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ABSTRACT

Thermodynamics is that branch of science which treatis of energy
transformations. As such it is a very general science. The generality
of the First Law of Thermodynamics is well known. Energy must be conserved.
Even the student of a high school physics course is familiar with this law.
The generality of the Second law of Thermodynamics, however, is lost in
the obscurity of idealized thermal machines and heat power cycles.

It is unfortunate that the generality of the Second Law should be
lost by such close association with only heat energy transformations. The
Second law is applicable in all systems Jjust as is the First Law. The
Second Law must hold for all processes from the irreversible flow of water
down a hill, to the smallest chemical reaction that takes place inside
animal and plant life. If the Second Law is to be placed on a level with
the First Law, the obscurity with which the Second Law is clothed must be
eliminated. This can only be done if the association of the Second Law
with heat engine cycles is removed. This can be done.

The First Law for any system may be written as a Pfaffian equation.
By utilizing the properties of Pfaffian equations and the directional
principles that are observed in natural processes, the Second Law may be
derived strictly from mathematical considerations of the First lLaw. This
is what has been done in this thesis.

The procedure described above has been carried out for adiabatic
systems of constant composition, systems of constant composition in which
no work is done, chemical systems of varying composition, electrical

systems, and mechanical systems.



The analysis of these various systems shows conclusively that the
entropy cannot decrease in an isolated system. Thus the directional
characteristics of processes is found to be the same as predicted by
classical thermodynamic methods, but it has been found without the
introduction of thermal machines. Thus the Second Law is directly
applicable to aﬁy process without first reducing the process to an equiv-
alent heat engine cycle. This removes the association of the Second Law

with heat energy transfers and the generality of the Second lLaw is increased.
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INTRODUCTION

Thermodynamics is that branch of science which treats of the laws
vhich govern transformations of emergy. It is based on two general
laws of nature, the first and second laws of thermodynamics.

The First Law of Thermodynamics may be applied to any system. It
states that when any change of state is accomplished, a certain energy
balance must hold. This energy balance may be written as follows:

dQ=dEHaw
Where dQ is the heat transferred to the system during the process, dW is
the work transferred fram the system during the process, and dE is the
change in stored energy of the system dﬁring the process.

The First lLaw written in this form is nothing more than a statement
of the law of conservation of energy. Conformance of a given hypothetical
process to the law of conservattion of energy, however, is no guarantee
that this process is possible. There are certain directional laws which
have been observed in the physical world. For example, when bodies at
different temperatures are placed in contact, the temperatures of the
bodies always approach a common value; water always runs down hill;
people always grow old; the reverse of these processes is never observed.
It would be possible to reverse many of these processes and not violate the
law of conservation of energy. Thus conformance to the law of conservation
of energy is a necessary but not a sufficient condition to Justify the
possibility of a change of state.

In thermodynamics the fact that a directional law exists results in

a limitation on a change of state other than that imposed by the First Law.






Because the First law does not completely express the possibility of a
change of state, the Second Law of Thermodynamics has been formulated to
express the directional limitations imposed upon the First Law. The

steam engine had already been invented and was in operation at the time

of the first realization of this directional limitation on the First Lav.

In truth, it was the conception of idealized thermal machines which
transform heat into work and vice versa or which pump heat from one
resevoir into another that gave the first indications that these directional
limitations existed. These limitations were that heat could not be
transformed completely into work or raised from a lower to a higher state

of temperature without compensation. It was only natural that the

engineer use these same idealized thermal machines that indicated the
existence of a directional limitation to develop the Second Law, and the
classical development of the Second Law proceeded along these lines. It
was, however, inevitable that someone would object to the introduction of
idealized thermal machines to establish the Second law, and these objections
are not without foundation. It would seem much more desirable to establish
the Second Law with sound mathematics thus making the law directly appli-
cable to a general system rether than simply thermal machines.

A mathematical development of the Second Law has been made possible
by the principle of Carathdodory. Carathéodory enalysed this problem and
showed that it was sufficlient to know the existence of some impossible
processes to derive the Second Law. It must be shown mathematically that
there are states in the vicinity of any given state which are inaccessible
because of the restrictions placed upon the change of state. This problem

-can be solved by the differential equations studied by Pfaff.



PROPERTIES OF PFAFFIAN EQUATIONS

Pfaffian equations are expressions of various functions in space.
There are two types of Pfaffian equations. One type of Pfaffian equation
results in an infinite number of solutions ¢(x,y,z) = constant. This
describes parametrically an infinite number of surfaces in space. Other
types of Pfaffian equations do not have this property. There are physical
examples which describe space distributions of this type. Consider the
space distribution which would result if 8 x 11 sheets of paper were
placed in an 8 x 11 box. Compare this space distribution to the distri-
bution which would result if 1 x 1 squares of paper were placedvat random
in the same box. These two space distributions are analogous to the
space distributions of two types of Pfaffian equations. The 8 x 11 sheets
of paper form surfaces in space. The 1 x 1 squares do not.

Pfaffian equations containing solutions §(x,y,z) = constant are
mathematical expressions of some of the most common physical processes.
It will be shown later that the First Law of Thermodynamics may be written
in the form of a Pfaffian equation. Then from considerations of the
properties of Pfaffian equations and the use of Carathéodory's principle,
which will be stated later, it is possible to derive the Second Law. A
knowledge of the properties of Pfaffian equations is necessary before
this procedure can be followed.

Consider first a Pfaffian equation of two variables, x and y.

dA = Xdx+Ydy (1)

where X and Y are each functions of both x and y.



If the restriction that A be constant is placed on this equation,

the ordinary differential equation

dy __X
ax~ ¥ (2)

is obtained.

Bquation (2) may be integrated and y may be solved for in terms of
x or ‘vice versa. Thus if A is constant only one of the variables may be
independent. The differential equation (2) has an infinite number of
solutions §(x,y) equals a constant, representing a set of curves defined
implicitly by 0 in the x-y plane. Now, since the restriction that A be
constant has been placed on any change of position in the x-y plane, all
those points which do not 1ie on the curve A equals a constant are not
accessible from a point which does lie on this curve. What happens if
this restriction is removed? How is the solution of this equation

affected by a change in A? It can be shown that if §(x,y) equals a
constant, then

a = gdx-} %dy: o , (3)
This equation must satisfy the same conditions expresscd by the original
Pfaffian equation that

dA=Xdx+Ydy=Q

Thus if the two equations are to be equal
Yy

ox 2
or
=, 90 d
dA=) ax dx+xa—$ dy
dA=X\d¢ (4)

It has been shown then that each Pfaffian equation of two variables has

&n integrating denominator such that %—f- is a perfect differential.



Examine a Pfaffian equation of three variables,

dA=XdX+Ydy+2Zdz (5)

where X, Y, and Z are all functions of both x and y. For A equal to a
constant, equation (5) defines surfaces in X-y-z space. z is not an

independent variable and may be expressed as follows.

z=1z(x,y)
_dz dz
dz=Zdx+ o dy (6)

Equation (5) may then be expressed as
dA= [x+ Zg‘-f?']dx +[r+z%—§;]dy
or
= v/ /
dA=X"dx+Y dy (7)
where X,a.nd Ylare now each functions of only x and y.

’

Thus equation (5) reduces to the case previously studied and it can
be shown that an integrating denominator, A , exists such that %? is a
perfect differential ad. Therefore, Pfaffian equations of three variables,
only two of which are independent, have this integrating denominator and
dA = Ad¢. These Pfeffian equations defin'e surfaces in space. The
resulting Pfaffian equation of two variables which defines a curve in
the x-y plane is the curve of intersection of the surface in space and
a plane of constant z.

For Pfaffian equations of three or more independent variables this
integrating denominator does not exist. Pfaffian equations of this type
do not form surfaces in space. That these Pfaffians do not form surfaces
in space is easily demonstrated by choosing X,y, and z as the three
independent variables in x-y-z space. It is obvious that once x and y
are chosen Q(x,y,z) cannot describe a surface in space if z is allowed

to take on any arbitrary value. That these Pfaffians do not have an

integrating denominator may be shown mathematically.



Consider the Pfaffian equation

dA=—ydx +xdy +Kdz (8)

where k is a constant. If it were possible to express dA in the form
Nd¢, where X\ and ¢ are functions of x, y, and z, the following
equation would result:
dA=22ax +)2%4y + xg-de
X oy 2 (9)

By equating coefficients in equations (8) and (9) it may be shown that

__y _x bk

ax A, 3y X oz A
Taking partial derivitives of the above equalities gives:

20 - 2(8)=-2(%)
yoz z y (10)
_EQ (x ( )
0xdz A ax (11)
2. _23 (x)=9 (%
0xdy ay(x) ax(k) (12)
Equation (10) shows that
b 1 (1
& x)"‘a‘y(x) (13)
but d’% ——2 O\. Hence xgz = g;
In a similar manner equations (11) and (12) give respectively:
dh K A
b bx
(14)
= a’+y

(15)



By substituting g%} and g%%-from equations (13) and (14) into equation (15)
it is found that A=0. Thus Pfaffian equations of three independent
variasbles do not have an integrating denominator such that dA=XAd#®.

This knowledge of Pfaffian equations gives &n insight into what
needs to be done in any physical application of a Pfaffian equation. If
a quantity can be defined by a Pfaffian equation of two independent vari-
ables, then any differential change in this quantity may be expressed as
Ado. It remains then only to express Ad¢ in terms of known, or

i1f need be, new properties.



MATHEMATICAL ANALYSIS OF THE FIRST LAW
FOR CONSTANT COMPOSITION ADIABATIC SYSTEMS

Since the Second Law of Thermodynamics places limitations on the
First Law, it would seem logical to derive the Second Law from
mathematical considerations of the First Law. Carathéodory's showed that
it was sufficient to know of the existence of some impossible processes
to derive the Second Law. Moreover, the lmpossible processes are readily
obtainable by examining Joule's experiments. They consist of bringing a
system in an adiabatic enclosure from one equilibrium state to another by
doing external work. It is an elementary experience that the work cannot
be regained by reversing the process. It can therefore be inferred that
there exist adiabatically inaccessible states in the vicinity of a given
state. This is Carathéodory's principle.

The obvious step now is to comstruct an adiabatic system in which
Q may be expressed as a Pfaffian equation of two independent variables.
To do this it is necessary to consider & system in which complete control
of the variables of the system is possible. This system must also be
isolated from all external effects thereby eliminating any changes of
state in the system other than those produced by controlled manipulation
of the variables of the system.

To maintain control over all the variasbles of a system it is
necessary to eliminate the use of rigid bodies and incompressible fluids
in the system. This leads to the selection of gaseous fluids as the
working substance in the desired system.

To isolate this system it would be possible to enclose the gaseous
fluids in a container such as & thermos flask and thereby eliminate any

external effect on the fluid to a high degree of approximation.



The use of such containers, however, eliminates the desired control
over the variables of the system. A new kind of enclosure must be
found, and it is necessary to introduce the idea of walls. These walls
are to be so thin that they play no part in the physical behavior of
the system other than to define the interaction between two neighboring
fluids. These walls may also be moved at will to effect changes in the
pressure and volume of the fluid. It is necessary to define two types
of walls.

An adiabatic wall is defined by the property that equilibrium of
a fluid enclosed by it is not disturbed by any external process as long
as no pert of the wall is moved. This type of wall isolates the system
but does not limit the desired control over the variables of the system.

It will be necessary later to allow for the transfer of heat energy
from one fluid to another. This cannot be done across an adiabatic wall.
Therefore, it is necessary to define another type of wall. This second
type of wall is the diathermanous wall, defined by the following
property: flulds separated by a diathermanous wall are in equilibrium
only if the temperature of the two fluids is the same. The equation
of state of a perfect gas then yields the desired relationship between
the pressures and volumes of these two fluids. The equation of state
of a perfect gas states that:

RY,=NRT

RV: =nzR, 1z
vhere P, V, n, R, and T have their usual meaning. Now if T, equals Tp

and both fluids ere composed of the same amount of the seme substance then

P1Vy = PV (16)
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This is the expression of thermal contact. The wall is introduced only
to symbolize the impossibility of exchange of material.
It is now possible to apply the properties of Pfaffian equations
along with Carathéodory's principle to derive the Second Law of
Thermodynamics. Consider two equal masses of the same fluid enclosed by

adiabatic walls and separated by a diathermanous wall.

Fluid 1 Fluid 2

M;P;T MoPoT

Diathermanous wall

Adiabatic wall

Figure 1.

Either of these two fluids constitute a system and the First law
may be applied.

dQ; = dE;+dw,

dQp = dE,+dWp (17)
If movement of the adiabatic walls is restricted to extremely slow
"quasi-static" changes the work done on the fluid enclosed by the
adisbatic wells is

aw = Pav (18)
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dq, =dE,+P,av,

dQ, =dE,+PpaV, (19)

These relationships may be stated in a more convenient form to
describe Pfaffian equations of two independent variables in a temperature-
volume plane.

Since the internal energy is a function of any two independent

variables, V and T may be selected and dE may be expressed as follows:

dE-(g—E) dv+ 5—-)

Bquations (19) then take the following form:

1 |
dQ.-( )dT. aV'),r.q-l:;dcn/,

~ -

EO

dq =(°E¢) L+ "—8) p|d

¢ ﬁzvf‘ vt e_'\* (20)
Now the total heat energy added to the combined system must be

the sum of the heat energies added to the two fluids, and this total

heat energy must be zero since the combined system is entirely surrounded

by adiabatic walls. Therefore,
aQ = dQ,+dQ3=0

aQ =[(ai) + p:lav. + [ 8 ) + p]dv¢ + [(f;—f')\,r-(‘;%!)vz}ho (21)

In equation (21), T} and Tp no longer need be distinguished since the

or

diathermanous wall between the two fluids makes Ty= To=T.
Equation (21) describes & Pfaffian equation of two independent
variables in V,-Vo-T space. This may not be immediately obvious, but

congsider wvhat happens if arbitrary values are assigned to any two of



the variables of the two fluids, say V] and T;. The equation of state

of a perfect gas establishes Py. To equals T), and the equation of

state also establishes the product Pp Vo. Since the system is adiabatic
these two properties cannot vary independently in the second fluid

(i.e., 1f P, and Vp can only be varied by menipulation of the adiabatic
walls, then a definite value of Pp corresponds to & value of Vo). Thus
only one value of Vo and a corresponding velue of Pp can possibly meintain
the temperature equilibrium required by the diathermanous wall and
thermal isolation required by the adiabatic walls, and Vo is not an
independent variable.

Since equation (21) is a Pfaffian equation of two independent
variables, it should be possible to construct surfaces in V;-Vo-T space
for 4Q = 0.

The shape of these surfaces may be determined by examining the
lines of intersection of the adiabatic surfaces and the V;-Vp, V,-T,
and Vpo-T planes.

If V2 is held constant and V; is increased, T will decrease. As
Vo approaches infinity, T approaches zero. As Vé approaches zero, T
approaches infinity.

8imilarly for V; and T. As Vl approeches infinity, T approaches
zero. As V] approaches zero, T approaches infinity.

It is then obvious that for a constant temperature plane Vi approaches
zero as Vo approaches infinity and V) approaches infinity as V, approaches
zero. Thus these surfaces vanish to infinity in the vicinity of the
Vy-Vo, V;-T, and V2-T planes, but it is possible to coustruct these
surfaces for points not in the vicinity of these three planes. These

surfaces have the shape shown in Figure 2.



i3

Figure 2.

Adiabatic Surface in V)-V,-T Space
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Since dQj, dQ2, aud dQ i.ave been expressed as Pfaffian equations
of two independent variables, it is possible to express each of these
quantities in terms of Z\i¢.

dQ1=X;49;

aQe=N2dd2

dQ=Ad¢
But

dQ=dQ;+dx = 0
Hence

Add=)1d¢; + Npdbo= 0 (22)

Equation (22) can hold only if ¢ is a function of ¢; and ¢2.
Therefore,

dé= %&doc + g%;“’e
Equating coefficients of the exact differential d gives:

20 =N 3_¢_ =de

0P, A > 3bo A

Noyr 0 is an independent property of the combined system and 01 is
an independent property of the first fluid. Since )‘,V)‘ is the partial
derivitive of ¢ with respect to ¢, and since § is a function only of ¢,
and 02 ’)ji is dependent of the other properties of the system and cannot
therefore be a function of the teinperature s from which

st)=0 » (39 = (23)
Carrying out the differentiation of equation (23), the following results

are obtained:

1 .1 M 1A
N Fl"l- bV %’Xﬁ (24)
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Now M) is a varieble of the first fluid only and is therefore only
dependent on the properties of that fluid. Likewise A2 is a function
only of the properties of the second fluid. The equality of equation (24)

holds only if both —;.- -g%.-l and -;‘—2 %‘ depend only on T. Hence

3N _ L g _ I oA _
Wir s A i 3 il wlly = =#(7) (25)
It 1s possible to rewrite equation (25) in the following form:

It is now possible to express Add in terms of known properties of the
system. From equation (26)
InA= /{-‘(T)df +c (27)
X has now been expressed as a function of temperature and some
constant of integration, but it is possible to determine the nature of
this constant. Examine a change of state in the A-¢§ plane. If dQ=Ad},

then the area under the curve represents the heat transferred to or from

the system.

A

Figure 3. ¢



It is possible to represent constant temperature lines as any
general lines in the A—-¢ plane. The actual slope and orientation of
the constant temperature lines will prove unimportant. It is already
known that A is & function of temperature and the above diagrem shows
that X\ can then be at most a function of one other independent variable.
This varisble is arbitrary, but it will prove desirable to use §. Thus
equation (27) may be expressed as a function of T and §. By re-exeamining
the diagram it is possible to determine what this function of ¢ 1s. It
is evident that A can be made to vary as a function of §. Then InX must
be proportional to INnP($). Therefore equation (27) may be written:
Inx= ﬁ(‘r) daT + nf(9)
A= Qe/ #(T)dT (28)
vhere §=+(¢) .
It is now possible to define a thermodynamic temperature as that

‘part of A\ which is & function of T.

(1) =ce/FT4T (29)

where the constant C may be fixed by prescribing the value of T,-T, for
two reproducible states of some normal substance (e.g., Ty-T, = 2129F if
T; corresponds to the boilixig point and To the freezing point of water
at one atmosphere of pressure).

A new property, entropy, may be defined as follows:

s(¢)= OL/IM (30)
This new property is defined such that

dQ=xd¢ =TdS
Similarly

dQ, =\dé, =T,dS,

dQ, =X 2d92=T.dS,
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The above equations refer to "quasi-static" processes which may
.be represented as sequences of equilibrium states. Ideallyall heat
transfers can be made by a succession of equilibrium states, and so
the above results are quite general and refer to all such reversible
heat transfers.

dQr=1TdS (31)

To obtain a knowledge of real irreversible phenomena, Carathéodory's
principle must be applied considering & finite transition from an initial
state (V,, S,) to a final state (V,S) where V equals V1+Vo. It is
possible to reach the latter state in two steps: first changing the
volume "quasi-statically” and adiabatically from V, to V the entropy
remaining constant, equal to S,, and then changing the state adiabatically
by the addition of external work at constant volume, so that §, goes over
to S. This second change of state could be made by stirring the fluid
with a paddle wheel. It should be noted here that work must be added to
the system since it is impossible to extract energy from a system during
a constant volume adiabatic process. The application of Carathéodory's
principle may be more easily understood if these two changes of state are

pictured on temperature-volume diagrams.

Figure 3
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Figure 4 represents step one of the two steps discussed previously.
It is obvious that any state (V,Sy) is accessible from any initial state
(Vo, So) since the volumes of the two fluids are arbitrarily changeable
adiabatically by the definition of adiabatic walls. But Carathéodory's
principle states that there are adiabatically inaccessible states in the
vicinity of any given state. Therefore, step two must provide the desired
restriction on the First lLaw.

Examine step two on & temperature-volume diagrem.

Figure 5.

Figure 5 shows that once the state (V,S,) has been reached from
any initial state by step one, there are two possible relationships
between S and S,, that is S=S,or S=S,. One of these conditions is
then not possible or else all states would be accessible to any given

date by adiabatic processes.
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The actual choice of sign 2= or #& depends on the choice of the
constant C in equation (29). If this constant is chosen so that T is
positive then the relationship dQ=TdS will show that the entropy never
decreases in an adiabatic system.

This fact may be seen by considering the process in which S, was
changed to S at constant volume by the addition of paddle wheel work.
There is experienced during this process a rise of temperature in the system.
Thus the initial temperature is raised to some final temperature T. This
temperature T and the volume of the system fix all the other properties
of the system including the entropy, S. This value of entropy will be
the same at this given volume and temperature regardless of how this
state is reached. But it is possible to produce this rise in temperature
by the reversible addition of heat to the system at constant volume until
the temperature, T, is reached. Since this heat is added to the system,
it is a positive quantity. T has already been made a positive quantity
by the coice of the constant C in equation (29). Therefore, the relation-
ship dQ=TdS shows that dS must also be a positive quantity, and it has
been shown that the entropy never decreases in an adiabatic system.

Consider the relationship dQ=TdS in a different way. Since T is
always positive, then the only way the entropy can decrease is to remove
heat from a system. Also since the entropy can increase but never decrease
in an adiabatic system, dQ = TdS for any process. The equality of course
holding in reversible processes such &8 in the hypothetical system used
to derive the relationship dQ=TdS. Hence for any procee;sd?Q £dS. TFor

any cycle, integrating around the cycle,

daQ
f? < @dS
or

dQ
Fr=c



since entropy is a property and has zero change in a cycle. Hence the
inequality of Clausius has also been proven without the use of idealized
thermal machines.

Thus by the introduction of Pfaffian equations and Carathéodory's
principle it is possible to derive the Second Law strictly from
mathematical considerations of the First Law. A development similaxr to

the one presented here has been presented by Born.:L

1. Born, Max, Natural Philosophy of Cause and Chance,
(New York:Oxford University Press, 1949), pp. 31-45.
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MATHEMATICAL ANALYSIS OF THE FIRST LAW
FOR CONSTANT COMPOSITION SYSTEMS IN WHICH NO WORK IS DONE

It is surprising that the use of the properties of Pfaffian equations
has ended with the previous development since the introduction of Pfaffian
principles introduces new areas of thought in other phases of the First
Iaw. The Second lLaw is directly concerned with irreversibility. Therefore
it was natural to examine irreversible phenomena to find the restrictions
placed on the First Law. Joule's experiments indicated that there were
adlebatically inaccessible states in the vicinity of any given state. This
phenomeronwas then used to derive the Second lLaw. But Joule's experiments
do not uniquely describe irreversibility. There exist other irreversible
phenomena (e.i., a free expansion). It is obvious that if a fluid is
allowed to expand freely, it cannot be returned to its initial state
solely by the addition or removal of heat. Work must be done to compress
the fluid back to its initial volume. Therefore it cen be stated that there
exist states in the vicinity of any given state which are inaccessible if
no work is to be done on the system.

From the First lLaw

dw=dQ = dE
or if all heat trensfers are done reversibly and "quasi-statically"

aw=TdS-dE.

The work, dW, may be expressed in the form of a Pfaffian equation

of two independent variables.

w=|Er-(%§) P:lds— (-g—s)sdp (32)
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where P denotes pressure. If the correct system is selected, it
should be possible to express dW in terms of )\dd) and make a development
similay to the previous one.

To construct the desired system it 1is necessary to define two new
types of walls. The first type of wall is rigid so that no work can be
done by deforming the walls, and it is conducting so that heat energy
may be added reversibly to the system. The second type of wall requires
that the pressures of the two fluids be the same. Once again the equation
of state for a perfect gas written for the same amount of the same fluid

at the same pressure yields the desired relationship between these variables

n_v .
T To (33)

Since there is a possibility that the temperatures of two fluids separated
by this wall will be different, it is also necessary that this wall be
adiasbatic (non-conducting, non-absorbing).

Now examine two fluids enclosed by the first type of wall and

separated by the second type of wall.

= )
Low temperatursg M.T.P MoToP Low temperature
1*1 2 :
sink sink
Qi Qi
-
l v | ' | . Pressure
emperature Sou equilibrium
membrane
Rigiad
Walls

Figure 6.






Either fluid constitutes a system and the First Law may be applied

in the form of equation (32)

o= [i{88) oo - (e

avy= [~ asa)p]"s - (35an: (34)

These are Pfaffian equations of two independent variables. Thus

Wy =d$;
aWp=)df

The work of the combined system must be equal to the work of the two

separate systems, and this sum must be equal to zero since the combined

system is entirely surrounded by rigid wealls. Hence
dW=dw; = dw2= 0
= ar.
‘""[Tu ]ds, +[Ta asz ]dsa [(ap ,+ ;— Jdpso (35)

In equation (35) P1 and P> need no longer be distinguished since the wall
between the two fluids makes Py=Po=P.

Equation (35) describes a Praffian equation of two independent
variab les in S,-Sp-P space. That there are only two independent varisbles
in th1 s combined system may be demonstrated by prescribing any two of the
variab les of this system, say P and S;. Then all other properties of
fluld ome are fixed including V1. This fixes Vo also since Vp is equal to
the total volume of the combined system minus Vi, and the total volume of
the combined system is a constant. Pp is also fixed by P; and the wall
Separating the two fluids. Therefore, all the properties of fluid two are
fixed, ang Sp cannot be an independent variable.

Since equation (35) is a Pfaffian equation of two independent variables
it shoulqg be possible to construct surfaces in P-S;-8, for space dW = 0.

Th
®8€ Sux-faces take the form shovn in Figure T.
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Figure T.

Surfaces of no work in S;-S5-P Space
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Note that the variation of S; with respect to 82 in a constant
pressure plane may be found by examining the change of 81 with respect

to Sp at constant pressure.

oS c
I L

dS
()~ ™ g P

Since constant pressure may be maintained only- if heat is added
to one system when it is removed from the other and vice versa, 4dT; and
dT, must have opposite signs and the quantity %%% is always & negative
quantity. Thus in any P= constant plane the curve of intersection of
the surface of no work and this plane has & slope %%g% and this is always
negative. At a point in a constant pressure plane where Sl is large and
Sy 1s small % will be smell since heat must be removed from system 2 and
added to system 1 to accomplish this state. When S; is small and Sp is
large % will be large by similar reasoning. This determines the slopes
at these points.

To find the slope of the curve of intersection of the surface of no
work and a constant entrop_y plane, examine the change of §; with respect
to P when 8 constant. Consider the case when V, is small enough to be
negligible compared to Vl. Then V; will approximately equal the total
volume of the system which is constant. As heat is added to this system

dS will increase and may be given by

=c. 4T, dv,
Where B is the coefficient of cubical expansion l_(B_V) K is the
Y \oT/P»

coefficient of compressibility — "’—(g;)fand Cp is the specific heat at
’

constant volume.



dT _dP

Since 4V is zero and — T P

dp,
ds, =¢

i) ="

The slope of the curve of intersection of the surface of no work and

—at constant volume for & perfect gas

the constant entropy plenes decreases with increasing pressure. The surface
mey now be constructed and takes the form of Figure 7.
Since equation (35) is a Pfaffian equation of two independent

variasbles it is also possible to express dW in terms of Ad¢.

aw=adaf (36)
But
dW=dW = AW, = 0
Thus
Add =230 ) +284,= 0 (37)
Equation (37) can Lold oculy if ¢ is a function of ¢; and ¢o. Therefore,
ap= 204 3% d
¢ “' Ol"’ a 2 08
Equating coefficients of the exact differential d gives
o _ N2
3=

¢ is an independent property of the combined system and ¢; is an
independent property of the first fluid. Since ék is the partial derivitive
of ¢ with respect to ¢;, aud since § is a function only of ¢1 and ¢p, )‘}ﬁ
cannot be a function of any other property of the system and is therefore
independent of the pressure,P. The partial derivitives of A}IA and AQ'X
with respect to P must then be equal to zero.

d N\ . Xg
dp X =0, ap x =9
By carrying out the differentiation the following equality is obtained:

1 oA | oA -1
% 37 = %,3° = X 5p (38)
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A\ (-2
—_ 2 ang - a d only on P.
This equality can hold only if N P an Azb_P‘ epend only on

Therefore,

LN _ 10Xz _ 13A_
A,gT’ T N20P xb‘ﬁ"‘o(") (39)
Equation(39) may be rewritten as follows:

Oln); _ OlnA,_d1n\ _
=Ty =) (ho)

It is now possible to express Ad$ in terms of known properties.

lnd = f£(P)dP+4C

This constant can be shown to be a function of at most one other
independent variable just as was done in the previous development. This
variable is arbitrary but selecting ¢ will give the most desirable results.
Then

Inx = [#(P)AP+1n}
vhere §=1(4).
It is now possible to define a thermodynamic pressure as that part of A\
which is & function of P.

p'(p) = ceft(P)aP (81)
The value of C may be fixed by prescribing the value of Po-P; for two
reproducible states of some normal substance.

By defining another property as follows:

v(O=g/Fat (42)
it is seen that

aw = xap = Pav= 0
Similarly

aw; = Mab =Ray,

awp = Aado = RdVe
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These results are valid for all reversible changes of state and in general

awg= Pav (43)

To obtain knowledge of real phenomena it is necessary to epply a
unidirectional principle similar to that of Carathéodory's. This
principle is the previously mentioned fact that there exist states in the
vicinity of any given state which are inaccessible to the given state if
no work is to be done on or by the system.

Exemine a finite transition from an initial state (To, V,) to a
final state (T,V). It is possible to reach the final state in two steps:
first changing the temperature of the system by adding heat to or removing
heat from the system reversibly, the total volume of the system remaining
constant equal to Vo, and then changing the state with no work being done
by allowing a free expansion from V, to V, the temperature of the system
remaining constant. The first step of this transition may be pictured on

& temperature-volume diagram as follows:

T 1(m%)

(To,V)

Figure 8.
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Figure 8 shows that from any initial state (T,, V,), any other
state having the same volume, V,, is accessible by the controlled addition
or removal of heat to or from the system. But there are states which are
inaccessible in the vicinity of any given state. Therefore step two must
provide the restriction on the First Law.

Examine step two on & temperature-volume diagrem.

Tl (W) _(me) V)

V
Figure 9.

Figure 9 shows that once the state (T,V,) is reached by step one,
there are two possible relationships between Vo, and V; that is V°§V or
V,2V. One of these comiitions is not possible or all states would be
accessible to an initial state with no work being done on the system.

The actual sign = or =% depends on the choice of the constant C in equation
(41). If this constant is chosen so that P is positive, then the relation-
ship dW = P4V may be used to show which sign holds Just as was done with

dQ = T4S in the previous development.
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In systems in which no work is done the only volume change possible
is a volume change done &gainst no external forces (i.e., a free expansion).

Consider the process in which V, was changed to V by allowing a free
expansion. There 1s experienced during this process a decrease of
pressure in the system. Thus the initial pressure is decreased to some
finel pressure P. This pressure, P, and the temperature of the system
fix all the other properties of the system, including the volume, V, and
the entropy, S. This value of volume will be the same at the given
entropy and pressure regardless of how this state is reached. It is
possible to reach this state by adding heat to the system reversibly at
constant volume until the value of entropy, S, is reached, and then
expanding reversibly at constant entropy (thus doing work and decreesing
the pressure) until the state (P,S) is reached. This work is a positive
quantity. P heas already been made a positive quantity by the selection
of C in equation (41). Thus the relationship dW=PAdV shows that the
volume change must also be a positive quantity. Thus V, = V and the
volume can never decrease in an isolated system.

Consider the relationship dW=P34V in the same manner as was doné for
dQ=TdS. Since P is always positive, the only way the volume can decrease
is to add work to the system in the form of PdV work. Also since the
volume can increase but never decrease in an isolated system, dW=£PdVv
for any process. The equality of course holding in reversible processes.

Hence, for any process -d—w-.‘.dv. For any cycle, integrating around the cycle

|
aw
f'r“%v
or
aw
/?40

since volume is a state property and has zero change in a cycle.
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The above equation is more often stated that the work of & cycle is less
than or equal to the cyclic integral of PdV, but it is interesting to
note the analogous form that this equation takes to the previously derived

equation

}f Vo

The above results indicated nothing new about systems in general.
However, it is observed that application of the properties of Pfaffian
equations when applied to one term of the First Law gives different results
than the same principles when they are applied to another term. The one
result in no way contradicts the other since the relationship between the
properties of a system,

Tas = dE <4 Pav
results in the following relationship between entropy and volume:

B
Sp-S1 = Cyln %4-;(- (Vo-vq)

This relationship shows that when volume increases the entropy increases
also. However, an increase in entropy is possible without a corresponding
increase in volume. Thus the increase in entropy is a more general
criterion for irreversibility than the increase in volume, and the state-
ment that the entropy change must be 2 0 in any isolated system is

not violated.
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MATHEMATICAL ANALYSIS OF THE FIRST LAW IN SYSTEMS
OF VARYING COMPOSITION WHERE NO WORK IS DONE

Until now only systems involving constant quantities of mass have
been considered. There exist, however, systems in which the mass is not
constant, It might be possible to examine these systems in the same
manner as has been done in the previous systems. It was shown in the
previous developments where all the masses were constant

TdS=4E + Pav
or

dE = TdS-Pdv. (b4)

In these systems the internal energy may be expressed as a
function of S and V. 1In a system where the masses of various substances
are not constant, E may be expressed as a function of S, V, and the
various masses, m; :

E=£(S,V,m),mp,-=-=- mp)

Hence for small changes of entropy, volume, and composition:
E OE -] 3
dE:@) +(.—) _’_ _) - - - - u
S V)"h -—- oV S’m"m‘--- am' V,S,me"' (45)

By comparing coefficients in equations (44) and (45), it is seen that

(%)V,ny,m,---"-r (46)
(?V)S,m.,ma ...=—P (47)

as) )
If ( Om, S,V, » is defined as follows:

(&) -
El S, V,% - - pl
then equation (45) takes the form

dE = Tds-Pav + lﬁ Py oy (48)
=)
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The A in the above equation is called the chemical potential. Its
similarity to the potentials temperature and pressure in equation (48)
is obvious.

Equation (48) is then the general relationship between properties
of a system of varying composition. Consider a system of only one kind
of mass. If Mdm for this mass is denoted by dM, then equation (48)
takes the form

dM=dE 4 P4V-Tds

d"’[@é)s + p]dv +[(g—§ v"T] ds (49)

It will later be desirable to construct surfaces of constant M in

or

'I'-V.-Va space. These surfaces may be constructed by examining the variation
of each of the properties with respect to another when the third is held
constant. The above equations do not indicate the variance of one
variable with respect to another in T-V space. Therefore, another
relationship between the variables must be found. This relationship
exists in the form of free and available energies.

By definition, the work done in a reversible isothermal process is
equal to the decrease cof the maximum work function of the systemn.

dWw = -dr
From the First Law, for a reversible isothermal process

-dWw = 4E-TAdS
Thus,

dF = dE-TdS.
Since the temperature is constant, it follows that

aF = a(E-TS)
or,

F=E-TS. (50)
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Thus it is seen that the maximum work function, F, is a property of a
system. Equation (50) is sometimes taken to be the definition of the
maximum work function.

By definition, the work obtainable in a reversible isothermal
process at constant pressure is equal to the decrease in the free
energy of the system. It will be shown that the free energy is also a
property of a system. The free energy of a system must necessarily be
less than the maximum work function of a system since in any process at
constant pressure where there is a volume change, part of the total work
available must be used in changing the volume at constant pressure. That
part of the total aveilable work which may be utilized for other purposes
is the free energy, G.

From the definition of free energy

dHﬁ;P = -dG.
But

AWy p=diy- Wy
where dHV denotes the work done in changing the volume at constent
pressure. Therefore,

aG = dF + AV
or since pressure is constant

4G = a(F+PV)

4G = a(E-TS+PV)

G = E-TS+PV. (51)

Equation (51) is the definition of free energy. This free energy
is defined such that the work for a constant temperature, constent pressure
process is -4G, However, equation (51) shows that G is & property of the
system, and as such it refers not only to constant temperature, constant

pressure processes but all processes in general.

¥
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Then for any general process
dG = (aE-TaS+Pav)-SaT+VdP (52)

If once more systems of varying composition are considered where

dE = TdS-PaV + = flydmy
4=/

the expression in parenthesis in equation (52) becomes simply

n
£ hidm;
Thus
n
dG = -SAT+VAP +§p;dm; (53)
‘l

Consider equation (53) for a single homogeneous substance.

dG = -SAT+VAP +pidm (5%)

Equation (54) expresses the desired relationship between the

variables, temperature, pressure, and mass.

(g—$)am ==S (‘g'g)'r,n“ v (g—:)'r,?’ H

b?agll’ = -(3%)7,.,.*(2"4).;... (55)
ﬁ‘%‘n = ’(%%)npg(glll')gm (56)
b%ag'm = (:—:)p,'r = (3%)1;,,. (57)

Equation (56) shows that at constant pressure and mass R veries
inversely and linearly with temperature. Equation (57) shows that at
constant temperature and mass p varies directly and linearly with pressure.

This information will be utilized later to construct surfaces of constant

M in T-\{-Ve space.
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Consider the following system composed of an initial amount of
gaseous fluid contained inside two volumes which are separated by a

rigid super-conductive semi-permeable membrane.

High temperature source

| 1 I H |
vai v Rigid Super
n LY o Conductive Semi-
Sontrol },«”// i, B, T Moy BoL Permeable Membranec
volume #

lQO Qo Control
— e B NI

Low temperature sinks

Figure 10.

These two masses of the same fluid are at tpe same temperature
and pressure and have the same B and therefore also the same Msmu
It is possible to add ﬁeat reversibly to each of the control volumes
and to move the walls containing the two fluids at will. In this
manner M may be held constant in the combined system by manipulation
of the temperature and pressure of the two fluids while mass is
allowed to pass from one control volum§ to the other. For each of

the control volumes,

dM,= [(gs') s+ P]dv + [(g;) - -r,] ds,
dM,= [(gsz) +P] dv, +[(%§§)ng2] dS,

or since dM; and dM, are Pfaffian equations of two independent variables
M, = Xdd,
dMa=)a¢,

For the combined system,

an= (3 e + [ +p;]ave +[(§—§:)v.—f.] ds,+  (8)

aEg)
[(35¢ V2 Te] 4% =0
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It can be shown that equation (58) is a Pfaffian equation of two
independent variables. If T is fixed in the system by adding or
removing heat and V; is changed an arbitrary amount only one value of
Vo can possibly maintain a constant M for the system and there can be no
other independent variable. It is possible to construct surfaces in
Vl-va-T space by utilizing the information that M varies inversely and
linearly with temperature and directly and linearly with pressure, and
that M must be constant in the system.

M= pm

dM = pdm +mdp
Since dm and dM are equal to zero dll must equal zero also.

The mass in V; may be increased by decreasing Vo, and increasing V;
at constant temperature. Since the pressure also must ren;ain constant
dui‘ing this process to meintain p constant, the total vol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>