacing ࢛ with the residual term, 

 

 ࢟ ൌ ሺࡵ െ ෡ௌ஺஼ࢼࢄ૚ሻିଵࢃොߩ ൅ ሺࡵ െ ࡵ૚ሻିଵ൫ࢃොߩ െ ૛൯ࢃመߣ
ିଵ
ሺ࢟ െ  ෡ௌ஺஼ሻ(33)ࢼࢄ

 

At unsampled locations, estimation of y can be completed using the trend component 

only of the SAC model: 

 

 ෝ࢟ ൌ ෡ௌ஺஼ࢼࢄ  (34) 
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The dimensions of ෝ࢟ and ࢄ in (34) reflect the number of locations at which the 

response variable y will be estimated.  Similar to the SAR model, no observations of the 

response variable are available at unsampled locations; consequently, the signal 

component cannot fully reflect the spatial smoothing process.  However, since the first 

term in (33) is similar to that of (18), the corresponding formula for the SAR model, the 

“feasible” signal component described by Bivand (2009) might also be considered: 

 

࢟ࢃߩ  ൌ ࡵሺࢃߩ െ  (35) ࢼࢄሻିଵࢃߩ

 

A decision process recommended by Anselin (2005) may be used to select 

between OLS, SAR, and SEM models for analysis of the data.  In summary, the process 

involves completing an aspatial OLS regression analysis and calculating diagnostics for 

spatial dependence.  The OLS results may be relied upon only if the assumptions 

underlying OLS are not violated.  First, the lagrange multiplier (LM) statistics for both a 

spatial lag and spatial error model are tested for significance.  If neither LM is 

significant, the OLS results may be used.  If one of LM statistics is significant, the 

corresponding model should be used to evaluate the data (e.g., if the LM statistic for 

only the spatial lag model is significant, the spatial lag model should be used to evaluate 

the data).  If both of the LM statistics are significant, robust LM statistics should be 

tested for significance and the appropriate model selected.   

In the case that both robust LM statistics are significant, generalized spatial 

modeling (SAC) may be used to account for this more complex form of spatial 

autocorrelation (LeSage, 1998). 
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3.1.3  Summary of theoretical models and estimators 

Theoretical models are summarized in Table 3-2 for both kriging and spatial 

regression models.  Data generating processes (DGP) are also provided for the spatial 

regression models (LeSage and Pace 2009).  A summary of estimators for each 

theoretical model follows (Table 3-3).   

Note in Table 3-2 that the kriging models all incorporate spatially correlated error 

terms.  Conversely, the spatial regression methods incorporate spatial autocorrelation 

directly in the model statement, resulting in uncorrelated error terms.  Universal kriging 

attempts to incorporate spatial autocorrelation into the modeling step through the use of 

the generalized least squares estimate of β shown in (11).  However, methods used to 

estimate the variance-covariance matrix ࢳ, are not exact; consequently, it is expected 

that the error terms retain some spatial autocorrelation.  These observations illustrate 

the following point made by Schabenberger and Gotway (2005): 

“The fact that we consider such very different models for modeling (and 
predicting) spatial data is due to the adage that, ‘one modeler’s fixed effect 
(regressor variable) is another modeler’s random effect (spatial 
dependency.’ Historically, estimation and prediction in models for spatial 
data started at the two extremes: regression models with uncorrelated 
errors (statistics) and correlated errors with a constant mean 
(geostatistics).” 

 

Fortunately, much progress has been made in both directions, resulting in an ever-

smaller gap between these approaches.  This chapter will demonstrate the similarities 

and differences between the geostatistical and spatial regression approaches at 

present. 
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Table 3-2.  Summary of theoretical models underlying kriging and spatial regression 
approaches. 

Method 
Theoretical  

Model 
Distribution of  
Error Terms 

Geostatistical Kriging Methods 

Simple Kriging ࢟ ൌ ࣆ ൅  ࢋ
,ሺ૙~ࢋ ઱ሻ, 
μ is assumed to be constant 
and known 

Ordinary Kriging ࢟ ൌ ૚ߤ ൅  ࢋ
,ሺ૙~ࢋ ઱ሻ, 
μ is assumed to be constant 
and unknown 

Universal Kriging ࢟ ൌ ࢼࢄ ൅ ,ሺ૙~ࢋ ࢋ ઱ሻ 

Spatial Regression Methods 

SAR Model 

࢟ ൌ ࢟ࢃߩ ൅ ࢼࢄ ൅  ࢿ

,ሺ૙ܰ~ࢿ ࢟ :ሻ  DGPࡵଶߪ ൌ ሺࡵ െ ࢼࢄሻିଵࢃߩ ൅
ሺࡵ െ  ࢿሻିଵࢃߩ

SEM Model 

࢟ ൌ ࢼࢄ ൅  ࢿ
ࢿ ൌ ࢿࢃߣ ൅ ࢛ ࢛~ܰሺ૙,  ሻࡵଶߪ

DGP: 

 ࢟ ൌ ࢼࢄ ൅ ሺࡵ െ  ሻିଵ࢛ࢃߣ

SAC Model 

࢟ ൌ ૚࢟ࢃߩ ൅ ࢼࢄ ൅  ࢿ
ࢿ ൌ ࢿ૛ࢃߣ ൅ ࢛ 

࢛~ܰሺ૙, ࢟ :*ሻ DGPࡵଶߪ ൌ ሺࡵ െ
ࢼࢄ૚ሻିଵࢃߩ ൅

ሺࡵ െ ࡵ૚ሻିଵሺࢃߩ െ
 ૛ሻିଵ࢛ࢃߣ
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Table 3-3.  Summary of kriging and spatial regression estimators. 

Method Estimators of y (y) Estimation Method 
Geostatistical Kriging Methods 

Simple 
Kriging ݕො௦௞ ൌ ߤ ൅ ࣌ᇱ઱ିଵሺ࢟ െ  ሻࣆ

Var[y] = ઱, Cov[y, y] = ࣌: 
populated using a variogram 
model; 
  assumed known :ࣆ and ߤ

Ordinary 
Kriging ݕො௢௞ ൌ ߤ̂ ൅ ࣌ᇱ઱ିଵሺ࢟ െ ૚̂ߤሻ 

Var[y] = ઱, Cov[y, y] = ࣌: 
populated using a variogram 
model; 
 estimated by LS :ߤ̂

Universal 
Kriging 

ො௦௞ݕ ൌ ෡௚௟௦ࢼ࢞ ൅ ࣌ᇱ઱ିଵሺ࢟ െ  ෡௚௟௦ሻࢼࢄ
Var[y] = ઱, Cov[y, y] = ࣌: 
populated using a variogram 
model; 

෡௚௟௦ࢼ ෡௚௟௦: estimated by GLSࢼ ൌ ሺࢄ′઱ିଵࢄሻିଵࢄ′઱ିଵ࢟ 

Spatial Regression Methods 

SAR Model 

ෝ࢟ ൌ ሺࡵ െ ෡ௌ஺ோࢼࢄሻିଵࢃොߩ
൅ ሺࡵ െ ሻିଵࢃොߩ

∙ ൫࢟ െ  ෡ௌ஺ோ൯ࢼࢄ
 ;෡ௌ஺ோ: concentrated MLࢼ
 ො: concentrated ML, numericalߩ
estimation 

෡ௌ஺ோࢼ ൌ ሺࢄ′ࢄሻିଵࢄ′ሺࡵ െ  ሻ࢟ࢃොߩ

SEM Model 

ෝ࢟ ൌ ሺࡵ െ ሻିଵࢃመߣ
	
ሺ࢟ െ ෡ௌாெሻࢼࢄ

൅  ෡ௌாெࢼࢄ
 ;෡ௌாெ: concentrated MLࢼ

 መ: concentrated ML, numericalߣ
estimation 

መௌாெߚ ൌ ൫ࢄ′൫ࡵ െ ′൯ࢃመߣ

∙ ൫ࡵ െ ൯ࢄ൯ࢃመߣ
ିଵ

∙ ࡵᇱ൫ࢄ െ ′൯ࢃመߣ
∙ ൫ࡵ െ  ൯࢟ࢃመߣ

SAC Model 

ෝ࢟ ൌ ሺࡵ െ ෡ௌ஺஼ࢼࢄ૚ሻିଵࢃොߩ
൅ ሺࡵ െ ૚ሻିଵࢃොߩ

∙ ൫ࡵ െ ૛൯ࢃመߣ
ିଵ
∙ ሺ࢟

െ ෡ௌ஺஼ࢼ ෡ௌ஺஼ሻࢼࢄ : concentrated ML; 

 መ: concentrated ML, numericalߣ ,ොߩ
estimation 

෡ௌ஺஼ࢼ ൌ ൫ࢄ′൫ࡵ െ ′൯ࢃመߣ

∙ ൫ࡵ െ ൯ࢄ൯ࢃመߣ
ିଵ

∙ ࡵ൫′ࢄ െ ′൯ࢃመߣ
∙ ൫ࡵ െ ࡵ൯ሺࢃመߣ െ ሻ࢟ࢃොߩ

 



59 
 

The spatial regression estimators for ෝ࢟ are all shown in their complete form in Table 3-

3, which may be used when making predictions at previously sampled locations only.  

When predicting at unsampled locations, only the trend components are estimated (i.e., 

ෝ࢟ ൌ ෡ௌ஺ோ, ෝ࢟ࢼࢄ ൌ ෡ௌாெ, ෝ࢟ࢼࢄ ൌ  ෡ௌ஺஼).  The signal (i.e., the spatial smoothing)ࢼࢄ

component is not reflected; however, each of the β terms incorporate spatial 

autocorrelation terms:  ߩ (SAR), ߣ (SEM), ߩ and ߣ (SAC).  This is a limitation spatial 

regression when interpolating at unsampled locations: since only the trend component 

is estimated, the predictions are likely overly smooth. 

 

3.2 Theoretical mapping between statistical approaches 

Theoretical work presented in this section involves the development of a 

classification system for kriging and spatial regression techniques, identifying 

mathematical similarities and distinctions between them.  An important objective of this 

dissertation is to consider the theoretical correspondence between these two estimation 

paradigms.   

As previously noted, kriging and spatial regression algorithms both belong to the 

family of generalized least-squares estimators.  Generalized least-squares estimators 

(GLSEs) can be presented in a general linear regression model, such as the following 

linear regression model: 

 

 ࢟ ൌ ࢼࢄ ൅  (36) ࢿ	
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where ࢿ has a covariance structure of ઱. 

The Gauss-Markov estimator (GME) for β is of the form  

 

෡ሺ઱ሻࢼ   ൌ ሺࢄ′઱ିଵࢄሻିଵࢄ′઱ିଵ࢟ (37) 

 

and is the best linear unbiased estimator  (BLUE) if ઱ is known (Kariya and Kurata 

2004).  Since ઱ is usually not known, calculation of the GME is not possible.  In this 

case, the GLSE ࢼ෡൫઱෡൯ can be calculated as above using ઱෡ in place of ઱.  The 

estimated ઱෡ must be positive definite.  Additionally, many models use alternate 

formulations for ઱ିଵ, including 

 

 ઱ିଵ ൌ ሺࡵ ൅  ሻ (38)ࡹߣ

 

where M is a known square matrix (Kariya and Kurata 2004). 

Note that the theoretical models for simple kriging, ordinary kriging, and universal 

kriging, respectively, are similar.  They are restated here for convenience. 

 

 ࢟ ൌ ࣆ ൅ ,ࢋ ,ሺ૙~ࢋ ઱ሻ (3) 

 ࢟ ൌ ૚ߤ ൅ ,ࢋ ,ሺ૙~ࢋ ઱ሻ (6) 

 ࢟ ൌ ࢼ′ࢄ ൅ ,ࢋ ,ሺ૙~ࢋ ઱ሻ (9) 
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Each equation comprises a term for the mean, which may or may not vary over 

space, and a covariance structure for the error terms.  GLSEs for all three forms of 

kriging can also be presented using the following notation: 

 

  ෝ࢟ ൌ  ෠ᇱ࢟ (39)ࣅ

 

where y is a vector of the n observations of the variable of interest, ࣅ෠  is a vector of 

estimated kriging weights, and ෝ࢟ is the kriging estimate at a given unsampled location.  

The kriging weights are generally calculated using the inverse of the full covariance 

matrix, which is augmented in the case of ordinary and universal kriging, multiplied by a 

vector of covariances between observed locations and the location to be predicted.  For 

simple kriging, kriging weights are estimated as:	

 

෠௦௞ࣅ  ൌ  (40) ࢉ૚ି࡯

 

where C is the covariance matrix between all pairs of sampled locations, and c is the 

vector of covariances between each of the sampled locations and the location to be 

estimated.  The resulting vector (40) can be substituted in (39) to calculate the simple 

kriging estimate. 

The kriging weights for universal kriging, a multivariate form of kriging, are more 

complicated and are calculated using the following formula and augmented matrices 

(where matrix dimensions and row/column locations are shown in subscripts):  
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෠௔௨௚௠௘௡௧௘ௗࣅ  ൌ ௨௞ࡷ
ିଵ࢑௨௞ (41) 

where  

 

෠௔௨௚௠௘௡௧௘ௗࣅ  ൌ

ۉ

ۈ
ۈ
ۇ

௎௄ଵߣ
⋮

௎௄௡ߣ
߶ଵ
⋮

߶௣ାଵی

ۋ
ۋ
ۊ

  or  ࣅ෠௔௨௚௠௘௡௧௘ௗ ൌ ൬
௎௄௡,ଵࣅ
ࣘ௣ାଵ,ଵ

൰, (42) 

 ࢑௨௞ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

ܿଵ
⋮
ܿ௡
1
ଵݔ
⋮
ی௣ݔ

ۋ
ۋ
ۋ
ۊ

  or  ࢑௨௞ ൌ ቀ
௡,ଵࢉ
࢞௣ାଵ,ଵቁ, and (43) 

௨௞ࡷ  ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵଵܥ						 ⋯ ଵ௡ܥ
						⋮ ⋯ ⋮
௡ଵܥ						 ⋯ ௡௡ܥ

			
			1 ଵଵݔ
			⋮ ⋮
				1 ௡ଵݔ

				
⋯ ଵ௣ݔ
⋮ ⋮
⋯ ௡௣ݔ

1		 ⋯	 1			
ଵଵݔ ⋯ ଵ௡ݔ

							0		 0
		0		 0

					⋯ 0
⋯ 0

⋮ ⋯ ⋮
௣ଵݔ		 ⋯ ௣௡ݔ

			 					⋮ 		⋮
					0 		0

			 	⋮ ⋮		
		⋯ 0		

				

	 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (44) 

 

which can also be written in a more condensed form as a partitioned matrix: 

 

௨௞ࡷ  ൌ ቈ
௡,௡࡯ ௡,௣ାଵࢄ

	

௡,௣ାଵࢄ
ᇱ ૙௣ାଵ,௣ାଵ

቉ (45) 
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Note that cn,1 and Cn,n are the same as c and C in Equation (40). 

To calculate ࣅ෠௔௨௚௠௘௡௧௘ௗ, ࡷ௨௞ must first be inverted.  As shown by Theil (1971, 

pp. 17-19), a nonsingular matrix D is first defined as: 

 

ࡰ  ൌ ൤
ଵࡼ ଵࡾ

	

ଵࡾ
ᇱ ଵࡽ

൨ (46) 

 

where ࡼଵ and ࡽଵ are non-singular symmetric matrices.  Then ିࡰଵ can be written as: 

ଵିࡰ

ൌ ൤
ଵࡼ
ିଵ ൅ ଵࡼ

ିଵࡾଵሺࡽଵ െ ଵࡾ
ᇱ ଵࡼ

ିଵࡾଵሻିଵࡾଵ
ᇱ ଵࡼ

ିଵ െࡼଵ
ିଵࡾଵሺࡽଵ െ ଵࡾ

ᇱ ଵࡼ
ିଵࡾଵሻିଵ

െሺࡽଵ െ ଵࡾ
ᇱ ଵࡼ

ିଵࡾଵሻିଵࡾଵ
ᇱࡼଵ

ିଵ ሺࡽଵ െ ଵࡾ
ᇱ ଵࡼ

ିଵࡾଵሻିଵ
൨ 

  (47) 

Since ࡽଵ= 0, ࡷ௨௞
ିଵ can be written as:  

 

௨௞ࡷ 
ିଵ ൌ ൤

ଵି	࡯ െ ଵି	࡯ᇱ	ࢄሻିଵ		ࢄଵି	࡯ᇱ	ࢄሺ	ࢄଵି	࡯ ሻିଵࢄଵି	࡯ᇱ	ࢄሺࢄଵି	࡯

ሺࢄ	ᇱ࡯	ିଵࢄଵሻିଵࢄ	
ᇱ࡯	ିଵ െሺࢄ	ᇱ࡯	ିଵࢄ	ሻିଵ

൨ (48) 

 

Substituting Equations (43) and (48) into Equation (41) yields: 

  

෠௔௨௚௠௘௡௧௘ௗࣅ ൌ ൤
ଵି	࡯ െ ଵି	࡯ᇱ	ࢄሻିଵ		ࢄଵି	࡯ᇱ	ࢄሺ	ࢄଵି	࡯ ሻିଵࢄଵି	࡯ᇱ	ࢄሺࢄଵି	࡯

ሺࢄ	ᇱ࡯	ିଵࢄଵሻିଵࢄ	
ᇱ࡯	ିଵ െሺࢄ	ᇱ࡯	ିଵࢄ	ሻିଵ

൨ ∙ ቀ
	ࢉ
࢞	
ቁ 

  (49) 
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Since only ࣅ௎௄௡,ଵ from (42) is necessary for calculating the universal kriging estimate, 

the top row of the augmented matrix multiplied by vector ቀ
	ࢉ
࢞	
ቁ can be rewritten as: 

 

෠௎௄ࣅ ൌ ሺ࡯	ିଵ െ 	ࢉଵሻି	࡯ᇱ	ࢄሻିଵ		ࢄଵି	࡯ᇱ	ࢄሺ	ࢄଵି	࡯ ൅  ሻିଵ࢞ (50)ࢄଵି	࡯ᇱ	ࢄሺࢄଵି	࡯

 

The lower half of ࣅ෠௔௨௚௠௘௡௧௘ௗ in (42) contains the Langragian multipliers necessary to 

ensure that the results are unbiased and are not directly used in calculating the 

universal kriging estimate. 

After much matrix algebra, it can be shown that 

 

෠௎௄ࣅ  ൌ ࢉଵሼି	࡯ ൅ ሻିଵሺ࢞		ࢄଵି	࡯ᇱ	ࢄሺࢄ െ  ሻሽ (51)ࢉଵି	࡯ᇱ	ࢄ

and 

෠௎௄ࣅ 
ᇱ
ൌ ሼሺࢉ ൅ ሻିଵሺ࢞		ࢄଵି	࡯ᇱ	ࢄሺࢄ െ  ଵ (52)ି	࡯ሻሽᇱࢉଵି	࡯ᇱ	ࢄ

 

Substituting (52) into (39) gives the universal kriging estimate as 

 

 ෝ࢟ ൌ ሼሺࢉ ൅ ሻିଵሺ࢞		ࢄଵି	࡯ᇱ	ࢄሺࢄ െ  ଵ࢟ (53)ି	࡯ሻሽᇱࢉଵି	࡯ᇱ	ࢄ

 

which can also be written 

 

ෝ࢟ ൌ ଵ࢟ି	࡯ᇱࢉ െ ଵ࢟ି	࡯′ࢄሻିଵࢄଵି	࡯′ࢄሺࢄଵି	࡯ᇱࢉ ൅ ࢞′ሺ࡯′ࢄ	ିଵࢄሻିଵ࡯′ࢄ	ିଵ࢟ (54) 
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and simplified as 

 

 ෝ࢟ ൌ ௌ௄ࣅ
ᇱ࢟ െ ௌ௄ࣅ

ᇱࢼࢄ෡ீ௅ௌ ൅  ෡ீ௅ௌ (55)ࢼ࢞

or 

 ෝ࢟ ൌ ௌ௄ࣅ
ᇱሺ࢟ െ ሻ	෡ீ௅ௌࢼࢄ ൅  ෡ீ௅ௌ (56)ࢼ࢞

 

In words, it can be shown that universal kriging reduces to simple kriging of the 

residuals from a generalized least-squares analysis plus the generalized least-squares 

estimate at the location of interest. 

Estimators for the spatial regression models summarized in Equations (18), (26), 

and (33) can also be written in the form of Equation (56).  Recall that these complete 

estimators are written for estimation at previously sampled locations, where information 

on the response variable is available.  For example, the SEM model can be written in 

the form: 

 

 ෝ࢟ ൌ ሺࡵ െ ሻିଵࢃመߣ
	
ሺ࢟ െ ෡ௌாெሻࢼࢄ ൅  ෡ௌாெ   (57)ࢼࢄ

 

and the SAR model can be written as: 

 

 ෝ࢟ ൌ ሺࡵ െ ିଵሺ࢟	ሻࢃොߩ െ ෡ௌ஺ோሻࢼࢄ ൅ ሺࡵ െ  ෡ௌ஺ோ . (58)ࢼࢄିଵ	ሻࢃොߩ
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where ߣመ and ߩො are constants, and ࢃ is a neighbor matrix.  The estimated coefficients 

for universal kriging, the SEM model, and the SAR model are: 

 

෡ீ௅ௌࢼ  ൌ ሺ࡯′ࢄ	ିଵࢄሻିଵ࡯′ࢄ	ିଵ࢟ (59) 

 

 
෡ௌாெࢼ ൌ ൫ࢄ′൫ࡵ െ ࡵ൯′൫ࢃመߣ െ ൯ࢄ൯ࢃመߣ

ିଵ
ࡵ൫′ࢄ െ ࡵ൯′൫ࢃመߣ െ  ൯࢟ (60)ࢃመߣ

 

෡ௌ஺ோࢼ  ൌ ሺࢄ′ࢄሻିଵࢄ′ሺࡵ െ  ሻ࢟. (61)ࢃොߩ

 

Equations (56), (57), and (58) can be generalized as: 

 

 ෝ࢟ ൌ ଵࡹ
	ሺ࢟ െ ሻ	෡ࢼࢄ ൅ࡹଶࢼࢄ෡	  (62) 

 

Furthermore, (59), (60), and (61) above can be generalized as follows: 

 

	෡ࢼ  ൌ ሺࡹ′ࢄ	ଷ
	 	ସࡹ′ࢄሻିଵࢄ

	 ࢟ (63) 

 

Table 3-4 summarizes the contents of the matrices in (62) and (63) for universal kriging, 

the SEM model, and the SAR model. 
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Table 3-4.  Summary of multipliers for each estimation type. 
 
Estimation 
Type 

 
M1 

 
M2

 
M3

 
M4 

Universal 
kriging ࣅௌ௄

ᇱ ൌ  ଵି	࡯ ଵି࡯ ࡵ ଵି࡯′ࢉ

SEM model ሺࡵ െ  ࡵ ሻିଵࢃߣ
ሺࡵ െ ࢃߣ ሻ′ ∙ 
ሺࡵ െ ࢃߣ ሻ 

ሺࡵ െ ′ሻ	ࢃߣ ∙ 
ሺࡵ െ ࢃߣ ሻ 

SAR model ሺࡵ െ ࡵିଵ ሺ	ሻࢃߩ െ ሻࢃߩ ିଵ ࡵ ሺࡵ െ ሻࢃߩ  

 

 

3.3 Modeling of feedback simultaneity in a spatial setting  

The spatial regression models presented in Section 3.1.2 have been expanded 

upon in the field of spatial econometrics to allow for the modeling of feedback 

simultaneity between two endogenous variables, such as precipitation and vegetation, 

in systems of multiple equations (Rey and Boarnet 2004).  The use of spatially-explicit 

simultaneous equations to evaluate and understand feedback simultaneity is described 

in the Section 3.3.1.  Estimators using spatial two-stage least squares (S2SLS) are also 

presented.  In Section 3.3.2, concepts from the development of spatially-explicit 

regression models with feedback simultaneity are merged with the universal kriging 

technique (Section 3.1.1) to develop a new approach in multivariate kriging that 

incorporates feedback simultaneity between two endogenous variables.  This new 

approach extends the ability to model and describe simultaneous feedback effects to 

the prediction of attribute values at unsampled locations in a manner that is both 

spatially explicit and reflective of feedback simultaneity between the dependent variable 

and a predictive variable.  
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3.3.1 Simultaneous equations spatial regression model   

Recent developments in the field of econometrics allow for an expansion into 

systems of multiple, simultaneous equations (Kelejian and Prucha, 2004; Rey and 

Boarnet, 2004).  Rey and Boarnet (2004) present a taxonomy of spatial econometrics 

models in simultaneous equations systems which allow for feedbacks between two 

endogenous variables, spatial lags for one or both variables, and various forms of 

cross-lags between both terms.  The case which incorporates both feedback 

simultaneity and spatial simultaneity is described in more detail as follows (corrections 

made to equation 1 in Rey and Boarnet, 2004, p. 103): 

 ࢟ଵ ൌ ଵࢼࢄ ൅ ଶଵ࢟ଶߛ ൅ ଶ࢟ࢃଶଵߩ ൅ ଵ࢟ࢃଵଵߩ ൅  ଵ (64)ࢿ

 ࢟ଶ ൌ ଶࢼࢄ ൅ ଵଶ࢟ଵߛ ൅ ଵ࢟ࢃଵଶߩ ൅ ଶ࢟ࢃଶଶߩ ൅  ଶ (65)ࢿ

 

where y1 and y2 are the n x 1 vectors of observations for each dependent variable, X is 

an n x k matrix of observations for k independent variables associated with the k x 1 

vectors β1 and β2 , ߛଶଵ and ߛଶଵ provide for feedback simultaneity between the 

dependent variables,  W is an n x n spatial weights matrix, ρ11 and ρ22 are the spatial 

autoregressive lag terms,  ρ21 and ρ12 are spatial cross-regressive terms, and ε1 and ε2 

are error terms with the following properties: 

 

,ଵ,௜ࢿൣݒ݋ܥ ଶ,௜൧ࢿ ൌ 0, for all i, 

,௟,௝ࢿൣݒ݋ܥ ௟,௝൧ࢿ ൌ 0,  for all i ≠ j, and l = 1,2, 

,ଵ,௜ࢿൣݒ݋ܥ ଶ,௝൧ࢿ ൌ 0,  for all i ≠ j. 
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This system of equations can be expressed in matrix notation as follows: 

 

ડࢅ  ൌ ࡼࢅࢃ ൅ ࡮ࢄ ൅  (66) ࡱ

 

where Y = [y1,y2] is a vector of endogenous (dependent) variables, X is a matrix of 

exogenous or independent variables, B = (β1,β2), E = (ε1,ε2),  

 

ડ ൌ ൬
1 െߛଵଶ

െߛଶଵ 1 ൰, and ۾ ൌ ቀ
ଵଵߩ ଵଶߩ
ଶଵߩ ଶଶߩ

ቁ. 

 

Estimators for this system of equations have been proposed and initially 

evaluated by Rey and Boarnet (2004).  A spatial two stage estimator can be obtained 

following the steps below: 

1. Calculate the predicted values for the endogenous variable on the right hand side 

(RHS) of the equation by running OLS regression on one or more of the 

exogenous variables used in predicting the endogenous variable on the left hand 

side (LHS) plus at least one exogenous variable not used in the prediction of the 

LHS endogenous variable. 

2. Calculate predicted values for the lagged endogenous values on the RHS (i.e, 

Wy1 and/or Wy2) as above. 
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3. Replace each of the endogenous variables on the RHS with their predicted 

values, then estimate the parameters of the equation using OLS regression.  

 

An aspatial two stage estimator can be obtained by omitting the lagged terms and step 

2 above. 

For example, the S2SLS estimators of the parameter vector ߠଵ  

ଵߠ)
ᇱ ൌ ሾߚଵ

ᇱ, ,ଶଵߛ  ଵଵሿ) for the first equation in the system of equations incorporating aߩ

feedback and two spatial lag terms (Rey and Boarnet 2004, Table 5.1, Model 13) can 

be estimated in matrix terms as: 

 

෠ௌଶௌ௅ௌߠ  ൌ ሺܼଵ′ܼଵሻିଵܼଵݕଵ (67) 

 

where  ܼଵ ൌ ൣܺ∗,  ଵ൧, ܺ∗ is the matrix of exogenous variables excluding theݕܹ,ොଶݕ

additional exogenous variable(s) not used to estimate ݕଵ (i.e., the instrumental 

variable), ݕොଶ ൌ ොଵݕܹ ,ଶݕܳ ൌ ܳ ଵ, andݕܹܳ ൌ ܺሺܺᇱܺሻିଵܺᇱ (which is also 

commonly known as the hat matrix).  The matrix ܺ is the full matrix of exogenous 

variables, or the matrix ܺ∗ above with the instrumental variable.  The variables ݕොଶ and 

 .ොଵ are the instrumented variables or the instrumentsݕܹ

To test for the presence of feedback simultaneity, it is most straightforward to 

start with an aspatial OLS model.  First, fit an OLS model after calculating an instrument 

for ݕଶ (assuming that feedback simultaneity is present between ݕଵ and  ݕଶ).  For 
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example, the S2SLS estimators of the parameter vector ߠଵ (ߠଵ
ᇱ ൌ ሾߚଵ

ᇱ,  ଶଵሿ) can beߛ

estimated in matrix terms as: 

 

෠ௌଶௌ௅ௌߠ  ൌ ሺܼଵ′ܼଵሻିଵܼଵݕଵ (68) 

 

where ܼଵ ൌ ሾܺ∗,  ሿ, ܺ∗ is the matrix of exogenous variables excluding the additional	ොଶݕ

exogenous variable(s) not used to estimate ݕଵ, ݕොଶ ൌ ܳ ଶ, andݕܳ ൌ ܺሺܺᇱܺሻିଵܺᇱ.  

The matrix ܺ is the full matrix of exogenous variables.  Next, fit an OLS model for ݕଵ 

treating the second endogenous variable ݕଶ as an exogenous variable (assuming no 

feedback simultaneity).   

 

෠ை௅ௌߠ  ൌ ܺାሺܺା′ܺାሻିଵܺା′ݕଵ (69) 

 

where ܺା ൌ ሾܺ∗  ଶሿ.   The two models can be compared using the Hausman Testݕ

(Hausman 1978). 

 

3.3.2 An extension to universal kriging   

This dissertation extends the multivariate kriging technique known as universal 

kriging (UK; Schabenberger and Gotway 2005), also known as kriging with an external 

drift (KED; Goovaerts 1997).  Although UK can provide considerable improvement over 

univariate forms of estimation, applications to date neglect critical relationships between 
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the kriged variables (e.g., precipitation) and selected covariates.  In particular, 

feedbacks, or simultaneity, between variables of interest are not considered by existing 

kriging methods, a shortcoming in the kriging tool kit. 

The presentation of universal kriging in Section 3.2 itself to extension through the 

incorporation of simultaneity.  The formulation of the universal kriging estimator shown 

in (41) through (51) evidently assumes a lack of relationship between variables in the X 

matrix, and the dependent variable, y.  Given that the covariation structure is typically 

taken to be purely spatial, possible co-variation introduced by simultaneity bias is 

neglected in predicting ݕො.  The research presented herein considers solutions to (56) 

that account for endogenous relationships among the variables, specifically precipitation 

and vegetative cover, by extending universal kriging through an instrumental variables 

approach.  Specifically, an instrument is included in the multivariate regression model 

used to estimate the mean process at each location.  For example, let ܺ∗ be made up 

of three independent variables (elevation (e), distance from the coast (d), and a 

measure of vegetation (v)):  ࢄ∗ ൌ ሾ1			ࢋࢄ ࢊࢄ  ሿ.  The feedback or simultaneity࢜ࢄ

between the dependent variable precipitation and vegetation can be modeled using an 

instrumental variable (e.g., a variable related to vegetation but less so to precipitation, 

such as soil type (s)).  Let 

 

 ෝ࢟ଶ ൌ  ଶ (70)࢟′ࢄሻିଵࢄᇱࢄሺࢄ
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where ൌ ሾࢄ∗  in the ࢜ࢄ ොଶ can be substituted forݕ ሿ .  The instrumented variable࢙ࢄ

original matrix to correct for problems due to simultaneity, giving a new data matrix, 

∗∗ࢄ ൌ ሾ૚			ࢋࢄ ࢊࢄ ෝ࢟ଶሿ.  ࢄ∗∗ is then substituted for ࢄ in (70), and ෝ࢟ is predicted 

as before.  This extended form of universal kriging is referred to as universal kriging with 

instrumental variables (UKIV). 

This dissertation implements UKIV in the case study (Chapter 5).  As described 

in Chapter 5, no simultaneity was identified based on testing using the OLS approach 

described in Section 3.3.1 and the Hausman test.  However, UKIV is retained in the 

case study as a purely theoretical development. 

 



74 
 

Chapter 4 

Case Study 

 

4.1  Study area description 

The case study area is located in eastern Africa (Figure 4-1), falling mainly in the 

East African country of Kenya and overlapping into northern Tanzania.  The geographic 

coordinates of the study area range from 34.6° to 39.1° E longitude and 3.7° S to 1.7° N 

latitude, falling in the center of the tropical belt, which ranges in latitude from the Tropic 

of Cancer in the northern hemisphere at approximately 23.4° N to the Tropic of 

Capricorn in the southern hemisphere at 23.4° S.  Although the tropics are often thought 

of as hot  and humid, due to their position near the equator and the tropical rain belt, 

  

Figure 4-1.  Location of the case study area within East Africa (CLIP region) and Africa. 

Kilometers 
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other features within the tropics (e.g., topography, continental and regional scale winds) 

influence regional climates, resulting in conditions that range from arid to humid (Stock, 

2004).   

The study area contains Mount Kenya to the northeast, and much of the Kenya 

Highlands to the west (Figure 4-2).  Elevations in this study area range from 195 to 

5,778 meters and average 1,291 meters with a standard deviation of 649 meters.  

Substantial differences in local terrain occur across the region, from Mount Kenya, the 

second highest peak in Africa, to the Great Rift Valley, which cuts through the center of 

the region and Lake Victoria, bordering the western edge of the region.  The size of the 

study area was chosen to be large enough to observe spatial variability in precipitation 

 

Figure 4-2.  Meteorological station locations and the study area boundary are shown above on a map of 
elevation (1 km).  Major topographic features in the study area are labeled. 

 

Mt. Kenya 

Mt. Kilimanjaro 

Rift Valley 

West  
Kenya 
Highland

Lake 
Victoria 
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and to allow for the evaluation of predictive variables at multiple scales.  Furthermore, 

the sample size of approximately 120 precipitation stations is adequate for statistical 

analysis. 

Equatorial East African rainfall seasonality is dominated by the “long rains” 

(March through May) and “short rains” (October through December) associated with the 

strong atmospheric convergence of the passing ITCZ (Hastenrath et al., 1993; Stock, 

2004). This seasonal pattern in rainfall is illustrated on Figure 4-3. The long rains 

“provide more rainfall than the ‘short rains’ and have a lower interannual variability” 

(Camberlin and Okoola, 2003), but the short rains’ start is more predictable.  Outside of 

the long and short rains coincident with the passing of the ITCZ (i.e., January and 

February, June through September), precipitation is typically localized convective 

rainfall or, in the highland areas, stratiform rainfall during the cooler months (Ng’ang’a, 

1992).  Thus, the spatial scale of precipitation varies from large-scale during the long 

rains and short rains to mesoscale during the drier months, driven by processes at their 

respective scales.  The months chosen for statistical analysis (i.e., January, April, 

August, and November), therefore, represent the seasons in East Africa and the 

corresponding forms of precipitation.  Furthermore, independent variables related to 

topography, such as elevation, were evaluated for predictive ability at two scales, 1 km 

and 9 km, in an effort to capture the spatial scale over which precipitation occurs at 

each season. 

Higher rainfall occurs at higher elevations in part due to cooler temperatures and 

also due to the mountains acting as barriers to moisture-bearing winds. The slopes of 

the surfaces interact with elevation (and also the direction of the moisture-bearing 
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winds) such that steeper slopes extract more precipitation.  Easterly flow from the Indian 

Ocean is the dominant source of moisture for this region, particularly during the short 

rains (Black et al., 2003). Since the relatively dry northeasterly and southeasterly 

monsoonal winds are weaker at these transition times, onshore moisture transport is 

stronger (Nicholson, 1996).  Consequently, during the dry seasons generally wetter 

conditions occur near Lake Victoria immediately west of the study area, and the Indian 

Ocean coast to the east of the study area. While Lake Victoria acts a moisture source 

for local convective rainfall in the surrounding highland areas, the coastal climate 

differentiates itself from the highland climate due to small-scale diurnal convection from 

the land/sea breeze (Camberlin and Planchon, 1997).  Blocked by the Rift Valley 

slopes, the western parts of East Africa receive moist westerly flows from the Congo 

basin.  Correspondingly, potential explanatory variables in the statistical analysis 

included elevation (1 km and 9 km resolutions), a term that combined information from 

slope and aspect (1 km and 9 km resolutions), distance from Lake Victoria and distance 

from the Indian Ocean. 

 
4.2  Data 

Monthly precipitation is the dependent variable in this analysis.  Monthly 

precipitation data (mm) from approximately 120 meteorological stations obtained from 

the Department of Meteorology, Government of Kenya were used in this analysis.  

Meteorological station locations are shown on Figure 4-2.  Meteorological stations are 

generally located in areas of higher population; therefore, areas of high elevations (i.e., 

greater than 2,500 m) and low elevations (i.e., less than 1,000 m) are not well 

represented. 
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Precipitation data for this analysis were chosen to represent the four seasons in 

equatorial East Africa (i.e., the dry season in December, January, and February, when 

the ITCA is in its southernmost position; the long rainy season in March, April, May, and 

June, when the ITCZ is overhead; the cool dry season in July and August, when the 

ITCA is in its northernmost position; and the short rainy season in September, October, 

and November, when the ITCZ is again overhead) for two different years.  The 

individual months of January, April, August, and November were chosen as the most 

representative month of each of the respective seasons (Figure 4-3). 

   

 

Figure 4-3.  Long-term average monthly precipitation (mm) from 1926 to 1998 averaged over all 
meteorological stations within the study area.  The position of the intertropical convergence 
zone (ITCZ) relative to the study area is labeled at various points in the year. 

 

Precipitation data from 1984 and 1985 were chosen since these years represent 

the overlap between years in which the largest numbers of meteorological stations were 

Jan    Feb   Mar    Apr    May   Jun    Jul    Aug    Sep   Oct    Nov   Dec

Monthly precipitation (mm) 
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measured (Figure 4-4) and the years in which remotely sensed vegetation data were 

available (beginning in July 1982).  Furthermore, the years to be evaluated were chosen 

to represent a typical year (1985) and an atypical year (1984).  Figure 4-5 illustrates 

monthly precipitation for the years 1982 through 1985 plotted with long-term monthly 

averages (dashed lines).   

 

      

Figure 4-4.  Summary of the number of meteorological stations measured by year within the 
study area.  The number of stations measured decreases after 1985 and continues to rapidly 
decline through 2007.  This decline is probably due to a combination changes in monitoring 
locations or, more likely, lack of access to more recent meteorological station data due to 
financial restrictions. 

 

The year 1985 appears to be closest to the long-term average.  The differences 

between monthly averages for each month and the long term averages were quantified 

by calculating average squared differences for each year as the sum of the differences 

squared for that year divided by n (12).  This value was lowest for 1985 (51.8).  The 

average sum of squared differences was highest for 1984 (288.4), with the largest  
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Figure 4-5.  Monthly precipitation for the years 1980 through 1985 plotted with long-term 
monthly averages (dashed lines).  The average sum of squared differences was lowest for 1985 
(51.8).  The average sum of squared differences was highest for 1984 (288.4), with the largest 
numbers of months falling below the long-term average.  Precipitation amounts in 1984 are 
lower than average for most of the year. 
 

numbers of months falling below the long-term average. 

Independent variables included two distance measures:  minimum distance of 

each meteorological station from the Indian Ocean coastline and distance of each 

station from the centroid of Lake Victoria.  Since precipitation was not linearly related to 

either of these distance measures, dummy variables for each measure were established 

to represent “distance bands,” within which precipitation levels were similar.  Distance 

bands of 0 to 300 km, 300 to 450 km, 450 to 600 km, and greater than 600 km were 

created as a measure for distance to Lake Victoria.  Distance bands of 0 to 500 km and 

greater than 500 km were used to represent distance to the Indian Ocean.  All distance 

bands were chosen based on inspection of precipitation versus distance plots; the cutoff 

1980 1981 1982 

1983 1984 1985 

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D

Year shown                1926 - 1998 



81 
 

distances were generally observed to be indicative of a change in the relationship 

between precipitation and distance from water body. 

Other independent variables were a vegetation index, elevation, and derivatives 

of elevation (measures of the degree to which a slope faces north and east, and the 

curvature of the slope) at scales of 1 km and 9 km.  The scale of 9 km was chosen to 

evaluate the scale over which convective rainfall occurs.  Furthermore, this scale is 

consistent with the findings of Hession and Moore (2010) and Sharples et al. (2005); 

Sharples et al. (2005) identify an optimal topographic scale of dependence of around 6-

8 km.  Sharples et al. also indicate that for scales of over 30 km, analyses incorporating 

elevation yield results similar to analyses based on longitude and latitude alone. 

Elevation at each station location was estimated using the SRTM 30 arc second 

Digital Elevation Model (DEM) raster, shown on Figure 4-2.  At locations near the 

equator, 30 arc seconds is close to 1 km resolution.  Average elevation at a 9 km 

resolution was calculated for each raster cell using the nine cells centered on that cell 

and the FOCALMEAN function in ArcGIS (ESRI, 2006).  Elevation data within a large 

buffer surrounding the study area were included to avoid edge effects or biased results 

within the study area.   

The eastern and northern components of the unit normal vector were used to 

represent the effects of aspect and slope on precipitation (Hutchinson 1998b).  These 

components were calculated at both scales (1 km and 9 km) as follows: 

 

p = cos(α) sin(θ) 

q = sin(α) sin(θ) 
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where α is the angle of aspect in degrees and θ is the angle of the slope in degrees.  

The values of p and q represent aspect scaled by the steepness of the slope.  That is, 

these values are largest in magnitude on the steepest slopes and approach zero in flat 

areas.  In addition, curvature was calculated in ArcGIS (ESRI, 2006) at the scales of 1 

km and 9 km to evaluate whether curvature has an impact on precipitation patterns. 

Vegetation was represented by one of the first vegetation indices created, the 

normalized difference vegetation index (NDVI; Rouse et al 1974). NDVI is a ratio 

between (Near infrared - Red) and (Near infrared + Red). Absorption patterns between 

the red (0.55-0.68 μm) and near infrared (0.73-1.1 μm) portions of the spectrum provide 

an indicator of vegetation amount and vigor. The ratio is sensitive to the difference 

between near infrared and red, with increasing chlorophyll concentration and green leaf 

vegetation density increasing NDVI value. Theoretically, NDVI ranges between -1 and 

+1, although values typically range between 0 for bare ground to 0.7 for lush dense 

vegetation.  NDVI data were obtained from the Global Inventory Modeling and Mapping 

Studies (GIMMS) dataset, a record of bimonthly NDVI beginning in July 1982.  Average 

monthly NDVI data was calculated from the two bimonthly measurements in each 

month.  A one-month lag was chosen as an optimal lag time to identify correlations 

between precipitation and vegetation (Brunsell, 2006; Richard and Poccard, 1998; 

Wang et al.,2003).   

For the purpose of prediction using universal kriging with instrumental variables, 

one independent variable expected to influence NDVI but not used to predict 

precipitation patters was chosen.  This variable was a measurement of soil pH, 

specifically the pH in the water found in the interstitial spaces of the soil.  These data 
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were obtained from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-

CAS/JRC 2009), developed in a collaborative effort between the Food and Agriculture 

Organization of the United Nations (FAO), the International Institute for Applied Systems 

Analysis (IIASA), the ISRIC-World Soil Information, the Institute of Soil Science – 

Chinese Academy of Sciences (ISSCAS), and the Joint Research Centre of the 

European Commission (JRC). 

Data for each of the independent variables were extracted from the grid cells 

overlapping meteorological station locations and combined with precipitation data at 

each respective station using the Intersect Point Tool in Hawth’s Analysis Tools (Beyer, 

2002), an add on to ArcGIS.  Table 4-1 summarizes the independent variables 

considered in the statistical analyses. 

For comparison to results presented herein, the CRU TS 3.0 data generated by 

the Climatic Research Unit of the University of East Anglia (CRU) were obtained.  The 

CRU TS 3.0 is a recent global data set, representing the years 1901 to 2006, based on 

the methodology developed for CRU TS 2.1 (Mitchell and Jones 2005).  The CRU TS 

2.1 data were generated by interpolating climate data onto a regular 0.5 degree grid 

following New et al (2000). The CRU TS 3.0 data were combined with the remaining 

data by extracting from the 0.5 degree grid to sampled locations, as described above. 

 
4.3  Methods 

Four methods were used to generate estimated precipitation surfaces for the 

case study area: local ordinary kriging (LOK), universal kriging (UK), a newly developed 

extension to universal kriging that incorporates simultaneity between precipitation and 

vegetation using an instrumental variable approach (UKIV), and spatial regression 



84 
 

modeling (SpReg).   Each of these methods is described in detail in Chapter 3.  LOK 

was selected as the only univariate method for estimating precipitation (i.e., only 

precipitation data were utilized in the analysis).  The remaining methods are all 

multivariate, and incorporate data from independent variables that are correlated with 

precipitation in an effort to improve predictions at unsampled locations.  For the 

multivariate methods, initial model selection was conducted using ordinary least 

squares (OLS) regression.  The independent variables identified as predictors for 

precipitation in the selected months were then incorporated in the multivariate kriging 

analyses as well as the spatial regression analyses.  The spatial regression techniques 

were also used for the purpose of hypothesis testing (Chapter 5) in a demonstration of 

their “added value”: spatial regression techniques are useful not only for prediction at 

unsampled locations, but may also be used to improve understanding and test for 

significant predictors of the spatial distribution of precipitation. 
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Table 4-1.  Summary of independent variables used in OLS regression analysis.  
Abbreviated names are shown as well. 

 

Independent  Abbreviated 

Variable  Scale  Name  Notes 

Distance to Lake Victoria (km)  dist2lv 

d2lv300 
= 1 if dist2lv <= 300 km,  
    0 otherwise 

d2lv450 
= 1 if dist2lv > 300 and <= 450 km,  
   0 otherwise 

d2lv600 
= 1 if dist2lv > 450 and <= 600 km,  
    0 otherwise 

if all 3 indicator variables are 0, then 
dist2lv > 600 km 

Distance to Indian Ocean (km)  dist2coast 

d2c500 
= 1 if dist2coast <= 500 km,  
    0 otherwise 

Elevation (m)  1 km  dem1km 

9 km  dem9km 
Combined measure of apsect 
and slope: measure of 
"northness"  1 km  p1km 

p = cos(α) sin(θ), where α is aspect 
angle and θ is slope angle  

(unitless)  9 km  p9km  p = cos(α) sin(θ) 
Combined measure of apsect 
and slope: measure of 
"eastness"  1 km  q1km  q = sin(α) sin(θ) 

(unitless)  9 km  q9km  q = sin(α) sin(θ) 

Surface curvature  1 km  curv1km 

(profile; unitless)  9 km  curv9km 

NDVI  8 km  ndvi842  Average NDVI for February 1984 

(unitless)  8 km  ndvi845  Average NDVI for May 1984 

8 km  ndvi849  Average NDVI for September 1984 

8 km  ndvi8412  Average NDVI for December 1984 

8 km  ndvi852  Average NDVI for February 1985 

8 km  ndvi855  Average NDVI for May 1985 

8 km  ndvi859  Average NDVI for September 1985 

8 km  ndvi8512  Average NDVI for December 1985 
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4.3.1  Model selection 

Monthly precipitation data for four months (January, April, August, and 

December) in 1984 and 1985 were evaluated in eight independent analyses over space.  

Initial model selection was performed using OLS regression.  Although automated 

selection procedures such as stepwise regression are commonly used in model 

selection, recent studies have identified many pitfalls in these approaches such as 

model misspecification and inaccurate results due to multicollinearity and confounding 

between independent variables.  An alternative approach for developing and evaluating 

a set of candidate models described by Burnham and Anderson (1998) was used.  

Central to this approach is abandoning the use of automated variable selection methods 

in favor of careful a priori specification of candidate models (hypotheses) of particular 

interest.  A number of candidate models were then compared directly and ranked based 

on an information theoretic criterion, the Akaike Information Criterion (AIC; Akaike, 

1974).   This approach, therefore, provided a means to rank the relative strength of 

models leading to an understanding of their predictive power and uncertainties.  

Importantly, this methodology is not susceptible to the instabilities of variable selection 

procedures previously mentioned.   

Development of statistical models in this way requires careful thought and 

engagement between discipline experts and statisticians.  Variables identified as 

possible predictors of spatial patterns in precipitation were selected in collaboration with 

experts in East African climatology and vegetative land cover, then tested in several 

regression model formulations. 
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As shown on Table 4-2, precipitation amounts for each month were evaluated 

using four OLS regression model formulations, or candidate models.   The candidate 

models were developed to include the following sets of independent variables:  (1) 

average monthly NDVI for the subsequent month, the elevation term and its derivatives 

(i.e., dem, p, q, and curv) at a 1 km scale, each indicator variable representing distance 

to Lake Victoria and distance to the Indian Ocean; (2) average monthly NDVI for the 

subsequent month, the elevation term and its derivatives (i.e., dem, p, q, and curv) at a 

9 km scale, each indicator variable representing distance to Lake Victoria and distance 

to the Indian Ocean; (3) average monthly NDVI for the subsequent month, the elevation 

term and its derivatives (i.e., dem, p, q, and curv) at a 1 km scale, each indicator 

variable representing distance to Lake Victoria and distance to the Indian Ocean and 

interaction terms between distance to Lake Victoria (dist2lv) and the first two indicator 

variables (i.e., d2lv300 and d2lv450); and (4) average monthly NDVI for the subsequent 

month, each elevation term (dem, p, q, and curv) at a 9 km scale, each indicator 

variable representing distance to Lake Victoria and distance to the Indian Ocean and 

distance to the Indian Ocean and interaction terms between dist2lv and the first two 

indicator variables (i.e., d2lv300 and d2lv450). 

The AIC value is shown for each model formulation on Table 4-2.  Lower AIC 

values indicate better model fits.  Each model is ranked based on AIC values; models 

with a ranking of 1 were selected for subsequent use in each multivariate prediction 

technique.  Final models are summarized in Appendix 1. 

Monthly precipitation values were transformed to normality using a normal score 

transformation (Perttunen and Stuckman, 1990; Wu et al., 2006) prior to developing the 



88 
 

candidate models above.  Transformations of the dependent variable are commonly 

used in regression modeling to stabilize variance and improve normality (Gibbons, 

1994; Hutchinson, 1998a; Hutchinson, 1998b; Neter et al., 1990; Schabenberger and 

Gotway, 2005; Sharples et al., 2005), particularly for variables that exhibit asymmetrical 

distributions, such as precipitation.  Precipitation data are more often right-skewed in 

distribution since the range of possible values is restricted by a lower bound of zero.  

This issue may be exacerbated during dry months, when precipitation amounts are 

lower and more often equal to zero.  

The normal score transformation is a monotonic transformation that replaces the 

observed value with a “typical” value from the standard normal distribution that 

corresponds to the same order statistic, or ranked value.  Thus, the normal score 

transform ensures that the assumptions of normality and equal variances are met 

(Perttunen and Stuckman, 1990).  Back-transformation of the results, allowing for 

interpretation in the original data scale, is relatively straightforward (Wu et al., 2006).   

The normal score transformation was completed using an R function (Shortridge 

2010), modified to allow for right skewed distributions such as precipitation.  In 

summary, this R function (and the normal score transform used for this application) 

calculates normal scores for a vector of values such as precipitation at multiple 

locations.  First, the order statistics for the vector of values are determined 
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Table 4-2.  Summary of OLS regression models ranked by AIC.     

Model 
Dep. 

Variable Independent Variables AIC Rank 
1 Jan 84 

Precip  
Nscores 

ndvi842, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

293.9 (4) 

2 Jan 84 
Precip  

Nscores 

ndvi842, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

292.6 (3) 

3 Jan 84 
Precip 

Nscores 

ndvi842, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

291.4 (2) 

4 Jan 84 
Precip 

Nscores 

ndvi842, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

288.4 (1) 

1 Apr 84 
Precip 

Nscores 

ndvi845, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

291.3 (3) 

2 Apr 84 
Precip 

Nscores 

ndvi845, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

282.0 (1) 

3 Apr 84 
Precip 

Nscores 

ndvi845, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

294.0 (4) 

4 Apr 84 
Precip 

Nscores 

ndvi845, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

284.3 (2) 

1 Aug 84 
Precip 

Nscores 

ndvi849, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

229.1 (4) 

2 Aug 84 
Precip 

Nscores 

ndvi849, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

228.9 (3) 

3 Aug 84 
Precip 

Nscores 

ndvi849, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

223.7 (1) 

4 Aug 84 
Precip 

Nscores 

ndvi849, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

224.3 (2) 

1 Nov 84 
Precip 

Nscores 

ndvi8412, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

277.2 (2) 

2 Nov 84 
Precip 

Nscores 

ndvi8412, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

273.5 (1) 

3 Nov 84 
Precip 

Nscores 

ndvi8412, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

281.2 (4) 

4 Nov 84 
Precip 

Nscores 

ndvi8412, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

277.4 (3) 
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Table 4-2 (continued).  Summary of OLS regression models ranked by AIC.   
1 Jan 85 Precip 

Nscores 
ndvi852, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500 

288.4 (2) 

2 Jan 85 Precip 
Nscores 

ndvi852, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500 

296.6 (4) 

3 Jan 85 Precip 
Nscores 

ndvi852, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

279.8 (1) 

4 Jan 85 Precip 
Nscores 

ndvi852, dem9km, p9km, q9km, curv9km,d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

291.0 (3) 

1 Apr 85 Precip 
Nscores 

ndvi855, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500 

311.7 (1) 

2 Apr 85 Precip 
Nscores 

ndvi855, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500 

315.5 (3) 

3 Apr 85 Precip 
Nscores 

ndvi855, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

312.6 (2) 

4 Apr 85 Precip 
Nscores 

ndvi855, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

317.1 (4) 

1 Aug 85 Precip 
Nscores 

ndvi859, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500 

218.9 (3) 

2 Aug 85 Precip 
Nscores 

ndvi859, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500 

214.7 (1) 

3 Aug 85 Precip 
Nscores 

ndvi859, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

220.7 (4) 

4 Aug 85 Precip 
Nscores 

ndvi859, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

216.6 (2) 

1 Nov 85 Precip 
Nscores 

ndvi8512, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

268.2 (3) 

2 Nov 85 Precip 
Nscores 

ndvi8512, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

264.4 (1) 

3 Nov 85 Precip 
Nscores 

ndvi8512, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

271.5 (4) 

4 Nov 85 Precip 
Nscores 

ndvi8512, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

268.0 (2) 

Differences of less than 3 between AIC values are not considered 
significant. 
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 (i.e., the data are sorted and ranked from smallest to largest).  The normal score for 

each observation is then found as the “typical” value of the kth smallest number from a 

standard normal distribution (i.e., a normal distribution with a mean of zero and a 

standard deviation of one) (Perttunen and Stuckman, 1990).  Results are back-

transformed to the original data scale by linear interpolation between data.  Values 

above the highest observed datum are extrapolated:  (1) the mean of the original data is 

calculated and values above the mean identified, (2) the standard deviation of those 

values is calculated, (e) if the mean score plus the score of the maximum value 

multiplied by the standard deviation calculated in step 2 is less extreme than the actual 

maximum, the actual maximum is used instead.  No extrapolation was completed for 

low values since the lower end of the output distribution was constrained to zero. 

 

4.3.2  Consideration of other candidate OLS models 

Many other models were considered prior to selecting the candidate models 

summarized in Table 4-2.  For example, models using the continuous distance 

measures (dist2lv and dist2coast) were developed; however, AIC values were 

consistently higher (worse) for these models.  In addition, inconsistent results were 

obtained due to multicollinearity between the continuous distance measures and other 

variables such as NDVI. 

Elevation cutoffs were developed to allow for potentially non-linear relationships 

between precipitation and elevation and to account for the relatively small number of 

precipitation stations at higher and lower elevations.  Cutoffs of 1,000 meters and 2,500 

meters were used.  These variables were not significant in various modeling attempts 
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due, in large part, to the significance of the distance “bands” that were developed which 

also indirectly stratified rain stations by elevation. 

In addition, models were attempted without transforming the monthly precipitation 

data.  These models consistently yielded large numbers of negative predicted values for 

precipitation and diagnostic plots that confirmed the presence of heteroskedasticity (i.e., 

unequal variances) and non-normal residuals, thus violating the underlying assumptions 

of the regression techniques being used. 

 

4.3.3  Prediction of spatial patterns in monthly precipitation 

The following four methods were used to estimate precipitation surfaces for 

precipitation in the months of January, April, August, and December, in 1984 and 1985:   

 Local ordinary kriging with nine nearest neighbors 

 Universal kriging 

 Universal kriging with an instrumental variable 

 Spatial regression (weights matrices developed using nine nearest 

neighbors) 

Local ordinary kriging and spatial regression both require specification of the 

number of nearest neighbors to be incorporated in the analysis.  A weighting scheme 

incorporating nine nearest neighbors was selected, consistent with the work of New et 

al (2000) and Piper and Stewart (1996).  New et al (2000) used eight nearest neighbors 

to interpolate climate data anomalies for mapping purposes.  Piper and Stewart (1996) 

used between five and ten neighboring stations to interpolate climate data. 
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Universal kriging with instrumental variables requires calculation of an instrument 

for NDVI, the variable that is believed to be simultaneously related with precipitation.  In 

other words, a feedback simultaneity is believed to exist between precipitation and 

vegetation (NDVI).  An instrument representing NDVI, to be used in place of NDVI in the 

UKIV analysis, was calculated using OLS regression, with the following independent 

variables:  the soil pH variable described in Section 4.2, Data, and a subset of 

independent variables also used in the prediction of precipitation patterns, i.e., distance 

to Lake Victoria, distance to the Indian Ocean coast, and elevation at a resolution of 9 

km.  Universal kriging with instrumental variables (UKIV) was included in the case study 

as a purely theoretical development, however, since formal testing for simultaneity 

between precipitation and the 1 month-lagged vegetation measure (NDVI) did not 

identify simultaneity for any month in 1985, the year selected to represent a typical 

precipitation year in East Africa.  Formal testing was completed using the Hausman test 

(Hausman 1978).   

Maps for estimated precipitation in April 1985 are shown on Figure 4-6.  The 

remaining maps are provided in Appendix 1.  Table 4-3 provides a summary of 

predicted values generated by each method.  For comparison purposes, a summary of 

CRU TS 3.0 data is also provided on Table 4-3. 

Predicted precipitation patterns are similar in all four maps in April 1985 (Figure 

4-4), the first wet season of the year in the study area.  The ITCZ is positioned directly 

overhead the study area during this month.  Peak estimated rains for the month 

(approximately 600 mm) are depicted over Mount Kilimanjaro and, in particular, Mount 

Kenya.  Drier regions (< 50 mm) appear along the eastern side of the study area, and 
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dry regions also appear generally north/northwest of Mount Kenya, and southwest of 

Mount Kenya.  The LOK map illustrates streak- like features jetting out from the central 

portion of the study area where rain stations are located; this is an effect of the 

extrapolation tendencies of LOK and nearest neighbor configuration.   

The effects of the distance bands, which were significant for all three cutoffs (i.e., 

300 km, 450 km, and 600 km from Lake Victoria), are evident in the maps created using 

universal kriging, universal kriging with simultaneity, and spatial regression.  The 

distance bands allowed for decreasing precipitation at locations further from Lake 

Victoria in a stepwise fashion.  It was hoped that the continuous distance measure 

would result in a smoother surface; however, distance bands were necessary due to the 

complicated, non-linear relationship between distance from Lake Victoria and amount of 

precipitation and the confounding between the continuous distance measure and other 

independent variables (e.g., elevation and NDVI).  In addition, elevation at a resolution 

of 1 km was a significant predictor of April 1985 precipitation, which is evident in the 

increased rainfall amounts occurring at higher elevations (e.g., Mount Kenya, Mount 

Kilimanjaro, and the highlands of western Kenya).  Figure 4-7 shows a map derived 

using universal kriging but excluding the dummy variables used to create the distance 

band; no “bulls-eye” effect is evident, demonstrating that this effect is due to the use of 

the distance bands. 
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Table 4-3.  Summary of predicted precipitation amounts for each prediction method. 
 

 

 

 
  

Month Method Min. 1st Qu. Median Mean 3rd Qu. Max.
Jan-84 Observed 0 1.45 7.8 20.2 31.8 129.8

OK 0.8118 7.268 15.89 20.7 30.06 74.45
UK 0 0 0 8.464 3.818 143.3

UKIV 0 0 1.156 9.487 4.1 149.8
SpReg 0 0 0 9.587 3.5 158.5
CRU 2.82 6.69 8.49 9.518 11.58 19.49

Apr-84 Observed 3 67.4 96.7 138.2 199 821.1
OK 5.936 69.34 119.8 130.2 181 728.4
UK 3 37.31 57.35 64.69 75.31 821.1

UKIV 3 44.65 67.57 79.56 86.43 821.1
SpReg 3 58.46 71.46 70.12 86.59 821.1
CRU 9.87 16.51 19.77 20.28 22.54 43.53

Aug-84 Observed 0 2.613 20.81 54.3 78.34 283.7
OK 0.117 4.475 13.05 25.36 26.06 226.5
UK 0 0 0 17.23 10.87 283.7

UKIV 0 0 0 11.18 5.86 283.7
SpReg 0 0 0 17.74 14.02 283.7
CRU 0.2 3.1 5.99 7.256 12.55 16.44

Nov-84 Observed 0 87.45 131 170.4 202.3 767.2
OK 49.8 99.63 162.8 183.4 245.9 529
UK 0 55.5 87.28 88.27 116.2 767.2

UKIV 0 55.5 82.15 84.96 108.6 767.2
SpReg 0 73.02 95.24 94.19 119.2 767.2
CRU 0.29 1.017 1.85 2.477 3.71 8.6

Jan-85 Observed 0 3.7 13.3 27.55 44.37 147.3
OK 1.262 10.68 15.72 18.01 19.78 86.83
UK 0 1.411 4.5 8.378 10.02 147.3

UKIV 0 3.403 5.011 9.124 11.3 147.3
SpReg 0 3.035 4.902 8.857 10.41 147.3
CRU 0.43 1.03 1.385 2.17 2.89 11.79
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Table 4-3 (continued).  Summary of predicted precipitation amounts for each prediction 
method. 
 

 

 

Month Method Min. 1st Qu. Median Mean 3rd Qu. Max.
Apr-85 Observed 3.2 175.4 258.9 251.9 335.8 543

OK 12.79 147.3 187.5 191.9 233.5 455.4
UK 3.2 55.15 175 157.1 241.2 543

UKIV 3.2 87.16 196.1 195.3 267.3 543
SpReg 3.2 149.8 189.7 170.9 221.9 543
CRU 3.82 8.385 10.81 13.26 15 56.31

Aug-85 Observed 0 2.71 29.03 63.14 109.1 246.1
OK 0.1317 7.015 20.24 38.65 62.5 189.2
UK 0 2.02 4.764 28.68 37.18 246.1

UKIV 0 5.2 10.8 39.21 72.73 246.1
SpReg 0 2.566 5.613 22.17 25.44 246.1
CRU 0 2.91 11.3 8.353 11.69 14.68

Nov-85 Observed 21.3 67.45 102.1 121.1 140.9 561.1
OK 28.23 87.27 112.4 118.9 144.1 426.9
UK 21.3 45.29 63 70.33 91.12 561.1

UKIV 21.3 49.29 76.03 76.5 94.53 561.1
SpReg 21.3 44.82 61.55 63.61 82.81 561.1
CRU 4.21 7.08 8.96 14.47 21.05 44.6

Note:  UK, UKIV, and SpReg all used normal score transformations of average

              monthly precipitation values.  Values were transformed back to the

              original scale using a back transform function.
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Figure 4-6. Precipitation maps for April 1985 generated using LOK (top left), UK (top 
right), UKIV (bottom left), and regression techniques (either ordinary least squares or 
spatial lag models, as indicated; bottom right). 
 
  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression   Universal Kriging with IV
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Figure 4-7. Precipitation map for April 1985 generated using UK without distance bands. 
 

 

Estimated precipitation maps for all of the months evaluated in this dissertation 

are provided in Appendix 1.  Based on these maps, the following observations were 

made. 

January is the month during which the ITCZ is at its most extreme southerly 

position; consequently, it is a dry month near the equator.  All four of the January 1984 

precipitation maps show the highest levels of precipitation on the western edge of the 

study area, nearest Lake Victoria.  Peaks shown in the eastern central and southern 

portions of the OK map, corresponding with high elevation locations (i.e., Mount Kenya 

and Mount Kilimanjaro), are also evident on the UK map.  These spatial patterns in 

precipitation are consistent with the expectation that rains occurring in the dry seasons 

are mainly localized convective rainfall near Lake Victoria or stratiform rainfall in the 

highland areas (Ng’ang’a 1992).  Maps for UK, UKIV, and OLS regression (Figure 1, 

Universal Kriging 
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Appendix 1) appear very similar.  These three models were all based on the same OLS 

model which incorporated categories for distance from Lake Victoria with interaction 

terms for the < 300 km and 300 to 450 km categories.  The scales for these maps are 

also similar, extending to approximately 150 mm. 

The range of precipitation amounts is much higher in April 1984, extending to 

728 mm in the OK map, and to approximately 820 mm in the remaining maps.  This is 

expected since the ITCZ is directly over the study area at this time of year.  The OK 

map also depicts precipitation across the study area, although in the remaining maps it 

appears that the rainfall is concentrated mostly in the west, near Lake Victoria.  This is 

partly the result of the categorization scheme used in these map scales, since the 

lowest category extends to approximately 55 mm.  The OK map shows a strong peak at 

the location of Mount Kilimanjaro.  This peak also occurs on the UK and UKIV maps.   

Precipitation maps for August 1984 once again show a generally lower range of 

precipitation amounts, ranging up to 280 mm.  The ITCZ is at its northernmost position 

in August, causing the second dry season of the year in the study area.  Similar to 

January 1984, higher levels of precipitation in August 1984 occur mainly in the western 

portion of the study area near Lake Victoria and in the Western Highlands.  Higher 

precipitation levels are also seen over the peaks of Mounts Kenya and Kilimanjaro.  The 

rings shown in the UK, UKIV, and OLS regression maps illustrate the interaction 

between elevation effects within distance band nearest Lake Victoria.  The second 

distance band, from 300 to 450 km from Lake Victoria, illustrates the effect of location 

within that band, which is decreased precipitation.  A decreasing trend with elevation is 

evident within the second distance band.  The overall spatial pattern of precipitation in 
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August 1984 is also consistent with the expectation that dry season rains are mainly 

localized convective rainfall near Lake Victoria or stratiform rainfall in the highland areas 

(Ng’ang’a 1992).  

In November 1984, the ITCZ is over the study area again, providing the second 

rainy season, also known as the “short rainy season” in the region.  Precipitation 

amounts range up to approximately 770 mm in the UK, UKIV, and spatial regression 

maps, and up to 530 mm in the OK map.  Precipitation is generally present in elevated 

amounts across the study region, with the highest amounts in the eastern central 

portion of the area.  The spatial patterns in the November 1984 precipitation maps, 

illustrating more widespread areas of higher precipitation, are consistent with the larger-

scale effects of the passing ITCZ.  The map based on spatial regression appears 

somewhat smoother than the kriging-based maps. 

The precipitation maps for January 1985 appear similar to the January and 

August 1984 maps than the January 1984 maps; the range of precipitation is closer to 

that of January 1984 (i.e., maximum predicted rainfall amounts reach approximately 150 

mm).  As it has been shown, precipitation is predominantly in the western portions of the 

study area in the dry seasons, consistent with the mesoscale effects of Lake Victoria 

and of increased elevation.  Although not observed in January 1985, the interaction 

between the distance to Lake Victoria terms in the multivariate models and elevation are 

evident, similar to August 1984. 

Similar to April 1984, precipitation maps for April 1985 depict the higher rainfall 

levels that occur during the long rainy season ranging up to approximately 550 mm.  

Increased levels of rainfall are evident throughout most of the study area, consistent 
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with the large-scale effects of the passing of the ITCZ.  The highest levels of rainfall are 

observed over Mounts Kenya and Kilimanjaro; this pattern is most evident in the OK, 

UK, and UKIV maps.  The spatial regression map appears smoother in spatial 

distribution than the kriging-based maps, with less differentiation between areas of peak 

rainfall and areas of lower rainfall amounts. 

Precipitation amounts predicted for August 1985 are similar in spatial 

distribution.  All four maps depict higher rainfall levels in the northwest of the study 

region, ranging up to approximately 250 mm.  All three of the multivariate prediction 

methods (UK, UKIV, and spatial regression) show more detail in the central and south 

central portions of the study area, where precipitation amounts appear higher than in 

the OK map.  These spatial patterns in precipitation are consistent with the mesoscale 

effects of Lake Victoria and of higher elevations expected during the dry seasons in 

East Africa.  The streaking features common in maps generated by LOK are clearly 

present. 

November 1985 precipitation patterns are similar in distribution to the November 

1984 rainfall amounts, although generally lower overall.  Although 1985 was observed 

to be a more typical year, 1984 was atypical in that rainfall amounts were lower than 

usual in the early part of the year and higher than most years in the later part of the 

year.  Precipitation amounts range to approximately 430 mm (LOK map) to 

approximately 560 mm (UK, UKIV, and OLS regression maps).  The highest 

precipitation amounts are shown in the southeastern portion of the study area over 

Mount Kilimanjaro, extending northward towards Mount Kenya.  The effect of Lake 

Victoria is also evident in all four maps. 
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The bimodal nature of precipitation throughout the year along the equator in East 

Africa is also evident in Table 4-3, which provides a summary of predicted precipitation 

amounts by prediction method.  Summary statistics of predicted precipitation amounts 

for all four prediction methods illustrate two wet seasons and two dry seasons each 

year.  There is a tendency of the multivariate methods (i.e., UK, UKIV, and regression 

methods) to predict larger proportions of zeroes, particularly in the dry months and 

higher maximum predictions, resulting in more highly right-skewed rainfall amounts.  

LOK generally yields a smaller range of precipitation amounts: the lower percentiles are 

generally higher for LOK, and the maximum values are lower. 

CRU precipitation estimates are consistently lower than estimates generated 

herein (Table 4-3).  This is expected since global data sets are often too smooth and do 

not reflect the more extreme values.  In some months, CRU results correspond to lower 

percentiles of the distribution more closely (e.g., January 1984, April 1984, August 

1984, January 1985, and August 1985).  Months with particularly low CRU values 

include April and November of 1984, and April and November of 1985, representing the 

wet seasons in the study area.  It appears that the CRU data greatly underestimate 

precipitation in wet East African seasons. 

 
4.3.4  Comparison and evaluation of map accuracy 

Accuracy of the precipitation maps was evaluated by comparing root mean 

square errors (RMSEs) for each the four maps generated at each time interval.  RMSEs 

are summarized in Table 4-4.   
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Table 4-4.  Comparison of root mean squared errors 
 

OK UK UKIV Sp. Reg. CRU
Month rmse rmse rmse rmse rmse

Jan-84 20.162 24.368 20.840 20.529 26.461
Apr-84 74.707 166.342 99.637 103.903 161.403
Aug-84 34.903 82.620 39.360 38.558 79.831
Nov-84 101.027 175.267 122.138 119.139 212.218
Jan-85 23.669 37.768 26.888 24.781 40.682
Apr-85 89.125 270.690 90.644 96.990 267.046
Aug-85 34.798 89.018 39.504 35.705 84.766
Nov-85 73.881 130.970 72.749 67.992 130.234  

 

Root mean square errors are generally lowest for LOK, the univariate method of 

estimation.  Spatial regression provided the lowest RMSE for November 1985 

precipitation estimates.  In general, RMSE values are closest in dry seasons, 

particularly January 1984, January 1985, August 1985.  Spatial regression yielded lower 

RMSEs than either UK method in four of the eight months.   

RMSE values are consistently the highest for the CRU data, particularly during 

the wet seasons.  In some cases, the CRU RMSE is twice as high as the others, 

indicating the high amount of error from corresponding observations collected at 

meteorological stations in the study area. 

Since RMSEs represent overall map accuracy with a single number, precipitation 

map accuracy was also evaluated using maps of standardized residuals to evaluate for 

spatial patterns in error terms.  Large positive residuals (i.e., zscore > 2) are indicated 

with red dots and large negative residuals (i.e., zscore < -2) are shown with blue dots.  

A map of standardized residuals is shown in Figure 4-7 for April 1985.  
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In April 1985, two areas of significant residuals are generally evident: in the 

northwest of the study area in the western Kenya highlands, and in the center of the 

study area near Mount Kenya.  In most cases, both high and low significant residuals 

are observed in the western Kenya highlands, indicating that there is a large amount of 

variability in precipitation in this region.  This may be due, in part, to the highly variable 

topography in the area.  The UK model underestimated precipitation in a few locations 

in the center of the study area, while the SpReg model overestimated precipitation in 

this region.  The UKIV model has the fewest significant standardized residuals, 

indicating a generally improved model fit.  The RMSE for the UKIV model (29.79) is very 

close to the smallest RMSE (29.71) achieved by the OK model. 

Standardized residual maps for all of the months evaluated in this dissertation 

are provided in Appendix 1.  Based on these maps, the following observations were 

made. 

Patterns of significantly high or low residuals are somewhat similar across 

prediction methods and months being evaluated.  In January 1984, several significant 

negative residuals are shown for the OLS method.  A cluster of low residuals is present 

in the northwest of the maps for all four methods, although a high residual is shown very 

near to at least one low residual in all cases, indicating highly variable rainfall amounts 

in the region.  Large positive residuals are indicative of the model underestimating 

actual precipitation; large negative residuals occur when the model overestimates actual 

precipitation. 
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Figure 4-8.  Maps of Significant Cross Validation residuals (|z-score|>2) in April 1985 for 
LOK (top left), UK (top right), UKIV (bottom left), and regression residuals (for 
regression model; bottom right).  Significantly high residuals are shown in red, and 
significantly low residuals are shown in blue. 

 

Significant residuals are present in the central/eastern regions of the study area 

in April 1984.  UK residuals depict a cluster of high residuals east of Mount Kenya, and 

another cluster of high residuals in northern Tanzania, indicating that the UK model 

overestimated precipitation in these locations. 

Ordinary Kriging (nn=9) Universal Kriging 

 
Spatial Regression   Universal Kriging with IV
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In general, there are more significantly low residuals than high residuals in 

August 1984.  UK and UKIV residual maps show four significantly low residuals in the 

center of the study region; however, in most cases they are surrounded by non-

significant residuals.  Another area in which significant residuals is present is the in 

along the western edge of the study area.  Both positive and negative residuals appear 

in this region, indicating high amounts of rainfall variability over space. 

UK and UKIV residual patterns are similar to each other in November 1984, with 

negative residuals in the center of the study area (indicating that the models 

overestimate in these locations) and positive residuals present in the northwest and 

southeast, where the model underestimates precipitation.  Significant residuals extend 

to the northwest and southeast regions of the study area.  Significant residuals are 

mainly negative on the LOK and SpReg maps, indicating that the models generally 

overestimate precipitation in these areas. 

There are fewer significant residuals in January 1985 than in January 1984.  

LOK predicted values significantly underestimate actual precipitation amounts in several 

locations.  UK and UKIV maps illustrate a general scattering of significant positive and 

negative residuals, with the negative residuals falling in more central areas.   

In August 1985, negative residuals are shown generally in the center of the 

study region, with the exception of LOK, for which two high residuals are shown in the 

central study area.  This indicates that UK, UKIV, and SpReg overestimate precipitation 

at a cluster of locations in the center of the study region, while LOK is more likely to 

underestimate precipitation is this region. 
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In November 1985, there are generally more negative than positive residuals; 

however, in this month the positive residuals are generally interspersed with the 

negative residuals in the central portion of the study area, indicating higher precipitation 

variability in November 1985. 

Maps of CRU residuals for 1985 (the “typical” year) were also plotted to evaluate 

for spatial patterns in the residuals (Figure 4-8).  From these plots, it can be seen that 

there are large numbers of significantly high residuals (|standardized residual or zscore| 

> 2), generally in clusters.  High residuals indicate locations where the CRU modeled 

values significantly underestimate precipitation observed at the corresponding 

meteorological station.  Again, this is expected due to the overly-smoothed nature of 

global climate model estimates of climatic variables.  The significant residuals are 

generally clustered, in large part, because the global model estimates do not take into 

account local features that influence precipitation on a local scale, such as topography 

and surface water bodies.  Because these features are correlated over space, error 

terms would also be expected to be correlated over space. 
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Figure 4-9.  Maps of CRU residuals in 1985.  Significantly high residuals (zscore > 2) 
are shown in red, and significantly low residuals (zscore < -2) are shown in blue.  
 

In identifying an optimal model, LOK performed the best on the basis of minimum 

RMSE, a single map-wide measure.  This is result is consistent with the findings of 

Goovaerts (1999a, 2000), in which a local form of simple kriging (simple kriging with 

varying local means) outperformed multivariate techniques when applied to the 

mountainous terrain in The Algarve, Southern Portugal.   
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The multivariate techniques were close runners up in some months, and had the 

lowest RMSE in November 1985, in which the spatial regression RMSE was the lowest.  

As shown on Figure 4-5, the least typical year in terms of monthly rainfall amounts was 

1984 compared to all other years from 1980 through 1985, with droughts occurring in 

the early part of the year, and surplus rain in the later months of the year.  It could be 

surmised from these results that multivariate methods of interpolation perform better in 

typical years than in atypical years, in which other drivers of precipitation may contribute 

to monthly precipitation patterns. 

Although many studies have identified the importance of including topographic 

variables such as elevation and its derivatives in predicting precipitation patterns over 

space (Arora et al. 2006; Daly et al. 1994; Diodato 2005; Goovaerts 1999a, 1999b, 

2000; Hutchinson 1998b; Hutchinson and Bischof 1983; KeifferWeisse and Bois 2001; 

Kyriakidis et al. 2004; Marquinez et al. 2003; Oettli and Camberlin 2005; Pardo-

Iguzquiza 1998), it can also be hypothesized that local forms of univariate kriging 

perform better than multivariate techniques in areas of highly variable terrain due to the 

difficulty in modeling the complexity of precipitation patterns with multivariate models in 

these regions. 
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Chapter 5 
 

Hypothesis Testing 
 
 

 

5.1  Introduction 

This chapter makes use of the regression modeling results described in Chapter 

4 for the purpose of hypothesis testing in order to gain an improved understanding of 

the significant predictors of monthly precipitation patterns over space within the case 

study area.  Significant variables in predicting the spatial patterns of precipitation are 

identified through a combination of a regression model selection process, in which 

competing models with varying selections of independent variables are compared and 

selected on the basis of the Akaike Information Criterion (AIC, Akaike 1974), and formal 

testing of the regression coefficients within each selected model.  One additional test, 

the Hausman Test, is presented and used to identify whether significant simultaneity 

can be documented between precipitation and vegetation (Hausman 1978). 

 

5.1.1  Study area 

The position of the study area in East Africa, as well as its proximity to Lake 

Victoria and the Indian Ocean are illustrated in Figure 5-1.  Understanding of these 

relative locations is importance since explanatory variables for describing variation in 

monthly rainfall include distance to Lake Victoria and distance to the Indian Ocean.   
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Figure 5-1.  Location of the case study area within East Africa (CLIP region). Meteorological stations 
(green diamonds) are shown in proximity to Lake Victoria and the Indian Ocean. 

 

 

5.1.2  Identification of dependent variable and selection of representative data 

Monthly precipitation (mm) represents the dependent variable in this analysis.  

Precipitation data from roughly 120 meteorological stations obtained from the 

Department of Meteorology, Government of Kenya were used.  Meteorological station 

locations are shown on Figure 5-1. 

Monthly precipitation was evaluated through eight different regression analyses; 

the data for these analyses were chosen to represent the four seasons (i.e., the dry 

season in December, January, and February; the long rainy season in March, April, 

May, and June; the cool dry season in July and August; and the short rainy season in 

September, October, and November) in eastern Africa for two different years.  The 

individual months of January, April, August, and November were chosen as the most 

Lake 
Victoria 

Indian 
Ocean 

Kilometers 
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representative month of each of the seasons described above within the case study 

area (Figure 5-2).   

 

 

Figure 5-2.  Long-term average monthly precipitation (mm) collected from 1926 to 1998 averaged over all 
meteorological stations within the study area.  The position of the intertropical convergence zone (ITCZ) 
relative to the study area is labeled at various points in the year. 

 

The years 1984 and 1985 were chosen for this analysis since these years 

represent the overlap between years in which the largest numbers of meteorological 

stations were measured (approximately 120 stations) and the years in which remotely 

sensed vegetation data were available (beginning in July 1982).  Furthermore, the years 

to be evaluated were chosen to represent a typical year (1985) and an atypical year 

(1984).  Additional detail regarding selection of years for analysis is provided in   

Chapter 4.  

 

Jan    Feb   Mar    Apr    May   Jun    Jul    Aug    Sep   Oct    Nov   Dec

Monthly precipitation (mm) 
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5.1.3  Identification of independent or descriptive variables 

Distance from major water bodies (i.e., Lake Victoria and the Indian Ocean) was 

used to evaluate monthly precipitation in East Africa.  As described in Chapter 4, 

categorical “distance bands” were used in lieu of the linear distance measures since 

precipitation was not linearly related to either of these measures.  Dummy variables 

were established to identify areas within which precipitation levels were similar.  

Distance bands of 0 to 300 km, 300 to 450 km, 450 to 600 km, and greater than 600 km 

were created as a measure for distance to Lake Victoria.  Distance bands of 0 to 500 

km and greater than 500 km were used to represent distance to the Indian Ocean. 

Other potential explanatory variables included NDVI (a vegetation index; Rouse 

et al. 1974), elevation, and derivatives of elevation (i.e., measures of the degree to 

which a slope faces north and east, and the curvature of the slope) at scales of 1 km 

and 9 km.  The scale of 9 km was chosen to evaluate the scale over which convective 

rainfall occurs.  Furthermore, this scale is consistent with the findings of Hession and 

Moore (2010) and Sharples et al. (2005); Sharples et al. (2005) identify an optimal 

topographic scale of dependence of around 6-8 km.   

Elevation at each station location was estimated using the SRTM 30 arc second 

Digital Elevation Model (DEM) raster, shown on Figure 5-3.  A measure of 30 arc 

seconds is approximately 1 km near the equator.  Average elevation at a 9 km 

resolution was also calculated using elevation at surrounding pixels, as described in 

Chapter 4.   

The influence of aspect and slope on precipitation was evaluated using the 

eastern and northern components of the unit normal vector (Hutchinson 1998).   These 
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values characterize aspect scaled by the steepness of the slope.  Results are largest in 

magnitude on the steepest slopes and approach zero in flat areas.  In addition, 

curvature was calculated in ArcGIS (ESRI, 2006) to evaluate whether curvature has an 

impact on precipitation patterns.  A summary of all potential explanatory variables used 

in this study is provided in Table 5-1. 

 

 

Figure 5-3.  Map of elevation (1 km resolution) with meteorological station locations and study area 
boundary are shown above.  Topographic features within the study area are labeled.  
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Table 5-1.  Summary of independent variables used in regression analysis and 
hypthosis testing.  Abbreviated names are shown as well. 

 

Independent  Abbreviated

Variable  Scale Name Notes

Distance to Lake Victoria (km)  dist2lv

d2lv300
= 1 if dist2lv <= 300 km,  
    0 otherwise

d2lv450
= 1 if dist2lv > 300 and <= 450 km,  
   0 otherwise

d2lv600
= 1 if dist2lv > 450 and <= 600 km,  
    0 otherwise

if all 3 indicator variables are 0, then 
dist2lv > 600 km

Distance to Indian Ocean (km)  dist2coast

d2c500
= 1 if dist2coast <= 500 km,  
    0 otherwise

Elevation (m)  1 km dem1km

9 km dem9km
Combined measure of apsect 
and slope : measure of 
"northness"  1 km p1km

p = cos(α) sin(θ), where α is aspect 
angle and θ is slope angle  

(unitless)  9 km p9km p = cos(α) sin(θ)
Combined measure of apsect 
and slope: measure of 
"eastness"  1 km q1km q = sin(α) sin(θ)

(unitless)  9 km q9km q = sin(α) sin(θ)

Surface curvature  1 km curv1km

(profile; unitless)  9 km curv9km

NDVI  8 km ndvi842 Average NDVI for February 1984 
(unitless)  8 km ndvi845 Average NDVI for May 1984 

8 km ndvi849 Average NDVI for September 1984

8 km ndvi8412 Average NDVI for December 1984

8 km ndvi852 Average NDVI for February 1985 
8 km ndvi855 Average NDVI for May 1985 
8 km ndvi859 Average NDVI for September 1985

8 km ndvi8512 Average NDVI for December 1985
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5.2  Regression model selection and testing 

Initial regression model selection for precipitation in each month (i.e., January, 

April, August, and November) in 1984 and 1985 was conducted using OLS regression 

and the recommended approach of Burnham and Anderson (1998).  OLS regression 

was used in this step since it is likely to identify more significant variables than spatially 

explicit regression models:  in the presence of spatial autocorrelation, precision of the 

OLS estimates tends to be overstated, resulting in elevated estimates of the OLS 

coefficients and values such as the coefficient of determination (R2). 

All regression modeling was completed using a normal score transformation of 

the precipitation data (Chapter 4).  Once an OLS model formulation was selected for 

each month in consideration, these models were further scrutinized to determine if they 

could be improved through spatial regression modeling (Anselin, 2006; LeSage 1998, 

LeSage and Pace 2009).  This process is described in more detail in Chapter 2 of this 

dissertation.  In Chapter 4, the final selections of regression models were utilized in all 

three of the multivariate methods used to generate predicted precipitation maps.   

In this chapter, the final selection of regression models was further evaluated 

through hypothesis testing.  The hypotheses to be tested are specified in Section 5.2.1 

along with the basis for the hypotheses.  Results of hypothesis and model interpretation 

are presented in Section 5.2.2.   

 

5.2.1  Statement of hypotheses 

A summary of the independent variables tested through regression modeling is 

provided in Table 5-1.  This section provides a brief description of the independent 
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variables and their expected relationships with precipitation followed by a formal 

statement of hypothesis. 

Distance measures (i.e., distance to Lake Victoria and distance to the Indian 

Ocean) were used to model synoptic and global scale processes (Figure 5-1).  The 

distance variables, which were categorized to represent “distance bands,” are expected 

to represent a complex interaction of different local, regional, and mesoscale processes 

that include the lake/sea breeze near Lake Victoria in the western portion of the study 

area and orographic effects in the highland areas (Camberlin and Planchon 1997, 

Ng’ang’a 1992).  In general, higher levels of precipitation are expected to occur closer to 

the large water bodies, particularly in dry seasons when mesoscale effects dominate.  It 

is also expected that the role of these factors will vary according to season.   

 

Hypothesis 1 

H10: Precipitation amounts do not vary with distance from water bodies. 

H11: Precipitation amounts decrease as distance from water bodies increases. 

 

Elevation (Figure 5-3) and its derivatives are expected to reflect mesoscale 

processes related to orographic precipitation.  Increasing precipitation is expected to 

occur with increasing elevation (Arora et al., 2006; Spreen, 1947).  This hypothesis was 

evaluated at the scales of 1 and 9 km.   
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Hypothesis 2 

H20: Precipitation amounts do not vary with elevation. 

H21: Precipitation amounts increase as elevation increases. 

 

The eastern and northern components of the unit normal vector were used to 

represent the effects of aspect and slope on precipitation (Hutchinson, 1998).  The 

largest values of p and q occur on the steepest slopes; the lowest values occur on 

peaks, valley floors, or generally flat areas such as savannas.  Since p and q 

incorporate both slope and aspect, the effects of both can be evaluated.  The direction 

of these effects can also be evaluated without reference to the prevailing wind field 

(Hutchinson, 1998).  Steeper slopes provide stronger orographic lifting; thus, increasing 

values of p and q are expected to be associated with higher rainfall (locally, at least; 

Buytaert et al., 2006).   

 

Hypothesis 3 

H30: Precipitation amounts do not vary with the eastern and northern 

components of the unit normal vector, representing slope and aspect. 

H31: Precipitation amounts increase with increasing values of the 

eastern/northern components of the unit normal vector. 

 

The above relationship, or the significance of this relationship, is expected to vary 

by season.  It is also anticipated that the spatial scale at which these processes occur 
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will vary by season due to different synoptic forcings, wind patterns, and other seasonal 

variations (e.g., long rains and short rains) (Ng’ang’a, 1992). 

 

Curvature provides a measure of the degree to which a surface is convex or 

concave.  It is calculated as the slope of the slope (the second derivative of the 

surface).  High values of curvature represent upwardly convex surfaces, such as a 

hilltop.  Conversely, low values of curvature correspond with upwardly concave 

surfaces, such as a valley bottom.  Since higher curvature would generally occur at the 

relative higher elevations (e.g., at peaks), higher precipitation is expected to correspond 

with increased curvature.  Furthermore, curvature was found to be less correlated with 

other independent variables than elevation; consequently, it is less likely to be 

confounded with other variables and may be a more effective predictor of precipitation. 

 

Hypothesis 4 

H40: Precipitation amounts do not vary with curvature. 

H41: Precipitation amounts increase with increasing curvature. 

 

Increased NDVI values (measured in the subsequent month) are expected to 

correlate with increased precipitation in the month being evaluated.  This would be 

expected since increased precipitation causes increased greenness in most natural 

landscapes (Rodriguez-Iturbe and Porporato, 2004). 
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Hypothesis 5 

H50: Precipitation amounts do not vary with NDVI. 

H51: Precipitation amounts increase with increasing NDVI. 

 

As previously noted, significance of the above variables and their corresponding 

hypotheses is expected to vary from month to month according to seasonal variability in 

the factors that affect spatial patterns in precipitation, such as position of the ITCZ, the 

relative importance of elevation and orographic precipitation in dry seasons versus rainy 

seasons, and the relative importance of constant sources of moisture, such as Lake 

Victoria. 

Furthermore, the two years evaluated in this dissertation, 1984 and 1985, were 

chosen to represent atypical (1984) and typical (1985) in terms of monthly rainfall 

averages compared to long-term monthly averages.  In particular, early months in 1984 

were characterized by drought conditions; later months experienced higher precipitation 

than long term averages.  The impact of this distinction on causal factors of precipitation 

patterns is unknown; therefore, no hypothesis is stated.  Similarities and differences 

between these years were noted for future hypothesis development. 

 

5.2.2  Results and interpretation 

Initial model selection was performed using OLS regression, as described in 

Chapter 4.  OLS regression was used in this step since it is likely to identify more 

significant variables than spatially explicit regression models:  in the presence of spatial 

autocorrelation, precision of the OLS estimates tends to be overstated, resulting in 
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elevated estimates of the OLS coefficients and values such as the coefficient of 

determination (R2).   

A number of candidate models were compared and ranked based on an 

information theoretic criterion, the Akaike Information Criterion (AIC; Akaike, 1974).   

This approach provided a means to rank the relative strength of the OLS models.  

Regression models with the lowest AIC value were identified with a rank of (1) and 

selected for further hypothesis testing.  Through this model selection process, some 

independent variables were excluded from further consideration. 

As illustrated in Table 5-2, precipitation amounts for each month were evaluated 

using four OLS regression model formulations, or candidate models.   The candidate 

models were developed to include the following sets of independent variables:  (1) 

average monthly NDVI for the subsequent month, the elevation term and its derivatives 

(i.e., dem, p, q, and curv) at a 1 km scale, each indicator variable representing distance 

to Lake Victoria and distance to the Indian Ocean; (2) average monthly NDVI for the 

subsequent month, the elevation term and its derivatives (i.e., dem, p, q, and curv) at a 

9 km scale, each indicator variable representing distance to Lake Victoria and distance 

to the Indian Ocean; (3) average monthly NDVI for the subsequent month, the elevation 

term and its derivatives (i.e., dem, p, q, and curv) at a 1 km scale, each indicator 

variable representing distance to Lake Victoria and distance to the Indian Ocean and 

interaction terms between distance to Lake Victoria (dist2lv) and the first two indicator 

variables (i.e., d2lv300 and d2lv450); and (4) average monthly NDVI for the subsequent 

month, each elevation term (dem, p, q, and curv) at a 9 km scale, each indicator 

variable representing distance to Lake Victoria and distance to the Indian Ocean and 
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distance to the Indian Ocean and interaction terms between dist2lv and the first two 

indicator variables (i.e., d2lv300 and d2lv450). 

Results of initial model selection are summarized in Table 5-2.  The AIC value is 

shown for each model formulation: lower AIC values indicate better model fits.  Each 

model is ranked based on AIC values; models with a ranking of (1) were selected for 

subsequent use in each multivariate prediction technique.   

The initial model formulations selected for each month and year  

were further tested using spatially explicit methods to determine if use of the OLS is 

appropriate, or if a spatially explicit model is required.  The three spatially explicit 

regression models considered (SEM, SAR, and SAC) are described in detail in Chapter 

3 of this dissertation, as well as the decision process for selecting the appropriate model 

type. 
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Table 5-2.  Summary of OLS regression models ranked by AIC.     

Model 
Dep. 

Variable Independent Variables AIC Rank 
1 Jan 84 

Precip  
Nscores 

ndvi842, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

293.9 (4) 

2 Jan 84 
Precip  

Nscores 

ndvi842, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

292.6 (3) 

3 Jan 84 
Precip 

Nscores 

ndvi842, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

291.4 (2) 

4 Jan 84 
Precip 

Nscores 

ndvi842, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

288.4 (1) 

1 Apr 84 
Precip 

Nscores 

ndvi845, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

291.3 (3) 

2 Apr 84 
Precip 

Nscores 

ndvi845, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

282.0 (1) 

3 Apr 84 
Precip 

Nscores 

ndvi845, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

294.0 (4) 

4 Apr 84 
Precip 

Nscores 

ndvi845, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

284.3 (2) 

1 Aug 84 
Precip 

Nscores 

ndvi849, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

229.1 (4) 

2 Aug 84 
Precip 

Nscores 

ndvi849, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

228.9 (3) 

3 Aug 84 
Precip 

Nscores 

ndvi849, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

223.7 (1) 

4 Aug 84 
Precip 

Nscores 

ndvi849, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

224.3 (2) 

1 Nov 84 
Precip 

Nscores 

ndvi8412, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

277.2 (2) 

2 Nov 84 
Precip 

Nscores 

ndvi8412, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

273.5 (1) 

3 Nov 84 
Precip 

Nscores 

ndvi8412, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

281.2 (4) 

4 Nov 84 
Precip 

Nscores 

ndvi8412, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

277.4 (3) 
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Table 5-2 (continued).  Summary of OLS regression models ranked by AIC.   
1 Jan 85 Precip 

Nscores 
ndvi852, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500 

288.4 (2) 

2 Jan 85 Precip 
Nscores 

ndvi852, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500 

296.6 (4) 

3 Jan 85 Precip 
Nscores 

ndvi852, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

279.8 (1) 

4 Jan 85 Precip 
Nscores 

ndvi852, dem9km, p9km, q9km, curv9km,d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

291.0 (3) 

1 Apr 85 Precip 
Nscores 

ndvi855, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500 

311.7 (1) 

2 Apr 85 Precip 
Nscores 

ndvi855, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500 

315.5 (3) 

3 Apr 85 Precip 
Nscores 

ndvi855, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

312.6 (2) 

4 Apr 85 Precip 
Nscores 

ndvi855, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

317.1 (4) 

1 Aug 85 Precip 
Nscores 

ndvi859, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500 

218.9 (3) 

2 Aug 85 Precip 
Nscores 

ndvi859, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500 

214.7 (1) 

3 Aug 85 Precip 
Nscores 

ndvi859, dem1km, p1km, q1km, curv1km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

220.7 (4) 

4 Aug 85 Precip 
Nscores 

ndvi859, dem9km, p9km, q9km, curv9km, d2lv300, 
d2lv450, d2lv600, d2c500, d2lv300*dist2lv, 
d2lv450*dist2lv 

216.6 (2) 

1 Nov 85 Precip 
Nscores 

ndvi8512, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500 

268.2 (3) 

2 Nov 85 Precip 
Nscores 

ndvi8512, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500 

264.4 (1) 

3 Nov 85 Precip 
Nscores 

ndvi8512, dem1km, p1km, q1km, curv1km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

271.5 (4) 

4 Nov 85 Precip 
Nscores 

ndvi8512, dem9km, p9km, q9km, curv9km, 
d2lv300, d2lv450, d2lv600, d2c500, 
d2lv300*dist2lv, d2lv450*dist2lv 

268.0 (2) 

Differences of less than 3 between AIC values are not considered 
significant. 
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The regression models selected for each month/year are summarized in      

Table 5-3.  For each model, the regression technique used is given as well as the list of 

independent variables tested, their estimated coefficients, and measures of statistical 

significance.  Since regression modeling was conducted using standardized 

precipitation data based on the n-score transformation (see Chapter 4 for additional 

detail), estimated coefficients are interpreted as the average change in standardized 

precipitation for each unit change in the independent variable.  Significance at the levels 

of 0.1%, 1%, 5%, and 10% are indicated.  Further discussion of significant variables is 

based on a 10% level of significance. 

In January 1984, significant predictors of precipitation included NDVI (p=0.0259), 

distance to Lake Victoria (distances less than 300 km [p=0.0618] and between 300 and 

450 km [p=0.0198]) and distance to the Indian Ocean (distances less than 500 km 

[p=0.0002]).  As expected, locations closer to Lake Victoria were found to experience 

increased rainfall.  Regression coefficients for the indicator variables are interpreted as 

the increase in mean expected rainfall (standardized) over that expected in the greatest 

distance category (i.e., greater than 600 km) when located within the given interval.  For 

example, locations within 300 km of Lake Victoria were expected to receive 

approximately 10 additional standardized rainfall units (SRU) than locations greater than 

600 km away.  In this way, the greatest distance category is used as a baseline for 

evaluating the remaining distance categories.  Locations between 300 and 450 km from 

Lake Victoria were expected to receive almost 4 more standardized rainfall units than 

locations more than 600 km away.  Since the interaction term between d2lv450 

(indicating a location of between 300 and 450 km from Lake Victoria) and the 
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continuous distance measure dist2lv was significant (p=0.0221) with a negative 

coefficient, rainfall was shown to decrease with increasing distance in this interval, as 

would be expected.  Locations within 500 km of the Indian Ocean were expected to 

receive 1.2 additional SRU than further locations. 

In January 1984, NDVI was negatively associated with precipitation (p=0.0259), 

indicating that increased NDVI corresponded with decreased precipitation.  This result 

was not as expected.  A possible explanation is the relatively low coefficient of 

determination (R2=0.3) obtained for the January 1984 OLS regression model, indicating 

that only 30% of the variation in rainfall over space was explained by the model.  

Addition of one or more other explanatory variables may improve model interpretations. 

 



  

127 
 

Table 5-3.  Summary of regression modeling results.  

 
Month Method Independent Variable Estimate St. Error t value Pr(>|t|) 
Jan-84 OLS (Intercept) -1.3530 0.6059 -2.2330 0.0278 * 

ndvi842 -1.5500 0.6857 -2.2610 0.0259 * 
dem9km 0.0003 0.0003 1.1930 0.2358 
p9km -0.2401 0.1573 -1.5260 0.1302 
q9km 0.0468 0.1590 0.2950 0.7690 
curv9km -50.6300 93.3400 -0.5420 0.5887 
d2lv300 10.2200 5.4080 1.8890 0.0618 . 
d2lv450 3.7850 1.5980 2.3690 0.0198 * 
d2lv600 0.6514 0.5481 1.1890 0.2375 
d2c500 1.1610 0.2960 3.9210 0.0002 *** 
I(d2lv300 * dist2lv) -0.0271 0.0194 -1.3990 0.1649 

    I(d2lv450 * dist2lv) -0.0081 0.0035 -2.3260 0.0221 * 
Apr-84 SARlag (Intercept) -1.9160 0.4924 -3.8910 0.0001 *** 

ndvi845 0.7846 0.4462 1.7584 0.0787 . 
dem9km 0.0001 0.0002 0.5272 0.5981 
p9km -0.0479 0.1241 -0.3864 0.6992 
q9km 0.2024 0.1256 1.6123 0.1069 
curv9km -136.4866 72.5866 -1.8803 0.0601 . 
d2lv300 1.4931 0.4961 3.0094 0.0026 ** 
d2lv450 0.9401 0.4808 1.9552 0.0506 . 
d2lv600 1.0393 0.4441 2.3404 0.0193 * 
d2c500 0.3932 0.1891 2.0787 0.0376 * 

    Rho 0.6040 0.1017 5.9358 0.0000 *** 
Aug-84 OLS (Intercept) -2.1604 0.4720 -4.5770 0.0000 *** 

ndvi849 0.7530 0.5121 1.4710 0.1446 
dem1km 0.0006 0.0002 3.2120 0.0018 ** 
p1km -0.0632 0.1242 -0.5090 0.6119 
q1km 0.1014 0.1205 0.8420 0.4020 
curv1km -3.9075 6.7899 -0.5750 0.5663 
d2lv300 -1.5345 4.1207 -0.3720 0.7104 
d2lv450 3.3980 1.2118 2.8040 0.0061 ** 
d2lv600 -0.1001 0.4035 -0.2480 0.8046 
d2c500 0.4681 0.2371 1.9740 0.0511 . 
I(d2lv300 * dist2lv) 0.0116 0.0148 0.7880 0.4327 

    I(d2lv450 * dist2lv) -0.0076 0.0026 -2.8860 0.0048 ** 
Nov-84 SARlag (Intercept) -1.4962 0.6446 -2.3211 0.0203 * 

ndvi8412 -0.1582 0.6878 -0.2300 0.8181 
dem9km 0.0001 0.0002 0.4865 0.6266 
p9km -0.3114 0.1415 -2.2008 0.0278 * 
q9km -0.0247 0.1390 -0.1776 0.8591 
curv9km 66.7779 81.0492 0.8239 0.4100 
d2lv300 1.4101 0.5406 2.6082 0.0091 ** 
d2lv450 0.7143 0.5338 1.3382 0.1808 
d2lv600 1.2727 0.4849 2.6246 0.0087 ** 
d2c500 0.7044 0.2504 2.8133 0.0049 ** 

    Rho 0.2500 0.1629 1.5348 0.1248   
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Table 5-3.  Summary of regression modeling results.  
 

Month Method Independent Variable Estimate St. Error t value Pr(>|t|) 
Jan-85 SARlag (Intercept) -0.7867 0.6318 -1.2450 0.2131 

ndvi852 0.5605 0.5799 0.9665 0.3338 
dem1km -0.0002 0.0002 -0.7656 0.4439 
p1km 0.0418 0.1515 0.2757 0.7828 
q1km 0.4667 0.1441 3.2398 0.0012 ** 
curv1km 12.2468 8.7368 1.4018 0.1610 
d2lv300 -4.8020 4.5302 -1.0600 0.2891 
d2lv450 3.3218 1.5306 2.1702 0.0300 * 
d2lv600 0.2569 0.5711 0.4498 0.6529 
d2c500 0.3788 0.2664 1.4220 0.1550 
I(d2lv300 * dist2lv) 0.0218 0.0161 1.3515 0.1765 
I(d2lv450 * dist2lv) -0.0072 0.0033 -2.1659 0.0303 * 

    Rho 0.2970 0.1613 1.8406 0.0657 . 
Apr-85 SARlag (Intercept) -2.0913 0.6588 -3.1744 0.0015 ** 

ndvi855 -0.2445 0.7459 -0.3277 0.7431 
dem1km 0.0005 0.0002 2.5010 0.0124 * 
p1km 0.1716 0.1474 1.1637 0.2446 
q1km 0.2458 0.1510 1.6278 0.1036 
curv1km -6.1177 8.3879 -0.7294 0.4658 
d2lv300 1.5083 0.5984 2.5206 0.0117 * 
d2lv450 1.0736 0.5685 1.8883 0.0590 . 
d2lv600 1.1885 0.5218 2.2777 0.0227 * 
d2c500 0.2507 0.2290 1.0947 0.2736 

    Rho 0.6349 0.1050 6.0476 0.0000 *** 
Aug-85 SARlag (Intercept) -1.0773 0.4340 -2.4820 0.0131 * 

ndvi859 0.9904 0.4516 2.1929 0.0283 * 
dem9km 0.0005 0.0002 3.0242 0.0025 ** 
p9km 0.0794 0.1078 0.7373 0.4610 
q9km 0.2018 0.1082 1.8647 0.0622 . 
curv9km -9.1431 64.7750 -0.1412 0.8878 
d2lv300 0.1276 0.4247 0.3005 0.7638 
d2lv450 -0.3907 0.3993 -0.9787 0.3277 
d2lv600 -0.4021 0.3687 -1.0904 0.2755 
d2c500 -0.0420 0.2040 -0.2057 0.8370 

    Rho 0.4170 0.1329 3.1382 0.0017 ** 
Nov-85 OLS (Intercept) -2.7490 0.6493 -4.2330 0.0001 *** 

ndvi8512 2.2120 0.5926 3.7330 0.0003 *** 
dem9km -0.0004 0.0002 -1.4950 0.1383 
p9km -0.0934 0.1640 -0.5690 0.5705 
q9km -0.0210 0.1629 -0.1290 0.8976 
curv9km 177.2000 94.1500 1.8820 0.0629 . 
d2lv300 2.2380 0.6147 3.6410 0.0004 *** 
d2lv450 1.6200 0.6146 2.6360 0.0098 ** 
d2lv600 1.5390 0.5507 2.7940 0.0063 ** 

    d2c500 0.9699 0.2356 4.1160 0.0001 *** 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1  
Bolded variables are significant. 
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April 1984 precipitation was evaluated using a spatial lag model with the same 

independent variables as those in the January 1984 model except for the interaction 

terms.  A model without interaction terms was found to provide a better fit to the April 

1984 precipitation amounts during initial model selection, indicating that the interaction 

terms did not improve model fit.  All of the additive indicator variables for distance were 

significant and positive, indicating increased rainfall compared to the furthest distance 

category.  Locations closest to Lake Victoria are expected to receive approximately 1.5 

more than locations more than 600 km from Lake Victoria (p=0.0026) in terms of SRU; 

locations between 300 and 450 km from Lake Victoria are expected to receive 0.94 

additional SRU (p=0.0506), and locations between 450 and 600 km should receive 1.04 

SRU more than the furthest distance category (p=0.0376).  These results indicate that 

distance from Lake Victoria plays a significant role in precipitation amounts even during 

the long rainy season when the ITCZ is overhead.  Profile curvature at a scale of 9 km 

was marginally significant (p=0.0601), with a negative coefficient.  This finding does not 

support the hypothesis that increasing precipitation would occur with increasing 

curvature for this particular month. 

Elevation at a scale of 1 km was found to be a significant predictor of August 

1984 precipitation (p=0.0018), with a positive coefficient.  This indicates that 

precipitation increases with increasing elevation at the estimated rate of  

0.0006 SRU per meter, or 6 mm per kilometer.  Significance of the elevation term in the 

short dry season confirms the hypothesis that local scale, orographic precipitation 

occurs during this season.  Precipitation was also found to be approximately 3.4 SRU 

greater in locations between 300 and 450 km from Lake Victoria (p=0.0061) than the 



  

130 
 

most distant locations (greater than 600 km).  The interaction term was also significant 

(p=0.0048) and negative, indicating that precipitation amounts decrease as distance 

from Lake Victoria increases within this distance band, as expected.  Locations within 

500 km of the Indian Ocean were expected to receive 0.47 SRU additional rainfall on 

average than more distant locations (p=0.0511). 

In November 1984, the eastern component of the unit vector was a significant 

predictor of precipitation, indicating that east facing slopes were expected to receive 

0.31 SRU less rainfall than west facing slopes (p=0.0278).  The ITCZ was overhead 

during this time.  Furthermore, generally higher precipitation was observed in the 

eastern portion of the study area.  This would indicate that increased precipitation 

should occur on the east-facing slopes.  However, the grid of the eastern component of 

the unit vector at a spatial resolution of 9 km appears highly variable and pixilated in this 

region.  It is possible that some meteorological stations in this region are on west-facing 

slopes; however, this is not clear.  In addition, higher rainfall amounts were shown to 

coincide with distances of less than 300 km from Lake Victoria (1.4 SRU, p=0.0091), 

between 450 and 600 km from Lake Victoria (1.3 SRU, p=0.0087), and less than 500 

km from the Indian Ocean (0.7 SRU, 0.0049) compared to greater distances.  Again, 

this illustrates that distance from surface water bodies has a significant impact on 

precipitation amounts during rainy seasons (in this case, the short rainy season). 

Distances from Lake Victoria between 300 and 450 km were shown to receive 

3.3 SRU more in January 1985 than locations greater than 600 km, on average 

(p=0.0300).  These amounts were shown to decrease as distance from Lake Victoria 

increased in this distance band (p=0.0303), as expected.  Furthermore, north-facing 
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slopes were shown to receive more rainfall than south-facing slopes (p=0.0012).  

Inspection of the measured data for this month indicated that the greatest amount of 

precipitation fell in the northwest of the study area, on the north- and west-facing slopes 

of the highland mountains.  Elevation at a spatial resolution of 1 kilometer was not a 

significant predictor of precipitation in the study area during this dry season (p=0.7828); 

it is possible that orographic precipitation occurred at scales other than that considered 

herein, or that other causal factors were involved. 

Similar to April 1984, all three components of the distance to Lake Victoria 

measure were significant predictors of precipitation in April 1985 (p=0.0117, p=0,0590, 

and 0.0227, respectively, for each distance band).  All of the coefficients were positive, 

indicating that the distance bands closer to Lake Victoria received more rainfall than the 

furthest distance category (greater than 600 km), as expected.  In addition, elevation at 

a scale of 1 km was a significant predictor of precipitation, with an additional 0.0005 

SRU per meter (or 5 SRU per km) of elevation expected.   

In August 1985, NDVI was identified as a significant predictor of precipitation 

(p=0.0283): higher NDVI values corresponded with increased rainfall, as expected.  

Elevation at a scale of 9 km was also significantly (p=0.0025) and positively related to 

precipitation, with an additional 0.0005 SRU of precipitation per meter of elevation 

expected.  The northern component of the unit vector was also significant in August 

1985 (p=0.0622) with a positive coefficient.  This indicates that higher precipitation 

amounts were expected on north-facing slopes.  Inspection of the measured 

precipitation data indicated that higher rainfall amounts were observed in the 

northwestern portion of the study area, similar to January 1985 in which the northern 
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component was also significant and positive.  Furthermore, the ITCZ was in its 

northernmost position during this month. 

All of the distance bands for Lake Victoria and the Indian Ocean were significant 

and positive in November 1985.  Precipitation within 300 km of Lake Victoria was 

expected to be 2.2 SRU higher on average than precipitation more than 600 km from 

the lake (p=0.0004).  Locations between 300 and 450 km from the lake were expected 

to receive 1.6 SRU more (p=0.0098), while locations between 450 and 600 km were 

expected to receive 1.5 SRU more than locations beyond 600 km from Lake Victoria 

(p=0.0063).  Locations within 500 km of the Indian Ocean were expected to receive 

almost 1 SRU above more distant locations, on average (p=0.0001).  NDVI was also a 

significant predictor of precipitation in November 1985 (p=0.0003): precipitation was 

shown to increase with increasing NDVI, as expected.  Curvature at the 9 km scale was 

positively related to precipitation (p=0.0629), indicating that increased precipitation 

corresponded with upwardly convex surfaces (hilltops, representative of higher 

elevation), as expected. 

In general, distance measures were the most common significant predictors of 

precipitation in the study area during both rainy and dry seasons.  The significant 

influence of distance measures or general geographic locators (e.g., latitude and 

longitude) was also identified by Arora et al. (2006), Marquinez et al. (2003), Oettli and 

Camberlin (2005), KeifferWeisse and Bois (2001); Hutchinson and Bischof (1983), and 

Hutchinson (1998a, 1998b).  In some cases, an interaction term between the indicator 

variables and the continuous distance measure was able to refine the predictions, 

allowing for decreasing precipitation as distance from Lake Victoria increased within a 
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distance band.  It is interesting to note that this decreasing trend occurred only within 

the 300 to 450 km distance band, and only during dry seasons.  The only exception is 

August 1985, in which no distance terms were significant.   

NDVI was a significant predictor in four of the eight months considered (i.e., 

January 1984, April 1984, August 1985, and November 1985).  The relationship was 

positive in all but one month.  These results are difficult to interpret and are not well 

understood, since there was not a clear seasonal pattern to the significance of NDVI.   

Elevation and its derivatives were significant only sporadically.  Elevation at a 1 

km resolution was significant in August 1984 and April 1985.  Elevation at a 9 km 

resolution was significant in August 1985.  However, significance of the an elevation 

term in the months of August (i.e., the second dry season) supports the hypothesis that 

orographic rainfall is a significant contributor to precipitation in this dry season.  Oettli 

and Camberlin (2005) found similarly that mean elevation was not highly correlated to 

precipitation amounts except, perhaps, in relatively smaller study areas in East Africa 

due to the “considerable inconsistency in the elevation–rainfall relationship, which only 

applies to either very small or very large space scales.” 

The eastern component of the unit vector was significant in November 1984 only, 

whereas the northern component was significant in both January and August 1985.  

Significance of this term in January and August 1985 can be understood based on 

inspection of the observed precipitation data:  higher rainfall amounts were observed in 

the northern/northwestern portions of the study area in these months.  Furthermore, the 

ITCZ was in its northernmost position in August 1985.   
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Curvature was significant but negative in April 1984, which was not expected.  

However, curvature was significant and positive in November 1985, indicating that 

higher precipitation amounts occurred at hilltops (or local areas of higher elevation), as 

expected. 

With regard to model type, OLS models were adequate for the modeling of 

precipitation in January 1984, August 1984, and November 1985.  Spatial lag models 

provided better fits to precipitation data in the remaining months.  No obvious 

seasonality was evident in model selection based on these findings. 

Comparison of results for 1984 and 1985 indicates similarities in the significance 

of distance variables:  increased precipitation was observed in the 300 to 450 km 

distance band in January 1984 and 1985 (the first dry season), with decreasing 

precipitation in this band as distance from Lake Victoria increases.  This pattern was 

also observed in August 1984 (the second dry season), although it was not detected in 

August 1985.  In addition, nearly all of the distance categories were significant in all 

rainy seasons (i.e., April 1984, August 1984, April 1985, and August 1985).  This pattern 

indicates that significantly increased precipitation is most likely observed in the range of 

300 to 450 km from Lake Victoria during the dry seasons.  Significance of all distance 

terms in the rainy seasons indicates that rainfall is generally widespread at this time, 

with the exception of the most distant locations from water bodies (e.g., greater than 

600 km from Lake Victoria. 

Elevation terms were significant predictors of variability of rainfall over space in 

both August 1984 and August 1985, the second dry season of each year, supporting the 
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likelihood of the occurrence of orographic precipitation during these dry seasons.  

However, elevation was not significant in either January 1984 or January 1985.  

Precipitation in January 1984 was lower than the long-term average for this month.  

January 1985 was also slightly lower than the long term average; this could explain 

reduced precipitation of all forms, including orographic, in these months.   

Observed similarities between significant predictors of 1984 and 1985 monthly 

precipitation over space would suggest that causal factors do not vary significantly 

between years that are typical and atypical in terms of monthly precipitation amounts.  

However, additional study is required to test this hypothesis.  

 

5.3  Hausman test for simultaneity 

Formal testing for simultaneity between monthly precipitation and the  

1 month-lagged vegetation measure (NDVI) was conducted for each month in 1985, the 

year selected to represent a typical precipitation year in East Africa.   

Formal testing was completed using the Hausman test (Hausman 1978).  The 

Hausman test compares two regression models, a model that incorporates potential 

simultaneity through the use of an instrumental variable and the same model without the 

instrumental variable, to test the following hypothesis: 

 Hypothesis 6 

H60: Simultaneity does not exist between monthly precipitation and vegetation 

(represented by a 1-month lagged NDVI). 

H61: Simultaneity does exist between monthly precipitation and vegetation. 
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Essentially, the Hausman identifies whether a regression model formulated under 

the alternative hypothesis is significantly better than the regression model under the null 

hypothesis.  If so, then significant simultaneity is concluded to be present. 

Formal testing of the above hypothesis failed to identify the presence of 

significant simultaneity for any month in 1985.  This result may be due, in part, to a 

limitation in available data and an over-simplification of the lag between increased 

precipitation and increased NDVI.  A one-month lag was used to model the relationship 

between precipitation and NDVI based on citations in the literature.  However, due to 

the highly variable landscapes and land cover types of East Africa, it is likely that the lag 

between precipitation and vegetation varies over space according to vegetation type 

and other factors.  Improved results could be obtained by allowing for a variable lag time 

according to land cover type. 
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Chapter 6 
 

Conclusions and Future Research 
 
 
 

In the context of understanding the impacts of global climate change and the 

development of effective adaptation strategies, the need for higher resolution climate 

data is clear.  Although the relatively coarse-scale data simulated by global models can 

be useful for evaluating global climate trends, they are not sufficient for regional 

evaluations of climatic patterns, particularly in the presence of high landscape variability 

such as that which occurs in eastern Africa.  This concern has been identified by 

individual researchers as well as Intergovernmental Panel on Climate Change (Boko et 

al. 2007), who state that finer-scale climate data are necessary for decision-makers.  

Furthermore, development of successful adaptation strategies requires higher-

resolution climate data and the combined efforts of localized, community-based efforts 

(Brooks et al. 2006, Thornton et al. 2009). 

This dissertation is devoted to gaining a more complete understanding of existing 

techniques for developing finer-scale data by theoretically mapping similarities and 

differences between two statistical paradigms: kriging and spatial regression; 

developing improvements to those methods by expanding the capabilities of universal 

kriging to incorporate feedback simultaneity that may occur between the dependent 

variable of interest, rainfall in this study, and a variable such as vegetation; and applying 

these techniques to a case study set in East Africa in hopes that it will be useful for 

improved understanding of climate change and its impacts, and for further development 

of adaptation strategies to climate change in East Africa.   
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6.1 Findings and conclusions 

Precipitation maps were plotted using ordinary kriging (LOK), universal kriging 

(UK), universal kriging with an instrumental variable (UKIV) and a selected spatial 

regression model for each month evaluated as part of this dissertation.  The maps 

primarily illustrated the effects of elevation, with maximum values of monthly 

precipitation generally occurring on or near Mts. Kenya and Kilimanjaro, and distance 

from Lake Victoria, particularly in the dry seasons.  In the dry seasons represented by 

January and August, the precipitation maps illustrated that the highest levels of 

precipitation occur on the western edge of the study area, nearest Lake Victoria, and in 

areas of high elevation (i.e., Mount Kenya and Mount Kilimanjaro).  These spatial 

patterns in precipitation are consistent with the expectation that rains occurring in the 

dry seasons are mainly localized convective rainfall near Lake Victoria or stratiform 

rainfall in the highland areas (Ng’ang’a 1992).  Precipitation maps for the months 

representing the wet seasons, April and November, higher levels of precipitation were 

observed to occur more uniformly over the study area.  This is expected since the ITCZ 

is directly over the study area during these months, influencing precipitation on a large 

scale.   

A comparison of map accuracies indicated that root mean squared errors 

(RMSEs) were consistently lower for LOK, with the exception of November 1985 in 

which the UK estimate had the lowest RMSE.  However, there were many close runners 

up which included one or more of the other model types (UK, UKIV, and/or spatial 

regression) depending on the month.  Maps of standardized error terms were also 

reviewed for overall number of significant error terms and spatial patterns in the error 
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terms.  Clusters of standardized residuals were common in the west Kenya highlands 

and in the vicinity of Mt. Kenya.  However, the clusters in the northwest often included 

high and low values, indicating the presence of highly variable precipitation amounts 

over space.   

In April 1985, the standard error map for UKIV (the newly derived method) 

indicated that the number and configuration of significant standard errors were better 

than that for LOK.  This confirms that UKIV can perform similarly to other standard 

methods of estimation, and perhaps better in the presence of significant measurable 

simultaneity. 

Two prominent approaches to generating higher resolution climate data were 

identified: downscaling modeled values from generalized circulation models (GCMs) 

and statistical techniques that utilize measured climate data.  Although the former is 

common, due to the availability and completeness of modeled data sets, the latter has 

been shown to provide more accurate regional predictions in East Africa.  Data from the 

CRU TS 3.1 global data set were mapped in the East African study area and compared 

to the maps described above.  The CRU TS 3.1 data were found to substantially 

underestimate precipitation amounts in the region.  Furthermore, large contiguous areas 

of significantly low estimates illustrated spatial patterns in the error terms of the CRU 

data set, indicating its shortcomings in reflecting local geographic features. 

Hypothesis testing was conducted to better understand the system of 

precipitation in the study region by identifying significant explanatory variables for 

describing the spatial patterns in precipitation.  Spatially explicit regression models were 

used where diagnostic testing indicated that OLS models were inappropriate.  In 
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general, distance measures were the most common significant predictors of 

precipitation in the study area during both rainy and dry seasons.  In some cases, an 

interaction term between the indicator variables and the continuous distance measure 

was able to refine the predictions, allowing for decreasing precipitation as distance from 

Lake Victoria increased within a distance band; this decreasing trend occurred only 

within the 300 to 450 km distance band, and only during dry seasons, however.  OLS 

models were adequate for the modeling of precipitation in January 1984, August 1984, 

and November 1985.  Spatial lag models provided better fits to precipitation data in the 

remaining months.  Consequently, no obvious seasonality was evident in model 

selection based on these findings. 

Comparison of results for 1984 (an atypical year with drought conditions in the 

early part of the year) and 1985 (a typical year) indicates similarities in the significance 

of distance variables and elevation, in particular.  Observed similarities between 

significant predictors of 1984 and 1985 monthly precipitation suggest that causal factors 

do not vary significantly between atypical and typical years in terms of monthly 

precipitation amounts.  However, additional study is required to test this hypothesis.  

 

6.2 Gaps in the literature and contributions to address them 

A gap exists that is not completely filled by the variety of statistical techniques 

historically used to evaluate climate data. The focus of the many spatially explicit 

precipitation studies has often been to develop the ‘best’ estimates of precipitation, not 

to understand the rainfall system in the region under study.  To better understand 

systems of precipitation, aspatial ordinary least squares regression techniques have 
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often been used, although results are biased when spatial patterns in the data are not 

considered.  Spatial regression consists of several regression techniques that are not 

only spatially explicit, but can also be used to improve understanding of variables that 

influence precipitation patterns.  Spatially explicit regression techniques have begun to 

appear in climate-related literature; however, each of the applications is somewhat 

limited, either by the method used, the covariates selected, or the overall application 

(hypothesis testing or estimation).  Further, none of the approaches have characterized 

endogenous relations, such as those between precipitation and vegetation.  This 

dissertation addresses this gap by 1) including spatial regression as a potential 

technique for estimation of precipitation at unsampled locations, 2) developing an 

extended version of universal kriging that explicitly represents and incorporates 

endogenous relations between vegetation and precipitation into estimations at 

unsampled locations, and 3) conducts hypothesis testing of significant factors in 

explaining precipitation patterns in a spatially explicit manner. 

 

6.2.1 Theoretical and methodological contributions 

This dissertation has provides a theoretical summary of kriging and spatial 

regression techniques, ultimately demonstrating that one set of equations can be used 

to represent both kriging and spatial regression methods.  The differences between the 

set of equations for universal kriging, the SEM spatial regression model, and the SAR 

spatial regression model are summarized in Table 3-2; differences between these 

approaches are restricted to the spatial weights matrices used to derive the regression 

coefficients, and the spatial weights applied to the model residuals.  Thus, this 
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dissertation has successfully identified the similarities between kriging approaches and 

spatial regression techniques.   Furthermore, the differences between these 

approaches, contained within the spatial weights matrices, have been specified. 

The theoretical portion of this dissertation also included the development of a 

modified universal kriging algorithm that accounts for complex feedbacks between 

precipitation and a covariate, in this case vegetation, by incorporating the simultaneity 

between these variables.  This was accomplished through an instrumental variables 

approach.  First, an instrumental variable was created by regressing vegetation (i.e., 

NDVI) against a subset of the variables included in the precipitation model, plus one 

variable that was correlated with NDVI but not precipitation.  This variable was soil pH.  

Predicted values for NDVI were generated then substituted for the observed NDVI data 

in the universal kriging model used to predict precipitation.  Formal testing for 

simultaneity between precipitation and vegetation did not confirm the occurrence of 

simultaneity feedback; however, the new method of universal kriging with instrumental 

variables was retained in the case study to further develop the application of this 

method.   

The new and innovative technique for spatial analysis of data developed in this 

dissertation can be applied in any context when the goal is to understand spatial 

patterns in any continuous data, to predict data at unsampled locations, and/or to 

understand the relationship between a variable of interest and other factors that may 

influence the spatial distribution of that variable.  This technique lends itself to 

evaluation of many types of data, including data used in ecological evaluations, 

environmental contamination studies, deforestation studies, geological and mining 
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studies, and econometric studies.  Furthermore, these techniques are applicable to 

evaluating data collected anywhere in the world, potentially improving the ability to study 

regional patterns using these multivariate techniques. 

 

6.2.2 Contributions to Regional Geography of Africa and Geography as a whole 

The results and findings of this dissertation add to the knowledge and 

understanding of the physical mechanisms of precipitation in East Africa as well as 

spatial patterns of precipitation within the study area.  In addition, once more recent 

precipitation data are available, updated and improved maps of spatial patterns in 

precipitation within the study domain can be generated, contributing to Physical 

Geography and Regional Geography of Africa.   

Results of this dissertation will contribute to work conducted by Human-

Environment researchers such as high-resolution climate impact assessments (Mearns 

et al.,1999, 2001a, 2001b) which may be used in the evaluation of coupled human 

natural systems and formulation of associated policy.   

 

6.3 Limitations 

This dissertation has achieved many of the goals established at the outset; 

however, looking to the future, improvements can be made.  This section describes 

some of the limitations of the work presented herein and suggestions for future 

improvements. 

 

  



  

144 
 

6.3.1 Limitations in data and modeling 

As noted in Chapter 4, meteorological stations are generally located in areas of 

higher population, and do not fully represent the range of elevations in the study area.  

The representativeness of station elevations and the impact that this has on the 

representation of precipitation in the region is considered here.  Figure 6-1a 

summarizes elevation for the entire study area; for comparison Figure 6-1b summarizes 

elevation for the meteorological stations only.   The maximum elevation of a 

meteorological station of 2,773 m falls well below the maximum elevation for the study 

area of 5,778 m; the minimum elevation for a meteorological station of 454 m is 

somewhat closer to the minimum elevation in the region of 195 m.  Inspection of the 

histograms also indicates that the locations of the meteorological stations over-

represent elevations in the range of roughly 1,300 m to 2,500 m.  The most notable 

under-representation occurs in the elevations below 1,300 m; more than 50% of the 

study area falls below 1,300 m.  The statistical approaches considered herein are based 

on an assumption that the data used in the analysis are representative of the variable of 

interested (i.e., precipitation).  To accurately represent precipitation in the study area, 

some form of randomization would be necessary in the placement of meteorological 

stations.  This is clearly not the case, resulting in a bias in the results of this dissertation.  

While it is unlikely that a randomized and fully representative distribution of 

meteorological stations will be available in the near future, solutions to this problem can 

be addressed by better stratifying the study area based on elevation, or possible 

through the use of declustering techniques. 
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A one-month lag was used to model the relationship between precipitation and 

NDVI based on citations in the literature.  It is likely that the lag between precipitation 

and vegetation varies over space according to vegetation type and other factors.  A 

surface of spatially varying lag times could be developed in which the lag time depends 

on factors such as land cover type; however, limitations in the temporal resolution of 

vegetation data would have to be considered.  For example, NDVI data are available in 

biweekly time steps only from the Global Inventory Modeling and Mapping Studies 

(GIMMS).   
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Figure 6-1. Comparison of elevations throughout the study area (a).  Histogram of 
elevations at meteorological station locations (b).  Elevations were obtained from the 
SRTM 30 arc second (approximately equivalent to 1 km at the equator) Digital Elevation 
Model. 
 

(a) 

(b) 
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Elevation measurements were not available for every meteorological station.  

Consequently, elevation was estimated for each station using a 1 km DEM.  This 

increases the uncertainty in the effect of elevation on precipitation.  In addition, 

elevation was considered at spatial resolutions of 1 km and 9 km based on previous 

work cited in the literature.  While this scale may be the best for representation of 

localized effects on precipitation due to the presence of large water bodies and variable 

topography, it is my opinion that elevation should be considered in other scales or 

represented using other factors.  For example, variables such as aspect and curvature 

likely impact precipitation patterns at scales much larger than 9 km (e.g., when 

identifying the windward and leeward side of a mountain).  Also, the distance bands 

used in categorizing distance from Lake Victoria were highly correlated with a 

categorical elevation variable that was initially developed and not used due to 

multicollinearity.  This suggests that the distance bands were acting as a proxy for 

average elevation.  This observation is supported by the fact that the first distance band 

generally lines up with the West Kenya Highlands, the second distance band generally 

corresponds to the Rift Valley, and the third corresponds to higher elevations to the east 

including Mounts Kenya and Kilimanjaro. 

 

6.3.2 Limitations in statistical methodology 

Use of the spatial regression techniques to estimate precipitation at unsampled 

locations is currently limited: when predicting at unsampled locations, only the trend 

components were included.  The signal (i.e., the spatial smoothing) component is not 

estimated, even though each of the β terms incorporate spatial autocorrelation terms.  
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Potential estimators for the signal component have been suggested, but not yet 

evaluated for performance.  This limitation results in overly smoothed predictions using 

this method. 

 

6.4 Future research 

Future work is needed to evaluate the effect of modifications to the methods 

used in this dissertation.  For example, rain station locations were generally clustered in 

the vicinity of higher population areas; consequently, the observed data may not have 

adequately represented less populated (or unpopulated) areas at higher elevations or in 

the savanna regions.  Use of stratification or declustering techniques may be useful to 

provide a better representation of precipitation over space.   

Analysis of more recent data is also important for generating current finer-scale 

precipitation estimates, and for identifying changes in significant predictive variables 

through hypothesis testing.  Consequently, efforts should be made to obtain more 

recent, spatially complete data from meteorological stations in East Africa. 

Additional work can be done to improve the results of the UKIV model.  

Incorporating a spatially varying lag term may help in identifying any feedback 

simultaneity that occurs between precipitation and vegetation.  Improved regression 

results through consideration of additional variables for use in predicting patterns in 

NDVI (i.e., in generating the instrumented variable) may improve overall predictive 

ability of the UKIV method.  Further, additional research in the mechanisms of 

precipitation may identify additional variables for inclusion in regression models, 

potentially providing improved results.   
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Lastly, additional research is necessary to expand the methods presented herein 

to evaluate trends in both space and time. 

The statistical methods used in this dissertation are broadly applicable to many 

types of data, including environmental, economic, epidemiological, among others.  The 

ability to incorporate simultaneity between multiple endogenous variables when creating 

predicted surfaces of key variables will be of practical benefit.  For example, many 

contaminants of concern in environmental investigations are be related endogenously 

(e.g., concentrations of various metals vary together naturally or due to similar 

mechanisms of environmental release).  In some cases, however, one or more 

variables may be more costly to measure, such as dioxin concentrations in soil or blood 

levels.  The ability to utilize information on this endogeneity may reduce sampling and 

analytical costs, improve study accuracy, and lead to more efficient and effective 

environmental remediation. 

In the context of climate studies, the methods used herein are broadly applicable 

to other regions of the world.  Understanding and predicting spatial patterns in East 

African precipitation is highly complex due to changing seasonal patterns and widely 

varying topography in this region of the world.  The univariate statistical method of LOK 

proved to be most effective for mapping precipitation patterns in East Africa due to the 

complexity of causal factors and their influence on precipitation patterns in the region.  

However, multivariate, spatially explicit statistical methods are expected to prove more 

effective in other regions of the world with less variable seasonality and topography over 

space, such as the North America plain states, or larger, more spatially contiguous 

moisture sources, such as the Congo Basin in Central Africa.  Furthermore, the 
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combined approaches of spatially explicit regression modeling and interpolation 

methods yield not only improved prediction surfaces, but also better understanding of 

the factors that influence precipitation patterns over space. 
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APPENDIX  Case Study Results 

Table A-1. Summary of regression modeling results.  
 
Month Method Independent Variable Estimate St. Error t value Pr(>|t|) 
Jan-84 OLS (Intercept) -1.3530 0.6059 -2.2330 0.0278 * 

ndvi842 -1.5500 0.6857 -2.2610 0.0259 * 
dem9km 0.0003 0.0003 1.1930 0.2358 
p9km -0.2401 0.1573 -1.5260 0.1302 
q9km 0.0468 0.1590 0.2950 0.7690 
curv9km -50.6300 93.3400 -0.5420 0.5887 
d2lv300 10.2200 5.4080 1.8890 0.0618 . 
d2lv450 3.7850 1.5980 2.3690 0.0198 * 
d2lv600 0.6514 0.5481 1.1890 0.2375 
d2c500 1.1610 0.2960 3.9210 0.0002 *** 
I(d2lv300 * dist2lv) -0.0271 0.0194 -1.3990 0.1649 

    I(d2lv450 * dist2lv) -0.0081 0.0035 -2.3260 0.0221 * 
Apr-84 SARlag (Intercept) -1.9160 0.4924 -3.8910 0.0001 *** 

ndvi845 0.7846 0.4462 1.7584 0.0787 . 
dem9km 0.0001 0.0002 0.5272 0.5981 
p9km -0.0479 0.1241 -0.3864 0.6992 
q9km 0.2024 0.1256 1.6123 0.1069 
curv9km -136.4866 72.5866 -1.8803 0.0601 . 
d2lv300 1.4931 0.4961 3.0094 0.0026 ** 
d2lv450 0.9401 0.4808 1.9552 0.0506 . 
d2lv600 1.0393 0.4441 2.3404 0.0193 * 
d2c500 0.3932 0.1891 2.0787 0.0376 * 

    Rho 0.6040 0.1017 5.9358 0.0000 *** 
Aug-84 OLS (Intercept) -2.1604 0.4720 -4.5770 0.0000 *** 

ndvi849 0.7530 0.5121 1.4710 0.1446 
dem1km 0.0006 0.0002 3.2120 0.0018 ** 
p1km -0.0632 0.1242 -0.5090 0.6119 
q1km 0.1014 0.1205 0.8420 0.4020 
curv1km -3.9075 6.7899 -0.5750 0.5663 
d2lv300 -1.5345 4.1207 -0.3720 0.7104 
d2lv450 3.3980 1.2118 2.8040 0.0061 ** 
d2lv600 -0.1001 0.4035 -0.2480 0.8046 
d2c500 0.4681 0.2371 1.9740 0.0511 . 
I(d2lv300 * dist2lv) 0.0116 0.0148 0.7880 0.4327 

    I(d2lv450 * dist2lv) -0.0076 0.0026 -2.8860 0.0048 ** 
Nov-84 SARlag (Intercept) -1.4962 0.6446 -2.3211 0.0203 * 

ndvi8412 -0.1582 0.6878 -0.2300 0.8181 
dem9km 0.0001 0.0002 0.4865 0.6266 
p9km -0.3114 0.1415 -2.2008 0.0278 * 
q9km -0.0247 0.1390 -0.1776 0.8591 
curv9km 66.7779 81.0492 0.8239 0.4100 
d2lv300 1.4101 0.5406 2.6082 0.0091 ** 
d2lv450 0.7143 0.5338 1.3382 0.1808 
d2lv600 1.2727 0.4849 2.6246 0.0087 ** 
d2c500 0.7044 0.2504 2.8133 0.0049 ** 

    Rho 0.2500 0.1629 1.5348 0.1248   



153 
 

Table A-1. Summary of regression modeling results (Continued).  
 

Month Method Independent Variable Estimate St. Error t value Pr(>|t|) 
Jan-85 SARlag (Intercept) -0.7867 0.6318 -1.2450 0.2131 

ndvi852 0.5605 0.5799 0.9665 0.3338 
dem1km -0.0002 0.0002 -0.7656 0.4439 
p1km 0.0418 0.1515 0.2757 0.7828 
q1km 0.4667 0.1441 3.2398 0.0012 ** 
curv1km 12.2468 8.7368 1.4018 0.1610 
d2lv300 -4.8020 4.5302 -1.0600 0.2891 
d2lv450 3.3218 1.5306 2.1702 0.0300 * 
d2lv600 0.2569 0.5711 0.4498 0.6529 
d2c500 0.3788 0.2664 1.4220 0.1550 
I(d2lv300 * dist2lv) 0.0218 0.0161 1.3515 0.1765 
I(d2lv450 * dist2lv) -0.0072 0.0033 -2.1659 0.0303 * 

    Rho 0.2970 0.1613 1.8406 0.0657 . 
Apr-85 SARlag (Intercept) -2.0913 0.6588 -3.1744 0.0015 ** 

ndvi855 -0.2445 0.7459 -0.3277 0.7431 
dem1km 0.0005 0.0002 2.5010 0.0124 * 
p1km 0.1716 0.1474 1.1637 0.2446 
q1km 0.2458 0.1510 1.6278 0.1036 
curv1km -6.1177 8.3879 -0.7294 0.4658 
d2lv300 1.5083 0.5984 2.5206 0.0117 * 
d2lv450 1.0736 0.5685 1.8883 0.0590 . 
d2lv600 1.1885 0.5218 2.2777 0.0227 * 
d2c500 0.2507 0.2290 1.0947 0.2736 

    Rho 0.6349 0.1050 6.0476 0.0000 *** 
Aug-85 SARlag (Intercept) -1.0773 0.4340 -2.4820 0.0131 * 

ndvi859 0.9904 0.4516 2.1929 0.0283 * 
dem9km 0.0005 0.0002 3.0242 0.0025 ** 
p9km 0.0794 0.1078 0.7373 0.4610 
q9km 0.2018 0.1082 1.8647 0.0622 . 
curv9km -9.1431 64.7750 -0.1412 0.8878 
d2lv300 0.1276 0.4247 0.3005 0.7638 
d2lv450 -0.3907 0.3993 -0.9787 0.3277 
d2lv600 -0.4021 0.3687 -1.0904 0.2755 
d2c500 -0.0420 0.2040 -0.2057 0.8370 

    Rho 0.4170 0.1329 3.1382 0.0017 ** 
Nov-85 OLS (Intercept) -2.7490 0.6493 -4.2330 0.0001 *** 

ndvi8512 2.2120 0.5926 3.7330 0.0003 *** 
dem9km -0.0004 0.0002 -1.4950 0.1383 
p9km -0.0934 0.1640 -0.5690 0.5705 
q9km -0.0210 0.1629 -0.1290 0.8976 
curv9km 177.2000 94.1500 1.8820 0.0629 . 
d2lv300 2.2380 0.6147 3.6410 0.0004 *** 
d2lv450 1.6200 0.6146 2.6360 0.0098 ** 
d2lv600 1.5390 0.5507 2.7940 0.0063 ** 

    d2c500 0.9699 0.2356 4.1160 0.0001 *** 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1  
Bolded variables are significant. 
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Figure A-1.  January 1984 Average monthly precipitation maps generated using LOK 
(top left), UK (top right), UKIV (bottom left), and regression techniques (either ordinary 
least squares or spatial lag models, as indicated; bottom right). 
 
 
  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression   Universal Kriging with IV
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Figure A-2.  April 1984 Average monthly precipitation maps generated using LOK (top 
left), UK (top right), UKIV (bottom left), and regression techniques (either ordinary least 
squares or spatial lag models, as indicated; bottom right).  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression   Universal Kriging with IV
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Figure A-3.  August 1984 Average monthly precipitation maps generated using LOK 
(top left), UK (top right), UKIV (bottom left), and regression techniques (either ordinary 
least squares or spatial lag models, as indicated; bottom right).  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression   Universal Kriging with IV
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Figure A-4.  November 1984 Average monthly precipitation maps generated using 
LOK (top left), UK (top right), UKIV (bottom left), and regression techniques (either 
ordinary least squares or spatial lag models, as indicated; bottom right).  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression   Universal Kriging with IV
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Figure A-5.  January 1985 Average monthly precipitation maps generated using LOK 
(top left), UK (top right), UKIV (bottom left), and regression techniques (either ordinary 
least squares or spatial lag models, as indicated; bottom right).  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression   Universal Kriging with IV
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Figure A-6.  April 1985 Average monthly precipitation maps generated using LOK (top 
left), UK (top right), UKIV (bottom left), and regression techniques (either ordinary least 
squares or spatial lag models, as indicated; bottom right).  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression   Universal Kriging with IV
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Figure A-7.  August 1985 Average monthly precipitation maps generated using LOK 
(top left), UK (top right), UKIV (bottom left), and regression techniques (either ordinary 
least squares or spatial lag models, as indicated; bottom right).  

  Universal Kriging with IV

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression 
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Figure A-8.  November 1985 Average monthly precipitation maps generated using 
LOK (top left), UK (top right), UKIV (bottom left), and regression techniques (either 
ordinary least squares or spatial lag models, as indicated; bottom right).  

  Universal Kriging with IV

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression 
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Figure A-9.  January 1984 Maps of significant cross validation residuals  
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
 

  

Ordinary Kriging (nn=9) Universal Kriging 

 
Spatial Regression 

Universal Kriging with IV 
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Figure A-10.  April 1984 Maps of significant cross validation residuals 
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
 

  

Ordinary Kriging (nn=9) Universal Kriging 

 
Spatial Regression Universal Kriging with IV 
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Figure A-11.  August 1984 Maps of significant cross validation residuals 
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
  

Ordinary Kriging (nn=9) Universal Kriging 

 
Spatial Regression Universal Kriging with IV 
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Figure A-12.  November 1984 Maps of significant cross validation residuals 
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression Universal Kriging with IV 
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Figure A-13.  January 1985 Maps of significant cross validation residuals 
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
 

  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression Universal Kriging with IV 
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Figure A-14.  April 1985 Maps of significant cross validation residuals 
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
 

  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression Universal Kriging with IV 
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Figure A-15.  August 1985 Maps of significant cross validation residuals 
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression Universal Kriging with IV 
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Figure A-16.  November 1985 Maps of significant cross validation residuals 
(|z-score|>2) for LOK (top left), UK (top right), UKIV (bottom left), and regression 
residuals (for regression model; bottom right). 
  

Ordinary Kriging (nn=9) Universal Kriging 

Spatial Regression Universal Kriging with IV 
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Figure A-17.  Maps of CRU residuals in 1984.  Significantly high residuals (zscore > 2) 
are shown in red, and significantly low residuals (zscore < -2) are shown in blue. 
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Figure A-18.  Maps of CRU residuals in 1985.  Significantly high residuals (zscore > 2) 
are shown in red, and significantly low residuals (zscore < -2) are shown in blue. 
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