You are here
Search results
(21 - 25 of 25)
Pages
- Title
- Convolutional neural networks for automated cell detection in magnetic resonance imaging data
- Creator
- Afridi, Muhammad Jamal
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
Cell-based therapy (CBT) is emerging as a promising solution for a large number of serious health issues such as brain injuries and cancer. Recent advances in CBT, has heightened interest in the non-invasive monitoring of transplanted cells in in vivo MRI (Magnetic Resonance Imaging) data. These cells appear as dark spots in MRI scans. However, to date, these spots are manually labeled by experts, which is an extremely tedious and a time consuming process. This limits the ability to conduct...
Show moreCell-based therapy (CBT) is emerging as a promising solution for a large number of serious health issues such as brain injuries and cancer. Recent advances in CBT, has heightened interest in the non-invasive monitoring of transplanted cells in in vivo MRI (Magnetic Resonance Imaging) data. These cells appear as dark spots in MRI scans. However, to date, these spots are manually labeled by experts, which is an extremely tedious and a time consuming process. This limits the ability to conduct large scale spot analysis that is necessary for the long term success of CBT. To address this gap, we develop methods to automate the spot detection task. In this regard we (a) assemble an annotated MRI database for spot detection in MRI; (b) present a superpixel based strategy to extract regions of interest from MRI; (c) design a convolutional neural network (CNN) architecture for automatically characterizing and classifying spots in MRI; (d) propose a transfer learning approach to circumvent the issue of limited training data, and (e) propose a new CNN framework that exploits labeling behavior of the expert in the learning process. Extensive experiments convey the benefits of the proposed methods.
Show less
- Title
- Harnessing low-pass filter defects for improving wireless link performance : measurements and applications
- Creator
- Renani, Alireza Ameli
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
"The design trade-offs of transceiver hardware are crucial to the performance of wireless systems. The effect of such trade-offs on individual analog and digital components are vigorously studied, but their systemic impacts beyond component-level remain largely unexplored. In this dissertation, we present an in-depth study to characterize the surprisingly notable systemic impacts of low-pass filter design, which is a small yet indispensable component used for shaping spectrum and rejecting...
Show more"The design trade-offs of transceiver hardware are crucial to the performance of wireless systems. The effect of such trade-offs on individual analog and digital components are vigorously studied, but their systemic impacts beyond component-level remain largely unexplored. In this dissertation, we present an in-depth study to characterize the surprisingly notable systemic impacts of low-pass filter design, which is a small yet indispensable component used for shaping spectrum and rejecting interference. Using a bottom-up approach, we examine how signal-level distortions caused by the trade-offs of low-pass filter design propagate to the upper-layers of wireless communication, reshaping bit error patterns and degrading link performance of today's 802.11 systems. Moreover, we propose a novel unequal error protection algorithm that harnesses low-pass filter defects for improving wireless LAN throughput, particularly to be used in forward error correction, channel coding, and applications such as video streaming. Lastly, we conduct experiments to evaluate the unequal error protection algorithm in video streaming, and we present substantial enhancements of video quality in mobile environments."--Page ii.
Show less
- Title
- LIDAR AND CAMERA CALIBRATION USING A MOUNTED SPHERE
- Creator
- Li, Jiajia
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Extrinsic calibration between lidar and camera sensors is needed for multi-modal sensor data fusion. However, obtaining precise extrinsic calibration can be tedious, computationally expensive, or involve elaborate apparatus. This thesis proposes a simple, fast, and robust method performing extrinsic calibration between a camera and lidar. The only required calibration target is a hand-held colored sphere mounted on a whiteboard. The convolutional neural networks are developed to automatically...
Show moreExtrinsic calibration between lidar and camera sensors is needed for multi-modal sensor data fusion. However, obtaining precise extrinsic calibration can be tedious, computationally expensive, or involve elaborate apparatus. This thesis proposes a simple, fast, and robust method performing extrinsic calibration between a camera and lidar. The only required calibration target is a hand-held colored sphere mounted on a whiteboard. The convolutional neural networks are developed to automatically localize the sphere relative to the camera and the lidar. Then using the localization covariance models, the relative pose between the camera and lidar is derived. To evaluate the accuracy of our method, we record image and lidar data of a sphere at a set of known grid positions by using two rails mounted on a wall. The accurate calibration results are demonstrated by projecting the grid centers into the camera image plane and finding the error between these points and the hand-labeled sphere centers.
Show less
- Title
- ASSESSMENT OF CROSS-FREQUENCY PHASE-AMPLITUDE COUPLING IN NEURONAL OSCILLATIONS
- Creator
- Munia, Tamanna Tabassum Khan
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Oscillatory activity in the brain has been associated with a wide variety of cognitive processes including decision making, feedback processing, and working memory control. The high temporal resolution provided by electroencephalography (EEG) enables the study of variation of oscillatory power and coupling across time. Various forms of neural synchrony across frequency bands have been suggested as the mechanism underlying neural binding. Recently, a considerable amount of work has focused on...
Show moreOscillatory activity in the brain has been associated with a wide variety of cognitive processes including decision making, feedback processing, and working memory control. The high temporal resolution provided by electroencephalography (EEG) enables the study of variation of oscillatory power and coupling across time. Various forms of neural synchrony across frequency bands have been suggested as the mechanism underlying neural binding. Recently, a considerable amount of work has focused on phase-amplitude coupling (PAC)– a form of cross-frequency coupling where the amplitude of a high-frequency signal is modulated by the phase of low-frequency oscillations.The existing methods for assessing PAC have certain limitations which can influence the final PAC estimates and the subsequent neuroscientific findings. These limitations include low frequency resolution, narrowband assumption, and inherent requirement of bandpass filtering. These methods are also limited to quantifying univariate PAC and cannot capture inter-areal cross frequency coupling between different brain regions. Given the availability of multi-channel recordings, a multivariate analysis of phase-amplitude coupling is needed to accurately quantify the coupling across multiple frequencies and brain regions. Moreover, the existing PAC measures are usually stationary in nature, focusing on phase-amplitude modulations within a particular time window or over arbitrary sliding short time windows. Therefore, there is a need for computationally efficient measures that can quantify PAC with a high-frequency resolution, track the variation of PAC with time, both in bivariate and multivariate settings and provide a better insight into the spatially distributed dynamic brain networks across different frequency bands.In this thesis, we introduce a PAC computation technique that aims to overcome some of these drawbacks and extend it to multi-channel settings for quantifying dynamic cross-frequency coupling in the brain. The main contributions of the thesis are threefold. First, we present a novel time frequency based PAC (t-f PAC) measure based on a high-resolution complex time-frequency distribution, known as the Reduced Interference Distribution (RID)-Rihaczek. This t-f PAC measure overcomes the drawbacks associated with filtering by extracting instantaneous phase and amplitude components directly from the t-f distribution and thus provides high resolution PAC estimates. Following the introduction of a complex time-frequency-based high resolution PAC measure, we extend this measure to multi-channel settings to quantify the inter-areal PAC across multiple frequency bands and brain regions. We propose a tensor-based representation of multi-channel PAC based on Higher Order Robust PCA (HoRPCA). The proposed method can identify the significantly coupled brain regions along with the frequency bands that are involved in the observed couplings while accurately discarding the non-significant or spurious couplings. Finally, we introduce a matching pursuit based dynamic PAC (MP-dPAC) measure that allows us to compute PAC from time and frequency localized atoms that best describe the signal and thus capture the temporal variation of PAC using a data-driven approach. We evaluate the performance of the proposed methods on both synthesized and real EEG data collected during a cognitive control-related error processing study. Based on our results, we posit that the proposed multivariate and dynamic PAC measures provide a better insight into understanding the spatial, spectral, and temporal dynamics of cross-frequency phase-amplitude coupling in the brain.
Show less
- Title
- Signal Processing Based Distortion Mitigation in Interferometric Radar Angular Velocity Estimation
- Creator
- Klinefelter, Eric
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Interferometric angular velocity estimation is a relatively recent radar technique which uses a pair of widely spaced antenna elements and a correlation receiver to directly measure the angular velocity of a target. Traditional radar systems measure range, radial velocity (Doppler), and angle, while angular velocity is typically derived as the time-rate change of the angle measurements. The noise associated with the derived angular velocity estimate is statistically correlated with the angle...
Show moreInterferometric angular velocity estimation is a relatively recent radar technique which uses a pair of widely spaced antenna elements and a correlation receiver to directly measure the angular velocity of a target. Traditional radar systems measure range, radial velocity (Doppler), and angle, while angular velocity is typically derived as the time-rate change of the angle measurements. The noise associated with the derived angular velocity estimate is statistically correlated with the angle measurements, and thus provides no additional information to traditional state space trackers. Interferometric angular velocity estimation, on the other hand, provides an independent measurement, thus forming a basis in R2 for both position and velocity.While promising results have been presented for single target interferometric angular velocity estimation, there is a known issue which arises when multiple targets are present. The ideal interferometric response with multiple targets would contain only the mixing product between like targets across the antenna responses, yet instead, the mixing product between all targets is generated, resulting in unwanted `cross-terms' or intermodulation distortion. To date, various hardware based methods have been presented, which are effective, though they tend to require an increased number of antenna elements, a larger physical system baseline, or signals with wide bandwidths. Presented here are novel methods for signal processing based interferometric angular velocity estimation distortion mitigation, which can be performed with only a single antenna pair and traditional continuous-wave or frequency-modulated continuous wave signals.In this work, two classes of distortion mitigation methods are described: model-based and response decomposition. Model-based methods use a learned or analytic model with traditional non-linear optimization techniques to arrive at angular velocity estimates based on the complete interferometric signal response. Response decomposition methods, on the other hand, aim to decompose the individual antenna responses into separate responses pertaining to each target, then associate like targets between antenna responses. By performing the correlation in this manner, the cross-terms, which typically corrupt the interferometric response, are mitigated. It was found that due to the quadratic scaling of distortion terms, model-based methods become exceedingly difficult as the number of targets grows large. Thus, the method of response decomposition is selected and results on measured radar signals are presented. For this, a custom single-board millimeter-wave interferometric radar was developed, and angular velocity measurements were performed in an enclosed environment consisting of two robotic targets. A set of experiments was designed to highlight easy, medium, and difficult cases for the response decomposition algorithm, and results are presented herein.
Show less