You are here
Search results
(21 - 23 of 23)
Pages
- Title
- Improving spectrum efficiency in heterogeneous wireless networks
- Creator
- Liu, Chin-Jung
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
Over the past decades, the bandwidth-intensive applications that are previously confined to wired networks are now migrating to wireless networks. This trend has brought unprecedented high demand for wireless bandwidth. The wireless traffic is destined to dominate the Internet traffic in the future, but many of the popular wireless spectrum bands, especially the cellular and ISM bands, are already congested. On the other hand, some other wireless technologies, such as TV bands, often do not...
Show moreOver the past decades, the bandwidth-intensive applications that are previously confined to wired networks are now migrating to wireless networks. This trend has brought unprecedented high demand for wireless bandwidth. The wireless traffic is destined to dominate the Internet traffic in the future, but many of the popular wireless spectrum bands, especially the cellular and ISM bands, are already congested. On the other hand, some other wireless technologies, such as TV bands, often do not fully utilize their spectrum. However, the spectrum allocation is tightly regulated by the authority and adjusting the allocation is extremely difficult. The uneven utilization and the rigid regulation have led to the proposal of heterogeneous wireless networks, including cognitive radio networks (CRN) and heterogeneous cellular networks (HetNet). The CRNs that usually operate on different technologies from the spectrum owner attempt to reuse the idle spectrum (i.e., white space) from the owner, while HetNets attempt to improve spectrum utilization by smallcells. This dissertation addresses some of the challenging problems in these heterogeneous wireless networks.In CRNs, the secondary users (SU) are allowed to access the white spaces opportunistically as long as the SUs do not interfere with the primary users (PU, i.e., the spectrum owner). The CRN provides a promising means to improve spectral efficiency, which also introduces a set of new research challenges. We identify and discuss two problems in CRNs, namely non-contiguous control channel establishment and k-protected routing protocol design. The first problem deals with the need from SUs for a channel to transfer control information. Most existing approaches are channel-hopping (CH) based, which is inapplicable to NC-OFDM. We propose an efficient method for guaranteed NC-OFDM-based control channel establishment by utilizing short pulses on OFDM subcarriers. The results show that the time needed for establishing control channel is lower than that of CH-based approaches. The second problem deals with the interruption to a routing path in a CRN when a PU becomes active again. Existing reactive approaches that try to seek for an alternative route after PU returns suffer from potential long delay and possible interruption if an alternative cannot be found. We propose a k-protected routing protocol that builds routing paths with preassigned backups that are guaranteed to sustain from k returning PUs without being interrupted. Our result shows that the k-protected routing paths are never interrupted even when k PUs return, and have significantly shorter backup activation delays.HetNets formed by smallcells with different sizes of coverage and macrocells have been proposed to satisfy increased bandwidth demand with the limited and crowded wireless spectrum. Since the smallcells and macrocells operate on the same frequency, interference becomes a critical issue. Detecting and mitigating interference are two of the challenges introduced by HetNets. We first study the interference identification problem. Existing interference identification approaches often regard more cells as interferers than necessary. We propose to identify interference by analyzing the received patterns observed by the mobile stations. The result shows that our approach identifies all true interferers and excludes most non-interfering cells. The second research problem in HetNets is to provide effective solutions to mitigate the interference. The interference mitigation approaches in the literature mainly try to avoid interference, such as resource isolation that leads to significantly fewer resources, or power control that sacrifices signal quality and coverage. Instead of conservatively avoiding interference, we propose to mitigate the interference by precanceling the interfering signals from known interferers. With precancellation, the same set of resources can be shared between cells and thus throughput is improved.This dissertation addresses several challenges in heterogeneous wireless networks, including CRNs and HetNets. The proposed non-contiguous control channel protocol and k-protected routing protocol for CRNs can significantly improve the feasibility of CRNs in future wireless network applications. The proposed interference identification and interference precancellation approaches can effectively mitigate the interference and improve the throughput and spectrum utilization in HetNets. This dissertation aims at breaking the barriers for supporting heterogeneous wireless networks to improve the utilization of the precious and limited wireless spectrum.
Show less
- Title
- Damage progression quantification and data robustness evaluation in self-powered sensors networks
- Creator
- Hasni, Hassene
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
"This research proposes novel damage progression quantification and data robustness evaluation approaches, for structural health monitoring (SHM), using a new class of self-powered piezo-floating-gate (PFG) sensors. This system relies on harvesting the mechanical energy from structures through the direct effect of piezoelectricity. The operating power of the smart sensor and the data used for damage identification is harvested directly from the sensing signal induced by a piezoelectric...
Show more"This research proposes novel damage progression quantification and data robustness evaluation approaches, for structural health monitoring (SHM), using a new class of self-powered piezo-floating-gate (PFG) sensors. This system relies on harvesting the mechanical energy from structures through the direct effect of piezoelectricity. The operating power of the smart sensor and the data used for damage identification is harvested directly from the sensing signal induced by a piezoelectric transducer under dynamic loading. The developed models integrate structural simulations using finite element method (FEM) techniques, experimental studies, and statistical and artificial intelligence (AI) methods. In this work, the performance of the sensing system in identifying damage is investigated for various damage scenarios based on numerical and experimental studies. Both steel and pavement structures are studied. A new surface sensing approach for detecting bottom-up cracks in asphalt concrete (AC) pavement is proposed. Two types of self-powered wireless sensors are investigated in this research. Different data interpretation techniques are developed for each type of sensor. The data are obtained from finite element simulations, or experimental measurement, and are fitted to probability distributions to define initial damage indicators. Sensor fusion models are developed based on the concept of group-effect of sensors, in order to increase the damage detection resolution of individual sensors. Probabilistic neural network (PNN) and support vector machine (SVM) methods are used to improve the accuracy of the proposed damage identification methods for the case of multi-class damage progression. The proposed work is divided into four main parts: (i) Damage identification in steel structures using data from a uniform PFG sensor, (ii) Damage detection in steel and pavement structures using a non-uniform PFG sensor, (iii) Damage detection and localization in steel frame structures using hybrid network of self-powered strain and vibration sensors, and, (iv) a field demonstration of the new technology on the Mackinac Bridge in Michigan. The cases of the U10W gusset plate of the I-35W bridge in Minneapolis, MN, a steel girder, a steel plate under compaction tension mode, and an AC beam under three-point bending configuration are investigated. A surface sensing approach to detect bottom-up cracking in AC pavement under dynamic moving load is also proposed. This approach is based on interpreting the data of a surface-mounted network of sensors. Moreover, a hybrid network of strain and vibration-based sensors is used to detect damage in bolted steel frames. The objective is to establish a local-to-global strategy for damage identification in frames. Data fusion models combined with AI classifiers are developed. Uncertainty analysis is performed to verify the performance of the sensors under different noise levels."--Pages ii-iii.
Show less
- Title
- Gliding robotic fish : design, collaborative estimation, and application to underwater sensing
- Creator
- Ennasr, Osama Nasr
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Autonomous underwater robots have received significant attention over the past two decades due to the increasing demand for environmental sustainability. Recently, gliding robotic fish has emerged as a promising mobile sensing platform in versatile aquatic environments. Such robots, inspired by underwater gliders and robotic fish, combine buoyancy-driven gliding and fin-actuated swimming to realize both energy-efficient locomotion and high maneuverability. In this dissertation, we first...
Show moreAutonomous underwater robots have received significant attention over the past two decades due to the increasing demand for environmental sustainability. Recently, gliding robotic fish has emerged as a promising mobile sensing platform in versatile aquatic environments. Such robots, inspired by underwater gliders and robotic fish, combine buoyancy-driven gliding and fin-actuated swimming to realize both energy-efficient locomotion and high maneuverability. In this dissertation, we first discuss the design improvements for the second-generation gliding robotic fish "Grace 2". These improvements have transformed the robots to underwater sensing platforms that can be modified to fit the requirements of a specific application with relative ease.We focus on the application of detecting and tracking live fish underwater, which is an important part of fishery research, as it helps scientists understands habitat use, migratory patterns, and spawning behavior of fishes. The gliding robotic fish has demonstrated its ability to detect special acoustic signals emulating tagged fish through a series of trials in Higgins Lake, Michigan. These tests have also validated a gliding-based strategy for navigating to a GPS waypoint, and offered insight into the limitations of the current design. Additional improvements are proposed to allow these robots to glide at larger depths and perform more interesting working patterns underwater.Motivated by the problem of tracking real fish, we consider the case where multiple robots localize and track a moving target without the need for a centralized node. We present theoretical treatment on how a network of robots can infer the location of an emitter (or target), and then track it, through a time-difference-of-arrival (TDOA) localization scheme in a fully distributed manner. In particular, we utilize a networked extended Kalman filter to estimate the target's location in a distributed manner, and establish that successful localization can be achieved under fixed and time-varying undirected communication topologies if every agent is part of a network with a minimum of 4 connected, non-coplanar agents. We further propose a movement control strategy based on the norm of the estimation covariance matrices, with a tuning parameter to balance the trade-off between estimation performance and the total distance traveled by the robots.Finally, motivated by the distributed localization problem, we investigate a more general problem of distributed estimation by a network of sensors. Specifically, we consider the class of consensus-based distributed linear filters (CBDLF) where each sensor updates its estimate in two steps: a consensus step dictated by a weighted and directed communication graph, followed by a local Luenberger filtering step. We show that the sub-optimal filtering gains that minimize an upper bound of a quadratic filtering cost are related to the convergence of a set of coupled Riccati equations. Then we show that the convergence of these coupled Riccati equations depends on the notion of squared detectability for the networked system, and proceed to provide necessary conditions that link the convergence of the coupled Riccati equations to the network topology and consensus weights of the communication graph.
Show less