You are here
Search results
(21 - 30 of 30)
Pages
- Title
- Privacy and integrity preserving computation in distributed systems
- Creator
- Chen, Fei
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
Preserving privacy and integrity of private data has become core requirements for many distributed systems across different parties. In these systems, one party may try to compute or aggregate useful information from the private data of other parties. However, this party is not be fully trusted by other parties. Therefore, it is important to design security protocols for preserving such private data. Furthermore, one party may want to query the useful information computed from such private...
Show morePreserving privacy and integrity of private data has become core requirements for many distributed systems across different parties. In these systems, one party may try to compute or aggregate useful information from the private data of other parties. However, this party is not be fully trusted by other parties. Therefore, it is important to design security protocols for preserving such private data. Furthermore, one party may want to query the useful information computed from such private data. However, query results may be modified by a malicious party. Thus, it is important to design query protocols such that query result integrity can be verified.In this dissertation, we study four important privacy and integrity preserving problems for different distributed systems. For two-tiered sensor networks, where storage nodes serve as an intermediate tier between sensors and a sink for storing data and processing queries, we proposed SafeQ, a protocol that prevents compromised storage nodes from gaining information from both sensor collected data and sink issued queries, while it still allows storage nodes to process queries over encrypted data and the sink to detect compromised storage nodes when they misbehave. For cloud computing, where a cloud provider hosts the data of an organization and replies query results to the customers of the organization, we propose novel privacy and integrity preserving schemes for multi-dimensional range queries such that the cloud provider can process encoded queries over encoded data without knowing the actual values, and customers can verify the integrity of query results with high probability. For distributed firewall policies, we proposed the first privacy-preserving protocol for cross-domain firewall policy optimization. For any two adjacent firewalls belonging to two different administrative domains, our protocol can identify in each firewall the rules that can be removed because of the other firewall. For network reachability, one of the key factors for capturing end-to-end network behavior and detecting the violation of security policies, we proposed the first cross-domain privacy-preserving protocol for quantifying network reachability.
Show less
- Title
- Reliable 5G system design and networking
- Creator
- Liang, Yuan (Graduate of Michigan State University)
- Date
- 2019
- Collection
- Electronic Theses & Dissertations
- Description
-
The upcoming fifth generation (5G) system is expected to support a variety of different devices and applications, such as ultra-reliable and low latency communications, Internet of Things (IoT) and mobile cloud computing. Reliable and effective communications lie in the core of the 5G system design. This dissertation is focused on the design and evaluation of robust 5G systems under both benign and malicious environments, with considerations on both the physical layer and higher layers. For...
Show moreThe upcoming fifth generation (5G) system is expected to support a variety of different devices and applications, such as ultra-reliable and low latency communications, Internet of Things (IoT) and mobile cloud computing. Reliable and effective communications lie in the core of the 5G system design. This dissertation is focused on the design and evaluation of robust 5G systems under both benign and malicious environments, with considerations on both the physical layer and higher layers. For the physical layer, we study secure and efficient 5G transceiver under hostile jamming. We propose a securely precoded OFDM (SP-OFDM) system for efficient and reliable transmission under disguised jamming, a serious threat to 5G, where the jammer intentionally confuses the receiver by mimicking the characteristics of the authorized signal, and causes complete communication failure. We bring off a dynamic constellation by introducing secure randomness between the legitimate transmitter and receiver, and hence break the symmetricity between the authorized signal and the disguised jamming. It is shown that due to the secure randomness shared between the authorized transmitter and receiver, SP-OFDM can achieve a positive channel capacity under disguised jamming. The robustness of the proposed SP-OFDM scheme under disguised jamming is demonstrated through both theoretic and numerical analyses. We further address the problem of finding the worst jamming distribution in terms of channel capacity for the SP-OFDM system. We consider a practical communication scenario, where the transmitting symbols are uniformly distributed over a discrete and finite alphabet, and the jamming interference is subject to an average power constraint, but may or may not have a peak power constraint. Using tools in functional analysis and complex analysis, first, we prove the existence and uniqueness of the worst jamming distribution. Second, by analyzing the Kuhn-Tucker conditions for the worst jamming, we prove that the worst jamming distribution is discrete in amplitude with a finite number of mass points. For the higher layers, we start with the modeling of 5G high-density heterogeneous networks. We investigate the effect of relay randomness on the end-to-end throughput in multi-hop wireless networks using stochastic geometry. We model the nodes as Poisson Point Processes and calculate the spatial average of the throughput over all potential geometrical patterns of the nodes. More specifically, for problem tractability, we first consider the simple nearest neighbor (NN) routing protocol, and analyze the end-to-end throughput so as to obtain a performance benchmark. Next, note that the ideal equal-distance routing is generally not realizable due to the randomness in relay distribution, we propose a quasi-equal-distance (QED) routing protocol. We derive the range for the optimal hop distance, and analyze the end-to-end throughput both with and without intra-route resource reuse. It is shown that the proposed QED routing protocol achieves a significant performance gain over NN routing. Finally, we consider the malicious link detection in multi-hop wireless sensor networks (WSNs), which is an important application of 5G multi-hop wireless networks. Existing work on malicious link detection generally requires that the detection process being performed at the intermediate nodes, leading to considerable overhead in system design, as well as unstable detection accuracy due to limited resources and the uncertainty in the loyalty of the intermediate nodes themselves. We propose an efficient and robust malicious link detection scheme by exploiting the statistics of packet delivery rates only at the base stations. More specifically, first, we present a secure packet transmission protocol to ensure that except the base stations, any intermediate nodes on the route cannot access the contents and routing paths of the packets. Second, we design a malicious link detection algorithm that can effectively detect the irregular dropout at every hop (or link) along the routing path with guaranteed false alarm rate and low miss detection rate.
Show less
- Title
- Robust multi-task learning algorithms for predictive modeling of spatial and temporal data
- Creator
- Liu, Xi (Graduate of Michigan State University)
- Date
- 2019
- Collection
- Electronic Theses & Dissertations
- Description
-
"Recent years have witnessed the significant growth of spatial and temporal data generated from various disciplines, including geophysical sciences, neuroscience, economics, criminology, and epidemiology. Such data have been extensively used to train spatial and temporal models that can make predictions either at multiple locations simultaneously or along multiple forecasting horizons (lead times). However, training an accurate prediction model in these domains can be challenging especially...
Show more"Recent years have witnessed the significant growth of spatial and temporal data generated from various disciplines, including geophysical sciences, neuroscience, economics, criminology, and epidemiology. Such data have been extensively used to train spatial and temporal models that can make predictions either at multiple locations simultaneously or along multiple forecasting horizons (lead times). However, training an accurate prediction model in these domains can be challenging especially when there are significant noise and missing values or limited training examples available. The goal of this thesis is to develop novel multi-task learning frameworks that can exploit the spatial and/or temporal dependencies of the data to ensure robust predictions in spite of the data quality and scarcity problems. The first framework developed in this dissertation is designed for multi-task classification of time series data. Specifically, the prediction task here is to continuously classify activities of a human subject based on the multi-modal sensor data collected in a smart home environment. As the classes exhibit strong spatial and temporal dependencies, this makes it an ideal setting for applying a multi-task learning approach. Nevertheless, since the type of sensors deployed often vary from one room (location) to another, this introduces a structured missing value problem, in which blocks of sensor data could be missing when a subject moves from one room to another. To address this challenge, a probabilistic multi-task classification framework is developed to jointly model the activity recognition tasks from all the rooms, taking into account the block-missing value problem. The framework also learns the transitional dependencies between classes to improve its overall prediction accuracy. The second framework is developed for the multi-location time series forecasting problem. Although multi-task learning has been successfully applied to many time series forecasting applications such as climate prediction, conventional approaches aim to minimize only the point-wise residual error of their predictions instead of considering how well their models fit the overall distribution of the response variable. As a result, their predicted distribution may not fully capture the true distribution of the data. In this thesis, a novel distribution-preserving multi-task learning framework is proposed for the multi-location time series forecasting problem. The framework uses a non-parametric density estimation approach to fit the distribution of the response variable and employs an L2-distance function to minimize the divergence between the predicted and true distributions. The third framework proposed in this dissertation is for the multi-step-ahead (long-range) time series prediction problem with application to ensemble forecasting of sea surface temperature. Specifically, our goal is to effectively combine the forecasts generated by various numerical models at different lead times to obtain more precise predictions. Towards this end, a multi-task deep learning framework based on a hierarchical LSTM architecture is proposed to jointly model the ensemble forecasts of different models, taking into account the temporal dependencies between forecasts at different lead times. Experiments performed on 29-year sea surface temperature data from North American Multi-Model Ensemble (NAMME) demonstrate that the proposed architecture significantly outperforms standard LSTM and other MTL approaches."--Pages ii-iii.
Show less
- Title
- Scheduling for CPU Packing and node shutdown to reduce the energy consumption of high performance computing centers
- Creator
- Vudayagiri, Srikanth Phani
- Date
- 2010
- Collection
- Electronic Theses & Dissertations
- Description
-
During the past decade, there has been a tremendous growth in the high performance computing and data center arenas. The huge energy requirements in these sectors have prompted researchers to investigate possible ways to reduce their energy consumption. Reducing the energy consumption is not only beneficial to an organization economically but also to the environment. In this thesis, we focus our attention on high performance scientific computing clusters. We first perform experiments with the...
Show moreDuring the past decade, there has been a tremendous growth in the high performance computing and data center arenas. The huge energy requirements in these sectors have prompted researchers to investigate possible ways to reduce their energy consumption. Reducing the energy consumption is not only beneficial to an organization economically but also to the environment. In this thesis, we focus our attention on high performance scientific computing clusters. We first perform experiments with the CPU Packing feature available in Linux using programs from the SPEC CPU2000 suite. We then look at an energy-aware scheduling algorithm for the cluster that assumes that CPU Packing is enabled on all the nodes. Using simulations, we compare the scheduling done by this algorithm to that done by the existing, commercial Moab scheduler in the cluster. We experiment with the Moab Green Computing feature and based on our observations, we implement the shutdown mechanism used by Moab in our simulations. Our results show that Moab Green Computing could provide about an 13% energy savings on average for the HPC cluster without any noticeable decrease in the performance of jobs.
Show less
- Title
- Secure and efficient spectrum sharing and QoS analysis in OFDM-based heterogeneous wireless networks
- Creator
- Alahmadi, Ahmed S.
- Date
- 2016
- Collection
- Electronic Theses & Dissertations
- Description
-
"The Internet of Things (IoT), which networks versatile devices for information exchange, remote sensing, monitoring and control, is finding promising applications in nearly every field. However, due to its high density and enormous spectrum requirement, the practical development of IoT technology seems to be not available until the release of the large millimeter wave (mmWave) band (30GHz-300GHz). Compared to existing lower band systems (such as 3G, 4G), mmWave band signals generally require...
Show more"The Internet of Things (IoT), which networks versatile devices for information exchange, remote sensing, monitoring and control, is finding promising applications in nearly every field. However, due to its high density and enormous spectrum requirement, the practical development of IoT technology seems to be not available until the release of the large millimeter wave (mmWave) band (30GHz-300GHz). Compared to existing lower band systems (such as 3G, 4G), mmWave band signals generally require line of sight (LOS) path and suffer from severe fading effects, leading to much smaller coverage area. For network design and management, this implies that: (i) MmWave band alone could not support the IoT networks, but has to be integrated with the existing lower band systems through secure and effective spectrum sharing, especially in the lower frequency bands; and (ii) The IoT networks will have very high density node distribution, which is a significant challenge in network design, especially with the scarce energy budget of IoT applications. Motivated by these observations, in this dissertation, we consider three problems: (1) How to achieve secure and effective spectrum sharing? (2) How to accommodate the energy limited IoT devices? (3) How to evaluate the Quality of Service (QoS) in the high density IoT networks? We aim to develop innovative techniques for the design, evaluation and management of future IoT networks under both benign and hostile environments. The main contributions of this dissertation are outlined as follows. First, we develop a secure and efficient spectrum sharing scheme in single-carrier wireless networks. Cognitive radio (CR) is a key enabling technology for spectrum sharing, where the unoccupied spectrum is identified for secondary users (SUs), without interfering with the primary user (PU). A serious security threat to the CR networks is referred to as primary user emulation attack (PUEA), in which a malicious user (MU) emulates the signal characteristics of the PU, thereby causing the SUs to erroneously identify the attacker as the PU. Here, we consider full-band PUEA detection and propose a reliable AES-assisted DTV scheme, where an AES-encrypted reference signal is generated at the DTV transmitter and used as the sync bits of the DTV data frames. For PU detection, we investigate the cross-correlation between the received sequence and reference sequence. The MU detection can be performed by investigating the auto-correlation of the received sequence. We further develop a secure and efficient spectrum sharing scheme in multi-carrier wireless networks. We consider sub-band malicious user detection and propose a secure AES-based DTV scheme, where the existing reference sequence used to generate the pilot symbols in the DVB-T2 frames is encrypted using the AES algorithm. The resulted sequence is exploited for accurate detection of the authorized PU and the MU. Second, we develop an energy efficient transmission scheme in CR networks using energy harvesting. We propose a transmitting scheme for the SUs such that each SU can perform information reception and energy harvesting simultaneously. We perform sum-rate optimization for the SUs under PUEA. It is observed that the sum-rate of the SU network can be improved significantly with the energy harvesting technique. Potentially, the proposed scheme can be applied directly to the energy-constrained IoT networks. Finally, we investigate QoS performance analysis methodologies, which can provide insightful feedbacks to IoT network design and planning. Taking the spatial randomness of the IoT network into consideration, we investigate coverage probability (CP) and blocking probability (BP) in relay-assisted OFDMA networks using stochastic geometry. More specifically, we model the inter-cell interference from the neighboring cells at each typical node, and derive the CP in the downlink transmissions. Based on their data rate requirements, we classify the incoming users into different classes, and calculate the BP using the multi-dimensional loss model."--Pages ii-iii.
Show less
- Title
- Signal processing and machine learning approaches to enabling advanced sensing and networking capabilities in everyday infrastructure and electronics
- Creator
- Ali, Kamran (Scientist)
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Mainstream commercial off-the-shelf (COTS) electronic devices of daily use are usually designed and manufactured to serve a very specific purpose. For example, the WiFi routers and network interface cards (NICs) are designed for high speed wireless communication, RFID readers and tags are designed to identify and track items in supply chain, and smartphone vibrator motors are designed to provide haptic feedback (e.g. notifications in silent mode) to the users. This dissertation focuses on...
Show moreMainstream commercial off-the-shelf (COTS) electronic devices of daily use are usually designed and manufactured to serve a very specific purpose. For example, the WiFi routers and network interface cards (NICs) are designed for high speed wireless communication, RFID readers and tags are designed to identify and track items in supply chain, and smartphone vibrator motors are designed to provide haptic feedback (e.g. notifications in silent mode) to the users. This dissertation focuses on revisiting the physical-layer of various such everyday COTS electronic devices, either to leverage the signals obtained from their physical layers to develop novel sensing applications, or to modify/improve their PHY/MAC layer protocols to enable even more useful deployment scenarios and networking applications - while keeping their original purpose intact - by introducing mere software/firmware level changes and completely avoiding any hardware level changes. Adding such new usefulness and functionalities to existing everyday infrastructure and electronics has advantages both in terms of cost and convenience of use/deployment, as those devices (and their protocols) are already mainstream, easily available, and often already purchased and in use/deployed to serve their mainstream purpose of use.In our works on WiFi signals based sensing, we propose signal processing and machine learning approaches to enable fine-grained gesture recognition and sleep monitoring using COTS WiFi devices. In our work on gesture recognition, we show for the first time thatWiFi signals can be used to recognize small gestures with high accuracy. In our work on sleep monitoring, we propose for the first time aWiFi CSI based sleep quality monitoring scheme which can robustly track breathing and body/limb activity related vital signs during sleep throughout a night in an individual and environment independent manner.In our work on RFID signals based sensing, we propose signal processing and machine learning approaches to effectively image customer activity in front of display items in places such as retail stores using commercial off-the-shelf (COTS) monostatic RFID devices (i.e. which use a single antenna at a time for both transmitting and receiving RFID signals to and from the tags). The key novelty of this work is on achieving multi-person activity tracking in front of display items by constructing coarse grained images via robust, analytical model-driven deep learning based, RFID imaging. We implemented our scheme using a COTS RFID reader and tags.In our work on smartphone's vibration based sensing, we propose a robust and practical vibration based sensing scheme that works with smartphones with different hardware, can extract fine-grained vibration signatures of different surfaces, and is robust to environmental noise and hardware based irregularities. A useful application of this sensing is symbolic localization/tagging, e.g. figuring out whether a user's device is in their hand, pocket, or at their bedroom table, etc. Such symbolic tagging of locations can provide us with indirect information about user activities and intentions without any dedicated infrastructure, based on which we can enable useful services such as context aware notifications/alarms. To make our scheme easily scalable and compatible with COTS smartphones, we design our signal processing and machine learning pipeline such that it relies only on builtin vibration motors and microphone for sensing, and it is robust to hardware irregularities and background environmental noises. We tested our scheme on two different Android smartphones.In our work on powerline communications (PLCs), we propose a distributed spectrum sharing scheme for enterprise level PLC mesh networks. This work is a major step towards using existing COTS PLC devices to connect different types of Internet of Things (IoT) devices for sensing and control related applications in large campuses such as enterprises. Our work is based on identification of a key weakness of the existing HomePlug AV (HPAV) PLC protocol that it does not support spectrum sharing, i.e., currently each link operates over the whole available spectrum, and therefore, only one link can operate at a time. Our proposed spectrum sharing scheme significantly boosts both aggregated and per-link throughputs, by allowing multiple links to communicate concurrently, while requiring a few modifications to the existing HPAV protocol.
Show less
- Title
- Statistical and learning algorithms for the design, analysis, measurement, and modeling of networking and security systems
- Creator
- Shahzad, Muhammad (College teacher)
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
"The goal of this thesis is to develop statistical and learning algorithms for the design, analysis, measurement, and modeling of networking and security systems with specific focus on RFID systems, network performance metrics, user security, and software security. Next, I give a brief overview of these four areas of focus." -- Abstract.
- Title
- Towards Robust and Reliable Communication for Millimeter Wave Networks
- Creator
- Zarifneshat, Masoud
- Date
- 2022
- Collection
- Electronic Theses & Dissertations
- Description
-
The future generations of wireless networks benefit significantly from millimeter wave technology (mmW) with frequencies ranging from about 30 GHz to 300 GHz. Specifically, the fifth generation of wireless networks has already implemented the mmW technology and the capacity requirements defined in 6G will also benefit from the mmW spectrum. Despite the attractions of the mmW technology, the mmW spectrum has some inherent propagation properties that introduce challenges. The first is that free...
Show moreThe future generations of wireless networks benefit significantly from millimeter wave technology (mmW) with frequencies ranging from about 30 GHz to 300 GHz. Specifically, the fifth generation of wireless networks has already implemented the mmW technology and the capacity requirements defined in 6G will also benefit from the mmW spectrum. Despite the attractions of the mmW technology, the mmW spectrum has some inherent propagation properties that introduce challenges. The first is that free space pathloss in mmW is more severe than that in the sub 6 GHz band. To make the mmW signal travel farther, communication systems need to use phased array antennas to concentrate the signal power to a limited direction in space at each given time. Directional communication can incur high overhead on the system because it needs to probe the space for finding signal paths. To have efficient communication in the mmW spectrum, the transmitter and the receiver should align their beams on strong signal paths which is a high overhead task. The second is a low diffraction of the mmW spectrum. The low diffraction causes almost any object including the human body to easily block the mmW signal degrading the mmW link quality. Avoiding and recovering from the blockage in the mmW communications, especially in dynamic environments, is particularly challenging because of the fast changes of the mmW channel. Due to the unique characteristics of the mmW propagation, the traditional user association methods perform poorly in the mmW spectrum. Therefore, we propose user association methods that consider the inherent propagation characteristics of the mmW signal. We first propose a method that collects the history of blockage incidents throughout the network and exploits the historical blockage incidents to associate user equipment to the base station with lower blockage possibility. The simulation results show that our proposed algorithm performs better in terms of improving the quality of the links and blockage rate in the network. User association based only on one objective may deteriorate other objectives. Therefore, we formulate a biobjective optimization problem to consider two objectives of load balance and blockage possibility in the network. We conduct Lagrangian dual analysis to decrease time complexity. The results show that our solution to the biobjective optimization problem has a better outcome compared to optimizing each objective alone. After we investigate the user association problem, we further look into the problem of maintaining a robust link between a transmitter and a receiver. The directional propagation of the mmW signal creates the opportunity to exploit multipath for a robust link. The main reasons for the link quality degradation are blockage and link movement. We devise a learning-based prediction framework to classify link blockage and link movement efficiently and quickly using diffraction values for taking appropriate mitigating actions. The simulations show that the prediction framework can predict blockage with close to 90% accuracy. The prediction framework will eliminate the need for time-consuming methods to discriminate between link movement and link blockage. After detecting the reason for the link degradation, the system needs to do the beam alignment on the updated mmW signal paths. The beam alignment on the signal paths is a high overhead task. We propose using signaling in another frequency band to discover the paths surrounding a receiver working in the mmW spectrum. In this way, the receiver does not have to do an expensive beam scan in the mmW band. Our experiments with off-the-shelf devices show that we can use a non-mmW frequency band's paths to align the beams in mmW frequency. In this dissertation, we provide solutions to the fundamental problems in mmW communication. We propose a user association method that is designed for mmW networks considering challenges of mmW signal. A closed-form solution for a biobjective optimization problem to optimize both blockage and load balance of the network is also provided. Moreover, we show that we can efficiently use the out-of-band signal to exploit multipath created in mmW communication. The future research direction includes investigating the methods proposed in this dissertation to solve some of the classic problems in the wireless networks that exist in the mmW spectrum.
Show less
- Title
- Towards machine learning based source identification of encrypted video traffic
- Creator
- Shi, Yan (Of Michigan State University)
- Date
- 2019
- Collection
- Electronic Theses & Dissertations
- Description
-
The rapid growth of the Internet has helped to popularize video streaming services, which has now become the most dominant content on the Internet. The management of video streaming traffic is complicated by its enormous volume, diverse communication protocols and data formats, and the widespread adoption of encryption. In this thesis, the aim is to develop a novel firewall framework, named Soft-margined Firewall, for managing encrypted video streaming traffic while avoiding violation of user...
Show moreThe rapid growth of the Internet has helped to popularize video streaming services, which has now become the most dominant content on the Internet. The management of video streaming traffic is complicated by its enormous volume, diverse communication protocols and data formats, and the widespread adoption of encryption. In this thesis, the aim is to develop a novel firewall framework, named Soft-margined Firewall, for managing encrypted video streaming traffic while avoiding violation of user privacy. The system distinguishes itself from conventional firewall systems by incorporating machine learning and Traffic Analysis (TA) as a traffic detection and blocking mechanism. The goal is to detect unknown network traffic, including traffic that is encrypted, tunneled through Virtual Private Network, or obfuscated, in realistic application scenarios. Existing TA methods have limitations in that they can deal only with simple traffic patterns-usually, only a single source of traffic is allowed in a tunnel, and a trained classifier is not portable between network locations, requiring redundant training. This work aims to address these limitations with new techniques in machine learning. The three main contributions of this work are: 1) developing new statistical features around traffic surge periods that can better identify websites with dynamic contents; 2) a two-stage classifier architecture to solve the mixed-traffic problem with state-of-the-art TA features; and 3) leveraging a novel natural-language inspired feature to solve the mixed-traffic problem using Deep-Learning methods. A fully working Soft-margin Firewall with the above distinctive features have been designed, implemented, and verified for both conventional classifiers and the proposed deep-learning based classifiers. The efficacy of the proposed system is confirmed via experiments conducted on actual network setups with a custom-built prototype firewall and OpenVPN servers. The proposed feature-classifier combinations show superior performance compared to previous state-of-the-art results. The solution that combines natural-language inspired traffic feature and Deep-Learning is demonstrated to be able to solve the mixed-traffic problem, and capable of predicting multiple labels associated with one sample. Additionally, the classifier can classify traffic recorded from locations that are different from where the trained traffic was collected. These results are the first of their kind and are expected to lead the way of creating next-generation TA-based firewall systems.
Show less
- Title
- Using Eventual Consistency to Improve the Performance of Distributed Graph Computation In Key-Value Stores
- Creator
- Nguyen, Duong Ngoc
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Key-value stores have gained increasing popularity due to their fast performance and simple data model. A key-value store usually consists of multiple replicas located in different geographical regions to provide higher availability and fault tolerance. Consequently, a protocol is employed to ensure that data are consistent across the replicas.The CAP theorem states the impossibility of simultaneously achieving three desirable properties in a distributed system, namely consistency,...
Show moreKey-value stores have gained increasing popularity due to their fast performance and simple data model. A key-value store usually consists of multiple replicas located in different geographical regions to provide higher availability and fault tolerance. Consequently, a protocol is employed to ensure that data are consistent across the replicas.The CAP theorem states the impossibility of simultaneously achieving three desirable properties in a distributed system, namely consistency, availability, and network partition tolerance. Since failures are a norm in distributed systems and the capability to maintain the service at an acceptable level in the presence of failures is a critical dependability and business requirement of any system, the partition tolerance property is a necessity. Consequently, the trade-off between consistency and availability (performance) is inevitable. Strong consistency is attained at the cost of slow performance and fast performance is attained at the cost of weak consistency, resulting in a spectrum of consistency models suitable for different needs. Among the consistency models, sequential consistency and eventual consistency are two common ones. The former is easier to program with but suffers from poor performance whereas the latter suffers from potential data anomalies while providing higher performance.In this dissertation, we focus on the problem of what a designer should do if he/she is asked to solve a problem on a key-value store that provides eventual consistency. Specifically, we are interested in the approaches that allow the designer to run his/her applications on an eventually consistent key-value store and handle data anomalies if they occur during the computation. To that end, we investigate two options: (1) Using detect-rollback approach, and (2) Using stabilization approach. In the first option, the designer identifies a correctness predicate, say $\Phi$, and continues to run the application as if it was running on sequential consistency, as our system monitors $\Phi$. If $\Phi$ is violated (because the underlying key-value store provides eventual consistency), the system rolls back to a state where $\Phi$ holds and the computation is resumed from there. In the second option, the data anomalies are treated as state perturbations and handled by the convergence property of stabilizing algorithms.We choose LinkedIn's Voldemort key-value store as the example key-value store for our study. We run experiments with several graph-based applications on Amazon AWS platform to evaluate the benefits of the two approaches. From the experiment results, we observe that overall, both approaches provide benefits to the applications when compared to running the applications on sequential consistency. However, stabilization provides higher benefits, especially in the aggressive stabilization mode which trades more perturbations for no locking overhead.The results suggest that while there is some cost associated with making an algorithm stabilizing, there may be a substantial benefit in revising an existing algorithm for the problem at hand to make it stabilizing and reduce the overall runtime under eventual consistency.There are several directions of extension. For the detect-rollback approach, we are working to develop a more general rollback mechanism for the applications and improve the efficiency and accuracy of the monitors. For the stabilization approach, we are working to develop an analytical model for the benefits of eventual consistency in stabilizing programs. Our current work focuses on silent stabilization and we plan to extend our approach to other variations of stabilization.
Show less