Search results
(21 - 22 of 22)
Pages
- Title
- Ecological effects on the evolution of cooperative behaviors
- Creator
- Connelly, Brian Dale
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
Cooperative behaviors abound in nature and can be observed across the spectrum of life, from humans and primates to bacteria and other microorganisms. A deeper understanding of the forces that shape cooperation can offer key insights into how groups of organisms form and co-exist, how life transitioned to multicellularity, and account for the vast diversity present in ecosystems. This knowledge lends itself to a number of applications, such as understanding animal behavior and engineering...
Show moreCooperative behaviors abound in nature and can be observed across the spectrum of life, from humans and primates to bacteria and other microorganisms. A deeper understanding of the forces that shape cooperation can offer key insights into how groups of organisms form and co-exist, how life transitioned to multicellularity, and account for the vast diversity present in ecosystems. This knowledge lends itself to a number of applications, such as understanding animal behavior and engineering cooperative multi-agent systems, and may further help provide a fundamental basis for new industrial and medical treatments targeting communities of cooperating microorganisms.Although these behaviors are common, how evolution selected for and maintained them remains a difficult question for which several theories have been introduced. These theories, such as inclusive fitness and group selection, generally focus on the fitness costs and benefits of the behavior in question, and are often invoked to examine whether a trait with some predetermined costs and benefits could be maintained as an evolutionarily-stable strategy. Populations, however, do not exist and evolve in a vacuum. The environment in which they find themselves can play a critical role in shaping the types of adaptations that organisms accumulate, since one behavior may be highly beneficial in one environment, yet a hindrance in another. Ever-changing environments further complicate this picture, as maintaining a repertoire of behaviors for surviving in different environments is often costly. In addition to these environmental forces, the number and composition of other organisms with which individuals interact impose additional constraints. The combination of these factors results in significantly more complex dynamics.Using computational models and microbial populations, this dissertation examines several ways in which ecological factors can affect the evolution of cooperative behaviors. First, environmental disturbance is examined, in which a cooperative act enables organisms and their surrounding neighbors to survive a periodic kill event (population bottleneck) of varying severity. Resource availability is then studied, where populations must determine how much resource to allocate to cooperation. Finally, the effect that social structure, which define the patterns of interactions among the individuals in a population, is investigated.
Show less
- Title
- Out of the box optimization using the parameter-less population pyramid
- Creator
- Goldman, Brian W.
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
The Parameter-less Population Pyramid (P3) is a recently introduced method for performing evolutionary optimization without requiring any user-specified parameters. P3’s primary innovation is to replace the generational model with a pyramid of multiple populations that are iteratively created and expanded. In combination with local search and advanced crossover, P3 scales to problem difficulty, exploiting previously learned information before adding more diversity.Across seven problems, each...
Show moreThe Parameter-less Population Pyramid (P3) is a recently introduced method for performing evolutionary optimization without requiring any user-specified parameters. P3’s primary innovation is to replace the generational model with a pyramid of multiple populations that are iteratively created and expanded. In combination with local search and advanced crossover, P3 scales to problem difficulty, exploiting previously learned information before adding more diversity.Across seven problems, each tested using on average 18 problem sizes, P3 outperformed all five advanced comparison algorithms. This improvement includes requiring fewer evaluations to find the global optimum and better fitness when using the same number of evaluations. Using both algorithm analysis and comparison we show P3’s effectiveness is due to its ability to properly maintain, add, and exploit diversity. Unlike the best comparison algorithms, P3 was able to achieve this quality without any problem-specific tuning. Thus, unlike previous parameter-less methods, P3 does not sacrifice quality for applicability. Therefore we conclude that P3 is an efficient, general, parameter-less approach to black-box optimization that is more effective than existing state-of-the-art techniques.Furthermore, P3 can be specialized for gray-box problems, which have known, limited, non-linear relationships between variables. Gray-Box P3 leverages the Hamming-Ball Hill Climber, an exceptionally efficient form of local search, as well as a novel method for performing crossover using the known variable interactions. In doing so Gray-Box P3 is able to find the global optimum of large problems in seconds, improving over Black-Box P3 by up to two orders of magnitude.
Show less