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ABSTRACT

Thermodynamics is that branch of science which treats of energy

transformations. As such it is a very general science. The generality

of the First Law offiPhermodynamics is well known. Energy must be conserved.

Even the student of a high school physics course is familiar with this law.

The generality of the Second Law of Thermodynamics, however, is lost in

the obscurity of idealized thermal machines and heat power cycles.

It is unfortunate that the generality of the Second Law should be

lost by such close association with only heat energy transformations. The

Second Law is applicable in all systems Just as is the First Law. The

Second Law must hold for all processes from the irreversible flow of water

down a hill, to the smallest chemical reaction that takes place inside

animal and plant life. If the Second Law is to be placed on a level with

the First Law, the obscurity with which the Second Law is clothed must be

eliminated. This can only be done if the association of the Second Law

with heat engine cycles is removed. This can be done.

The First Law for any system may be written as a Pfaffian equation.

By utilizing the properties of Pfaffian equations and the directional

jprinciples that are observed in natural processes, the Second.Iaw may be

(ierived strictly from mathematical considerations of the First Law. This

is what has been done in this thesis.

The procedure described above has been carried out for adiabatic

systems of constant composition, systems of constant composition in which

no work is done, chemical systems of varying composition, electrical

systems, and mechanical systems.



The analysis of these various systems shows conclusively that the

entropy cannot decrease in an isolated system. Thus the directional.

characteristics of processes is found to be the same as predicted by

classical thermodynamic methods, but it has been found without the

introduction of thermal machines. Thus the Second Law is directly

applicable to any process without first reducing the process to an equiv-

alent heat engine cycle. This removes the association of the Second Law

with heat energy transfers and the generality of the Second Law is increased.
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INTRODUCTION

Thermodynamics is that branch of science which treats of the laws

which govern transformations of energy. It is based on two general

laws of nature, the first and second laws of thermodynamics.

The First Law of Thermodynamics may be applied to any system. It

states that when any change of state is accomplished, a certain energy

balance must hold. This energy balance may be written as follows:

dQ= dE+dw

Where dQ is the heat transferred to the system during the process, d" is

the work transferred fran the system during the process, and dB is the 1

change in stored energy of the system during the process.

The First Law written in this form is nothing more than a statement

of the law of conservation of energy. Conformance of a given hypothetical

process to the law of conservation of energy, however, is no guarantee

that this process is possible. There are certain directional laws which

have been observed in the physical world. For example, when bodies at

different temperatures are placed in contact, the temperatures of the

bodies always approach a common value; water always runs down hill;

people always grow old; the reverse of these processes is never observed.

It would be possible to reverse many of these processes and not violate the

law of conservation of energy. Thus conformance to the law of conservation

of energy is a necessary but not a sufficient condition to Justify the

possibility of a change of state.

In thermodynamics the fact that a directional law exists results in

a limitation on a change of state other than that imposed by the First Law.
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Because the First Law does not completely express the possibility of a

change of state, the Second Law of Thermodynamics has been formulated to

express the directional limitations imposed upon the First Law. The

steam engine had already been invented and.was in Operation at the time

of the first realization of this directional limitation on the First Law.

In truth, it was the conception of idealized thermal machines which

transform heat into work and vice versa or which pump heat from one

resevoir into another that gave the first indications that these directional

limitations existed. These limitations were that heat could not be

transformed completely into work or raised from a lower to a higher state

of temperature without compensation. It was only natural that the

engineer use these same idealized thermal machines that indicated the

existence of a directional limitation to deve10p the Second.1aw, and the

classical development of the Second Law proceeded along these lines. It

was, however, inevitable that someone would object to the introduction of

idealized thermal machines to establish the Second.law, and these Objections

are not without foundation. It would seem much more desirable to establish

the Second Law with sound.mathematics thus making the law directly appli-

cable to a general system rather than simply thermal machines.

A mathematical deve10pment of the Second.law'has been made possible

by the principle of Carathéodory. Carathéodory analysed this problem and

showed that it was sufficient to know the existence of some impossible

processes to derive the Second Law. It must be shown mathematically that

there are states in the vicinity of any given state which are inaccessible

because of the restrictions placed upon the change of state. This problem

-can be solved by the differential equations studied by Pfaff.



PROPERTIES OF PFAFFIAN EQUATIONS

Pfaffian equations are expressions of various functions in space.

There are two types of Pfaffian equations. One type of Pfaffian equation

results in an infinite number of solutions ¢(x,y,z) = constant. This

describes parametrically an infinite number of surfaces in space. Other

types of Pfaffian equations do not have this property. There are physical

examples which describe space distributions of this type. Consider the

space distribution which would result if 8 x 11 sheets of paper were

placed in an 8 x 11 box. Compare this space distribution to the distri-

bution which would result if 1 x 1 squares of paper were placed at random

in the same box. These two space distributions are analogous to the

space distributions of two types of Pfaffian equations. The 8 x 11 sheets

of paper form surfaces in space. The l x 1 squares do not.

Pfaffian equations containing solutions ¢(x,y,z) = constant are

mathematical expressions of some of the most common physical processes.

It will be shown later that the First Law oftrhermodynamics may be written

in the form of a Pfaffian equation. Then from considerations of the

pr0perties of Pfaffian equations and the use of Caratheodory's principle,

which will be stated later, it is possible to derive the Second Law. A

knowledge of the properties of Pfaffian equations is necessary'before‘

this procedure can be followed.

Consider first a Pfaffian equation of two variables, x and y.

as = de+rc1y (1)

where X and Y'are each functions of both x and y.



If the restriction that A be constant is placed on this equation,

the ordinary differential equation

4.2:-3.
dx 1 (2)

is obtained.

Equation (2) may'be integrated and y may be solved for in terms of

x or ‘vice versa. Thus if A is constant only one of the variables may be

independent. 'me differential equation (2) has an infinite number of

solutions O(x,y) equals a constant, representing a set of curves defined

implicitly by 0 in the x-y plane. Now, since the restriction that A be

constant has been placed on any change of position in the x—y plane, all

those points which do not lie on the curve A equals a constant are not

accessible from a point which does lie on this curve. What happens if

this restriction is removed? How is the solution of this equation

affected by a change in A? It can be shown that if “19?) equals a

constant, then

d0 = get” 1%,ng o . (3)

This equation must satisfy the same conditions expressed by the original

Pfaffian equation that

dA= de+Ydy : 0

Thus if the two equations are to be equal

.Y
ax ’

or

.. 19 a
dA-xaxdx+x53dy

dA=id¢ (h)

It has been shown then that each Pfaffian equation of two variables has

an integrating denominator such that Qf is a perfect differential.



Examine a Pfaffian equation of three variables,

dA‘XdX+Ydy+Zdz (5)

where X, Y, and.Z are all functions of both x and y. For.A equal to a

constant, equation (5) defines surfaces in X-yhz space. 2 is not an

independent variable and.may be expressed as follows.

z=z(x,y)

_d_z_ dz 6
dZ-dxdx+a-§dy ( )

Equation (5) may then be eXpressed as

dA= [x+ 2%de +[r+z§-§;]dy

or

ds=x’dx+r’dy 1 (7)

where X’and I’are now each functions of only x and y.

I

Thus equation (5) reduces to the case previously studied and it can

be shown that an integrating denominatorfi. , exists such that «6er is a

perfect differential d¢. Therefore, Pfaffian equations of three variables,

only two of which are independent, have this integrating denominator and

dA3‘1dT- These Pfaffian equations define surfaces in space. The

resulting Pfaffian equation of two variables which defines a curve in

the x-y plane is the curve of intersection of the surface in space and

a plane of constant z.

For Pfaffian equations of three or more independent variables this

integrating denominator does not exist. Pfaffian equations of this type

do not form surfaces in space. That these Pfaffians do not form surfaces

in space is easily demonstrated by choosing x,y, and 2 as the three

independent variables in x-y-z space. It is Obvious that once x and y

are chosen ¢(x,y,z) cannot describe a surface in space if z is allowed

'to take on any arbitrary value. That these Pfaffians do not have an

integrating denominator may be shown mathematically.



Consider the Pfaffian equation

dA= -ydx +Xdy +Kdz
(8)

where k is a constant. If it were possible to express GA in the form

Add , where A and ¢ are functions of x, y, and z, the following

equation would result-

= 9.9 5.9! 5(M >13de “Maya—x5342

(9)

By equating coefficients in equations (8) and (9) it may be shown that

23“: iii—as Ail
A, by A 32-}:

Taking partial derivitives of the above equalities gives

fl=2_)-.é(i)
byaz dz A by).

(10)

62 a 186 K

oxozg’a‘é (x1 5:1(1') (11)

fizz-g. I -S. E

dxby ay(>.1 ex (A)
(12)

Equation (10) shows that

3225(X)1=Kb%('>?)
(13)

but dfi: -—2 5:. Hence xg-z = Kg“; 1

In a similar manner equations (11) and (12) give respectively

y_3__A_.-KQA

yoz bx

(1h)

2X= x3;--+yg—:‘,

(15)



By substituting % and 93‘— from equations (13) and (it) into equation (15)

but

it is found that A= O . Thus Pfaffian equations of three independent

variables do not have an integrating denominator such that dA=Ad¢.

This knowledge of Pfaffian equations gives an insight into what

needs to be done in any physical application of a Pfaffian equation. If

a quantity can be defined by'a Pfaffian equation of two independent vari-

ables, then any differential change in this quantity may be expressed as

Add» It remains then only to express Ado in terms of known, or

if need be, new prOperties.



MA'HIEMATICAL ANALYSIS OF 'EE FIRST LAW

FOR CONSTANT COMPOSITION ADIABATIC SYSTEMS

Since the Second Law of Thermodynamics places limitations on the

First law, it would seem logical to derive the Second Law from

mathematical considerations of the First Law. Caratheodory's showed that

it was sufficient to know of the existence of some impossible processes

to derive the second Law. Moreover, the impossible processes are readily I

obtainable by examining Joule's experiments. They consist of bringing a

system in an adiabatic enclosure from one equilibrium state to another by

doing external work. It is an elementary eXperience that the work cannot

be regained by reversing the process. It can therefore be inferred that

there exist adiabatically inaccessible states in the vicinity of a given

state. This is Caratheodory's principle.

The obvious step now is to construct an adiabatic system in which

Q may be expressed as a Pfaffian equation of two independent variables.

To do this it is necessary to consider a system in which complete control

of the variables of the system is possible. This system must also be

isolated from all external effects thereby eliminating any changes of

state in the system other than those produced by controlled manipulation

of the variables of the system.

To maintain control over all the variables of a system it is

necessary to eliminate the use of rigid bodies and incompressible fluids

in the system. This leads to the selection of gaseous fluids as the

working substance in the desired system.

To isolate this system it would be possible to enclose the gaseous

fluids in a container such as a thermos flask and thereby eliminate any

external effect on the fluid to a high degree of approximation.



The use of such containers, however, eliminates the desired control

over the variables of the system. A new kind of enclosure must be

found, and it is necessary to introduce the idea of walls. These walls

are to be so thin that they play no part in the physical behavior of

the system other than to define the interactionlbetween two neighboring

fluids. These walls may also be moved at will to effect changes in the

pressure and volume of the fluid. It is necessary to define two types

of walls.

An adiabatic wall is defined by the property that equilibrium of

a fluid enclosed by it is not disturbed by any external process as long

as no part of the wall is moved. This type of wall isolates the system

but does not limit the desired control over the variables of the system.

It will be necessary later to allow for the transfer of heat energy

from one fluid to another. This cannot be done across an adiabatic wall.

Therefore, it is necessary to define another type of wall. This second

type of wall is the diathermanous wall, defined by the following

prOperty: fluids separated by a diathermanous wall are in equilibrium

only if the temperature of the two fluids is the same. file: equation

of state of a perfect gas then yields the desired relationship between

the pressures and volumes of these two fluids. The equation of state

of a perfect gas states that:

'7". = ”I R17:

gv2=n2RzTa

where P, V, n, R, and T have their usual meaning. Now if Tl equals T2

and both fluids are composed of the same amount of the same substance then

Plvl = PZVP- ‘ (16)
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This is the eXpression of thermal contact. The wall is introduced only

to symbolize the impossibility of exchange of material.

It is now possible to apply the properties of Pfaffian equations

along with Caratheodory's principle to derive the Second Law of

Thermodynamics. Consider two equal masses of the same fluid enclosed by

adiabatic walls and separated by a diathermanous wall.

 

Fluid 1 Fluid 2

MlP1T MPQT

   

Diathermanous wall

Adiabatic wall

Figure 1.

Either of these two fluids constitute a system and the First law

may be applied.

dQl = dE1+ dwl

ng = d32+dw2 (17)

If movement of the adiabatic walls is restricted to extremely slow

”quasi-static” changes the work done on the fluid enclosed.by the

adiabatic walls is

aw = PdV (18)
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Thus

dQ, = dE, +P, dV,

an =dsa+r,dv2 (19)

These relationships may be stated in a more convenient form to

describe Pfaffian equations of two independent variables in a temperature-

volume plane.

Since the internal energy is a function of any two independent

variables, v and T may be selected and dE may be expressed as follows:

de-(g—E)TdV+ g—E-LT

Equations (19) then take the following form:

as
dQ.=(5L1§)V:1T.+[3—v‘+q]cv,

65‘ '
4Q {352) T+ —-¢ p a

z 37“!“ av, 5+ 8 .W (20)

Now the total heat. energy added to the combined system must be

the sum of the heat energies added to the two fluids, and this total

heat energy must be zero since the combined system is entirely surrounded

by adiabatic walls. Therefore,

dQ 3 dQ,+dQ2= 0

do {(1,a.) + {lam + [cf—522%... 5]“, + [(g—E'kfi-‘figano (21)

In equation (21) , T1 and T2 no longer need be distinguished since the

diathemanous wall between the two fluids makes T1= T2= '1'.

Equation (21) describes a Pfaffian equation of two independent

variables in Vl-Ve-T space. This may not be immediately obvious, but

consider what happens if arbitrary values are assigned to any two of



the variables of the two fluids, say V1 and T1. The equation of state

of a perfect gas establishes P1. T2 equals T1, and the equation of

state also establishes the product P2 V2. Since the system is adiabatic

these two properties cannot vary independently in the second fluid

(i.e., if P2 and V2 can only be varied by manipulation of the adiabatic

walls, then a definite value of P2 corresponds to a value of V2). Thus

only one value of V2 and a corresponding value of P2 can possibly maintain

the temperature equilibrium required by the diathermanous wall and

thermal isolation required‘by the adiabatic walls, and V2 is not an

independent variable.

Since equation (21) is a Pfaffian equation of two independent

variables, it should be possible to construct surfaces in Vl-Vé-T space

for dQ = O.

The shape of these surfaces may be determined.by examining the

lines of intersection of the adiabatic surfaces and the Vl-Vé, Vi-Tg

and VQ-T planes.

If V2 is held constant and V1 is increased, T will decrease. .As

V2 approaches infinity, T approaches zero. .As Vé approaches zero, T

approaches infinity.

Similarly for V1 and T. As Vl approaches infinity, T approaches

zero. .As V1 approaches zero, Trapproaches infinity.

It is then Obvious that for a constant temperature plane V1 approaches

zero as V2 approaches infinity and V1 approaches infinity as V2 approaches

zero. Thus these surfaces vanish to infinity in the vicinity of the

Vl-Vé, Vl-T, and V2-T planes, but it is possible to construct these

surfaces for points not in the vicinity of these three planes. These

surfaces have the shape shown in Figure 2.



Adiabatic Surface in Vl-V2-T Space

Figure 2.
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Since dQl, dQe, and dQ have been expressed as Pfaffian equations

of two independent variables, it is possible to express each of these

quantities in terms of m.

dQ1= £16.01

dQe=we

as:M0

But

dQ = dQ1+ dQQ == 0

Hence

xd¢=xld¢i+>~2d¢2= 0 (22)

Equation (22) can hold only if 0 is a function of ¢l and $2.

Therefore,

dO= 3—5 40. +-3O”51¢:

Equating'coefficients¢of the exact differential dO gives:

22..._)\. LT X3

()9,- )\ ’ a¢e=x

Now 0 is an independent property of the combined system and 01 is

an independent property of the first fluid. Since ’3’). is the partial

derivitive of ¢ with respect to O1, and since 9 is a function only of 01

and ¢2,€5xlis dependent of the other pr0perties of the system and cannot

therefore be a function of the temperature, from which

.—$(%')=o . 39ft?) =° <23)

Carrying out the differentiation of equation (23), the following results

are Obtained:

1 a». _ 1 __1_3x

X1354" 55.2%“Xfi (2h)
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Now )1 is a variable of the first fluid only and is therefore only

dependent on the properties of that fluid. Likewise ’52 is a function

only of the properties of the second fluid. The equality of equation (21:)

holds only if both J- é-él and -'—- 9A3 depend only on T. Hence

A. 3T )2 31'

u a). __ l Ax _ l a)...

xfi-zfi-T‘fi-‘m (25’

It is possible to rewrite equation (25) in the following form:

3 .7:9,}. = 13119;: gangl‘ =4-‘(1') , (26)

It is now possible to express AdO in terms of known properties of the

system. From equation (26)

w. =/+‘(1')d'r +c (27)

)x has now been expressed as a function of temperature and some

constant of integration, but it is possible to determine the nature of

this constant. Examine a change of state in the A-¢ plane. If dQ=Ad¢,

then the area under the curve represents the heat transferred to or from

the system .

A

 



It is possible to represent constant temperature lines as any

general lines in the )s-Q plane. The actual sloPe and orientation of

the constant temperature lines will prove unimportant . It is already

known that )s is a function of temperature and the above diagram shows

that ). can then be at most a function of one other independent variable.

This variable is arbitrary, but it will prove desirable to use O. Thus

equation (27) may be expressed as a function of T and O. By re-examining

the diagram it is possible to determine what this function of O is. It

is evident that x can be made to vary as a function of 0. Then In x must

be proportional to me“). Therefore equation (27) may be written:

mas-flu)“ + mo)

X?§e/‘ptr)d'r
(28)

where §=+‘(¢) .

It is now possible to define a thermodynamic temperature as that

'part of A which is a function of T.

T’(T) see/HT)” (29)

where the constant C may be fixed by prescribing the value of T142 for

two reproducible states of some normal substance (e.g., Tl—TQ = 212°F if

T1 corresponds to the boiling point and T2 the freezing point of water

at one atmosphere of pressure).

A new property, entrapy, may be defined as follows:

s(¢)= é/Idd (30)

This new property is defined such that

dQ=AdO =TdS

Similarly

dQ. emu, =1;d$.

4Q; =Xad¢2=TadSz
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The above equations refer to "quasi-static" processes which may

_be represented as sequences of equilibrium states. Idealhyall heat

transfers can be made by'a succession of equilibrium states, and so

the above results are quite general and refer to all such reversible

heat transfers.

dQR=TdS (31)

To obtain a knowledge of real irreversible phenomena, Carathéodory's

principle must be applied considering a finite transition from an initial

state (v0, so) to a final state (v,s) where v equals v1+v2. It is

possible to reach the latter state in two steps: first changing the

volume "quasi-statically" and adiabatically from V0 to V the entrapy

remaining constant, equal to So, and then changing the state adiabatically

by the addition of external work at constant volume, so that Sogoes over

to S. This second change of state could be made by stirring the fluid

with a paddle wheel. It should be noted here that work must be added to

the system.since it is impossible to extract energy from a system during

a constant volume adiabatic process. The application of Caratheodory's

principle may be more easily understood if these two changes of state are

pictured on temperature-volume diagrams.

 
 
 

Figure 3
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Figure h represents step one of the two steps discussed previously.

It is obvious that any state (V,So) is accessible from any initial state

(V3, So) since the volumes of the two fluids are arbitrarily changeable

adiabatically by the definition of adiabatic walls. But Carathéodory's

principle states that there are adiabatically inaccessible states in the

vicinity of any given state. Therefore, step two must provide the desired

restriction on the First Law.

Examine step two on a temperature-volume diagram.

 
 
 

Figure 5.

Figure 5 shows that once the state (V,Sa) has been reached from

any initial state by step one, there are two possible relationships

between S and 80, that is Sisoor 8:80. One of these conditions is

then not possible or else all states would be accessible to any given

date by adiabatic processes.
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The actual choice of sign 3: or 6 depends on the choice of the

constant C in equation (29). If this constant is chosen so that T is

positive then the relationship dQ=TdS will show that the entrOpy never

decreases in an adiabatic system.

This fact may be seen by considering the process in which 3, was

changed to S at constant volume by the addition of paddle wheel work.

There is experienced during this process a rise of temperature in the system.

Thus the initial temperature is raised to some final tailiperature ‘1'. This

temperature T and the volume of the system fix all the other preperties

of the system including the entrapy, S. this value of entropy will be

the same at this given volume and temperature regardless of how this

state is reached. But it is possible to produce this rise in temperature

by the reversible addition of heat to the system at constant volume until

the temperature, T, is reached. Since this heat is added to the system,

it is a positive quantity. T has already been made a positive quantity

by the coice of the constant C in equation (29). 'nderefore, the relation-

ship dQ=TdS shows that as must also be a positive quantity, and it has

been shown that the entropy never decreases in an adiabatic system.

Consider the relationship dQ=TdS in a different way. Since T is

always positive, then the only way the entropy can decrease is to r-ove

heat from a system. Also since the entropy can increase but never decrease

in an adiabatic system, dQé ms for any process. The equality of course

holding in reversible processes such as in the hypothetical system used

to derive the relationship dQ=TdS. Hence for any process“?Q $115. For

any cycle, integrating around the eyelei

I“?
f? 5 (13

or

dQ
f?.so



since entrOpy is a prOperty and has zero change in a cycle. Hence the

inequality of Clausius has also been proven without the use of idealized

thermal machines.

Thus by the introduction of Pfaffian equations and Carathéodory's

principle it is possible to derive the Second Law strictly from

mathematical considerations of the First Law. A develOpment similar to

the one presented here has been presented by Born.1

1. Born, Max, Natural Philosophy 9;; Cause and Chance,

(New York:0xford University Press, 1919), pp. 31-16.
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MATHEMATICAL.ANALKSIS OF THE FIRST LAW

FOR CONSTANT COMPOSITION SYSTEMS IN WHICH N0 WORK IS_DONE

It is surprising that the use of the prOperties of Pfaffian equations

has ended with the previous deve10pment since the introduction of Pfaffian

principles introduces new areas of thought in other phases of the First

Law. The Second Law is directly concerned with irreversibility. Therefore

it was natural to examine irreversible phenomena to find the restrictions

placed on the First Law. Joule's experiments indicated that there were

adiabatically inaccessible states in the vicinity of any given state. This

phenomenon-ms then used to derive the Second Law. But Joule's experiments

do not uniquely describe irreversibility. There exist other irreversible

phenomena (e.i., a free expansion). It is obvious that if a fluid is

allowed to expand freely, it cannot be returned to its initial state

solely by the addition or removal of heat. werk must be done to compress

the fluid back to its initial volume. Therefore it can be stated that there

exist states in the vicinity of any given state which are inaccessible if

no work is to be done on the system.

From the First Law

dfls=dQ -dE

or if all heat transfers are done reversibly and "quasi-statically"

dH==TdS~dE.

The work, dfl, may be expressed in the form of a Pfaffian equation

of two independent variables.

w: E-(g—ggdS— (3%)54 P (32)
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where P denotes pressure. If the correct system is selected, it

should be possible to express 6." in terms of Ad) and make a development

similar to the previous one.

To construct the desired system it is necessary to define two new

types of walls. The first type of wall is rigid so that no work can be

done by deforming the walls, and it is conducting so that heat energy

may be added reversibly to the system. The second type of wall requires

that the pressures of the two fluids be the same. Once again the equation

of state for a perfect gas written for the same amount of the same fluid

at the same pressure yields the desired relationship between these variables

11:22 J

T1 T2 (33)

Since there is a possibility that the temperatures of two fluids separated

by this wall will be different, it is also necessary that this wall be

adiabatic (non-conducting, non-absorbing).

Now examine two fluids enclosed by the first type of wall and

separated by the second type of wall.

' III/II/III/II/II/I /IIIIIII//////I///I////f
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Either fluid constitutes a system and the First Law may be applied

in the form'of equation (32)

=[(tins.-(:2?

These are Pfaffi(an equations of two33independent variables.

“'13 E191

dW2=hzd¢2

The work of the combined system must be equal to the work of the two

(3h)

Thus

separate systems, and this sum must be equal to zero since the combined

system is entirely surrounded by rigid walls. Hence

dwsdwl‘: due: 0

”'- [“‘(§I)p]d5u +[Te’(§§:)p]‘s‘ " [(3§'(31-(3' 1]de (35’
In equation (35) P1 and P2 need no longer be distinguished since the wall

between the two fluids makes P1: P2=P.

Equation (35) describes a Pfaffian equation of two independent

variab les in 81-82-P Space. That there are only two independent variables

in this combined system may be demonstrated by prescribing any two of the

Variab leg of this system, say P and 81. Then all other properties of

fluid one are fixed including V1. 'lhis fixes V2 also since V2 is equal to

the total volume of the combined system minus V1, and the total volume of

the combined system is a constant. P2 13 also fixed by P1 and the wall

separating the two fluids. Therefore, all the properties of fluid. two are

fixed, and 82 cannot be an independent variable.

since equation (35) is a Pfaffian equation of two independent variables

it

Should be possible to construct surfaces in P-Sl-Se for space dH 3 O.

The
se Surfaces take the form shown in Figure 7°
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Surfaces of no work in 31-82-P Space

Figure 7.
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Note that the variation of 51 with respect to 82 in a constant

pressure plane may be found by examining the change of 31 with respect

to $2 at constant pressure.

as C

(Q) ___ (star. __3 tr“ ...

“$2 " (Shea tare W

Since constant pressure may be maintained only-if heat is added

to one system when it is removed from the other and vice versa, dTl and

T

dTé must have Opposite signs and the quantity'§§%%% is always a negative

quantity. thus in any P: constant plane the curve of intersection of

the surface of no work and this plane has a slape %§%%%’and this is always

negative. [At a point in a constant pressure plane where S1 is large and

82 is small %§ will be small since heat must be removed from system 2 and

added to system 1 to accomplish this state. When 81 is small and $2 is

large %§ will be large by similar reasoning. This determines the slopes

at these points.

To find the slope of the curve of intersection of the surface of no

work and a constant entropy plane, examine the change of $1 with respect

to P when 82 constant. Consider the case when V2 is small enough to be

negligible compared to V1. Then V1 will approximately equal the total

volume of the system which is constant. .As heat is added to this system

dS will increase and may be given by

. 41’ (iv
dSV - CV :r-V +%_VV

Where 3 is the coefficient of cubical expansion $6.9,” K is the

coefficient of compressibility— $6: Tend CP is the specific heat at

I

constant volume.



Since dV is zero andd—t= dP

-—"v 'r P

a
dsv=c

(23:9)...”
The slope of the curve of intersection of the surface of no work and

—at constant volume for a perfect gas

the constant entropy planes decreases with increasing pressure. The surface

may now be constructed and takes the form of Figure 7.

Since equation (35) is a Pfaffian equation of two independent

variables it is also possible to express d“ in terms of )tdO.

dw=xd0 (36)

But

aw: owl: dw2 = 0

Thus

M0 ”pm-rang: 0 (37)

Equation (37) can hold Only if O is a function of ¢l and (32. Therefore,

(MW-3104“ ‘1'“30 d¢2

m2

Equating coefficients of the exact differential d0 gives

5 (..XI 3 - X2

6%;- ‘x, 3%; x

0 is an independent pr0perty of the combined system and 01 is an

independent prOperty of the first fluid. Since % is the partial derivitive

0f 0 with respect to 61, and since 0 is a function only of 01 and 02, 7‘”

cannot be a function of any other property of the system and is therefore

“‘4
independent of the pressure,P. 'me partial derivitives of AJIA and

with respect to P must then be equal to zero.

a x. b 5:

6P 3: " 0, a? " 0

BY cfiu‘li‘ying out the differentiation the following equality is obtained:

a». tax .3).13.4: “Kat—PL- T375
(38)
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This equality can hold only if—'- Q34 and -!- 3%; depend only on P.

2
A. as A

Therefore,

1.3" -13_"2.J.3’*-

~35" xzap ' 2.33"”) (39)

Equation(39) may be rewritten as follows:

951%.)! = égéaJ—slg" = m) (1+0)

It is now possible to express AdO in terms of known prOperties.

lax: f(P)dP+C

This constant can be shown to be a function of at most one other

independent variable just as was done in the previous develOpment. 'Jhis

variable is arbitrary but selecting Q will give the most desirable results.

Then

in). = firm? + my

where §= f0”.

It is now possible to define a thermodynamic pressure as that part of )k

which is a function of P.

P’m = comma? (to)

The value of C may be fixed by prescribing the value of Pg—Pl for two

reproducible states of some normal substance.

By defining another prOperty as follows:

V(¢)=5'- M (1+2)

it is seen that

dW=AdO=PdV= 0

Similarly

531: Ndolzfidvl

dug = Adez : [’2de
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These results are valid for all reversible changes of state and in general

awR= PdV (1+3)

Tb Obtain knowledge of real phenomena it is necessary to apply a

unidirectional principle similar to that of‘Caratheodory's. 'lhis

principle is the previously mentioned fact that there exist states in the

vicinity of any given state which are inaccessible to the given state if

no work is to be done on or by the system.

Examine a finite transition from an initial state (To, v“) to a

final state (m). It is possible to reach the final state in two steps:

first changing the temperature of the system by adding heat to or removing

heat from the system reversibly, the total volume of the system remaining

constant equal to V5 and then changing the state with no work being done

by allowing a free expansion from We to V, the temperature of the system

remaining constant. The first step of this transition may be pictured on

a temperature-volume diagram as follows:

T W?V.)

 a (To y.)

 
 

Figure 8.
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Figure 8 shows that from any initial state (T,, V, ), any other

state having the same volume, V, , is accessible by the controlled addition

or removal of heat to or from the system. But there are states which are

inaccessible in the vicinity of any given state. merefore step two must

provide the restriction on the First Law.

Examine step two on a temperature-volume diagram.

T (T91) (mt) (13V)

 
 

V

Figure 9 .

Figure 9 shows that once the state (T,V,) is reached by step one,

there are two possible relationships between Va and V; that is Vaiv or

mg V. One of these conditions is not possible or all states would be

accessible to an initial state with no work being done on the system.

The actual sign a oré depends on,the choice of the constant C in equation

(1&1). If this constant is chosen so that P is positive, then the relation-

ship aw = PdV may be used to show which sign holds Just as was done with

5Q ="- 'l‘dS in the previous deve10pment.
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In systems in which no work is done the only volume change possible

is a volume change done against no external forces (i.e., a free expansion).

Consider the process in which V, was changed to V by allowing a free

expansion. There is experienced during this process a decrease of

pressure in the system. Thus the initial pressure is decreased to some

final pressure P. This pressure, P, and the temperature of the system

fix all the other preperties of the system, including the volume, V, and

the entrOpy, S. his value of volume will be the same at the given

entr0py and pressure regardless of how this state is reached. It is

possible to reach this state by adding heat to the system reversibly at

constant volume until the value of entropy, S, is reached, and then

expanding reversibly at constant entropy (thus doing work and decreasing

the pressure) until the state (P,S) is reached. This work is a positive

quantity. P has already been made a positive quantity by the selection

of c in equation (hi). Thus the relationship dw=1>dv shows that the

volume change must also be a positive quantity. 'lhus V0.4: V and the

volume can never decrease in an isolated system.

Consider the relationship dw=PdV in the same manner as was done for

dq=TdS. Since P is always positive, the only way the volume can decrease

is to add work to the system in the form of PdV work. Also since the

volume can increase but never decrease in an isolated system, dVéPdV

for any process. The equality of course holding in reversible processes.

Hence, for any process flédv. For any cycle, integrating around the cycle

P

d"

or

since volume is a state prOperty and has zero change in a cycle.
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The above equation is more often stated that the work of a cycle is less

than or equal to the cyclic integral of PdV, but it is interesting to

note the ana10gous form that this equation takes to the previously derived

equation

ng-‘leo

The above results indicated nothing new about systems in general.

However, it is Observed that application of the preperties of Pfaffian

equations when applied to one term of the First Law gives different results

than the same principles when they are applied to another term. The one

result in no way contradicts the other since the relationship between the

properties of a system,

Tdsl==dE‘+-PdV

results in the following relationship between entropy and volume:

B
82-51: Cvln %+E (Va-V1)

This relationship shows that when volume increases the entropy increases

also. However, an increase in entropy is possible without a corresponding

increase in volume. Thus the increase in entropy is a more general

criterion for irreversibility than the increase in volume, and the state-

ment that the entropy change must be a: O in any isolated system is

not violated.
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MATHEMATICAL ANALYSIS OF {II-IE FIRST IAN IN SYS'EMS

OF VARYING COMPOSITION WHERE NO WORK IS DONE

Until now only systems involving constant quantities of mass have

been considered. There exist, however, systems in which the mass is not

constant. It might be possible to examine these systems in the same

manner as has been done in the previous systems. It was shown in the

previous developments where all the masses were constant

Tds=dE+PdV

or

dE =TdS-PdV. (uh)

In these systems the internal energy may be expressed as a

function of S and V. In a system where the masses of various substances

are not constant, E may be expressed as a function of S, V, and the

various masses, m; :

E = f(S,V,m]_,ne,""" mn)

Hence for small changes of entrOpy, volume, and composition:

_, E 5E1 3E1

at) (—) —) u
S vaime'" + OV 59ml:m£°" + 3m, V,S,m2--- ( 5)

By comparing coefficients in equations (ML) and (1+5), it is seen that

(a)bs v)",nM£"' (’46)

(23-)5V S’m',mZ ""- (h?)

as)
If (— i f' :Om, S,V,II s de mad as follows

(‘3) '$1 S,V,m2--- p1

then equation (#5) takes the form

as = TdS-Pdv + 1%. ”151.1 (t8)



 
—
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The p in the above equation is called the chemical potential. Its

similarity to the potentials temperature and pressure in equation (#8)

is obvious.

Equation (h8) is then the general relationship between properties

of a system of varying composition. Consider a system of only one kind

of mass. Iffldm for this mass is denoted by dM, then equation (1+8)

takes the form

dM =63 + PdV-TdS

dM=l:@—5)s + P] dV +[(g—§)V-T] d5 (1,9)

It will later be desirable to construct surfaces of constant M.in

OI‘

T-Ver space. ‘mese surfaces may be constructed by examining the variation

of each of the properties with respect to another when the third is held

constant. The above equations do not indicate the variance of one

variable with respect to another in T-V space. Therefore, another

relationship between the variables must be found. This relationship

exists in the form of free and available energies.

By definition, the work done in a reversible isothermal process is

equal to the decrease of the maximum work function of the system.

dW== -dF

From the First Law, for a reversible isothermal process

-dw = dE-Tds

Thus,

dF==dE-THS.

Since the temperature is constant, it follows that

dF=d(E-TS)

or,

F=E-'rs. (50)
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Thus it is seen that the maximum work function, F, is a prOperty of a

system. Equation (50) is sometimes taken to be the definition of the

maximum work function.

By definition, the work obtainable in a reversible isothermal

process at constant pressure is equal to the decrease in the free

energy of the system. It will be shown that the free energy is also a

prOperty of a system. The free energy of a system must necessarily be

less than the maximum work function of a system since in any process at

constant pressure where there is a volume change, part of the total work

available must be used in changing the volume at constant pressure. That

part of the total available work which may be utilized for other purposes

is the free energy, G.

From the definition of free energy

dHfi;P:= -dG.

But

dwnP-awf- dwv

where dwv denotes the work done in changing the volume at constant

pressure. Therefore,

dG=dF+PdV

or since pressure is constant

as = d(F+PV)

as .-.-. a(s-rs+PV)

G s E-1'5+Pv. (51)

Equation (51) is the definition of free energy. This free energy

is defined such that the work for a constant temperature, constant pressure

process is-GG. However, equation (51) shows that G is a property of the

system, and as such it refers not only to constant temperature, constant

pressure processes but all processes in general.



 
__—
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Then for any general process

as = (dE-TdS+PdV)-SdT+VdP (52)

If once more systems of varying composition are considered where

dE= TdS-PdV + i pidmi

1's!

the expression in parenthesis in equation (52) becomes simply

n

Emmi

Thus

n

dG = -SdT+VdP +2111“; (53)
‘3

Consider equation (53) for a single homogeneous substance.

d6 = -SdT+VdP «mam (51+)

Equation (5h) expresses the desired relationship between the

variables, temperature, pressure, and mass.

(3%).“ z -8 ($313": V ($91, p: I“

if??? = '(g'g)tm'(byr)gm (55)

«73%; = ”(g—Eh?”(glam (56)

672.2%“ 36%).»; = (%§)Em (57)

Equation (56) shows that at constant pressure and mass p varies

inversely and linearly with temperature. Equation (57) shows that at

constant temperature and mass )1 varies directly and linearly with pressure.

This information will be utilized later to construct surfaces of constant

M in T-V-Ve space.
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Consider the following system composed of an initial amount of

gaseous fluid contained inside two volumes which are separated by a

rigid super-conductive semi-permeable membrane.

High temperature source

1 i ll 1

{ Q1 {Q‘i Rigid Super

Control 1/] 2/11,P,T age Conductive heml—

volume #

“2,1351.w Permeable Membrane

Qo
l Q0 :%—-‘ Control '

I ' Volume #2

Low temperature sinks

 

     
 

Figure 10.

These two masses of the same fluid are at the same temperature

and pressure and have the same ’1 and therefore also the same Menu

It is possible to add heat reversibly to each of the control volumes

and to move the walls containing the two fluids at will. In this

manner.M may be held constant in the combined system by manipulation

of the temperature and pressure of the two fluids while mass is

allowed to pass from one control volume to the other. For each of

the control volumes,

.... [(2-$:)s.+ P}!v + [(3%),-n]ds.

d"2=[(35.)s+Pa] “”2 +[(%§Z)v;'2] “'52

or since dMl and dMé are Pfaffian equations of two independent variables

“‘1" ’9’1

cu“2"‘2‘1‘a

For the combined system,

., (straw. + lea-v.1» +[(:—:;)..—-r.]«s. +
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It can be shown that equation (58) is a Pfaffian equation of two

independent variables. If T is fixed in the system by adding or

removing heat and V1 is changed an arbitrary amount only one value of

V2 can possibly maintain a constant M for the system and there can be no

other independent variable. It is possible to construct surfaces in

Vl-Vz-T space by utilizing the information that p varies inversely and

linearly with temperature and directly and linearly with pressure, and

that ’1 must be constant in the system.

M = m

dM=pdm+mdu

Since dm and did are equal to zero dp must equal zero also.

The mass in V1 may be increased by decreasing V2 and increasing V1

at constant temperature. Since the pressure also must remain constant

during this process to maintain p constant, the total volume of the two

control volumes must be constant by the equation of state. Thus V1 varies

inversely and linearly with V2 at constant temperature.

It has already been shown that

(£4913,manegative constant, (gglfim a positive constant.

To determine the slope of the curve of intersection of the surface of

constant M and a constant volume plane, consider the case when V2: constant:

0. The total volume of the system is then V1 and the mass is constant.

The above partials then hold and since ,1 is a function of T and P

at constant mass,

due.- (%)PdT + (%)T (IF :0

-AdT+BdP=O

%dedP



  

Since for a perfect gas iflp=gdV

dT Lav

0.4T: %__ T , C.=e- and is always a positive constant.

(1.1- __£_

ov" "c,v-R

If 01V>R the slope is negative. If Clv<R the slope will be positive.

When ClV‘=R the s10pe will be infinite. If we consider only those volumes

which are small enough to give a positive lepe, the slape will increase

with increase in temperature and pressure. It is not knomif ClV can

ever be greater than R but C V can definitely be less than R since the

1

volume may be made arbitarily small. Thus the existence of the surfaces

of positive slepe is assured. The surfaces of negative sIOpe might not

exist and are not included in the construction. The surfaces of constant

M then take the form of Figure ll.
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Figure 16 .

Surfaces of constant M in Vl-Ve-T space
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Since dM is a Pfaffian equation of two independent variables

our-MO

But

dM.= dM,: dMe==O

Therefore

Xd¢=wagwg =0 (59)

Equation (59) can hold only if ¢ is a function of m and @e. Therefore,

(108 g'%'(1.. +53‘“:

Equating coefficients of the exact differential d¢ gives

gggél figs—52

u, A ’oo, A

O is a property of the combined system and M and 9: are prOperties

of the amount of the fluid on each side of the membrane. Since 53‘

andxfix are the partial derivitives of Q with respect to 0. and (be they

are independent of the other prOperties of the system and cannot be a

function of the chemical potential, ,1. Therefore,

a x b). _

6)? x‘=° : m”

It is not necessary to distinguish between the chemical potentials

of the two fluids since the semi-permeable membrane maintains pressure

and temperature equilibrium in the entire system thereby making p'zngp

By carrying out the differentiation of the above equation

The equality of the above equation can hold only if both ;— 36—3de

3

_L _3*2

*2 an

Hence,

depend only on p.



 
—~r—f

Ll-l

This equation may be written in the following form:

om). _ blnx _ am-

TE" 7.7"37 "W

from which

lnx=/1°(H) an + mM)

A:§e/flu)dn

where is f“).

The chemical potential may now be defined as that part ofA

which is a function of M-

A») = c e/fli‘W

Then the mass, m, may be defined as follows:

n(¢)=-é-/§d¢

'Jmus,

dM=Ad’ = pd! s 0

Similarly,

d-MF’W‘WO =Fldml

TW‘MFMad":

and in general for all processes in which ,1 is constant

an: pd-

If a principle existed such as Carathéodory's, to the effect that

there are states in the vicinity of any given state which are inaccessible

if M is to remain constant, then the application of this principle to

define the directional limitation on the First law would be possible.

There exists, however, no such principle, for all states are accessible in

a given control volume simply by adding mass to or removing mass from

the volume .



 

To gain knowledge of the directional limitations imposed on the

First Law in systems where the composition of the system is changing, it

is necessary to examine the irreversible phenomena involved in these

systems. These irreversible phenomena are associated with chemical

interactions between two or moreelements. In isolated systems these

chemical interactions proceed only in one direction.

The introduction of more than one substance in a system, however,

results in the inability to express the First law in the form of a

Pfaffian equation of two independent variables, since the second sub-

stance obviously introduces another independent variable. This problem

may be remedied by lumping the individual pdm's of the system so that

equation (h8) takes the following form:

Izn’pgdn; = dE -TdS + Pdv

.

OI‘

é: mm; = [GB—3V ’7] d5 + “393+ P] «iv (59)

Consider now a system composed initially of hydrogen and oxygen

‘which is allowed to unite chemically to form water.

' Hugodmuzo +(Pozd"°z+l‘ugd'”"z) = [Gav ’1’] d8 +[(§_Vg)3+ P] dv

where dmozand din" are negative quantities. If this chemical reaction is

carried out at constant volume as in a bomb calorimeter

d dm dn - QE- d5Map "‘uonF'oz oath“,z a) - as V’T (60)

Equation (59) indicates that twopossible relationships exist for

:EJIII.

dill dm dm 2.-

or

”"30 dmflgo + (madlo‘ + ”Hadmu‘) é- o
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The actual sign E.- oré depends on the quantity

3%)V‘T

Since the volume is constant, this quantity may be rewritten as follows:

dE-TdS. '

By the First Law

dE-dQ: -dW

But dw=0 since the process was carried out at constant volume. Therefore

dE-dQ=0

Since TdStdQ

dE-Tdsso (61)

Thus the quantity dE-TdS is a negative quantity and

Hugo d”n,o+(flo,d"oe+fluzdmfl,) ‘-‘-= 0 (62)

Examine the quantity mogdflsfipugdmue). This represents a summation.

For summations of this. kind in general

n _ n

3 gain; £3,»ng ..é. pEIdni

Where2 denotes the least andfi'the maximum of all the possible ”1'3

It is then possible to find a ,i'such that

guiding = p'lgdm;

Where

Aép'éfi

This P’represents an equivalent chemical potential of the system for each

total infinitesimal change in mass.

Formdmog-l-Aewt is possible to construct an equivalent chemical

potential, p(Hz,O:), such that when it is multiplied by the total change

in mass, dma‘i- dez , the amount of energy represented will be the same

as that represented by (”ozd"0¢+}‘ugmflz)°

”Ogd"°¢+”uf'“uz =P("z:°z)d'“n,+o,





 

 

an

Since »

Pagodmnp +fl(”z:°z)d'”u¢+o,-‘-

and

“H20 = -dnflszz

it is seen that

szo "Mflzfld -‘-'O (63)

It has been shown then that the chemical potential of an isolated

system cannot increase.

Once again these results are consistent with the fact that the

entropy cannot decrease in an isolated system since the relationship

dQé TdS was used in equation (61) to derive the result that the

chemical potential could not increase.



MATHEMATICAL ANALYSIS OF THE FIRST’LAH

FOR ISOLATED ELECTRICAL SYSTEMS

Energy transformations in electrical systems are made in accordance

with the First Law. In electrical systems the same forms of energy are

involved that are involved in all other systems, namely heat, work, and

some means of storing energy.

It is known that in isolated electrical systems a unidirectional

principle exists. This may be demonstrated by examining a charged

capacitor in an isolated system with an Open switch. When this switch

is closed, the observed effect is an increase in the temperature of the

system at the expense of the electrical energy stored in the capacitor.

The reverse of this process has never been observed. It is not possible

for the capacitor to be recharged solely by decreasing the temperature

of the system. If this system is to be brought back to its initial state,

heat must be removed to restore the system to the original temperature

and work must be done by an external source to recharge the capacitor.

If this is done, the system is no longer isolated. Therefore, there

exist in isolated electrical systems states which are inaccessible from

any given state. It should then be possible to determine this direc-

tional limitation imposed on the First Law if an isolated system can be

Constructed in which one of the quantities involved may be expressed as

a Pfaffian equation of two independent variables.

Consider first the following electrical system composed of a

Charged capacitor and an inductance connected.by wire of negligible

resistance.



‘hl '-
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Figure 17 .

When the switch is Open for the electrical system represented by

Figure 17 , energy is stored in the capacitor according to the relation

lit-'nécv2 where C denotes the capacitance and-V denotes the voltage across

the capacitor. When the switch is closed a current begins to flow

causing a voltage of self induction to be produced by the induction coil.

This voltage is not a voltage in an actual sense but is only a tendency

to resist the flow of current. The voltage of self induction is equal

to the voltage across the coil and is given by

e s -L 3%8V

where i denotes the current and L the inductance. This voltage of

self inductance will limit the current but will not stop it since the

tendency to oppose the flow of current is only present whengitfio.

Thus the current will increase to a maximum value when the voltage

across the coil and capacitor is zero. At this time gjt- will be zero

also. The energy of the system is stored entirely in the inductance

coil in the form

E = $12
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The current after having reached its maximum value will continue

to flow in the same direction and will begin to recharge the capacitor.

This causes a voltage across the coil and capacitor which tends to

oppose the flow of current and the current decreases until it is zero,

at which time the energy is once again stored in the capacitor. The

only change in the system at this time from the initial state is that

the capacitor has Opposite polarity. This system will continue to

oscilate in the above manner as long as the switch is closed.

The First Law for this system could be written as E: constant or

dE=O since dQ, and dfl are both zero.

E = %m2+ fCV2 = constant

If the capacitance and inductance of the system are Constant,

dE = Lidi+CVdV= 0 (6h)

The above system serves to show how energy may be stored in an

electrical system. It remains to construct an isolated system for

which a mathematical analysis of the First Law is possible. The

following systems of negligible resistance make this possible.
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Both capacitors are originally charged and the voltage across

both capacitors is the same. If the switches of Figure 18 are closed

simultaneously the system will oscilate as described in the previous

example.

If the two capacitors and inductances are initially of equal

magnitude, the energy stored in each capacitor at zero current is the

same and the energy stored in each inductance coil at maximum current

is the same.

Thus there is no change in stored energy in either system. But if

both C1 and L1 are varied, the energy stored in the two systems is not

the same. If Cl is made less than C2 the energy stored in Cl at zero

current is less than that stored in C2 since Ezécw2 and the voltage

across both capacitances is the same. Likewise if L1 is made less than

L2 the current will increase more rapidly in L1 since V:L%and the

voltage across both inductance coils is the same. Thus L1 will have a

larger maximum current and the energy stored in L1 will be greater than

that stored in IQ since E==§§L12.

For adiabatic systems the First Law is -dW==dE. Thus when there

are changes in the stored energy of these systems work must be done

reversibly on one of the systems by the other system.

The change in stored energy for a system such as the above two

systems has already been found to be if L and C are constant

dE = Lidi+CVdV

In the above systems this same relationship will hold if Cl is

varied only when the voltage of the system is zero and L1 is varied only

when the current flow is zero. By carrying out the variationaof Cl

and IQ in the above manner, not only are all energy transformations made
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Lil)

at constant Cl and L1 but also no work is needed from an external source

to vary these quantities.

The change in stored energy of each system is thus a function of

two independent variables, 1 and V, and may be expressed as follows:

E

“’(§7)V“ 3—)1 (65)

Therefore, dwl and awe may be expressed as Pfaffian equations of

two independent variables:

AWE-(gt?)V.611 +(g—El')i dVl

4512:1652)de +(‘v:12)'de (so)

The work done by the combined system is equal to the sum of the

work of the two separate systems and this sum is equal to zero since no

work crosses the boundries of the combined system.

dw = dW1+ awe: o

(a)we)ais.(at
The voltage of systems one and two need no longer be distinguished

since V1: V2: V.

The quantities -dW1 and -dW2 have been expressed as Pfaffian

equations of two independent variables. Therefore,

-dwi= anti

-dw2= Agate ’ ‘ (63)

It can be shown that -dw is also expressed as a Pfaffian equation

of two independent variables. This can be shown by constructing the

surface for ~dN equals zero.

Examine first the intersection of the surface of no work with the

V-i planes. Let the voltage be increased and vary L1 such that il is

constant. This could be done by increasing L1. An equivalent capacitance

C for the system may be found. C==Cit02. From energy consideration:



50

$ch = in 1.3 this

But 11 is constant. Therefore,

ice-n: sin

or

..LI2
V2-K2— E i

This describes on V-i planes lines of constant 11 with the

following form:

V

 
  

Figure 19.

The shape of the surface is then determined.
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20.Figure

Surfaces of no work in 11-12-V space



Since ~dW is a Pfaffian equation of two independent variables

there exists an integrating denominator). such that €31 is an exact

differential, dQ.

-dV = AdQ

But

dw = aw1+ avg

Therefore,

MO3 Mdhfizfi’g (69)

The equality of equation(59)can hold only if 0 is a function

of .1 and 02. Therefore,

at %%_ i
d a d ( 0).3 “1 01+ 2 h ‘

Equating coefficients of the exact differential d0 gives

561:; 9 M23}:

0 is a property of the combined system and Q1 and 02 are properties

of the individual systems. Since--;‘:' andxi‘ are the partial derivitives of

¢ with respect to $1 and $2, they are independent of the other properties

of the system and cannot be a function of the voltage. 'Jherefore,

9. 5'- 9. he

bVA’O; on” (72)

It is not necessary to distinguish between the voltages of the two

systems since they are equal.

By carrying out the differentiation of equation (72)

la». .

X 87"fight“o. (73)

The equality of equation (73)can hold only if both—'N%%'and—’{—2 _ch

depend only on V. Hence,

1 &.1 29.2.1». wt

x.a7'-xzsv-xv 1"“ m



IThis equation may be rewritten in the following form:

61M... blnAg_. bln). __

TV "5?" “TV -' N")

from which

lnA= fiIv>av+1nim

A = fie/“V’dv (75)

where §=f(0).

The voltage may now be defined as that part of). which is a “

function of the voltage -

v’m = Ce/f(v)dv (76)

By defining a new pr0perty, charge, as follows, 5.

'
L..-

Q( )3-
, ..

O C Q“
(m

it is seen that

-dw - MO =m. 0

Similarly,

-dw1= A901 = VldQI

-dW2 .1: AdeQ = VedQZ

and in general for all such reversible processes

-dw=)«d0 a m (78)

To gain a knowledge of the directional limitation imposed on the

First Law in electrical systems it is necessary to examine the irreversible

phenomena associated with these systems.

Examine the following irreversible system.

g,/’

'-[c 1. R

T
Figure 21.



Consider a finite transition from an initial state (Vo ,Q.) to a

final “state (V,Q). It is possible to reach state (WQ) in two steps;

first changing the voltage adiabatically by varying the capacitance, the

charge remaining constant, equal to Q, and then changing the state

adiabatically at constant capacitance by closing the switch for a finite

length of time until Q,o goes over to Q.

Examine step one on a capacitance charge diagram.

6

 

 
 

 

Figure 22 .

Figure 22 shows that from any initial state (Va-,Q.) any other state

(V,Q.) having the same charge may be reached since the capacitance is

arbitrarily variable at constant charge. Step two must then give the

restriction on the First Law.

Examine step two on a capacitance charge diagram.

   
Figure 23 -

 



Figure 23 shows that once state (V,Q) has been reached from any

initial state (V,Q.), there are two possible relationships between Q.

and Q, that is 61.; Q or Q09. Q. One of these conditions cannot be

possible or else all states would be accessible to any given state in

isolated systems.

Consider the process in which Q0 was changed at constant capaci-

tance to Q. {were is experienced during this process a decrease in the

voltage across the capacitor. This value of voltage and the capacitance

determine the charge on the capacitor and this value of charge will be the

same regardless of how this state is reached. This state could be reached 5'

by allowing this capacitor to reversibly charge another capacitor. If _

the capacitor does work reversibly in this manner the work done by the

system has been shown to be aw: -VdQ. This work has been a positive

quantity since it was out of the system. If the constant in equation

is chosen such that V is positive the relationship div! = a-VdQ shows that

the charge cannot increase in an isolated system.

Since V is always positive, the only way the charge in a system can

increase is to add work to the system in the form of VdQ work. Also since

the charge can decrease but never increase in an isolated system,

dw é ~VdQ or dW‘IVdQI for any process. The equality holding in

reversible processes. Hence, for any process #54de . For any cycle

integrating around the cycle,

ft£IMI

as a 0
since charge is a state point and has zero change in a cycle.

This result is not in conflict with the classical statement of the

Second Law that the entropy cannot decrease in an isolated system since

it can be shown that the entrOpy increased also during this process.



Consider first the change of state of the capacitor during this

process. The capacitor performed an amount of work on the resistor.

This work could have been done reversibly and adiabatically on another

capacitor. Therefore there was no change of entrOpy in the capacitor.

Consider next the resistor. If a large source of air at a

temperature equal to the initial temperature of the resistor is blown

over the resistor so that no change of temperature is caused in the

resistor or the air, no change of entropy takes place in the resistor

since it is in a steady state condition.

Consider finally the cooling air. There has been an amount of

heat energy transferred to the air equal to the work done on the

resistor. Therefore the increase in entropy of the air may be calculated

by

as = “31.19

'where T is the temperature of the air and resistor.

Thus the decrease of charge and the increase of entropy in

electrical systems indicate the same directional restriction on the

First Law.



ANALYSIS OF THE FIRST LAW

FOR ISOLATED DECHANICAL SISTENB

In the first two constant mass systems, energy could be stored in

the system only in the form of molecular activity. In systems of varying

composition it was seen that there existed another form of stored energy

in the form of the chemical potential. In mechanical systems there exist

two other methods by which a system may store energy (i.e., kinetic and

potential energy). Thus for mechanical systems in general there exist

four ways of storing energy in the system (electricity, magnetism and

capillarity being neglected).

If chemical interactions were present in a mechanical system, they

could be treated separately by the methods developed for systems of

varying compositions Also heat exchanges may be treated separately by

the methods develOped for adiabatic constant mass systems. This leaves

then for reversible adiabatic mechanical systems two forms of energy

storage within the system, kinetic and potential energy.

It is known that a directional principle exists for isolated

mechanical systems (i.e., if a mass object in an isolated system is

allowed to fall a certain distance while doing work on a friction device,

the system cannot be returned to its initial state by an adiabatic

process). There is experienced during this process a rise in the

temperature of the system at the expense of the potential energy of the

mass object. The process has never been observed when the potential

energy of a mass. object has been increased solely by a decrease in the

temperature of the system. If the above system is to be returned to its

initial state, work must be done by an external source to restore the



mass object to its initial state of potential energy, and heat must be

removed to restore the temperature of the system to its initial value.

When this is done the system is not isolated. Thus in isolated mechanical

systems there exist states which are inaccessible from any initial

state. It should then be possible to construct an isolated system in

which one of the energy quantities envolved may be expressed as a

Ffaffian equation of one or two independent variables to determine what ma

this directional principle is. E

Consider first the following system.
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Figure 21+ .

If the mass in Figure 21+ is initially at rest, energy is stored in

the system in the form of potential energy.

1.".3. .
E: 3. X,

Where 3 is the acceleration due to gravity and 3. is a dimensional

H‘s:
constant 32.17mg .



If the mass is allowed to fall to position f , it no longer has

any potential energy. The energy is totally stored in the system as

kinetic energy.

£=2£mV2

where V denotes the velocity of the mass obJect.

The First Law for this system could be written as E: constant or

dE=O since dQ and dW are both zero. For any position intermediate to

the two shown in Figure 2’}, E will be given by

E=ux + 1W2 a constant.

35 2

For any infinitesimal change in energy

ds=’;-}dx+dev=o (79)

The above system serves to show how energy may be stored in a

mechanical system. It remains to construct an isolated system for

which a mathematical analysis of the First law is possible. Consider

the following isolated system of negligible friction which is initially

at rest and in which m1 is greater than me.

  
m, I System #1

dP—I
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Figure 25 .

 



m1 and mg each constitute separate systems, and the First Law may

be applied. For adiabatic systems the First Law is -dW-‘-"dE. 'Jhus if

there is a change in stored energy of either of these systems, work

must be done reversibly on or by the other system.

The change in stored energy for a system such as the above two

systems has been shown to be

dB: 25;? dx + mvdV 1-..1

The change in stored energy of each system is thus a function of

two variables, x and v, and may be expressed as follows:

dE‘ (gav “95).. ‘N i

Therefore -dW1 and -de may be expressed as Pfaffian equations of

two variables:

“d"1'(bx.v.)“W 3%.)x‘V'

'd"2=(g_eg)vgdx2+(3'$:)xzav, (80)

The work done by the combined system is equal to the sum of the

work of the two separate systems and this sum must be equal to zero since

no work crosses the boundries of the combined system.

dw=dw1+dW2=O

-aa—[s)vaai]aa+[(35)..+(352)Jdv=°
In equation(81)dx, and dxaneed no longer be distinguished since

dx, = (IX; and v2 and v1 need not be distinguished since V1: V2 =V.

Equation(81)is a Pfaffian equation with one independent variable

since for the system constructed if one variable is known say V1 all the

others are determined. V2: V1 and the kinetic energy in the system is

determined. Since the total energy in the system is constant the total

potential energy is also determined. Thus

oAKE-APE

where KE denotes the change in kinetic energy and PE the change in

potential energy of the system.



61

-4KE=-’%}X,{+ m§1x23+ 2%!("2’0’0

where xd and x2,“ are the initial rest positions which are known.

The only unknown in equation (Blhs 4x and the equation may be

solved for 53:.

It has been shown that equation<81)is a Pfaffian equation of one

independent variable. It should be possible to construct curves of no

work in a vl-xl plane. These curves take the form of Figure 26.

3

Wk“

  
XI

Figure 26.

Curves of No Work in the Vl’xl Plane

The slope of the curve in Figure 26 is determined by

deV,+ WVZdVg =—[’£;de, -- ’2}? 4x2]

deV: -Wolx

Jo

211-..an - .9.
dx‘ mVy. ' V

Thus when V is large the slope is small. When V is small the sIOpe

is large and the slope is always negative.
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Since —dWl, -dW2, and -dW have all been expressed as Pfaffian

equations of two variables,

-dWl= Aid“.

«3342 = A3”

-dW : A d¢

Since dW= dWl+ dW2=O,

Ad¢=A1d¢1+Azd¢2 (82)

The equality of equation(82)can only hold if O is a function of O1

and 02. Therefore,

- M N

“1° " 3‘61“”is” (83)

Equating coefficients of the exact differential d¢ gives

bib-X

Est-'1’. WuF

O is a property of the combined system and O1 is a property of the

first system. Since N/A is the partial derivitive of ¢ with reSpect to

01, and since 0 is a function only of O1 and 02, AI/" cannot be a function

of any other property of the system and is therefore independent of the

force, F, exerted on system one by the coupling between system one and

system two ; similarly forxz. The partial derivitives offi»I and {32 with

respect to F must then be equal to zero.

bx_ ,

o'i-X"° ) an" =°

F1 and F2 need not be distinguished since F1: F2= F. By carrying out

the differentiation, the following equality is obtained.

I AM ... I 5’2... IOA

EFF-- A23?- XdF

This equality can hold only if

33
L?%' and {—2 %3depend only on F. Therefore,

lax. = I Aka: I DA...=‘F(F)

Nfi-xsz A3- (81*)



Equation (81+)may be rewritten as follows:

blnAl = blnA3_ 3111A 3 fur)

TF- "Bi" "Sf-

from which

lnxs f(F)dF+C
(85)

This constant can be shown to be a function of at most one other

variable. Selecting Q will give the most desirable results. Equation “-31

(85) may then be written

in). =/f(F)dF + in}

where is f( O),

Asia/“I9“:

It is now possible to define F as that part of A which is a

function of F.

F'(F)=ce km” (86)

The value of C may be fixed by prescribing the value of Fe-Fl for

two reproducible states.

By defining another property x as follows

X(®)=-£-/§d¢

- (87)

it is seen that

-dW s Ad0=Fdx=O

Similarly,

-dw1. AldOlu-Fldxl

-dw2.).¢d¢2crpdx2

and in general for any reversible process

-dWR .-.- Fdx



Equation (87) refers only to the reversible processes from which

it was derived. To obtain a knowledge of real irreversible phenomena it

is necessary to apply the previously mentioned fact that there exist in

isolated mechanical systems states which are inaccessible from any given state.

Consider the following system.

i -

 

   
friction brake

 

 

Figure 27.

Examine a finite transition from an initial state (Va ‘X.) to a

final state (V,x). It is possible to reach the final state in one step.

Consider the system of Figure 27 in which there is now a frictional

device fastened to the pulley. Examine the change on a V-x diagram.

(V, X)

 

 
 

Figure 28.
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Figure 28 shows that four possible relationships exist between

(Vo,xo) and (V,x).

V03 V and xyl- x

1:}. V and X’s x

IL: V and age x

\Lé V and x.‘ x

Any value of velocity is obtainable within the limits of the system

simply by varying the friction in the system. Therefore the relationship

between x, and x must give the restriction on the First Law. Consider

what happens when the frictional element is applied.) The pulley

experiences a force which tends to Oppose the direction of rotation. If

this force had been exerted by another suspended mass in a way similar to

Figure 25 , this force could have been utilized to raise this mass through

a distance. If this had been done, work would have been done reversibly

by the system. Since this work would have been taken from the system it

is a positive quantity and the relationship -dW 8 Fdx shows that dx is

a negative quantity. Therefore xg x0 and it can be shown that the

potential energy could not increase in this isolated system.

It is obvious that the maximum kinetic energy of the system is

also decreased by the friction device, and in general in any mechanical

system the sum of the kinetic and potential energies cannot increase.

These results are not in conflict with the classical statement

of the Second Law that the entropy cannot decrease in an isolatedsystem

' since it can be shown that the entropy also increased during this

irreversible process .
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Consider first the falling mass. There is no change in entrOpy in

the falling mass since the loss in h1netic and potential energies could

have been utilized reversibly'and adiabatically to do work.

Consider next the pulley and brake. If a large source of air at

the original temperature of the pulley and brake is blown over the pulley

and brake there is no change in entropy in the pulley and brake since

they are in a steady state. f‘tmm

Consider finally the cooling air. There has been an amount of '

heat added to the air equal to the change in stored energy of the falling

mass. The change in entrOpy may be calculated by

423.
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52-Si=

where T is the temperature of the air.

Thus the increase in entropy and the decrease in potential and

kinetic energies indicate the same directional restriction on the First

Law in mechanical systems.
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CONCLUSION

It is seen that by establishing a method of performing a

mathematical analysis of the First Law, the directional characteristic

of any process is directly obtainable from the First Law. Thus the

association of the Second Law with idealized thermal machines and heat

power cycles is removed.

The common conception that thermodynamics is concerned with

heat-work relationships in thermal machines is erroneous. The laws of

thermodynamics are concerned with energy transformations; as such they are

very general. The breadth of the field of thermodynamics is Obscured,

and the generality of the laws of thermodynamics is frequently lost

in the maze of thermal machines classically employed in their proof.

The establishment of the Second Law for all systems without the use of

idealized thermal machines is at least one step toward making the

science more general.

The analysis of various systems shows conclusively that the

entrOpy cannot decrease in an isolated system. However, the mathematical

analysis of the various systems did not of itself indicate this direction.

Only in adiabatic systems of constant composition did the mathematical

analysis show that entrOpy could not decrease. This resulted in a

reduction of the temperature potential.

In systems where no work is done the mathematical analysis of the

FirssLaw indicated only that the volume of the system could not decrease.

This resulted in a reduction of the pressure potential.
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The mathematical analysis of chemical systems showed that in

isolated systems the chemical potential could not increase.

In electrical systems it was shown that the charge in the system

could notincrease if no work were done on the system. This resulted

in a reduction of the voltage potential.

Similarly for isolated mechanical systemS'Umatotal stored energy

in the form of potential and kinetic energy cannot increase.

The results of the mathematical analysis of these various systems

leave some doubt as to whether the increase in entrOpy points the

direction that an isolated process must take. Possibly the increase in

entr0py only measures the displacement in this direction during the

process as a result of the reduction in the potential of the system.

This, however, is irrelevant since both directions are one and the same,

and it makes no difference whether it is stated that the entropy cannot

decrease or that the potential cannot increase in an isolated system.

If the entropy must increase in isolated systems, then let the

Second Law be so stated. It is, however, unnecessary to prove this

directional characteristic by the use of thermal machines. There is an

obvious gain in generality by being able to analyse any system directly

rather than applying a result which was established indirectly by the

use of thermal machines.

Consider for example the classical proof that a free eXpansion is

an irreversible process. The Second Law is first stated in one of its

classical forms: it is impossible for a heat engine to produce net work

in a complete cycle if it exchanges heat only with bodies at a single

fixed temperature.
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To demonstrate the irreversibility of a free expansion the following

procedure is followed. An insulated container, Figure 29 , is divided

into two regions A and B by a thin diaphragm.
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Figure 29 .

Region A contains a mass of gas and region B is completely evacuated.

If the diaphragm is punctured, the gas will expand into region B until

the pressures in A and B become equal, but there will be no effect on

the surroundings.

Assume that the free expansion is reversible. let the reverse

process occur, by which the gas in B returns into A.with an increase in

pressure, without any change in the surroundings. To construct a cycle

which shall violate the Second Law, install an engine between A and B,

Figurefitand permit the gas to expand through the engine from A to B

instead of using the free expansion.
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The engine can obtain work from the system at the expense of the

internal energy of the gas as it eXpands. ‘After the expansion through

the engine, the internal energy of the system can be restored to its

initial value by heat transfer from a source at a fixed temperature. Thus

the system can be brought to the same state as if the free expansion

had occurred. New, by use of the reversed free expansion, the system

can be restored to the initial state of high pressure in.A and vacuum gr“

in B. The result is a cycle which violates the classical statement of

the Second.law and is therefore impossible. Since the expansion through i

the engine and the heat transfer from the fixed temperature source are

g
l
e
n
-
1
’
5
1
—
“
-

known to be possible, the reversed free expansion must be impossible; and

a free expansion is irreversible.

This proof leaves much to be desired. The very statement of the

Second Law used in this proof implies that the Second Law is associated

only with heat engines and cycles. This is not the case. The Second Law

applies to all processes, not just heat engine processes and not just

cycles. The free expansion has been analysed independently of heat

engine cycles and the resulting directional characteristic shown.

Other irreversible phenomena may be analysed in a similar way. Only

by this removal of the association of the Second Law with heat engine

cycles may the generality of the Second Law be elevated to a position

consistent with that of the First Law, and the scope of the science of

thermodynamics extended beyond the realm of heatawork relationships in

thermal machines.
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