COMPARISON OF LOW VOLUME SPRAY NOZZLES FOR WEED CONTROL

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

Elmer Benton Hudspeth, Jr.

1949

THESIS

V.

COMPARISON OF LOW VOLUME SPRAY HORZLES FOR WHITH CONTROL

Dy

DICHER BENTON HUDSPIETH, JR.

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Agricultural Engineering

CHARLE OF CONTERNO

	~																						
I.	IN	COOU	TI	OH	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	A. D. C.	Pur Back Bis	ose agre	o un los	f d	Pr of	der t	10)戏) 。) 。	106	á	fo	·	76	8	•	•	•	•	•	•	•	1 3
II.	DYDO	in tr	rid	: 0	Ž,	/**·	مورون قامان	Ţ	Э	Al	4 6	S.D.A	17	73	•	•	•	•	•	•	•	•	7
	A. B.	Corr	rug: :al	a to Sp	d ra	Ţ.	s t	itt	. 0 1	ij ro	•	•	•	•	•	•	•	•	•	• .	•	•	7
III.	102	ING	Pi	95 5	open gyp o oz. Tope	(KII		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
	T.	Cor: Vis:	isl	చ్చ	TE	3	î a	i i t	:07	77			•	•	•		•	•		•	•	•	31
IV.	COOK	JLUS:	103	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		40
٧.	en range Di wildu	MIN	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	42
VI.	LIT	and T	ادي وسوي خند ۾ ۾ د	CI	14 % (*)	D	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43
VTT_	\$1 . \$1	T og	AP)	γ	_		_	_	_			_			_	_	_			_		_	45

LIST OF TABLES

			Page
I.	Capacities of Spray Control	Nozzles Used for Weed	23
II.		of Mozzles Tested	

LIST OF FIGURES

		Faga
1.	Corrugated Test Tray and Pump	7
2.	& H. P. Glostric Motor and Bronze Coar Pump	8
3.	Adjustable Standard for Spray Boom	10
4.	Spacing Adapters for Spray Boom	11
5.	Visual Spray Apparatus	12
6.	Detail Drawing of Visual Spray Apparatus	13
7.	Ball Bearings on Movable Table Used With	
	Visual Spray Apparatus	14
8.	Epray Pattern With Different Spray Materials	13
9.	Test Tubes After Test Showing Spray Pattern	19
10.	Uniform Pattern Single Hozzle (5 gals. per acre	
	capacity at 4 M. P. M.).	20
11.	Uneven Pattern Single Rossle (5 gals. per acre	
	capacity at 4 N. P. S.)	21
12.	Uniform Pattern With Three Mozzles (S gals. per	
	acre capacity at 4 %. P. E.)	24
13.	Uniform Pattern of Mires Neggles on Boom	25
14.	Uneven Pattorn With Mires Nozzles (S gals. per	
	acre capacity at 4 M. P. H.)	23
15.	Pattern for Single Nozzle (2.5 gals. per acre	
	espacity at 4 %. P. H.)	27
15.	Pattern for Three Hozzles (2.5 gals. per sere	
	equantity at A to D tt)	€ Ca

LIST OF FIGURES (Continued)

		Page
17.	Pattern for Single Bozzla (10 gals. per sore	
	capacity at 4 %. P. H.)	23
13.	Pattern for Tures Hossles (10 gala. per acre	
	capacity at 4 %. ?. H.)	30
19.	Photo Single Mossle Uniform Pattern	33
20.	Visual Fattern Simple Wozzle Uniform Distri-	
	bution	33
21.	Spray Fattern Three Nozzles Uniform Distri-	
	bution	34 /
22.	Photo of Single Notele with Reavy Edged	e en
	Pattarn	3 5
23.	Visual Pattern of Single Mozzle with Heavy	
	Adged Distribution	35
24.	Spray Fattern Wares Nozzles with Heavy Edged	
	Distribution	38
25.	Effect of Cear on Spray Pattern	33

ACKNOULEDGUENTS

The author wishes to express his sincere acknowledgements to the following:

Professor F. W. Peikert of the Agricultural Engineering Department for the suggestions, guidance and assistance he gave during the course of this study.

Professor E. E. Grigsby of the Botany Department and Professor Charles Easmer and Mr. A. E. Eitchell of the Horticulture Department for their counsel and assistance.

The manufacturers of spray chemicals, pumps, and spray nozzles, for the use of their equipment and materials in making this study.

INTRODUCTION

Purpose of Problem

The effectiveness of 2,4-dichlorophenoxyacetic acid, for weed control, depends on how uniformily it is spread over a given area, rather than the total volume per acre applied. Thus the minimum volume to use is the least that can be spread over the area.

The nozzle is a most important part of spray equipment. It is the metering device which actually controls the application of the chemical to the crop. Even slight inaccuracy at the nozzle can result in serious damage to crops or a waste of chamicals.

The purpose of the problem is, therefore, to test and compare the capacity, spray pattern, and the effect of wear on the low volume spray nozzles used to apply 2,4-D for weed control.

Background of the Need for Test

In the United States it has been estimated that weeds cause an annual loss in crop yields of 3 billion dollars .

W. W. Robbins (1942), Professor of Rotany, University of California states:

The average cost of tillage on cultivated lands has been estimated at 15 per cent the value of the crop, and approximately one-half of cultivation is made necessary by the presence of weeds.

In addition to increased production costs resulting from weeds, considerable expense is incurred in
eradicating weeds in ditches along roadways, railroad rights of way, and in lawns, golf courses, and
waste places. It has been estimated that the average annual cost of labor and material to keep weeds
down along railroad rights of way in the United
States amounts to \$2,500,000 (about \$10 per mile).

Farmers were quick to appreciate that if weeds could be controlled with selective chemicals in the growing crops, the productive acreage of their fames could be increased ten to twenty per cent.

About five years ago 2,4-dichlorephenoxyacetic acid was introduced as a so-called "growth-regulating" compound.

This chemical had several remarkable qualities: it was cheap, selective, adapted to a wide variety of weed problems, and only a small amount of it was required to kill the weeds on an acre of land.

The early sprays of 2,4-D were made at relatively high volumes per acre, with ground-rig applications of from 100 to 200 gallons. Today, however, there is more interest in low-volume sprays to reduce the bulk of material applied per acre. The first apray equipment used for weed control was developed for other purposes. It was strictly specialized and made principally for the application of insecticides and fungicides to row crops. This equipment was also expensive.

Fany farmers began to build their own spray machines.

Although 2,4-D has the reputation of being the safest of the anti-weed chemicals, the farmers found that it was not always

safe. For example, because of its toxicity toward many plants, its misuse did result in injury to some crops and ornamentals. They also found that the sodium salt is not as volatile and is slower in action then the esters.

With the knowledge of the most effective way to apply 2,4-D, the operators began to ask for the answers to the following questions:

- l. Is the spray pattern from existing spray machines uniform and evenly distributed?
 - 2. Does the nozzle actually deliver its rated capacity?
- 5. What effect does nozzle wear have on the spray pattern and capacity?

Thus there was a need for checking the spray patterns and capacities of the many different nozzles that are sold for spraying anti-weed chemicals.

Historical Raview

The first spray pattern and capacity tests were made on nozzles used for orchard spraying. In 1009 Howard W. Riley⁸ ran tests on high pressure nozzles using an apparatus called a "Sprayograph".

Er. Riley observed and experimentally determined two main points for each nozzle tested. First he measured the rate of discharge of various liquids at given pressures through different sized openings. Secondly, he observed the

characteristics of the spray produced under any given set of conditions.

The rate of discharge was measured by recording the time necessary to discharge into the open air a known amount of liquid.

The character of spray was studied by taking a graphical record of the spray produced on a "Sprayograph". This apparatus worked upon the principle of a focal plane shutter for a camera. A curtain with a slot was made to pass over the record sheet at a constant speed. Liquid colored with red analine dye was sprayed at the desired pressure against the curtain. Power was applied to the curtain and the slot moved down across the front of the record sheet exposing all portions of it to the spray for the same length of time. By having the exposure sufficiently short it was possible to obtain from any nozzle a record on which the spots were so thinly distributed that they were practically all separate and distinct.

At the third Annual Exposition of the Mational Morticulture Congress in 1910, spraying machine trials and competitions were held under the auspices of the American Society
of Agricultural Angineers. Both pumps and nozzles were
checked on many different makes of spray machines. The purpose of the test was to furnish purchasers full and complete
information in regard to the work, efficiency, design, and
construction of spraying machines on the market in 1910.

The apray nozzles were checked for capacity and for fineness, uniformity and adjustibility of apray. The length and brendth of apray was measured for each nozzle, and the evenness of distribution and fineness of apray were measured by a "Sprayograph".

Research carried on by French in 1034, and by French and Crafts in 1036 shows the recognition of the importance of spray pattern. While no method of observing spray pattern is described, its importance is noted and a method of determining the driving force of the spray is indicated.

As better spray chemicals were discovered, and as the spray equipment developed, farmers began to use chemicals for controlling weeds. Er. O. C. Tranch reported that by 1340 the use of chemicals for controlling weeds had found favor with many farmers. Fowever, the methods of chemical weed control were changing so rapid in 1340 that it was difficult to specify the exact equipment that was required. For this reason industry could not make stock equipment available and the farmers had to adapt and custom build equipment to meet their needs.

During World War II, the discovery of new organic compounds changed the problem of chemical weed control almost over night. These growth regulators not only gave promise of better control of weeds, but could be applied in concentrated mixtures, thus saving much transportation of water. Now, much more definite specifications for appay equipment could be made.

One of the most promising of these growth regulators was 2,4-D. As it became more widely accepted as a selective wood killer, the state agricultural colleges began tests on the characteristics of this chemical. They make available to the farmer information concerning the effect of 2,4-D on different plants and the amount to apply per acre. In addition they specified the kind of equipment needed or best suited for applying 2,4-D. In most instances the nougle recommended was one that would give a flat spray with no heavy streams or edges. There was need for tests to show which needles would give this type of spray pattern.

Professor E. L. Tergor and his co-workers at lowe State College ran distribution tests on individual nozzles in studying the design of chemical weed control equipment for row crops. The test apparatus used consisted of a sheet of corrugated aluminum roofing with 2.7 inch corrugations. The apparatus was aprayed on the test rack and caught at the end of the corrugations in graduated cylinders.

Frofessors G. L. Shanks and J. J. Paterson of the University of Manitoba, Winnipog, Canada, developed in 1947-43 an apparatus which permits studying the appay pattern from any type of nozzle for any combination of height, pressure, and nozzle spacing. A modification of this apparatus was used in the test here at Michigan State College and is described in another section.

DESCRIPTION OF TESTING APPARATUS

Corrugated Test Tray

The first spray pattern and volume tests were made with the equipment shown in Fig. 1.

Fig. 1. Corrugated Test Tray and Pump.

The apparatus consisted of a container for spray material, a suction strainer, an electric motor to power the bronze gear pump, a pressure regulator, two pressure gauges, and a 5-nextle spray boom mounted over special corrugated sheet metal.

The 100 mesh suction screen was attached to the 3/4 inch suction line and placed below the surface of the spray material in a 10 gallon container. The 3/4 inch bronze herringbone gear pump was powered by a & H. P. electric motor.

Pig. 2. & H. P. Electric Motor and Bronze Gear Pump.

When operated at 600 R. P. M. and at 40 pounds per square inch pressure, the pump had a capacity of 3.1 gallons per minute. The spray material was forced past the disphragm pressure regulator into the 1 inch spray boom, and sprayed from the nessles onto the corrugated sheet metal.

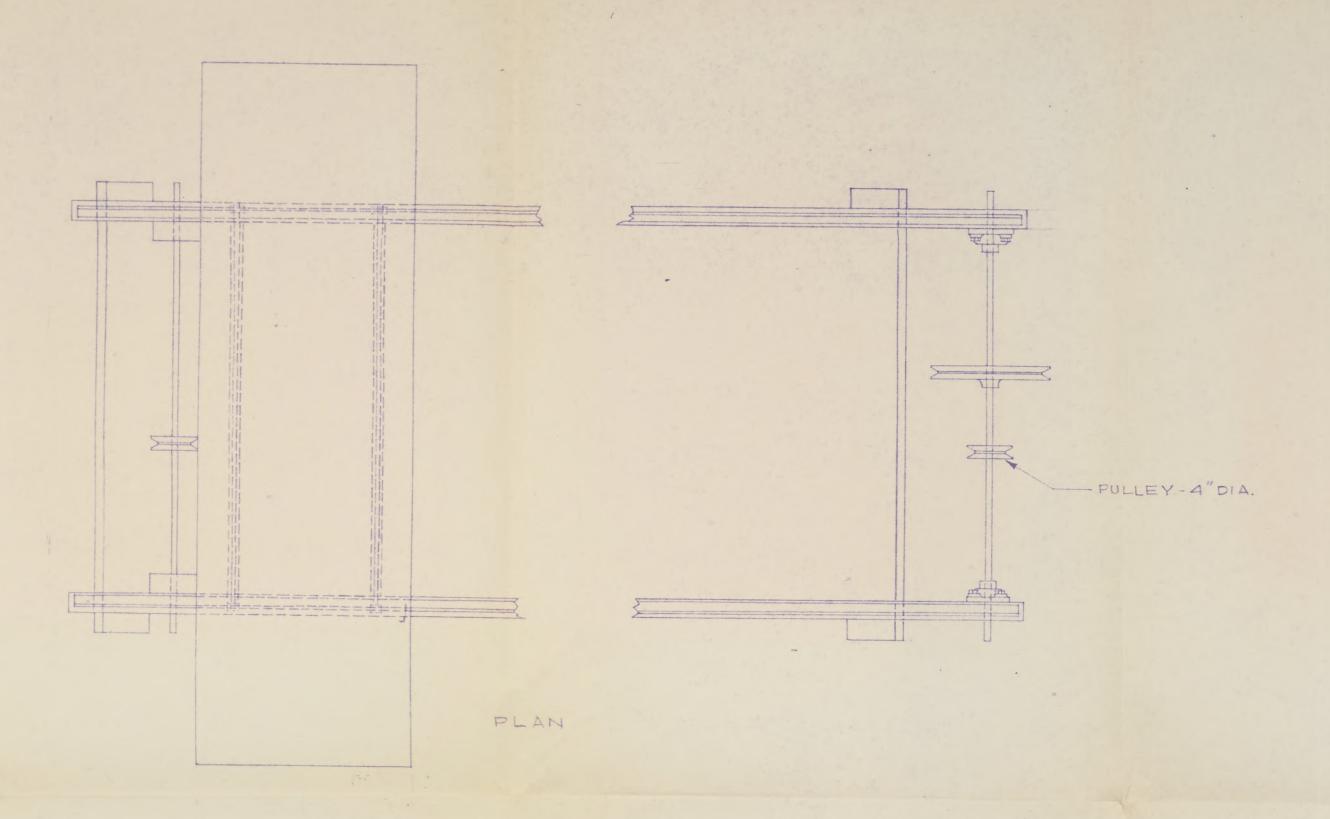
The test tray had 1.5 inch corrugations and was a 4 x 6 foot section. The tops of the corrugation ribs were sharp, rather than round as in regular roofing, and the tray was mounted so that the corrugations were inclined 6 degrees in their longitudinal direction (the 4 foot dimension). The degree of incline remained the same throughout the test and the spray materials drained into test tubes placed at the front of the tray.

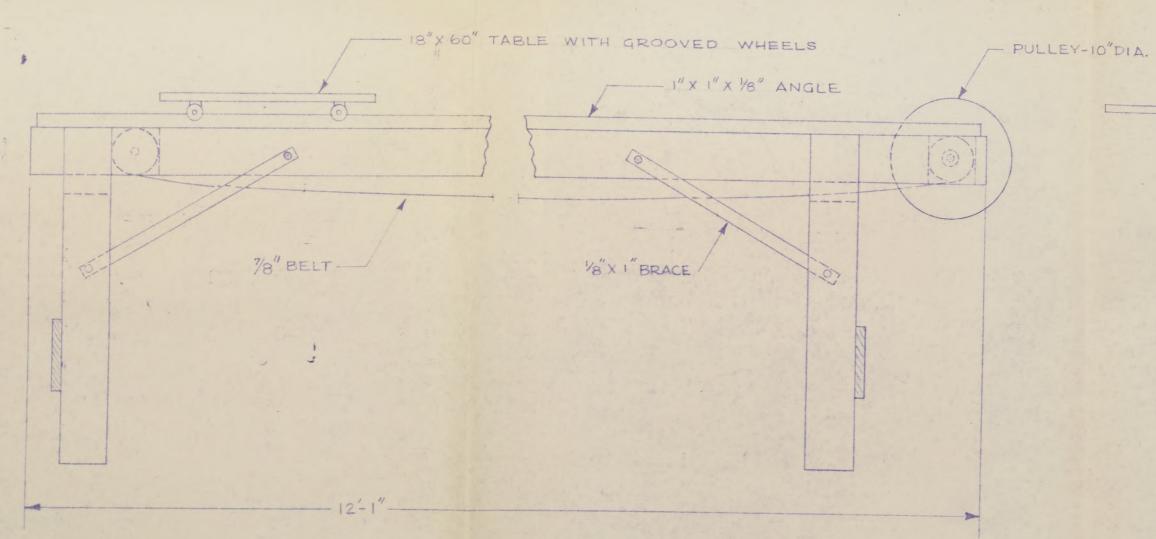
The spray boom, above the test tray, was mounted on an adjustable standard. Fig. 5. Adjustment for height was obtained by telescoping a 3/4 inch conduit into a 1 inch pipe. Two \(\frac{1}{4}\) inch nuts were welded on the side of the pipe to provide threads for the thurb screws that held the vertical standard in position.

To provide a means of placing the nozzle at any angle between the vertical and horizontal plane; a short section of 1 1 inch pipe was welded on top of the 3/4 inch conduit. The 1 inch spray boom was slipped through this section and held in place by a thumb screw. This adjustment made it possible, by turning the boom, to place the nozzle in any desired position. Fig. 3.

Fig. 3. Adjustable Standard for Spray Boom.

In order to comply with most of the manufacturers' recommendations, as to nozzle spacing, { inch couplings were welded on the spray boom 20 inches apart. However, to provide for spacings other than 20 inches, connections that could be clamped at any position on the boom were also made. Fig. 4. These spacing adapters consisted of two { inch nipples, a short length of chemical resistant rubber hose, and a { inch elbow for the nozzle. The strap iron clamp was welded to the nipple and elbow, and the unit was held in place by a small bolt and wing nut.


Fig. 4. Spacing Adapters for Spray Boom.


Visual Spray Pattern

The second test apparatus made a visual record of the spray pattern delivered by the nozzle. The machine is shown in detail by the photo, Fig. 5, and the drawing, Fig. 6.

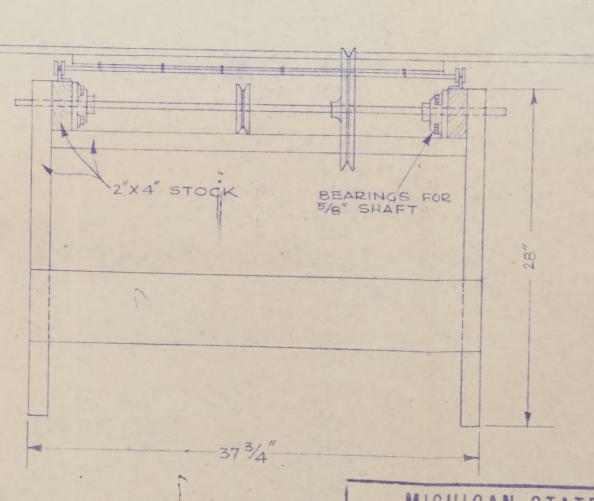


Fig. 5. Visual Spray Apparatus

FRONT ELEVATION

MICHIGAN STATE COLLEGE AGRICULTURAL ENGINEERING DEPT. EASTLANSING, MICH.

VISUAL SPRAY APPARATUS

PLANNED
DRAWN C.D.J.
TRACED C.D.J.
CHECKED

DATE JUNE 15, 49 SHEET.
SCALE 1/8"= 1" NO.

wooden 2 x 4's 12 feet long on edge and spaced 3 feet apart. These were supported by 2 x 4 legs about 24 inches high and securely braced. A length of 1 inch angle iron, with the sharp corner up, was fastened on top of each of the 2 x 4 rails. This formed a smooth, nearly frictionless track for the 1.5 by 5 foot plywood table which was supported by four fixed wheels. These wheels were 5/3 inch Fafnir flange units. They were simply small ball bearings with a flange on the side and operated on the angle iron much the same as a railroad car wheel on rails.

Fig. 7. Ball Bearings on Movable Table used with Visual Spray Apparatus.

on both ends of the track and fastened to the 2 x 4 main frame were two parallel shafts. Each of these shafts carried a 4 inch V pulley. The driving, 10 inch, V pulley was powered by a 1/3 H. P. electric motor that operated at 1725 H. P. M. With a 2 inch pulley on the motor, the V belt and plywood table travelled 4 miles per hour, which was considered a common speed for tractor mounted sprayers.

A short piece of weak string attached the table to the belt. This was a precaution to prevent damage if the table was not stopped after the spray pattern was completed.

and same 3/4 inch bronze gear pump and adjustable spray boom were used with this equipment as with the first apparatus. Methylene blue dye was aprayed onto paper placed on the plywood table, which was passed under the apraying nozzle at 4 miles per hour. A visual pattern of the nozzle was thus obtained.

TESTING PROCEDURE

Corrugated Test Tray

As a means of determining which nozzles to check, the manufacturers of chemical weed control equipment were asked the name and type apray nozzles used on their machines. It was found that many of the companies did not make their own, but purchased them from other concerns specializing in the manufacture of low volume nozzles.

They were capable of applying approximately 5, 10, and 15 gallons per acre whom operated at 4 miles per hour and at a pressure of from 20 to 80 pounds per square inch. Each sample nozzle was checked at the height, pressure and spacing recommended by its manufacturer.

The first test, made with the corrugated test tray, was to check the possibility of using plain tap water, as a spray material, when determining the capacity and spray pattern of the nozzles. The nozzle used in this test had an accurate discharge rate per minute even though the spray pattern did show heavy edges. In addition to plain water, a solution of Dow Esteron 44 and a solution of Pow Formula 40 were used as apray materials. The 2,4-D solutions were used according to the recommended concentrations of 1 quart per 100 gallons of water.

These three mixtures were sprayed through the same

nozzle at 53 pounds per rquere inch pressure, and Fig. 8 shows the resulting pattern and volume discharged. Meither the spray pattern nor the volume, showed any greater variation than could be expected in any two nozzles of the same size and apraying the same material. Merefore, plain tap water at a temperature of 75 to 80 degrees habrenheit was used in all the tests.

pattern were checked simultaneously. A nozzle was placed in the center of the spray boom and raised 13 inches above the corrugations, the gear pump started, and the pressure set according to the manufacturers' recommendations. After the liquid began flowing off the test tray, the test tube rack was placed under the corrugations and the time for the tubes to fill checked with a stop watch. The tubes were then removed without stopping the pump. Three identical tests were made with two nozzles of each size, in order to insure that a random sample had been used in the checks.

A photo of the tubes, Fig. 9 after a test, gives a general picture of the spray pattern, but due to slight variations in the test tube sizes, it was necessary to measure the amount of liquid caught in each tube. The average of three replications was plotted to show the pattern delivered by the individual nozzle. Fig. 10 and 11 are curves that were obtained in this manner.

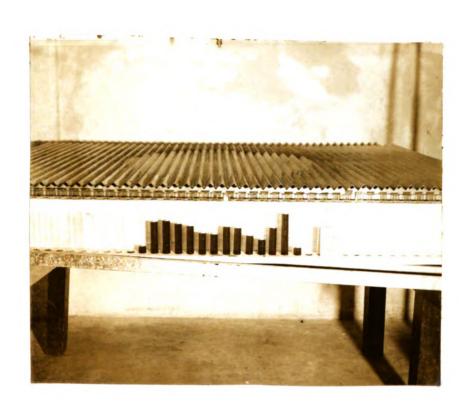
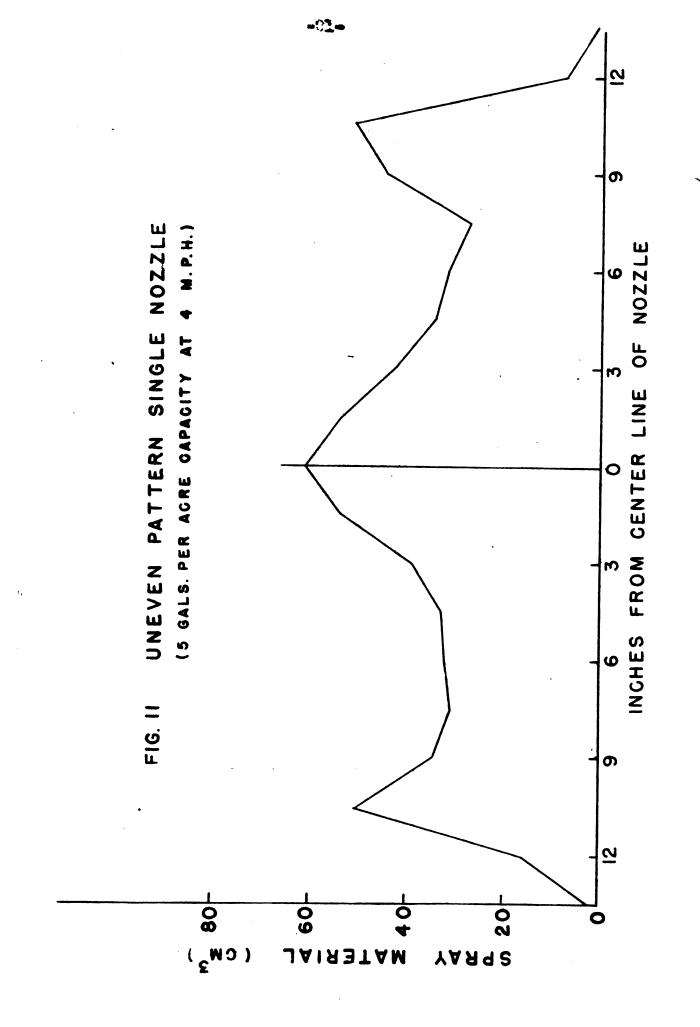



Fig. 9. Test Tubes After Test Showing Spray Pattern.

YAЯ92

The capacity of the nozzle was determined by measuring, with a graduated cylinder, the amount of material discharged in a given time. The recults, Table 1, show that the capacities of all the nozzles checked were very near the manufacturers; ratings.

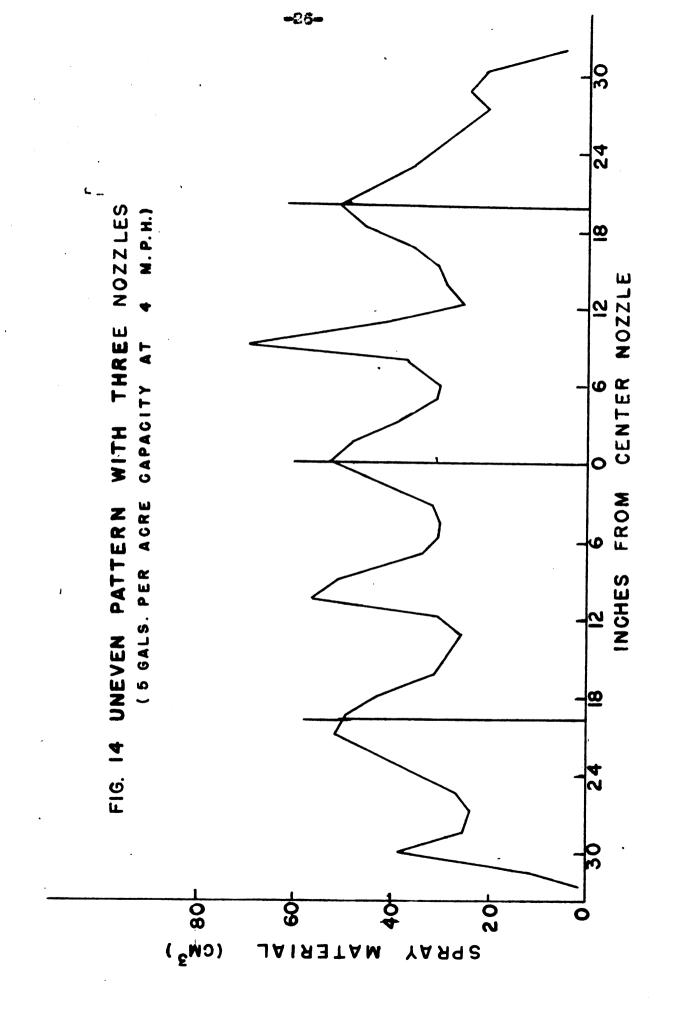
nozzles of each size were placed on the apray boon, and in the same manner as described above, the pattern for the three was checked. Fig. 12 is an example of a curve obtained from three nozzles with a uniform pattern. The heavy lines represent the center of each nozzle. Fig. 13 is a photo of this even distribution, and the curve, Fig. 14, shows the pattern of three nozzles with heavy edges. Those with heavy edges were checked at several different spacings on the boom, and heights above the test tray. A position could not be found, however, that would give as even a distribution as seen in Fig. 12 and 15.

The nozzles that produced the spray patterns shown in Figures 15, 18, 17 and 18, were manufactured by the same company, but had different rates of discharge. Fig. 15 and 18 show the pattern of fan nozzles that deliver 2.5 gallons per acre at 4 miles per hour and 30 pounds per square inch pressure. The patterns in Fig. 17 and 13 were made by nozzles that deliver 10 gallons per acre at the same speed and pressure.

The nozzles with the higher capacity gave the most even

CAPACITIES OF SPRAY NOZILES

USED FOR WEED CONTROL


Ground Speed 4 M.P.H.

Manufacturer	Type	Nozzle No.	PSI ¹ Pressure	Rated G.P.M. ²	Test G.P.M.	Rated G.P.A.	Test G.P.A.	Spacing
Monarch	Fan	#20 #28 #35M	40# 40# 40#	0.051 0.100 0.158	0.047 0.0925 0.146	6.4 12.5 19.7	5.9 11.4 18.1	12" 12" 12"
Delavan	Fan	AG-2 AG-4 AG-4.5	38# 38# 38#	0.069 0.140 0.162	0.0695 0.142 0.163	5.0 10.0 12.0	5.15 10.5 12.1	20" 20" 20"
Spraying Systems	Fan	730039 730077 650067 730154 730231	30# 30# 30# 30# 30#	0.0337 0.0674 0.0674 0.135 0.202	0.0302 0.0650 0.061 0.139 0.210	2.5 5.00 5.00 10.0 15.0	2.25 4.82 4.52 10.3 15.5	20" 20" 20" 20" 20"
Accessories Manufacturing Co., Inc.	Fan	65.067 80.2	40# 40#	0.067 0.20	0.065	5.0 15.0	14.84	20" -20"
Automatic Equipment Company	Fan	#65 #45 #25	38# 38 # 38#		0.388 0.143 0.0725		28.8 10.6 5.35	20" 20" 20"
Terado Co.	Fan	Marr V-5 Marr V-10	38# ~ 38#		0.074		5.46 11.5	20" 20"
Kromer	Fan	#55 #60 #70	20# 30# 40#	0.243 0.190 0.120	0.294 0.235 0.144	18.0 14.02 8.9	21.8	20 [#] 20 [#] 20 [#]
Linck Co.	Solid Cone	#5 #6	30# 30#	0.339 0.438	0.339	42.0 54.0	42.0 54.3	12" 12"
Century	Hollow Cone	C-5 C-8 C-10	40# 40# 40#		0.064 0.095 0.108		4.75 7.05 8.05	20" 20" 20"
Spray Engineering	Fan	31-F-J-2 040-F-J-3 062-F-K-5	32# 2 3 # 14 #	0.122 0.182 0.405	0.123 0.190 0.380	10.0 15.0 20.0	10.15 15.65 18.80	18" 18" 30,"

Pounds per square inch
Gallons per minute
Gallons per acre

Fig. 13. Uniform Pattern of Three Nozzles on Boom.

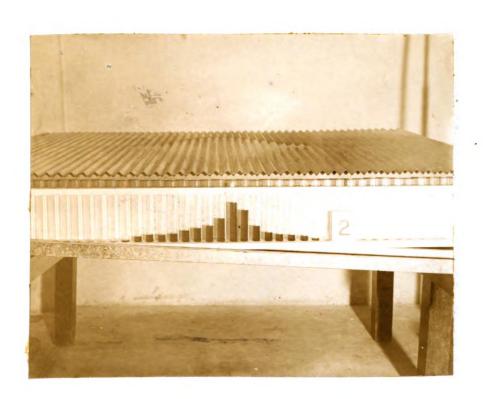
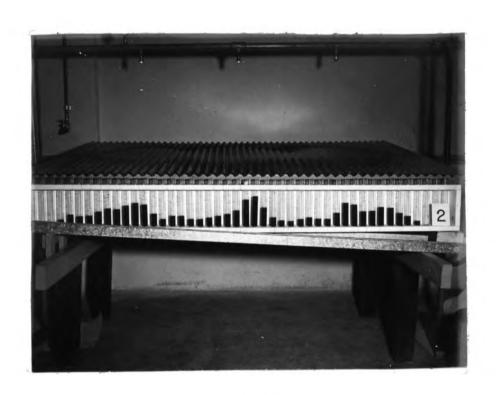
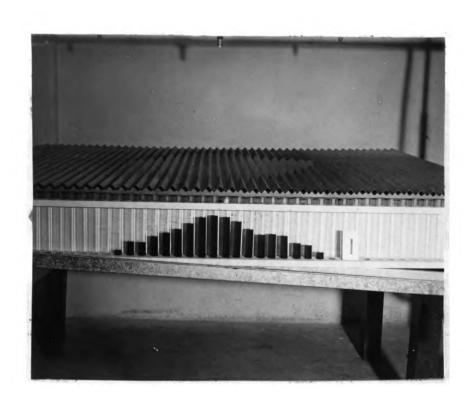




Fig. 15. Pattern for Single Nozzle with 2.5 gals. per Acre Capacity at 4 H. P. H.

. . . .

Pig. 16. Pattern for Three Nozzles with 2.5 gals. per Acre Capacity at 4 M. P. H.

Pig. 17. Pattern for Single Nozzle with 10 gals. Per Acre Capacity at 4 M. P. H.

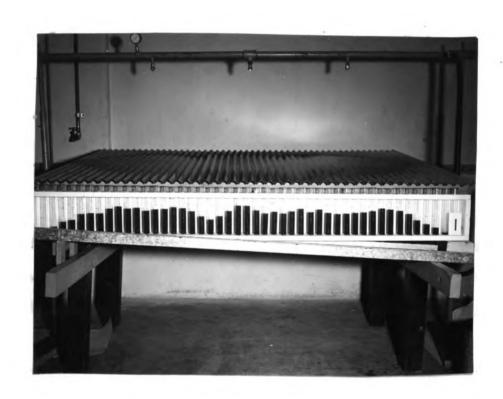


Fig. 18. Pattern for Three Mozzles with 10 gals. Per Acre Capacity at 4 M. P. H.

distribution of spray material. That is, ones with rates of discharge above 5 gallons per acre, at 4 miles per hour, gave a more even pattern, than those with capacities under 5 gallons per acre at the same speed.

Visual Spray Pattern

The second group of tests was made with the visual spray apparatus. This machine made it possible to record a visual pattern for each nossle, at any desired spacing and height.

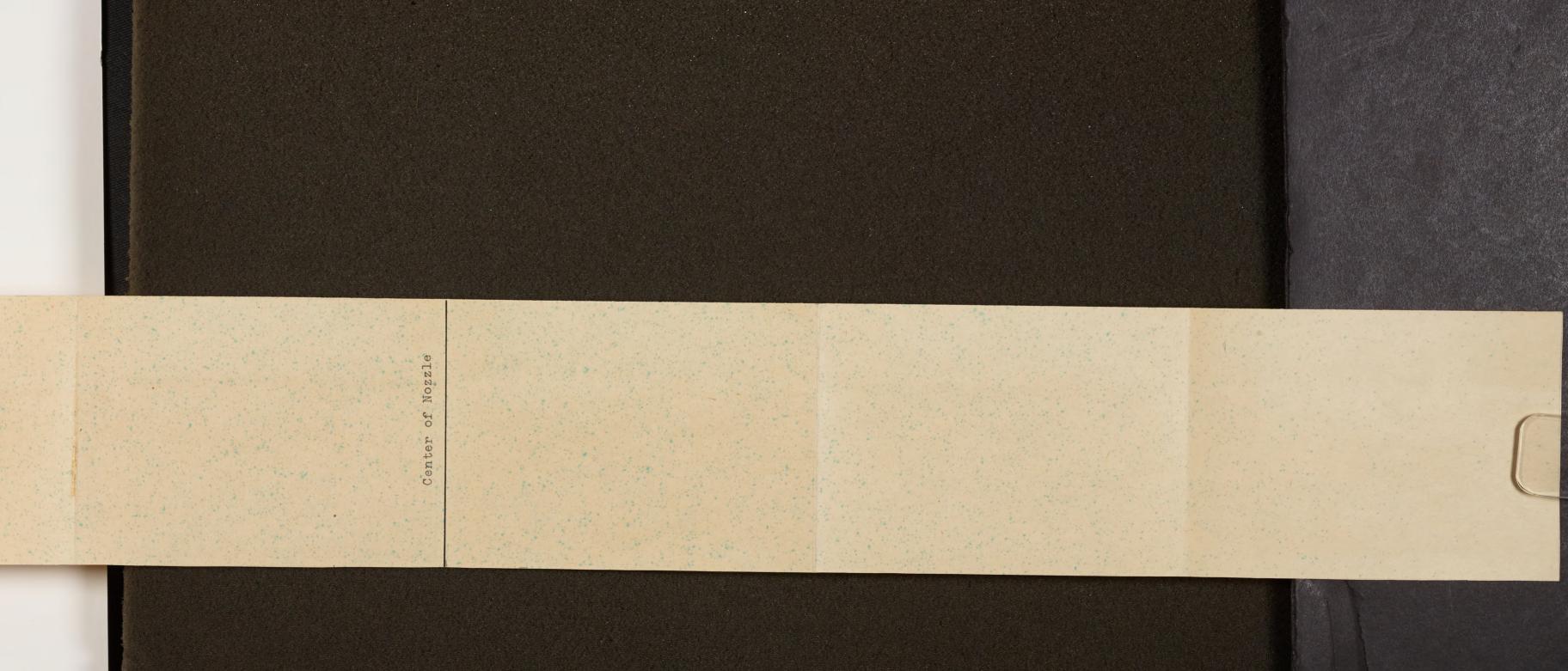
The nozzle, to be checked, was mounted on the adjustable boom, and the boom placed in position over the apparatus. A plain sheet of white wrapping paper was pinned to the plywood table, after it had been moved to the starting end, and attached to the V belt by a string. As soon as the pump started, a container was held beneath the nozzle until the pressure and pattern were normal. Next the motor operating the V belt and table was switched on and the container withedrawn from beneath the spray. The paper passed under the nozzle receiving the spray, and as rapidly as possible the container was returned to catch the liquid until the purp motor could be stopped.

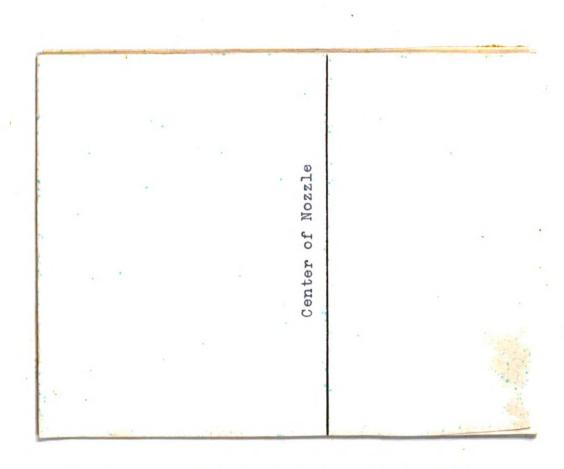
By using mathylene blue in the spray material, a clear pattern of the spray was deposited on the paper.

Figures 19 and 20 compare a spray distribution, of a single nozzle with a uniform pattern, made with the corru-

gated test tray and the visual spray apparatus. When nozzles, with uniform patterns as shown in Tighres 19 and 20, are placed on the spray boom, the desired uniformity of application is obtained. The ideal distribution, for applying 2,4-D for weed control, is illustrated by Fig. 21.

A comparison of the distribution pattern of single nozzles, with heavy edges, may be seen in Figures 22 and 23. The oversprayed strips, that occur with heavy edged patterns, are illustrated by Fig. 24.


The spray patterns in Figures 21 and 24 were produced by nozzles with the same rate of discharge, but their spray distributions were different. The effect of this overtreated strip, in using 2,4-D, cannot be answered without further field tests.



Pig. 19. Photo Single Hozzle Uniform Pattern.

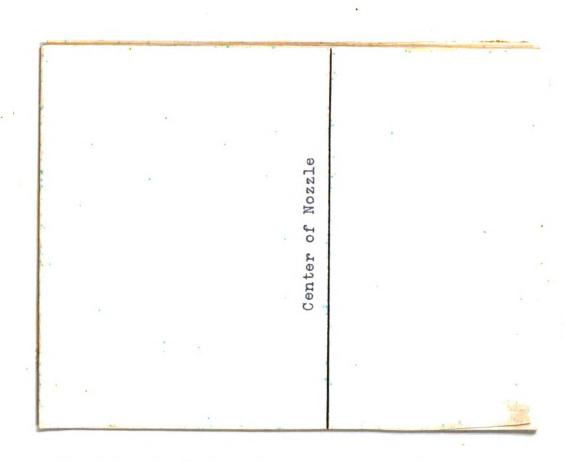


Fig. 20. Visual Pattern Single Nozzle Uniform Distribution.

Pig. 21. Spray Pattern Three Nozzles Uniform Distribution.

Pig. 21. Spray Pattern Three Nozzles Uniform Distribution.

Fig. 22. Photo of Single Nozzle with Heavy Edged Pattern.

Fig. 23. Visual Pattern of Single Nozzle with Heavy Edged Distribution.

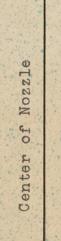


Fig. 24. Spray Pattern Three Nozzles with Heavy Edged Distribution.

Wear Tests

As a third test the nozzles were checked for the effect of wear on spray pattern and capacity. A nozzle with a 5 gallon per acre rate of discharge, and one with a 10 gallon per acre capacity were selected to be used for this test. In the beginning, when checked with the corrugated test tray and the visual spray apparatus, both gave a uniform distribution pattern.

The two nossies were mounted on the spray boom, placed over the corrugated sheet, and operated at a pressure of 33 pounds per square inch. After 10, 20, and 30 hours of continuous operation, the spray pattern and capacity of both nossies were checked.

Pig. 25 shows that the variation in rate of discharge and distribution pattern were not any greater than could be expected with two new nozzles of the same size.

A farmer operating a spray rig 4 miles per hour and covering a width of 28 feet, could spray approximately 100 acres in 10 hours. The average operator probably would not need to spray more than 100 acres annually; therefore, the 30 hours of continuous operation represent about 3 years! life for the spray nozzle. Although continued tests should be made on the effect of wear, it is apparent that with the proper care the low volume nozzle should have the same pattern and capacity after 3 years of normal operation.

Comparative ratings of the nozzles tested may be seen in Table II.

PATTERN SPRAY Z O WEAR **O**F EFFECT 25 F16.

٤. ..

TABLE II COMPARACIVE RATINGS OF NORTH STEETED

Magufac turer	Nozzle Dating	Ramarka
Monarch	3	Construction good. Reavy edged pattern.
Spraying Systons	2	Masy to change nozzle tips. Nozzles with capacities of 10 gals. per acre and above gave the most even spray pattern.
Accessories Mfg. Inc.	2	Construction good. Nozzle tip protected should it come in contact with the ground.
Automatic Equip-	4	Difficult to keep from leaking.
Torado Co.	1	Very uniform spray pattern.
Eromor	3	Desy to damage tip should it come in contact with ground.
Linck	3	Higher volume than needed for most work.
Contury	2	Nollow cone. Very fine spray.
Spray Dagidaering	3	Difficult to change disc.
Folavan	3	Nozzles with capacities above 10 gals, per acre give the best agray pattern.

Roy to Retings:

1. Excellent 2. Good 3. Feir

The construction, spray pattern and especity were considered in the rating of each nozzle.

CONCLUSIONS

- 1. The two-piece fan nozzle with a uniform pattern, an individual strainer, and a capacity of 10 to 15 gallons per acre meets the requirements for a general weed spray nozzle.
- 2. The fen nozzle is the best, for weed control, because of its larger droplet spray and uniform coverage. The more stomized spray produced by hollow and solid cone nozzles, has a greater tendency to fog or drift.
- 5. Uniform distribution of spray material may be obtained from fan nozzles with capacities as low as 5 gallons per acre. However, those with rates of discharge above 5 gallons per acre, at 4 miles per hour, give a more even pattern than those with lower capacities at the same speed.
- 4. The pattern of each nozzle, on a spray boom, must overlap to give complete coverage.
- 5. Touble coverage does not necessarily give uniform distribution. Fan nozales, on a boom, that produce heavy edged
 patterns will give more satisfactory results if their
 fans completely overlap, but they will not give the distribution produced by nozzles whose patterns are uniform.

- 6. It is apparent that with the proper care the low volume nozzle should have the same pattern and capacity after 3 years of normal operation.
- 7. If nozzles are purchased from an experienced manufacturer, their rated capacities will be reliable. However, each apray rig must be calibrated, because manufacturers ratings, gallons per sere, will only be correct if the speed of travel and pressure are as recommended.

SUMMERY

The effectiveness of 2,4-D, for weed control, depends on how uniformity it is spread over a given area, rather than the total volume per acre applied. The nozzle is, therefore, a most important part of spray equipment as it acts as a metering device which controls the application of the chemical to the crop.

Test nozzles, capable of applying approximately 5, 10, and 15 gallons per acre, were obtained from ten different companies, and the capacity and apray pattern for each was checked on both the corrugated test tray and the visual apray apparatus. In addition, checks for the effect of wear on rate of discharge and pattern were made.

The results show that if nossles are purchased from an experienced manufacturer, their rated capacities will be reliable. All of the nozzles, however, did not produce a uniform pattern. Those with rates of discharge above 5 gallons per acre gave a more uniform distribution than those with capacities below 5 gallons per acre. Nozzles producing patterns with heavy edges, left overtreated strips in the sprayed area. It is impossible to determine the effect of these oversprayed strips on weed kill without field tests.

the capacity and apray pattern of the low volume nozzles were unchanged after 30 hours of continuous operation. To obtain more complete results the wear tests should be continued, at different pressures, for a longer period of time.

LITHEATURE CITED

- 1. Parger, E. L., Collins, E. V., Norton, B. A., and Liljedahl, J.
 - 1943 Problems in the Design of Chemical Weed

 Control Equipment for New Grops. <u>Journal of</u>

 the American Society of American Engineers.

 29: 581-385.
- 2. French, Orval C.
 - 1934 Machinery for Applying Atomized Oil Spray.

 Journal of the American Society of Agricultural Engineers, 15: 324-326.
- 3. French, Grval C., and Crofts, A. S.

 1936 Characteristics of Spray Nozzles for Vegetable and Weed Spraying. <u>Journal of the</u>

 <u>American Society of Agricultural Ungineers</u>,

 17: 115-119.
- 4. French, Orval C.
 - 1940 Equipment for Chemical Feed Control. Journal of the American Society of Agricultural Engineers, 21: 437-438.
- 5. Green, Laurenz, and Favideon, J. D.
 - 1910 Report of Spraying Machine Trials. Transactions of the American Society of Asricultural Ingineers, 4: 136-157.

- 6. Harvey, M. A., and Robbins, W. W.
 - 1947 2,4-D as a Weed Killer. California Agricultural Extension Service Circular 133.
- 7. Bassey, G. F.
 - 1943 Today's Wood Sprayor Engineering Problems,

 <u>Vary Implement News</u>, <u>59</u> (13): 43-49, 95, 96,

 190.
- 8. Riley, Howard W.
 - 1909 A Sprayograph. Transactions of the American Society of Agricultural Ungineers, 3: 73-82.
- 9. Fobbins, W. W., Crafts, A. S., and Faynor, R. N.

 1942 <u>Meed Control</u>. EcCraw-Hill Book Company, Inc.,

 Hew York, New York. 513 pp.
- 10. Shanks, G. L., and Paterson, J. J.
 - 1943 Technique for Sprey Nozzle Testing. <u>Journal</u>
 of the American Society of Agricultural
 Engineers, 29: 539-540.

PIZLIOGRAPHY

- 1. Akesson, N. B., and Harvey, W. A.
 - 1943 Equipment for the Application of Perbicides.

 Journal of the American Society of Apriculture
 al Engineers, 29: 334-339.
- 2. Barr, H. T., and Brown, C. A.
 - 1947 Weed Control with 2,4-P. Journal of the American Society of Agricultural Engineers, 23: 341-343.
- S. Prown, C. A., and Carter, W. H.
 - 1346 Yeed Investigations. Louisiana Agricultural Experiment Station, Bulletin 402.
- 4. Frown, C. A., and Holderman, Q. L.
 - 1946 Controlling Alligator Weed in Sugar Came with 2,4-D. Louistana Agricultural Experiment Station, Bulletin 410.
- 5. Putton, w. C.
 - 1947 Chemical Weed and Plant Control. <u>Journal of</u>
 the American Society of Auricultural Engineers,
 23: 339-341.
- 6. Freed, V. H., and Varron, R.
 - 1049 2,4-D as a Reed Killer in Oregon. Oregon State College Extension, Fullstin 607, 18 pp.

- 7. Crigaby, B. H., and Harmor, C. L.
 - 1345 Death to Leads with 2,4-D. Michigan Experiment Station, Tolder S3.
- S. Culvin, H. H.
 - 1343 A low-gallonage Read Sprayor, R. I. State
 College Extension Mimeograph Circular 60,
 6 pages.
- 9. Hammer, C. L., Tukey, N. B., and Carlson, N. F.

 1947 Application of 2,4-D to Soil as Pre-emergence

 [pray to Prevent Lodging and to Control Weeds
 in Sweet Corn. Michigan Agricultural Experi
 ment Station, Quarterly Bulletin 30: 194-200.
- 10. Hamnor, C. L., and Tukey, H. B.
 - 1948 Simple Pavice for Applying Ground Sprays (in wood control). Eichigan Agricultural Experiment Station Quarterly Bulletin, 30: 563-372.
- 11. Henson, N. S., and Steele, J.
 - 1943 Spray Equipment for Reed Control. Hebraska
 Agricultural Extension Circular, 174: 1-16.
- 12. Rophart, L. W.
 - 1945 Weed Control with Chemicals. Journal of the American Society of Americal Engineers, 27: 506-503.

- 13. Latiner, E. J.
 - 1943 What's Wrong with Wood Sprayers. Farm Inploment Nows, 60: 33-40.
- 14. Hassoy, G. F.
 - 1943 Pangers in Chemical Reeding. <u>Part Teplement</u>

 News, 52(10): 50-55, 124, 126, 128.
- 15. MacDonald, W. P.
 - 1943 Field Spraying Equipment for Weed Control.

 Journal of the American Society of Acricultural Engineers, 29: 390-393.
- 16. Price, T. W.
 - 1946 Recommendations for Weed Spraying Equipment.
 Oregon Agricultural Experiment Circular, 170:
 1-20.
- 17. Pynor, M. F.
 - 1943 Equipment for Low Callonage Application of Serbicides. California Agricultural Department Dulletin, 37: 90-93.
- 13. Tullis, U. C.
 - 1943 Experiments with 2,4-D for Controlling Feeds
 in Rice Fields in Foutheastern Toxas in 1947.
 Texas Agricultural Experiment Station Progress
 Report 1115, 5 pages. College Station.

- 13. Underwood, J. K., and McMurray, S. F.
 - 1943 The Uso of 2,4-9 Reed Killers. Tennossee
 Agricultural Experiment Station Circular,
 81. 4 pages.
- 20. Kestgate, W. A.
 - 1948 Emporionce Chemical Angineer Offers Dealers
 Suggestions on Nezzle Types for Teed Control.
 Topl. Noc. 49(1) 52.

