
Encoding Guidelines for the Historic American Cookbook
Project

The following set of guidelines is meant to be used as an aid in training new coders
for the Historic American Cookbook Project. Coders currently working on the
project will also find it a useful reference material in keeping their coding consistent
with what has been done in the project so far. A simpler version of this document
can be found at http://digital.lib.msu.edu/cookbooks/project.cfm?about=encoding,
a page created by Ruth Ann Jones at the beginning of the project to describe the
coding process as it was originally conceived. This version of the encoding
guidelines includes more detailed, step-by-step instructions for the coding process,
as well as a number of updates and changes that have been added to the encoding
guidelines from the time the project began through the end of June, 2003. The
website may be used as a quick reference, however, and most of the information
appearing in tables in this document has been copied verbatim from that source.

BEFORE YOU BEGIN

The following is a list of terms that are probably unfamiliar to you, but which will be
used to describe the coding process throughout this packet. It may be useful for
you to learn them if you are interested in the theory behind what we are doing. I
got most of this information from the glossary in the XMetaL 2.0 User Guide, then
added some notes specific to this project.

DTD = A set of declarations, written in a formal notation defined in the XML standards, that
define the structure of a set of documents. Among other things, a DTD declares all of the
element names that can appear in a document, the hierarchy in which they can be
arranged, the type of content they can have, and which attributes they can have. The DTD
used in the Feeding America project is named cookbook.dtd and can be found in
K:/cookery/cookbook.dtd, and on each coding workstation in
C:/Program Files/SoftQuad/XMetaL 2/Rules/cookbook.dtd.

DOCTYPE declaration = Document type declaration; a declaration at the top of an XML
document that specifies which DTD applies to the document, and may contain some extra
markup declarations. XMetaL will automatically generate a DOCTYPE declaration when you
select a rules file to accompany a new XML document.

Element = a structural building block of an XML document. Blocks of text are contained in
elements according to their function in the document: for example, headings, lists,
paragraphs, and links are all surrounded by specific elements. Essentially, each basic tag in
the cookbook tagset (<p>, <emph>, <list>, <recipe>, etc.) is an element. You can view a
complete list of the elements used in this project by opening the Element List window in
XMetaL (choose Element List from the View menu) while coding a cookbook.

Empty element = An element that has only a single tag (which may have attribute values)
and cannot have any content. In XML, an empty tag looks like <TAGNAME/>. There are

 2

only three empty elements in the cookbook tagset: <pb> (page break), <lb> (line break),
and <gap> (used to mark missing text).

Required element = An element's sub-element that the DTD has declared must be
present in order for the document to be valid. The <cookbook> element, for example, must
contain <meta>, <front>, and <body>, or the document will not validate.

Attribute = A value that is associated with an element but is not part of the content of the
element. (The content of an element is the text that appears between the opening and
closing tags of that element.) Many formatting properties are represented by attributes: for
example, text size, italicized text, and text alignment. Most of you should be familiar at
least minimally with the rend= attribute, which is a required attribute for the <emph> tag
in the cookbook tagset (and is optional for most other elements as well). You can view and
edit any attribute through the Attribute Inspector in XMetaL.

Required attribute = An attribute that the DTD has declared must be present in order for
the document to be valid. The <emph> element in the cookbook tagset must contain a
rend= attribute, or the document will not validate. Required attributes for any given
element will be displayed in bold in the XMetaL Attribute Inspector.

Attribute inspector = An XMetaL window that enables you to view and edit the attributes
of any element. To display the Attribute Inspector, press F6 or choose Attribute Inspector
from the View menu.

GETTING STARTED

All books that have reached the coding phase in our project should be posted on
the local network in K:/cookery/xml in progress/. The files should be in plain text
format, and should already have been file compared to eliminate errors. You will
use XMetaL to code the books, but opening a plain text file in XMetaL will generate
errors, so I recommend opening the file in NoteTab first and then copying and
pasting the file into XMetaL.

Here are the steps you should follow when starting a new cookbook:

1) Record on the cookbook progress sheet that you have begun coding the
cookbook. There is a spreadsheet in K:/cookery/spreadsheets/ called
cookbookprogresssheet.xls, which Stephanie created to track the progress of all
the books in the project. When you begin coding a cookbook, please find your
book in the list of cookbooks and add your name in the "Coded By" column,
followed by "in progress" (to let Stephanie know that the book is not complete,
but still being coded). If you have picked up a coding project where someone
else left off, just add your name next to theirs in the "Coded By" box.

2) Open the text file for the book in NoteTab Light. All text files should be in
K:/cookery/xml in progress/. If you have trouble locating the text file for any
book, ask Stephanie for assistance.

 3

3) Open the metadata template in NoteTab Light. The metadata is a section
of text that is used to catalog the book online. Because the information entered
into the metadata is basically the same for all books, Ruth Ann has created a
template for this portion of the coding that can simply be pasted in at the
beginning of the text. The template has been saved as a text file and is located
here: K:/cookery/xml in progress/metadata.txt.

4) Copy and paste the metadata template into the text file for the book.
Copy the whole of the metadata from the metadata.txt file (you can "select all"
by pressing Ctrl+a, and copy with Ctrl+c), then paste the text you have copied
into the very beginning of the book text file. Make sure you paste it in before
the first page break—otherwise this will cause problems later!

5) Copy the file which now contains both the metadata and the book. I
would recommend using Ctrl+a again.

6) Open XMetaL. There should be a shortcut on your desktop; if not, use the
Start menu to open it. The file path (through Start) is
Programs SoftQuad Applications XMetaL 2.0.

7) Create a new file in XMetaL. Use the "New..." command from the "File"
menu at the top of the screen. XMetaL will then prompt you to choose which
type of new file you would like to create; choose "Blank XML Document" from
the two options listed. (If "Blank XML Document" does not appear on the
screen, make sure you are in the "General" tab of the "New" document window.)

XMetaL will then prompt you to "Choose a DTD or Rules File." There should be a
file called cookbook.dtd (the file extension may not display on your computer—
in that case, you want the file named cookbook, not cookbook.rlx) in the
window that pops up. Double click on this file.

XMetaL will now display a blank white screen, at the top of which is a line of text
which looks something like this:
<?xml version="1.0"?>
<!DOCTYPE cookbook SYSTEM "C:\Program Files\SoftQuad\XMetaL
2\Rules\cookbook.dtd">
This is the DOCTYPE declaration for the document. Leave this text in the file,
but move the cursor past it—you may want to hit enter a couple of times to
leave yourself space between it and the cursor. Then

8) Paste the metadata/book file into XMetaL. There should be three things in
the file you have created: the DOCTYPE declaration at the top, the metadata,
and the text of the book, in that order.

9) Wrap the <cookbook> tag around the entire book. By entire book I mean
everything but the DOCTYPE declaration—so the cookbook tag should wrap
around everything from the opening <meta> tag in the metadata to the very
end of the book (usually a <pb type="back cover">). The Element List in
XMetaL works much like the clipboards in NoteTab Light—if you double click on a
tag, the tag will be inserted wherever the cursor appears, or (if text is
highlighted) around a chunk of highlighted text. The Element List should appear
in the lower right-hand corner of your screen in XMetaL; if it does not appear,
click on View, then Element List. It would be a good idea to turn the Attribute

 4

Inspector on as well, which is done in the same manner. I would recommend
either typing in the <cookbook> tag yourself (<cookbook> at the beginning,
</cookbook> at the end of the file), or pasting in both the opening and closing
tags by double-clicking "cookbook" in the Element List and then moving the end
tag to the end of the document. Highlighting the entire book from metadata to
back cover would simply take too long. (The "select all" command does not work
in XMetaL.)

10) Save the file as "[bookcode].xml", "[bookcode]" meaning the four-letter
code assigned to that book. You should save the file in the directory
K:/cookery/xml in progress/.

CODING THE WRAPPER ELEMENT <cookbook>

Before you move on to coding the metadata and the text of the book, you need to
define some attributes for the <cookbook> tag. The following two tables provide
information about these attributes and how they are used.

ATTRIBUTES ESTABLISHED FOR THE WRAPPER ELEMENT
<cookbook>

type=

Required. This contains general categories which can
characterize an entire cookbook, a chapter or section, or
(infrequently) individual recipes or formulas. Allowed
values are general, charity, famous, frugal, restaurant,
invalid, histperiod, and encyclopedia. See Table 3 for
definitions.

chefschool=
Optional, but should be used if a cookbook is identified as
type=famous. Fill in the name of the chef or cooking
school.

histperiod=

Optional, but should be used if a cookbook is identified as
type=histperiod. Fill in the name of the historical period
(such as "Temperance movement" as given in the
cookbook.

class1=

Required. These are categories for foods and other types
of activities described in the cookbooks. Allowed values
are fruitvegbeans, meatfishgame, eggscheesedairy,
breadsweets, soups, accompaniments, beverages,
generalfood, menus, medhealth, household, farmgarden,
childrear, etiquette, restaurant, servants, marketing,
generalnonfood, foodandnonfood. The values shown in
italics will probably be the ones used most often at this
level, when you are describing an entire cookbook.
However, some books will have focus on certain types of
foods and one of the other values will be appropriate. The
same values are used for individual recipes. See the
Coding Recipes section for definitions.

 5

class2=
Optional. Same allowed values as class1; use this if
necessary to represent a secondary focus of a particular
cookbook.

region=

Required. If a recipe is identified with a specific place or
region in the U.S. or with a particular ethnic group, use
this attribute. Allowed values are northeast, south,
midwest, west, ethnic, and general. Use the U.S. Census
map to decide which region a place is in.

subregion=
Optional but should be used if the region= attribute is
used. Fill in the more specific region as identified by the
cookbook.

ethnicgroup=
Optional, but should be used if a cookbook or portion of a
cookbook is identified as <element region="ethnic">. Fill
in the name of the group as identified in the cookbook.

occasion=

Optional. If a cookbook is identified with a special
occasion, use this attribute. Allowed values are
Thanksgiving, Christmas, wedding, birthday, patriotic,
spring, summer, fall, winter, other.

bookID=
Required. The bookID consists of the year of publication
followed by the four-letter ID code of the book.

VALUES FOR THE TYPE= ATTRIBUTE OF THE WRAPPER ELEMENT
<cookbook>

"general"
General works that do not fall into one of the special
categories listed below.

"famous"

Cookbooks by a famous chef (Julia Child, Fannie Farmer)
or produced by a well-known cooking school. The list of
famous chefs for this project is: Child, Hale, Randolph,
Leslie, Beecher, Harland, Corson, Farmer, Lincoln, Parloa,
and Rorer. If you code a book by one of these authors,
choose type="famous" and put the chef's and/or school's
name in chefschool=

"charity"
Cookbooks produced by church or community groups for
fundraising.

"frugal"
Works on cooking economically or using inexpensive
ingredients.

"restaurant" Works featuring large-scale recipes for restaurants.

"invalid"
Works on cooking for invalids or treating various
conditions through diet (e.g. diabetes cookbooks).

"histperiod"

Works based on the cooking of a specific historical period.
Put the name of the period in the attribute histperiod=.
For example, a Civil War cookbook:
<cookbook type="histperiod" histperiod="Civil War">

 6

"encyclopedia"
Works organized as a dictionary or encyclopedia: that is,
articles arranged alphabetically by topic.

THE MAJOR STRUCTURAL ELEMENTS OF A COOKBOOK

A <cookbook> consists of four sections:

<meta> metadata, expressed as Dublin Core elements: required

<front> frontmatter: required

<body> main body of book: required

<back>
backmatter: not required, but normally it will be used at least
minimally to hold the <pb> reference for the back cover image

The metadata, as I have already mentioned, is a portion of the file that we use in
cataloging our digital texts online. No, you don’t have to worry about what Dublin
Core elements are (but if you’re interested, you can ask Ruth Ann). The only thing
you have to do with the metadata is paste in the template and follow Ruth Ann’s
instructions for filling the content of the elements within <meta>.

The frontmatter consists of any pages that fall before the main body of a book
begins; this includes front covers, title pages, copyright statements, tables of
contents, introductions, and the like.

The body, or main body of the book, is (I hope) fairly self-explanatory. This is
where all the real content of a book lies—recipes, general chapters, etc.

The backmatter is similar to the frontmatter, only it falls after the main body of the
book. Indexes, appendices, advertisements, and the like commonly appear within
the backmatter (though it is not usually as extensive as the frontmatter).

If you ever need clarification about where a book’s frontmatter, body, or
backmatter begins or ends, please ask Stephanie or Ruth Ann.

CODING THE METADATA

After you code the cookbook tag, move on to the <meta> template portion of the
code. The tags within <meta> each begin with a dc, such as <dcTitle> and
<dcContributor>. The data that goes into these fields will be used for cataloging
the book, so accuracy is absolutely essential when coding this portion of the
book. You will be entering most of this information manually, and it won’t be

 7

checked for spelling errors after you finish. Typos make our department look
sloppy, so please be careful!

That said, coding the metadata is actually quite easy. If you look at the metadata
in XMetaL, a large portion of the text in the template will appear in purple. This is
because that text appears in comment tags (<!-- -->). These tags are useful
because any text within comment tags will be ignored by XMetaL during rules
checking and document validation; its presence will not affect the code at all. It
will also be ignored by web browsers. Comment tags, then, are a useful way for a
coder to leave him or herself notes and reminders within the text without
interfering with the text or coding at all. Ruth Ann has used them in the metadata
template to provide instructions for completing each of the elements within
<meta>. To code the metadata, all you need to do is follow her instructions. After
entering the proper information, delete the comment tags (no purple text should
remain when you are finished). If you have any questions concerning the
metadata, see Ruth Ann.

STRUCTURAL ELEMENTS OF THE FRONTMATTER AND BACKMATTER

Divide the <front> and <back> of each book into <div> sections based on their
content. Each <div> must have a type attribute indicated. Allowable values are:
advertisement, appendix, backcover, contents, copyrightstmt, dedication,
frontcover, glossary, halftitlepage, illustration, introduction, index, preface,
titlepage, and other. Be sure to include page breaks within the <div> tag where
appropriate. Keep in mind, also, that you may have more than one <div> on a
single page.

This list is meant to be fairly comprehensive, so don't use "other" unless none of
the other values fit at all. For example, an editor's note is pretty similar to a
preface, so tag it as "type=preface." Use "type=contents" for lists of illustrations,
figures, and other special items as well as the usual table of contents. Tables of
weights and measures that appear as a reference in the front or back of the book
may be coded as "type=appendix," whether or not they are labeled as one. (This
does not mean that you should never use "type=other," however. I have used it
quite regularly to mark blank pages and inscriptions, for example. Just think of it as
a last resort.)

If necessary, a <div> can be divided into <subdiv> elements. However, it shouldn't
be necessary very often. An exception might be a lengthy introduction that is
divided into two parts, each with its own heading. Normally, the paragraph tag <p>
will be all you need within a <div>.

 8

GENERAL FORMATTING ELEMENTS

Within a <div> or <subdiv> in the front or backmatter, and also within a
<chapter>, <section>, or <subsection> within the main body of the text (which
will be explained later), the following elements may be used to markup the text.
Some of these, such as <p>, <pb>, and <emph>, you should already be familiar
with. Others, such as <lb>, <ref>, and <table>, you may not recognize. I will
provide more detailed instructions on how to code the more complex of these
elements (particularly <table> and <list>), but most are fairly self-explanatory.

<p> Paragraph: to subdivide <recipe> or <formula>, as needed.

<pb>
Page break. Follow the same rules as for other typing
projects, i.e. <pb n="pagenumber" id="book079.jpg">

<hd> Heading. Use for the titles of chapters, sections, etc.

<lb>

Line break. Can be used any time there are special line
breaks, as on the title page. Keep in mind that hitting
"enter" to break a line in XMetaL will not tell the web
browser to display a line break at that point; the <lb> tag
must be there for the line to render correctly.

<emph>
Use only for linguistic emphasis (see notes on formatting for
explanation).

<alt>

Originally intended to give the 20th century equivalents of
archaic terms, the use of the <alt> tag has evolved over
the course of the project. It is now used to correct typos
that appeared in the original text, and also to insert text
into recipes to facilitate easier searching of the collection. A
detailed section on how to use the <alt> tag appears later
in this document.

<term>

May be used within <p> to indicate a term being discussed
in an encyclopedic cookbook. It is preferable, however, to
use <term> within <list> to markup glossary entries that
do not contain multiple paragraphs.

<definition>
May be used within <p> to mark the first paragraph of an
entry in an encyclopedic cookbook. Like <term>,
<definition> should be used within <list> when possible.

<ref>

Use to create an internal link within the document via target
and id pairs, which will be explained later. The <ref> tag is
used most often to indicate a footnote within the text, or to
create links to pages from an index or table of contents.
More information will be provided about both footnotes and
indexes later in this document.

<list>
Use to indicate a list of items—common examples of lists in
the cookbooks project would be menus and lists of
ingredients.

 9

<table>

Use to indicate a table within the text—i.e., text arranged
in multiple rows and columns. Do not use the <table> tag
to represent columns that have been created simply to
preserve space on a page—e.g. indexes, menu items, or
lists of ingredients arranged in multiple columns. These
should be coded with the <list> tag.

<illustration>
Use to indicate an illustration within the text. More
information on coding illustrations will be provided later in
this document.

<gap>
Use to indicate text that is missing or completely illegible.
More notes on how to use the <gap> tag appear later in
this document.

<unclear>

Use to indicate text that is clearly visible but difficult to
accurately transcribe, such as a handwritten inscription.
See the section on "WHEN TO USE <gap> AND
<unclear>" for further explanation.

<attribution>

Use to indicate a section of text that is attributed to
someone other than the editor or author of the book being
tagged. The <attribution> tag should go around the
attributed party’s name, whether it be a person, an
organization, or the title of another book. This tag should
be used almost exclusively within <recipe> (see Low-Level
<recipe> Elements chart in the Coding Recipes section),
but may be used elsewhere as well.

ARRANGING THE TEXT WITH FORMATTING ATTRIBUTES

Within most of the cookbooks in our collection, and within the front and backmatter
of those books especially, text is arranged in various styles and page alignments to
improve the appearance of the book. When coding, we want to preserve the
original appearance of the book in our electronic text to the best of our ability. To
this end, all of the tags in the cookbook tagset include attributes that allow you to
change the way the text appears on the page.

FORMATTING ATTRIBUTES THAT OCCUR IN MOST ELEMENTS IN
THE COOKBOOK DTD

align= Allowed values are center, right, indent1, and indent2.

rend= Allowed values are bold, italic, and ornate.

size=
Allowed values are larger and smaller. (This means larger or
smaller than the text immediately surrounding the tagged
text.)

placement=
Allowed values are heading and inline. Heading means on a
line by itself. Inline means not on a line by itself, like the
text in a paragraph.

 10

height=

This is an attribute available only in <ref>, used mainly for
formatting footnote marks (but it may be used anywhere
you find a superscript or subscript within the text). Allowed
values are subscript (below the line of text) and superscript
(above the line of text).

Although the <emph> tag may be used to add these attributes without the use of
any other tag, it is preferred that we streamline the coding by adding them to other
elements and deleting the <emph> wherever possible. Thus, formatting is often
defined within other tags, such as <p>, <hd>, <doctitle>, etc.

For example, here is a piece of an advertisement from Mrs. Lincoln’s Boston Cook
Book:

The coding for this advertisment looks like this (codes are displayed in bold):

<p>The <emph rend="bold">GARLAND OIL STOVE</emph> is one of the wonders of
this progressive age. Its power and capacity for cooking and heating purposes
is almost unlimited. With the No. 3 stove, shown in the cut, all the cooking
of an ordinary family can be performed with ease. <emph rend="bold">Boiling,
Baking, Broiling, and Heating Flatirons</emph> can be done satisfactorily,
and without the heat, dust, smoke, and dirt of a coal fire. With the addition
of a heating drum the Garland will warm a large room in winter. Thousands of
families can speak in praise of the GARLAND OIL STOVE.</p>

<p>Send for descriptive circular.</p>

<p align="center" rend="bold">BARSTOW STOVE COMPANY,<lb/>
56 Union Street, Boston.</p>

Where all text within a paragraph could be considered bold, I coded the bold
attribute within the paragraph tag. (Note that, if you put a formatting attribute
inside a larger tag, all text within that tag will be formatted according to that
attribute.) However, for text within a paragraph that is emphasized but otherwise
unremarkable, it is necessary to use the <emph> tag.

Note that "rend=" is a required attribute for the <emph> tag; thus, <emph>
cannot be used to code text alignment or size only. Any text surrounded by an
<emph> tag must be either bold, italicized, or ornate text.

 11

Although it is good to be as accurate as possible when formatting text, there is no
need to get too picky about text size and alignment if the tags just won’t
accommodate the original page formatting. Particularly in advertisements and on
title pages, text sizes and alignments often vary more widely than our code does.
Notice that I did not code the BARSTOW STOVE COMPANY text as size="larger";
this is because there was a block of text on the same page that was much bigger
than that particular line, so I just didn’t bother. Ultimately, we only have three
different sizes of text; keep this in mind as you are coding, and feel free to ignore
spots that are too troublesome. I often brush over the fine details of the page in
order to make the coding more efficient, particularly in places where lines with
similar formatting can be grouped into paragraphs and broken with <lb/>.
The rundown:

Text in any tag defaults to left alignment.

align="center" Centers the text.
align="right" Moves the text to the right side of the page.
align="indent1" Indents a line of text one tab space over. (A tab space that is

typed in will be ignored by the browser, and the text will appear
left-aligned as normal.)

align="indent2" Indents a line of text two tab spaces over.

rend="bold" Makes the text bold.
rend="italic" Makes the text italic.
rend="ornate" Changes the typeface of the text to an ornate style.

size="larger" Makes the text larger than the surrounding text.
size="smaller" Makes the text smaller than the surrounding text.

There is one more formatting attribute that is included in all tags, and that is
"placement=". The placement attribute can be used to offset headings without
using the <hd> tag. Thus far in the project, it has been used almost exclusively to
offset headings within a <recipe>, for reasons that will be discussed in the section
on coding recipes. You may use it in other areas of the cookbook as well, but be
sure you understand what it does before you try.

The "placement=" attribute has two possible values:

placement="heading" Takes an element contained within a larger structural element
(usually <p>) and moves it to a "heading" position—that is,
separates it from the other text inside the larger element by
putting it on its own line and adding a blank line between it and
the rest of the text. May be used with any smaller element
within <p> (although using it with <hd> would be redundant).

placement="inline" Takes a heading (<hd>) contained within a paragraph (<p>)
and restrains it to an "inline" position, so that the text may still
be recognized as a heading without being placed on its own line
above the rest of the paragraph.

 12

Note that the "placement=" attribute is designed to format elements that are
contained within a larger structural element—not within elements that are
themselves larger structural elements. A tag containing the 'placement="heading"'
attribute will only be offset if it is surrounded by text to be offset from. If the
attribute is used in a place that would be offset normally anyway, it would be
redundant and unnecessary. The <p> and <hd> tags are automatically set apart
from the surrounding text, so a 'placement="heading"' attribute in either of these
tags is unnecessary. The 'placement="inline"' attribute would also never be
necessary within <p> (since you cannot have a <p> within a <p>, and remember,
this is only for elements contained within a larger structural element), but may be
used with a <hd> inside a <p> if the headings in your book are not offset from the
surrounding text.

The use of the "placement=" attribute inside recipes and formulas will be discussed
in a later section.

A NOTE ON SPACING

As mentioned in the description of the <lb> tag, simply hitting "enter" to break a
line in XMetaL will not create a line break when the document is viewed in a web
browser. Likewise, hitting the spacebar more than once will not add extra blank
spaces to a line of text; only one blank space will be displayed when the document
is viewed online, even if you hit the spacebar ten times in a row. This is because
web browsers, when displaying coded documents such as the ones we are creating
in this project, ignore all extra whitespace—that is, all characters that appear as
blanks on a display screen or printer, including the space character, the tab
character, and carriage returns (line breaks).

To create a line break in the middle of a line, as already explained, you need to use
the <lb> tag; but to create extra spaces (as though you had hit the spacebar more
than once) in the middle of a line, you will need to use a special character code.
The code for a single blank space is —non-breaking space. If you need to
make a long line of blank spaces, you can intersperse the character code with
regular space characters—the web browser will read one space character between
two other characters normally.

Normally, creating a long string of blank spaces is not very important in the
cookbook coding—but it can come in handy when you are coding tables of contents
or indexes that have a lot of quotation marks you would like to line up with the
words above them, for example.

 13

CODING TITLE PAGES AND OTHER FRONT AND BACKMATTER

Title pages vary widely in terms of formatting and content, but they all contain
three basic elements: the title, author, and imprint (publisher’s information) of the
book. Ruth Ann has created three special tags to code these chunks of text only on
the title page of the book: <doctitle>, <docauthor>, and <docimprint>. Be careful
not to forget these tags; it’s easy to overlook them, since you only use them once
in any given book. Any other text on a title page should be placed in <p> tags, only
adding attributes to accommodate formatting. Illustrations, of course, may be
coded as normal.

Indexes, tables of contents, and glossaries should be coded as lists, with target and
ID pairs and <term> and <definition> tags where appropriate. I have included
more detailed instructions on how to code these in a later section.

Any pages in the front and backmatter that contain nothing but a stamp, bookplate,
or other information that has been added by the library may be coded as a blank
page. If a stamp or bookplate from the MSU libraries appears on the same page as
a chunk of meaningful text, just ignore it. (Delete it if it’s been typed.)

Other pages in the front and backmatter are coded almost exclusively in <p> and
<hd> tags, with added formatting where appropriate.

THE BODY: STRUCTURAL ELEMENTS

The <body> structure, like front and backmatter structure, is also limited in the
number of text division levels. The body can be divided into chapters, which can be
divided into sections, which can be divided into subsections.

It is not necessary to use all of these levels; only use as many as necessary to
reflect the actual structure of the book. The DTD allows the <recipe> element to be
located immediately within the <body> element or within <chapter>, <section>, or
<subsection>. For example, Thomas Bullock’s The Ideal Bartender has no chapter
divisions at all, simply a title page and a series of recipes, so the <recipe>
elements would be placed immediately within the <body> element.

This means the following structures are possible, from simplest to most layered:

<cookbook>
 <meta></meta>
 <front></front>
 <body>
 <recipe></recipe>
 </body>
</cookbook>

 14

<cookbook>
 <meta></meta>
 <front></front>
 <body>
 <chapter>
 <recipe></recipe>
 </chapter>
 <chapter>
 <recipe></recipe>
 </chapter>
 </body>
</cookbook>

<cookbook>
 <meta></meta>
 <front></front>
 <body>
 <chapter>
 <section>
 <recipe></recipe>
 </section>
 <section>
 <recipe></recipe>
 </section>
 </chapter>
 </body>
</cookbook>

<cookbook>
 <meta></meta>
 <front></front>
 <body>
 <chapter>
 <section>
 <subsection>
 <recipe></recipe>
 </subsection>
 <subsection>
 <recipe></recipe>
 </subsection>
 </section>
 </chapter>
 </body>
</cookbook>

 15

WHEN TO USE THE "CLASS=" ATTRIBUTE FOR <chapter>, <section>, and
<subsection>

The "class=" attribute (for possible values, see Coding Recipes section) is optional
for the <chapter>, <section>, and <subsection> elements. As of May 2002,
"class=" should be used only for the smallest of these three elements in use in a
particular book or portion of a book whenever possible. Theoretically, this will avoid
having the search engine produce duplicate search results. So:

If you have a <chapter> with no smaller divisions, you must assign a "class="
value to that chapter. Because the attribute is optional within <chapter>, rules
checking will not warn you if you forget, so please be careful. Omitting the "class="
in this case will make the information contained in that chapter more difficult for
visitors to our website to find.

If you have a <chapter> that is divided up entirely into <section>s—this means all
of the text within the chapter is contained in <section> tags, not just occasional
portions of it—you must assign a "class=" to each of the sections, and you should
not assign a "class=" to the <chapter>. Once again, be very careful not to omit the
"class=" values in the <section> tags. It’s up to you to notice if they’re missing.

If you have a <chapter> that contains mostly recipes but also the occasional
<section>, you should assign a "class=" value to both the <chapter> and the
<section>s contained within that chapter. This is done to ensure that all of the text
within the <chapter> has been classified in some way or another, and is also
classified in as much detail as possible (i.e. in the smallest portions possible).

The above rules apply to the <section>/<subsection> level of coding as well.

THE BODY: RECIPES AND FORMULAS

Within the <chapter> or <section> or <subsection> elements (which hold
the major portions of the text) the majority of the text should be tagged as one of
three types:

<recipe>
Directions for making something edible, and intended as a
food or beverage. This category does not include medicines
taken internally.

<formula>
Directions for making something non-edible (or not intended
as a food or beverage), such as laundry starch, fabric dyes,
or medicines.

 16

<p>

General commentary that is not part of a recipe or formula,
such as advice on how to choose foods in the marketplace,
foods that go together well, table manners, etc. Some of the
books will also have extensive sections on other domestic
matters such as childrearing, care of invalids, advice on
household management, etc.

Some recipes and formulas will contain more than one paragraph, and (as one
might expect) these are indicated with <p> tags. However, although many recipes
are complete in a single paragraph, these must also have a set of <p> tags
immediately within the <recipe> tags.

Although this is somewhat repetitive, it serves two purposes. In order for the style
sheet to produce a consistent screen display, the coding also needs to be
consistent, whether a recipe has one paragraph or two. This means we must either
use the extra <p> tags, or have no <p> tags at all within recipes and use <lb> or
some other construction to indicate a second or third paragraph. Since the typists
are already inserting <p> tags, the first choice makes more sense.

CODING RECIPES AND FORMULAS

(Note: I have included a number of sample recipes and their coding at the end of
this packet; if you wish, you can refer to them as you read through this section.)

When you first identify a recipe or formula--which can be ANY set of concrete
instructions on how to make, preserve, construct, clean, exterminate, etc. anything
at all--the first thing you must do is enclose it in <recipe> or <formula> tags.
After you have added the tags themselves, you MUST define a "class1=" value for
each recipe, and a "class=" value for each formula. Recipes may have a second
class ("class2=") as well, but formulas have only one. Class values must be chosen
from the following list (which, incidentally, is the same list of options used for the
<cookbook>, <chapter>, <section>, and <subsection> tags):

DEFINITIONS OF "CLASS=" VALUES FOR FOOD TOPICS

"fruitvegbeans"

Preparing and preserving fruits, vegetables, beans,
and legumes of all kinds; proper storage conditions;
nutrional value of these foods. This includes
mushrooms and nuts.

"meatfishgame"

Preparing or preserving beef, lamb, mutton, poultry,
seafood, and wild game such as venison, squirrel,
buffalo, etc. Include organ meats such as kidney,
brains, tripe, etc. Also, storing these foods;
nutritional value of these foods.

 17

"eggscheesedairy"

Making cheese or other dairy products (i.e. yogurt)
and recipes which have eggs, cheese, or dairy
products as the major ingredients (i.e. puddings,
creams, custards, quiche). Also, storing these foods;
nutritional value of these foods.

"breadsweets"

Breads, cereals, grains, baked goods, and pasta:
crackers, muffins, tarts, pies, cakes, pancakes,
oatmeal, rice, macaroni, etc. Also, sweets or
desserts even if they are not baked, such as fudge,
boiled sugar candies, icings for cakes, ice cream, etc.
Also, storing these foods; nutritional value of these
foods.

"soups"

Soup recipes. This category takes precedence over
"fruitvegbeans" and "meatfishgame" -- i.e.
asparagus soup goes here, not in "fruitvegbeans";
beef broth goes here, not in "meatfishgame". Also,
storing these foods; nutritional value of these foods.

"accompaniments"

This category encompasses foods meant to season
or flavor other foods, or which are used in the
preparation of other foods, rather than being eaten
alone. This includes recipes for sauces, jams and
preserves, and condiments such as mustard or
pesto, as well as directions for using or preparing
herbs or spices. Yeast is also classified under
"accompaniments." Also, storing these foods;
nutritional value of these foods.

"beverages"

Anything meant to be drunk instead of eaten. Milk
or eggnog goes here, not in "eggscheesedairy."
Fruit juice goes here, not in "fruitvegbeans." Also,
storing these foods; nutritional value of these
foods.

"marketing"

Advice on how to choose items at market, or
descriptions of articles found at market; for
example, an explanation of the different cuts of
meat offered for sale in a marketplace, or
instructions on how to choose the best ears of corn
from market.

"generalfood"

Applies only to <cookbook>, <chapter>, and
<section>. This is to be used when two or more
categories are covered by the material. Most
cookbooks will be class1="generalfood" because
they cover all types of food.

"menus"

Restaurant menus, "bills of fare" and other portions
of text that list foods that go together well. This can
only be used with <cookbook>, <chapter>, or
<section>.

 18

"medhealth"

Foods and beverages prepared especially for
invalids, infants, or small children, but that are not
medicinal and may be eaten even by those in good
health.

DEFINITIONS OF "CLASS=" VALUES FOR NON-FOOD TOPICS

"medhealth"

Information about health, nutrition, hygiene, beauty,
or care of the sick, infants, and small children.
Examples might include: "a tincture for mouth and
gums" (i.e. toothpaste), "tonics" or nutritional
supplements like cod liver oil, or poultices for dressing
wounds.

"household"

Information about household management. Examples
of <formula> under this category would include
directions for preparing things like laundry starch or
fabric dyes.

"farmgarden"

Anything related to the raising of food or livestock.
Examples might include advice on caring for an
orphaned calf or making a spray to ward off potato
beetles.

"childrear" Advice on raising children.

"etiquette"
Advice on good manners, how to behave in social
situations, directions on hosting parties, etc.

"restaurant"
Advice on managing a restaurant or hotel, or (in the
case of Tunis Campbell) training employees of a
restaurant or hotel.

"servants"

Use this for topics concerning servants in private
homes. Hotel employees should be listed under
"restaurant" (because that is actually shorthand for
"restaurants and hotels".)

"generalnonfood"
Anything that doesn't fit in one of the categories
above.

And, a very general category, probably only applicable at the
<cookbook> level:

"foodandnonfood"

For those encyclopedic works that address many sorts
of foods and many sorts of noncooking topics such as
gardening, nursing the sick, organizing household
work, etc.

If in doubt as to which class a recipe, chapter, section, subsection, or cookbook
should be placed in, use the following rules as a guideline:

 19

a) Classify according to the nouns in the recipe title, not the adjectives. For
example, should "bread pudding" be classed as "breadsweets" or "eggscheesedairy"
? The noun in this case is "pudding" which is basically the eggs-and-milk part of the
recipe. Therefore, classify this in "eggscheesedairy."

b) If that doesn't work, look at the ingredients. Classify according to what seems to
be the "biggest" ingredient in the recipe.

We are trying to use the class2= attribute as seldom as possible when coding these
books; in most cases, you should be able to narrow down the class value for any
particular recipe into a single class. If you feel you must, however, go ahead and
assign a class2. Here are some cases where class2= values have been assigned
that we would like to keep consistent:

• Meat pies, or pastries containing meat: assigned a class1="breadsweets"
and a class2="meatfishgame". Hopefully this will narrow the search for
people looking specifically for meat pies as opposed to fruit pies.

• Sandwiches: assigned a class1="breadsweets" and a class2= which is
dependent on the type of filling used in the sandwich. An egg salad sandwich
would have a class2="eggscheesedairy"; a ham sandwich would have a
class2="meatfishgame".

• Medical recipes: Any recipe that makes a food intended for invalids, the
elderly, infants, or small children (but which could be eaten by people in
good health) should be classified with a class1= to match the type of food
the recipe makes and a class2="medhealth". These will not always be made
obvious by the recipe title alone; for example, you may have a recipe for
lemonade which contains a side note reading "This is a pleasant and cooling
beverage in fevers." If a comment like this appears anywhere in the recipe,
add a class2="medhealth".

• Any recipe which is titled "______ and ______" (for example, "pork and
beans" or "spinach and eggs") should be coded with a class1= to match the
first item and a class2= to match the second, assuming both items are
equally important to the recipe and are used in approximately equal
proportions. "Pork and beans" would have a class1="meatfishgame" and a
class2="fruitvegbeans"; "spinach and eggs" would be class1="fruitvegbeans"
and class2="eggscheesedairy." Do not bother to assign a second class if the
second item is used only as a garnish, however.

In any kind of classification system, there always will be differences of opinion
about what category a certain thing should go in; this is normal and to be expected.
Try to be consistent, but don't agonize over individual recipe classifications.

Before moving on to further tagging within the recipe, you should also check for
other attributes that are unique to the recipes. These include:

 20

ATTRIBUTES WITHIN THE <recipe> TAG

region=

Use if the recipe comes from a specific region. Acceptable
values are "west", "midwest", "south", "northeast", and
"ethnic". (Don't use region="ethnic" at the recipe level,
however; using the "ethnicgroup=" attribute for an ethnic
recipe will be sufficient.)

subregion=
If the "region=" value is not descriptive enough, you may
add a subregion (perhaps a state name). You may type
whatever is appropriate in this field.

ethnicgroup=
If the recipe is ethnic, enter an ethnicgroup. You may type
whatever is appropriate in this field.

occasion=

Use when a recipe is meant to be prepared for a specific
occasion or season. Acceptable values are "Thanksgiving",
"Christmas", "wedding", "birthday", "patriotic", "spring",
"summer", "fall", "winter", "other". A recipe for Election
Cake, for example, would go under "patriotic", while a
recipe for Lent would be labeled as "other".

alcoholic=

This attribute applies only to beverages. Acceptable values
are "yes" or "no", but you should only use this tag to mark
alcoholic beverages, and always choose "yes". "no" is only
there for the sake of contrast.

id=

Use only if each recipe has its own number that is referred
to in the index of the book. You may type whatever you
wish in this field as long as each id= value is unique (you
should probably use a scheme such as "r001", "r002",
etc.), and then use these values to create target and id
pairs when coding the index. This will link the numbers in
the index to the individual recipes, not just to page
numbers.

Some of the cookbooks, such as the Great Western Cook Book or Aunt Babette’s
Cook Book, will contain recipes that all need to be coded as a certain region,
ethnicgroup, etc. In these cases, you may want to leave yourself a note at the end
of the file reminding yourself to do a find and replace on the string "<recipe " to
paste these attributes in automatically; it will save you some time. Be careful,
though, since even certain regional and ethnic cookbooks may contain recipes that
are not from the same region or ethnic group as the majority of the cookbook; for
example, if you were coding a Northeastern cookbook and came across a recipe
that claims to be "a Southern dish", you would code it as <recipe region="south">,
NOT <recipe region="northeast">. Also, if the title of a recipe includes an
ethnicity--"German Waffles", for example--it is acceptable to include that ethnicity
as an attribute (<recipe ethnicgroup="german">). Do NOT use the titles of recipes
to assign regions, however--a recipe for "New Jersey Potatoes" would NOT be coded
as <recipe region="northeast">.

 21

After adding the appropriate attributes to a recipe tag, you may begin coding the
lower-level elements which appear within <recipe> and <formula>. These
elements are as follows:

LOW-LEVEL ELEMENTS FOR MARKING UP RECIPES AND
FORMULAS

<purpose>

This is the title of the recipe or the statement of what
the directions will produce. In older cookbooks, this is
often located in the first sentence: "To make a bread
pudding..." In later cookbooks this is usually a heading
located before a list of ingredients. When the
<purpose> appears as a heading on the page, use
<purpose placement="heading">. (Don't "double-tag"
it as <purpose><hd>Chocolate
Cake</hd></purpose>)

<process>

(ignore) This would be used for verbs: braise, boil, etc.
Use this very sparingly, for actions that are uncommon
in 20th century cooking. Don't tag words like "stir" or
"roast." Do tag words or phrases like "let the batter
sweat overnight".

<ingredient>

(perl) This would be used for ingredients in a recipe or
the items used to make a formula: things like madder
root or walnut hulls would be ingredients for a fabric
dye formula.

<implement>

(perl) Objects used to perform some action in a recipe
or formula. Ignore common items like spoons, bowls,
pots and pans. (This tag may also be used outside of a
recipe or formula.)

<measurement>
(ignore) Use this to flag unusual measurement terms
such as gill or teacup-full.

<contributor>
Use in church and charity cookbooks when contributors
of individual recipes are listed.

<attribution>

Use when a recipe is attributed to someone else
besides the editor or author of the book being tagged.
<attribution>"This is based on Julia Child's recipe for
boiled turnips."</attribution> Use this tag only when a
person’s actual name is mentioned in the recipe; do not
use it to tag phrases such as "A gentleman from
Missouri" and the like. You may also use it to tag the
names of organizations or titles of books accredited
with any given recipe. (This tag may also be used
outside of a recipe or formula.)

variation
Use for variations on a recipe. Usually this means an
instruction to follow the same cooking directions and
set of ingredients but with one or two substitutions.

As you may have noticed, two of the tags (<process> and <measurement>) have
an ignore note at the beginning of their description. This is because, due to time

 22

constraints, we will not be coding these two features of the cookbooks (although we
are making an attempt to keep track of the types of obscure processes and
measurements that come up in the books, which will be explained later).
Therefore, do not code processes or measurements within the recipes.

Also, two more tags (<ingredient> and <implement>) have a perl note in their
descriptions. Because it would be both exhausting and time-consuming to attempt
to tag every ingredient and implement in every recipe by hand, we have created
two different perl scripts to tag these elements for us. Because the perl scripts are
dependent on the major structural tagging already being present in the file before
they are run, you will have to code each book in three different stages: once to put
in the major structural tags, once to check the ingredient coding within recipes and
formulas, and once to check the implement coding. I will describe to the two latter
stages of coding in a later section. For now, however, just concentrate on the
<purpose>, <contributor>, <attribution>, and <variation> tags, which are added
in the first stage of coding.

The descriptions above should be sufficient to explain the use of the <attribution>
and <contributor> tags. <purpose> and <variation>, on the other hand, can
cause a certain amount of confusion when you first begin coding. For that reason, I
will provide a little more elaboration on those two tags here.

The <variation> tag, as stated above, encloses an alteration of a recipe that
consists of the same set of instructions, but with one or two substitutions.
Sometimes it is difficult to tell what actually constitutes a variation; some are
obvious, and some are a little more subtle. You will have to use your own
judgment on what you code as a variation and what you don’t, but here are a few
suggestions on how to decide:

Anything that produces an end product that is different from the originally stated
purpose of the recipe is definitely a variation. For example, if you come across a
recipe for strawberry pie, and in the final paragraph there is a sentence that reads
"For raspberry pie, use raspberries," that final sentence would be coded as a
variation. In this type of variation, you may also define a second purpose to reflect
the end product of the variation (as opposed to the recipe): in this case, "raspberry
pie" would be the purpose of the variation.

Anything that substitutes one or two ingredients for another ingredient in the recipe
may be coded as a variation, whether the end product of the recipe changes or not.
(If the end product of the recipe does not change, defining a second purpose is not
necessary.)

If you come across a statement suggesting an addition or substitution to the recipe,
such as "You may add lemon juice if you like" or "The nuts may be omitted," you
don’t really need to code it as a variation. I generally don’t bother tagging such
simple alterations as these. However, if you feel the alteration changes the recipe
a great deal, you may tag them—it’s your call.

 23

As for the purpose tag—as you have already read, it is used to mark the title of the
recipe or the statement of what the directions will produce. It is very important not
to neglect to put in the purpose tag, for two reasons. One, this tag is not required
by the DTD, so if you forget to put it in, rules checking will not catch your error.
Two, the <purpose> tag is used in close conjunction with the search engine on our
website to help users locate specific recipes. Therefore, it is very important that
the tag be both present and enclosing a chunk of text that is descriptive enough to
help a user find a recipe through our website.

This second condition can be a problem in some of the older cookbooks and, more
commonly, within variations on a recipe. Often, there is no chunk of text that can
be tagged as <purpose> that clearly states what the recipe or formula is meant to
make (or which process the recipe or formula is meant to teach you) in these
instances. This is a problem because of the way the search engine will work at the
end of the project.

If you visit the Feeding America homepage (http://digital.lib.msu.edu/cookbooks/)
and click on the "Search the Collection...Within Text" link from the navigation bar
on the left, three different search fields will appear: "Find recipes for," "Find Recipes
that use," and "Find instructions for household remedies, etc." These search
options are specialized searches that we have designed for this project which make
it possible for the user to limit his or her search to only certain parts of the text, not
the full text. In coding terms, these searches narrow the text to be searched to
only the text that appears within specific tags—in the case of "Find recipes for" and
"Find instructions for household remedies, etc.", only text within <purpose> tags is
searched for the user-defined term; in the case of "Find Recipes that use," only text
within <ingredient> tags is searched.

When one thinks about the nature of the site we are creating in this project, the
usefulness of this feature is readily apparent. Imagine that someone would like to
search our collection of cookbooks for apple pie recipes. If the user were to do a
full-text search for "apple pie", he or she would likely come up with a number of
recipes that included phrases such as "Prepare the crust just as you would for Apple
Pie" and the like, which are not actually recipes for apple pie themselves. A search
limited to text within <purpose> tags, however, would be much more useful in this
instance. Since <purpose> tags mark the end result of a recipe, only recipes that
produce apple pie should be selected as results for a search within purpose; recipes
that only mention apple pie should be excluded. So if users take advantage of the
"Find recipes for" search, they should be much more successful at finding the
information they are looking for when searching for specific recipes. If this still
confuses you, try a few searches in either the "Find recipes for" or "Find instructions
for household remedies, etc." fields and see what you come up with. The words
displayed in bold are the words tagged as <purpose> within those recipes.

What all this means in practical terms is that, while coding, you have to pay
attention to the text you put inside a <purpose> tag. Think of it in terms of the
search engine, and what sort of terms a visitor to our website might enter when
trying to find that recipe. If the recipe heading that appears in the original text

 24

isn’t descriptive enough, for example, or if you’re coding a variation that doesn’t
have its own heading but still requires a purpose separate from the main recipe
heading, you may want to use the <alt> tag to add the missing information. This
use of the <alt> tag, then, is purely a means of artificially inserting extra
information that will be used by the search engine to locate a recipe. If you put the
<alt> tag inside the <purpose> tag, then type extra terms within the synonym1=
or synonym2= attributes within <alt>, those coder-defined synonyms will also be
searched when a user tries the "Find recipes for" or "Find instructions for..."
searches on our website.

It may be a little challenging to determine which phrase you should mark with the
<purpose> tag within a recipe. Usually the recipe heading will be appropriate; if
there is no recipe heading, use your best judgment to mark something within the
recipe itself, and use the <alt> tag if necessary.

One other side note concerning purposes: when coding the purpose of a medhealth
formula, Ruth Ann would like us to tag the condition the formula is supposed to
treat with <purpose> tags whenever possible. Please keep this in mind when
coding medhealth formulas. Unfortunately, the medical condition treated by the
formula does not always appear in the heading for the formula; often, it will be
buried somewhere inside the formula, and the formula will have some other title
describing its product, such as "green ointment" or "healing salve." To address
this, I have occasionally added an <alt> tag within <purpose> and listed the
medical conditions the formula treats there.

A note on formatting <purpose> tags
The ‘placement="heading"’ attribute, mentioned earlier in the formatting section, is
used almost exclusively to format the <purpose> tag inside a recipe, when the
purpose appears as the heading of a recipe. As mentioned in the chart above, Ruth
Ann would prefer us to use placement="heading" within <purpose> to mark the
heading of a recipe, not separate <hd> tags in addition to the <purpose> tag,
which would be rather redundant. So if you are coding a book in which the purpose
of the recipe is stated in a heading, you will need to do the following:

1) Add the placement="heading" attribute to the <purpose> tag.
2) Add other formatting attributes (align, rend, size) to the <purpose> tag

when appropriate.
3) Move the first <p> tag in the recipe to a point between the <recipe> tag and

the <purpose> tag.

Notice that the first <p> tag in the recipe is moved to include <purpose>. This
may seem strange, but it is necessary because all text in a recipe MUST be inside
<p> tags. (This is useful to remember when coding lists of ingredients as well—
lists can stand on their own in the main body of the text, but must be wrapped in
<p> tags when they appear inside a recipe.) Also, the way a placement="heading"
tag works is to take some of the text within a paragraph and separate it from the
rest of the paragraph with a blank line—thus offsetting the text to make it look like
a heading. If the placement="heading" tag is used in isolation, then—for example,

 25

say you put it inside a <p> tag that enclosed a single line of text—it would serve no
purpose whatsoever. To mark headings outside of recipes, please use only the
<hd> tag; reserve the use of the placement="heading" attribute for purposes
within recipes.

The three-stage coding process
I mentioned earlier that, because of our use of the perl script to automatically tag
ingredients and implements in the book, the coding is done in three stages.
Everything I have covered up until now has been part of the first phase of coding,
which involves essentially coding everything except the <ingredient> and
<implement> tags in a book. In the second stage of coding, you will be scanning
over ingredient tags that have been automatically pasted in by the ingredients perl
script; in the third and final phase, you will be checking the implement tags pasted
in by the implements perl script.

Now, as you might expect, there are a lot of ingredients in each cookbook. While
the perl script does tag most of these accurately, there are a lot of places where it
will paste in tags where they are unnecessary, or skip tags where they are needed.
To correct these errors, we need to go through the books in a fair amount of detail;
each recipe will need to be scanned to remove and add tags as appropriate. This
process can get to be quite exhausting—but it does have its advantages.

For one thing, if you made any coding mistakes your first time through the book—
say you missed a purpose tag or an attribute in a recipe—you’ll have the chance to
notice and correct the error when you’re going through the book a second time in
more detail. As an extension of this idea, the fact that we go through each book in
detail twice allows you to be a little sloppy in your first run through the recipe
coding. I underlined recipe because it is important not to miss details of the coding
outside the recipes. The perl script is designed to only code ingredients inside of
recipes, so when scanning for ingredients, you will only be scanning parts of the
book that contain recipes. At any rate—what I’m getting at is that if you want to go
a little faster through your first stage of coding and not be too careful about
catching every variation in all the recipes, it is acceptable at this point to simply
concentrate on classifying the recipes and coding purpose tags where appropriate.
If you do this, however, you will have to be careful about catching the variations
the second time through.

WHEN TO USE THE <alt> TAG

The <alt> tag is used for a variety of purposes in the cookbook coding. One is to
correct typographical errors in the cookbooks--this means words that are actually
misspelled, not simply spelled in an old form. The word "yelks", for example, I
would leave alone; but if I came across the word "ylks" in the same cookbook, I
would code it as

<alt synonym1="yelks">ylks</alt>

 26

to correct the typographical error. (Note that the correct spelling is entered in a
synonym1= attribute, which only appears within the <alt> tag.)

To address the issue of archaic spellings, which is what the <alt> tag was originally
created for, I have been keeping an excel spreadsheet to record all notable
variations in spelling that I come across, located in
K:\cookery\spreadsheets\archaic spellings.xls. You are welcome to add to this
spreadsheet at any time. Theoretically, we will be creating a perl script at some
point to tag these words, but we haven’t gotten that far yet.

The other way that I commonly use the <alt> tag is to help define the <purpose>
of a recipe. If a recipe or variation does not contain a chunk of text that fully and
accurately describes what the recipe or variation is supposed to make or do, an
<alt> tag may be used within <purpose> to make the text more searchable. In
this case, the <alt> tag would appear immediately within <purpose>, with the
synonym1= (and possibly synonym2=) attribute containing the terms or
information the coder would like to add. See the section on coding recipes for a
more detailed description of how and why we use the <alt> tag in this manner.

TARGET AND ID PAIRS

Target and ID "pairs" are used to refer a reader from one part of a document to
another. They're referred to as pairs because whenever you use <ref
target="example"> in one part of a book, there has to be another portion tagged
as <element id="example">. When a matching "target=" and "id=" pair exist in a
document, the final website will allow you to click on the text surrounded by the
<ref target="(example)"> tag to jump to the place marked with the corresponding
"id=(example)" value. In other words, you are creating an internal link within the
document whenever you set up a target/id pair.

The "id= " attribute can be used in many different elements in the cookbook DTD.
It is required in <pb>, so that is the most frequent use. (This is why, when creating
indexes and tables of contents, we use the page break id numbers as target values
to guide the user to a particular page; by doing so, we can avoid defining new id
values purely for the sake of the index.) It can also be used in lists, chapter
headings, illustrations, recipes, etc.

I have included some examples of concrete applications of target and id pairs later
in this document, under the headings of "CODING FOOTNOTES" and "CODING
LISTS, INDEXES, TABLES OF CONTENTS, LISTS OF ILLUSTRATIONS, AND
GLOSSARIES OF TERMS." Footnotes and tables of contents/indexes are the most
common applications of the target/id pair, so it may help to look over the examples
to get a better idea of how these pairs work.

 27

EXTERNAL REFERENCES

The cookbook collection will be accompanied by several groups of supplementary
material: author biographies, essays on individual books and cooking genres, a
glossary of cooking terms, and a gallery of museum objects. We will need to create
links to this material from within the cookbook texts. The attributes xref= and
item= will be used to do that. These attributes can be used with most elements.

We are hoping to write a perl script to automatically insert xref= and item= values
for us; Dave is currently working on this, so you don't have to worry about coding
them for the moment. At the end of the project, though, you will likely be checking
over the xref= and item= coding in the same way that you check over ingredient
and implement coding, so please be aware that these attributes exist, and keep in
mind what they are supposed to be tagging.

The allowed values for xref= are authors, essays, objects, glossary (the same four
categories named above).

The value for item= is a code referring to the particular author, essay, object, or
glossary entry. We'll need to create standardized lists for these.

Example: one of the museum objects being photographed is a Dutch oven. When a
recipe mentions using this item, it would be tagged like this:

"Let the stew simmer for three hours in a <implement xref="objects"
item="dutchoven">Dutch oven</implement> placed among the coals."

ILLUSTRATIONS

Follow these guidelines to decide if something is an illustration: If you see an
abstract design used to fill a little space at the end of a chapter, don't tag it at all. If
you see something decorative that is an identifiable object (a little row of spoons,
perhaps) tag it as an illustration even if it's only there to fill space.

ILLUSTRATION TAGS

<illustration>
Contains <caption> and <description>. The caption is
optional, since there might not be one. The description is
required.

<caption> Wrap this tag around the picture's caption.

<description>
Write a brief description of the picture. See the Sunday
school books website (http://digital.lib.msu.edu/ssb/) for
examples of good descriptions.

http://digital.lib.msu.edu/ssb/

 28

An additional note about <description>: Keep in mind that whatever you type in
the description field of the illustration will be displayed online, so be careful to avoid
typos, and please try to write in complete sentences or descriptive statements.
Don’t skip articles like a, an, or the, and use punctuation when necessary. Also, if
you’re describing a picture that has a caption, try not to repeat the caption in your
description; for example, in the illustration shown below, "An illustration of small
fish served whole." would not be a good description.

For your reference, here is an example of a captioned illustration and the code I
used to transcribe it:

<illustration>

<caption>FIG. 8. Small Fish served whole.</caption>

<description>An illustration of three long, skinny fish arranged
on a rectangular platter.</description>

</illustration>

(A quick note: it actually is important that the <caption> come before
<description> inside an <illustration> tag, so don’t confuse the order of these two
elements. If you do, the document will not validate.)

If an illustration is embedded within a paragraph and you’re not sure where to put
it, just move it to a point between paragraphs. Illustrations may occur within
paragraphs, however, so if you have an illustration that spans an entire page, you
can place the illustration code right where it falls in the normal text.

EDITORIAL NOTES

The TEI tagset, which we used to code the Sunday school books, has numerous
tags for indicating unusual characteristics of a book that cannot be clearly
understood through the transcription of the text. For example, there is a tag
<inscription> for marking up handwritten inscriptions, a tag <foreign> for marking

 29

words in a foreign language, and an element <q> to indicate a quotation from
another source.

The cookbook tagset attempts to reduce the number of tags needed for situations
like these by including an element <ednote>. When you encounter something that
needs a bit of explanation, go ahead and put it in, wrapped in <ednote> tags. The
XSL stylesheet (used to define how various tags will display in a web browser at the
end of the project) will be written to display <ednote> material inside square
brackets with a heading [Note:] so it will be clear to the reader that this is an
addition to the original text. In general, put the <ednote> after the place that
needs explanation. For example, on the title page of Amelia Simmons:

<div type="titlepage">

 <p>John Hammond</p>
 <ednote>Handwritten inscription.</ednote>

 <docTitle>American Cookery...</docTitle>

</div>

Editorial notes in the cookbooks project are generally used to mark handwritten
inscriptions and text that has been edited or moved due to coding requirements.
Most oddities in the text (such as poems, footnotes, and quotes) do not require an
editorial note; the user should be able to tell the nature of such text by looking at
the transcription or page image.

WHEN TO USE <GAP> AND <UNCLEAR>

The <gap> tag is used to mark places where pieces of text are completely missing
from the cookbook. This could mean missing pages, or just a word that has been
obscured by a stain or a printing error. The <gap> tag has a required attribute,
"extent=". In the extent field, you must type in how much of the text is missing.
Ruth Ann wants "extent=" values to be standardized so that she can define how
they will be displayed in the browser later on in the project. This tag hasn’t come
up enough for us to make an extensive standardized list yet, but for now, use the
following values:

extent="one word" One word missing
extent="two words" Two words missing
extent="several words" More than two words missing
extent="one page" One page missing
extent="two pages" Two pages missing
extent="several pages" More than two pages missing

 30

If you come across something that you feel should have a different "extent="
value, please ask Ruth Ann about it.

Note that the <gap> tag should only be used to mark missing text; if you can make
out enough of the word to make an educated guess, use the <unclear> tag. This
tag is much more straightforward--just type your best guess at the word, and wrap
the <unclear> tag around the text you’re not sure of. You will probably use this
most often in handwritten inscriptions.

LOOKING UP SPECIAL CHARACTERS

Occasionally you may come across a special character that is not included in the
basic list the typists use to input character codes; in these cases, you must look up
the XML character code yourself and paste it into the file. Ruth Ann has included
links to webpages that provide these codes at
http://www.lib.msu.edu/jonesr/sgml/wkst.htm; I recommend that you set this as
your homepage on your browser if it isn’t already, as it also includes links to MAGIC
and the public cookbooks website, both of which will be important reference pages
while you are coding. If you need help finding the code for any character, see Ruth
Ann.

CODING LISTS, INDEXES, TABLES OF CONTENTS, LISTS OF
ILLUSTRATIONS, AND GLOSSARIES OF TERMS

<list> TAGS

<list>
Use to indicate a list of items. A <list> contains a series of
<item>s.

<hd> Use to mark headings within a list.

<item>
The individual lines or sections of a list. Can contain
<term>, <definition>, and <ref>.

<term>
Use only when <list> is being used to encode a glossary-
type section.

<definition>
Use only when <list> is being used to encode a glossary-
type section.

<ref>
Use for page numbers in a table of contents. See further
explanation below.

The basic structure of any list in the cookbooks project is:

http://www.lib.msu.edu/jonesr/sgml/wkst.htm

 31

<list>
 <item></item>
 <item></item>
 <item></item>
</list>

where the <list> tag goes around the entire list, and <item> tags mark each item
in the list. Any text in a list may, of course, be formatted and realigned just like
any other text in the book. It is also possible to use the <hd> tag at any point
within <list> to code subheadings in a list, although not all lists will have them.

Since indexes, tables of contents, and the like in the cookbooks are coded as lists,
they can be very time-consuming. They’re long, they require a good deal of
reformatting, and they contain references to page numbers, which must be
wrapped in <ref> tags and assigned a "target=" value to link the user back to that
particular page in the text.

When coding an index or table of contents, the first thing I do is fix the formatting.
In the case of most indexes, we can’t match the formatting exactly with our
cookbook code, since there are no allowances for multiple columns on a page.
Instead, we put everything into one column. Even after that, some indexes need a
little tweaking; most books will have long index entries wrapped onto two or more
lines, but I move each single item onto a single line of code. I also try to make all
the dots end somewhat evenly.

After I finish the formatting, I go back and add <item>, <ref>, and <hd> tags as
appropriate. I find that "cut" and "paste" commands save a lot of time when
pasting in these tags, since the tagging on each line will essentially be identical
apart from the <ref target=" "> value and any odd variations in alignment.

Here is an example of some coding from an index page (tags in bold):

 32

<item>Graham Wafers .. <ref
target="linc116.jpg">96</ref></item>
<item>Wafer Biscuit .. <ref
target="linc116.jpg">96</ref></item>
<item>Gluten Wafers .. <ref
target="linc117.jpg">97</ref></item>
<lb/>
<lb/>
<hd align="center">WAFFLES AND GRIDDLE-CAKES.</hd>
<lb/>
<lb/>
<item>Distinction between Griddle-Cakes, Pancakes, etc. <ref
target="linc117.jpg">97</ref></item>
<item>Waffle Iron .. <ref
target="linc118.jpg">98</ref></item>
<item>Waffles .. <ref
target="linc118.jpg">98</ref></item>
<item>Lemon Syrup .. <ref
target="linc118.jpg">98</ref></item>

In this example, the "WAFFLES AND GRIDDLE-CAKES." line is a subheading in the
list, so it is coded as <hd> and center-aligned. <lb> tags were used to add spaces
between sections (note that you need two in a row to make one blank line), and
"Distinction between Griddle-Cakes, Pancakes, etc." was all condensed into one line
of code. (If combining the lines like this leaves you with a line that is just too long
to fit with any reasonable number of dots, just put some set number of dots at the
end of the line (like three or five) and ignore the fact that that line doesn’t line up
with the others. To be perfectly honest, the ends of the lines won’t line up no
matter what we do, unless we code each list like this as a table, which would be too
time-consuming.)

Notice that the <ref target=" "> values are the same values that go in the <pb
id=" "> field for the page being referenced. The easiest way to find these values is
simply to look back at the typing copy. Often, you can calculate the number in
your head by figuring out the difference between the image number and the actual
page number; for example, in the above book, the image number = the page
number + 20. When coding this index, I simply pasted <ref
target="linc.jpg">***</ref> tags around each page number, then went back and
added image numbers to each <ref> tag based on the page number.

If you run across indexes that reference a range of page numbers, such as "113-
120" or "12, 13, 14", wrap the <ref> tag around all numbers and set the target as
the first page in the sequence. If you have a reference to numbers that are not in
sequence, such as "113, 120" or "12, 14", you must tag each number with <ref>
tags individually.

I have had one or two books so far in which the index referred the reader back to a
certain recipe number instead of a page number; these are the most time
consuming, since you must then assign an ID number to each recipe in order to link

 33

everything back to the index. Luckily, in that case, you can follow the numbering
scheme that the book has laid out, and you don’t need to worry about calculating
page IDs.

One other type of list that may appear in the front or backmatter of a book is a
glossary of terms; although very easy to code, glossaries do require two special
tags that are not used elsewhere: <term> and <definition>. As you can probably
guess, <term> goes around the word being defined, and <definition> goes around
the explanation of that word. Thus, the basic structure of a glossary code would
look something like this:

<list>
 <item>
 <term></term><definition></definition>
 </item>
 <item>
 <term></term><definition></definition>
 </item>
</list>

Lists are a fairly common occurrence in the cookbooks even outside of the front and
backmatter; it is not uncommon to see ingredients printed in a list form, and I
usually code menu sections as lists as well (each menu item gets its own <item>
tags, and don’t worry about formatting—in most cases, it’s too strange to be
accommodated by our code anyway). In most lists within the body of the text, all
you need are the <list> and <item> tags.

CODING FOOTNOTES

Footnotes are coded as size="smaller" paragraphs in the cookbook project, with a
target and ID pair (a link, like those used in indexes and tables of contents) to
allow the user to move instantly from the footnote mark to the footnote itself. To
code a footnote:

1) Wrap a <ref> tag around the footnote mark (usually a number or an
asterisk).

2) Add the height="superscript" attribute to the <ref> tag if appropriate.
3) Establish a "target=" value for the footnote. I always use the pattern

target="n*", where * is the number of the footnote, counting from the first
footnote at the beginning of the book. Note that, when referencing
footnotes, each target/ID pair must be unique; you may use any scheme you
like, as long as you don’t repeat yourself.

4) Wrap a <p> tag around the footnote itself, if there isn’t one already.
5) Add the size="smaller" attribute to the <p> tag.
6) Enter the same value you used for the "target=" in the <ref> tag as the

"id=" in the <p> tag.

 34

The fact that we code footnotes as regular paragraphs can complicate things in
certain situations. For example, if you come across a page like this:

The footnote on this page appears in the middle of a paragraph. Since you can’t
have a <p> within a <p>, this poses a coding problem. In order to get around
this, move the footnote to the nearest convenient location and add an <ednote>
explaining that you have moved it. My code for this section of text looks like this:

<hd align="center" size="larger">LIFE AND MOTION.<ref target="n3"
height="superscript">1</ref></hd>

<ednote>The following note appears on the bottom of page 478 in the
original text.</ednote>

<p id="n3" size="smaller"><ref height="superscript">1</ref> This
article is mainly an abstract of the chapters on the "Circulation of
Matter," contained in "Johnston's Chemistry of Common Life." It is
inserted here as bearing upon the general subject of food, and with
the hope that all who read this will read the original.</p>

<p><emph rend="italic">Circulation of Water.</emph>--As a plant grows,
[etc.]

In this case, I placed the footnote in front of the regular paragraph and added an
<ednote> describing the original position of the footnote. When you code, you
may place the footnote anywhere between paragraphs, but please do not place it
before the reference mark.

 35

Note that I used the <ref> tag to make the footnote mark inside the footnote itself
a superscript. This is the only way to code superscripts and subscripts anywhere in
the text; the <ref> tag is the only one in the tagset that allows the "height="
attribute. It is therefore acceptable to use a <ref> tag to code superscripts and
subscripts without assigning a "target=" value—without a "target=", you are not
creating a link.

Use the above <ednote> as a template for what to type when you move a footnote.

CODING TABLES

<table> TAGS

<table>

Use to indicate a table within the text—i.e., text arranged in
multiple rows and columns. Do not use the <table> tag to
represent columns that have been created simply to preserve
space on a page, e.g. indexes or lists of ingredients arranged in
two columns.

<hd>
May be used to mark headings within a table—not column
headings, but headings that appear outside of the row and
column structure of a table.

<row> Use to indicate a row within a table.

<cell> Use to indicate a cell within a row.

FORMATTING ATTRIBUTES USED ONLY WITHIN <table>

columns=
Required. Use within the <table> element to indicate the
number of columns in a table. (You do not need to indicate the
number of rows.)

colspan=
Use within the <cell> element to stretch a cell across two or
more columns. The value equals the number of columns you
want to stretch the cell across.

rowspan=
Use within the <cell> element to stretch a cell across two or
more rows. The value equals the number of rows you want to
stretch the cell across.

Tables are a bit more tricky to code than the lists covered in the last section. The
tagging itself isn’t all that difficult, but deciding where to put which tag can be a
little problematic, especially in old books like the ones we’re coding. In an ideal
world, all tables would be divided evenly into columns and rows, like this:

 36

a b c d

e f g h

i j k l

m n o p

In this case, the coding of the table would be very straightforward. You start with
the <table> tag, define the "columns=" attribute according to the number of
columns you have in the table, and then go row by row, cell by cell, tagging the
contents of each cell in order. The basic structure for the above table would look
like this:

<table columns="4">

 <row>
 <cell>a</cell>
 <cell>b</cell>
 <cell>c</cell>
 <cell>d</cell>
 </row>

 <row>
 <cell>e</cell>
 <cell>f</cell>
 <cell>g</cell>
 <cell>h</cell>
 </row>

 <row>
 <cell>i</cell>
 <cell>j</cell>
 <cell>k</cell>
 <cell>l</cell>
 </row>

 <row>
 <cell>m</cell>
 <cell>n</cell>
 <cell>o</cell>
 <cell>p</cell>
 </row>

</table>

 37

Notice that, in a regularly formatted table like this one, the number of cells in each
row equals the number of columns in the table; if the two numbers don’t match,
you’ve probably made a mistake somewhere.

Unfortunately, not all tables will be so nicely laid out. In some instances, a table
will be formatted more like this:

a b

c d e f

h i j
g

k l m

with single cells stretching across two or more columns or rows.

Those of you who have some experience coding tables in HTML should be familiar
with the "colspan=" and "rowspan=" attributes. These two attributes, used only
inside the <cell> tag of a table, can be used to stretch a single cell across two or
more columns, or two or more rows. In order to accommodate table coding
situations such as the one above, we have added these attributes to the cookbook
tagset as well. The way they work is this:

When you want to stretch a cell across two or more columns, you need to put the
"colspan=" attribute inside the code for that cell. In the table above, cells "a" and
"b" need a "colspan=2" attribute to stretch them across two columns each. You do
not need to code the cell twice to match the number of columns in the table; the
"colspan=2" attribute essentially makes that one cell equal to two cells in width.

When you want to stretch a cell across two or more rows, you need to put the
"rowspan=" attribute inside the code for that cell. In the table above, cell "g" will
need a "rowspan=2" attribute to stretch it across the third and fourth rows in the
table. Once you have added the "rowspan=" attribute to a cell, you do not need to
code anything for that cell in the following row—the browser will automatically
stretch the cell across the rows, filling the space you will be leaving blank.

It can be a little difficult to visualize how these two attributes work, so for your
reference, here’s the basic structure for the above table:

<table columns="4">

 <row>
 <cell colspan="2">a</cell>
 <cell colspan="2">b</cell>
 </row>

 38

 <row>
 <cell>c</cell>
 <cell>d</cell>
 <cell>e</cell>
 <cell>f</cell>
 </row>

 <row>
 <cell rowspan="2">g</cell>
 <cell>h</cell>
 <cell>i</cell>
 <cell>j</cell>
 </row>

 <row>
 <cell>k</cell>
 <cell>l</cell>
 <cell>m</cell>
 </row>

</table>

Because visualization of the coding is important when coding tables, I would
recommend that, if you come across a table that is not already divided clearly into
rows and columns and cells, you draw in the lines yourself, right on the typing
copy. This will help you determine where you need to use "rowspan=" and
"colspan=" attributes, if you need to use them at all.

In addition to the "rowspan=" and "colspan=" attributes, each cell may also contain
the general formatting elements "align=" and "rend=". "align=" in particular is
used quite often to center or right-align the text inside a cell. "rend=" may be used
if all of the text inside a cell is in italics or bold.

For your reference, here’s a simple example of a table and its code:

 39

<table columns="3">
<hd rend="italic" align="center">Baking Bread, Cake, and
Puddings.</hd>
<row>
<cell>Loaf bread</cell>
<cell align="right">40 to 60</cell>
<cell align="center">m.</cell>
</row>
<row>
<cell>Rolls, biscuit</cell>
<cell align="right">10 to 20</cell>
<cell align="center">"</cell>
</row>
<row>
<cell></cell> Graham gems
<cell align="right">30</cell>
<cell align="center">"</cell>
</row>
<row>
<cell>Gingerbread</cell>
<cell align="right">20 to 30</cell>
<cell align="center">"</cell>
</row>
<row>
<cell>Sponge cake</cell>
<cell align="right">45 to 60</cell>
<cell align="center">"</cell>
</row>
<row>
<cell>Plain " </cell>
<cell align="right">30 to 40</cell>
<cell align="center">"</cell>
</row>
<row>
<cell>Fruit " </cell>
<cell align="right">2 to 3</cell>
<cell align="center">hrs.</cell>
</row>
</table>

That being an example of the simplest type of table you will come across, here's an
example of the most complicated type of table you will see in our collection:

 40

Charts like this do occasionally appear in the cookbooks, and the best way we have
to render them in text is with the table coding. Unfortunately, it's a little hard to
tell where to divide up the columns, rows, and cells in tables like these. This is
where I would especially recommend drawing in lines yourself, like this:

This should help you code the table accordingly. If you do ever come across a
chart which seems too complicated to code, ask Ruth Ann for her opinion; she may
allow you to code it as an illustration (but be sure to ask first).

A quick side note: Elongated curly brackets, such as those in the table above,
cannot be accurately rendered in our cookbook tagset. It is better to render
something in their place, however, than to just leave them out. I usually type a
single curly bracket in each cell crossed by the elongated bracket when I code, as
you may deduce from the table diagram above. You may try other methods if you
like—just try to visualize the way the table will look when displayed in a web
browser.

Also: to create a blank cell, please insert a non-breaking space character (code
) in between the two cell tags.

Tables and lists can be very similar in appearance; if you’re ever in doubt as to
whether you should code something as a table or as a list, just use your best
judgment. If it is crucial that the data line up perfectly, then you should probably
code the text as a table; if not, either one would be fine.

Since the typists haven’t been given instructions on how to type tables, you may
have to clean up the text a bit (or even type the data in yourself) before you begin
coding. I recommend arranging the data in a way that would facilitate cutting and
pasting, since this speeds up the process a great deal.

If you have a table that is printed in two columns—not a table with two columns, I
mean a table that has been divided into two columns (like an index) to save
printing space on a page—you may either code it exactly as it appears on the page,
or move it all into one column. Either way is acceptable, but do not delete any text
(including column headings, even if they’re redundant) in doing so. If the table
would be extremely wide if coded as it appears on the page, I would recommend

 41

moving it into one column to be sure it will fit the page width on our website
(which, if you take a look, isn't very wide at all).

CHECKING FOR CURLY BRACKETS

When you reach the end of your first run through a book, it would be a good idea to
search the entire document for curly brackets ({ or }). Since the typists use these
to write notes to the coder throughout the book (and these are not a part of the
original book), any text inside curly brackets should be deleted before the book is
published online. A search for curly brackets at the end of the coding process will
make sure you've caught and addressed all of the notes from the typists.

THE VALIDATION PROCESS

Once you have finished coding the entire book, you will need to check to see if the
file validates—that is, you will use XMetaL's automatic rules checking function to
make sure the code you have put in conforms to the rules laid out in the cookbook
DTD. To begin the validation process, click on the button that looks like a piece of
paper with a large blue checkmark superimposed on it, or choose "Validate
Document" from the "Tools" menu. XMetaL will bring up a window that lists all of
the errors in the document. Double click on the first item in the list; XMetaL will
move your cursor to the place in the document where the error occurred. It is then
up to you to determine what the source of the problem is. If you look carefully at
the description XMetaL has provided in the validation box, it will probably give you
a hint at what has gone wrong; for example, if you get an error that says "<tag> is
not allowed at this point within its container <tag>," you probably missed an
ending tag, or did not nest your elements correctly (a common error of this type
would be forgetting to include the <purpose> of a <recipe> in the first <p> tag of
the recipe—remember, everything within a recipe must be inside <p> tags).

Once you spot and correct the error, close the validation box and then reopen it
again before you click on the next error; you will find the contents of the box may
change significantly with each error that you correct, so take them one at a time.
Fixing one problem may solve a whole series of others.

If you ever have difficulty understanding the source of an error, you may ask Ruth
Ann or one of the other coders for help; however, I highly recommend you take the
time to solve the errors on your own. Finding your own mistakes is one of the best
ways to learn the coding process and come to understand the cookbook tagset. It
may be a little confusing, but hang in there!

 42

CHANGING THE DTD

If, while coding, you come across a place in a book that simply cannot be
accurately represented by the codes we have defined and the rules we have set for
them, consult with Ruth Ann. It is possible to change the rules to accommodate
the contents of the books, but Ruth Ann must be the one to make the final decision
as to whether this is necessary. In most cases, you will probably find a way to
work around the problem without changing the DTD; but don't be afraid to ask if
you feel a change is necessary.

CODING INGREDIENTS

Once you have completed the first stage of coding on a cookbook and completed
the validation process, please tell Elizabeth that you are ready to begin ingredient
coding on your book. She will run the ingredients perl script on the book, then
leave a copy of the file with marked-up ingredients in K:/cookery/xml in progress/,
named [bookcode]2.xml ([bookcode] being the four-letter code for the book).
When she tells you the file is ready, you can open the new file in XMetaL and begin
scanning for ingredients.

When you open the marked-up file, everything the perl script identified as an
ingredient will be marked with <i> tags (<i>, </i>). These are an artificial tag we
have created to facilitate scanning for ingredients; if we put the full tag in right
away (<ingredient>, </ingredient>), the tags would take up so much space on the
screen that it would be difficult to try to look past them. The only problem with
using the shorter <i> tags, then, is that the document won't validate while the <i>
tags are still present. Don't worry about this for the moment—just run a search to
replace <i> with <ingredient> and </i> with </ingredient> when you finish
scanning. After that, you can check for validation a second time.

So when you begin scanning, the first thing you should do is search for the first <i>
in the document. Theoretically, it should be inside the first <recipe> or <formula>
of the book. We do not want <ingredient> tags to appear anywhere except inside
of formulas and recipes, so if the first <i> tag is stuck in the middle of the
frontmatter, you will have to delete it (and all other tags that appear outside of
<recipe> and <formula> tags, if you come across more). If it is inside the first
<recipe> or <formula>, you're good to go.

There are three main types of errors generated by the perl script that you will have
to watch out for when ingredient scanning. First, you will have to make sure that
every item that is used as an ingredient in any given recipe is coded with <i> tags
at least once (it doesn't matter if it's tagged more than once—it would be a waste
of your time to try to remove all the extra tagging). The perl script is fairly
comprehensive, but it doesn't catch all the terms that could possibly come up as
ingredients in all of the recipes and formulas.

 43

Second, you will need to make sure that nothing that isn't an ingredient in any
particular recipe has <i> tags around it. Due to some quirks in the perl script,
certain words which would never be considered ingredients in any of the recipes
may come up tagged—such as "<i>hard</i>" and "<i>corner". You will need to
remove these extra tags. Also, only words that are being used as ingredients in
that recipe should have <i> tags around them—take out <i> tags that are inserted
around words that could be ingredients in other recipes, but are not ingredients in
the recipe you are looking at. For a common example, if you see the phrase
"<i>butter</i> the size of an <i>egg</i>" when scanning for ingredients, you
should take out the <i> tags around "egg," which is a measurement in this case,
not an ingredient. "<i>Cream</i> the <i>butter</i> and <i>sugar</i>" is
another common example—in this example, take away the tags around "Cream,"
which is a process in this context. Also, words inside the <purpose> of a recipe
should not be tagged as ingredients of the recipe—the perl script should have
skipped all <purpose> tags automatically, but the process isn't perfect, so you may
have to remove some <i> tags from <purpose> as well.

Third, you will need to watch for spots where the perl script neglected to paste in
an end tag (</i>), which happens quite often around vegetables in particular. All
you need to do to fix this error is paste in the end tag where appropriate. Along
the same lines, the perl script may occasionally double-tag a word, or insert two
beginning or ending tags in a row; in this case, just clear out the extra tags.

There will probably be times when you question whether a certain item should be
considered an ingredient in a recipe or not. For example, if you have to boil a
vegetable in water but end up draining all the water out before you continue with
the recipe, is "water" really an ingredient in the end product of the recipe? If you
use salt and ice to freeze ice cream, but neither substance goes in the ice cream
mixture itself, are they ingredients? What about garnishes, sauces, or side dishes
that are mentioned in a recipe for roast beef?

The answer to all these questions is "when in doubt, tag it." As a reference
librarian, Ruth Ann will tell you that having too much information is always better
than having not enough—so even if we're not using the classic definition of the
word "ingredient" in this project, at least we're being thorough (and hopefully
visitors to our website will be able to find the information they're looking for). I
have been tagging anything that is used in the preparation and eventual serving of
a dish as an ingredient in the recipe for that dish. When you are scanning for
ingredients, please do the same.

While you are going through the book to check the ingredient tagging, it is a good
idea to watch for any minor mistakes you may have made in the coding up until
this point—missed recipe attributes, variations you didn't notice your first time
through, and the like. If you notice anything you left out or forgot, add it now. You
won't get a chance to look at the book in so much detail again, so if you don't catch
a mistake at this point, you probably won't catch it at all.

 44

THE TERMS SPREADSHEET

One of the features we would like to add to our finished cookbook website will be a
glossary of obscure or outdated cooking terms—ingredients, processes,
measurements, and the like that would probably be unfamiliar (and maybe even
incomprehensible) to a modern reader. Peter Berg, the head of Special Collections,
will be in charge of selecting and defining these terms; and at the beginning of the
project, he was in charge of scanning the books and looking for them as well.
However, since the coders at the DMC end up practically reading the book at the
ingredient stage of coding anyway, we offered to find obscure terms for him and
keep track of them in a spreadsheet, which he can use as a resource to pull
possible glossary entries from.

Each coder, then, has his or her own copy of a terms spreadsheet—named
"terms[coder's name].xls," located in K:/cookery/spreadsheets/. Each of these
spreadsheets is a copy of a spreadsheet that I started at the beginning of the
project; that spreadsheet is in the same folder, titled "cookbookterms.xls." If you
don't have your own copy of the terms spreadsheet yet, take the following steps to
make one:

1) Open the K:/cookery/spreadsheets/ folder, either through Explore or My
Computer.

2) Copy the Microsoft Excel spreadsheet "cookbookterms."
3) Paste the copy into the same folder. The new file will be titled "Copy of

cookbookterms."
4) Rename the file "terms[Yourname]". The file is now ready for use.

If you take a look at your terms spreadsheet, you will notice that it is divided into
five columns, titled "obscure or antiquated terms," "Artifacts," "Processes,"
"Measurements," and "Delete?" Each of these columns contains a list of terms
sorted according to the nature of the term. As you scan for ingredients, you will be
adding to the list whenever you come across a term that you don't recognize, or
that you feel the average modern reader would not recognize.

The "obscure or antiquated terms" column is for obscure ingredients, as well as any
other miscellaneous old words that a modern reader might not recognize
("apothecary," for example). "Artifacts" is for actual tools and kitchen implements,
which may be mentioned either inside or outside the recipe portions of the book.
"Processes" is for any cooking processes that may be unfamiliar to someone who is
not an experienced chef (see the terms already in that column for examples).
"Measurements" is for obscure measurement terms which would be either
unfamiliar or just plain not useful to a modern reader ("as much as will lie on a
sixpence" is one of my favorites). Finally, the "Delete?" column is for varieties of
fruits and vegetables (such as "Bartlett Pears" and "Bellflower Apples"), as well as
brand names ("Magic Yeast" or "St. Louis Flour"). (The reason the column is titled
"Delete?" is because I doubt we will feel the need to define any of the terms in this
column at the end of the project—but I thought I'd record them anyway, just in
case.)

 45

When you add a term to any of these lists (and you don't have to pay attention to
whether the term is already in the list—we'll be filtering out duplicate entries at the
end), please type the word, followed by the code of the book you found it in and
the page number on which you found it in parentheses (see current entries for
examples). We're keeping track of the book and page number so that Peter has a
reference to check the context of the word when he is writing definitions. You may
add the term in any blank space in the appropriate column—you don't have to place
it neatly at the bottom of the current columns, since we'll just be alphabetizing the
columns at the end anyway, and that will sort out any blank spaces.

One last note concerning the spreadsheet, and this is very important—Whenever
you add a term to the "Artifacts" category, please write the word down on a
separate piece of paper and give the list to Elizabeth when you complete the
ingredient stage of coding. Any new terms in this category will be added to the
implements perl script, which will need to be run on your book before you scan for
implements (which is the last and easiest stage of the coding, yay!). To ensure
that we catch all of the implements in each book, we want to add these terms to
the perl script before we run it on your book—so don't forget to make this list!

IMPLEMENTS CODING

Once you finish scanning a book for ingredients and have re-validated the
document, bring the list of new "Artifacts" you have found in your book to Elizabeth
and let her know the file is ready for implement coding. Elizabeth will update the
perl script to make sure your artifacts are tagged, then run the perl script on the
file. She will let you know when the implement coding is ready to be checked. The
new file name will be [bookcode]3.xml, and it should be in
DmcWork1:/cookery/xml in progress/.

Checking the implements tagging isn't nearly as time-consuming as checking
ingredients tagging; there simply aren't as many implements in the cookbooks as
there are ingredients, especially since we're only bothering to code implements that
might be unfamiliar to a modern reader (we don't have to code words like "bowl,"
"pan," "spoon," and the like). Therefore, when you check the implement coding, all
you have to do is search for the implement tag (shortened to <im>), checking each
place the computer has tagged a word, then taking out or leaving in the tags as
necessary. Unlike the <ingredient> tag, <implement> can appear anywhere in the
book (as long as the document validates)—so you don't need to confine the
implement coding to recipes and formulas.

The implements script is fairly accurate because it is not nearly as expansive as the
ingredients script, but it will tag certain words which can be implements but usually
aren't; "press," "slice," "baker," and "waiter" come to mind. For words like these,
you may have to read some of the context to determine whether it is actually being
used as an implement or not. You will also need to be careful about words that are
usually implements, but may be used as measurements as well—such as "tumbler"

 46

or "wine glass." If these are being used as measurements, we don't want them
marked with <implement> tags.

After you have searched the entire document and looked at every <im> tag, run
another search and replace the string <im> with <implement> and </im> with
</implement>. After you check for validation and correct any errors that come up,
you're finished!

FINISHING UP

All you have to do after you finish the implement coding is record on the cookbook
progress sheet (K:/cookery/spreadsheets/cookbookprogresssheet.xsl) that you
have finished coding the book by adding the date after your name; let Elizabeth
know that you have finished the coding, and give her your tracking sheet; and file
the typing copy in alphabetical order in the file cabinet with the other finished
books (Stephanie can show you where this is if you don't know). That's it—you're
ready to begin another coding project!

TROUBLESHOOTING

If, at any stage of the coding process, you come across something you cannot
correct—for example, a cut off page image, a word in another language (such as
Greek or Hebrew) that you cannot transcribe, or information missing from the
metadata—it is okay to leave those parts of the book uncoded for the time being,
but you should do two things to be sure we don't forget to fix the problem later:

1) Leave yourself a note in comment tags (<!-- -->) in the xml document to
remind yourself where the error has occurred, and what needs to be done to
fix it.

2) Tell Elizabeth about the error so that she can document it—at the end of the
project, you will be finding solutions to all the documented errors that have
not yet been fixed in the project. (If the problem is a cut off page image, be
sure to tell Stephanie about it also so she can arrange for the image to be
rescanned as soon as possible.)

Most questions that you have about general coding should be easy to address if you
ask Elizabeth, Ruth Ann, or one of the other coders for advice. However, if there is
something that no one knows how to fix immediately, be sure you remember to
document the problem—otherwise these errors will slip through the cracks.

 47

EXAMPLES OF CODED RECIPES

The following pages contain a few examples of recipes that I have pulled from the
books I've coded, showing a few of the things that you might run across while
coding. These are by no means representative of everything you will find in the
cookbooks you code; but hopefully they will give you a good overview, as well as
some concrete examples of some of the tags that might be a little confusing. The
sample code beneath each recipe is marked with structural tags only; ingredients
and implements have not been tagged in these recipes yet. Important structural
tags are in bold.

A basic recipe (no heading)

<recipe class1="accompaniments"><p><purpose rend="italic">Brain
Sauce.</purpose>--Clean the brains, remove the red membrane, and soak
in cold water. Put them into <emph rend="italic">one pint</emph> of
<emph rend="italic">cold water</emph> with <emph rend="italic">one
tablespoonful</emph> of <emph rend="italic">lemon juice</emph> and
<emph rend="italic">half a teaspoonful</emph> of <emph
rend="italic">salt.</emph> Boil ten minutes; then plunge into cold
water. Make <emph rend="italic">one pint</emph> of <emph
rend="italic">drawn butter sauce;</emph> flavor with <emph
rend="italic">lemon</emph> and <emph rend="italic">parsley;</emph> add
the brains chopped fine, and when hot serve.</p></recipe>

A basic recipe (with a heading)

 48

<recipe class1="meatfishgame"><p><purpose rend="bold" align="center"
placement="heading">To Stew Sweet Breads.</purpose>

Stew them in a little water, with butter, flour, and a little cream;
season with salt, pepper, parsley and thyme.</p></recipe>

*Notice that the first <p> tag in the recipe above appears between the <recipe> and

<purpose> tags—the placement="heading" tag sets the purpose off from the rest of the
text in the same <p> tag.

A "patriotic" recipe from a regional cookbook with an index that links to recipe
numbers, not page numbers

<recipe region="northeast" class1="breadsweets" id="a034"
occasion="patriotic"><p><purpose align="center"
placement="heading">34. Election Cake.</purpose>

Four pounds of flour; three quarters of a pound of butter; four eggs;
one pound of sugar; half a pint of good yeast; wet it with milk, as
soft as can be moulded on a board. Set it to rise over night in
winter; in warm weather, three hours is usually enough for it to rise.
Bake it about three quarters of an hour.</p></recipe>

A recipe from a regional cookbook with a common type of variation

 49

<recipe region="west" class1="eggscheesedairy"><p><purpose
align="center" placement="heading">CORN PUDDING.</purpose>

Let the corn be very young and tender; scrape from the cob about a
quart; put it in a quart of milk, three eggs, a few grains of salt,
and a small tea-cupful of sugar; beat it up well, and let it bake
slowly for two hours.</p>

<p><variation><purpose><alt synonym1="tomato
pudding">Tomatoes</alt></purpose> are very good, cooked the same
way.</variation></p></recipe>

A "medhealth" recipe with a <contributor> and <attribution>

<recipe class1="breadsweets" class2="medhealth"><p
align="center"><purpose rend="bold" placement="heading">Invalid's
Gingerbread.</purpose>

<attribution>[From Mrs. Cornelius' YOUNG HOUSEKEEPERS'
FRIEND.]</attribution></p>

<p>One pint of molasses, one cupful sugar, one teaspoonful of soda,
one teaspoonful of ginger, one of salt, with flour enough to roll out
very thin. It is improved by keeping a week or two.</p>

<p align="right"><contributor>EMMA M. E. SANBORN, M.
D.</contributor></p></recipe>

 50

A recipe in an ethnic cookbook with the ingredients arranged in a list

<recipe ethnicgroup="italian" class1="breadsweets"
id="r198"><p><purpose align="center" rend="bold"
placement="heading">198<lb/>
FARINA CAKES<lb/>
(Pasticcini di semolino)</purpose>
<list>
<item>Farina, six and a half ounces.</item>
<item>Sugar, three and a half ounces.</item>
<item>Pine-seeds, two ounces.</item>
<item>Butter, a small piece.</item>
<item>Milk, one quart.</item>
<item>Four eggs.</item>
<item>A pinch of salt.</item>
<item>Taste of lemon peel.</item></list></p>

 51

<p>Cook the farina in the milk and when it begins to thicken pour the
pine-seeds, previously chopped fine and pounded with the sugar, then
the butter and the rest, less the eggs which must be put in last when
the mixture has completely cooled. Then place the whole well mixed in
little molds, greased evenly with butter and sprinkled with bread
crumbs ground fine, and bake.</p></recipe>

A "household" formula that is not set off from the surrounding text (watch for
these, particularly in chapters on household management)

<formula class="household"><p><purpose>When ivory-handled knives turn
yellow,</purpose> rub them with nice sand paper, or emery; it will
take off the spots and restore their whiteness.</p></formula>

A "medhealth" formula (also not set off) with a variation

<formula class="medhealth"><p>For a sudden attack of <purpose>quincy,
or croup,</purpose> bathe the neck with bear's grease, and pour it
down the throat. <variation>A linen rag soaked in sweet oil, butter,
or lard, and sprinkled with yellow Scotch snuff, is said to have
performed wonderful cures in cases of croup: it should be placed where
the distress is greatest.</variation></p></formula>

	ATTRIBUTES ESTABLISHED FOR THE WRAPPER ELEMENT <cookbook>
	ARRANGING THE TEXT WITH FORMATTING ATTRIBUTES
	
	DEFINITIONS OF "CLASS=" VALUES FOR FOOD TOPICS

	DEFINITIONS OF "CLASS=" VALUES FOR NON-FOOD TOPICS
	ATTRIBUTES WITHIN THE <recipe> TAG

	LOW-LEVEL ELEMENTS FOR MARKING UP RECIPES AND FORMULAS
	ILLUSTRATION TAGS

	Editorial notes in the cookbooks project are generally used to mark handwritten inscriptions and text that has been edited or moved due to coding requirements. Most oddities in the text (such as poems, footnotes, and quotes) do not require an editorial
	WHEN TO USE <GAP> AND <UNCLEAR>
	The <gap> tag is used to mark places where pieces of text are completely missing from the cookbook. This could mean missing pages, or just a word that has been obscured by a stain or a printing error. The <gap> tag has a required attribute, "extent=".
	<list> TAGS
	<table> TAGS
	FORMATTING ATTRIBUTES USED ONLY WITHIN <table>

