A STUDY OF THE EACTORS AFFECTHNG THE PURCHASING OF CITRUS FRUITS

Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE

Orpha M. Huffman
1939

A ETUDY OF. TIE FACTORE

AFFECTIIG THE PURCHASING OF CITRUS FRUITS

By
Oroha Mae Huffman

Submitted in partial fulfilment
of the requirement for the degree of Master of Science

Department of Institution Administration

Division of Home Economics
Michigan Stete College

$$
\text { June - } 1939
$$

ACKNOWLEDGMENT

Abstract

The writer wishes to express her apprecietion and thanks to all who assisted in making this study possible: particularly to Professor Mabelle S. Ehlers, under whose supervision the work was directed; to Dr . Marie Dye who rendered valuable assistance by her suggestive criticism; a.nd to Dr. Ernest Bessey, Dr. W. L. Mallmann, Professor G. G. Speeker and Dr. W. D. Baten.

Page
I. Introduction
A. Object of Study 1.
B. Review of Literature 1.
C. The Present Status of Citrus Consumption 4.
D. History of the Citrus Industry 5.
E. Species and Varieties of Citrus Fruits 9.
II. Methods Used in Study
A. Statistical Information 23.
B. Prices 23.
C. Qualities of Fruit 24.
D. Interpretation of Data 26.
III. Discussion
A. Importance of the Industry 26.
B. Proauction of Citrus Fruits 30.
C. Distribution of Citrus Fruits 77.
D. Prices of Citrus Fruits 101.
E. Qualities of the Fruits 115.
IV. Summary and Conclusions 131.
V. Appendix 134.
VI. Bibliography 281.
Graph Page
I. Location of Citrus Acreaces - Orances 29.
II. " " " " - Grapefruit 29.
III. n n n n - Tengerines 29.
IV. " " n - Total Citrus 29.
V. Increase in Citrus Shipments, 1918 to 1932-37, Orenfes 34.
VI. Increase in Citrus Shipments, 1918 to 193?-37, Grepefruit 34.
VII. Increase in Citrus Shipments, 1918 to 1939-37, Lemons 24.
VIII. Increase in Citrus Shimments, 1918 to 193:-z7, Total Citrus Fruits 34.
IX. Oricin of Shipments by Regions, Orances 35.
X. " " " " n , Grapefruit 35 .
XI. n \quad " " " " , Lemons 35.
XII. " " " " " , Tangerines 35.
XIII. " " " n , Total Citrus Fruits 35.
XIV. Totel Annusl Chipments of Citrus Fruits from all Ferions 36.
XV. Oranges - Annual Shipments from the Four Cnief Proaucing Regions 37.
XVI. Oranges - Monthly Shipmerts from Southern California 38.
XVII. Oranges - " " " " Central California 39.
XVIII. Orances - " " " Florida 41.
XIX. Oranges - Total ionthly Shioments, All Fegions 42.
XX. Grapefruit " $"$
" " 42.
Graph
XXI. Grepefruit, Annuel Shipments from Four Chief Recions 44.
XXII. $\quad n \quad$ Orifin of Carlot Shipments with Texas Placed on Top of Floricia 45.
XXIII. Grapefruit, inonthly Siipments from Texas 46.
XXIV. II
" " Florida 47.
XiV . LemonsXXVI.Tengerines," """ ""48.
XXVII mixed Citrus, " "
n " " 48.
XXVIII. Total Citrus Fruit inonthly Shioments from fll Regions 49.
XXIX. Varieties of Oranfes Shipped - California 54.
XXX. " n n " -Florida 54.
XXXI. Age of the Becring Trees. - Orances 57.
XXXII. " " " " " - Grepefruit 57.
XXXIII. " " " " " - Tancerines 57.
XXYIV. n n " n " - Lemons 57.
XXXV. Orances - Wionthly Shipments from California, All Reॄions60.
XXXVI. Seasonal Variations of Orances from California and Floriaa 61.
XXXVII. Seasonel Indexes Pertaining to Shioments of Orances From Cellifornia and Florida 63.
XXXVIII. Cyclic Fluctuetions with Trend Removed, Orenees - California 64.
XXXIX Cyclic Fluctuations Pertaininf to Florida Or:anes 64.
XL. Seasonal Veriations of Grapefruit from Florida and Texis. 67.
XLI Seasonal Indexes Pertaininc to Shinments of Grepefruit from Florida and Texas. 68.
Graph Pege.XIII Cyclic Fluctuations with Trend and Seasons Removed69.Florida and Texas Grapefruit
XLIII. Differentizl Graph for Orange Shipments 71.
XIIV. " " " Grapefruit " 75.
XLV. " n Lemon " 74.
XIVI. " " " Total Citrus " 75.
XIVIII Orenee Prices - Veckly Auction Prices at Letroit, Wichicen 103.
XLVIII. Orisir of Oranes - \#ieekly Cerlot. Unloeds at " " 110.
YIIX. Grupefruit Prices - Vieekly Auction Prices at " " 111.
I. Tunerine Prices - inontrly Average, All Auctions 112.
LI. Orisin of Grepefruit - Veekly Carlot UnIoadis at " $11 \approx$.
LII. Orange Prices, worthly Averecs, All Auctions 114.
IIII. Grapefruit Prices, Worthly " " " 115.
I.IV . Volunes of Verious sizes of Fruits 116.
IV. Cost of Orance Juice Per Ounce for Orances Purchesed 117.
LVI. Cost of Orenfe Juice Per Ounce witn Vinolesale Prices Used as Basis for Computations. 118.
INII. Feirnts of Celiforniz enả Florida Oremes. 119.

LIET OF TABLES

Table				$\begin{gathered} \text { Page } \\ 161 \end{gathered}$
I.	Grepefruit Shipments		1917	
II.	Orange	"	1917	161
III.	Lemon	"	1917	161
IV.	Grapefruit	"	1918	162
V.	Orarge "	"	1918	162
VI.	Lemon "	"	1918	163
VII.	Grapefruit		1932	163
VIII.	Orance \& Satsuma "	tsuma "	1932	164
IX.	Lemon n	n	1932	165
X.	Tangerine	"	1932	166
XI.	wiixed Citrus Fruit	"	1932	166
XII.	Grepefruit	"	1933	167
XIII.	Orance and Satsuma	"	1933	169
XIV.	Lemon	"	1933	171
XV .	Tangerine	"	1933	172
XVI.	ivixed Citrus Fruit	"	1933	173
XVII.	Grapefruit	"	1934	174
XVIII.	Oranges and Satsumas	"	1934	176
XIX.	Lemons	"	1934	177
XX.	Tangerine	"	1934	178
XXI.	Mixed Citrus Fruit	n	1934	179
XXII.	Grapefruit	n	1935	182
XXIII.	Orange \& Satsuma	"	1935	182
XXIV.	Lemons	"	1935	184

Table Prge						
LII.	Orange	and Sa	tsuma	Shipments,	Mississippi	216
LIII.	"	"	"	"	Inperial Valley Califorria	217
LIV.	Lemon			"	Southern California	218
LV.	"			"	Central	219
LVI.	n			"	Northern "	220
LVII.	"			"	Arizona	221
LVIII	Tanger	ine		"	Florida	222
LIX.	"			"	Louisiena	293
LX.	n			"	Southern California	224
LXI.	"			"	California	225
LXII.	Mixed	Citrus	Fruit	"	Florida	226
LXIII	"	"	"	"	Southern California	227
LYIV .	n	"	"	"	Louisiana	2.28
LXV.	"	"	"	"	Certrel Califorria	229
LXVI.	"	"	"	"	Arizona	230
LXVII.	"	"	"	"	Imperial Valley California	231
LXVIII.	Totel	Citrus	Fruit	"	Southern California	232
LXIX.	"	"	"	"	Florica	233
LXX.	"	"	"	"	Central California	2.34
LixI.	"	"	"	"	Texas	235
LXXII.	"	"	"	"	Imperial Valley California	286
LXXIII.	"	"	"	"	Northern California	237
LXXIV.	n	"	"	n	Arizora	238
LXXV.	"	n	"	"	Lovisiana	239
LXXVI.	"	"	"	"	California	240

LXXVII. Total Grapefruit Shipments, 1932-37 241
LXXVIII. " Orange " 1932-37 2.42
$\begin{array}{lllll}\text { LXXIX " Lemon } & \text { " 1932-37 }\end{array}$
LXXI " Tanerine " 19z?-z7 244

LMXXII. " Citrus Fruit " 193?-37 246
IXXXIII. Estimated bearing hcreages \& Percentafe Distribution 247
LXXXIV. Oranges - Vieekly Auction Sales at Detroit, Niciican 251
LXXXV. Grapefruit " " " " " " 254
LXXXVI. Oranges - Monthly Prices - All Auctions 256
LXXXVII. Grapefruit " " " " 256
LXXXVIII. Tangerires " " " " 256

LMXXIX. Carlot Unloads of Citrus Fruit Average for 193?-37, New England Sitates 257
XC. Do. Midale Atlantic states 258
XCI. Do. Central Stetes, Eastern Group 259
XCII. DO. " " " Fiestern " 260

XCIII. Do. Southern States and Northpestern | Strites |
| :---: |
| 262 |

XCIV. Vieights, - Florida Valencia Oranges 264
XCV. n - California Navel " 265
XCVI. " - Florida Teirple n 266
XCVII. " - Various Oranes 267
XCVIII. " - " " 268
XCIX. $n \quad 269$
Tebles Pr.ge
C. Veirhts and Volumes of Juices - Florida Valencia Oran६es 270
CI. Do. California lizvel " 271
CII. Do. Various Orances 272
CIII. Percentage and Cost of Juice - Florida Valencia Oranees 272.
CIV. Lo. California Navel " 274.
CV. Do. Various varieties " 275.
CVI. Retail prices of Orances 276.
CVII. Veights of Orances on Storare Experiment 277
CVIII. Juice Yield of Oranfes on " " 278
CIX. Diameters of Orances and Grapefruit 279
CX. Size of Tissue Vraps 280
Chart Page
I. Shipning Calendar for Orances 52
II. n " " Grapefruit 52
III. " n n Lemons 52
IV. " " " Tanferines 52
V. Diameters of Oranres 85
VI. " " Grapefruit 86
VIII. Wiethod of Packing 87

$$
1
$$

I. IMTRODUCTION

A. Object of Study

Since Citrus Fruits from three widely separed regions are now found on the markets of the central states, it would be ačvantageous to learn whether ary particular varieties are superior to others in any respect. To formulete buying guiges for citrus fruits for institution merketing was the motive leading to tlis study. The investigation was conducted along four lines: (1) volumes, areas and seasons of production of citrus fruits, (2) methods of cistribution and resulting consunption areas, (3) prices of citrus fruits and (4) comparison of quelities of these fruits.
B. Review of Literature

While a great deal of literature is available on the topic of citrus fruits, little has been interpreted so as to assist in formulating purchasing guides for the institution buyer.

The topic as studied by the United States Department of Agriculture, has dealt with the production, distribution and merketing angles of the problem. The consumer angle is not mentioned.

One phase of production studied extensively by the Department of Agriculture deals with genetics. In the "Yearbook of Agriculture 1937" (1) the report on "Improvement of Subtropicel Fruit Crops: Citrus" wiss written by Hamilton Traub, Senior Horticulturist and T. Ralph Robinson, Eenior Physiologist, Division of Fruit and Vegetable Crops and Diseases, Bureau of Plant Industry.

This report contains an excellent aiscussion of types and varieties of fruits grown in various regions, as well as breeding methods and results.

The Federal Bureau of Agricultural Economics deals with the distribution of the fruits. The Division of Fruits and Vegetables in that bureau prepares statistical reports of "Carlot Shipments of Fruits and Vegetables" (2) and "Carlot Unloads of Certain fruits and Vegetables in 66 Cities and Imports in Four Cities for Cental" (z). These appear first, while some figures might still be incomplete, in mimeographed form, and as soon as possible after the close of the calendar year. Printed bulletins later combine the two above mentioned reports with data for two years included in one volume.

The series of Carlot Shipments (2) show each of the fruits and vegetables in separate tables, giving the state of origin of the cars and the months in which they were shipped. (Tables I to sisivi) In the case of some states with widely differing climatic conditions, the state production is divided into regions; for example, California Northern District, Southern District, Central District and Imperial Valley. (Tables VII, VIII and others).
"Carlot Unloads" (z) gives the information for each of the important population centers in this country. The tables give the same two types of information; the origin of the fruit and the months of arrival.

The Farm Credit Administration has published a bulletin by Kelsey B. Gardner regarding "Terminal Fruit Auctions as Marketing Agencies for Farmers' Cooperatives". (4) The discussion therein proves the power of the organizations of cooperative associations in

$$
1
$$

the sale of produce, including citrus fruits, in which cooperatives were organized early and which practically control the industry.

From time to time there a!jear bulletins prepared by state agricultural experimental stations. These deal with management of orchards and problems of production, handing and marketing of the fruits. Floricia state Marketing Bureau in cooperation rith the United States Department of Agriculture has edited a bulletin, "harketing Floricia Citrus, Sumary of 1937-1938 Season" by H. F. Willson (5). This is agein statisticel information regarding marketing of the fruits. The Department of Agriculture hes also published "Citrus Growing in Floriaa" (6) Vith contributions by John W. Scott, R. H. Hoverd, Frenk H. Scrufgs and others. Phases of growing end marketing ere discussed. Since the beginning of this stuay by the writer, a new bulletin has appeared. J. M. Thompson, former Assistant in Agriculture Extension in California wrote "The Orenge Industry: An Economic Study" (7). This survey is written from the viewpoint of understending the problems of procuction and marketing es they effect the producer.

While cooperctive selling agencies have issued mary circulars, in the main these were vritten for advertising purposes end hence the meterial therein is more or less biased. Nuch of this from the California Fruit Gropers Exchanfe is an attempt to influence the public to use "Sunkist" fruits. Florida Citrus Exchance is also publishing literature of this neture. However, through its Stetistical Department it hes compiled "Auction Sales, 1937-1938" (8), "Statisticel Bulletin" (9), and "Sumary of Shipments" (10), which give authentic and unbiased information.

The abundance of statistical data is therefore evident. However,

$$
1
$$

There is little interpretztion of that deta es to its effect on the purchasing of citrus fruits. One study of this nature has been found. Oranges and grapefruit are included in foods extained by Olive Gertrude Viyse in "A Study of Consumers' Problems in the Selection of Certain Foodstuffs" (11).
C. The Present Stetus of Citrus Consumption.

It is obvious to eny observer that increasing amounts of citrus fruits are appearing in the daily diet of people of all financial circumstances. No longer are orenees on the table a mark of pieclth. It is taken for grarted that citrus fruits contribute something of velue to the winter dict in particular.

The last trenty years have found an enormous increase in the quantities of citrus products in the northern merkets. Not only do local grocery stores handle the fruits, but rapidly increasing numbers of small markets are springing up for the sale of fresh vegetables and fruits only. There are even occasionsl stores which sell citrus fruits exclusively.

Several factors have contributed to this increased use of citrus fruits. The development of better keeping verieties mekes long shipments possible; new and better methods of preservation extend the season; lower prices extend their uses. Advertising by producers and their agents has made the public "citrus conscious", while education along nutritional lines has emphasized the need for the citrus fruits from childhood to old age.

Fhen it is found that a food seemingly so desirable and one which can be put to a variety of uses, is "good for one", and thet the
1
price of that food is reasonable, its increased use is the logical result. Thus the use of citrus fruits in the institution menu has gradually extended from the first course of the breakfast meal through the final course of the evering meal.
D. History of the Citrus Industry.

1. Eerly History

The citrus fruits as a class are native to southeastern Asia-eastern India, Indo-China, southern China and the Philippines. As a group, these fruits have been cultivated for hundreds of years in the Orient. The earliest treatise on citrus culture which is still in existence, is a monograph on the oranges of Mienchow, Chekiang, Nan Yen-Chih's Chu Lu. This was composed during the period 1174-1189, in the Chinese language. That long ago three horticultural groups of oranges were recognized end the total varieties listed was twenty-seven. (1)

From the commercial standpoint, only five or six of the dozen or more types of citrus fruits are important. They incluie the following:

1. Citrus sinensis, the sweet orange
2. Citrus maxima, the grapefruit
3. Citrus limonia, the lemon
4. Citrus aurentifolia, the lime
5. Citrus nobilis, the Nandarin orarge

Rootstocks are obtained from some other varieties, as:

1. Citrus aurentium, the sour orange
2. Citrus limonia, the rough lemon
3. Poncirus trifoliate, the trifoliolate orange

Along the trade routes from the Orient the verious types and varieties spread to the other parts of the world. The orange received

$$
1
$$

mention in the Sanskrit. (12) At an early date the citron reached the Mediterranean region as mention of it appears in the writings of Theophrastus. (1)

The sweet orange reached this region later, apparently not until the early fifteenth century. The sour orence reached spain by way of northern Africa. Ellen Ramsey (12) states thet the sour orange was seen by the Crusaders growing in Palestine. In 1002 A. D. the Arabs took it to Sicily.

Traub and Robinson (1) say thet the lemon and lime were introduced into Europe about the same time as the sweet orange, the fifteenth century. Several varieties of these are described by Ferrarius and other writers.

Lemon culture first becime imoortant in Sicily, Genos, and other parts of southern Europe.
2. Introduction into Viestern Hemisphere.

On his second voyage to the New World in 1493, Columbus stopped off at Gomera, Grand Canary Island, for tyro days. He purchased livestock and fruit and vegetable seed, and among these, he is supposed to heve obtained "seeds of orances, lemons and citrons". On the island of Hispaniola, where he landed on November 22, 1433, he established a colony, where he "set out orchurds, planted gardens". (1) 3. History in Florida. Exhsustive studies have not been made of introductions to other parts of America. It is believed that citrus fruits were established at Saint Auॄustine, eastern Florida by 1579. In that state the sour orange, and to some extent the sweet orañe and the lime, escaped into the wild to grow uncultivated. (1)

$$
1
$$

Citrus growing in Florida to any ereat extent dates back about two hundred years. In 1791, Villism Bartram wrote of his "Travels Through Nortia and South Crrolina, Georgia, East and Viest Floride". In accounts of his journeys throufh Florida in 1773 , often he mentions the orunge groves along the St. Johns River in the region where Jacksonville now stands, and as far south as DeLand. It another time his pritings tell of passing orange groves on his trip from St. Johns to the Alachua savanna. (6) Hovever, citrus growing in Florida did not resch proportions which could be called commercial until 1870. By the 1830's the industry hed become feirly important. Two severe freezes in the winter of 1894-1895 practically wiped out that fruit growing in the northeastern part of the state, and tiae orange industry becane centered in the central ridge section and the southern coastel area winere it is located today. (1) Gropefruit suffered a setback at thet same time, but has gradually recovered, reaching a peak in 1929. The lemon industry, which was of considerable imortance commercislly until the time of the freeze, hes never been rebuilt, although there have been some recent attempts to reestablish it. (1)

4. History in Californit.

Citrus seeds were brought into Lower California probably in the early $1700^{\prime} \mathrm{s}$, from other parts of liexico. In 1769 the Franciscan missionsries began establishing missions for four hundred miles along the coast of Celifornia. Ht these missions they set out various fruit trees, among them orance and citron cuttings. Early settlers obtained trees from these mission orchards, and by 1850 and 1840 there were a number of small plantinss in the region of Los Angeles. About 1871 the
section where Riverside now stends was sold to settlers by an eastern promoter, and numerous orchards were set. (13)

The source of the supply of meny of the plantings of about this time was the nursery owned by Thomas A. Garey. He was the outstanding nurseryman of his time, and imported large numbers of important varieties from 1838 to 1875, apparently from Florida, Australia and southern Europe, as well as from the nurseries of Allwanger and Barry of Rochester, New York, and Sir Thomas Rivers of Sawbidgeworth, England. (1)

The fruit was sold locally until the completion of the Southern Pacific Railroad in 1876, when the first carload of fruit was shipped to St. Louis, Missouri, arriving in good condition following a month in transit. The first special train loaded entirely with oranges, left the River Station, Los Angeles, February 14, 1886 for the east via the Southern Pacific and Union Pacific Railroads.

Grapefruit growing in California and Arizona was started in 1890 with plantings of the Marsh variety. It has been important only locally, since the quality of these grapefruit is inferior so far, to that of the fruit grown in Texas and Florida. (1)

Lemon culture has been especially successful in California; the southern coustal region of this state produces most of this fruit found on our merkets. (1)
5. History in Texas

The Rio Grande Valley citrus industry is a rether young
enterprise. Its history can be divided into three distinct periods. (1) Up to 1899 citrus fruit was grown for home use, and no perticular attention was paid to rootstock. (2) The resistance to frost was
demonstrated during the freeze of 1899. Trees budaed on trifoliate stock withstood tils destruction, and therefore, this type was the popular supply of rootstock for the next decade. However, this stock was soon found to be subject to several diseases common to orances. (3) Observations of some very outstanding pioneers in the Rio Grande Valley, beginning after 1900, made possible the growing of citrus there in conmercial quantities. The sour-oranee rootstock was found to be superior for the climatic conditions there. The importence of this developraent is clearly demonstrated by the fact that in 1921 the citrus shipments of this section amounted to thirteen cerloads, and in 1931 had increused to five thousand carloads. These shipments consisted mainly of grapefruit of the Marsh variety and its pinsfleshed mutations. (1)
E. Species and Varieties of Citrus Fruits

1. Species of Citrus Fruits.

The genus Citrus includes mary species in the Family
Rutaceae, whose fleshy fruits are used chiefly for food. Closely related to the true Citrus species are the genera Fortunella, including the kumquats, and Poncirus, the Trifoliolate orange, as well as a few other tropical genera whose fruit never reach this region. (19)

The outstanding groups have been mentioned in connection with the history of the fruit. The Manaarin orange and the tangerine orange are forms of Citrus nobilis variety deliciosa; and the Satsuma orange of Citrus nobilis variety unshiu. Citrus maxima has several members, the shaddock, the grapefruit and the pumelo (also spelled pomelo). Citron, Citrus medica is not an important species, but is grown somewhat in this country. Of lesser importance are the species

$$
1
$$

of Fortunella, the kumquats. $(19,1)$
The large number of types make possible fruit with many diversities-- in dessert end keeping qualities, season of maturity, resistance to disease, and regionsl adaptation.
2. Choracteristics and Uses of the Fruits.

Miany of the citrus fruits-sreet orange, ઘrapefruit, lemon, and lime--are very well known even to the people in northern United States, and require but little description. The taste qualities are said to depend on verious combinations of sugars, acids, glucosides, esters, and peel oil. 'Ine sugars and acids are the basic metrix, and give the variations from sour through tart, sweet and insipid. The esters, glucosides and peel oil account for the bitter and aromatic qualities. It seems that the bitter characteristic furnished by glucosides is in evidence only if these substances are present in sufficient amount in the tissue. This bitter taste is not normally present in oranees, but is an expected and even desired quality in grapefruit and lemons. This is proved by a prejuaice against a variety of grapefruit called Triumph which does not have the characteristic glucoside bitterness of this type of citrus. Coit (13) describes this veriety as "somewhat lacking in flavor". The aromatic quality furnished by the oil of the peel, is important in some species, such as Citrus nobilis. (1)

The sensetion of sweetness predominates in most comnercial varieties of the sweet orange. Analyses of California oranges reported in a bulletin from the University of California Agricultural Station, shows the sugar content of Fiashincton Navel and hiediterranean Sweet oranes to be 9.92% and 9.70% respectively. (13) of this approximately
11.
'half is sucrose, and the remainder a mixture of other fruit sugars. A slight perceptible tartness is usually combined with the sweet flavor. Coit (13) attributes this to the citric acid content which is about 1%. The contribution of esters is only slight in most varieties, but in the "Pineapple" variety lends an outstanding cheracteristic odor.

In the Nandarin orange or the "kid glove" varieties, the esters give the tangerines a pleasunt "tang". The Kirg and Satsuma oranges in this group are sweet like the sweet orange.

The glucoside naringin gives the grapefruit the quality of bitterness. This, added to the acidity, which is at times mild, and at others more prominent, makes the fruit the outstending breakfast or first course appetizer.

The term Shadock or pomelo nemed after Captain Shaddock, who first brought it to the Viest Incies, is supposed to be native to the Malayan Islanas. It is very large in size, sometimes atteining a diameter of nine inches and a weight of fifteen pounds. The skin is yellow; the rind thick, white, spongy and bitter; the pulp greenish, sub-acid, watery and aromatic. Fairchild in "The World Fas My Garden" describes a pink fleshed shaddock which he found in Java.

In this country a small variety, somewhat larger than a large orarge, is the one seen on the market. This is the fruit called grapefruit from a habit of growing in clusters like bunches of grapes, or pomelo, leaving the name Shaddock for the larger sort, although strictly speaking all are pomelos. The grapefruit is rather thin-skinned for its size, but the toughness of its skin renders it a good shipper, and preserves the juice for a long time, often till far into the summer. The tree is productive, yielding as much as sixteen barrels from a tree
'twenty-five years old. (22)
The acidity is the first importance in limes and lemons. Traub and Robinson think that the acid content should be 6% to 7% in these fruits. (1) Coit (13) says the lemons contain $7 \frac{1}{2} \%$ of citric acid and 2% total sugars, of which $\frac{1}{2}$ of 1% is cane sugar. The characteristic Elucoside accounts for the distinguishing flavor of limes. The peel oil in both fruits contributes desirable qualities. (1)

Citron is used entirely for making preserves or for candied citron used in fruit cakes, plum pudaings and products of that nature. The kumuat is used in preserving, for table decorations on twigs which are grown as ornamentals on lawn in California, and as a fruit to be consumed fresh, in wich case the whole, including the skin is eaten. Sweet and sour varieties are know, and in each the rind has little of the pungent oil which is found in most citrus fruits. $(1,13)$
3. Varieties of Oranees.

Varieties of the various types are closely linked with the region in which they are grown. Therefore, they will be discussed in groups corresponding to the regions of citrus culture.
(a) Florida Orantes.

The sweet oranges of Florida consist of mainly five varieties; the Hainlin, and Parson Brown which are ecrly; the Pineapple and Homosassa which are mid-season crops; and one late variety, the Valencia.

Harlin, a sport of the inediterrenean orange, was aiscovered in a grove planted by Isacc Stone, near Glenwood, Florida in 1879 for Nirs. Mary H. Payne. This grove later came into the possession of A. G. Hamlin and the orange was then naned for him. It is an early orange of remarkably fine quality. (15) When conditions for culture are favorable,
the acidity and sweetness are well blended, resulting in excellent flavor. The rind is the smoothest of any of the speet varieties, and is glossy; seeds contained usuilly number one to five, with many fruits seedless; sections 11-12, uneven in size. Unfavorable growing conåitions give rise to fruit splitting, riciness of pulp, and poor juice quality, so the guality of Hamlin is not alpays satisfactory. (1)

The Parson Brown is an orange of Spanish origin. This variety originated about the seme time as the Hamlin variety. According to F. D. Waite, it pas introduced by Captain J. L. Carney of Lake Fieir, Florida, about 1878, and originated at Vebster in the seeding grove of Parson Brown. (15) In this variety also, the acidity and sweetness are fairly well blended, if the fruit is picked early. Seeds number from ten to nineteen; sections 16, regular, well defined. (1) It is thoupht by some to be of better quality than Hamlin from Sweetness standpoint.

The Homosassa, another Spanish type, is a variety of excellent quality, vith a rich flavor. Rind is thick, tough and smooth. Eeeds in this kind number up around twenty to twenty-four. Sections number eleven, large, and fairly regular; flesh is coarse-grained. The acidity and sweetness is well blended. This variety is one of the best of the Florida seedlines. Accoraing to Reasoner, it originated in the grove of the Honorable Mr. Yulee at Homosassa, Florida. (15)

The Pineapple, is an outstanding variety. It has a glossy, smooth, bright and satiny rind of deep orange color, full ripe specimens often showing a redaish tinge. Sections number eleven, slightly irregular; seeds are abundant, usually thirteen to twenty-three. It originated in the heart of the old citrus belt near Citra, Marion County,

Florida, in the grove of James B. Owens. It was named Pineapple beceuse of its fancied resemblance in flavor to this fruit, and from the odor which is similar to that of pineapple, in the opinion of some. The fruit belongs to the Miediterranean tyoe. (15)

The Valencia orange is outstanding because of its late maturity. The wiediterranean type also claims this variety. The flesh is firm; the rind is tinin, smooth, tough; sections are nine or more in number, and are clearly marked. (15) It has a fairly high content of citric acid which contributes to its good holding and shipping quality. (1) It is regraded as seedless, but actually has from two to six seeds. The Valencia orange was introduced through the Thomas Rivers' Nurseries, London, England, into Florida and California nearly the same time. The Rivers'nurseries had imoorted it from the Azores, and had catalocued it "Excelsior". It was introduced into Florida seemingly in two different plantings, about 1870 by General Sanford, Palatka, and shortly afterward by E. H. Hart, Federal Point. It is sometimes referred to as Hart's Late orange, Hart's Taraisf, or Hurt. However, in recent years the term Valencia is commercially applied.

In the markets of the midile west a variety known as Indian River is seen only rarely. It is a native seedling variety, originating on the Indian River in Florida; hence its name. The quality is excellent, Juice abundant, flavor rich and sprightly.
(b) California Orañes

Two varieties prove sufficient to furnish California with an orange crop every month of the year. And so the number of varieties there are limited to these plantings of any great size.

8
?

The Washington Navel, Bahia or Riversiae Navel is of great comnercial importance. The best strain of this variety is described by Shammel and associates as "obovoid in shape, and generally of medium to large size. The rind is of medium thickness, and the texture is smooth grained. The color of the fruit is bright orange; the rag is tender and comparatively small in quantity; the juice is abundant and of superior quality; having a pleasing and sprightly subacid flavor. The fruits ere seedless, and the navel usually is small, rudimentary, with no development except in the rind." (16) This variety was introduced into California in 1873. In 1870 Villiam Saunaers, then in charge of government propagating at Vashington, District of Columbia, for the United States Agriculturul Department, received a shipment from a missionary at Bahia, Brazil, containing twelve trees of the Bahia Navel orange. After being placed in the greeniouse at Washington, these trees were used indiscriminetely as a source of buds from which were propagated a number of trees. Hume (15) thinks trio of these twelve trees imported were received by Mrs. Luther (Eliza) Tibbets, of Riverside California. Coit (13) believes all these twelve original trees for some reason passed out of existence, and that the trees received by Mrs. Tibbets were two propagated from the originals in the greenhouses at Washington. In either case, the two trees were planted beside the cottage of the Tibbets family in Riverside on land which they were homesteading. In 1879, at the Citrus Fair in Riverside, fruits of the trees of Mrs. Tibbets were displayed and received considerable attention. It was thought that iars. Tibbets forgot the name Eahia, and upon questioning answered that the oranges were from Vashington. Thus the
name came to be Fashington Navel, and all other Navels were called Australien because it was supposed that they all came from Australia. (13)

The Valencia is the other principal variety of sweet orange grown in California. Climatic conditions vary widely because of differences in rainfall, protection by mountain rances, the moderating influence of the ocean and other factors. These affect the ripening period of fruit, so that the same variety matures at different times in different regions. This, linked with "tree-storage" in the case of Valencias, which holds its fruit in good condition for several months, causes a marketable fruit crop throughout the year. This tree storage is mede possible by the dry summer climate with comparative freedom from fruitdestroying fungi, together with other seasonal factors assisting in a long ripening season. This type of storage is used to a lesser extent in Florida. One disadvantage is that the oranges become less juicy during such storage. Although this is the same variety of orange grown in Florida, there is some difference in the flavor, texture, etc., due to different soil, and different climatic conditions.

Some other varieties are grown in lesser amounts in California. These include Australian, Mediterranean Sweet, Paper Rind, Ruby (Blood), Jaffa, Joppa and Crafton, none of these being of commercial importance in California. (13)
(c) Texas Oranges.

The oranges grown in Texas consist of varieties already mentioned, the Hamlin, Pineapple, Parson Brown end a few additional varieties as the Joppa and Ruby. However, in general none of these are well adapted to the climatic conaitions of Texas. The Valencia trees
are productive and fairly regular in bearing, but the fruit is undersized. (1)

The Temple orange, the exact origin of which is unknown, is promising under Texas conditions. It is thought to be a hybrid between a sweet orange and some variety of the mandarin group. The original tree from which propugation was started is budded, but no one knows where the bud came from. (15) It stands in old Temple place, near Finter Park, Florida, and was named for Billiam Chase Temple. The Buckeye Nurseries, Tampa Florida catalogued it in 1917.
4. Varieties of Grapefruit.
(a) The important varieties of grapefruit which are grown in Florida consist of two kinds, the Duncan and the Marsh. The Duncan is a very superior variety, but has many seeds, sometimes as many as fifty. (15) Sections number fourteen, well marked. The large juice sacs make it possible to remove the pulp from the sections. It originated as a seedling from a tree grovin by Don Phillippe, in Pinellas County, Florida. (15) The original tree nearly one hundred years old was standing yet in 19?5. This variety of fruit can be held on the trees, and is picised from November to April. However, the seeds often germinate after wiarch, and the fruit is not as desirable.

The Marsh variety, because of its seedlessness is gradusilly replacing many of the seedy varieties. Although called seedless, the seeds number from none up to six. The rind varies in thickness and is smooth. The sections are thirteen, regular, and have thin partitions. The bitter principal is not strongly marked. This variety was introduced by C. M. Marsh, Lakeland, Florida, about 1895. The absence of seeds makes it possible to hold this fruit on the trees in "tree storage"
very late. They mature late in the fall or in early winter.
MicCarty or Indian River is an interesting veriety. Its fruiting habit is different, as it bears its fruit sinfly on the branches. It is seedy, containing forty to sixty seeds; acidity is normal. Sections total thirteen and are large, rather irregular. The origin of the variety is unknown, according to Hume (15). The man for whom it was nemed, C. T. McCarty of Eldred, Florida, from whom specimens were first received, prote regarding it; "This pomelo is known here as the standard or Indian River; I don't know its origin. It came here fron Rockledge sixteen yer.rs ago (about 1886)."

There are now pink-fleshed varieties beinc grown in Florida. Both are from Mirrsh variety parents. The Thompson (seedless), and also the Foster (seedy) are similar to the parent in characteristics except for the pink flesh. In both, this color tends to fade as the fruit reaches full maturity. (1). The former variety was discovered by S. A. Collins in a grove orned by Fi. B. Thompson, near Oneco, in 1913. The latter was found by I. B. Foster, of Wanatee, Florida, in an Atwood grove at Mirnavista. In Foster, the color often shows through the rind, although actually the color is confined to the section membranes. (15).

A variety known as Davis is being grown and receiving attention, because of its outstanding characteristic, which is the fact that it has been satisfactory for canning. The pulp remains firm, while that of the Marsh tends to become soft in processinf. (1).
(b) Texas Grapefruit.

The Mersh veriety is the most abundant kind being grown in the Rio Grane Valley. This, as grown there, has "a pleasing, mild flavor that has met pith favor in most markets where the fruits have
been offered for sale." (17)
A number of early seedy varieties are grovin to a lesser extent, but these disappear from the merket after the seedless Marsh variety is on sale. These seedy fruits include Duncan, Conner, McCarty, Inman, and Falters. (1)

Both the Foster (seedy) and the Thompson (seedless) Dinkfleshed varieties grown in Texas ripen early and sell at a premium. The Ruby, a newer tyoe, a mutation from Thompson, has both pink flesh and pink rind. This should not be confused with the Ruby orange.
(c) California and Arizona Grapefruit.

The few grapefruit which are grown in this district are of the Marsh variety. They mature late in the fall or in early winter.
5. Varieties of Mandarin Oranges, Tangerines and Satsumas.
(a) Tangerines
(1) Florida tangerines are one variety, the Dancy. This variety is very prolific. The skin is deep orange in color and so is the flesh. The rind is smooth, thick, leathery, and easily removed from the rest, being attached by few strings to the flesh. Sections number eleven to fourteen, fairly regular in size, and are easily detached from one another. It is said to have originated as a seeding at Buena Vista, St. Johns County, Florida. The parent tree was raised by Colonel George L. Dancy. (15)
(2) Texas has the Dancy variety from its earlier plantines, but has later found the Clementine and the Farnuco superior under Rio Grande Valley conditions. (1)
(3) California Dancy tengerines are small in size. Therefore new varieties are being developed which produce fruits of good
size and excellent quality. Three of these developed by Frost of the Riverside Station are the Kara, the Kinnow and the Vilking. (1)
(b) Satsumes.
(1) The Satsuma industry of the Gulf coast region from Florida to eastern Texas is based primarily on the Ovari Satsuma, as it is an early fruit. An earlier variety would be still more advantageous to this region, in order to get it on the market before the sweet orange arrives in large quantities. Therefore, never verieties, as the Kawano and the Silverhill are being tested for this early development quality and for ability to resist cold. (l)
6. Varieties of Lemons.
(a) Florida Lemons.

Citrus scab has proved to be destructive to the lemon industry in Florida. Varieties to withstand this disease are desirable. The Perrine lemon has lately been introduced, and promises, because of its resistant qualities, to give new hope to the industry. So far it is not important commercially. (1)

The Meyer lemon is a variety noteworthy for its frost resistance. However, its low acid content, which is only 4.3% to 4.9%, large size, and round shape are all definite drawbacks on the commercial market. (1)
(b) California Lemons.

The present plantings of California lemons are limited to two varieties. The Eureka is desirable because of its comparative freedom from thorns, its earlier bearing quality, and its ability to produce large quantities of fruit. Its chief drawback is its characteristic of dropping leaves from the branches, leaving the fruit exposed
to the hot rays of the sun. The color of the cured fruit is lemonyellow. The rind is very thick when uncured, and reduces to $1 / 8$ inch when cured. Sections number ten, and are well defined and regular. Juice is abundant; acid, pure and strong. Flavor is excellent; seeds are present, mostly abortive, small. This variety was introduced by T. A. Garey of Los Angeles and wes origineted by C. R. Workmen at the same place, the seed from which it grew having been inported from Hamburg in 1872. (15).

The Lisbon is the other principal variety. It has heavy foliage which, in contrast to the Eureka, protects the fruit from sunburn. It has a tendency to bear one large crop, maturing in vinter, with only a small amount of summer fruit. The color of the cured fruit is lemon-yellow and the base is somewhat necked. The rind is fairly smooth, and sweet to the taste. Sections total ten or eleven, and are regular in size. Juice is abunant and acid is clear, pure, strong, with an excellent flavor. Seeds number one to five, usually abortive. The fruit keeps well. The Lisbon lemon was imported from Portugal and was first grown at Riverside, California by D. N. Burnham.
7. Varieties of Limes.

The Key, Mexican or Nest Indian lime has been the principal variety of limes grown, and these mainly on the keys. In size and quality the fruit is very variable as it is grown from seeds, and accordingly it is thought that it is not any single well-marked variety. Lately, the Tahiti (also called Persian or Bearss) variety is being planted on the main land in the southern ridge section. It

is of high quality, with a heavier skin that will permit storing and shippinc, and it has a pleasant arometic property. (l) The Lakeland and Eustis limes are excellent for juicing quality, but are small and lack the thick rind which is desirable for transportation. (1) Therefore, they are of local importance only.
8. Varieties of Minor Citrus Fruits.
(a) The citron varieties also are nunerous, but here also one variety is important commercially, the Corsican. (l)
(b) Kumquats incluce the Nagaini, oval variety, the liarumi, round and the lieiwe, a sweet variety. The first ramed predominates in all plantings thus far. Its rind is smooth, aromatic and spicy. The juice acid is sparse; sections usually number five. Seeds total two to five. (15)
(c) The sour orange, Oklawaka, is superior to other varieties. The fruits are larger, three or four inches in diameter. It is an excellent marmilade variety if one likes bitter orange marmalade of the English or Scotch type. (1).
II. METHODS USED IN STUDY

Several methods were used in making this study. Through statistics, a survey was made of the size of the industry, the production regions and distribution of the fruits. Prices of fruits secured on local markets gave insight into the types and sizes of fruits available. Laboratory study vas used to ascertain relative qualities of fruits. Comparison was maice with similar finaings of other research workers.

A. Statistical Information

Statistics on citrus production were obtained from the United States Department of igriculture through the Cnicago office of the Bureau of Agricultural Economics. Reports from state agricultural stations ana from marketing organizations listed volumes of production of the various varieties of fruits, prices of fruit on the Detroit end other auctions, and the sales of the fruit from week to week with the carlot unloads of fruit in each of the sixty-six principal cities in the United States. Bulletins published by Florida Agricultural Experimental Station, University of California and the United States Department of Agriculture gave information of proauction and distribution. (1, 2, $3,5,6,7,8,9,10,17)$

B. Prices.

As the pecking and handing of the fruits affect both the price and quality of the fruits, these aspects of marketing were studied. Literature obtained from state bulletins and the bulletins from marketing agencies assisted in this phase of the work. Information regarding rots and funigation methods were checked by Dr. P. L. Mallmarn.*

Local retail stores were visited each Vednesday and Gaturdey for three months, Janukry 28 to April 15, 1939. Varieties of stock on hand and the prices of these fruits were obtained. Finolesale prices were obtained from builetins published by the marketing agencies. Freight rates were obtained from local freight agents.

[^0]| C. Quelities of Fruit. | | | |
| :---: | :---: | :---: | :---: |
| at various intervels from local retail stores and from the Detroit | | | |
| Union Terminal, a wholesale market. Leterninations were made on the | | | |
| dry of purchase or within three days after the purchase. During thet | | | |
| time they vere kept et orainary room temperature. | | | |
| Deterninations were nkide on one ajozen of each of the follow- | | | |
| ing varieties and sizes. | | | |
| Californie Navels | | Floricia Velencies | Florida Pineapples |
| 324 | | 324 | |
| 288 | | 288 | |
| 252 | | 250 | |
| 216 | | 216 | |
| 200 | | 200 | 200 |
| . 176 | | 176 | 176 |
| 150 | | 150 | 150 |
| 126 | | 126 | |
| 100 | | 100 | |
| | 96 | | |
| Florida Temples | | Floriàa "Kounã" | Texas Navels |
| | 176 | Not sized | Not sized |
| 150 | | | |
| 126 | | lorica Valencias | |
| | | U. S. $\ddagger 1$ | |
| | | U. S. $\ddagger \mathrm{L}$ | |
| | | U. S. $\# 3$ | |

$$
7
$$

Each orange was weighed to the nearest terth of a gram on a trip balance which was balanced each day before use. The juice vas extracted with the fruit fuice extractor sold under the trede name "Sunkist", ruming at a high speed. The oranee vias held stecdily on the reamer for the first five seconcis and then turned several times to get the pressure distributed so thet the juice would be extracted from all parts of the fruit. The extraction was stoped when no more juice cculd be expressed, and when further rexming woulc heve ceused the removal of undesirable membranes. This process reçired from ten to trierty-five seconds, according to the size of the orange. The strained and unstraired juices were measured in a graduate cylinder. The juices, both strained ard unstrained were ailso weighed to the nearesttenth of a gram. These weignts were used to determine the percentage of juice obtainable from each size, the amount of juice obtainable and the cost of juice from each size.

Ten ciozen 150 Celifornis Návels and $7 \frac{1}{2}$ dozen Floriàa Valencias, size 150, were neighed for correlation of size. The orantes were taken from one box in each cese and weighed to the neareat gram. These were used to find mean weight and frequency of weights.

Three dozen Florica Valencias and three dozen California Navels were tested for effect of storage on loss of weight and effect on amount of juice obtainable. The oranges of one veriety came from one box in each case. One dozen of each variety viere juiced immeduietely, one dozen vas placed in a refricerator for one week et 40° $50^{\circ} \mathrm{F}$. , s.nd the third dozen sotred in a storeroom at $70^{\circ}-80^{\circ} \mathrm{F}$. for the same length of time. Fieights at purchase and when juiced were
recorded. The amounts of juice in exch case ves founci, and comprison made betreen the different concitions of holding.

Cuslity of the juice of different grades of Floricia Valencia orances was tested by hevince a Eroun of judees five owinions es to the comparative sweetness and flavor of the juices.

A study wis maile of the ability of persons to determine the difference between lemon and lime juices when macie into beverares. Junqes attempted to nime the juice from the flavor of the beverace.

Desirable concentrations of lime and lemon ecies nere reted by juages vhen beveraqes were made with consts nt amounts of pater end suger, and three different amounts of juice in the case of each fruit.

Judpres rated the desirability of grapefruit sections from fruits from three states. Sections were tastea after removal from the fruit and without peel or meabrene.
\dot{A} survey of similar stuaies snowed rork by Olive Gertrude liyse, University of Michigan Hospital and Creater New York Eietetics Association. Comprisons of results are incluaed.
D. Interpretation of the statistical cata was mace throurh the aid of Dr. V_{1}. D. Eaten ${ }^{\text {* }}$ an G. G. Úpecker*.
III. DISCUSSION
A. Importance of the Industry.

1. Value of the Crop.

The citrus industry has reached such huse proportions
that in 1954-35 the annual fsrm value of these fruits ves

[^1]over $\$ 1 z 4,000,000$. Of this amount, oranges broukht in returns of $\$ 100,000,000$; grapefruit, fle,750,00C; and lemons, \$17,250,000. (1)
2. Number of People Porking in the Industry.

During the 1926-87 scason, 110,000 people had full or pirt time vork in the Florida citrus industry during the shinping seasor, jeptember to June, ε nd 25,000 of these had employment, mostly full time, during the sumatr. (6)

Charles C. Teague, Presidert of the Californic Fruit Cropers Exchance, estimates the rumber of people derivire their livelihood from the citrus industry in Californie to te at least 200,000 (21)

Texus Bureau of Lacor statistics was unable to estimate the number of people employed in the citrus industry*.

The penple affected ty the citrus industry are not limited to thoce actually reisire the fruit, es much of the labor concerned is connected with the marketine of the crop. Lumber for crating mounts into thousends of bourd feet each yebr. Transport tion facilities, including reilvajs, trucks and boats, are used to take proaucts to distant mirkets. Jobbers and dealers of verious sorts henale the fruits before they reech the soot at which they are finally consumed. z. Acreages.
a. Orances

The total acreage of bearing and non-bearing trees is estimeted by J. in. Thompson to have been erourd 525,000 ecres.(7)

[^2]According to the table of acreages on Page 248, the total acreages of bearing orange trees five years and over, in the four leading orange-producing states amounted to 452,034 as of July, 1937.

The two states, California and Florida lead the field. California's acreage of bearing trees is estimated at 221,242 acres or 48.9% of the acreage of the four leading orange-producing states; while the rival state, Florida, boasts 202,076 acres or 44.7%. Texas production of oranges comes from 22,470 acres, or 4.9% while Arizora has plantings of bearing trees to the extent of 6,246 acres or 1.4% (Graph I)
b. Grapefruit.

Florida and Texas produce most of the grapefruit in this country. Florida plentings cover 83,168 ecres, while those of Texas cover 74,439 acres. California had in 1937, acreages of grapefruit amounting to 16,853 and Arizona, her neighbor, claimed 12,651 acres. (Graph II)
c. Tangerines.

The raising of tangerines is mainly limited to Florida on its 24,509 acres. However, California has 1,602 acres, Texas 606 acres, and Arizona 54 acres. (Graph III)
d. Lemons.

Californie alone at present grows lemons commercially and has 47,139 acres devoted to this fruit. On these acres she grows most of the lemons consumed in the United States.
e. Total Citrus Acreages.

The total citrus acreages for the four leading citrus growing states appear from these estimates to be:

Location of Citrus Acreages

Graph I

Graph II

Graph II

Florica, ze9,753 acres; Californiz 286,8さ6 Acres; Texas 97,515 acres; end arizora $18,9 \leq 1$ acres. Three other states, flabeme, ifississiari ard Louisiera grow ε combined total of aporoyimetely l7,500 acres, makins the total number of acres of citrus fruit in the United states in the neirhborhood of 7z0,5CO ecres. (Graph IV)
B. Procuction of Citrus Fruits.

1. Arees of Procuction.

The areas of production of citrus fruits in the United itates ere liaited by climatic conditions to three mein centers. These regions night be called the southern humid rogion, the southwestern irrigated region, and the central irricated region.
a. Southern Humid Region

The southern hunid subtropic region, incluaing Floricia and the Culf border of neighboring states, is one of the principal citrus regions. The citrus development begen in eastern Florida near St. Ausustine and along the Indian River. In the north-central Floricia region, early plentirgs were in the generel vicinity of Palatka and Ocala, as far south as Lake lionroe. The vicinity of Tumpa Bay and southrard is the location of the develoment of the inaustry on the rest coast. As has previously been stated, prociuction in the northeastern section rias fairly importsnt, but the freeze in the winter of 1894-95 practically wiped out the industry there. Since then, the center of the industry has moved farther south, into the centrel ridge section end the southern coastal region.(1)

Because of the cold resisting ability of the Satsuma which was demonstrated in the freeze of that fatal year (1894-95), the region producing this fruit has spread from its beginnirg alorg the sit. Joins River ard neer Jacksorville. Now the Gulf coast region in western Florida, Alebema, Mississinpi, Louisiara and Texes procuce this fruit also. (1)
b. Southwestern Irrigetcd Region.

The citrus incustry in the southrestern irrigeted region is established princioally in the southern coast and interior veiley sectiors of Califorri玉. The fruits grown in the southern coast region are almost entirely sweet orances and lemons. In the interior valley section the fruits are the sweet orance and the grapefruit. Grapefruit are now beirg grown in another section of this irrigeted region, the southern part of Arizone. The northern coast districts of Celifornis are less important, thit furnish some fruits. (13)

In the interior valley region is the territory inland from San Francisco, and includes all the country not immedistely edjecent to or within the influence of the ocean. The interior velley regions are sometimes divided into the Imperial velley region, and the Central District. The latter lies principally in Tulare County. United States Department of Agriculture Statistics use this division. The southern coast refion includes all the citrus country betreen the mountains and the sea as $\mathrm{f}_{\mathrm{i}} \mathrm{r}$ north as Santa Barbera. The northern cocist region includes all the country within the influence of the sea from Santa mbric as fer north as Sonoma County. (13)

c. Central Irrieated Region

In the lover Rio Crande Valley of Texas, a more recent establishment of the citrus industry is based principally on the grapefruit ard to a lesser extent on the sweet orane. The district is limited mainly to three counties, Cameron, Hidelgo, and Villacy.
2. Volumes of Shipments of Citrus Fruits.
a. Record of shipmerts.

The exact amount of production of the various fruits would be impossible to ascertain, for local consumption is a factor Which cannot be determined. However, the phase in which the buyer of citrus fruits in the eastern and northern part of the United States is interested, is not the local consumption in Florida, California and Texas, but the amount of fruit entering into viholesale trade. These firures are collected by the United States Department of Agriculture, Bureau of Agricultural Economics, and published. Movenent by rail in carlots can be easily found. Miovemert by truck is more difficult to compute. However, the Eureau has collected all such data possible and converted truckloads into carlot equivalents. Similerly the boat shipments have been reauced to carlot terms, in order that all shioments may be given in similar terms.
b. Orange Shipments.

The total orange shipments in the United States have more than trebled in the last trienty years. The oldest complete record of shipments assembled by the United States Department of Agriculture wes for the year 1918 (Table V), that Department having started to keep records of the same in October, 1917 (Table II). The total for 1918 pias 28,444 carloods;

Whereas the six seesons studied in detail in this writing, 1932-37 hed an everage of 91,582 carlocds. (Graph V) But as shown in Graph XIV, fluctuatiors in oranee production are large, vith crops ranging so that during these six years referred to, shipments veried betrieen 81, 217 carloads in 1932 and 102,629 carloods in 1935, the lergest production on record prior to 1938. (Table LXXVIII).

Almost all of the oranees are produced in California and Florida. (Graph XV,' Tables XLIV, XLV, XLVI, XLVIII, LIII). The other states, Texas and Arizond, Louisiara, Alabama and Mississipoi produced a combined total of only about 4.5% of the United States total, in 1937 and 2% for 1932-77 average (Tables XLVII, XLIX, L, LI, and LII). Texas hed a phenomenel rate of increase in production and now produces more then the other minor states combined. In 1932 the shipnents of Texas vere but 200 carloads, while in 1937, through a steady increase, the shipments of that state had reached $\mathfrak{z}, 650$ carloads. (Table XLVII).

California and Florica Shiprants.
Throughout these six seasons studied, 1932-1937, the average shipments from California were 57,772 carloads, or 63\% of the United States total prociuction; and that of Florida 31,563 carloads, or 34%. (Graph IX). As a result of the severe freeze, California shipments for 1937 dropped to a figure near 42,600 carloads, while Florida shipments were the highest ever recorded, about 39,316 cerloads.

The trend of production has been steadily upward. The

Oranges Grapefruit Lemons Total Citrus

Origin of Shipments by Regions Graph IX Graph I

Graph XI
Graph XII
 Tangerines

$$
\begin{gathered}
\therefore \\
\therefore \\
\therefore \\
\quad .
\end{gathered}
$$

Graph III Oranges

Annual Shipments from four chief producing regions

Graph XII
Oranges

G

trend line for yearly proauction is shown on Graph XIX. However, the year-to-year fluctuations are often rather large, as is evicenced from Graph XIV. These variations are due mainly to frost, wind, and heat, but in a few cases, to drought or hurricanes. Since the freeze of 1937, orchard heating is being used more extensively in California. (7).
ironthly shipments from each region veries. Southern California has heavier production during spring and summer months (Graph XVI). The peak of central California production is in November or December (Graph XVII), with a lesser peak in inay. Florida shipments reach huee procortions from December to May (Graph XVIII).
c. Grapefruit Shipments.

The total United States grapefruit shipments have been multiplied by five in the last twenty years. During the 1918 calendar year 5,650 carloads were shipped; whereas the six seasors, 1932-19z7, averaged 28,005 cars. (Table IV, LXXVII, Graph VI). The increase in the last six years is outstanding. (Table VII, XII, XVII, XXII, XXVII, XXXII). In each year 1932 to 1934 , the shipments were around 24,000 carloads. In 1935 this was increased to about 28,000 and in 1936 to around 30,000 carloads, a no the year 1937 found 41,790 carloads on the market.

Almost all of the grapefruit are produced in Florida and Texas, but California and Arizona together produced and shipped 2,806 carloads on an average. (Tables XXXIX, XL, XLI, XLII, XLIII) This is a little less than 10% of the 28,900 carload average of

Graph XVIII
Oranges

the entire country. Of this loc, Californie shioped about 6% and Arizone about 3.5%. (Graph X)

Fithin the lest six yers for which records can be obtained, a very interesting thing has happened in the grspefruit industry. Florida shipped from 15,600 cerloads in 1932, up to 21,370 cars in 1927 , other totals being between these tro figures, these showing almost a sterdy increase, but for an excentions1 year, 193z. (Graph XXI, Table XKXVII). Tine other leacing state, Texts, however, shows a different picture. From 1932 to 1936 shipments rareed from 3,025 carloads to 6,900 carloads. (Table XXXVIII). Then the shiments from Texes for the yeer 1937 soared skyward to a figure of 17,000 carlozicis. (Graph XXI). Tie effect on the total grapefruit shipments is evidenced in Craph XiII. This is accounted for by the new trees of Texas plantings arriving at the productive stages. In 1937, accoriing to the Table LXXYIII, 96% of the Texas grapefruit trees were less than 16 years old, the age at which they reach full productivity, and 76% viere only five to ten years old.
d. Lemon Shipments.

The shipments of lemons, as stated in the discussion on verieties, originate almost solely in the Southern District of California. (Table LIV). The total United States snipments originating within the country have increased about two and one-half times in the last twenty years. In 1918 the total shipments of lemons from internal sources vere about 6,900 carloads. In the six-year neriod, 1932-19z7, the average annual shipments vere

\because
\therefore

\because
i
i
i
i
i

Graph XXI

I- mons

Graph XXVI

Graph XXVIII
Mixed Citrus
No. of Carloads Shipped.

17,250 cars. (Table LXXIX, Graph VII). Of these shipments the Southern District of Californja provided an averace of about 16,600 carloads, or about 96% of the total crop. (Grajh XI, Tables LIV, LV, LVI, LVII). Monthly shioments reach peaks in early summer. (Graph XXV)
e. Tangerine Shipments.

Another fruit originating almost entirely from one section of the country is the targerine. Of the 22,762 carloads shipped in the six-year period, only 113 cxrlosds were grown outside of the State of Florida. (Table LVIII) These were grown in Celifornia. Therefore, Florida furrished 99.5\% of the crop, and California proviced only $\frac{1}{2}$ of 1%. (Tables LIX, LX, LXI, Grephs, XII, XXVI).
f. Mixed Citrus Fruits Shipments.

The mixed citrus fruits consist of carlogds packed with a mixture of citrus fruits in each car. Since the proportion of each fruit is unknown, it would be impossible to discuss the fruits in this cese. However, these figures are combined with the others to calculate the total citrus fruit shipments. (Tables LXII, LXIII, LXIV, LXV, LXVI, LXVII, Gravh XXVII).
g. Total Citrus Fruit Shipments.

Totaling the citrus fruit shipments for the last six years of recorded information, a composite view of the citrus industry is found. The total citrus shipped has more than trebled since 1918. That year 41,000 carloads were moved through the transportation systems. In the 193?-1937 average, almost 152,000 carlozas ertered into the trade of the country. (Table

LXXXII, Graph VIII) . Monthly totels vary greatly with different fruits reaching peaks. (Greph XXVIII)

Almost all of the total citrus shipments are traced to three states. California shinned about 479,000 of the 911,000 carloads, or about $52_{\%}^{\circ}$; Florida furrished about 368,000 carlosids, or about 41%; and Texas sent ebout 54,000 carlosds, or about 6% of the entire amount; and the other states, Arizone, Louisiana, Alabama and Mississippi provided only about 1%. (Tables LXVIII, LXX, LXXII, LXXIII, LXIX, LXXI, LXXIV, L, LXYV, LXXVI, Graph XIII) 3. Seesons of Prociuction of Citrus Fruits.

Orarges from different localities furnish a supply of the fruit over the entire year. California furnishes the two leading verieties, shipping from 5,000 cars to 10,000 cars per month. The season for Navels and other miscellaneous varieties which constitutes 47% of the Celifornia crop, begins with a few shipments in November. The bulk of that crop is sold during November to April. A few ere still on the market in May. The Valencias from California, which make up 57% of that state's totel oranee figure, begin with small shipments in February and illarch. (Greph XXIX) By Misy the crop is in full swing, with huge shipments in each of the months kiay through October, with a peak about June or July. (7) (Chart I)

The orane crop from Florida is more variable, due particularly to the greater number of varieties, and to the entirely different climatic conditions. The Florida season opens with Parson Brown and some other minor varieities in late Setpember or eerly October. This variety reaches a peak in November

and disappecrs from the mirket by December. The next variety to appear fron Florica is the Pineapple orense. snipments of these begin in Niver:ber, and last through May. Large amounts of these appear during December, Januery, Februery and March. The peak months are January, and February. These early varieties comorise about 60% to 65% of Florida's oraņe production (Graph XXX) Florida Valencias first arrive on the markets in Februkry. Shipments thet month ere small, but for March, Anril, Mey and sometimes June great amounts of the Valencias are marketed. These make up the other 35 to 40% of the Florida orange crop. During July, August and September only an occasional car of oranes leaves Florida. The seasons of these various verieties are represented in the form of a chert. (Chart II)

The Duncan grepefruit from Floriaa is shioped rith the season beginning in September. Large quantities are on the market until the following April, with a peak production arriving from October to March. As stated before, germination of seeds is apt to occur in March or thereafter, so this variety dwindles from that date. (Chert III)

The Marsh (seedless) grapefruit season begins in the later pert of september. The size of the shipments are fairly large and quite steady from October through February. In ikarch, When the seedy varieties disappear because of the growth of seed mentioned above, the "tree-stored" harsh variety shipments are abundant. These last through Nicy, with but few appearing as late in the year as July.

Varieties of Oranges Shipped

Little grepefruit from Arizona and California appears on the eastern markets. The distence for transportition is great, the season nearly coincides with the Florida crop, ard the prociuct is, as yet, an inferior one. Therefore, the fruit is consumed meinly in the vest.

Texas is growine mainly the seedless varieties, as has been stated before. The season again coinciaes with the Floriaja season for the fruit, and so the two states ere rivals for the market. (Graphs XXIII and XXIV). The vast increase in Texas procuction has lowered the price. The grapefruit seasons are shown on a calendar chart on page 52.

The lemon is another year-round croj. Hoviever, the crop seems to reach its low ebb in November, and its peak in May, June and July.

The turecrine shipments begin with a few early fruits in October, but quartity prociuction is seen from liovember through February, with a feri shipments in liarch and April. The peak of the market is in December and January. (Chart IV)
4. Prediction on Future Production.

One way to preaict the possible production for the years to come is to stuay the age of the trees. Coit (13) believes thet if given proper care, some citrus trees will bear profitable crops up to fifty years of age or more, as the citrus trees are naturally long-lived. The limit aiven by some other euthorities is placed at trenty-five years. Coit thinks this figure too low, ?nd thet if trees are grown on fertile soil and
ere well cared for, they will produce profitable crops to a very great age.

Trees up to five years of age have not yet reached the productive stege. From the age of five years, when trees start to bear, the productivity increases yearly until the trees reach the age of about sixteen years. R. H. Howard cites recoras proving this. All groves in the group which Howard studied were over ten years of ege at the beginning of the record period, and averaged fourteen years at that time. The total of $1,011.5$ acres in the fifty-five groves studied consisted of approximately 71% oranges, 25% grepefruit and 4% tenferines. During this study the average yield per acre on these fifty-five groves increased from 148 boxes per acre in 1930-z1 to 191 boxes per acre in 1934-35. There was an increase in yield each year except for the crop procuced in 1932-33 when approximetely twenty percent of the fruit wes destroyed by a wind storm. The increase in yield over the five-year period wes probably no greater than the normal increase concurrent with the increasinf age. (6)

The possible future production will apparently continue to increase, in view of the above. From table LXSXIII it is found that 69% of the grapefruit trees are from five to fifteen years old (Graph XXXII). The age of bearing orange trees in the states studied, is less than fifteen years for 45% of the acreafe (Graph XXXI). Tanferine trees have not reached the full production stage in 6xio of the groves (Graph XXXIII), while 34% of the lemon trees are in that group. (Graph XXXIV)

Annual plantings furnish another criteria of jucging the future production in this industry. The plantings of citrus trees in Florida vere at a steady rate from 1921-22 to 1926-27, except in 1922-23 and 1983-24 when there wes a very marked increase. Between 1928 and 1936 many more trees have moved from the nurseries in Florida; these trees totaling: oranॄes, 3,600,000; erapefruit, 1,500,000; lemons, 78,000; limes, 237,000; and temples and tangerines, 362,000. In Texas also we find a striking picture. From 1921-2ito the season 1926-27, there was a rapid increase in plantings. By the latter year, the plantings were seven and one-half times those of the first mentioned season. (6) In California also, the new trees beirg planted are more than enoueh to replace the normal acreage removals in the case of Valencias. (6)

These two factors, increasing productivity of a great share of the trees, and the ever increasing number of trees, would appear to predict that prospective crops of citrus vill be constantly increasing in size, for the next ten years, provided natural forces do not result in low per-acre yields or heavier acreage removals than normal.

The location of this hesvier yield can even be preaicted. For orances, Florida hes a higher proportion of younger trees than California. The orchards of Texas and Arizona furnish only a small part of the total crop of oranges, but the larger proportions of the trees in these stetes are very young. (Table LXXXIII) Therefore, these three states are going to continue to become increasingly imnortent in the orange in-
dustry in the next ten years, barring unforeseen unfavorable conditions. The grapefruit industry shows growth in another district. The trees of Florida are the older trees. The young trees are found in Texas, Culifornia and Arizona. The crops of these states will become more important in the total grapefruit proauced in the next decade. All states appear to be planting more and more tingerine trees. Hccordingly, the crop from all reãions should be increased.

Analysis of Deta Regarding California and Florida Orances. Shipments may be analyzed from computations of several kinds. One of the methods of contrasting the shipments of oranges from the two leading producing states is to plot the moving averages. This method gives a more accurate trend than the straight line trend. Graph XXXV presents the trend by tinis method for the combined shipments from all regions of California. High point of this moving averace was reached in May 1935, and it has been in a down:ard direction since. While Florida shipments reached temporary highs in October, 1933 \&nd July, 19Z4, it shows an upvard slant from July, 1935 to the last computed averege, at which time it reached its maximum.

Data with trend renoved for oranges from these two states have been computed by calculating the actual shipments as a percentage of the moving average for that particular month. This method removes the trend factor from the oicture. Graph XXXVI indicates these percentages heve extreme variations. Florida shipments reach high points for months December to kiay inclusive, ard dwindle to nothing for the sumner months. Cal-

Graph XXXVI
Oranges

Graph XXXVII
$S_{\text {ea sonal Variations of Oranges scr.... California }}$ F Florida
2\% calculated as percentage by dividing act wal by the moving average each month.

ifornia shinments show a different story. The variations are not as great, thus sioving that the shiments are more steady. However, fluctuations do show definite seasonal highs, occuring in summer months, especially tay and June, and low points when the shipments from Florida are greatest.

Seasonel veriations were computed to get a picture of the sizes of the crons each month of the year. This was accomplished by removine trend, erid the method used was to take trie velues for all Januerys in the data for tine trend removed, and averaging these numbers, and similarly for each of the successive months. These values viere corrected to nake the total 1200, . The Graph XXXVII shows, therefore, the seasonal veriations aith trend removed. Californic has variation to a lesser extert, due to several reasons. The verious districts are computed together, ard their seasors differ so that a year round croo leaves that state. Had the districts of California been computed separately, seasonels would have been more nesrly similar to the Floricia seasonal. The height of the California season is noticed to be in May or June. Florida seasonals show that the winter months furnish most of the fruit from that state, with high levels from December to harch. The sumer months show almost no crops.

Further analysis cen be made by removing seasonal varistions alone with trends, ard plotting the cyclic fluctuations together with residual errors. Graph XXXVIII shows the cycles for the state of California, while Graph KXXIX represents the cycles for Florida with the California.cycles superimposed unor it

Graph XXXVIII
Seasonal Indexes
Pretaining to Shipments of Oranges from

Graph XXXVIII

with dotted lines. The fluctuation ebout the zero line is much more pronounced in Florià than in Califorria. The data seem to be in opposite direction for the two states; for exemple, in Novenber 193?, Florida figures wore low while Celifornia figures were kigh. Decenber figures for Florida were high compered with low fieures for Californie. The fisures for October, 193', for Florida vere low while they were hich for Californie. In most cases it is found thet when Califorria figures are lor, Florica figures are high. (This is the reasonable thing to expect, because of the veriations in seasons, and because of the fact that if Florica can supply cheaper fruit it will push the more expensive fruit from the market.) Cycles (the distance from one hich to another, or one low to another) appeer to be of the same size. Time betveen the extremes average about the same duration, althouph the amount of variction does not always coincide.

The leg of Celifornie behind Floricia for highs ard for lows is from two to four months, with an average of three months. Analysis of Data Regarciing Florida end Texas Grapefruit. woving averages were computed for grapefruit from Florida and Texas. Florida shipments (Graph XXIV) give high averages for July and August, 1933, Januery end February, 1935, and the hichest point in the winter of 1937. This latter high was due to the huge shipments of 1937. Texas shipmerts produce a moving average which was fairly steacy from 1932 to 1936 (Graph XXIII). This average went upward to a nevi unprecedented level during
the winter of 1936-37.
Data with trend removed for grapefruit from these two states have been computed from the relation of actual shipments to the moving averages. So, with trend removed, Craph XL fives a comparison of seasonal cycles and residual error. Florica fruit may precede the Texas fruit on the merket, but this is not elways true. The shipnerts from Florida are large during November through ingy. Shipments from Texas reach maximum levels during December through Februery, and usually attain the peak in Janusury of each year. In the year 1937 this most phenomenal peak occurred in ivarch.

Data with trend removed for grapefruit from the states of Floricia and Texas show us the crop seasons. Graph XLI. Texas shipments appear to reach the hich in January, with other high values in November, December, Februery and Merch. In other words, Texas has a five-month grapefruit season. Florida grapefruit appear the same months in quantities, with the highest point following just after the Texas fruit disappear from the mariket, the month of Migy.

Upon removing both trend and seasonal variations, cyclic fluctuations for these shipments were obtained. These are represented on Graph XLII rith Texas cycles shown in dotted lines, and Florica cycles $\varepsilon i v \in n$ in solid lines superimposed. Fluctuations in Texas shipments are rather lerge, especielly so in 1937. Peaks are ten, four, thirteen, rine and sixteen morths apart. No peak is found in 1936, probably due to the

$$
7
$$

$$
\begin{gathered}
\text { Graph } \bar{L} L \\
\text { Seasonal Variations of Grapefruit gromFlorida"Teras }
\end{gathered}
$$

$.1$

Graph XLI
Seasonal Indexes
 based on moving averages

Graph XLII
Cyclie Fluctuations mith trend and somoms removed Florida ar Teqas Gmaporcit.

moving average having been greatly increased by the inclusion of the large shipments of the first part of the following year. Low points for Texas occur at distences of eight, eleven, eleven, six, and ten months. This produces an average cycle of about ten months.

Florida cycles are not so pronounced, as the shipments from this stäte have been fairly steady. However, peaks occur at intervels of seven, nine, six, ten, seven ard four months, while lows occur at intervals of seven, thirteen, nine, ten, five and rine months. These cyclic extremes therefore happen at an عvercge interval of seven to eicht months. From a study of these seasoneils and cycles the studert of the markets is aided in predicting the future.

Another method of predictions is included, based uoon the differential scheme. In Graphs XIIII, XLIV, XLV and XLVI, each monthly shipment is represented along with the ordinate and abscissa of that point in reference to the preceding monthly shipment. The shipments for the different years and the average thereof, are placedone above the other so the.t corresponding months appear in the same vertical column. Feadings are taken by reaing the ordinite of any point above or below the preceding point in order to see the differential in the monthly period. In using this graph, it is wise to cover all exeept the one vertical column which is to be scrutinized at that time. For example, if the shirments for wiarch are desired for oranges, or Graph XLIII cover all except the February and Merch values

Graph XLIII

Disferential Graph for OrangeShipments

 AVERAGE

JAN. FEB. MAR. AFR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. JAN.
and the interverire column. From the average differential given in the top horizontal ron, it will be noticed that inarch shioments averace about three spaces or 1,500 carloads above average shipments for lebruery. The average alone may not tell enough for predictiors. Therefore, it is wise to look at the nictures of the separate years. Upon scanning the vertical column for the February-March interval, it will be noticed that each of the six years did snow an increase of shipments in wierch over that of February, and that the extremes of the increases vere from about two-thirds of a space or three hundred carloads in 1935, to the highest which occurred in 1934 and vas about seven and one-half spaces or 3,500 carlocds. It may also be wise to notice the trend of that increase, along with the letest figure which is given in the bottom row. There has been no steady enlargement of that increase, and the amount in 1937 was close to that of the average. Therefore, the average does present an amount that might be anticipated for the next year. Thus, whenever the total shipments for February are known, the average differential can be added to it, and the result will represent a prediction for the following March.

In most cases the average differential graph does show the same tendency in each interval as is presented in the indivicual yearly graphs. However, that is not true for the grepefruit shipments. In Graph XLIV, for the Februery-March interval, the advisability of searching the vertical column is shown. The average would show that the March shipments would

Graph XLIII

Graph XL VI

\square
be one and one-half spaces or 750 cerloads above the February total. But the separate values show that the shipments have during that month, increased, decreased and stayed level. Perhaps in this case, the latest figure would be the most valuable criteria for judging future shipments, for it is this large increase vich caused the average to be positive.

In spite of the large seasonal variations, and the changing climatic conditions, by using all of these methods the stuant of the market has some criteria for judging the future shipments of fruits.

- C. Distribution of Citrus Fruits.

1. Methods of Distribution.
a. Picking, Handine, Psckaginf the Citrus Fruits.

As the citrus industry keeps increasing in volume, the methods of handling the enormous amount of fruit become more modern and efficient. Buyers are interested in fruit handing from the beginning, as euch thing thet is done to the fruit affects first, the quality; and second, the cost of the fruit to the consumer. The harvesting and marketing of the citrus may be aone by the owner himself, under his supervision, or by the personnel of a packing house or cooperative organization in the neighborhood. In eitior case the methods used are essentially the same.

Before the fruit can be shipped, it must meet the legal standards of maturity set u_{p} by the United States Food and Drug Administration, and of the state in which the fruit was grown. The outward appearance of an orane or grapefruit is not incicative of the stage of maturity. A fruit which is still green in color, may be fully mature as to flavor, and also, because of different climatic conditions and characteristics of the fruit itself, another variety may be sour and unripe in spite of the fact that its rind has changed to the expected "ripe" color. Cnemical tests of meturity have now been set up in Floriaa, California, and Texas, whereby the exact stage of meturity can be determined. (fippendix, p. 124) None of the treutiments given to fruit to cause the color to be changed, affect the ripening or sweetening of the fruit.

A fruit picked inmature will remain so. (2i)

Picising must be done by hand, and with clippers in the case of oranges, lemons and tangerines. Care must be taken in clipping. It is important to clip the fruit with very short stems. If a long stem is left attached, there is dancer that the other fruits in the package will be injured by the stem. Also, the fruit rind must not be clipped. Clipper cuts e.re the site of rotting. Snub nosed clippers are beine widely used because they avoid much of the injury to rind. Lemons are picked according to size. The lemon is considered large enough when it will just pass throurh the ring the picker slips on the fruit. (12) After the lemon has reached that stage of maturity, the nulp section does not continue to grow, but only the rind section enlarges.*

Picking is usually paid for by the box. The rate varies with the size of the fruit, the kind of picking desired, as spot-pickine, or the entire crop, and the amount of fruit on the tree, as scattered or close. The rate for tangerines is usually double that for grapefruit, and for oranges usually about two-thirds the tangerine rate.
"Pullinc" instead of pickinf is seldom done with tanferines, lemons, or oranges, because of the danger of tearing the skin near the stem. On the other hand, the grapefruit can be pulled durine the ereater part of the season. It appears to be

[^3]a distinct adventage over clipping, as renoving the calyx points lessens the liability of stem-end rot. The fruit is placed in a bag, so fixed that the bottom can be opened to discharge the fruit into field boxes. The ordinary day's pork is eighty boxes of oranges or one hundred trenty boxes of grapefruit, if trees are well loaded. Some of the more progressive organizations require pickers to wear gloves, to prevent finçernails from injuring the tender skin of the fruit. (22)

Field boxes in which the fruits are hauled to the packing house, are usually slightly larger than the standard orange crates seen on the market, and hold from eighty to one hundrea five pounds of fruit. The California field box is smaller than the one used in Florida. Unless the crop is unusually good, it is not possible to secure a packed box of fruit from a standard Florida field box. It is the desire of every packer to do so, and this leads to the practise of overfilling the field boxes. Boxes in this condition, and stacked four high on the trucks, damage the fruit by bruising. (22) Hauling to the packing house is now done mainly by motor truck. It may be necessary to haul the fruit to the edge of the orchard on low-wheeled corts, if the trees are so close together that the truck can not get into the orchard.

The packing houses are now modern plants of efficient planning. The fruit follow a straight line path through the plent, arriving at one end and leaving at the other. Careful checking is necessary to keep the fruit orned by the different customers in lots which will not become confused. Another
duty of the supervisor is to decide on the treatment of the fruit which is necessary before packing.

Various forms of rot are liable to attack the citrus fruits after harvest. The stage of maturity and the climatic conditions, temperature and humidity greatly influence the development of the organisms that cause decay. Five forms of rot are common to the citrus fruits; the $P \in n i c i l l i u m ~ r o t s, ~$ stem-end rot, Colletotrichum rot, brown rot and blossom-end rot.

Penicillium rots are the most common of the above nemed. These include green mold rot, blue mold rot, blister rot, and pinhead rot. These occur more often during the cooler months, or on fruit held in storage which is cool or cold, for some time. Organisms are air-borne, and are, of course, more abundant where other decaying fruit is near. The green and blue mold rots begin with a small, soft, watery spot, sometimes known as pinhead rot. Unon spreading, a larger spot is sometimes called blister rot. A white mold or fungus growth then appears over the centrel area of the affected part, and then the spot turns blue or green, according to which organism is causing the rot. Green mold spores develop onily on the surface. Blue mold spreads rapidly in packaces by contact. The susceptibility of the fruit increases with advancing maturity. Mechanical injury of fruit should be prevented, as a means of varding off Penicillium rot. Sanitary packing houses also reduce the sources of chance infection. (26)

Methods for cleaning sind sterilizing packing house equipment and field boxes include scrubbing with pine oil emulsions, subjecting to live steam, or sulphur dioxide fumes, or gassing with Decco gas, $\left(\mathrm{NCl}_{3}\right)$. The latter method has been woriked out by Leo J. Klotz, recently of Michigan Stste College, working now at the Riverside Strtion, Riverside, California. (31) High temperatures used in defreeninç, render the fruit less susceptible to this rot, but cause the fruit to be more susceptible to stem-end rot. Dipping the fruit in five percent borax solution is also quite effective in preventing the spread, but must be prompt, within six or eight hours after the fruit is picked, to be effective. SXY Chilling the fruit promptly, to a temperature belor the optimun for growth of the fungi, is also effective. (22)

Stem-end rot is not so common. It does not form a distinct spot, but there is a softening and decay of the rind and pulp tissue in the stem area. Discolorstion does not often epnecar, but when it occurs, it is buff or slightly darker. The decoy advances through the center, and often reaches the blossom end before one-third of the surface is affected. Treatment to prevent this rot includes a bath in eight to ten percent borex solution, coreful handine, and refrigeretion. (22)

Colletotrichun rot is not usual in occurrence. It is very similer to stem-end rot. Refrieerstion is the only known means of retarding its growth, as antiseptics are ineffective.

Brown rot is more common in California. It is detected by a cheracteristic odor. Control measures consist of soaking the fruit in water held at ll? degrees Fahrenheit, for a period of two or three minutes, and then promptly refricerating the fruit. (22)

Blossom-end rot occurs very commonly in oranges, but is not of ten serious. The disease seems to attack the skin, and not much of the flesh decays. Navel orances are more subject to this disease. No special remedial measure has been developed.

The above shows reasons for the packing house treating the fruit in an antiseptic bath, and refricerating the fruit as soon as possible. (22)

Another problem of marketing is the color of the fruit. Oranes, especially the Washington Navel, Parson Brown and Satsuma, reach maturity before turning the desired orane color. Valencia orances develop the orange color before they are mature, and when left on the tree until spring, "regreen" as noture is returning the color element to the trees. (25) Therefore, colorine or degreening is necessary to allow the orenge coloring to show. One usual method of doing this is to subject the fruit to ges, either ethylene, or the fumes of burning kerosene. The former is preferred. The time required for this process is from twenty-four hours to one week. Another method is use dye licuid or concentrate, or materials which react to form a dye, to enhance the color of citrus fruit by the addition of artificial color to the peel thereof. The law
in Florida required that each fruit be stamped "Color Added", if this treatment has been used. $(22,30)$

Frozen fruit is seperated from the rest by flotation tanks in some cases. The borax solution can be used in this tank, thereby doing the two jobs a.t once. (2?) In California now fluoroscupes are used to X-Ray the fruit and detect frost damage. (25)

Fruit is cleaned thoroufhly be scrubbing. The water in the automatic machines is maintained at about one hundred degrees Fahrenheit. Detercents are used, especially trisodium phosphate, as the results with this solution are gratifying. An interesting incident was called to the attention of the writer. After California adopted the use of automatic vashing tanks, meking use of flotation of the fruit, Florida fruit men visited and marveled over the new invention. Upon return, a machine was ordered for use in Florida. The machine was unsuccessful there, because the men had forgotten that the Florida fruit is so heavy that it sinks in water. New adaptations of the machine had to be mede before success was obtained in Florida*.

Drying must be thorough for volishing to be effective, but more important than polishing is the possibility of decay in damp fruit.

Polishing may be by mechanical means only, producine a natural sheen on the fruit, or by applying paraffin, carnauba

[^4]wax, pine oil, or rosin coapounds. It is believed that polishes reduce subsecuent wilting of the fruit, retard "aging" effects, and keep the rind with a fresh look. (22)

Grading of fruit is the next step in the process. Graders wear gloves to prevent damaging the fruits. (12) Citrus fruit is graded mainly on the surface appearance of the fruit. The United States Department of Agriculture grades and sténdards are usually used. These are given in the Appendix.

After grading, sizing is next in order. Niachines size and count the fruit. Jiaximum and minimum diameters for the different sizes of oranges and grápefruit, lemons ana tançerines are established. 'l'he size indicates the number of fruit necessary to fill a standurd container. Fruits in one box must be uniform in size. (Tables CX, CYI, Charts V, VI, VII)

The number of oranges in a crete varies from 96 to 344. The average size oranes pack 126 to 216 to the crate. Grapefruit require 28 to 96 to a crate, common sizes being 46, 54, 64, 72, and 80 to the crate. (6) Lemons go to market packed 240, 270, 300, 432, 490 and 540 to the box. (25) Tangerines, Mandarins and Satsumas are usually packed in half boxes or "straps", and graded according to number as 48's to 216's. (26)

Packaging is an important step in producing a satisfactory articles which can travel for great distsnces to the ultimate destination. Fruits must keep their original position in the box. Loose fruit would be damaged by bruising.

Various containers are used. The Florida box is the most common in Florida, while the California box is the usual

Chart I
Diameters of Oranges from California

Chart III
Diameters of Oranges from Florida

.

Chart III

Diameters of Grapefruit grom Florida"، ${ }^{\text {Te xas }}$

Chart IIII
Methed of Pacring Fruits

8VIET
ORANGES

No. nnd nire 96;
Dis. 3K in.: Layers 4

No and size 150;
Dia. ${ }^{3}$ it in.: Layers 5

No. nnd size 216;
Dia. 2 Hin.; Layers 6

No. and size 28:
Dia. 5\%in.; Lajera 3

Dian 41/ in.; Layers 3

io. and size 36;

No. and size 64;
Dia. 4Xin.; Lasyerm 4

No. and size 112;
Dia. 3Xin.; Layers 4

No. and size 176;
via. 2 H in.; Layers 5

No. and size 226;
Dian 2 it in.; Lajers 5

Dia. ix in.; Layers 3

No. and size 72;
Dia. 4\% in.; Layere 4

No. and aize 80.
Dia. 4 in.i Layers

No. and size 98;
Dia. 3.4.in.; Layers 4
MandARIT
ORANGES

No. and aize 60;
Dia. 3\%in.; Layers 3

Dia. 2xin.; Layers 3

No. and size 76:
Dia. 3 $1 / 4$ iu.; Lajers 3

No. and aize $120 ;$
Dia. $21 / 2$ in.i Layern 3

No. and size 120;
Dia. 3\% in.: Layers 5

No and size 200:
Dia. 2 ti in. ; Layers 8

No. and size 202;
Dia. $2 \frac{7}{8}$ in.: Lagers 6

POMELOS

No. and size 14;
Dia. $2 \nmid 1 \mathrm{in}$.; Jayess 4

Dia. 2 Kin.; Layers 4;

Dis. $2 \times$ ind size Luyers 4
-Method of Packing Various Nizen of Citrin Fruits. From Cultivation of Citrun Fruite, by H. H. Hume.
-By Perminaioa of The Marmillan Company.
one in that state. The Florida box has a capacity of 1.60 bushels. The inside dimensions are: lenॄth, 24 inches; width, 12 inches; depth, $1: 2$ inches. The California box has a capacity of 1.47 bushels, and the inside dimensions are 24 by $11 \frac{1}{2}$ by $11 \frac{1}{2}$ inches. Texas uses both the California and the Florida boxes. The half boxes hold . 3 buchel, and are known as "half straps", as two are often strapped together for shipping. These boxes are the length and wiath of the other boxes, but Ere only six inches deep. A small box, with a capacity of .8 bushel, but having dimensions $9 \frac{1}{2}$ by $9 \frac{1}{2}$ by 19-1/8 inches, is often used for small oraņes and tancerines. Bushel boxes, cylinarical crates with slatted sides and nired crates are economical crates often used. Open mesh bags, with capacity of 40,8 , and 5 pounds are now being used. This is an economical peckage, but not satisfactory for long distance shipments. (Appenadix)

Vrapping in tissues is next in order. This mrapping is not always done when pacising in stamard Florida boxes. If fruits are wrapped, it is usual to wrap each fruit. However, there is a pack known as "blind pack" in which case only those fruits in the top and bottom layers and those that are visible through the open spaces in the box are wrapped. This is often used for orances of size 250 or less.

The paper used is tissue, end it is ordinarily slightly oiled, making it easier to work, and somewhat tougher than common tissue paper. The amount of prper needed to pack
varies with the size of the fruit. On an average, about forty reams of paper are required for each one hundred boxes of orances or tangerines and about twenty reams for a like number of grapefruit boxes. Sizes of the individual papers for various sizes of fruit are shown in table on pege 280 . (2:)

The shippers are very perticuler about the wrapping. If advertising appears on the vrappers, as it often does, the top layer must show the advertisenent on each fruit. No "flags" or loose ends are allowed to show through the open slots. A tight twist is demanded in some packing houses for the entire pack. Some twist only the top layer and these touching the open spaces of the box, and allow the others to be "wadded". The latter requires much less time.

The top is nailed on, and a metal strap fastened across the center of the top. They are then stacked four high on their sides, to prevent pressure on the top. When packine, the bulge on the top varies, in the case of orances from $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches, and for grspefruit 2 to 3 inches, measured above the sides. If the bulge is less than the minimum, a "slack peck" is apt to result before the fruit reaches its destination, and cause bruising. Too high a bulge will also ccuse bruisinc, through heavy pressure within the package. Florida boxes, instead of tops beinf nailed on, have them fastened by wires, usually five, around the case.

Precooling is being practised in mery pecking houses. As hes been strited, growth of decay organisms are thus retarded.
b. Transportation of Citrus Fruits.

The principal methods of transporting fruits for great distances are by rail, water, and motor truck. Wuch of the transportation is a combination of two of these methods, is fruits are teken to the ocean by motor or rail, and then the remainaer of the distance by water. Better methods of refrigeration on shipboard is one reason for increased popularity of this kind of shipment. Betreen 1930-31 and 1932-33, the boat shipments increased from a fraction of a percent to 57.4\% of the New York receipts. (28) This was attributed somewhat to lowered prices for fruit in $1922-33$ and to the fact that cherper modes of transportstion were therefore us $\in d$.

The exact extent of the boat shipments cannot be judged from the figures compiled by the United Itates Department of Agriculture, as these are included in the carlots after being reduced to a similar figure. Truck shipments can be studied, however, as they are listed separately. 'lhe number of truck locds translated into carload equivalents increased from l,799 in 1932 , to 20,230 in 1937. The coupiling qgency does not claim these figures to be complete, as it is impossible for the truck shipments to be exactly recorded. Therefore, it is very evident that the truck shipments are playing an important part in the movement of citrus fruits to the market. This is especially true of Florida and Texas fruits going to northern merkets.

Preservation of the fruit while in transit may be done in either of several ways or a combination of two of these.

In a study of Florida citrus prices, Sourlock and Brooker found that the following methods were used in 1930-35: pre-cooled; initially iced; pre-cooled and initially iced; precooled and stendard refrigeration; standard refrigeration; stenasird ventilation. Pre-cooled consists of nlacing the fruit in refrigerators at the packing house and cooling the fruit before it begins shiment. Initially iced consists of using refrigerator cars which must be provided with ice as a means of cooling. Standard refrigeration is the method phereby cars are cooled by autometic mechanical refrigeration. Stenderd ventilation involves no refrigeration of ary type. Of these, the most popular method wes to pre-cool and initially ice the fruit or use standard refrigeration in the hotter months from Mey to October, and to use standard ventilation only (no refrigeration) in the cooler months, lovember to Arril. (28)
c. Distribution Agencies.

The owner of citrus crops may market the products inciependently, packing, shinging and selling the products as he sees fit, or he may have this function performed for him by any one of several organizations. Numerous merketing agencies are svailuble to these grovers.

There are independently owned shipping agencies located throughout the citrus areas which will harvest, pack, and market the fruit. Cooperative organizations ere functioning for this seme purpose. Severyl outstending excmples of these are
now operatine in each state.
In Florida, the Florida Citrus Excienfe, vith headquarters at Tampa, Floride, is a grower's cooperative marketing orénization. This was orgfnized in 1909. Its memberchio is comoosed of about one hunared twenty-five local ascociations incluainf five or six thousand growers. This agency hendes approximately onethird of the citrus crop of Florida. This orqanizetion teikes comilete charge of the fruit of all of its grovers, gathers it from the trees, packs end markets the fruit, and cherges the owner a stipulated price. per box, while the inaependent shippers buy the fruit on the tree, or delivered at the shipoing point. (6)

In 1928, enother group of citrus shi ppers in Florida organized the Florida Citrus Growers Clearing House Associztion, the headiuarters of which is in Vinter haven, Florida. Their purpose, as set forth in their charter, is to "better promote the general interest of Florida citrus growers: (1) By imoroving the quality, grade and pack; (2) by promoting a wider distribution of the volume of Florida citrus fruit through advertising, through more equitable freight rates, and through economic refrieeration; (3) by securing and stabilizing a systematic flow of Florida citrus fruit from producers to consumers as efficiently and directly as possible." ((6)

In 1935; the Lefisleture established the Citrus Comnission. The duties of this group vere to take charge of packing, shipring, ard advertising of citrus fruits. These laws were reenacted by the Legislature of 1937. (30). Inspection service is cerried
out by the Comissioner of Agriculture unaer the direction of the Citrus Commission created by the last named leu. Proper grading, adjustment of juice requirements and collection of fees per box to create a fund for advertisirf fruits in various parts of the United States, were ell mezsures included in the powers of the Commission.

The Federel governfert has set up a bord to assist in reguleting shipments. This board works with the Floriaa Coumission to allocete shipments.

Californie has one of the cost wicely known ccoveratives in tre entire world, the Californiz Fruit Growers Exchene e This orgenization hes been nentioned previously, but deserves discussion as the outstancing merketing agency for citrus fruits.

The orgenization of this group consists of three mein divisions: (1) the local associetions; (2) the district exchanges; and (3) the Californi\& Fruit Growers Exchane. The services rendered by each of these divisions are different.

The local associations may perform many and varied functions, e.t the discretion of the individual groups. Many sunervise the pruning and look after the fumigating of the orchards. Most of the loculs set the time for picking the fruit, set the emount to be picked, and actually supervise the pickine. In practically all cases, the local oreanization sorts, packs, and grades the member's fruit, and has the authority to sell the Iruit. Each local establishes a grade pool, and sets up lebeling under its own brand nence. Hovever, if it choses to use the
"Sunkist" and "Red Eall" lakels which belorg to the association es a knole, - on fruit which cones up to the required standard, it mey do so.

The district exchanes have a number of functions. Usuelly the fruit ready for sale from the local orgarizations is ectuelly sold by the district exchanfe. Cars are ordered throufh this mediun. Wonetary returns are transferred to the locals upon receipt from the California Fruit Growers' ixchere.

The functions performed by the central exchanfe included a host of importent services. Through collection of data end research carried on by its own trained scientists, it tries to educate the fruit growers regardirg the most profitable methods of productior and marketing. It handles the money from actual sale of the fruit, and returns the same to the groper. It carries on inspection of fruits while enroute, and at the point of finel destination. It essembles and dispenses informetion as to the markets, demand, prices, and movement of the fruits from its own and other sources. It attends to all legel metters arising from marketing or trancportation. It ectablishes seles agencies in the principal cities of the country. The one neerest East Lansirg is located at Grend Papids. And, as one of the most important services to the group at large, it advertises citrus fruits extcrsively, trying to creete an increased demend for the products. $(33,34)$

Texas has letely established a Citrus Commission simili r to Florica's, vith authority over meturity ard grading and method of securing revenve for support.
d. Wetiods of Sale.

Uoon arrival of the fruit at the torminal where final wholesfle selling is to be done, the fruit may be sold either at private sale or at auction. In 1938, the Celifornia Fruit Growers' Exchange sold carloads of fruit to 1,800 customers at privete sele, as well es usine the auctions in 10 cities (21).

In the twelve leadire cities of the United States, regular produce auctions are held. In 1937, the auction sales of fruits and vegetables by fourteen compenies totiled 102,128 cers. Of these, $\in 1 . a c_{6}^{\prime}$ consisted of citrus fruit. (35)

Auctions are usually held on a pier or at railroad freight shed. Unpacked and separated into lots, the goods are placed so that they can be inspected by prospective buyers. Buyers and auctioneers then meet in the selesroom and selling takes place there, amid continuous talk. Goods are usually owned by the shipuer and hendled by a broker for him, or by a representctive of the selling agency. Auction companies receive pay for such
 to supply the market for auction musit be one which appears continuously, in order to ectablish its name among buyers; also goods must be of a quality that cioes not vary a great cieal for customers often buy through knowing only the name of the shiper. Oranees from Californie meet all these conditions very well, and therefore the lareest percentage of quction sfiles sre citrus from that state.

Retailers may atterd the auction, or may buy from jobbers that do attend the auction. Large chain grouns send buyers to
the auctions. Independert store owners usuelly use the jobier metinod, as they do not hive the time to attend the anction, ror buy in sufficiert quantities to meke it profitable.

For the buyer for institutiors, several methods of purchase ere possible. The buyer mpy attend the auctior. Guantity buyinf may be done at the terminal from car-lot aistributors. Purchases may bempde from jobbers, or from pedders. And the local reteil stores always furnish small quantities if other amounts ere too large to buy and hendle adventegeously. Large price vorietions exist, ciepending upon the method.
2. Consumption of Citrus Fruits.
a. Per Capita Consw, tion and Uses.

The American ciet is charfins, as can be demonstrated by the figures regardirf the por copita consumption of virious cereals, fruits, and vectatles. The per capita consumption of orenfes hes been stated by Thompson (7) to have incressed from 19 pounás in 1923-25 to an everage of 26 gounds ten years later, 1935. Herrilton erd Brooker (36) estimate the consumption per capita of oranges and grepefruit in 1899-1900 to have been about seven pounds, while in 1931-22 the consunption of these two fruits averaged 34 pounds, or an increase of nearly 500% in 32 years. Armstrorg (32) shows in charts that the consumption of wheat, meats, potatoes, corn, bananas, apoles, and peaches has declined during the last thirty years. At the same time, the consumption of onions, celery, carrots, lettuce, peare, cenred vétetables, canned fruits, grapefruit, lemons and oranges has aciterially in-
creased. He has computed the per capita consumption of grapefruit to be 6.59 pounce, lemons at 2.91 pounds, ard oranes at 27.08 pounds for the year 1936.

California Fruit Growers' Exchance, in order to assist in its advertising campaign for California citrus fruits, has taken a survey of the income, budgets, buying habits and uses of food of many families in the United States. In order to study more closely the habits of these families, one thousand families considered to be representive of a cross-section of the states were selected. Tais group was called "Sunkist Town". Selections were made in an attenpt to give an accurate cross-section as to income clesses, by size of city, by age groups, $5 . n d$ by geographical location. It was composed of 789 urban families, averaging 4.03 persons per family; and 211 farm families averaging 4.29 persons per family. The averages for all families in the community, both rural and urban, were as follows: husband, 41 yeurs; wife, 41 years; and children'years. Eicht hundred ninety-three of these femilies were of the white or Caucasian race, 94 were Negro families, fnd 14 belonged to other races. Six hunared ninety-five families were composed of four or less members, while 205 families had five or more members. The average size of the family was 4.11 members. In sixty of the families, there was no member gainfully employed. This mears, that if the family did not have enough to live on its accumulated income, it was living on relief, or on the charity of relatives. Six hundred

twenty-one of these families had one gainful worker, while 319 had two or more workers gainfully employed. Eighty-eight of these families rented rooms to outsiders. Only 18 out of the 1,000 families had money enough to employ servants in the home. All these facts seem to present an average or crosssection which should be typical of the American habits. Of these 1,000 families, 810 used oranges in some way or other. Uses to which they put oranges are interesting. №. of Families Use
640 Juice

462 Whole
332 Salads
267 Orangeade

211 Fruit Cocktail
194 Sliced
154 Halved or segmented
$146 \quad$ Cooking or Baking
105 Fruit punch

97

 Alcoholic beveragesAs will be noticed, juice and whole are the two most popular ways of serving oranges.

Lemons were used by a few more families than those using oranges. Eight hundred ninety families used lemons in the following ways:
$.1$

No. of families	Use
694	Cold lemonade
552	Tea
534	Lemon pie
303	Flavoring, seasoning
267	Garnish
249	Remove stains
240	Cooking, baking
223	Salad dressing
205	Hair rinse
151	Alcoholic beverages
142	Health drink
125	With orange juice
89	With tonato juice
80	Whole
62	Hot lemonade.

These figures might be taken as the desires of the customers for the fruits used in various ways, as people usually prepare things at home in just the way they prefer them. (38)

Thompson attributes the increase in citrus consumption to several factors. Dietitisns, doctors, nurses, social workers, and home economics educators have encouraged the use of citrus fruits as a menas of securing a more optimum diet for all members of the family. National advertising on the part of California Fruit Growers' Exchange has brought the attention of the public to the healthful properties of these fruits. The production of better quality fruits, and more

Abstract

uniform methocis of distribution of the fruits have been established through the efforts of merchendising agencies and the agricultural agencies. The availability of the fruits in different markets and at all seasons of the year cause their more wide use. (7)

2. Consumption by areas.

The figures compiled by the United States Department of Agriculture show the car-lot unloads of the fruits in the sixty-six important cities in the United States. The average consumption of each city for each of the fruits is shown in tables LXXXIX to XCIII, having been computed from the government figures for the separate years.

New York City alone receives an average of 27,959 cars of citrus fruits each year, which is over 26% of the total shipments. Chicago, the second largest city, had an average of 9,239 carlots of citrus fruits unloaded. Seventeen cities annually receive more than 1,000 cars of citrus fruits, and of these, New York, Chicago, Boston and Philadelphia each took over five thousard carlots of these fruits. Approximately 51% of the total cerlot shipments of the United States came into these four markets. (Table XC)

In order to present an analysis by sections of the United States, these cities have been grouped into large geographical areas. (Tables LXXXIV, XC) The New England and Kicidle Atlantic States received over 56% of these total unloads. The Central States use almost one-third of the total citrus fruits
shimped, 31\% arriviny in this area. This leaves only 12% used in the southern and western states. This is not a true picture of the situation in these districts, as practically all of the fruit entering the markets in these stetes, especially Los Anfeles, Jacksonville, and the other cities in California and Florida, come in via the motor trucks. (Tables XCI, XCII, XCIII)
D. Prices of Citrus Fruit

1. Costs of the fruit.
a. Costs of production

The cultural cost of orereses and lemons in California has been investigated by the California Citrus League, an organization which includes most of the citrus growers of the stete. This study was done over a period of five years, 1924 to 1928 , and included about 18,000 acres of oranees and 8,000 acres of lemons. Average cost of lemons per packed box was \$1.474, and the average cost of all oranges per packed box (up to the time of picking) was \$1.281. The cost of Vashin€ton Nevels was \$1.296, and at the same time Valencia orances cost $\$ 1.489$ per case. (24) At this rate, the cost per acre of producing the orenges averapes \$252.CO or $\$ 253.98$ for Fiashington Navels and \$248.53 for Valencias. Lemons, per acre, cost \$262.48. Since that time the cost of production must have decreased. Charles Teague, in discussine Exchange problems, states that an income of $\$ 117.0$ per acre is less than the cost of production, while an $\ddagger 216.00$ income per acre can bring a small profit to the
average grower instead of a loss. (21) Paul Armstrong gives the price paid the grovicr for fruit on trees avereged \$. .009 per box. (3£)

The costs of Florida fruit can be computed from average figures. The cost of planting and caring for an orchard until the bearing age is roughly estimsited at $\$ 500$. 00 per acre by Vosbury and Robinson. (23) Scott gives the cost per acre as $\$ 331.41$, for all expenses to the end of the fifth year, less the income received the fifth year. The cost of maintaining a grove after it reaches the bearing age averages from $\$ 75.00$ to $\$ 150.00$ per acre. The average yield per acre is about 150 boxes. So it appears that the cost of growing of Florida fruit is between $\$.50$ and $\$ 1.00$ a box. This, plus cost of the original investment apportioned over the bearing period of 30 to 40 years, represents a cost of $\$.57$ to $\$ 1.10$ per case.
b. Costs of Handline.

The Agricultural Experiment Station has made very thorough studies of the cost of handing the citrus fruit from the tree to the cer in Florida. This study was carried on by H. G. Hamilton, Associate Professor of Marketing, College of Agriculture, University of Florida, and Marvin A. Brooker. This study included the volume of fruit handled by 95 to 125 pticking houses in 1924-25, 1925-26, and in 1931-32 which handled from 40% to 68% of the commercial production. (36)

The costs of handling bulk and packaged fruits are quite different. The increasing popularity of bulk fruits is demon-
strated by the fact that in 1924－25 such fruits made up only 2.0% of the totyl Florica croo，while in 1931－32 the volume had increased to 21.1% ．No doubt the figure is much higher at the present time，for the number of stores handing bulk fruit is constartly increasing．（26）

The cost of handing fruit at the latest date stucied by this grouo，was 75.9 cents per box average．This included the hending and packing the citrus fruit from the tree to the car， but did not include the cost of pre－cooling．This cost varied from 58 cents to $\$ 1.56$ per box．The average figure is broken down into the component parts，as follows：labor，l5．3\＆；manege－ ment，3．7 ；office，2．4申；packing house end land， $3.7 \phi ;$ packing equinment，4．5 4 field equipment， $1.3 \notin ;$ light，water and power， 1．1中；materisls 27．9 \ddagger ；other costs，2．6 ；making the total peck－ inf house costs 62．5q．To this was added the picking costs of 7．2 \ddagger and the hauling costs of 6．2中．（36）

The cost of handling bulk fruit at this same date，was only 42．44．It is easy to understand this difference of 32．5p when it is noticed that the materisls，including paper，boxes， rails，labels and other materials，comprised 27.9ϕ of the above cost，and thet labor of packing would be eliminated in the bulk fruits．

No such study could be obtained for the Texas fruit，but it is fair to expect the cost to be similer，unless labor costs vary widely．Even then，the variation could not be great，as labor totaled only 15.3 of the total cost．

The cost of handling California fruit is estimated by the California Fruit Grovers' Exchare es picking and heuling $14.8 \$$ per box, and the cost of packing as $\$.474$ per box. (32) This totals \$.622 per box as contrested with \$759 averege cost for the sume service in Florida. The cooperative enterprises have reduced cost of separate items through thorough study and effort. Ownership of forest reduces cost of boxes, and ownership of plants reduces overiead. Such items lover total cost.

The assessment of the markctirg organizations or state commission must be edded to this. The assessment levied by the California Fruit Growers' Exchange for marketing costs were $5.02 \$$ per packed box last year. (21) The assessment by that organization for advertising purposes was five cents on each packed box of oranfes, ten cents on lemons, and three cents on grapefruit. (21) The levy made by the state of Texas is $2^{\frac{1}{2}} \ddagger$ for each box of citrus fruit, or $l_{2}^{l} \phi$ per bushel in smaller containers, end $2 \frac{1}{2} \neq$ for each eighty pounds of fruit sold in bulk. Florida charges an inspection fee of $l \notin$ for each standard box of $1-3 / 5$ bushels of fruit inspected for maturity, and requires this inspection from August 31 to December 1. A charge of $\frac{1}{2} \neq$ for each box to which artificial color has been added, is an adaitionel inspection cost. Advertising tax levied by the Florida state organization amounts to one cent per stendard box of oranges, three cents per box of grapefruit, and five cents per box of tangerines.

The cost of various methods of preservation vary as follows:

For pre-cooline, $9.5 \neq p \in r$ box; initial icing, 10.3¢; precooling and initial icing, combined, 18.1 \ddagger; pre-cooling and standard refrigeretion, 27.2q; and for standard refrigeration alone, 19.1\}. Fruit shipped by standard vertilation would, of course, have no preservetion charge. These figures were compiled in 1930-33, and ere perhaps chaneed by now, but relative costs of the different methods would probably be in the same ratio. (28)

Freight makes up a large item in the total cost of citrus fruit on the northern market. The distance from the origin to the place of consumption in vicinity of Lansirg is about twelve to fifteen hundred miles in the case of Florida, and nearly three thousand miles in the case of California. The rate for shipment of fruit by rail from Florida to Detroit in 1933 was \$1.C2 per box. (28) The freight from California to the eastern market avereged \$1.14 last year including the refrigeration. (32). This item then amounts to as high as twenty-five percent of the total retail price of the oranes.

The citrus fruit from California and Texes which arrives in Lansing is shipped via the Grand Trurk end Vestern Railway. The rate for shipments from California is $\$ 1.42$ per hundredweight plus the expense of initial icing. The icirg cherge varies with the size of the car, and averages from $\mathbb{8} 8.00$ to \$57.00. The average crate of orances weighs 70 pounds net and about 80 pounds gross. Therefore, the freight per box is in the neighborhood of $\$ 1.13$ plus about $\$.09$ icirg charge. (a) The rate for grapefruit from Texas is ${ }_{4}^{\mathrm{E}} .88$ per hundredweight, or
about $\$.75$ per case. (a)
Beginning May lst, 19z9, a new service was to heve been ineugurated. This was to allow a stop-off of a cer of fruit to have part of it unlozded, and the remainder forwarded to another destination. This may have its advartages to markets which cannot handle an entire carload at one time, but may carnse too much loss of fruit through delay.

Fruit from Florida raches Lansing via the Pere Marquette Railway and the Michigan Central Railway. The rates from Winter Haven, Florida, tie origin of much of the fruit received this year, is $\$.97$ per hundredweight plus the icing charge. The charge for complete refrigeration which includes re-iciñ, anounts to about $\$ 100.00$ per car. Florida boxes weigh about 90 pounds gross, and thus the freight per box would be about \$. 87 plus about $\$.23$ for icing charges. The rate for fruit loaded in bulk is 10% higher than for boxed fruit, due to the fact that it is loaded green, and because it is more perishable,-if spoilage does start it carries through the fruit more readily than where the fruit is separated in boxes. (b)

Therefore, the costs of shipment of fruit from the following sources are: California, \$1.13; Florida, $\$.87$; Texas, $\$.75$ per case. Icing prices are $\$.09$ per case for initial icing from California and \$. 23 for complete icing from Florida. Therefore, Florida fruit can be transported to the Lansing market cheaper then California fruit, 38 would be expected from comparing distances. Texss fruit transportation is chesper than that from Florida, to the Lansing destination.
Ti) Interview with Grand Trunk Freight Agent.
(b) Interview with Pere Miarquette Freight Agent.

Selling cherges charged by the broker doing this service for the shipper, may be charged as a percentage of the selling price. On terminal markets, this amounts to $1{ }^{1}$ 布 to 2% of the price. Other cherges are added to cover the labor necessary to move the fruit throurh the auction shed. This usually ranges from 1 to 5 cents per box. These cherges include storage, drayage, demurrage, reconsigning and government inspection. The total selling charge, therefore, ranfes from 5 to 7 cents per box. (28, 32, 35)

From totaling these items which must be paid before a price can be set for the fruit on the market, it would appear that the average cost to the jobber of Florida fruits sold in package is in the region of $\$ 2.50$, while bulk Florida Fruits cost about $\$ 2.10$ and California fruits $\uparrow 2.75$. Although these totals will vary from one year to another, and from one season to another, these items of cost will remain, and must be reckoned with if the institution buyer wishes to understand the econoric basis for the pricing of citrus fruits.

It is apparent tinet there are times when the price offered on the distant market will not justify the gathoring and shipping of fruit. During April, 1939, visitors in Florida saw grapefruit being knocked from the trees, and hauled to the fields for humus. This incluad both Duncen (seedy) and Marsh (seedless). Visitors were given fruit by the bushel. This is regarded by some as an advertising schene
.
for the fruiterowers. Probebly the large cuantities of fruit being shipped from Texes is the factor which hes affected the Florida market.*
2. Prices of the Fruit on the warkets.
a. Finolesale Prices in Detroit.

Prices of oranees from Florida which were sold on the Detroit market for the season 1937-33 varied from $\$ 1.63$ to * 4.45 per case, with an average price of $\$ 2.25$ per case. The highest price was found at the beginning of the season, October 15, and the lopest price was found on April 29th. (Graịh KLVII) (GraphXLVIII). At the same time, the California oranges ranced in price from $\} .15$ to $\$ 5.40$ per case in thet seme market. (GraphXLVII). These averaced Ez.00 for the entire season. Grepefmit on the Detroit guction sold from f. 75 to $\$ 3.59$ per case for fruit oricinating in Florida with an average price of $\$ 2.20$, while the fruit from Texas sold from $\$ 1.93$ to $\$ 3.17$ per case with an average of $\ddagger 2.23$. (Graphs XLIX and i). Prices for tangerines on the Detroit market veried from $\$ 1.03$ to $\$ 2.23$ per cese of $4 / 5$ bushel (Graph Li Fith an averase price of \$1.23. Prices at all auctions are shown in Grephs LI rnd LII (Tables LXXXIV to LXXXVIII)
b. Retail prices.

Retail prices which were collected at the local stores over a period of three months show little variation in price from time to time. It does show the items which were evailable on the local marist, and thus available to the small institution which would find it necessary to relie on the local market for its sunply.

Graph XL VII Oranges $P_{\text {rices }}$

Graph XL VIII
Origin of Oranges

Graph III range Prices
Monthly Arerages - All Auctions

E. Comparison of Quality of Fruits.

1. Sizes of Fruits

The sizes of the fruits as they are packed for shipment are based on the diameter of the fruits. It was desirable to know whether that dimension alone was enough to tell the buyer the amount of fruit that he was purchasing. In the case of the oranges which were later juiced, weights were taken on each orance to the nearest tenth of a grım. (Tables XCIV to XCVIII) In each case except the size 150 and size 176 Florida Valencias, the larger orarce by weight of one size was heavier than the smaller orunge by weight of the next size larger. For example, the largest orange of size 238 weighed 142.5 grams, while the smellest orenge of size 250 weighed $128 . ?$ grams. This would lead to the conclusion that the size of oranses is not truly indicative of the weight of fruit.

Because only one dozen samples of each size were taken, it pi\&s thoveht that perhaps the sampling was not sufficient to prove the above statement. Therefore, $7 \frac{1}{2}$ dozen oranges each from a case of Florida Valencias, size 150, and California Navels, size 150, were used. This larger sampling shows a variation in each case to be of a vider range than was found for the ciozen sampling. The averoge veights were as follows:

	Florida	California
Average	252.56	
5 n	1.49	grams 214.25

On testing for significance it was found that the Florida oranges were significantly heavier than the Cilifornia oranges. Further evidence of tiis is shown by Graph LVI.

From the two above experiments, it would appear that if the institution buyer is interested mainly in the number of

Graph IIV
Volumes of Various Sizes of Oranges

-

Graph LI

Graph LII

Cl 3

$$
\begin{gathered}
\text { Graph LVII } \\
\text { Weights of Florida and California Oranges }
\end{gathered}
$$

$$
M_{1}=252.56
$$

$$
M_{2}=214.29
$$

urits which ere obtained in any one purchese, size is the correct factor to notice, but if the weight of food is the desired informetion, the weight of the fruit would be more indicative of the amount of food purchased.

Few peoole realize that the volume of a shere increnses in direct pronortion to the cube of the diameter. Volumes of sizes from diameters are shown on pere 116.
2. Juice
a. Volume of juice from various sizes and verieties. Since one of the methoas of selling or servine citrus fruits in the institution today, is the serving of juices by the glass, the information which mary institution buyers rish to know is which is the chesipest size of orane to buy for juice puryoses. Accordinfly, all obtainable sizes of the different vrieties on the market were juiced, and the weights and measures of strained and unstrained juices recorded. From these, it was possible to compute the ounces of juice from each size of orance, and the cost of such juice. (Tables C, CI, CII)

Of the three sizes stucied, the size which proved to give the highest percentage of juice of the Florian Pineample oranees was size 150. (Table CV)

Florida Valencias were studied in all sizes on the markets, $96^{\prime \prime}$ s to 324's. From Table CIII it rill be noticed thet size 216 geve the highest percentace of juice with regerd to the original weight, and that size 126 was a near approach to the same percentage, differing by only . 15%.

Of the sizes of California Navels stuaied, which included all the sizes from 100^{\prime} s to $344^{\prime \prime} s$, the size which gave the largest anount of juice in proportion to the original peifht of the oranfes was size 288. (Table CIV)

Bulk Florida Valencias on the merket are not always sized, but are often graded as to external condition. The bulk varieties on the market were a mixture of U. S. Grades \#1, $\# 2$, and $\# 3$, as shown in Table CV. Grade \#3 gave the highest percentage of juice, althoush there was little difference.

Florida Temples for sale in Lansing, were not sized by the packers, but were sorted into sizes here before sale, and the means of so doing was only the eye of the untrained employee. Hovever, the approximrte sizes were placed on the fruit. Those which the store sold as size 176 gave the highest percertgre of juice, but the difference between the three sizes was only 6%.
b. Cost of juice from various sizes.

If the oranges are to be sold as juices, the institution person is interested in the cost of the prepured juice per unit. Since the capacity of glasses and cups ∇ ary, the cost pas computed for a fluid ounce of the juice. The first computation was based on the actual cost of the oranges in East Lensinc, Lensing, or the Detroit terminal where the oranges Fere purchesed.

The cost of juice prepared from the Florida Pineapple
oranges vas nearly the same for sizes 150 and 200, this cost being 9.00318 end 0.00315 per ounce respectively. 'fhe cost of size 176 vas $£ .00 \leq 45$ (Table CV)

Floricia Valencias yielded the cheapest juice when size 216's were used, the cost per ounce of strained juice being $\$.00 \% 69$ per ounce. Lovi prices vere also possible when sizes 250, 150 or 288's were used. (Table CIII, Graph LIV)

California Navel oranges purchased on the retail market appear to produce the cheapest juice if purchased in size 344. The juice from this size was $\$ 000627$ per fluid ounce. The larger sizes vere much more expensive in relation to the juice produced, when all were purchased on the retail merket, vith the juice costing approximitely one cent per ounce. (Trble CIV)

The juice from Florida Temples was cheapest in tine snallest size used, size 176. (Teble CV)

The highest percentage of juice obtained from all oranges studied was obtained from bulk Velencia oranges shipped by express from the orchard direct to a local retail store. This shows that either the time which elapsed between the time of picking and the time of consumption in the usurl way of marketing, or else the difference in the maturity of the orances when picked, has a decided effect uoon the amount of juice obtained from the fruit.

Becyuse all of the orances which were juiced and costs computed on were not purchased on a wholesale basis, and because of the fact that they were bought on different dates, it was thought that the comparisons would be more valuable if computed
as if all orances had been bought on one day at wholesale prices on the Detroit Terminal. Computations made usinf this assumption are shown in Table CVI . Here it will be observed that the California Nevel oranies produce juice which becomes progressively cherper in cost per ounce throush most of the sizes except for the size 126 which do not usuilly find a ready market, and are therefore cheaper. The low point in cost is reached with size 288 , with 344 beine a bit more wasteful. (Graph LV)

The Florida Pineapoles do not very much in price when purchased wholesale. Size 176 yielded the juice which was slichtly cheaper.

Florida Valencias yielded the cheapest juice when using size 216 , and the most expensive when size 150 vas used. California Valencias were not on the market at the time this study was made.

In using Florida Temple oranes, size 176 was found to be the most economical. This pes the smellest size used.

Therefore, it is possible to conclude that the smaller sizes yield the least expensive juice, with the exception of size 324 or $\mathbf{3 4 4}$, no matter what the variety of orange. This agrees pith the findins of the Greater New York Dietetics Association study in which it vias concluded that "The smaller oranges yield more juice." (18) It is also in agreement rith the practise of the University of Michigan Hospital Dietetics Division which has "used size 252 orences for juice for at
least ten years. The amount of juice is measured by the dietitians on the first and fifteenth of each month the year round, and the yield veries from 13 to 18 duarts of juice per case. The average is 14 or $14 \frac{1}{2}$ quarts". Miss Mary E. McKelvey is the dietitian in cherge of this work, and the information was obtained through the courtesy of Miss Mable MacLachlan, Director of the Department of Dietetics and Housekeeping.

The variations in cost per ounce (0.05ϕ or $\frac{1}{2} \mathrm{mill}$) of strained juice from different grouns of Florida oranfes purchased by weifht regardless of size were so slight that they are well within the errors of measurement, while the differences in cost of juice of California navels obtained from different sizes as if purchased on the same day in the same market were as great as $.15 \phi$ or $1 \frac{1}{2}$ mills. Therefore, in spite of difficulty in getting accurate weights and in spite of variations in the percentage of juice obtained from different sizes, (41.6% to 49.5%), it eppears the purchasing orances by reight is a viser plan then purchasing them by the grade size alone. This agrees with Pyse (11) who found the cost of juice on Florida orances bourht by the pound to vary $\$.005$ per cup, while California navel oranes yielded juice which veried 0.035 per cup.
c. Effect of storage condition on volume of juice.

Oranges are often held for several days or a week after purchase before use. It is advantageous, therefore, to discover whether holding these fruits end whether conditions under
which they are held affect the volume of juice.
Three dozen oranges were obtained from a box each of California Navels 220's and of Florida Valencias l50's. One dozen of each were vieighed and juiced inmeaiately. The other two dozens were weighed individually and then one dozen of each variety was placed in a storeroom at a temperature of about 70° to 80° Fahrenheit for the week. At the end of that time, veights of individual fruits were taken again and compared with the original weichts. Juices extracted were computed for the percentace of the original weight yielded. (Iaules CVII, CVIII)

The results were a surprise, as it was expected that the fruits would yield a much lower percentage of juice after being placed in dry storage. The loss of weight of the Vslencias stored in the warmer place was much greater, averaping 18.78 grams, while the loss of weight in those stored at refrigerator temperstures lost an average of only 3.0 grams. The losses for the California navels were 9.57 and 1.07 grams in the same two instances. Part of this small apparent loss might be due to the fact that the cool fruit, when brought out into the warmer air, had a layer of condensed vapor on the outside, as they appeared wet. Moreover, when the fruit was compared for appearance, the common storage orances looked dry, while those from the refrigerator looked much fresher. Table CVIII shows that the fresh Valenciss juiced 60.15% while those stored in the refrigerator juiced $53.9{ }_{p}^{\alpha^{*}}$ and those from warmer storage juiced 54.5% of the original weight. The California Navels juiced 43.194\%
fresh, and yielded 42.6% under refrieeration storage, and 42.4% after storage in a warm place.

It may be concluded from the above the the temperature of storage does not materially affect the percent of juice obtained. conler The reason then for/storage must be to retard decey caused by organisms which grow under werm conditions.
2. Flavor.
a. Preference for Juices from Different Sources.

Flavor is a quality which is hard to describe, yet it is very important in the article in question. The flavor of Califorria orances is different from the flavor of Florida orances. When offered a choice of California juice or Florida juice, each of six persons preferred the California juice. This might be partially accounted for by the deeper orange color in California juice; however, the rriter believes that it was the flavor which r:as the decidinc factor.

When Florida Pineapple juice and Florida Temple juice were tasted by five people, all thousht that the Temple juice wes far superior in flavor to the juice of the Pineapple orence.
b. Preference for juice from different grades of oranges.

Since some fruit which is offered on the market is graded as U. S. \#l, U. S. \#2, and U. S. \#3, the difference in the quality of the juice was studied. (The orences sold usually in buik as a mixture of these three grades, were purchased upon specisl request $:$ ith one dozen of each in a separate bag. It rould have been possible to have seporeted them after purchase,
as each has the grace stamped on the skin, but as exactly one dozen of each ras desired, the sortine was done by the salesman.)

The reting as to sweetness as judged by six dietitians in the Institution department are shown in the following table:

Judge	U. S. fil	U.S. $\ddagger 2$	U. S. ${ }^{\text {S }}$
1	Second	Sweetest	Sour
2	Sweetest	Second	Sour
3.	$f 1$ and	alike	Sour
4.	\#1 and	alike	Sour
5.	Second	Sweetest	Sour
6.	\#, 1 and	alike	Sour

It is apparent from the above thet there was some difference of opinion regarding the first end second gredes. Perhans this is due to the difficulty of differentiating between the sweet quality of the tro. However, it is definitely shorn thet the fruit with lower ersde according to the grading system sct up by the United States Department of Agriculture and described on page 151 of the Aopendix, gives a juice of lower sufr content and therefore less desirable. Some described the flavor as insipid.
c. Ability to Detect Lime and Lemon Juices.

It wes the ouinion of some that the averece person tasting lime and lemon juice made into bevereges could not detect which fruit had been used. Therefore, it wes thought edvisable to prepare limeade and lemonade, and see whether judges could dis-
tinfuish between the two. The bevercees were mide with juices in equal concentretion, thet is, 100 milliliters of juice to 300 milliliters of water ε nd 100 milliliters of simple syrup (made of 1 cup suger to 1 cup voter). In this case, four persons were able to distinfuish correctly the fruit that had been used, while two were not sure.

Later limeace only pas fiven trelve judes, and they vere told to state whether in their oninion the fruit used was lime or lemon. This time, in preperstion, all skin and membrene hed been removed, as it vies thourht thet possibly the distincuishing flavor ros obtained from the oil of the peel. Dean Bessey, in referring to a test of this sort some time ago in Florida, stated that no cifference could be told if neel and membrenes were removed. Eleven of the twelve thourht that lime hid been used, while one thought it vas lemon.

It appears then, that lime cen be distinfuished from lemon when used in beverages.

It wes thourht that the peel oil present in the limeade and lemonade used for juduing micht have affected the flavor enourh to affect the detection. Iherefore, limes were prepared by peeling the fruit and removing the pulp without membranes. The puly vas then scueezed, and this juice used to prepare limeade. This beverare was tested by twelve judpes, and their opinion asked as to winich fruit was used, lemon or lime. Eleven of the twelve recoenized the juice as lime. Two vere only positive thet the fruit was not lemon, and thus deaucted
that the juice must have come from lime. One person was positive that the juice was lemon.
3. Concentration of Limeade and Lemonade.

Limeade was prepered in three different concentrations. In each case 300 milliliters of juice was used, with 100 milliliters of syrup. To this was adad 75 milliliters, 100 milliliters and 125 milliliters of lime juice. Judges tasted the limeades, with an idea of deciding the desirable concentration. All six judges preferred the one which included 100 milliliters of the juice.

Lemonade was prepared in the same ways, using the same amount of syrup and water, and varying the lemon juice. The juice was added as $75,100,125$ and 150 milliliters. One person preferred that mede with 100 milliliters, while the other five judges preferred the lemonede made with 125 milliliters of the juice.

This would make it appear that lime juice is needed in less amount to secure the same acidity of beverage. An assertion made to the writer by a person who tried this experiment some years ago, was to the effect that one lime was equal to one lemon in effectiveness of juice. Since limes that appear on the northern markets are not sized, and since there is a great difference in size, this statement might be true if the lemon contained only $1 / 5$ more juice, according to this experiment.
4. Guantity of Juice.

Lemons, beceuse they must conform with the U. S. Stendards For Lemons, must contain not less then 25%, by volume, of juice. Therefore, the minimum amourt of juice can be juced when purchasing lemons. On the other hand, limes are not sized, and no definite amount of juice is cenanded. Therefore, if juice content is to be a fector in purchesing and use, such as for ounch, lemons are to be preferred.
d. Preference for Gropefruit from Differert Regions.

Grapefruit fron three states were tasted by ten juaqes. The sections, rithout peel or membrane, were tasted to ascertain rihether there was a difference in taste, and whether, if so, there was a preference. All ten judees vithout knowing source or the opinion of others, agreed that the fruit from Arizon wes very sour, kordering almost on the bitter state. Florida, whilespreftly acid, had a swectness with it that made it the uost desireble to eight of the ten juages. If Floride fruit kas tasted before the Texss fruit, the Floride wes preferred. Texas fruit vas less acid, erd therefore more desirable to the two judees who tasted it first. If tested after Florida fruit, it vas thoufht to be almost insipidly rild. No judqe preferred the Arizona fruit. Different fruits from ecch state were included in the trial. It vould apyenr, then, trat most people would prefer the Floriáa fruit unless a very nild fruit is desired, in which case the Teres fruit would be the prefererce.

The frizore fruit res very lieht in weirht, end hea a
taick rind. This would elso be a dravbeck on the merket where bugers yre accustomed to lifting the fruit to juage it by the reight/size ratio.
IV. SULi.AFY hid CONCLDEIONS.

Since approximetely $130,000,000$ to $\$ 150,000,000$ worth of citrus fruits appear in the market each jerr, it is evidert the these fruits are of great importance in the American diet. Califorrie, furnishes about $52_{\%}^{\sigma}$ of this crop, while Florida furnishes 41% and Texes 6 of the total. The production of the citrue fruits in the last six years has been increasing, particularly the grapefruit end oranes from Texas. Coonerative marketing orgenizations have made possible better gracing, sizinf, quelity standerds and hanciling of citrus fruits as vell as creeting a grexter demena for the product. of ell cornodities sold in wholesele auctiors, Californie citrus fruits furrish e larger percenta $\varepsilon \in$ than ary other conmodity. Celifornik and other citrus comprise the major part of the ouction sples. iveilable verieties vary grectiy through the year, with lower prices in rinter when Florida oranees furnish grect quantitiee and both Floride and Texts erapefruit conpete for the market. Prices differ greetly with aifferent metrods of purchasing. Comprisen of the qualitics of the friits show the folloving results:

1. lieifhts of orences viry greztly vith ecch size ratirg of oranes, with weigrts of different groups over-lepping. Therefore, sctual ainount of fruit obteined cernot be deterrined
by size when byyin less-ther-crate lots.
2. Juice obtaineble fron different sizes veries greatly. Smaller size orenes yield a hieker percentege of juice hased on the orisinal reight of the orerees.
3. Bulk ornnes, rot sired but grided, yield the hifkest percentires of juice for the U. S. fizreide.
4. Juice cost is less for Florida orenes than for Celiforrie orenes and less for smaller sized fruits then for the larger. Vsriations in the cost of juice from Florida orarces vary slefhtly (ebout $\frac{1}{2}$ bill ner ounce), while thre of Califorria revels is much gretter, (3 mills per ounce).
5. Cost of juice extracted from oranes bourht by weight (if all sizes cost the sene per pound) would very orly about $\frac{1}{2}$ mill per ounce for Florida orenees, while Celiforris orerees are mot sold on the merkets of the midile west by the pound.
6. Storage temperstires heve little effect on the obteinable juice of oranes stored a week. Cool temperetures inhibit growth of decay rether then prevent evaporation of juice, in spite of the fact that the refrigereted fruits look fresher.
7. Preference for Califorris juice is comor, but it is questiored whether it would, for institution purnoses, merit the cost rinich is nearly double in most adventcgeous sizes.
8. Better grades of bulk fruit yield sweeter, more desirable juice.
9. The difference between lemon and lime juice can be detected by consumers, so it would not be rise to attempt substitution of lemon for lime juice in commercial trade.
10. Lime juice can be used in lower concentrations by about 20% to get comparable streneths in beverages.
11. Lime juice is more expensive than lemon juice at local prices. Therefore, if expense is an item in making punch and similar drinks, lemon juice would be the better buy.
12. Arizona grapefruit, because of the almost bitter flavor, are not preferred by people when tasted with grapefruit from other states.
13. Florida grapefruit are preferred when full acidsweet flavor is desired.
14. Texas grapefruit are mild, and thought by some to be almost insipid in flavor when conpered with Florida grapefruit.
15. Juice content of limes varies, and as the fruit is not sized, the content cannot be foretold.
16. Lemon juice content is fixed by grading standerds as at least 25%, and therefore, can be estimated before purchase.
17. Fhen lime or lemon juice is to be used in punch and volume is a consideration, lemons will provide more volume of juice for the money expended.

APPENDIX

I. Maturity Laws

A. Oránges

1. California -
2. (Extracts from the Apricultural Code of California) Oranges, except bloods, tangerines, menajarins, Jaffas, Juvas, and Parson Browns, shall not be considered mature unless the juice contains soluble solids, es determined by a Brix scale hydrometer, equal to or in excess of eight perts to every pert of acid contained in the juice (the acidity of the juice to be calculated as citric acid vithout water of crystallization), and unless, before pickinf, they have attained at least twenty-five per cent of characteristic color. In view of differences in climatic and growing conditions prevailing nortin of the Tehachapi Mountains in California which results in some navel orances grown in certain districts of thet area having at maturity a lower ratio of soluble solids to acid than matured navel oranges grown in the area south of the Tehachapi inountains, navel orenges produced in the area north of the Tehachani 站ountains which are at least seventy per cent colored at the time of picking shall be considered mature if the juice contins soluble solids as determined by a Brix scule hydrometer, equal to or in excess of six and one-helf parts to every pert of acid contained in the juice. No oranges may be accelerated in color unless the juice contains soluble solide, as determined by a Brix scile hydrometer, equal to or in excess of eight parts to every part of acid contained in the juice (the acidity of the juice to be calculated as citric acid without p:\&ter of crystallization).
"Twenty-five per cent of cheracteristic color" in the case of oranges is defined as that color designated by the Munsell color notation as hue one and fourteen one-hundredths green-yellow, value five and twenty-three one-hundreaths chroma four and three-tenths (1.14GY5.23/4.3), and "seventy per cent colored" as hue three yellow, value six, chroma five ($3 Y 6 / 5$). Orences shall be considered as having exceeded twenty-five or seventy per cent color if the average hue of the surface of each fruit is numerically less than one and fourteen-hundreaths green-yellow or three yellow respectively, regsraless of the other components of the color. (Amended by Ch. 285, Stats. 1933; amended by Ch. 329, Sts.1927)

2. Florida -

Section 4. (State of Florida Citrus Inspection Bureau, $\cdots m m a z$. Report Season of $1957-38$) That within the purpose and meaning of this Act, oranges shall be deemed to be mature only when the ratio of total soluble solids of the juice thereof to the anhydrous citric acid is not less than eight to one (8 to l). -Chapter 10.17779 - Lús of Florida -
3. Texas -
 time and referred to Comittee on farichlture; Jamery $\quad 5, \cdots$
 to printer. d cicc. 3.
(c) Thet within the lieaning and purnose of this kct, oranges shall be deemed to be mature when the juice thereof contains not less than eight (8%) per centum of the total soluble solids to each part of the anhydrous citric acid.
(f) In determining the total soluble solids, the Brix hydrometer shell be used and the reading of the hyarometer corrected for temperature shall be consiaered es the per centum of the total soluble solids. Anhydrous citric acid snall be determined by titration of the juice, using stanaiad alcali and phenolpothalein as the incicator, the total acidity being culculateá as anhydrous citric acid.
(g) fll citrus fruit not conforming to the above standards shall be deemed and held to be immature vithin the meaning of this act.
B. Grapefruit

1. Celifornia-

797. (Extracts from the Agricultural Code of California). Grapefruit shall not be considered mature unless the juice contains soluble solids, as determined by a Brix scale hydrometer, equal to or in excess of five and one-half parts to every pirt of acid contained in the juice (the acidity of the juice to be calculated as citric acid vithout vater of crystallization), and unless, before picking, they have attained at least twenty-five per cent of characteristic color. Grapefruit vilich are at least seventy per cent colored at the time of picking shall be considered mature if the juice contains soluble solids, as deternined by a Brix scele hydrometer, equel to or in excess of five prrts to every pert of acid contained in the juice. No grepefruit may be accelerated in color unless the juice contains soluble solids, as determined by a Brix scale hycirometer, equal to or in excess of five and one-helf parts to every pert of acid contained in the juice (the acidity of the juice to be calculeted as citric acid without water of crystallization). In view of differences in climatic conditions prevailing soutil and east of Jian Gorgonio Pass, wihich results in the grapefruit grown in thit area having, at maturity, a higher percentage of soluble solids to acid than the mature grapefruit grown in tine area north snd west of said ban Grogonio Pass, grapefruit produced in the area south and east of san Gorgonio Pass shall not be considered mature unless the juice contains soluble solids equal to or in excess of six perts to every part of acid conteined in the juice (the aciaity of the juice to be calculated as citric acid without water of crystal-
lizution), and has attained, before pickine, at least twenty-five per cent of cheracteristic yellow color. In the event that the maturity staniurd fixed for that area south and east of sen Gorgonio Pass should be declared void it is the intent of the Legislature that the other maturity standards prescribed in this section shall prevail. Grapefruit produced outside of this state under climatic conditions similar to those prevailing in the area south and east of San Gorgonio Pass and offered for sale in this State shall meet the seme maturity standard as those prescribed for prapefruit produced south end east of said San Gorgonio Pass.
"Twenty-five per cent churacteristic yellow color" in the case of grapefnuit is defined as that color designated by the wunsell color notition as hue tiree and three one-hunareaths preen-yellow, value five kird sixty-one one-huncredths, chroma, four and nine-tenths (3.03 GY 5.61/4.9), ana "seventy per cent coloreă" as hue seven yellow, v=lue seven, chroma six ($7 Y 7 / 6$). Grapefruit shall be considered as having exceeded twenty-five or seventy per cent color if the averoge hue of the surface of each fruit is numerically less then three and three onehunareciths green-yellow and seven yellow, respectively, regardess of the other components of the color.
798. Florida -
(The Citrus Maturity Lán - Canpter iio. 17779 ürie of Ploricia, neterof-i937). iection 3. That vithin the purpose and meaning of this Act, grepefruit shell be deemed to be mature only when the totel soluble solids of the juice thereof is not less than seven (7) percent, and when the ratio of total soluble solids of the juice thereof to the anhydrous citric acid is as set forth in sub-section A of this Section, and when the juice contents of said grapefruit is not less than the minimum requirement for the respective sizes of said grepefruit as set forth hereinefter in sub-section B of this Section.
(A) The minimum ratios of total soluble solids of the juice of said grapefruit to the anhydrous citric acid are as follows:
799. When the total soluble solids of the juice is not less thun seven (7) percent and not more then eight (8) percent the minimum ratio of total soluble solids to arhydrous citric acid shall be seven to one (7 to 1).
800. When the total soluble solids of the juice is not less than eight (8) percent and not more then rine (9) percent the minimum ratio of total soluble solids to aniydrous citric acid shall be six and one-half to one (6.50 to l).
801. Fhen the total soluble solide of the juice is rot less then nine (9) rercent ard not more than rine and one-tenth (9.1) ercent tie mirimu ratio of the total solurle solids to arhycrous citric acid shall be six and forty-five hurirediths to one ($6 . \Delta 5$ to 1).
802. When the total solukle solids of the juice is not less than nine ard one-tenth(9.1) uercert and rot more than nine and tro-terths (9.2) percest the mirimum ratio of the total soluble solids to arhydrous citric acid chall be six and four-tenths to one (6.4 to 1).
803. Phen the totel soluble solids of the juice is rot less timn rine end trio-terths (9.f) percent and not more than nine erd tiree-terths (3.0) percent the mininum ratio of total soluble solids to anhydrous citric acid shall te six and thirty-five hunceciths to one (6.25 to 1).
804. When the total soluble solids of the juice is not less then nine end three-tenths (9.3) percent and not more than nine and four-terths (9.4) percert the minimun ritio of total soluble solias to arhyarous citric ecid shall be six and thirty hundredths to one (0.50 to l).
805. When the total soluble solicis of the juice is not less than nine and four-tenths (9.4) percert and not more than nine ard five-terths (9.5) percent the minimum ratio of totel soluble solids to arhydrous citric acid shell be six and tverty-five huncredthe to one (6.25 to 1).
806. When the total soluble solids of the juice is not less then nine and five-tenthe (9.5) percent and not more then nine ard six-tenths (9.6) percent of the mininum ratio of total soluble solids to arhydrous citric acid shall be six end tvienty hundredths to one (6.20 to 1).
807. When the totel soluble solids of the juice is not less then nine end six-tenths (9.6) percent and not more than nine and seven-tenths (9.7) percert tre mininum ratio of total soluble solicis to anhydrous citric acid shall be six and fifteen hunciredths to one (6.15 to 1).
808. Then the total soluble solids of the juice is not less than nine ard seven-tenths (9.7) percent ard not more then nire and eight-tenths (9.8) percent the minimum ratio of total soluble solids to ariyurous citric acid shall be six and ten hundredtins to one (6.10 to 1).
809. When the totel soluble solids of the juice is not less than rine and eight-tenths (9.8) percert ard not more than nine and rine-tenths (9.2) percent the minimum retio of total soluble solias to enhyörous citric acid shall be six and five huncredths to one (6.05 to 1).
810. When the total soluble solids of the juice is not less than nine and rine-tenths (9.9) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be six to one (6 to 1).
811. Texas
(fi.B. 47) Section 3. That pithin the purnose and mearing of this ect, comelos (Erapefruit) shall te aeemed to te micture orly when the ratio of total soluble solids of the juice thereof to anhyurous citric acid is as follows: (a) Winen the total soluble solids of the juice is not less than nine per cert (9%), the mirimum ratio of total soluble solids to the arhydrous citric acid shall be seven erd two terths to one (7.2-1).
(b) Yhen the total soluble solids of the juice is not less than ten percent (100°), the minimun ratio of totel soluble solids to the arinydrous citric acid shall be seven to one (7-1).
(c) Wher the total soluble solids of the juice is not less than elever per cent (11\%), the minimum ratio of totell soluble solids to the anhydrous citric acia shell be six and eight-terths to one (6.8-1).
(d) Finen the total soluble solicis of the juice is not less than eleven and one-half per cent (11.5*), the mimimum ratio of total soluble solids to the arhyorous citric acid subll be six and one-half to one (6.5-1).
(f) In determining the total soluble solids, the Brix hyarometer shall be usta and the reacine: of the hydrometer corrected for tempereture shall be considered es the per centum of the total soluble solias. Anhydrous citric acid shall be deterrined by titration of the juice, using standerd alkali and phenolphthelein as the incicetor the total acidity being celculated as arhyàrous citric acid.
(g) All citrus fruit not conformire to the above stendarads lipon official test shall be deemed ε nd held to be inmature within the meaning of this act.

C. Tengerines

1. Florida
(Ckepter in. 17779 Levs of Floride, 40tsef 1207) Section 5. That within the purpose and meanirg of this Act, tangerines shall be deemed to be meture only when the ratio of the totel soluble solids of the juice thereof to the anhydrous citric ecid is not less than seven and one-half to one (7.50 -1).
A. United Stetes Standards for Oranges.
2. California and Arizona

InMOETCION

The tolerances for the stancieràs are on a container basis. Hovever, irdivicual packzges in any lot may vary from the specified tolerances as stated below, proviced the everages for the entire lot, based on sample inspection, are within the tolerances specified.

For a tolerance of 10 percert or more, individual packeges in ery lot may contein not more than one and one-half times the tolerence specified, except thet when the package cortains 15 specimens or less, individual peckuges may contain not more than double the tolerance specified.

For ε tolerance of less than 10 percent, indivicual packages in ary lot may contain not more than dourle the tolerance specified, provided at least one specimen which does not meet the requirements shell be allored in ary one package.

GPinFS

U. S. Fancy shall consist of oranees of similer varitetal characterictics, which are mature, well colored, firm, well formed, of smooth texture for the vericty, free from decay, broken skins which are not healed, hard or dry skins, grovith cracks, bruises (except those incident to proper handing and packing), dryness or mushy condition, ع.nd from injury caused by split, rough, wicie or protruding navels, sprayburn, fumigation, ammoniation, creasing, scars, ereen spots, scale, sunburn, dirt or other forei६n materisls, disease, insects or mechanical or other meens.

Etems shall be properly clipped.
U. S. IO. 1 shall consist of orenges of similar varietal cheracterictics, which are mature, firm, well formed, of fairly smooth texture for the variety, free from decay, broken sixins wich are not hesled, hard or dry skins, growth cracks, bruises (except those incicent to proper handling e.rd packine), and from damage caused by dryness or mushy condition, split, rough, excessively wide or protruaing navels, spray-burn, fumigation, aumoniation, creasing, scars, green spots, scele, sunburn, dirt or other foreign materials, diserse, insects, or mecharical or other means. Eech fruit shall be pell colored except Valercia oranges, which shall be et least fairly well colored.
¿tems shall be properly clipped.
U. S. No. 2 shall consist of oreres of similer verietel characterictics, which are meture, fairly vell colored, feirly firm, which may be slifhtly mischapen but not excessively rough which are free from decay, broken skins which ere not hesled, herd or dry skins, growth cracks, and from serious demage caused by bruises, dryness or mushy conciition, split or protruding navels, sprayburn, fumiqetion, ammoniation, creasing, scers, ereen spots, scale, sunburn, dirt or other foreign materials, disease, insects or mechanical or other means.

Stems shall be properly clipped.
U. S. No. z shall consist of oranges of similer varietal characteristics, which are mature, which may be slightly sponey, misshapen, rough, but not seriously lumny, which are free from decay, broken skins which are not healed, hard or dry skins, from serious damage by Erowth cracks, truises, dryness or mushy condition, and from very serious demage caused by split navels, sprayburn, fumigation, ammoniation, creasing, scars, green spots, scale, sunburn, dirt or other foreign meterials, disease, insects or mechanical or other means.

Stems shall be properly clipped.
Unclessificd shall consist of orsnges which have not been classified in accordance with any of the foregoing grades. The term "unclassified" is not a grade within the meaning of these standards but is provided as a desigration to show that no definite grade hes been applied to the lot.

TOLIFANCES

In order to allow for variations incident to proper gracing and handling in each of the foregoing gredes, rot more than 10 nercent, by count, of the fruit in ary container may be below the recuirements of the specified grade, but not more than one-twentiet, h of this amount, or one-half of 1 percert, shall be allowed for decay et shipping point; provided that an additionsl tolerance of $2-1 / 2$ percent, or a total of not more than 3 percent, shall be allowed for decay enroute or at destination. In addition, not more than 10 percent, by count, of the fruit in ary container may not meet the requirements relating to color.

2. Floricia and Texas -

Standards for Citrus Fruits

(Taken from "Texas Standards for Fruits and Vegetables and Fruit and Vegetable Containers, $195^{\text {TH }}$). These standards apply only to the common or sweet orange group, grape-

$$
I
$$

fruit, and tangerines, and other varieties belonging to the Mandarin Group. These stendards to not apply to California and Arizona citrus fruits for which separate U. S. standards are issued.

The tolerances for the stinderds are on a container basis. However, indivicual packages in any lot may vary from the specified tolerences as stated belov, provided the averages for the entire lot, based on sample inspection, are within the tolerances specified.

For a tolerance of 10 per cent or more, individual packages in any lot may contain not more than one and onehalf times the tolerance specified.

For a tolerance of less than 10 per cent, indivicual packages in any lot may contain not more than double the tolerance specified, proviced at least one specimen which does not meet the requirements shall be allowed in any one package.

Grades

U. S. Fancy shell corsist of citrus fruits of similar varietal characteristics, which are well colored, firm, well formed, wature, and of smooth texture; free from ammoniation, bird pecks, bruises, buckskin, creasine, cuts which are not healed, decey, gronth craciss, scab, split navels, sprayburn, and undeveloned or sunken segments, from injury by black or unsiehtly discoloration, green spots, rough and excessively wice or protruaing nevels, scale, scars, thorn scratches, and from damage, caused by dirt or other foreign materials, äryness, sproutinf, sunburn, disease, insects or mechanical or other means.

In this grade not more than one-tenth of the surface in the aggregate may be affected with discoloration.
U. S. No. 1 shall consist of citrus fruits of similer varietal cheracteristics which are fairly well colored, firm, well formed, mature, and of fairly smooth texture; free from bmises, buckskin, cuts which are not healed, decay, growth cracks, spryyburn, undeveloped or sunken segments, and from damage caused by ammoniation, bird pecks, black or unsightly discoloration, cressing, dirt or other foreign materials, dryness, green spots, scab, scale, scars, solit or rough or protruding nevels, sprouting, sunburn, thorn scratches, disease, insects or mechanicel or other mer.ns.

In tinis grade not more than cne-third of the surface in the aggregate may be affected with discoloration.
U. S. No. I Bright. The requirements for this grade are the same as for U. S. No. 1 except that in this grade no fruit may heve more than one-tenth of its surface in the egeregete offected with discoloretion.
U. S. No. 1 Russet. The requirements for this grede are the same as for U. S. No. 1 except that, in this grade, at least 75 per cent, by count, of the fruit shall have in excess of one-third of the surface in the ageregate effected with discoloretion.
U. S. No. 2. shall consist of citrus fruits of similar varietal characteristics which are mature but may be only slightly colored, fairly firm, slightly misshapen and slightly rough, but which are free from bruises, cuts which are not healed, decay, growth cracks, and from serious damage caused by ammonistion, bird pecks, black or unsightly discoloration, bucksicin, creasing, dirt or other foreign meterials, dryress, green spots, scab, scale, scars, split, rough or protruaing neivels, spreyburn, sprouting, sunburn, thorn scratches, undeveloped or sunken segments, disease, insects, mechanical or other means.

In this grade not more then 25 per cent, by count, of the fruit may hove in excess of one-third of the surface in the agErecate offected with discoloration.
U. S. Comintion Crade. Ary lot of citrus fruits may be designetcd "U. S. Combinstion" when not less than 40 per cent, by count, of the fruits in each container meet the requirements of U. S. No. 1 grade and the remainder U. S. No. 2 grade, provicied that not more than 25 per cent, by count, of the fruits ia ary conteiner may have in excess of one-third of the surface in the aggregate affected with discoloretion.
U. S. No. 2 Bright. The requirements for this grede ere the same as for U.S. No. 2 except that in this grade no fruit may have more than one-tenth of its surface in the aggregate affected with discolortion.
U. S. No. 2 Russet. The requirements for this grade are the seme as for U. D. No. 2 except that, in tris gracie, at least 75 per cent, by count, of the fruit shall have in excess of one-third of the surface in the aggregate affected with discolorction.

Unclessified shall consist of citrus fruits which are not graded in corformity with the foregoing grades.

In order to allow for variztions incident to proper grading and handling in each of the foregoing grades, the following tolerences are provicied es specified:
U. S. Fency. Not more than 10 per cent, by count, of the fruit in any container may be below the requirements of this erade, but not more than one-fourth of this tolerance, or $2^{\frac{1}{2}}$ per cent, shall be allowed for damage by black or unsightly discoloretion, and not more than one-twentieth of this tolerence, or one-helf of one per cent, shall be cilowed for decey at shipping point; provided, that a totel tolerance of not more then z^{2} per cent shall be allowed for decay en route or at destination. l:o psirt of any tolerance shall be allowed for wormy fruit or worm holes.
U. S. Mo. I, U. S. No. 1 Eright, U. E. No. 2 Erisht Credes. Not more than 10 per cent, by count, of the fruit in any conteiner may be below the requirements of the grade other than for discoloretion, but not more than one-twenticth of this tolerance, or one-half of one per cent, shell be allowed for decay at shipping point; provided, that a totil tolerance of not more than z per cent shall be alloved for decay en route or at destination. In eddition, not more than ten per cent, by count, of the fruit in any container may not meet the requirements relating to discoloretion, but not more than one-fourth of this tolerance, or $2 \frac{1}{2}$ per cent, shall be allowed for serious damage by black or unsightly discoloration. No pert of any tolerance shall be allowed for wormy fruit or worm holes.
U. S. No. 2. Not more than 10 per cent, by count, of the fruit in any contziner may be below the requirements of this erade other than for discoloration, but not more than one-twentieth of this tolerance, or one-half of one per cent, shall be allowed for decay at shipping point; provided, that a total tolerence of not more than 3 per cent shall be allowed for decay en route or at destination. In addition, not more than 10 per cent, by count, of the fruit in any container may not meet the requirements relating to discoloration. No part of any tolerance shall be allowed for wormy fruit or worm holes.
U. S. Combinetion Grede. Not more than 10 per cent, by count, of the fruit in any container may be below the requirements of this grade, but rot more than one-twentieth of this tolerance, or one-half of one per cent shall be allowed for decay at shipoing point; provided, that a totel tolerance of not more than z per cent shall be allowed for decay en route or at destinetion. No part of ary tolerance shall be allowed to reduce, for the lot as a whole, the percentage of U.S. No. 1 required in the combintion, or to increase the percentage of fruit hiving in excess of one-third of the surfere
in the aceregete affected with aiscoloration which is permitted in the combination, but individual containers may heve not more than a totel of 10 per cent less than the percenta̧e of U . D. No. 1 required or specificd and/or in excess of the percentage of discolored fruits specified, provided that the entire lot avereges vithin the percentages specified. No part of any tolerence shall be alloved for vormy fruit or worm holes.
U. S. No. 1 Russet, U. S. No. 2 Fusset Crudes. Not more than 10 per cent, by count, of the fruit in any container may be below the requirements of the grede, but not more than one-twentieth of this amourt, or one-helf of one per cent, shall be alloved for decay at shipping point; provided, that a total tolerance of not more then 3 per cent shall be allowed for decay en route or at destinction. No part of any tolerance shall be allowed to reciuce the percentage of fruit having in excess of one-third of the surface in the aggregate offected with discoloration which is required in these grades, but inaividual containers may have not more than 10 per cent less than the percentage required, provided that the entire lot averages within the percentage specified. No part of any tolerarce shall be alloned for wormy fruit or worm holes.
B. United Stetes Standards for Grapefruit

1. California end Arizona

INTROLUCTION

The tolerances for the standarcis are on a container basis. However, individual packages in any lot may very from the specified tolererces as stated below, provided the everages for the entire lot, based on sample inspection, are within the tolerances specified.

For a tolerance of 10 percent or more, individual packages in any lot may contain not more than one and one-half times the tolerence specified, exceot that when the package contains 15 specimens or less, individual packsges may contain not more than double the tolerance specificd.

For a tolertnce of less then 10 percent, incividual packares in any lot may contain not more than double the tolerance specified, provided at least one specimen which does not meet the requirements shall be allowed in any one package.

CRATES

U. S. Fency shall consist of grepefruit of similar varietel cheracteristics, which are meture, well colored, firm, well formed, of smooth texture for the variety, fairly thin skinned, free from decay, broken skins which are not
healed, hard or dry skins, bruises (except these incident to proper handiling and packing), dryness or mushy condition, and from injury caused by spreyburn, fumigation, eamoniation, scars, green spots, scele, sunburn, sprouting, dirt or other foreign materials, disease, insects or mechanical or other means.

Steus shall be properly clipped.
U. S. No. 1 shall consist of grapefruit of similar varietal cheracteristics, which are mature, fairly well colored, firm, well formed, of fairly smooth texture for the variety, and not excessively thick skinned, free from decay, broken skins which are rot hesled, herd or dry skins, bruises (except those incident to proper hendling and packing), and from damage caused by dryness or mushy condition, sprayburn, fumigation, ammonistion, scars, green spots, scale, sunburn, sprouting, dirt or other foreign miterisls, diseuse, insects, or mechanical or other means.

Stems shall be properly clipped.
U. S. N. 2 shall consist of grapefruit of similar varietal characteristics, which are meture, slightly colored, fairly firm, winch may be slightly misshepen but not excessively rough, which are free from decey, broken skins which are not healed, herd or dry skins, and from serious damage caused by bruises, dryness or mushy condition, sprayburn, fumigation, ammoniation, scars, green spots, scile, sunburn, sproutine, dirt or other foreign materials, disease, insects or mechanical or other means.

Stems shall be properly clipped.
U. S. N). 3 shall consist of grapefruit of similar varietal characteristics, which are meture, slightly colored, which may be slightly sooncy, misshenen, rough, but not seriously lumy, which are free from decny, broken skins which ere not healed, hard or dry skins, from serious damrge by bruises, dryness or mushy conaition, and from verf serious damage caused by sprayburn, funiciation, ammoniation, scara, green spots, scale, sunburn, sprouting, dirt or other foreign materials, disease, insects or mechanical or other means.

Stems shall be properly clipped.
Unclessified shell consist of grapefruit which have not been classified in accordance with ary of the foregoing grades. The term "Unclbssified" is not a gracie within the mesning of these stendards but is provided as a designation to show thet no definite grade has been applied to the lot.

TOTEPATEES

In order to allow for varietions incident to proper grajing and handling in each of the foregoing grades, not more than 10 percent, by count, of the fruit in any container may be below the requirements of the specified grede, but not more then one-twentieth of this amount, or one-helf of 1 percent, shell be allowed for deccy ε t shipoing point; pruvided thet an additionkil tolerance of $2-1 / 2$ percent, or a total of not more than 3 percent, shall be allowed for decey enroute or at destinetion. In addition, not more than 10 percent, by count, of the fruit in any contsiner may not meet the recuirements relating to color.
2. Florida and Texas
(Same as A-2 uncier II, Gradine Lews)
C. U. S. Standards for Tangerines and liandarin Oranges
(Included in $A-2$)
D. U. S. Standerais for Lemons -
(U. S. Department of Agriculture, Bureau of Agr' 1 Economics - "U. S. Standaras for Lemons" effetrec* Jane 2rw1938)

IMTROLUCTION

The tolerances for tine stanaras are on a container basis. However, except when applying the tolerances for "Standards for Export", inaividual packages in any lot may very from the specified tolerances as stated below, provided the averages for the entire lot, based on sample inspection, are within the tolerances specified.

For a tolerance of 10 percent or more, individuel packages in any lot may contain not more than one and onehalf times the tolerance specified, except thet when the package contains 15 specimens or less, indiviaual packares may contain not more than double the tolerance specified.

For a tolerance of less than 10 percent, incividual packages in eny lot may contain not more than double the tolerance specified, provided at least one specimen which does not meet the recuiremerts shall be allowed in any one package.

GRIDES

U. S. No. 1 shall consist of lemons which are firm, fairly well formed, not abnormally rouch, which are free
from decay, internal evidence of Alternaria development, broken skins which are not healed, herd or dry skins, growth cracks, internal decline, red blotch, bruises (except those incident to proper handing and packing) membranous stain, or other internal discoloration, and from damage caused by dryness or mushy condition, sprayburn, fumication, exanthema, scars, green spots, scale, sunburn, hollow core, peteca, scab, melanose, dirt or other foreign materisls, disease, insects or mechanical or other means.

The lemons shall be at least fairly well colored, provided that lots of lemons which meet all the requirements of this grade except as to color shall be designated as "U. S. No. 1 Green" if the lemons in each container are of a full green color; or as "U. S. No. 1 Mixed Color" if the lemons in each container fail to meet the color requirements of either "U. S. No. 1 " or "U. S. No. 1 Green".

The fruit shall have a juice content of not less than 25 percent, by volume, except when designated as"U. S. No. 1 Green for Export". When so designated the lemons shall have a juice content of not less than 22-1/2 percent unless otherwise specified.

Stems shall be properly clipped.
In order to allow for variations incident to proper grading and handing, not more than 10 percent, by count, of the fruit in any container may not meet the color reruirements. In addition, not more than 10 percent, by count, of the fruit in any container, may be below the remaining requirements of this grade, but not more than one-half of this tolerance, or 5 percent, shall be allowed for decay, internal evidence of Alternaria development, internal decline, broken skins which are not healed, growth cracks, or defects causing serious damage, but not more than one-tenth of this amount, or one-half of one percent, shall be allowed for lemons affected by decay in State of origin. A total tolerance of not more than 3 percent shall be allowed for lemons affected by decay upon arrival in other States than that of their origin.
U. S. No. 2 shall consist of lemons which are not soft or excessively spongy, not badly deformed, not excessively rough, which are free from decay, internal evidence of Alternaria development, broken skins which are not healed, hard or dry skins, red blotch, and from serious damage caused by bruises, membranous stain, or other internal discoloration, dryness or mushy condition, sprayburn, fumigetion, exanthema, scars, green spots, scale, sunburn, hollow core, peteca, growth cracks, internal decline, scab, melanose, dirt or other foreign materials, disease, insects or mechanical or other means.

The lemons shall be at least fairly well colored, provided that lots of lemons which meet all the recuirements of this grade except as to color shall be designated as "U. S. No. 2 Green" if the lemons in each container are of a full green color; or as "U.S. No. 2 Mixed Color" if the lemons in each container fail to meet the color requirements of either "U. S. N. 2" or "U. S. No. 2 Green".

The fruit shall have a juice content of not less than 25 percent, by volume, except when designated as "U. S. Nio. 2 Green for Export". When so designated the lemons shall heve a juice content of not less than $22-1 / 2$ percent unless otherwise specified.

Stems shall be properly clipped.
In order to allop for variations incident to proper grading and handing, not more than 10 percent, by count, of the fruit in any container may not meet the color requirements. In addition, not more than 10 percent, by count, of the fruit in any container, may be below the remeining requirements of this grade but not more then one-half of this tolerance, or 5 percent, shall be allowed for decay, internal evidence of Alternaria development, or internal decline, but not more than one-fifth of this amount, or 1 percent, shall be allowed for lemons affected by decay in State of origin. A total tolerance of not more than 3 percent shall be allowed for lemons affected by decay upon arrival in other states than that of their origin.
U. S. No. 3 shall consist of lemons which may be soft but not seriously spongy, seriously deformed or seriously lumpy; which are free from decay, internsl evidence of Alternaria development, broken skins which are not healed, hard or dry skins, and from serious damage caused by growth cracks, internal decline, bruises, dryness or mushy condition, and from very serious damage caused by red blotch, membranous stain, or other internal discoloration, sprayburn, fumigation, exanthema, scars, green spots, scale, sunburn, hollow core, peteca, scab, melanose, dirt or other foreign materials, disease, insects or mechanical or other means.

The lemons shall be at least fairly well colored, provided that lots of lemons which meet all the requirements of this grade except as to color shall be designated as "U. S. No. 3 Green" if the lemons in each container are of a full green color; or as "U. S. No. 3 Mixed Color" if the lemons in each container fail to meet the color requirements of either "U. S. No. 3" or "U. S. No. 3 Green".

The fruit shall have a juice content of not less than 20 percent, by volume, except when designated as "U. S. No. 3 Green for Export". When so designated there shell be no requirements for juice content.

Stems shall be properly clipped.
In order to allow for variations incident to proper grading and hanaling, not more tian 10 percent, by count, of the fruit in any contsiner may not meet the color requirements. In eddition, not more than 10 percent, by count, of the fruit in any container may be below the remaining requirements of this grade, but not more than one-tenth of this tolerance, or 1 percent, shall be allowed for lemons afiected by decay in State of origin. A total tolerance of not more than 3 per cent shall be allowed for lemons affected by decay unon arrival in other States than that of their origin.
U. S. Combination Grade. A combination of U. S. No. 1 and U. S. No. 2 lemons may be packeã. Combinations other than this are not provided for in connection with the United States lemon grades. A combination of U.S. No. 1 and U. S. No. 2 lemons may be designated "U. S. Combination" grade when at least 75 per cent of the lemons in any container meet the requirements of U. S. No. 1.

In order to allow for variations incident to proper grading and handing, not more than 10 percent, by count, of the fruit in any container may not meet the color requirements. In addition, not more than 10 percent, by count, of the fruit in any container may be below the remaining requirements of the lover grade in the combinetion, but not more than one-tenth of this tolerance, or 1 percent, shill be allowed for lemons affected by decay in State of origin. No part of the above tolerance shall be allowed to reauce, for the lot as a whole, the 75 percent of U. S. No. 1 lemons required in the combination, but individual containers may have not less than 65 percent of the higher grade. A total tolerance of not more than 3 percent shall be allowed for lemons affected by decay upon arrival in other States than that of their origin. This 3 percent tolerance may be used to reduce the percentape of lemons of the higher grade required in the combination, provided the affected fruits meet the requirements of the higher grade in other respects.

Unclassified shall consist of lemons which have not been classified in accordance with any of the foregoing grades. The term "Unclassified" is not a grade within the meaning of these standards but is provided as a designation to show that no definite grade has been applied to the lot.
$\square=-$
'III. Juice Content Laws
A. Grapefruit

1. Florida -
(State of Florida Citrus Inspection Bureau, Annual Report gemon of tifizeg; pages 22 and 23).
(B) The minimum juice contents of the juice of the respective sizes of said grapefruit ere as follows, each size being designated by the commercial number assigend to it, based on the number of grapefruit of said size packed commercially in a standard Florida packed box of grapefruit containing two compartments each having inside dimensions of twelve inches by twelve inches by twelve inches:
2. A grapefruit of size 28 shall contain not less than 335 cubic centimeters of juice.
3. A grapefruit of size 36 shall contain not less than 310 cubic centimeters of juice.
4. A grapefruit of size 46 shall contain not less than 295 cubic centimeters of juice.
5. A grapefruit of size 54 shall contain not less than 270 cubic centineters of juice.
6. A grapefruit of size 64 shall contain not less than 245 cubic centimeters of juice.
7. A grapefruit of size 70 shall contain not less than 225 cubic centimeters of juice.
8. A grapefruit of size 80 shall contain not less than 215 cubic centimeters of juice.
9. A grapefruit of size 96 shall contain not less than 190 cubic centimeters of juice.
10. A grapefruit of size 126 shall contain not less than 160 cubic centimeters of juice.
11. A grapefruit of size 150 shall contain not less than 140 cubic centimeters of juice.

The tests of the jinice contents of grapefruit hereunder shall be based upon the average maximum amount of liquid contents which can be extracted from the flesh and pulp of not less than three average individual specimens of said grapefruit of any given size. The Florida Citrus Commission shall by proper rules and regulations to be issued hereunder prescribe

Abstract

the manner and method of drawing of said samples and of conducting said tests. The skin and rind shall be removed before the liquid contents are extracted, and the remaining portion of the fruit shall be enclosed within a porous cloth before the juice is extracted therefrom for the purpose of permitting an efficient extraction of said juice, and the mechanical juice extractor or fruit press known as "Juicy Fruit Press" menufactured by 0. P. Schriver Company of Cincinnati, Ohio, shall be used in such process of extraction with the strength of one man applied thereto. Provided, that by the regulation of the Florida Citrus Commission any other mechanical fruit press or juice extractor of similar construction and equal efficiency may be used in such process of extraction.

B. Oranges

1. Only when color is added is law effective. (See Color-Added Law in IV, Sec. 6, Paragraph 18)

C. Lemons

(Included in U. S. Standards for Lemons)
U.S. No. 1 - The fruit shall have a juice content of not less tinan 25 percent, by volume, except when designated as "U. S. No. 1 Green for Export". When so designated the lemons shall have a juice content of not less than 22-1/2 percent unless otherwise specified.
U. S. No. 2- The fruit shall have a juice content of not less than 25 percent, by volume, except when designated as "U. S. No. 2 Green for Export". When so designated the lemons shall have a juice content of not less than 22-1/2 percent unless otherwise specified.
U. S. No. 3 - The fruit shall have a juice content of not less than 20 percent, by volume, except when designated as "W. S. No. 3 Green for Export". When so designated there shall be no requirements for juice content.
IV. Color Added Law
A. Florida -
(Chapter No. 17778, Laws of Florida, Acterend 9 g7才)
Section 5. It shall be unlawful for any person to treat any citrus fruit with, or apply thereto, any coloring matter which has not first received the approval of the Commissioner as herein provided.

Section 6. That it shall be unlawful for any person to use on citrus fruits or apply thereto any coloring matter unless such fruit passes the requirement of the State maturity tests, and, in addition thereto, oranges shall pass the following minimum requirements for total soluble solids of the juice thereof and for ratio of total soluble solids of the juice thereof to anhydrous citric acid:

1. When the total soluble solids of the juice is not less than nine (9) percent of the minimum ratio of total soluble solids to anhydrous citric acid shall be eight and one-half to one (8.50 to 1).
2. Phen the total soluble solids of the juice is not less than eight and nine-tenths (8.9) percent and not more than nine (9) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be eight and sixty hundredths to one (8.60 to 1).
3. When the total soluble solids of the juice is not less than eight and eight-tenths (8.8) percent and not more than eight and nine-tenths (8.9) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be eight and seventy hundredths to one (8.70 to 1).
4. When the total soluble solids of the juice is not less than eight and seven-tenths (8.7) percent and not more than eight and eight-tenths (8.3) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be eight and eighty hundredths to one (8.80 to 1).
5. When the total soluble solids of the juice is not less than eight and six-tenths (8.6) percent and not more than eight and seven-tenths (8.7) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be eight and ninety hundredths to one (8.90 to l).
6. When the total soluble solids of the juice is not less than eight and five-tenths (8.5) percent and not more than eight and six-tenths (8.6) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine to one (9 to 1).
7. When the total soluble solids of the juice is not less than eight and four-tenths (8.4) percent and not more than eight and five-tenths (8.5) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine and ten hundredths to one (9.10 to 1).
8. When the total soluble solids of the juice is not less than eight and three-tenths (8.3) percent and not more than eight and four-tenths (8.4) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine and twenty hundredths to one (9.90 to 1).
9. When the total soluble solids of the juice is not less than eight and two-tenths (8.2) percent and not more than eight and three-tenths (8.3) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine and thirty hundredths to one (9.30 to 1).
T
10. When the total soluble solids of the juice is not less than eight and one-tenth (8.1) percent and not more than eight and two-tenths (8.2) percent the minimum ratio of total soluble soliás to anhydrous citric acid shall be nine and forty hundredths to one (9.10 to l).
11. When the total soluble solids of the juice is not less than eight (8) percent and not more than eight and one-tenths (8.1) percent the minimum ratio ot total soluble solids to anhydrous citric acid shall be nine and fifty hundredths to one (9.50 to 1).
12. When the total soluble solids of the juice is not less than seven and nine-tenths (7.9) percent and not more than eight (8) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine and sixty hundredths to one (9.60 to 1).
13. When the total soluble solids of the juice is not less than seven and eight-tenths (7.8) percent and not more than seven and nine-tenths (7.9) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine and seventy hundredths to one (9.70 to 1).
14. When the total soluble solids of the juice is not less than seven and seven-tenths (7.7) percent and not more than seven and eight-tenths (7.8) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine and eighty hundredths to one (9.30 to 1).
15. Vihen the total soluble solids of the juice is not less than seven and six-tenths (7.6) percent and not more than seven and seven-tenths (7.7) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be nine and ninety hundreaths to one (9.90 to 1).
16. When the total soluble solids of the juice is not less than seven and five-tenths (7.5) percent and not more than seven and six-tenths (7.6) percent the minimum ratio of total soluble solids to anhydrous citric acid shall be ten to one (10 to 1).
17. When the ratio of total soluble soliàs to anhydrous citric acid shall be not less than ten and one-half to one (10.50 to 1) there shall be no requirement for soluble solids.
18. Coloring matter shall not in any case be applied to any oranges when the ratio of total soluble solids to anhydrous citric acid is less than eight and one-half to one (8.50 to 1). Likewise, coloring matter shall not in any case be applied to any oranges unless the juice content thereof shall be at least four and one-half gallons to each standard packed box, the juice to be extracted by hand, without mechanical pressure.

In deternining the total soluble solids of citrus fruit pithin the purpose and meaning of this Act, the Brix hyarometer shell be used and the reading of the hydrometer corrected for temperature shall be considered as the per centum of the total soluble solids. Anhydrous citric acid shall be ceternined by titration of the juice, using standerd alkeli and Phenolphthalein es the incicator, the total acidity being calculated as anhydrous citric acid.
\#. Ravertising Regulations
A. Grapefruit

1. Florida -

Section 6. That there is hereby levied and imposed an excise tax of three cents on each standard packed box of grapefruit grown in the State of Florida.
B. Oranges

1. Floriça -

Section 6. That there is hereby levied and imposed an excise tax of one cent on each standerd packed box of oranges grown in the State of Florida.
C. Tangerine -

1. Florida -

Section 6. That there is hereby levied and imposed an excise tax of five cents on each standerd packed box of tangerines grown in the state of Florida.
-
WI. Freezing Damage
A. California
795. (Extracts from the Agrll Code of Californie). Citrus fruits shall be mature and free from decay; free from serious damace due to freezing, drying at the stem or blossom end (resulting from causes other then freezing), solits, bruises, or punctures, and in addition lemons shall be free from serious damage due to sunburn and internal decline. Packed citrus fruit shall be virtually uniform in size. Damege by drying at the stem or blossom end of all citrus fruits (resulting from causes other then freezing), and by internal decline or drying due to sunburn of lemons, is not serious unless twenty per cent or more of the pulp shows staining, drying or desiccation. Damege from freezing to any one fruit is not serious unless (a) it causes a drying or desiccation in twenty per cent or more of the excosed pulp as shown on a transverse cut through the center or (b) it causes, before the drying process develops, a water-soaked appearance, or evidence of previous water soaking, or the presence of crystals or crystalline deposit, on the two surface membranes of each of two or more segments as shown on the separation of two or nore segments of a section, which section shall not be less

$$
5
$$

than one inch or more than one and one-half inches in thickness, obtained from the centrel portion of the fruit by cutting off a portion of each end--such evidence of freezing injury to show for the entire leneth but not necessarily the entire area of the surface membranes.

The percentage of serious demage to citrus fruits in containers, or in bulk, may be established by inspection of a representative sample which shall consist of not less than one-hundred fruits. Damage caused by splits, bruises, or punctures in any citrus fruit is not serious if the injury is well healed and free from mold or decay. Damage other than drying, caused by sunburn to lemons, is not serious unless it affects the edible portion of the fruit.

Fith the exception of serious damage caused by freezing, not more than ten per cent, by count, of the citrus fruit in any one container or bulk lot may be below these requirements, but with the exception of serious damage by sunburn and internal decline of lemons, or by drying at the stem or blossom end of all citrus fruits (resulting from causes other than freezing), not to exceed one-helf of this tolerance shall be allowed for any one cause. In the case of serious damage by freezing injury, when the deternination of serious freezing damage is based on a water-soaked apoearance, or evidence of previous water soaking, or the presence of crystals or crystalline deposit, on the surface membranes of the segments, as herein defined, and before the drying process develops, not more than fifteen percent, by count, of the citrus fruit in any one container or bulk lot may be below these requirements. After the drying process develops and the determination of serious freezing damage is based on a transverse cut, as herein defined, not more than fifteen per cent, by count, of the citrus fruit in any one container or bulk lot may be below these requirements, but not to exceed one-third of this tolerance shall be allowed for citrus fruits which show a drying or desiccation in forty per cent or more of the exposed pulp, as shown on a transverse cut through the center. The total tolerance for a combination of defects shall not exceed the tolerance permitted for any one cause by more than five per cent, by count.

No lot of citrus fruit failing to conform to the requirements because of serious damage caused by freezing injury may be mixed or blended with other lots of citrus fruit which conforms to these requirements, resulting in the concealment of inferior fruit, thereby reaucing the percentage of defective fruits in the seriously damaged lots to within the tolerance which is permitted for errors in grading only.

Any packed, mrapped citrus fruit which has been in storege or after being shipped fails to meet the reçuirements of this standard only by reason of brown rot, blue mold, or green mold which has occurred after packing, shall not be held for violation of the provisions of this chapter on account of such deterioration.

```
B. Florida
1. (Juice content laws provide for this).
A.- California
Orances, grapefruit and tancerines when packed shall be in standard containers numbers 31 or 33 , and \(l \in m o n s\) when packed shall be in stanaiard containers numbers \(\mathfrak{Z 5 , 3 6 , ~} 37\) and 38 . Other size containers may be used if conspicuously mariced on the outside of the end which bears any marks intended to describe the contents of such container, in letters not less than onehalf inch in height, "irreguler size container."
829. The stendard containers and packs for the following fruits, nuts and veqetables hereinafter specified shall be as follows: Oranges, grapefruit and tangerines, numbers 31, or 33; lemons, numbers \(35,36,37\), or 38 .
```

		Dimensions		
		Depth	Width	Length
		inside	inside	inside
10.	Name	in inches	in inches	in inches
31	Standard orenge box	117	$11 \frac{1}{2}$	24-5/8
33	Half orange box .	5-3/4	$11 \frac{1}{2}$	24-5/8
35	Standard lemon box	10	13	25-5/8
36	Half lemon box	5	13	25-5/8
37	Jumbo lemon box .	11-1/8	$13 \frac{1}{2}$	25-5/8
38	Half jumbo lemon box	5-9/16	$13 \frac{1}{2}$	25-5/8

B. Florida - (See text, p. 84)
C. Texas -

Bill 623: Only the following conteiners shall be used for grapefruit and oranges:

1. The Standerd Box. The dimensions of the standard box shall be 12 x 12 x 12 inches for each one-half box, inside measurements.
2. The One-Half Stanatrd Box. The aimensions of the one-half standard box (or strap box) shall be $12 \times 12 \times 6$ inches for each ore-half of said box, inside measurements.
3. The One Compartmert Box. The dimensions of the one compartment box shall be $12 \times 12 \times 24$ inches, inside measurements.
4. Standard Bushel Basket. The standerd bushel basket shall contain not less than 2150.4 cubic inches in the basket proper, regardless of the manner in which the lid is made.
5. Other closed containers of a capacity of not more than $1-3 / 5$ bushels, with a cubical space not exceeding 3456 cubic inches in the container proper, regardless of the shape of the containers and the manner they are closed.

VIII، Markings

A. Florida

1. Color Added Regulation No. 16 - page 126
2. Each fruit which has been colored unaer said Act shall have on the skin thereof a label statement plainly showing it to be so colored. Such label statement shall consist of the words "COLOR ADDED" in type not less then five thirty-seconds (5-32) inch in height and an overall length of not less than one inch, and type not used in the words "COLOR ADDED" shall not extend into, between or at either end of the words "COLOR ALDED", and wherever any other word or words appeer in such label statement in addition to the words "COLOR ADDED" such word or words must be under and not over the vords "COLOR ADDED" and of the type not larger than the type used in the vords "COLOR ADDED".

All packing boxes and containers containing fruit so colored shall bear thereon in a conspicuous manner in bold face type not less than three-fourths (3/4) inch in height the rords "COLOR ADDED". Such vords shall be printed on or form a part of the main label affixed to or stamped on such packing boxes or containers, or shall be stamped on the same end or side of such packing boxes or containers that such main label is affixed to or stamped thereon.
2. Grade -

Section 2. Each citrus fruit sold or offered for sale or offered for shioment or being shipped by common carrier or othervise in buik shall have on the skin thereof a label statement plainly showing its grade or, if it is a cull, it shall be labeled on the skin thereof "CULL". Such lsbel statement shall be in type not less than 5-32 inch in height and an overall length of not less than one inch. Shipping in bulk means the shipping of any citrus fruit loose without in any manner placing such citrus fruit in any container other than the car, truck, boat, or other vehicle used in transporting such fruit. Vihen citrus fruit is sold, offered for sale, or offered for shipment, or being shipped by common carrier or otherwise, enclosed in a container which meets the standards adopted by the Florida Citrus Commission, it shall be sufficient if the grade of said citrus fruit, or in the case of "CULLS", the word "CULL" shall be stamped upon said closed container in a conspicuous place in bold faced type not less than $3 / 4$ inch in height. Such grade, or the word "CULLS" in the case of culls, shall be printed on or form a part of the main label affixed to or stamped on such
container, or shall be stamped on the same end or side of such container that the main label is affixed or stemped thereon. In the case of stamping the grade and name and address on bags, or on the tag ettached to the bag, as required herein, the size of the type shall be not less than three-eights. (3/8) inch in height and shall be plainly legible. In the case of seamless begs of $4-5$ bushel capacity the tag, instead of being sewn, may be securely affixed to the bag with not less than three metal staples at least three eights ($3 / 8$) inch in length, the tag to be folded over the selvage edge of the bag in such manner that the staples will pass through the tag on both sides of the bag. When fruit is shipped in consumer size, namely, l-16 or l-l0 box size bags, the shipper shall be allowed the privilege of substituting for the required white cloth tag or marking on the bag itself an insert tag which shall be inserted in the bag with the fruit and carry the required grade, name and address information and which must be legible from the outside. Provided, that the shipper or seller using closed containers adopted as standard by the Florida. Citrus Commission shall have the privilege of using, instead of marking the grede on the container, either labels, brands or trademarks which shall represent specific State grades or specific United States Grades and which shall be registered with the Florida Citrus Commission. In all cases where culls are shipped in a closed container the word "CULLS" shall be clearly marked upon the container as above set forth. No citrus fruit shall be sold, offered for sale or offered for shipment or be shipped by common carrier or othervise except in bulk or in containers adopted by the Florida Citrus Commission.

The name and address of the shipper shipoing said citrus iruit, unless the same are clearly and legibly set forth in the label used on said container, and the point of origin of the shipment, if it be a point other than the address of the shipper and if the same does not appear clearly and legibly on the lebel or elsewhere in permanent form on the container, shall all be stamped on the container immediately below the label, if such container carries a label and otherwise they shall be stamped in a similar place and manner as the grade is customerily stamped, in bolá face type not less than three eights (z/8) inch in height.
B. California

Closed containers of unpacked citrus fruit and all containers of packed citrus fruit shall bear upon them in plain sight and in plain letters on one outside end; the name of the person who first authorized the packing of the citrus fruit or the name under which such packer is engaged in business, together with a sufficiently explicit address to permit ready location of such packer; the number and average diameter of the citrus fruit in the conteiner, or the cubical content of the container; and in the case of oranges, the name of the variety, if known, end when not known the words "unknown variety" or "seedlings."

IK: Stendard Packing
A. California and Arizona

1. Oranees -

Orarees shall be uniform in size and arranfed in the boxes according to the approved and recognized methods. The fruit shall be tightly packed and the prap show at least one-half twist. Each fruit shall be enclosed in its individual pirapper. Each box of oranges shall show a minimum bulge of $1-1 / 4$ inches.
"Uniform in size" means that not more than 10 percent, by count, of the fruit in any container, may be one standard size larger or smaller than the standard size for the count packed.

Example of Standard Size Oranfe - The standard size orange for a 200 count is thet size oranee which will pack tightly 200 oranges of uniform size when packed according to the approved and recognized method.

In order to allow for veriztions incident to proper packing, not more than 5 percent of the boxes in any lot may not meet the requirements for the standard peck.
2. Grapefruit -

Grapefruit shall be fairly uniform in size and arranged in the boxes according to the approved and recognized methods. The fruit shall be tightly packed and the wrap show at least one-half trist. Each fruit shall be enclosed in its individual wrapper. Each box of grapefruit shall show a minimum bulge of 2 inches.
"Fairly uniform in size" means that not more than 5 per cent, by count, of the fruit in any container, may be more than one standard size larger or smaller than the standard size for the count packed.

Example of Standard Size Grapefruit - The standard size grapefruit for a 64 count is that size grapefruit which will pack tightly 64 grapefruit of uniform size when packed according to the approved and recognized method.

In order to allow for variations incident to proper packing, not more than 5 percent of the boxes in any lot, may not meet the requirements for the standerd pack.
3. Lemons -

Lemons shall be fairly uniform in size and arranged in the boxes according to the approved and recognized methods. The fruit shall be tightly packed and each fruit shall be fairly well enclosed in its individual wrapper. Button ends only shall bepacked against the end pieces or center partitions of the box.

Fach box of lemons shall show a minimum bulge of 1-1/4 inches. "Fairly uniform in size" means that not more than 5
percent, by count, of the fruit in ary container, may be more
than one standard size larger or smaller than the standard
size for the count packed.

Exumple of Stendard Size Lemon. The stardard size of a 300 size is that size which will pack tightly 300 lemons of uniform size when packed according to the approved and recognized methods.

In order to allow for variations incident to proper packing, not more than 5 percent of the boxes in any lot may not meet the requirements for the standard pack.

The term "Standard packed box" means $1-3 / 5$ bushels of citrus fruit whether in bulk or containers.
C. Texas

Fruit shall be fairly uniform in size and arranged in the boxes according to the approved and recognized methods. The fruit shall be tightly packed end the wrap show at least one-half twist. Hach fruit shall be enclosed in its individual wrapper, except that in packs of oranges and tengerines of a size 250 and smaller only fruit in the top and bottom layers and fruit exposed at the sides of the box shall be required to be wrapped.

Each box of oranges shall show a minimum bulge of $1 \frac{1}{4}$ inches. With grapefruit the minimum bulge shall be 2 inches, except that the boxes packed with erapefruit of a size 80 or smaller need only show a bulge of $1 \frac{1}{2}$ inches. Boxes of tangerines shall show a minimum bulge of $3 / 4$ inch.
"Fairly uniform in size" means that there is not excessive variation in diameters of the fruits in any container and that oranges and grapefruits are within the range given in Table CIX for the various packs.
$1 \sim$
Table I
$G R A P E F R U I T$
(No Records Previous to October, 1917)
Total
2
$39 I$
393
Table II
RANGE

401
119282
1
State
California
Florida
Total Uniteã States

10
7

Sept. Oct. NOV. Dec.			
-	1	4	-4
1	15	88	17
142	1034	915	675
143	1050	1007	696

14310501007 65
0
0 42510252825
54432724285
96943357148

State	Jan.	- Feb.	- Mar.	- Apr	?ray	June	July	Aug	Sept.	Oct	. Mov	- Dec	Total
Arizona	36	35	47	50	37	-	-	-	-	13	48	37	303
California													
Northern District	-	1	1	-	-	-	-	-	-	-	-	-	2
Southern District	54	47	71	95	236	425	134	107	81	50	75	23	1398
Central District	-	2	2	22	13	25	2	-	1	1	2	-	70
Imperial Valley	17	17	16	26	44	3	-	-	-	17	15	21	176
Florida	2740	2464	2589	2587	1176	94	3	-	69	887	1427	1619	15655
Texas	981	1211	1379	-	-	-	-	-	17	444	701	413	5146
Total United States	3828	3777	4105	2780	1506	547	139	107	168	1412	2268	2113	22750
			TR J	J C K	S H	I PI	E N	T S					
Texas	390	484	197	-	-	-	-	-	13	120	259	294	1757
	IMPORTS												
Cuba	-	1	-	-	-	2	-	51	152	77	9	4	296
Fuerto Rico	5	6	9	6	7	36	32	93	407	166	15	7	789
Total Imports	5	7	9	6	7	38	32	144	559	243	24	11	1085

> Califormia

Arizona

Country
Cuba
Puerto
Other Countries
Total Imports

$$
\begin{array}{r}
\text { Total } \\
8 \\
53 \\
65 \\
126
\end{array}
$$

$\begin{gathered} \text { Table IK } \\ \mathrm{EMYO} \mathrm{~N} \\ 1932 \end{gathered}$													
State	Jan.	Feb	- Mar.	- Apr	cray	June	July	Aug.	Sept	Oot.	Hov	Dec.	Total
Arizona	-	-	-	-	-	-	\sim	-	-	2	2	-	4
California													
Northern District	20	20	14	5	10	9	-	-	-	-	17	15	110
Southern Distriot	941	977	1780	I541	2423	2354	1775	979	611	523	560	654	15118
Central Distriat	56	52	63	15	12	3	-	-	2	64	97	110	474
Fotal United States	1017	1049	1857	1561	2445	2366	1775	979	613	589	676	779	15706
$I M_{1} \mathbf{P} O R T S$													
Italy	16	44	12	7	22	27	53	11	35	16	26	42	311
fexioo	-	-	-	-	-	\cdots	-	1	-	-	-	-	1
Other Countries	3	-	5	-	-	1	-	-	1	-	-	-	10
Total Imports	19	44	17	7	22	28	53	I2	36	16	26	42	322

	-	-
1	232	911
-	1	-
1	233	911

$$
170
$$

$$
91 I
$$

$$
\begin{array}{rr}
30 & 33 \\
31 & 33 \\
890 & 1964 \\
20 & 45 \\
35 & 69
\end{array}
$$

$$
10062144
$$

TotaI

$$
\begin{array}{lllll}
\infty & \infty & \infty & H & \infty \\
\infty & 1 & &
\end{array}
$$

$$
111
$$

\[

\]

$$
1
$$

$$
1
$$

$$
\begin{array}{r}
\text { Total } \\
103 \\
630 \\
733
\end{array}
$$

$$
\begin{array}{llll}
\dot{+} & H & H & \infty \\
0 & & H \\
0 & & \underset{H}{H}
\end{array}
$$

$$
\underset{\sim}{80} \times \underset{\sim}{\circ}
$$

$$
\begin{gathered}
\text { Table XII-Continued } \\
\text { I P P R T S } \\
1933
\end{gathered}
$$

State	Jan.	Feb.	- Mrar	- Apr	May	June	July	Aug.	Sept	- Oct	t. Nov	- Deá.	Total
Arizona	16	-	-	-	-	-	-	-	-	-	2	61	79
California													
Northern District	7	6	2	-	-	-	-	-	-	-	-	1	16
Southern District	3263	3875	4572	4623	4670	5308	5206	4616	4960	5062	3487	450	50092
Central District	133	1	-	280	766	639	30	-	-	-	504	2873	5226
Florida	3943	3562	3893	3477	3657	2429	338	9	2	221	2342	4179	27992
Georgia	-	-	-	-	-	-	-	-	-	-	3	-	3
Iouisiana	7	-	-	-	-	-	-	-	-	4	19	9	39
Mississippi	-	-	-	-	-	-	-	-	-	-	1	-	1
Texas	20	47	2	-	-	-	-	-	-	-	-	12	81
Total United States	7389	7491	8469	8380	9093	8376	5574	4625	4962	5287	6358	7525	83529
			$T \mathrm{R}$	$U \subset \underset{I r}{K}$	$\underset{\text { ncompl }}{\mathrm{SH}}$	I P ete	$E N$	$T \mathrm{~S}$					
FIorida	-	-	-	-	-	-	-	-	18	208	769	1580	2575
Texas	10	32	38	-	-	-	-	-	9	30	85	193	397

Totals

TabIe IIV
L 4 M M I Car－Iots Shipments in 1933
equivalents but not movement by motor trucks）
Jan．Feb．Mar．Apr．Nay June July Aug．Sept．Oct．Nov．Dec．Total
～ $\begin{array}{llll}N & 0 & O \\ 0 & i N & 0 \\ N & & 0 \\ & 0 \\ H & & H \\ & H\end{array}$

1
$\stackrel{-1}{\sim}$
18 $\begin{array}{r}0 \\ 10 \\ \infty \\ \hline 0\end{array}$

1 ${ }_{\sim}^{\infty} \underset{\sim}{\infty}$
10
∞
∞

1
σ
σ
σ
$\begin{array}{ll} \\ & \left.\begin{array}{l}\infty \\ N \\ \\ \\ \\ \end{array}\right)\end{array}$

∞		∞
ω_{3}	1	
σ		

1
五IOI 9L6
1
H
H
-
H
O
O
O
Mr
7\＆G
\checkmark
10
0
0
8
468
Northern District
Southern District
Central District
Total United States
IMPORTS
892 792
11
11
11
$0 \quad 0 \quad$.
$\stackrel{\rightarrow}{-1}$
$\stackrel{\leftarrow}{6}$
$\begin{array}{ll}\text { H } & \text { H } \\ \text { O } \\ \text { H } & \text { H }\end{array}$
© ©

| 10 |
| :--- | :--- |
| |
| |
| |

た ふ
ぶ ぶ
웅

$\stackrel{\sim}{2}$

$$
\mathrm{H} \quad \mathrm{H}
$$

$$
1
$$

$$
\begin{array}{cc}
\underset{\sim}{N} & \widehat{N} \\
\underset{\sim}{c} \\
\hline
\end{array}
$$

$$
H \quad H
$$

$$
\begin{array}{ll}
-1 & -1
\end{array}
$$

Jan. Feb. Trar. Apr. Iray June July Aug.							
846	638	372	35	-	-	-	-
8	-	-	-	-	-	-	-
854	638	372	35	-	-	-	-

1
St
Sept.
Oct. Nov. Dec.

$$
469 \quad 1059
$$

$$
1059
$$

Total
3421
8
3429
1111111

$$
\begin{array}{r}
\text { TotaI } \\
8 \\
1617 \\
46 \\
8600 \\
69 \\
194 \\
10534
\end{array}
$$

∞

en

$$
[1 I
$$

0

State

Arizona

Total
1103

Deo.
103
oot. NOV.
8493
(Including boat shipments reduced to car-lot equivalents)

$$
\begin{array}{cc}
\sim & 1 \\
\sim & \infty \\
0 & 0 \\
& 0 \\
0 & 0 \\
0 & -1 \\
\infty & \infty \\
& 0 \\
0 & \infty \\
0 & -1 \\
H & 0 \\
& 0
\end{array}
$$ - 7 đəs onp sinf ounc

93
1
335
21
2

$573 \quad 270168$
S 山 N H J d

$$
\begin{aligned}
& 2 \\
& p_{1}
\end{aligned}
$$

ar
a
H
A
$\begin{array}{llllll} \\ 0 & \mathrm{H} \\ 0 & \\ 0\end{array}$
0
E
9T6
-

Southern Distriot
Central District
Imperial Valley
Florida
Southern Distriot
Central District
Imperial Valley
Florida
Southern District
Central District
Imperial Valley
Floride
Southern Distriot
Central District
Imperial Valley
Florida
Texas

$$
\cdots
$$

California

$$
196
$$

1922

Total Uniteã States 28732370271423951385

$$
\begin{array}{rrrrr}
105 & 96 & 137 & 172 & 188 \\
- & 20 & 36 & 69 & 78 \\
56 & 40 & 54 & 57 & 50 \\
2006 & 1918 & 2161 & 1922 & 915
\end{array}
$$

$$
2
$$

$$
\begin{array}{cccc}
- & - & 1 & 3 \\
- & - & - & 1 \\
11 & 6 & 4 & 5 \\
- & - & 1 & 1 \\
114 & 309 & 378 & 295
\end{array}
$$

20558

H	∞	0
	10	

$$
1
$$

$$
\begin{aligned}
& \text { Jan. Feb. Mar. Apr. May } \\
& 96 \quad 100 \quad 209171 \quad 154
\end{aligned}
$$

-年

Central Distriot
Southern Distriot
Imperial Valley

$$
7
$$

م

Arizona
Florida

Table XVII－Continued
GRAPERTIT
Truck Sinfments（Continued）
Total
1368
3487
318
872
1190 Nov．Dec．

0	-
\mathcal{N}	R
N	1
0	0
N	0

$\underset{\sim}{-1} \quad 1 \quad 0 \quad 0$
$1 \xrightarrow{O} \xrightarrow{O}$
$\begin{array}{lll}\bullet & & \\ \dot{0} & 10 & 0 \\ 0 & H & 0 \\ 0 & -1 & 4 \\ \bullet & & \\ \dot{0} & 0 & H \\ 0 & H & H \\ 0 & & H\end{array}$

$24 \quad 4$

724
$I M P O P T S$
1 た た

∞	∞	0
	0	0
	H	∞

∞	0	∞
∞	1	∞
		-1
H		0
		∞

が
$1 \begin{array}{lll}0 & 0 \\ H & H \\ N & N\end{array}$
$1 \begin{array}{ll}0 \\ 0 & 0 \\ \mathrm{H} \\ \\ & 0\end{array}$
1 000

1 $\underset{\sim}{\boldsymbol{*}} \underset{\sim}{0}$
$1 \stackrel{H}{\sim}$
Cuba
Puerto R100
Total Imports
Total
119
140

115
44304
10360
9
29617
50
125
99

$$
\begin{gathered}
\text { TabIe XVIII } \\
\text { ORANGES AND SATSUNAS } \\
\text { Car-Iots Shipments in I934 } \\
\text { (IncIuding boat shipments reduced to car-lot equivalents) }
\end{gathered}
$$

$$
\begin{array}{ccccccccc}
\text { Jan. Feb. Mar. Apr. May June July Aug. Sept. Oot. } \\
- & - & - & - & - & - & - & - & - \\
36 & 2 & 14 & 11 & - & - & - & - & - \\
\hline
\end{array}
$$

H $\mathrm{H}=\underset{\sim}{\boldsymbol{M}}$
rotal

1∞ ○
1∞ ○
\sim
in

O	0	0
H	0	
O	H	
H		

$\stackrel{2}{\sim}$
랑
115
8
∞
－
\pm

106910961158
Northern District

California

-

$$
1
$$

Florida
Texas
Total Imports

$$
890
$$

$$
179
$$

$$
\text { Total United States } 1069
$$

$$
\begin{array}{r}
178 \\
1096
\end{array}
$$

$$
\begin{aligned}
& 963 \\
& 195
\end{aligned}
$$

$$
1158
$$

70ヶエ7sfa TBxque刀

IMPORTS

∞
－
0
 1
∞
Total
9
23
16732
443
17207

$$
8
$$

$$
\sim
$$

$$
\angle I
$$

Italy

Total
3010
1
3011
$\begin{array}{llll}\circ & 0 & H & \underset{\infty}{\circ} \\ \dot{\circ} & \infty & & \infty\end{array}$
∞
$\stackrel{\infty}{\infty}$
∞
$\stackrel{\sim}{\infty}$
1
Nov
785
$\stackrel{\bullet}{+}$
TRUCKSHIPMENTS 1934

| Jan. Feb. Nar. Apr. Nay June July Aug. Sept. Oct. Nov. Dec. | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 915 | 374 | 63 | 1 | - | - | - | - | - | 2 | 785 | 870 |
| - | - | - | - | - | - | - | - | - | - | - | 1 |
| 915 | 374 | 63 | 1 | - | - | - | - | - | 2 | 785 | 871 |

Florida

$$
\begin{aligned}
& \text { State } \\
& \text { Florida } \\
& \text { Teras } \\
& \text { Total United States }
\end{aligned}
$$

1
748

157283

1

1

$$
1
$$

$$
1
$$

186

,

$$
1
$$

$$
1
$$

$$
\underset{\sim}{\boldsymbol{\sim}}
$$

$$
186
$$

$$
103
$$

$$
\begin{array}{r}
\text { Total } \\
22 \\
1688 \\
87 \\
7537 \\
107 \\
152 \\
9593
\end{array}
$$

State

Arizona

State	Jan	Feb	Kas	Apr	May	June	July	Aug.	Sept.	Oot.	- ITOV.	Dec.	Total
Arizona	109	139	131	181	140	28	3	-	-	78	162	147	1118
California													
Southern District	46	41	38	63	247	357	341	225	102	64	75	40	1639
Central District	-	-	28	61	9	15	4	2	-	3	2	2	126
Imperial Valley	21	28	41	38	16	1	-	-	-	7	48	21	221
Florida	1780	1550	2140	2853	1875	862	161	5	297	1436	1492	1014 *	15465
Teras	1193	999	678	29	-	-	-	\cdots	-	494	1033	655	5081
Total United States	3149	2757	3056	3225	2287	1263	509	232	399	2082	2812	1879	23650

* - Includes 11 light cars (250 arates) two light cars used as one.

$$
\begin{aligned}
& \text { Fir } \\
&
\end{aligned}
$$

8001	21	E\＆	E6		ZEI	8II	OZI	34	34	8	9	も	87x0đuI IB70］
978	II	E\＆	$\varepsilon 6$	80%	86	8 IT	OZI	$\checkmark 4$	34	8	G	\square	00fy ofrend
\％9I	－	－	－	862	£	－	－	－	－	－	τ	－	Bquo
τ	－	－	－	－	I	－	－	－	－	－	－	－	врвиво
S ¢ y 0 d I I													
ITE］	989	889	697	801	OT	92	GI	6\＆T	£Gも	864	G89	769	sə787s poqtun［870山
TGuT	E8\％	9 £Z	8矿	－	－	－	－	－	88	678	でを	G08	88×8 山
ごする	76\％	\％$\%$	908	96	－	－	－	2\％T	9\％\＆	ILE	786	28\％	Bptuota
I	－	－	－	－	－	－	－	－	I	－	－	－	SөITBA TBTİdmi
BOI	9	G	GI	εI	OI	FI	$\varepsilon \tau$	OL	G	7	7	9	70Fス785¢ पス0 प700s
T	－	－	－	－	－	2	τ	ε	π	τ	σ	I	70ヶエ7sfa T8J740』
0%	ε	G	－	－	－	－	－	7	τ	τ	ε	τ	ロu02T』
［870山	－ 2 － 1	－\triangle ON	－700	－ 7 cios	－Snf	κ 亿n¢	ouns	$\Lambda B \pi$	－】dす		－q9，	－ 48 P	07875
（070Idu00uI） 													

$$
\begin{aligned}
& \text { Table JaIII } \\
& \text { NGES AND SAT S U M AS } \\
& \text { Car-Iots Shipments in } 1935
\end{aligned}
$$

Total
227
86
59774
10560
11
22672
22
172
93524

$$
\forall \mathrm{B} O
$$

TabIe XXIII - Continued

State	Jan.	Feb.	Mar	Apr.	May	June	July	Aug.	Sept.	Oot.	Nov	Dec.	Total
California													
Northern District	7	2	-	2	5	-	-	-	-	-	-	14	30
Central District	30	18	3	6	36	6	2	-	-	\bullet	22	62	185
Southern Distriot	156	195	233	273	229	134	135	98	107	146	104	91	1901
Imperial Valley	-	1	-	-	-	-	-	-	-	-	-	-	1
Florida	845	934	944	485	151	-	-	-	17	241	805	1486	5908
Texas	246	247	77	2	-	-	-	-	-	32	131	345	1080
Total United States	1284	1397	1257	768	421	140	137	98	124	419	1062	1998	9105
IMPORTS													
Canada	-	-	4	5	-	4	-	3	5	4	1	15	41
Cuba	-	2	-	-	-	-	-	-	-	-	-	-	2
Puerto Rico	7	1	2	-	-	-	-	-	-	4	3	2	19
Other Countries	-	-	-	-	-	-	-	-	-	-	2	103	105
Total Imports	7	3	6	5	-	4	-	3	5	8	6	120	167

Table EXIVLEMONS													
Car-Lots Shipments in 1935 (Including boat shipments reduoed to car-lots equivalents but not movement by motor trucks)													
State	Jan. Feb. Mar. Apr. May					June July		Aug	Sept	Oct. Nov. Dec.			Total
California													
Northern District	3	1	9	4	4 -	-	-	-	-	-	4	18	39
Southern District	1260	1413	1781	2591	3221	3191	3176	1984	734	975	658	821	21805
Central District	156	79	41	II	1	1	2	-	-	5	78	190	563
Total United States 1419 I493 $1831260632223191 \quad 31781984 \quad 734$													
IMPORTS													
Canada	-	1	-	-	-	-	-	-	-	-	-	-	1
Italy	5	-	2	-	-	-	-	-	-	-	-	-	7
Total Imports	5	1	2	-	-	-	-	-	-	-	-		8

State
California
Southern District
Florida
Iouis iana
N
N

0
0
0
0
Total United States

637
-
State
California
Southern District
Florida
Iouisiana
Total United States

刃ु
1
3
8
1
1
1
1
1
1
1
1
Including boat shipments reduced to car-Io
Total

TOT DeO.
Including boat shipments reduced to car-lot equivalents

* -- Includes 5 light cars (250 crates); two light cars used as one.

$$
\begin{array}{r}
\text { TotaI } \\
48 \\
2297 \\
75 \\
3 \\
6085 \\
93 \\
294
\end{array}
$$0

$$
\begin{aligned}
& Q \\
& E-1 \\
& A_{1} \\
& 0 \\
& A_{1} \\
& H=1
\end{aligned}
$$

[^5]$$
7
$$
Table XXVII-Continued

3
\[

$$
\begin{array}{cccc}
& 1 & & 10 \\
1 & r i & 1 & r \\
& & & \\
\therefore & 0 & r & 0 \\
\sigma & \cdots & & 6 ? \\
r i & & & 6 ?
\end{array}
$$
\]

(い)

$$
1 \quad 1 \pi \quad 1 \quad 1 \quad 1
$$

$$
\begin{array}{cccc}
(2) & -H & 61 & 4 \\
13 & i ? & & 10 \\
6 ? & & & 63 \\
i 3 & i & & (i) \\
& .1 & 1 & 63
\end{array}
$$

$$
\begin{aligned}
& \infty \\
& E-1 \\
& \propto
\end{aligned} \quad \begin{array}{r}
0 \\
\infty
\end{array}
$$

$$
\begin{array}{lllll}
-1 & \vdots \\
& \vdots \\
E-1 & 1 & \vdots \\
H
\end{array}
$$

$$
\begin{aligned}
& O \\
& H \\
& \because- \\
& H
\end{aligned}
$$

$$
\begin{array}{r}
2 \\
4 \\
-4 \\
-1
\end{array}
$$

$$
\because \quad 3 \quad 3
$$

$$
\begin{array}{lllll}
H & 1 & r-1 & a l & r \\
& & r-1 & & r \\
& r-1
\end{array}
$$

$$
\begin{array}{llll}
1 & 3 & H & 0
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
-j 1 & 1 & 1-j \\
-1 & & r 1
\end{array}
\end{aligned}
$$

 \square

$$
\because
$$

$$
\because j B_{T} \sim \because
$$

$$
1 \text { o } \begin{array}{llll}
1 & 0 & 0 & 0 \\
10 & 3 & 0 \\
1 & 3 & 0
\end{array}
$$

$$
\begin{array}{llll}
10 & 10 \\
1 & 1 & r-1
\end{array}
$$

$$
\begin{gathered}
r \\
\cdots \\
\cdots-1 \\
c \\
\cdots \\
c \\
c \\
c \\
\because \\
\cdots
\end{gathered}
$$

Stete

Alabama

Arizona

Celifornia

H
H
1
1
1
-
1
4303

1
1 , 1 4
0
0
0

Table XXVIII
!

N:

0
IエO? ?

$$
T \approx x a s
$$

2418
9
0
0
0

$$
\Pi\urcorner O i Q E \quad \text { NOtEl }
$$

IGEVY

21

$$
q^{T M}
$$

I.OUi
GUTSSTSST:
70Tx7stc Tixfuivo

70tJๆstc uxarquuct

10tal

$$
\begin{aligned}
& \because \quad \pi
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\text { IIG }} \\
& 9 I \\
& \text { TEqCL }
\end{aligned}
$$

$\stackrel{2}{0}$

$$
\begin{aligned}
& H \\
& \\
&
\end{aligned}
$$

$30 \leq$

$$
1550
$$

$$
\begin{array}{cc}
\because O V & D E C . \\
7 & - \\
I 00 & 04
\end{array}
$$

2

Table XXIX
I. E M O NS
Car-Iots Shipments
Car-Lots Shipments in 1936
(Including boat shipments reauod to oar-lots
equivalents but not movement by motor trucks)
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Hov. Dec.
$-\quad-\quad-\quad-\quad-\quad-\quad$
Total
3

peqエenप00
$2 \angle \sigma \quad 0$
8
79%

State

California
Southern District
Florida Total
Eeavy
Light
Total United States
Car-Iots Shipments in 1936

State	Jan.	Feb. Mar. Apr. Nay June July						Aug. Sept. Oct. Nov. Dec.					Total
California													
Southern District	2	3	1	-	-	-	-	-	-	-	-	5	11
Florida Total	969	345	34	2	-	-	-	-	-	2	696	1575	3623
Eeavy	965	345	34	2	-	-	-	-	-	2	694	1560	3602
Ifght	8	1	-	-	-	-	-	-	-	-	4	29	42
Total United States	971	348	35	2	0	0	0	0	0	2	696	1580	3634
			R	K	H noom	$\underset{\text { let }}{P}$	$E \mathrm{I}$	IS					
Florida	145	87	18	-	-	-	-	-	-	2	93	376	721
x - Heavy cars (over 250 orates)													
* -- Light cars (250	crat	8-	- 1	ght	ars	ed	30	ce					

[^6]* - Iight cars (250 orates - two light cars used as one car)

						x	*		4
\cdots	\sim	0	-1	\sim	σ	\bigcirc	∞	10	H
-	∞	几	W	∞	0	∞	\cdots	H	0
+	0	N		\bigcirc	H	-	∞	∞	H
\bigcirc					∞	N		H	10
E-1					H	H		-1	\cdots

					Table	XXXII						
				$G R A$	PEF	$R \mathrm{U}$	I T					
			Car	-Lots	Shipm	ents	in 19	337				
State	Jan.	- Feb	Trar.	, $\mathrm{Apr}^{\text {c }}$	ray	June	JuIy	A प80.	Sept.	Oct	Nov	- Dec.
Arizons	181	41	102	107	161	32	1	-	-	160	115	87
California												
Southern District	33	10	16	32	76	157	166	109	77	43	25	28
Central Distriot	1	4	6	-	3	2	-	-	1	4	-	-
Imperial Valley	44	54	71	39	-	-	-	-	-	31	25	18
Florida Total	3269	2563	2140	2995	2053	255	2	-	788	1816	1095	1244
Heavy	3167	2470	2081	2943	2028	232	2	-	773	1795	1072	1217
Light	204	186	118	104	49	6	-	-	31	39	47	54
Texas	2703	2421	4939	239	-	-	-	-		1231	1386	1924
Total United States	6231	5093	7274	3412	2293	426	169	109	866	3284	2646	3301

x - Heavy Cars (over 250 crates)
\# - Includes 3442 cars for emergenoy relief. (3391 Eeavy and IO2 Tight Cars)

$\varepsilon 94$	8	εI	¢3	LTE	cez	39		34	五ん	Z	6	4	ε	sfaodur Iefow
ε	－	－	－	－	τ	－	I	I	－	－	－	－	－	Sxə 470
007	8	$\varepsilon[$	$\varepsilon \square$	02	T\％	68		IL	五	37	6	4	ε	00 บ̧ ofxend
098	－	－	－	4∇ L	OIE	ε		－	－	－	－	－	－	eqno
S 山 d 0 d A I														
0699	б98	998	369	G9L	0%	9%		27	908	G69	ともご	OSOI	966	sefefs peftun Iefod
£โ9\％	E6E	［伍	403	－	－	－		－	－	－	479	O\＆G	9\％7	SBXə山
84IE	498	\＆も	963	EUL	－	－		OI	GE\％	837	\％87	998	吾	BDTJOLH
498	\％II	86	$\square 8$	07	8τ	36		\％	99	86	IIT	Gs	6 II	BTTUXOITIED
6	－	－	I	－	－	－		－	－	－	－	－	τ	
τ	－	－	－	－	－	－		－	－	－	－	－	τ	
43	I	ζ	ε	τ	z	7	ε	ε	ε	ε	τ	－	ε	701x7sț पxenfnos
31	τ	\％	I	－	－	－		－	τ	τ	－	\％	而	buoztuy
IR704	－ 2 － 1	－ 10 I	－700	－ 7 đəs	－int	Кโn	－	oun	SBX	－\(
) ãu	－IE，	－व̇ə	－uef	97e7s										

\# -- Incluães 200 curs for enersency relief.

$$
3
$$

'Table KXXIII-Continued
S

State	Jan.	Feb.	- Mar.	Apr.	I'ay	June	JuIy	A	Sert	Oct	IOV	Dec.	Total
California													
Northern District	2	-	-	-	-	-	-	-	-	-	1	4	7
Southern District	51	58	115	68	58	46	34	37	42	31	16	45	601
Central District	7	-	-	-	3	-	-	-	-	-	19	64	93
CaIifurnia	258	249	315	257	213	158	78	98	83	68	139	296	2215
Florida	832	828	788	551	413	32	-	-	31	445	792	I687	6474
Texas	283	433	345	-	-	-	-	-	-	121	299	345	$19 \cong 6$
Totals	1593	1568	7560°	876	692	236	122	105	156	605	1260	2451	17376
I If P ORTS													
Canada	-	6	-	1	-	-	-	-	-	-	-	-	7
Cuba	-	1	-	-	-	-	-	I	-	-	-	-	2
Fuerto Rico	-	I	2	-	-	-	-	-	1	2	1	-	7
Others	I	-	-	-	-	-	-	-	-	-	2	-	3
Total Imports	1	8	2	1	-	-	-	1	I	2	3	-	19

Table XXCXIV													
LEMSO IT													
Car-Tots Saipments in 19:7													
こtate	Jan. Fe's.							-ug ${ }^{\text {cos }}$		Cot. İOV. DGc.			motal
srizona	1	-	-	-	-	-	-	-	-	-	-	-	1
CaTifornia													
A.orthern District	16	4	-	-	-	-	-	-	-	-	2	6	28
Jouthern jistrict	836	958	1285	7279	1904	2306	1808	1191	730	007	500	790	14109
Central District	127	37	18	15	34	47	46	28	28	23	22	22	447
Texas	-	-	-	-	-	-	-	-	-	-	3	-	3
Total Unitea States	980	999	1303	1294	1938	203	1084	1219	820	30	527	818	I4663
California					R U	U K S							
	126	110	204	210	154	143	38	$\ddot{0}$	37	28	27	23	1102
					I. P 0	0 R T							
Chile	-	-	-	-	-	-	-	8	3	4	-	-	15
Italy	-	12	9	2	6	34	13	14	3	7	63	61	224
ctrers	-	-	1	-	-	-	-	-	-	-	-	-	1
Totals	-	12	10	2	6	34	13	22	6	11	63	61.	240

$$
1
$$

State	Jan．	－Feb	$\because \mathrm{ar}$	$\therefore \sim$ 。	－av	Jure	－u7 ${ }^{\text {c }}$	Auj	Eevt	cot．	$\because \mathrm{Ov}$	$D E C$	Total
srizona	9	－	－	2	10	－	－	－	－	－	10	6	37
Califorria													
Wouthern District	98	102	I\％	132	144	246	825	196	113	43	5	51	1025
Centra？District	I2	－	－	－	－	－	1	4	4	1	23	44	69
Inverial Valley	3	1	－	－	－	－	－	－	－	－	－	1	5
Plorià total	1500	1118	876	749	510	$1 \leq 3$	22	21	72	こご	E19	I903	ECEE
T－esvy	1378	1031	826	700	473	140	20	$E 1$	67	459	718	10¢0	$7701 \times$
エicat	こ43	174	101.	98	73	7	－	－	10	145	$\therefore 03$	313	IU心7
Louisisna	$\Sigma 7$	13	1	－	－	－	－	－	－	5	18	i0	94
Texas	443	405	275	13	－	－	－	－	－	119	240	171	IEE6
Total Tnited States	2093	1639	1322	896	$6 \hat{C} 4$	309	358	EえL	IE9	730	1115	2¢E0	27901

$$
\begin{gathered}
\text { Taole MNXII } \\
G R A P E F \AA U I T \\
\text { (Florida) }
\end{gathered}
$$

Year	Jan.	Feb.	Nar.	spr.	Vay	June	July		Sep	Oct	NTOV	Dec	Total
1932	2750	2464	2589	2587	1176	94	3	-	69	887	1427	1619	15655
1933	2099	1990	2783	2402	2165	1248	427	205	836	1921	2129	1927	20132
1934	2224	2105	2397	2119	1053	122	1	2	744	2097	2331	1917	17092
1935	2062	1834	2511	3178	1997	862	161	5	392	1742	1834	1308	17886
1936	1764	2260	2477	2305	1179	110	-	20	1424	2085	2440	2373	18437
1937	3711	3028	2624	3418	2288	245	2		911	2111	1438	1601	21377
Totals	14600	13681	15381	16009	9838	2681	594	232	4376	10843	11599	10745	110599
bverage													18429

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& 1937 \\
& \text { Totals }
\end{aligned}
$$

$$
\begin{gathered}
\text { Totals } \\
6903 \\
3025 \\
3660 \\
6832 \\
6941 \\
17456 \\
44817
\end{gathered}
$$

$\square 1$

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1906 \\
& 1937 \\
& \text { Totals } \\
& \text { Averağe }
\end{aligned}
$$

$$
\begin{gathered}
\text { Table XEXIX } \\
\text { GRAPEFRUIT } \\
\text { (Southern California) }
\end{gathered}
$$

July buct
Total
1398
820
1661
1743
1875
799
8296
1383

Fov.	Dec.
75	23
$5=$	40
26	34
80	46
16	21
27	29
276	199

7

$$
\begin{array}{r}
81 \\
38 \\
68 \\
115 \\
37 \\
79 \\
418
\end{array}
$$

Year
1932
1933
1934
1935
1936
1907
Totals
Average

$$
\begin{array}{llllllll}
0 & H & \infty & \Gamma & H & 10 & \infty & \infty \\
0 & \omega & H & H & \omega & \omega & H & H \\
A & & & & & & & H
\end{array}
$$

$$
\begin{array}{llllllll}
\therefore & 0 & 0 & H & \infty & \pi & 0 & \infty \\
0 & H & 6 & H & H & \cdots & \sigma & 0 \\
\hdashline-1 & &
\end{array}
$$

$$
\begin{array}{llllllll}
0 & N & N & N & N & \ddots & N & \infty \\
0 & H & H & & & N & N & 0 \\
0 & H & & & & & &
\end{array}
$$

$$
\begin{aligned}
& \text { Year } \\
& \text { I932 } \\
& \text { I933 } \\
& \text { I934 } \\
& 1935 \\
& 1936 \\
& \text { I937 } \\
& \text { Totals } \\
& \text { Average }
\end{aligned}
$$

Table XIII
Central Califorria Combined.

$$
\begin{aligned}
& \text { U } \\
& \begin{array}{lllllll}
0 \\
4 & 1 & 0 & 1 & 0 \\
4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
\because 2 & \infty & \infty & \because 子 & 0 & 10 & 0 \\
H & & H & H & H & & 63 \\
& & & & H & & 63
\end{array}
\end{aligned}
$$

1907

CLCO万
C97T6ッ
9097？
C๕この奋
C491？
6309
\％6こう
6LLT3

Fo	\wedge	\cdots	：0	10	8	6.3
1	C）	（ $)$	61	（）	5	10
3	C）	63	o	い	H	63
to	L	1 l	${ }^{+}$	L－	（1）	－${ }^{4}$

（）	上	co	（0）	41	15	63
－	ω	（）	（1）	6	（u）	c）
\bigcirc	（1）	12	\bigcirc	\bigcirc	0	0.7
\bigcirc	${ }^{4}$	L）	ω	0	ω	4

5	H	0	（c）	10	σ	H	∞
0	－ 5	5	81	4	${ }^{4}$	N	\cdots
	F！	0	$6 \cdot$	N	0	几	H
	(1)	－	\cdots	い	$\stackrel{4}{4}$	（．）	ω
8	H	（1）	\pm	NJ	π	0	\bigcirc
！ 4	\cdots	4.3	V	0	（．）	V^{1}	－
4	（）	－	Σ	－	（i）	－ 1	－
	5	4	N^{1}	co	－	（1）	1

． 0	4	Lr	H^{2}	0	0	0	σ
${ }^{(1)}$	${ }^{\prime}$	I	ω	σ	－3）	（i）	0
FH	∞	（b）	co	－1	0	ω	－1
	$\stackrel{\prime}{ }$	(1)	61	10	0.3	w	0

$$
28710
$$

ــهـ

\int	H	0	∞	\bigcirc	（3）	a）
T15	N	（1）	U	H	c）	（2）
\longmapsto	10	θ	$1{ }^{1}$	？	－	0
	（1）	（く）	6.3	＋	6.3	6.2

YEGI
7932
$19 \% 3$
1904
1935
1936
1937
10tals

$$
\begin{aligned}
& \text { Dec. } \\
& 4160 \\
& 6079 \\
& 5691 \\
& 2010 \\
& 5242 \\
& 6070 \\
& 0 \equiv 178
\end{aligned}
$$

Totals
19703
00567
36713
28580
25495
169316
189079
31563

$$
\mathrm{Fl}
$$

C
E

$$
4
$$

$$
\propto
$$

$$
0
$$

	（Florida）												
Year	Jan．	Feb．	Yar．	spr．	ray	June	JuI ${ }^{\text {J }}$	$\therefore 125$.	sept．	Cct．	i． V	Dec．	Totals
1932	2058	3421	2926	2467	1705	267	1	－	－	40	14E2	SIEOO	19703
1933	3942	3562	3893	3477	こe57	$こ 4 こ 9$	358	9	20	429	3111	¢こうコ	こここも7
1934	5765	4943	6219	Si46	2777	200	－	－	9	İど	$47 \approx 3$	5691	3×713
1935	4039	4272	4305	3787	2240	1010	140	8	37	727	3389	2210	28580
1906	4345	4994	5427	4288	2754	512	1	－	22	2184	4026	E242	$2 \leq 495$
1907	5695	≤ 494	4999	4854	4212	1267	122	1	65	2098	4509	6070	＇69316
Totals	27045	55686	27799	22919	17351	6045	60.3	18	133	7658	21945	32178	189079
HVErage													31563

$$
1
$$

$$
\begin{array}{r}
\text { Lec } \\
20 \\
205 \\
277 \\
412 \\
721 \\
420 \\
20 \%
\end{array}
$$

$$
\begin{array}{llllllll}
\bullet & H & 0 & \sigma & 61 & 10 & n & 0 \\
0 & & i & \pi & 1: 3 & i ? & \pi & H \\
0 & & & & & i & r 1 & H
\end{array}
$$

$$
\begin{array}{llllllll}
\dot{+} \\
\dot{4} & 1 & \sigma & H & 1 & 1 & H \\
0
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& 8-7 \\
& c \\
& k \\
& k \\
& 04 \\
& 0
\end{aligned}
$$

$$
\begin{array}{llllll}
\rightarrow 0 \\
i-i & 1 & 1 & 1 & 1
\end{array}
$$

$$
\begin{array}{llllll}
\dot{C i}_{4} & 1 & H & W & H & H \\
\dot{C}
\end{array}
$$

$$
\begin{aligned}
& \text { Year } \\
& 19 \because 2 \\
& 1933 \\
& 1904 \\
& 19 \ddot{0} \\
& 1906 \\
& 1937 \\
& 10 t a 1 s \\
& \text { nverase }
\end{aligned}
$$

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

$$
\cdot q \bar{\alpha} \partial S \cdot n \psi
$$

$$
111101
$$

HU:

$$
11111
$$

$$
\underset{\sim}{r}
$$

$$
\begin{array}{llllllll}
\bullet \\
i \\
i+1 & 0 & 0 & 1 & 1 & 1 & 1 & \infty
\end{array}
$$

$$
\begin{array}{llllllll}
\infty \\
\infty \\
\sigma_{1} & & 0 & 0 & 1 & 3 & H & 1 \\
\Gamma
\end{array}
$$

$$
\begin{aligned}
& \text { Yesr } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& \text { 19\%7 } \\
& \text { Tote?s } \\
& \text { Average }
\end{aligned}
$$

$$
\begin{array}{llllllll}
0 & 0 & H & H & 0 & H & \approx & c 0 \\
\dot{H} & 0 & \omega & H & 0 & \omega & 11 & \vec{H}
\end{array}
$$

$$
\begin{array}{llllllll}
\therefore & 0 & 6.3 & i j & O & 0 & 10 & \infty \\
\therefore & i j & & i j & N & i j & \infty & 10 \\
i & & & & & \Gamma & & i . j
\end{array}
$$

$$
\bar{T}
$$

$$
0 \vec{R} \dot{\operatorname{s}} \text { iv } \underset{\boldsymbol{x}}{ } \overline{\mathrm{L}} \mathrm{~S}
$$

$$
\begin{gathered}
\text { TabIe } \\
\text { m } \because D \\
\text { (AIabama) }
\end{gathered}
$$

$$
S \text { is } T S U \text { In } \dot{S} S
$$

$$
\begin{array}{llllllll}
\dot{0} & 10 & & H & 10 & H & \\
\dot{A} & & 1 & & 1 & 1 & & H
\end{array}
$$

$$
\begin{array}{lllllllll}
\therefore & R & H & O & & r i & O & \pi & \\
\vdots & i j & & 0 & 1 & \cdots & 3 & \cdots & 1
\end{array}
$$

Table III

$$
\begin{aligned}
& -4 \\
& \vdots \\
& \vdots
\end{aligned}
$$

$$
\begin{gathered}
i \\
i \\
i \\
i \\
i \\
i \\
\vdots \\
i \\
i
\end{gathered}
$$

$$
0
$$

$$
\begin{array}{llll}
H 3 & 1 & C 3 & O \\
01 & H
\end{array}
$$

$$
\underset{H}{\sigma}
$$

$$
1
$$

b

$$
\begin{gathered}
\bullet \\
+\dot{3} \\
\vdots \\
\vdots \\
r
\end{gathered}
$$

$$
1
$$

I

$$
O R \dot{S} \dot{G} \dot{G}
$$

$$
\left({ }^{*-i s s i s s i v i l)}\right.
$$

\qquad

 1

$$
\begin{array}{ccccccc}
\dot{4} & 1 & 1 & 1 & 1 & 1
\end{array}
$$

Fe o
\sim^{-1}
Oct. IOV. DEC.

$$
\begin{aligned}
& \text { Iota1s } \\
& 15118 \\
& 14702 \\
& 16752 \\
& 21805 \\
& 17214 \\
& 14789 \\
& 99700 \\
& 16626
\end{aligned}
$$

$$
\begin{array}{llllll}
H & H & \Gamma & H & H & \Omega \\
0 & 1 \Omega & N & 6 & H & \sigma \\
0 & \Gamma & O & 0 & 1 & \Omega
\end{array}
$$

$$
\begin{array}{ll}
0 & 10 \\
\sigma & 10 \\
& 10 \\
\hline
\end{array}
$$

$$
\begin{array}{lllllll}
0 & \infty & 0 & \infty & 1 & 0 & -1 \\
0 & \infty & 0 & 1 & 0 & 0 & 0 \\
1 & \infty & \infty & 0 & 0 & 1 & 0 \\
i 0
\end{array}
$$

$$
\begin{array}{llllllll}
\bullet & \sigma & H & \omega & H & N & H & \infty \\
\epsilon & \pi & \sigma & \infty & 0 & 0 & \sigma & 1 \\
\sigma & \infty & 6 & 0 & \sigma & 15 & H & H \\
\therefore & & H & H & H & H & H & \infty
\end{array}
$$

$$
\begin{array}{lllllll}
\therefore & H & N & 10 & H & 0 & H \\
\therefore 0 & 63 & 0 & 63 & 63 & 0 & 0 \\
\vdots & H & 03 & 10 & 6 & 10 & 0 \\
& 63 & 63 & 03 & \pi & 63 & H
\end{array}
$$

$$
\begin{aligned}
& 10 \\
& i 0 \\
& 0 \\
& 4 \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& 1937 \\
& \text { Totals } \\
& \text { mvera } e
\end{aligned}
$$

Nov Dec.	
97	110
37	85
87	127
78	190
107	97
22	29
428	631

$$
\begin{array}{llllllll}
\bullet & H & 10 & 10 & M & M & 0 \\
0 & 0 & 1 & 63 & & H & 68 & H \\
0 & 0 & H
\end{array}
$$

District of California

$$
\begin{array}{lllllll}
\bullet & N & O & H & H & O & \infty \\
\hdashline & \omega & H & H & H & H & H \\
\cdots & H & H
\end{array}
$$

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1906 \\
& \text { 1907 } 73 \\
& \text { Averege }
\end{aligned}
$$

\[

\]

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& \text { I935 } \\
& \text { I936 } \\
& \text { I937 } \\
& \text { Totals } \\
& \text { sverage }
\end{aligned}
$$

$$
\underset{i=1}{s i} 1111
$$

$$
\begin{array}{lllllll}
\dot{C}_{1} & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

$$
F \in 0 . \quad: a r
$$

$$
111101
$$

$$
\begin{array}{llllllll}
0 & & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

$$
\begin{aligned}
& \text { YЄヨコ } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& \text { I937 } \\
& \text { 1otals }
\end{aligned}
$$

$$
1
$$

Year
1932
1933
1934
1935
1936
I937
Totals
iverage

$$
\begin{array}{llllllll}
0 & 0 & \infty & 0 & \boldsymbol{H} & 0 & 0 & \boldsymbol{H} \\
\text { H } \\
\infty & & & & & & & \\
0 & & & & & & & \\
E-1 & & & & & & &
\end{array}
$$

Year
1932
1933
1934
1935
1936
1937
Totals

$$
\begin{aligned}
& 10 a 2 \\
& 1932 \\
& 1903 \\
& 1934 \\
& 1935 \\
& 1906 \\
& 1937 \\
& 10 t a 1 s \\
& \text { AVEidge }
\end{aligned}
$$

Totals
8096
8600
7537
6085
7201
8395
45904
7650

$$
\begin{aligned}
& A \\
& q \\
& m \\
& H \\
& H \\
& H i
\end{aligned}
$$

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& \text { I937 } \\
& \text { Totals } \\
& \text { sivergere }
\end{aligned}
$$

$10 t a 1 s$
1608
1617
1688
2297
2626
10461
1743

		$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\underset{\sim}{r}$	∞	م	م	$\stackrel{0}{8}$	rid	$\begin{aligned} & \underset{\sim}{O} \\ & \underset{\sim}{4} \end{aligned}$
		$\begin{aligned} & 5 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { N } \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & 63 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	15	0 0 m
E-		+	N	∞	\bigcirc	\bigcirc	H		∞
		0	σ	\cdots	15	4	∞	4	0
H	T0	0				-1			${ }^{H}$
\mapsto	- 0	-							
	\&	\downarrow	0	-1	∞	Σ	∞	\cdots	4
0	0	F_{4}	6.7	\cdots	\bigcirc	N	63	${ }^{-H}$	∞
	4	0	\cdots	H1	\cdots	H	H	H	\checkmark
	$\cdot \mathrm{H}$	(t)							
	r								
	(1)	,	N	\pm	W	N	N	0	∞
	0	5	(1)	σ	N	$1)$	σ	0)
Hes		5	-1	-1	0.3	10	${ }^{-1}$	H	\cdots
H	4 0	4							H
\cdots		\bigcirc	\cdots	©1	N	4	N	18	H
$1 \times$	\pm	\cdots	4	0	∞	4	∞	63	∞
	0	\%	cu	6.6	03	H	12	\cdots	(1)
(1) E-	${ }^{-1}$	\bigcirc							H
F	f								
$\bigcirc \mathrm{OH}$	+	(1)	\cdots	∞	61	a)	\cdots	0	∞
Co	0	8	12	15	\bigcirc	18	${ }^{H}$	4	10
E+U	$\stackrel{-1}{A}$	$\stackrel{\square}{\circ}$	C)	H	0	0	${ }^{H}$	63	$\stackrel{H}{H}$
	S	\rightarrow	\cdots	-1	\bigcirc	N	H	H	\bigcirc
A	${ }_{4}$	\bigcirc	H	∞	\cdots	∞	-1	${ }^{4}$	0
	a)	\because	-1	H	H		$6]$	H	∞
凹7	5								
	$+$	-							
04	\checkmark	${ }_{1}$	18	H	∞	Σ	0	01	\bigcirc
	O	84	H	-0	0	\cdots	0	13	ω
H	(n)	\square	H	H	H	H	\cdots	H	\bigcirc
:									H

3	0	0	0	$\boldsymbol{\sigma}$	-	0	0
\%	(1)	0	上	67	0	-	0
-i	H	H	r	03	id	H	-1

0		01	0	H	0	12	03
0	0	0	0	0	0	0	0
E	0	H	H	H	0	H	0

\square	N	10	H	H1	∞	∞	4
∞	N	Q	∞	18	\sim	∞	\bigcirc
5		H		H	-1		Σ

							0	(id
							\cdots	(i)
4	63	\cdots	4	10	0	Σ	\%	if
(1)	1.9	12	10	\cdots	10	1	+	0
${ }^{(1)}$	σ	σ	σ	σ	σ	σ	O	\rightarrow
p-1	H-1	H	H	H	H	H	E-1	-4

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& 1937 \\
& \text { 10taIs } \\
& \text { Averase }
\end{aligned}
$$

$$
\begin{array}{llllllll}
\bullet \\
0 \\
0 & 1 & 1 & 1 & 4 & 1 & 1 & H
\end{array}
$$

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& \text { I936 } \\
& \text { I937 } \\
& \text { motaIs } \\
& \text { Lvera E }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Year } \\
& \text { I932 } \\
& \text { I933 } \\
& 1934 \\
& 1935 \\
& 1936 \\
& \text { I937 } \\
& \text { Totals } \\
& \text { average }
\end{aligned}
$$

E－

				\cdots			
60	${ }^{2}$	$\stackrel{-1}{-1}$	－	＋	，	H	$\stackrel{0}{0}$
－	O	$\stackrel{-}{6}$	$\underset{\sim}{\sim}$	$\stackrel{+}{\infty}$	\bigcirc	6	$\stackrel{\sim}{\square}$
－	$\stackrel{0}{6}$	ç	$\stackrel{\sim}{\sim}$	$\stackrel{-1}{\infty}$	$\stackrel{H}{2}$	$\stackrel{1}{\circ}$	${ }^{H}$
ค	－	\bigcirc	$\stackrel{ }{-}$	H	\bigcirc	$\stackrel{1}{0}$	0
¢			∞	$\stackrel{-1}{-1}$	σ	\bigcirc	${ }_{0}$
			∞	－	H	H	－
9	\bigcirc	${ }_{15}$	$\stackrel{\infty}{+}$	$\stackrel{-1}{0}$	－	$\xrightarrow{-1}$	10
r	∞	∞	σ	0	σ	2	6
\cdots		$\underset{\sim}{\sim}$	$\stackrel{\bullet}{\sim}$	$\stackrel{H}{0}$	O	$\stackrel{\square}{8}$	\cdots
：1	or	N	O	（2）	の	∞	15
	下	下	－	0	โ	6	1
\％	\sim_{0}						∞
4	$\stackrel{+}{+}$	O	O	\checkmark	${ }^{\circ}$	∞	$\stackrel{+}{8}$
4	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc	σ	$\stackrel{\sim}{\sim}$	$\underset{\sim}{+}$	${ }^{\circ}$

∞	ค	－	σ	${ }^{3}$	H
\cdots	$\stackrel{\sim}{\sim}$	10	$\stackrel{-1}{2}$	$\stackrel{\sim}{8}$	$\underset{\text { \％}}{\text { ¢ }}$
∞	¢	$\stackrel{1}{6}$	$\stackrel{\sim}{\sim}$	\bigcirc	10

Jan
4442
4275
3649
5702
3940
3002
25010

Year 1932 1933 1934 1935 1936 1937 Totals Average

$$
\begin{aligned}
& E-1 \\
& 0
\end{aligned}
$$

ندד:

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& 1937 \\
& \text { Totals } \\
& \text { sverade }
\end{aligned}
$$

Totals
9391
5446
11205
11523
11518
8722
57805
7634

IIOV	Dec.
3657	$25 \approx 4$
544	2966
4045	3520
1709	2407
2873	3774
2889	4255
16517	20446

$$
\begin{array}{lllllllll}
\infty & 1 & 0 & H & H & 0 & 0 & \sigma & 0 \\
H & 0 & 0 & 0 & \infty & 0 & 0 & r & 10 \\
0 & \Gamma & 1 & \infty & 0 & 0 & \Gamma & 0 & 0 \\
0 & \sim & 0 & H & \omega & 0 & H & H & 0 \\
0 & & & & & & 6 & \ddots &
\end{array}
$$

$$
⿷_{4}
$$

$$
\begin{aligned}
& \text { TabIe IXXI } \\
& C I T R U S \\
& \text { (Texas) }
\end{aligned}
$$

June July Aux̃.

$$
\begin{aligned}
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$

$$
\begin{array}{cllllll}
\bullet- \\
\dot{H}_{4} & 1 & 1 & 63 & 0 & H & 0 \\
-4 & H & H & 0 & 0 & 0 \\
-4 & & & H & 0 & 04
\end{array}
$$

$$
\begin{array}{llllllll}
\bullet & H & H & 0 & 0 & \infty & H & 0 \\
0 & H & H & H & 0 & 0 & 0 & H \\
\omega & 0 & H & 1 & H & i & N & H \\
H & & & H & & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& 1937 \\
& \text { 1ota7s } \\
& \text { AveI\&ge }
\end{aligned}
$$

Year
1932
1933
1934
1935
1936
1937
1otals
Aver.ate

$$
\begin{aligned}
& \text { Year } \\
& 1932 \\
& 1933 \\
& 1934 \\
& 1935 \\
& 1936 \\
& 1937 \\
& \text { Totals } \\
& \text { Average }
\end{aligned}
$$

Year
1902
1933
1934
1935
1936
1937
Totals
Averase

Year
I932
1933
1934
1935
1936
I937
Totals
sverace

$$
\begin{array}{llllllll}
\dot{O} & & & & 0 & 0 \\
\mathbb{D} & 1 & 1 & 1 & & & 0 & 0 \\
& & & -1
\end{array}
$$

$$
\begin{array}{llllll}
0 \\
0 \\
0 \\
=-1 & H & H \\
H & H
\end{array}
$$

$$
H \quad \underset{\substack{\infty \\ \rightarrow i=1}}{\infty} 1
$$

-4

$$
E
$$

$$
0
$$

F-1

Year
1932
1923
1934
1935
1936
1937
Tota1s

G＊SSLE	8^{\bullet} ¢ $6 \in 6$	L6I8	$4 \cdot 905$	G•9 667	\＆•CB37	¢ъ89	$4 \cdot 6069$	$9^{\circ} \in 968$	－ 7996	$\widetilde{6}$－93IOL	～• 3868	$4 \cdot 96 も 8$	SЭЗ8JЭ1
こヒブアう	99369	$9 ち 几 67$	cccte	44663	テ®\％6\％	89090	8才ちしも	91899	7－CLG	4 LII9	\＆67IG	29609	Ste？
LIT88	93LIT		9アゴ	8982	7982	Cんお号	0809	Gごロ	3CE3	96001	2898	Ecs6	4965
29696	LG30L	8596	わちらす	¢巨もも	9987	9679	［？94	4976	O590I	8890 T	もLI6	3953	926 L
6\％950L	CrOL	3んこん	4909	O139	8769	8324	4994	CrCOL	O3CLI	$6 き$ 60に	4766	9LE6	GתEL
Fuもこ6	98002	6906	$\because C 27$	69亏ち	2岩？	Lご6ラ	0499	0243	4846	GO6IL	0103	ELE6	726
LC：93	$36 \sim 6$	OT\％	O909	ESEZ	セッダ	7L99	$94: 8$	9606	08C8	4098	EֹG4	ESEL	E®GL
42253	くご」	8189	209\％	$873 \overline{7}$	ここんす	8169	五ちG	もし6	ع398	cT？ 6	9198	9ICL	$\Xi E \in L$
STE70］	－っə	${ }^{-10} \mathrm{O}_{2}$	－700	－ $7 \bar{u} 2 \mathrm{~S}$	－In	sinf	$\operatorname{sen} \rho$	Fig：	－エay	－IE．：	－q̇̇	－URP	$\boldsymbol{X B G}$

$70 t 575$
15706
14060
17207
22407
17636
15800
103616
17269
$D \in c$
779
$8 こ 6$
1073
1029
723
$8<1$
$5 \Omega E I$

Table LKKIX
The United Stetes - intiout Inporte

$Y \in \Xi r$
1902
1903
1904
7905
1906
$19: 7$
Iotals
Averace

$$
1 ?
$$

$$
\begin{aligned}
& E+ \\
& i+i \\
& r i
\end{aligned}
$$

$$
S Y
$$

$$
8
$$

$$
r:
$$

$$
-4
$$

$$
\begin{array}{llllllll}
\bullet & H j & H & 0 & 0 & 0 & 0 & i ? \\
\&_{i} & 1 & {[D} & & 1 & & r & 4 j \\
0 i
\end{array}
$$

$$
E-1
$$

$$
\text { E. } 1
$$

$$
\begin{aligned}
& \text { Yesy } \\
& 193 ? \\
& 19 z 3 \\
& 1934 \\
& 1935 \\
& 1936 \\
& 1937 \\
& 10 t a 1 s \\
& \text { LVEra } e
\end{aligned}
$$

11

Table Xi III

Table TXX：III－Contirueã
16 Ms．\dot{u}
over．In
fullyro－
duction

OKiNaju ciorec	tressis	10	i
	7，ミロう	45	06
Californía 4／．．．．．．．．$\varepsilon^{\text {E }}, 493$	7，788	$\mathfrak{\sim}$	75
Iexas 3／．．．．．．．．．．．．．．こ̇，こ18	379	95	5
«rizonā ．．．．．．．．．．．．． $3,0.06$	321	80	50
Tots1 4 states ．．．．．216，815	16，227	39	01
Velercis S Otiner Iate Varieties			
Florija $\overline{2}$ ．．．．．．．．． 90,708	5，896	56	44
Valifornía 3／．．．．．．．．132，749	11， 683	40	55
Texas 3／．．．．．．．．．．．．．． $9,15 ?$	601	95	5
«rizona ．．．．．．．．．．．．．．．．．${ }^{\text {a }}$ ，El0	208	97	3
Total 4 3tates ．．．．235，219	13，411	51	49
All Verieties			
Floriã $2 / \ldots202,076$	13，135	50	60
California 4／．．．．．．．．221，242	19，471	37	62
Texas 3／．．．．．．．．．．．．． 22,470	1，4E3	95	5
ırizona ．．．．．．．．．．．．． 6,540	E49	87	13
Toter 4 3tates ．．．．$\leq 5 \sim \sim 234$	34，608	45	E

TabIe IXXC．III－Continued

シtcte

lérrs． over．In
I込号
ction．

	GCres	ぜもくる	10	1
	24，509	I， 970	セ2	20
Salifornia 4 ／	1，603	14？	co	40
Texas $3 / \ldots$	006	40	95	5
srizorio	E 4	5	98	2
Totz？4 3tates	$\therefore 6,771$	1，579	63	$\because 7$
I－0．3				
Gulirornia 4	47,729	4,143	34	60

Table IXi III-Eontinued

Table IXXXIV-Continued

－2า0tg

$$
ん \varpi \bullet \text { ぞ }
$$

$$
\mp \succeq \cdot \tilde{G}
$$

$$
\begin{aligned}
& 44^{\circ} \mathrm{U} \\
& \subseteq 3^{\circ} \because
\end{aligned}
$$

 51
 $\vdots 9$
31
29
34
38
43

$$
20
$$

 \(\sim\)
 20
20
18
16
10
20
10
10
10
12
12
10

 $\begin{array}{ll}\text { June } & 3 \\ \text { June } & 10 \\ \text { June } & 17 \\ \text { éune } & 94\end{array}$ evine 24 $1 \quad 0$ 8 15 6
\therefore
\vdots $\frac{e^{T} \lambda T_{T}^{T}}{D_{U S I} U_{1}}$

$$
\begin{aligned}
& 2.47 \\
& 2 \cdot 63
\end{aligned}
$$

$$
\begin{aligned}
& 3.55 \\
& 3 \cdot 35 \\
& \hline
\end{aligned}
$$

TiSTM TAXXIV (OCNM)

FErlots	Irices
21	$\because 2.14$
20	2.19
23	2.09
25	1.92
18	1.90
20	1.99
23	1.97
20	2.08
10	2.41
20	2.87
23	2.29
25	2.09
20	2.08
15	2.40
10	2.64

32．PEPZUIT

－ $\begin{array}{r}H \\ \hline\end{array}$
$\underset{\sim}{2}$

 $\cos _{6}^{2} \quad 4$ $\begin{array}{ll}\text { H．} \\ \underset{H}{1} & \infty \\ \end{array}$ ${ }^{10}$ -1 ∞ $\stackrel{10}{H}$

 Fejruary
 I．arch Eerch

 Texas
Carlots -13 $न$ I 1 $H \quad r$ I 1 N 18 ○ふペぃ か Week Enaing
$\begin{array}{lr}\text { January } & 7 \\ \text { January } & 14 \\ \text { Jenuary } & 21 \\ \text { Jenuary } & 28 \\ \text { February } & 4\end{array}$

 H
H
$\begin{array}{llll}\infty & \bullet \\ \mapsto & \text { مl } & & -1\end{array}$ $\stackrel{0}{-1}$
Narch
Yarch
Parch
Agril
Spril
spril

mable rivituILI
\cdots

2-
T\& T? Q r-ruxtII
-- Trro
Tisiss

jeltimore, ${ }^{\circ} \mathrm{AM}$
IE¢ars,
ェev Yorat liew Torr
Tiinad< $\because \therefore$ ¢
こittsbura, Iennsæ7.varia
Aicinond, Virainia
Rochester, LSW YOMJ
WES:

Table XCI

 J．$\because \in \mathscr{E}$ 0
0
$i 0$
$i 0$
0 C3•L5こ $27 シ 0.17$ 10
10
0
0
0
0 0
$i .0$
0
0
0
7
i.

 （jouthivesteri stutes） $\begin{array}{ccccc}D & i & i & i & r \\ 0 & i & r & r i & \ddots \\ 0 & 0 & 0 & \ddots & \vdots \\ 0 & -i & -H & H & \vdots \\ i j & & 6 & i & i \\ & & & & r\end{array}$

$$
\begin{array}{ccccc}
(i & N & N & 0 & j \\
0 & r & r i & \ddots & i+ \\
0 & 0 & 0 & 0 & 0 \\
0) & 63 & 0 & r i & i \\
i j & & 0 & \vdots & i \\
H & & & r & \vdots
\end{array}
$$

1 l	r	－	；）	0
（b）	0	0	）	1.3
－	\bullet	－	－	－
\bigcirc	r^{-1}	\cdots	ri	$1 \cdot 3$
3－	U）	H	\because	${ }^{\prime}$
6 ？			i．	2－

$D \cong$ ITEr，COTO．
I：OS $ル$ HETES，CQ？。

$$
\begin{aligned}
& \text { G3FGTEAG IG70T }
\end{aligned}
$$

Fort \because vrtis, $\because \in x$ 。

$\cdots \cdots$
$\cdots \cdots$

$$
\begin{array}{llll}
0 & \hat{H} & \hat{} & 3 \\
0 & \ddots & \ddots & 0 \\
0 & 0 & & 0 \\
& 0 & & 5
\end{array}
$$

Table XCIII-Continued

$$
\begin{aligned}
& \text { San Antonio, } I \in x \\
& \text { Shreveport, Ia. } \\
& \text { Total Averages }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Iortlana, Ore. } \\
& \text { Seattle, wash. } \\
& \text { Sokane, wesh. } \\
& \text { Total sverases }
\end{aligned}
$$

(Nortinestern Jtates)

$$
\begin{aligned}
& 120.00 \\
& 182.00 \\
& 22.67 \\
& 275.67
\end{aligned}
$$

$$
\begin{aligned}
& 709.50 \\
& 800.00 \\
& 152.00 \\
& 1721.50
\end{aligned}
$$

- Sontinuéa)

$$
\begin{array}{r}
\text { min } 919.00 \\
149.00 \\
\leq 060.30
\end{array}
$$

$$
\begin{aligned}
& 107 \approx .50 \\
& 1077.00 \\
& 2: 2.17 \\
& \approx 671.67
\end{aligned}
$$

$=$

83% 9\％	20．4it	9̇3•？	$80 \cdot 830$	EG•Cご		93063	ICOP 902	$55 \cdot 905$	ミ？6•「吅	G－nazac
L•gI？	4－4心のT	9＊3ヶ3L	$0 \cdot 0$ 気	T•19L\％	ヵ－¢โ93	$g \cdot 6 T 2 S$	6.9992	¢99059	9^{\bullet} E8TG	8， 3702
G＊ 63 L	す・～こT	9•「手［	9＊2ご	L． 36 L	も・931	909\％	$6 \cdot 263$		6 －135	－${ }^{\text {cI }}$
$2 \cdot 30 \%$	I．02I		$4 \cdot \sum こ T$	と・可矿	8．36I	G•0才「	$4 \cdot 783$		C•I3才	－II
O－ŠL	C－02T	¢987	」10゙	あ・3ム亡	$0^{\circ} \mathrm{CSI}$	I－093	c•9んZ		6.605	－Ot
c． 37 J I	テ・0̃T	$\tilde{\sim} \cdot 6 E L$	$\because \cdot 96 L$	9^{\bullet} GLI	G• LEL	$0 \cdot 67 \%$	z－OOE	49975	ム14行す	－ 6
$c^{*} 6 I L$	$0 \cdot 85 \tau$	$4 \cdot 32 \mathrm{~L}$	O－LS	$6 \cdot 36 L$	$8 \cdot 96 I$	Leg9\％	［ ${ }^{\text {cos }}$	6.935	$4 \cdot 882$	－8
E．$\angle C L$	$4 \cdot \mathrm{CzL}$	テ・こうL	I•003	$0 \cdot 28 i$	キ・06I	9＊五ご	$9^{\circ} 0 \% 2$	$6^{\circ} 669$	G•90ち	－ 4
ム・8才亡	こ・İI	$3 \cdot 0 ん L$	C•2ご	G•8LT	ぁ－get		6° 机	でくご	$8 \cdot 505$	－9
可 $9 ?$ L		C．L？T	$8 \cdot 703$	$0 \cdot 03 T$	I C CEI	g．09：	6．903	0＊I五	$8 \cdot 00$ ¢	－ 9
90 \sim^{\sim} T	C・しろし	$8 \cdot 33 T$	$9 \cdot 005$	L•？きて	C•亏8I	G＊ 2 Cz		でムご	9－905	－\ddagger
L－びST	9＊ILI	$4 \cdot 29 T$	$3 \cdot 205$	$6^{\circ} 40 T$	C^{\bullet} IC\％	0－4L3	7－0\％		$9 \cdot 26 ?$	－8
2・つラし	で？ご	C－03T	$8 \cdot$ Let	cecot	$0 \cdot 903$	$\widetilde{c}^{*} 40$	$4 \cdot 70 ?$	≥ 929	$0 \cdot 63$	－ 3
〇ッライ	4•？	¢•L？		あ・ことT	あ・エロラ	0.693	G^{*} GIE	$9 \cdot 803$	こ．08才	${ }^{\bullet}$ I
									－ $0 .:$	Э 50
ぎ？	39%	323	93	¢こ\％	2LT	03 L	9%	COL	26	： O STS

$$
\begin{array}{ll}
\therefore \\
1 & \\
1 & \\
r & \\
i & 3 \\
= & 3 \\
\therefore & \because \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& 9 I I \cdot 80 ⿹ \\
& \nabla^{\bullet} \angle 67 \pi
\end{aligned}
$$

$$
\begin{aligned}
& =\leq 4 \cdot 5 \\
& \approx \leq 4 \cdot 8
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 2.0 \\
& \approx \angle 0.7 \\
& 240.2
\end{aligned}
$$

$$
\begin{aligned}
& 255.6 \\
& 24 I .9
\end{aligned}
$$

$$
\begin{aligned}
& o \\
& \vdots \\
& H \\
& \vdots \\
& \vdots
\end{aligned}
$$

$$
\begin{array}{ll}
\text { ai } & \\
0 & \\
H & 0 \\
H & N \\
F_{4} & H
\end{array}
$$

$$
\begin{aligned}
& 312.3 \\
& 540.0
\end{aligned}
$$

$$
\begin{aligned}
& 240.2 \\
& 2 \leq 1.3 \\
& 255.0 \\
& E=5.6
\end{aligned}
$$

$$
240.9
$$

$$
24 \text { I. } 5
$$

$$
\approx 63.7
$$

$$
\therefore 308.1
$$

0

$\vdash H$

$$
4: 1
$$

$$
\gg
$$

$$
\because 0
$$

$$
\cap \infty
$$

$$
H i l
$$

raf
OP FA质和

$$
\begin{aligned}
& \begin{array}{ll}
4 \\
4 & -4
\end{array}
\end{aligned}
$$

Table KCVIII

FIORIDAVALENCA Size： iveistat to the nearest ol cram			
Sa．．．gIa			
1.	310.9	256.0	$2 \div 3.0$
2.	283.5	206．5	22\％．
3.	219．1	202.4	3こ2．7
4.	202.9	28こ．0	25う． 4
5.	204.7	328.0	317.0
6.	207.7	243.0	2060
7.	$2 \div 0.6$	250.0	2ع， 8
8.	208.1	191．5	212．5
9.	229.2	195.3	24in．2
10.	220.4	1ころ．2	290.4
11.	244.8	178.1	305.0
12．	148.0	IU3．4	OUS．7
Totals	2767.9	2853.4	2641.6
Average	230.658	237.78	＇03．466

TabIe XCIX

Table C
2
10
0
H
D
\square

4
ω

E
E
-1

と
H
回
\geqslant

* -- Cne soileo - totals correcté to rake l2
Size:
96
100
126^{*}
150
176
200
216
250
288
324
Size: 100
126
150
176

Kind	$W E \mathrm{~W}$	
	Size	Weisint per dozen
Floriaa		
Eineayjoe	150	3068.1
\#	176	26.3 .4
17	200	2368.2
Florida Round	3uIk	2041.4
F?orià Valencia -xoressed	Bulk	1873.2
Florida Valencia		
U.S. π^{2} I	BuIk	2767.9
U.S. $\frac{12}{2}$	3012	2853.4
U. S . ${ }_{\text {a }}$	$B u 7 k$	¢64I. 6
Florida Temile	Iニ6	3511.1
17	150	$2 \therefore 08.1$
17	276	2497.4
Lexes İvel	Buls	26T8.6

										418
$\stackrel{N}{\sim}$	¢	8	$\stackrel{\bigcirc}{\sim}$	$\stackrel{1}{18}$	$\stackrel{\sim}{2}$	8	$\stackrel{-}{\square}$	$\stackrel{3}{4}$	-	
		H	H	-	H	63	6	6.1	c_{3}	0

$$
\begin{aligned}
& \text { R - Fetail Erice } \\
& W \text { - - Wolesale Erice }
\end{aligned}
$$

以	$\begin{aligned} & 0 . \\ & 0 \\ & 4.0 \\ & 0.1 \\ & 01 \end{aligned}$
\square	
H	
t	
to	© ©
	${ }^{3}$

$$
\begin{aligned}
& .0033 \\
& .0030 \\
& .0022 \\
& .0065 \\
& .0057 \\
& .004 .3 \\
& .0047
\end{aligned}
$$

State
of
Crigin
Oranges
Florian
Fineapŋle
rin
Velencia
Velencia
4
Niavel

0
N
$\sim H$
$r n$

$-\ln 2$
61
-1 F C?

Hloriaa
Floriàa

02
6
N
N
$E-1$
Size
dy State of
Origin
Gracefruit
Craseruit
FIorina

$\begin{gathered} \text { Duncan } \\ " \\ " \end{gathered}$	$\begin{gathered} 7 e d \\ 46 \\ 96 \end{gathered}$
Prars	54
π	96
Thompson	
pink	80

$\mathrm{H}_{1} 0$
H
H

シize

Variety jtgte
oI
Crivin
Cranes

fprilJinuary 28 to Februsiry 8

$$
f
$$

$$
\therefore \therefore e e
$$

Si

$$
\begin{gathered}
n \\
\stackrel{n}{3} \\
\underset{3}{4}
\end{gathered}
$$

Veriety

$$
\begin{aligned}
& 200 \\
& 252 \\
& 3071 \\
& 200 \\
& 200 \\
& 210 \\
& 200 \\
& 202
\end{aligned}
$$

Zi:e Unit Detes

$$
\begin{gathered}
J \text { Eruary } 2 B \text { to } \\
\text { iebruary }
\end{gathered}
$$

$$
\underline{1}
$$

$$
6
$$

$$
\text { FЄbrusry } 4
$$

Februery IE

 GI•C9

$$
1860
$$

$$
1647.3
$$

$$
1604
$$

$$
1631^{*}
$$

$$
690
$$

Juice ce?-
Julce

获

$$
\begin{array}{ll}
\underset{\sim}{\infty} & 0 \\
\underset{\sim}{0} & 0 \\
\hline
\end{array}
$$

Table cIX Table CIK
Maximun and minimum aiameters for the different
sizes of oranges and srapefruit as packed in
FIorida boxes Table $C I K$
Naximun and minimum diameters for the different
sizes of oranges and grapefruit as packed in
Florida boxes Diameter of rrapefruit Finimun - iaximun $5 \quad$ In inches $9 / 16$ $2 / 16$ $13 / 16$
$9 / 16$
$5 / 76$

Size
$96^{\prime} \mathrm{s}$
$126^{\prime} \mathrm{s}$
$150^{\prime} \mathrm{s}$
$176^{\prime} \mathrm{s}$
$200^{\prime} \mathrm{s}$
$216^{\prime} \mathrm{s}$
$250^{\prime} \mathrm{s}$
$288^{\prime} \mathrm{s}$
$224^{\prime} \mathrm{s}$

$$
5: 08
$$

$$
\begin{aligned}
& \text { Size of tissue wrap } \\
& 9 \text { by } 9 \text { inches } \\
& 10 \text { by } 10 \text { inches } \\
& 11 \text { by } 11 \text { inches } \\
& 12 \text { by } 1 \approx \text { incies } \\
& 13 \text { by } 13 \text { inches } \\
& 14 \text { by } 14 \text { incies } \\
& 15 \text { by } 15 \text { inches } \\
& I 6 \text { by } 16 \text { inches } \\
& 17 \text { by } 17 \text { inches }
\end{aligned}
$$

```
BIBLIOGRAPHY
```

1. Treub, Eamilton snd Rotinsor, T. Felph

Imbrovemert of Eubtrorical Fruit Crons; Citrus. Yearbook oi frriculture, 19z7. Uniteá states Departnent of Arriculture, Fachinfton, D. C., 1937.
2. Cer-lot whinnerts of Fruits end Vegetables.

Years 19z2-19z7. Published by the Eureau of faricuitural Ecomonics, United Stintes Department of Agriculture.
2. Cer-lot Unloads of Certain Fruits and Veqetables in 66 Cities and Imports in Four Cities for Candia.

Years 192?-z7. Published by the Eureau of fericilturel Economics, United Etetes Depertmert of Aqriculture.
4. Girdner, Kelsey B.

Terniral Fruit Auctiors as matetine hemeies for Farmers' Coopersitives. Fara Credit Adminictrsition Bulletin No. 29, November 1938.
5. Villson, H. F.

Narketing Floricia Citrus, Sunamy of 1957-1928 Seasor, Urited Stutes Depritmert of Africulture and Ploridu Stute ii: rıeting Bureau, Lakeland, Floricá, September E, 1938.
6. Scott, John M., Howard, R. H., Scruegs, Frerk H. and others.

Citrus Grovine in Floricia. State of Florida, Department of Aericulure, Bulletin No. 2, New Series, Ausust, 1937.
7. Thompson, J. M.

The Oraree Industry: An Fconomic Study. University of Californic, Collcge of Agriculture, Agricultural Experiment Statior, Berkeley, Californie, Bulletin 62, June 1928.
8. Auctior Sales, Ceason 1937-38.

Florida Citrus Exchange, Statistical Department Published Auçuct 8, 1938.
9. Statistical Bulletin, Florica Citrus Exchanee.

Season 1937-38. Florida Citrus Exchanfe, september 22, 1938.
10. Sumary of Shipmerts, Seuson 1937- \%8.

Florida Citrus Fxchence, Aucust 8, 1938.
11. Fiyse, Olive Gertrude

A Stuad of Consimers' Problems in the Selection of Certain Foodstuffs. Naster's Dearee Thesis, University of Iov:a, June 1933.
12. Rämsey, Ellen i:

Story of the Citrus Fruits
F. A. Owen Publishine Compary, Dansville, N. Y. (1928)
13. Coit, J. Eliot

Citrus Fruits
The Macmillan Company, New York, N. Y. (1915)
14. Traub, H. T., Camp, A. F., Gtadum, L. Fi. and Sterll, A. L.

Type, Variety, Maturity and Physiolofical Anetomy of Citrus Fruits as Affecting Quelity of Prepered Citrus Juices. University of Florida, Agricultural Experiment Station, Eulletin 24z, (iiey 1932) Gainesville, Florida.
15. Hume, H. H.

The Cultivation of Citrus Fruits. The Nacmillan Company, New York, N. Y. (1926)
16. Shamel, A. D., Pomeroy, C. S., and Caryl, R. E.

Bud Selection in the Piashington Navel Orange Progen Tests of Limb Verietions. Iinited States Department of Agriculture Technical Bulletin 1:3 (199.9)
17. Friend, గ. H.

Citrus Orchard Menagement in the Lower Rio Grende Valley. Texas Agricultural Experiment Station, Circuler lo. 67. (1933)
18. Greater New York Dietetic Association

- A Stucy of Orences Used for the Extrection of Juice. Cheirmun of Conmittee, Adelire Wood.

19. Bailey, Liberty Hyde

Manuel of Cultivated Plants The liacmillan Compary, New York, N. Y. (1924)
20. Thomes, John J.

The American Fruit Culturist, 21st Edition. Orange Judd Company, New York, N. Y. (1903)
21. Teague, Charles C.

Ten Talks on Citrus Marketing Los Angeles, California, 1939
22. Finston, J. R.

Harvesting and Hendling Citrus Fruits in the Gulf States. Usited Stestes Depertment of Agriculture, Fermers' Bulletin 1763, 1937
23. Vosbury, E. D. and Robinson, T. Fuilph

Culture of Citrus Fruits in the Culf States. United Stetes Department of Agriculture Farmers' Bulletin l343, 1929.
24. Shamel, A. D., Pomeroy, C. S. and Caryl, R. E.

Citrus Fruits Groping in the Southwest. United Steites Departmert of Agriculture Farmers' Bullctin 1447, 1930.
25. Blythe, stuart 0 .

California Citrus, California-Magazine of Pacific Business, Februery, 1937
26. Blinks, Ruetta Day and Moore, Piilletta.

Food Purchasing for the Home, Second Edition J. B. Lipnincott Company, Chicafo, 1932
27. Spurlock, A. H. and Brooker, Marvin A.

Florida Citrus Prices, I University of Florida, Agricultural Experimert Steticn, Bulletin 315, September 1937.
28. Spurlock, A. H. sind Brooker, Marvin A.

Florida Citrus Prices, II University of Florica, Arricultural Experiment Stsiticr, Bulletin $\mathbf{Z 1 7}$, Sovember 1937
29. Pumsay, H. J.

Cleaniry and Sterilizing Packing House Equipaent and Field Boxes.
Culifornia Fruit Grovers' Excharge, Field Department Circular lio. zze, Los Areєles, California, March 6, 1935.
30. Taylor, J. J.

C'tete of Florida, Citrus Inspection Bureau, Annual Report, Season 1937-38. Florida 1938
31. Klotz, Leo J.

Nitrogen Tricnloricie and Other Gases as Funficides Hileurdia, Volume 10, (2), Pąe 27-5\%, (1956)
22. Armstrone, Paul S.

Annual Report of the General Manager of the California Fruit Grovers' Excharfe, for the year ending October 3l, 1928.
33. Comish, Newel fi.

Cooperative karketing of Agricultural Products D. Appleton and Compary, New York, N. Y. (1929)
34. Clerk, Fred E., and Feld, L. D. H.

Merketinf Agriculturel Products The Kacmillan Compeny, New York, N. Y. (1932)
25. Vinston, J. R.

Feducing Decay in Citrus Fruits with Porax. Uni.ted States Department of Arriculture, Technical Bulletin No. 488, October 1935.

3€. Hamilton, H. G. and Brooker, Marvin A.
A Study of the Cost of Handling Citrus Fruit from the Tree to the Cer in Florida. Florida Arricultural Experiment Station, Bulletin 266, Gainesville, Florida, April, 1934.

[^0]: *Dr. V. L. Miellnann is Associate Professor in the Eacteriology Department of Michigen State College, East Lansing, Michigan.

[^1]: *Dr. W. D. Baten and G. G. Speeker are Associate Professors of Mathematics, líchigan Stsite College, East Lansing, Michigan.

[^2]: *Corresponcience of fpril 13, 1939

[^3]: *Interview with Dr. Ernest Bessey, Head of the Botany Department and Dean of Grajuate School, Michigan Stcte College, East Lansine, Michigan.

[^4]: *Interview with Dr. Ernest Bessey.

[^5]:
 －8エ80 74ぶ下T $29 \rightarrow \infty$＊

[^6]: x - Heary oars (over 250 orates)

