You are here
Search results
(21 - 31 of 31)
Pages
- Title
- Fluid animation on deforming surface meshes
- Creator
- Wang, Xiaojun (Graduate of Michigan State University)
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"We explore methods for visually plausible fluid simulation on deforming surfaces with inhomogeneous diffusion properties. While there are methods for fluid simulation on surfaces, not much research effort focused on the influence of the motion of underlying surface, in particular when it is not a rigid surface, such as knitted or woven textiles in motion. The complexity involved makes the simulation challenging to account for the non-inertial local frames typically used to describe the...
Show more"We explore methods for visually plausible fluid simulation on deforming surfaces with inhomogeneous diffusion properties. While there are methods for fluid simulation on surfaces, not much research effort focused on the influence of the motion of underlying surface, in particular when it is not a rigid surface, such as knitted or woven textiles in motion. The complexity involved makes the simulation challenging to account for the non-inertial local frames typically used to describe the motion and the anisotropic effects in diffusion, absorption, adsorption. Thus, our primary goal is to enable fast and stable method for such scenarios. First, in preparation of the material properties for the surface domain, we describe textiles with salient feature direction by bulk material property tensors in order to reduce the complexity, by employing 2D homogenization technique, which effectively turns microscale inhomogeneous properties into homogeneous properties in macroscale descriptions. We then use standard texture mapping techniques to map these tensors to triangles in the curved surface mesh, taking into account the alignment of each local tangent space with correct feature directions of the macroscale tensor. We show that this homogenization tool is intuitive, flexible and easily adjusted. Second, for efficient description of the deforming surface, we offer a new geometry representation for the surface with solely angles instead of vertex coordinates, to reduce storage for the motion of underlying surface. Since our simulation tool relies heavily on long sequences of 3D curved triangular meshes, it is worthwhile exploring such efficient representations to make our tool practical by reducing the memory access during real-time simulations as well as reducing the file sizes. Inspired by angle-based representations for tetrahedral meshes, we use spectral method to restore curved surface using both angles of the triangles and dihedral angles between adjacent triangles in the mesh. Moreover, in many surface deformation sequences, it is often sufficient to update the dihedral angles while keeping the triangle interior angles fixed. Third, we propose a framework for simulating various effects of fluid flowing on deforming surfaces. We directly applied our simulator on curved surface meshes instead of in parameter domains, whereas many existing simulation methods require a parameterization on the surface. We further demonstrate that fictitious forces induced by the surface motion can be added to the surface-based simulation at a small additional cost. These fictitious forces can be decomposed into different components. Only the rectilinear and Coriolis components are relevant to our choice of local frames. Other effects, such as diffusion, adsorption, absorption, and evaporation are also incorporated for realistic stain simulation. Finally, we explore the extraction of Lagrangian Coherent Structure (LCS), which is often referred to as the skeleton of fluid motion. The LCS structures are often described by ridges of the finite time Lyapunov exponent (FTLE) fields, which describe the extremal stretching of fluid parcels following the flow. We proposed a novel improvement to the ridge marching algorithm, which extract such ridges robustly for the typically noisy FTLE estimates even in well-defined fluid flows. Our results are potentially applicable to visualizing and controlling fluid trajectory patterns. In contrast to current methods for LCS calculation, which are only applicable to flat 2D or 3D domains and sensitive to noise, our ridge extraction is readily applicable to curved surfaces even when they are deforming. The collection of these computational tools will facilitate generation of realistic and easy to adjust surface fluid animation with various physically plausible effects on surface."--Pages ii-iii.
Show less
- Title
- Faster algorithms for machine learning problems in high dimension
- Creator
- Ye, Mingquan
- Date
- 2019
- Collection
- Electronic Theses & Dissertations
- Description
-
"When dealing with datasets with high dimension, the existing machine learning algorithms often do not work in practice. Actually, most of the real-world data has the nature of low intrinsic dimension. For example, data often lies on a low-dimensional manifold or has a low doubling dimension. Inspired by this phenomenon, this thesis tries to improve the time complexities of two fundamental problems in machine learning using some techniques in computational geometry. In Chapter two, we propose...
Show more"When dealing with datasets with high dimension, the existing machine learning algorithms often do not work in practice. Actually, most of the real-world data has the nature of low intrinsic dimension. For example, data often lies on a low-dimensional manifold or has a low doubling dimension. Inspired by this phenomenon, this thesis tries to improve the time complexities of two fundamental problems in machine learning using some techniques in computational geometry. In Chapter two, we propose a bi-criteria approximation algorithm for minimum enclosing ball with outliers and extend it to the outlier recognition problem. By virtue of the "core-set" idea and the Random Gradient Descent Tree, we propose an efficient algorithm which is linear in the number of points n and the dimensionality d, and provides a probability bound. In experiments, compared with some existing outlier recognition algorithms, our method is proven to be efficient and robust to the outlier ratios. In Chapter three, we adopt the "doubling dimension" to characterize the intrinsic dimension of a point set. By the property of doubling dimension, we can approximate the geometric alignment between two point sets by executing the existing alignment algorithms on their subsets, which achieves a much smaller time complexity. More importantly, the proposed approximate method has a theoretical upper bound and can serve as the preprocessing step of any alignment algorithm."--Page ii.
Show less
- Title
- Exploiting cross-technology interference for efficient network services in wireless systems
- Creator
- Zhou, Ruogu
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
In the last decade, we have witnessed the wide adoption of a variety of wireless technologies like WiFi, Cellular, Bluetooth, ZigBee, and Near-field Communication(NFC). However, the fast growth of wireless networks generates significant cross-technology interference, which leads to network performance degradation and potential security breach. In this dissertation, we propose two novel physical layer techniques to deal with the interference, and improve the performance and security of sensor...
Show moreIn the last decade, we have witnessed the wide adoption of a variety of wireless technologies like WiFi, Cellular, Bluetooth, ZigBee, and Near-field Communication(NFC). However, the fast growth of wireless networks generates significant cross-technology interference, which leads to network performance degradation and potential security breach. In this dissertation, we propose two novel physical layer techniques to deal with the interference, and improve the performance and security of sensor networks and mobile systems, respectively. First, we exploit the WiFi interference as a ``blessing" in the design of sensor networks and develop novel WiFi interference detection techniques for ZigBee sensors. Second, utilizing these techniques, we design three efficient network services: WiFi discovery which detects the existence of nearby WiFi networks using ZigBee sensors, WiFi performance monitoring which measures and tracks performance of WiFi networks using a ZigBee sensor network, and time synchronization which provides synchronized clocks for sensor networks based on WiFi signals. Third, we design a novel, noninvasive NFC security system called {\em nShield} to reduce the transmission power of NFC radios, which protects NFC against passive eavesdropping. nShield implements a novel adaptive RF attenuation scheme, in which the extra RF energy of NFC transmissions is determined and absorbed by nShield. At the same time, nShield scavenges the extra RF energy to sustain the perpetual operation. Together with the extremely lo-power design, it enables nShield to provide the host uninterrupted protection against malicious eavesdropping. The above systems are implemented and extensively evaluated on a testbed of sensor networks and smartphones.
Show less
- Title
- Distance-preserving graphs
- Creator
- Nussbaum, Ronald
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Let G be a simple graph on n vertices, where d_G(u,v) denotes the distance between vertices u and v in G. An induced subgraph H of G is isometric if d_H(u,v)=d_G(u,v) for all u,v in V(H). We say that G is a distance-preserving graph if G contains at least one isometric subgraph of order k for every k where 1<=k<=n.A number of sufficient conditions exist for a graph to be distance-preserving. We show that all hypercubes and graphs with delta(G)>=2n/3-1 are distance-preserving. Towards this end...
Show moreLet G be a simple graph on n vertices, where d_G(u,v) denotes the distance between vertices u and v in G. An induced subgraph H of G is isometric if d_H(u,v)=d_G(u,v) for all u,v in V(H). We say that G is a distance-preserving graph if G contains at least one isometric subgraph of order k for every k where 1<=k<=n.A number of sufficient conditions exist for a graph to be distance-preserving. We show that all hypercubes and graphs with delta(G)>=2n/3-1 are distance-preserving. Towards this end, we carefully examine the role of "forbidden" subgraphs. We discuss our observations, and provide some conjectures which we computationally verified for small values of n. We say that a distance-preserving graph is sequentially distance-preserving if each subgraph in the set of isometric subgraphs is a superset of the previous one, and consider this special case as well.There are a number of questions involving the construction of distance-preserving graphs. We show that it is always possible to add an edge to a non-complete sequentially distance-preserving graph such that the augmented graph is still sequentially distance-preserving. We further conjecture that the same is true of all distance-preserving graphs. We discuss our observations on making non-distance-preserving graphs into distance preserving ones via adding edges. We show methods for constructing regular distance-preserving graphs, and consider constructing distance-preserving graphs for arbitrary degree sequences. As before, all conjectures here have been computationally verified for small values of n.
Show less
- Title
- Distance preserving graphs
- Creator
- Zahedi, Emad
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"The computational complexity of exploring distance properties of large graphs such as real-world social networks which consist of millions of nodes is extremely expensive. Recomputing distances in subgraphs of the original graph will add to the cost. One way to avoid this is to use subgraphs where the distance between any pair of vertices is the same as in the original graph. Such a subgraph is called isometric. A connected graph is distance preserving, for which we use the abbreviation dp,...
Show more"The computational complexity of exploring distance properties of large graphs such as real-world social networks which consist of millions of nodes is extremely expensive. Recomputing distances in subgraphs of the original graph will add to the cost. One way to avoid this is to use subgraphs where the distance between any pair of vertices is the same as in the original graph. Such a subgraph is called isometric. A connected graph is distance preserving, for which we use the abbreviation dp, if it has an isometric subgraph of every order. In this framework we study dp graphs from both the structural and algorithmic perspectives. First, we study the structural nature of dp graphs. This involves classifying graphs based on the dp property and the relation between dp graphs to other graph classes. Second, we study the recognition problem of dp graphs. We intend to develop efficient algorithms for finding isometric subgraphs as well as deciding whether a graph is dp or not."--Page ii.
Show less
- Title
- Consistency for distributed data stores
- Creator
- Roohitavaf, Mohammad
- Date
- 2019
- Collection
- Electronic Theses & Dissertations
- Description
-
Geo-replicated data stores are one of the integral parts of today's Internet services. Service providers usually replicate their data on different data centers worldwide to achieve higher performance and data durability. However, when we use this approach, the consistency between replicas becomes a concern. At the highest level of consistency, we want strong consistency that provides the illusion of having only a single copy of the data. However, strong consistency comes with high performance...
Show moreGeo-replicated data stores are one of the integral parts of today's Internet services. Service providers usually replicate their data on different data centers worldwide to achieve higher performance and data durability. However, when we use this approach, the consistency between replicas becomes a concern. At the highest level of consistency, we want strong consistency that provides the illusion of having only a single copy of the data. However, strong consistency comes with high performance and availability costs. In this work, we focus on weaker consistency models that allow us to provide high performance and availability while preventing certain inconsistencies. Session guarantees (aka. client-centric consistency models) are one of such weaker consistency models that prevent some of the inconsistencies from occurring in a client session. We provide modified versions of session guarantees that, unlike traditional session guarantees, do not cause the problem of slowdown cascade for partitioned systems. We present a protocol to provide session guarantees for eBay NuKV that is a key-value store designed for eBay's internal services with high performance and availability requirements. We utilize Hybrid Logical Clocks (HLCs) to provide wait-free write operations while providing session guarantees. Our experiments, done on eBay cloud platform, show our protocol does not cause significant overhead compared with eventual consistency. In addition to session guarantees, a large portion of this dissertation is dedicated to causal consistency. Causal consistency is especially interesting as it is has been proved to be the strongest consistency model that allows the system to be available even during network partitions. We provide CausalSpartanX protocol that, using HLCs, improves current time-based protocols by eliminating the effect of clock anomalies such as clock skew between servers. CausalSpartanX also supports non-blocking causally consistent read-only transactions that allow applications to read a set of values that are causally consistent with each other. Read-only transactions provide a powerful abstraction that is impossible to be replaced by a set of basic read operations. CausalSpartanX, like other causal consistency protocols, assumes sticky clients (i.e. clients that never change the replica that they access). We prove if one wants immediate visibility for local updates in a data center, clients have to be sticky. Based on the structure of CausalSpartanX, we provide our Adaptive Causal Consistency Framework (ACCF) that is a configurable framework that generalizes current consistency protocols. ACCF provides a basis for designing adaptive protocols that can constantly monitor the system and clients' usage pattern and change themselves to provide better performance and availability. Finally, we present our Distributed Key-Value Framework (DKVF), a framework for rapid prototyping and benchmarking consistency protocols. DKVF lets protocol designers only focus on their high-level protocols, delegating all lower level communication and storage tasks to the framework.
Show less
- Title
- Computational identification and analysis of non-coding RNAs in large-scale biological data
- Creator
- Lei, Jikai
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
Non-protein-coding RNAs (ncRNAs) are RNA molecules that function directly at the level of RNA without translating into protein. They play important biological functions in all three domains of life, i.e. Eukarya, Bacteria and Archaea. To understand the working mechanisms and the functions of ncRNAs in various species, a fundamental step is to identify both known and novel ncRNAs from large-scale biological data.Large-scale genomic data includes both genomic sequence data and NGS sequencing...
Show moreNon-protein-coding RNAs (ncRNAs) are RNA molecules that function directly at the level of RNA without translating into protein. They play important biological functions in all three domains of life, i.e. Eukarya, Bacteria and Archaea. To understand the working mechanisms and the functions of ncRNAs in various species, a fundamental step is to identify both known and novel ncRNAs from large-scale biological data.Large-scale genomic data includes both genomic sequence data and NGS sequencing data. Both types of genomic data provide great opportunity for identifying ncRNAs. For genomic sequence data, a lot of ncRNA identification tools that use comparative sequence analysis have been developed. These methods work well for ncRNAs that have strong sequence similarity. However, they are not well-suited for detecting ncRNAs that are remotely homologous. Next generation sequencing (NGS), while it opens a new horizon for annotating and understanding known and novel ncRNAs, also introduces many challenges. First, existing genomic sequence searching tools can not be readily applied to NGS data because NGS technology produces short, fragmentary reads. Second, most NGS data sets are large-scale. Existing algorithms are infeasible on NGS data because of high resource requirements. Third, metagenomic sequencing, which utilizes NGS technology to sequence uncultured, complex microbial communities directly from their natural inhabitants, further aggravates the difficulties. Thus, massive amount of genomic sequence data and NGS data calls for efficient algorithms and tools for ncRNA annotation.In this dissertation, I present three computational methods and tools to efficiently identify ncRNAs from large-scale biological data. Chain-RNA is a tool that combines both sequence similarity and structure similarity to locate cross-species conserved RNA elements with low sequence similarity in genomic sequence data. It can achieve significantly higher sensitivity in identifying remotely conserved ncRNA elements than sequence based methods such as BLAST, and is much faster than existing structural alignment tools. miR-PREFeR (miRNA PREdiction From small RNA-Seq data) utilizes expression patterns of miRNA and follows the criteria for plant microRNA annotation to accurately predict plant miRNAs from one or more small RNA-Seq data samples. It is sensitive, accurate, fast and has low-memory footprint. metaCRISPR focuses on identifying Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) from large-scale metagenomic sequencing data. It uses a kmer hash table to efficiently detect reads that belong to CRISPRs from the raw metagonmic data set. Overlap graph based clustering is then conducted on the reduced data set to separate different CRSIPRs. A set of graph based algorithms are used to assemble and recover CRISPRs from the clusters.
Show less
- Title
- Capturing bluetooth traffic in the wild : practical systems and privacy implications
- Creator
- Albazrqaoe, Wahhab
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
"Bluetooth wireless technology is today present in billions of smartphones, mobile devices, and portable electronics. With the prevalence of personal Bluetooth devices, a practical Bluetooth traffic sniffer is of increasing interest due to the following. First, it has been reported that a traffic sniffer is an essential, day-to-day tool for Bluetooth engineers and applications developers [4] [14]; and second, as the communication between Bluetooth devices is privacy-sensitive in nature,...
Show more"Bluetooth wireless technology is today present in billions of smartphones, mobile devices, and portable electronics. With the prevalence of personal Bluetooth devices, a practical Bluetooth traffic sniffer is of increasing interest due to the following. First, it has been reported that a traffic sniffer is an essential, day-to-day tool for Bluetooth engineers and applications developers [4] [14]; and second, as the communication between Bluetooth devices is privacy-sensitive in nature, exploring the possibility of Bluetooth traffic sniffing in practical settings sheds lights into potential user privacy leakage. To date, sniffing Bluetooth traffic has been widely considered an extremely intricate task due to wideband spread spectrum of Bluetooth, pseudo-random frequency hopping adopted by Bluetooth at baseband, and the interference in the open 2.4 GHz band. This thesis addresses these challenges by introducing novel traffic sniffers that capture Bluetooth packets in practical environments. In particular, we present the following systems. (i) BlueEar, the first practical Bluetooth traffic sniffing system only using general, inexpensive wireless platforms. BlueEar features a novel dual-radio architecture where two inexpensive, Bluetooth-compliant radios coordinate with each other to eavesdrop on hopping subchannels in indiscoverable mode. Statistic models and lightweight machine learning tools are integrated to learn the adaptive hopping behavior of the target. Our results show that BlueEar maintains a packet capture rate higher than 90% consistently in dynamic settings. In addition, we discuss the implications of the BlueEar approach on Bluetooth LE sniffing and present a practical countermeasure that effectively reduces the packet capture rate of sniffer by 70%, which can be easily implemented on the Bluetooth master while requiring no modification to slave devices like keyboards and headsets. And (ii) BlueFunnel, the first low-power, wideband traffic sniffer that monitors Bluetooth spectrum in parallel and captures packet in realtime. BlueFunnel tackles the challenge of wideband spread spectrum based on low speed, low cost ADC (2 Msamples/sec) to subsample Bluetooth spectrum. Further, it leverages a suite of novel signal processing algorithms to demodulate Bluetooth signal in realtime. We implement BlueFunnel prototype based on USRP2 devices. Specifically, we employ two USRR2 devices, each is equipped with SBX daughterboard, to build a customized software radio platform. The customized SDR platform is interfaced to the controller, which implements the digital signal processing algorithms on a personal laptop. We evaluate the system performance based on packet capture rates in a variety of interference conditions, mainly introduce by the 802.11-based WLANs. BlueFunnel maintains good levels of packet capture rates in all settings. Further, we introduce two scenarios of attacks against Bluetooth, where BlueFunnel successfully reveals sensitive information about the target link."--Pages ii-iii.
Show less
- Title
- Automated addition of fault-tolerance via lazy repair and graceful degradation
- Creator
- Lin, Yiyan
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
In this dissertation, we concentrate on the problem of automated addition of fault-tolerance that transforms a fault-intolerant program to be a fault-tolerant program. We solve this problem via model repair. Model repair is a correct-by-construct technique to revise an existing model so that the revised model satisfies the given correctness criteria, such as safety, liveness, or fault-tolerance. We consider two problems of using model repair to add fault-tolerance. First, if the repaired...
Show moreIn this dissertation, we concentrate on the problem of automated addition of fault-tolerance that transforms a fault-intolerant program to be a fault-tolerant program. We solve this problem via model repair. Model repair is a correct-by-construct technique to revise an existing model so that the revised model satisfies the given correctness criteria, such as safety, liveness, or fault-tolerance. We consider two problems of using model repair to add fault-tolerance. First, if the repaired model violates the assumptions (e.g., partial observability, inability to detect crashed processes, etc) made in the underlying system, then it cannot be implemented. We denote these requirements as realizability constraints. Second, the addition of fault-tolerance may fail if the program cannot fully recover after certain faults occur. In this dissertation, we propose a lazy repair approach to address realizability issues in adding fault-tolerance. Additionally, we propose a technique to automatically add graceful degradation to a program, so that the program can recover with partial functionality (that is identified by the designer to be the critical functionality) if full recovery is impossible.A model repair technique transforms a model to another model that satisfies a new set of properties. Such a transformation should also maintain the mapping between the model and the underlying program. For example, in a distributed program, every process is restricted to read (or write) some variables in other processes. A model that represents this program should also disallow the process to read (or write) those inaccessable variables. If these constraints are violated, then the corresponding model will be unrealizable. An unrealizable model (in this context, a model that violates the read/write restrictions) may make it impossible to obtain the corresponding implementation.%In this dissertation, we call the read (or write) restriction as a realizability constraint in distributed systems. An unrealizable model (a model that violates the realizability constraints) may complicate the implementation by introducing extra amount of modification to the program. Such modification may in turn break the program's correctness.Resolving realizability constraints increases the complexity of model repair. Existing model repair techniques introduce heuristics to reduce the complexity. However, this heuristic-based approach is designed and optimized specifically for distributed programs. We need a more generic model repair approach for other types of programs, e.g., synchronous programs, cyber-physical programs, etc. Hence, in this dissertation, we propose a model repair technique, i.e., lazy repair, to add fault-tolerance to programs with different types of realizability constraints. It involves two steps. First, we only focus on repairing to obtain a model that satisfies correctness criteria while ignoring realizability constraints. In the second step, we repair this model further by removing behaviors while ensuring that the desired specification is preserved. The lazy repair approach simplifies the process of developing heuristics, and provides a tradeoff in terms of the time saved in the first step and the extra work required in the second step. We demonstrate that lazy repair is applicable in the context of distributed systems, synchronous systems and cyber-physical systems.In addition, safety critical systems such as airplanes, automobiles and elevators should operate with high dependability in the presence of faults. If the occurrence of faults breaks down some components, the system may not be able to fully recover. In this scenario, the system can still operate with remaining resources and deliver partial but core functionality, i.e., to display graceful degradation. Existing model repair approaches, such as addition of fault-tolerance, cannot transform a program to provide graceful degradation. In this dissertation, we propose a technique to add fault-tolerance to a program with graceful degradation. In the absence of faults, such a program exhibits ideal behaviors. In the presence of faults, the program is allowed to recover with reduced functionality. This technique involves two steps. First, it automatically generates a program with graceful degradation based on the input fault-intolerant program. Second, it adds fault-tolerance to the output program from first step. We demonstrate that this technique is applicable in the context of high atomicity programs as well as low atomicity programs (i.e., distributed programs). We also present a case study on adding multi-graceful degradation to a dangerous gas detection and ventilation system. Through this case study, we show that our approach can assist the designer to obtain a program that behaves like the deployed system.
Show less
- Title
- Achieving reliable distributed systems : through efficient run-time monitoring and predicate detection
- Creator
- Tekken Valapil, Vidhya
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Runtime monitoring of distributed systems to perform predicate detection is critical as well as a challenging task. It is critical because it ensures the reliability of the system by detecting all possible violations of system requirements. It is challenging because to guarantee lack of violations one has to analyze every possible ordering of system events and this is an expensive task. In this report, wefocus on ordering events in a system run using HLC (Hybrid Logical Clocks) timestamps,...
Show moreRuntime monitoring of distributed systems to perform predicate detection is critical as well as a challenging task. It is critical because it ensures the reliability of the system by detecting all possible violations of system requirements. It is challenging because to guarantee lack of violations one has to analyze every possible ordering of system events and this is an expensive task. In this report, wefocus on ordering events in a system run using HLC (Hybrid Logical Clocks) timestamps, which are O(1) sized timestamps, and present some efficient algorithms to perform predicate detection using HLC. Since, with HLC, the runtime monitor cannot find all possible orderings of systems events, we present a new type of clock called Biased Hybrid Logical Clocks (BHLC), that are capable of finding more possible orderings than HLC. Thus we show that BHLC based predicate detection can find more violations than HLC based predicate detection. Since predicate detection based on both HLC and BHLC do not guarantee detection of all possible violations in a system run, we present an SMT (Satisfiability Modulo Theories) solver based predicate detection approach, that guarantees the detection of all possible violations in a system run. While a runtime monitor that performs predicate detection using SMT solvers is accurate, the time taken by the solver to detect the presence or absence of a violation can be high. To reduce the time taken by the runtime monitor, we propose the use of an efficient two-layered monitoring approach, where the first layer of the monitor is efficient but less accurate and the second layer is accurate but less efficient. Together they reduce the overall time taken to perform predicate detection drastically and also guarantee detection of all possible violations.
Show less
- Title
- A study of Bluetooth Frequency Hopping sequence : modeling and a practical attack
- Creator
- Albazrqaoe, Wahhab
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
The Bluetooth is a wireless interface that enables electronic devices to establish short-range, ad-hoc wireless connections. This kind of short-range wireless networking is known as Wireless Personal Area Networks (WPAN). Because of its attractive features of small size, low cost, and low power, Bluetooth gains a world wide usage. It is embedded in many portable computing devices and considered as a good replacement for local wire connections. Since wireless data is inherently exposed to...
Show moreThe Bluetooth is a wireless interface that enables electronic devices to establish short-range, ad-hoc wireless connections. This kind of short-range wireless networking is known as Wireless Personal Area Networks (WPAN). Because of its attractive features of small size, low cost, and low power, Bluetooth gains a world wide usage. It is embedded in many portable computing devices and considered as a good replacement for local wire connections. Since wireless data is inherently exposed to eavesdropping, the security and confidentiality is a central issue for wireless standard as well as Bluetooth. To maintain security and confidentiality of wireless packets, the Bluetooth system mainly relies on the Frequency Hopping mechanism to equivocate an adversary. By this technique, a wireless channel is accessed for transmitting a packet. For each wireless packet, a single channel is selected in a pseudo random way. This kind of randomness in channel selection makes it difficult for an eavesdropped to predict the next channel to be accessed. Hence, capturing Bluetooth wireless packets is a challenge. In this work, we investigate the Frequency Hopping sequence and specifically the hop selection kernel. We analyze the operation of the kernel hardware by partitioning it into three parts. Based on this modeling, we propose an attacking method for the hop selection kernel. The proposed method shows how to expose the clock value hidden in the kernel. This helps to predict Bluetooth hopping sequence and, hence, capturing Bluetooth wireless packet is possible.
Show less