You are here
Search results
(21 - 31 of 31)
Pages
- Title
- Assessment of functional connectivity in the human brain : multivariate and graph signal processing methods
- Creator
- Villafañe-Delgado, Marisel
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"Advances in neurophysiological recording have provided a noninvasive way of inferring cognitive processes. Recent studies have shown that cognition relies on the functional integration or connectivity of segregated specialized regions in the brain. Functional connectivity quantifies the statistical relationships among different regions in the brain. However, current functional connectivity measures have certain limitations in the quantification of global integration and characterization of...
Show more"Advances in neurophysiological recording have provided a noninvasive way of inferring cognitive processes. Recent studies have shown that cognition relies on the functional integration or connectivity of segregated specialized regions in the brain. Functional connectivity quantifies the statistical relationships among different regions in the brain. However, current functional connectivity measures have certain limitations in the quantification of global integration and characterization of network structure. These limitations include the bivariate nature of most functional connectivity measures, the computational complexity of multivariate measures, and graph theoretic measures that are not robust to network size and degree distribution. Therefore, there is a need of computationally efficient and novel measures that can quantify the functional integration across brain regions and characterize the structure of these networks. This thesis makes contributions in three different areas for the assessment of multivariate functional connectivity. First, we present a novel multivariate phase synchrony measure for quantifying the common functional connectivity within different brain regions. This measure overcomes the drawbacks of bivariate functional connectivity measures and provides insights into the mechanisms of cognitive control not accountable by bivariate measures. Following the assessment of functional connectivity from a graph theoretic perspective, we propose a graph to signal transformation for both binary and weighted networks. This provides the means for characterizing the network structure and quantifying information in the graph by overcoming some drawbacks of traditional graph based measures. Finally, we introduce a new approach to studying dynamic functional connectivity networks through signals defined over networks. In this area, we define a dynamic graph Fourier transform in which a common subspace is found from the networks over time based on the tensor decomposition of the graph Laplacian over time."--Pages ii-iii.
Show less
- Title
- Harnessing low-pass filter defects for improving wireless link performance : measurements and applications
- Creator
- Renani, Alireza Ameli
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
"The design trade-offs of transceiver hardware are crucial to the performance of wireless systems. The effect of such trade-offs on individual analog and digital components are vigorously studied, but their systemic impacts beyond component-level remain largely unexplored. In this dissertation, we present an in-depth study to characterize the surprisingly notable systemic impacts of low-pass filter design, which is a small yet indispensable component used for shaping spectrum and rejecting...
Show more"The design trade-offs of transceiver hardware are crucial to the performance of wireless systems. The effect of such trade-offs on individual analog and digital components are vigorously studied, but their systemic impacts beyond component-level remain largely unexplored. In this dissertation, we present an in-depth study to characterize the surprisingly notable systemic impacts of low-pass filter design, which is a small yet indispensable component used for shaping spectrum and rejecting interference. Using a bottom-up approach, we examine how signal-level distortions caused by the trade-offs of low-pass filter design propagate to the upper-layers of wireless communication, reshaping bit error patterns and degrading link performance of today's 802.11 systems. Moreover, we propose a novel unequal error protection algorithm that harnesses low-pass filter defects for improving wireless LAN throughput, particularly to be used in forward error correction, channel coding, and applications such as video streaming. Lastly, we conduct experiments to evaluate the unequal error protection algorithm in video streaming, and we present substantial enhancements of video quality in mobile environments."--Page ii.
Show less
- Title
- Smartphone-based sensing systems for data-intensive applications
- Creator
- Moazzami, Mohammad-Mahdi
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"Supported by advanced sensing capabilities, increasing computational resources and the advances in Artificial Intelligence, smartphones have become our virtual companions in our daily life. An average modern smartphone is capable of handling a wide range of tasks including navigation, advanced image processing, speech processing, cross app data processing and etc. The key facet that is common in all of these applications is the data intensive computation. In this dissertation we have taken...
Show more"Supported by advanced sensing capabilities, increasing computational resources and the advances in Artificial Intelligence, smartphones have become our virtual companions in our daily life. An average modern smartphone is capable of handling a wide range of tasks including navigation, advanced image processing, speech processing, cross app data processing and etc. The key facet that is common in all of these applications is the data intensive computation. In this dissertation we have taken steps towards the realization of the vision that makes the smartphone truly a platform for data intensive computations by proposing frameworks, applications and algorithmic solutions. We followed a data-driven approach to the system design. To this end, several challenges must be addressed before smartphones can be used as a system platform for data-intensive applications. The major challenge addressed in this dissertation include high power consumption, high computation cost in advance machine learning algorithms, lack of real-time functionalities, lack of embedded programming support, heterogeneity in the apps, communication interfaces and lack of customized data processing libraries. The contribution of this dissertation can be summarized as follows. We present the design, implementation and evaluation of the ORBIT framework, which represents the first system that combines the design requirements of a machine learning system and sensing system together at the same time. We ported for the first time off-the-shelf machine learning algorithms for real-time sensor data processing to smartphone devices. We highlighted how machine learning on smartphones comes with severe costs that need to be mitigated in order to make smartphones capable of real-time data-intensive processing. From application perspective we present SPOT. SPOT aims to address some of the challenges discovered in mobile-based smart-home systems. These challenges prevent us from achieving the promises of smart-homes due to heterogeneity in different aspects of smart devices and the underlining systems. We face the following major heterogeneities in building smart-homes:: (i) Diverse appliance control apps (ii) Communication interface, (iii) Programming abstraction. SPOT makes the heterogeneous characteristics of smart appliances transparent, and by that it minimizes the burden of home automation application developers and the efforts of users who would otherwise have to deal with appliance-specific apps and control interfaces. From algorithmic perspective we introduce two systems in the smartphone-based deep learning area: Deep-Crowd-Label and Deep-Partition. Deep neural models are both computationally and memory intensive, making them difficult to deploy on mobile applications with limited hardware resources. On the other hand, they are the most advanced machine learning algorithms suitable for real-time sensing applications used in the wild. Deep-Partition is an optimization-based partitioning meta-algorithm featuring a tiered architecture for smartphone and the back-end cloud. Deep-Partition provides a profile-based model partitioning allowing it to intelligently execute the Deep Learning algorithms among the tiers to minimize the smartphone power consumption by minimizing the deep models feed-forward latency. Deep-Crowd-Label is prototyped for semantically labeling user's location. It is a crowd-assisted algorithm that uses crowd-sourcing in both training and inference time. It builds deep convolutional neural models using crowd-sensed images to detect the context (label) of indoor locations. It features domain adaptation and model extension via transfer learning to efficiently build deep models for image labeling. The work presented in this dissertation covers three major facets of data-driven and compute-intensive smartphone-based systems: platforms, applications and algorithms; and helps to spurs new areas of research and opens up new directions in mobile computing research."--Pages ii-iii.
Show less
- Title
- Higher-order data reduction through clustering, subspace analysis and compression for applications in functional connectivity brain networks
- Creator
- Ozdemir, Alp
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"With the recent advances in information technology, collection and storage of higher-order datasets such as multidimensional data across multiple modalities or variables have become much easier and cheaper than ever before. Tensors, also known as multiway arrays, provide natural representations for higher-order datasets and provide a way to analyze them by preserving the multilinear relations in these large datasets. These higher-order datasets usually contain large amount of redundant...
Show more"With the recent advances in information technology, collection and storage of higher-order datasets such as multidimensional data across multiple modalities or variables have become much easier and cheaper than ever before. Tensors, also known as multiway arrays, provide natural representations for higher-order datasets and provide a way to analyze them by preserving the multilinear relations in these large datasets. These higher-order datasets usually contain large amount of redundant information and summarizing them in a succinct manner is essential for better inference. However, existing data reduction approaches are limited to vector-type data and cannot be applied directly to tensors without vectorizing. Developing more advanced approaches to analyze tensors effectively without corrupting their intrinsic structure is an important challenge facing Big Data applications. This thesis addresses the issue of data reduction for tensors with a particular focus on providing a better understanding of dynamic functional connectivity networks (dFCNs) of the brain. Functional connectivity describes the relationship between spatially separated neuronal groups and analysis of dFCNs plays a key role for interpreting complex brain dynamics in different cognitive and emotional processes. Recently, graph theoretic methods have been used to characterize the brain functionality where bivariate relationships between neuronal populations are represented as graphs or networks. In this thesis, the changes in these networks across time and subjects will be studied through tensor representations. In Chapter 2, we address a multi-graph clustering problem which can be thought as a tensor partitioning problem. We introduce a hierarchical consensus spectral clustering approach to identify the community structure underlying the functional connectivity brain networks across subjects. New information-theoretic criteria are introduced for selecting the optimal community structure. Effectiveness of the proposed algorithms are evaluated through a set of simulations comparing with the existing methods as well as on FCNs across subjects. In Chapter 3, we address the online tensor data reduction problem through a subspace tracking perspective. We introduce a robust low-rank+sparse structure learning algorithm for tensors to separate the low-rank community structure of connectivity networks from sparse outliers. The proposed framework is used to both identify change points, where the low-rank community structure changes significantly, and summarize this community structure within each time interval. Finally, in Chapter 4, we introduce a new multi-scale tensor decomposition technique to efficiently encode nonlinearities due to rotation or translation in tensor type data. In particular, we develop a multi-scale higher-order singular value decomposition (MS-HoSVD) approach where a given tensor is first permuted and then partitioned into several sub-tensors each of which can be represented as a low-rank tensor increasing the efficiency of the representation. We derive a theoretical error bound for the proposed approach as well as provide analysis of memory cost and computational complexity. Performance of the proposed approach is evaluated on both data reduction and classification of various higher-order datasets."--Pages ii-iii.
Show less
- Title
- Adaptive independent component analysis : theoretical formulations and application to CDMA communication system with electronics implementation
- Creator
- Albataineh, Zaid
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Blind Source Separation (BSS) is a vital unsupervised stochastic area that seeks to estimate the underlying source signals from their mixtures with minimal assumptions about the source signals and/or the mixing environment. BSS has been an active area of research and in recent years has been applied to numerous domains including biomedical engineering, image processing, wireless communications, speech enhancement, remote sensing, etc. Most recently, Independent Component Analysis (ICA) has...
Show moreBlind Source Separation (BSS) is a vital unsupervised stochastic area that seeks to estimate the underlying source signals from their mixtures with minimal assumptions about the source signals and/or the mixing environment. BSS has been an active area of research and in recent years has been applied to numerous domains including biomedical engineering, image processing, wireless communications, speech enhancement, remote sensing, etc. Most recently, Independent Component Analysis (ICA) has become a vital analytical approach in BSS. In spite of active research in BSS, however, many foundational issues still remain in regards to convergence speed, performance quality and robustness in realistic or adverse environments. Furthermore, some of the developed BSS methods are computationally expensive, sensitive to additive and background noise, and not suitable for a real4time or real world implementation. In this thesis, we first formulate new effective ICA4based measures and their corresponding robust adaptive algorithms for the BSS in dynamic "convolutive mixture" environments. We demonstrate their superior performance to present competing algorithms. Then we tailor their application within wireless (CDMA) communication systems and Acoustic Separation Systems. We finally explore a system realization of one of the developed algorithms among ASIC or FPGA platforms in terms of real time speed, effectiveness, cost, and economics of scale. Firstly, we propose a new class of divergence measures for Independent Component Analysis (ICA) for estimating sources from mixtures. The Convex Cauchy4Schwarz Divergence (CCS4DIV) is formed by integrating convex functions into the Cauchy4Schwarz inequality. The new measure is symmetric and convex with respect to the joint probability, where the degree of convexity can be tuned by a (convexity) parameter. A non4parametric (ICA) algorithm generated from the proposed divergence is developed exploiting convexity parameters and employing the Parzen window4based distribution estimates. The new contrast function results in effective parametric and non4parametric ICA4based computational algorithms. Moreover, two pairwise iterative schemes are proposed to tackle the high dimensionality of sources. Secondly, a new blind detection algorithm, based on fourth order cumulant matrices, is presented and applied to the multi4user symbol estimation problem in Direct Sequence Code Division Multiple Access (DS4CDMA) systems. In addition, we propose three new blind receiver schemes, which are based on the state space structures. These so4called blind state4space receivers (BSSR) do not require knowledge of the propagation parameters or spreading code sequences of the users but relies on the statistical independence assumption among the source signals. Lastly, system realization of one of the developed algorithms has been explored among ASIC or FPGA platforms in terms of cost, effectiveness, and economics of scale. Based on our findings of current stat4of4the4art electronics, programmable FPGA designs are deemed to be the most effective technology to be used for ICA hardware implementation at this time.In this thesis, we first formulate new effective ICA-based measures and their corresponding robust adaptive algorithms for the BSS in dynamic "convolutive mixture" environments. We demonstrate their superior performance to present competing algorithms. Then we tailor their application within wireless (CDMA) communication systems and Acoustic Separation Systems. We finally explore a system realization of one of the developed algorithms among ASIC or FPGA platforms in terms of real time speed, effectiveness, cost, and economics of scale.We firstly investigate several measures which are more suitable for extracting different source types from different mixing environments in the learning system. ICA for instantaneous mixtures has been studied here as an introduction to the more realistic convolutive mixture environments. Convolutive mixtures have been investigated in the time/frequency domains and we demonstrate that our approaches succeed in resolving the standing problem of scaling and permutation ambiguities in present research. We propose a new class of divergence measures for Independent Component Analysis (ICA) for estimating sources from mixtures. The Convex Cauchy-Schwarz Divergence (CCS-DIV) is formed by integrating convex functions into the Cauchy-Schwarz inequality. The new measure is symmetric and convex with respect to the joint probability, where the degree of convexity can be tuned by a (convexity) parameter. A non-parametric (ICA) algorithm generated from the proposed divergence is developed exploiting convexity parameters and employing the Parzen window-based distribution estimates. The new contrast function results in effective parametric and non-parametric ICA-based computational algorithms. Moreover, two pairwise iterative schemes are proposed to tackle the high dimensionality of sources. These wo pairwise non-parametric ICA algorithms are based on the new high-performance Convex Cauchy-Schwarz Divergence (CCS-DIV). These two schemes enable fast and efficient de-mixing of sources in real-world applications where the dimensionality of the sources is higher than two.Secondly, the more challenging problem in communication signal processing is to estimate the source signals and their channels in the presence of other co-channel signals and noise without the use of a training set. Blind techniques are promising to integrate and optimize the wireless communication designs i.e. equalizers/ filters/ combiners through its potential in suppressing the inter-symbol interference (ISI), adjacent channel interference, co-channel and the multi access interference MAI. Therefore, a new blind detection algorithm, based on fourth order cumulant matrices, is presented and applied to the multi-user symbol estimation problem in Direct Sequence Code Division Multiple Access (DS-CDMA) systems. The blind detection is to estimate multiple symbol sequences in the downlink of a DS-CDMA communication system using only the received wireless data and without any knowledge of the user spreading codes. The proposed algorithm takes advantage of higher cumulant matrix properties to reduce the computational load and enhance performance. In addition, we address the problem of blind multiuser equalization in the wideband CDMA system, in the noisy multipath propagation environment. Herein, we propose three new blind receiver schemes, which are based on the state space structures. These so-called blind state-space receivers (BSSR) do not require knowledge of the propagation parameters or spreading code sequences of the users but relies on the statistical independence assumption among the source signals. We then develop and derive three update-laws in order to enhance the performance of the blind detector. Also, we upgrade three semi-blind adaptive detectors based on the incorporation of the RAKE receiver and the stochastic gradient algorithms which are used in several blind adaptive signal processing algorithms, namely FastICA, RobustICA, and principle component analysis PCA. Through simulation evidence, we verify the significant bit error rate (BER) and computational speed improvements achieved by these algorithms in comparison to other leading algorithms.Lastly, system realization of one of the developed algorithms has been explored among ASIC or FPGA platforms in terms of cost, effectiveness, and economics of scale. Based on our findings of current stat-of-the-art electronics, programmable FPGA designs are deemed to be the most effective technology to be used for ICA hardware implementation at this time.
Show less
- Title
- Unconstrained 3D face reconstruction from photo collections
- Creator
- Roth, Joseph (Software engineer)
- Date
- 2016
- Collection
- Electronic Theses & Dissertations
- Description
-
This thesis presents a novel approach for 3D face reconstruction from unconstrained photo collections. An unconstrained photo collection is a set of face images captured under an unknown and diverse variation of poses, expressions, and illuminations. The output of the proposed algorithm is a true 3D face surface model represented as a watertight triangulated surface with albedo data colloquially referred to as texture information. Reconstructing a 3D understanding of a face based on 2D input...
Show moreThis thesis presents a novel approach for 3D face reconstruction from unconstrained photo collections. An unconstrained photo collection is a set of face images captured under an unknown and diverse variation of poses, expressions, and illuminations. The output of the proposed algorithm is a true 3D face surface model represented as a watertight triangulated surface with albedo data colloquially referred to as texture information. Reconstructing a 3D understanding of a face based on 2D input is a long-standing computer vision problem. Traditional photometric stereo-based reconstruction techniques work on aligned 2D images and produce a 2.5D depth map reconstruction. We extend face reconstruction to work with a true 3D model, allowing us to enjoy the benefits of using images from all poses, up to and including profiles. To use a 3D model, we propose a novel normal field-based Laplace editing technique which allows us to deform a triangulated mesh to match the observed surface normals. Unlike prior work that require large photo collections, we formulate an approach to adapt to photo collections with few images of potentially poor quality. We achieve this through incorporating prior knowledge about face shape by fitting a 3D Morphable Model to form a personalized template before using a novel analysis-by-synthesis photometric stereo formulation to complete the fine face details. A structural similarity-based quality measure allows evaluation in the absence of ground truth 3D scans. Superior large-scale experimental results are reported on Internet, synthetic, and personal photo collections.
Show less
- Title
- Directed information for complex network analysis from multivariate time series
- Creator
- Liu, Ying
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
Complex networks, ranging from gene regulatory networks in biology to social networks in sociology, havereceived growing attention from the scientific community. The analysis of complex networks employs techniquesfrom graph theory, machine learning and signal processing. In recent years, complex network analysis tools havebeen applied to neuroscience and neuroimaging studies to have a better understanding of the human brain. In thisthesis, we focus on inferring and analyzing the complex...
Show moreComplex networks, ranging from gene regulatory networks in biology to social networks in sociology, havereceived growing attention from the scientific community. The analysis of complex networks employs techniquesfrom graph theory, machine learning and signal processing. In recent years, complex network analysis tools havebeen applied to neuroscience and neuroimaging studies to have a better understanding of the human brain. In thisthesis, we focus on inferring and analyzing the complex functional brain networks underlying multichannelelectroencephalogram (EEG) recordings. Understanding this complex network requires the development of a measureto quantify the relationship between multivariate time series, algorithms to reconstruct the network based on thepairwise relationships, and identification of functional modules within the network.Functional and effective connectivity are two widely studiedapproaches to quantify the connectivity between two recordings.Unlike functional connectivity which only quantifies the statisticaldependencies between two processes by measures such as crosscorrelation, phase synchrony, and mutual information (MI), effectiveconnectivity quantifies the influence one node exerts on anothernode. Directed information (DI) measure is one of the approachesthat has been recently proposed to capture the causal relationshipsbetween two time series. Two major challenges remain with theapplication of DI to multivariate data, which include thecomputational complexity of computing DI with increasing signallength and the accuracy of estimation from limited realizations ofthe data. Expressions that can simplify the computation of theoriginal definition of DI while still quantifying the causalityrelationship are needed. In addition, the advantage of DI overconventionally causality measures such as Granger causality has notbeen fully investigated. In this thesis, we propose time-laggeddirected information and modified directed information to addressthe issue of computational complexity, and compare the performanceof this model free measure with model based measures (e.g. Grangercausality) for different realistic signal models.Once the pairwise DI between two random processes is computed,another problem is to infer the underlying structure of the complexnetwork with minimal false positive detection. We propose to useconditional directed information (CDI) proposed by Kramer to addressthis issue, and introduce the time-lagged conditional directedinformation and modified conditional directed information to lowerthe computational complexity of CDI. Three network inferencealgorithms are presented to infer directed acyclic networks whichcan quantify the causality and also detect the indirect couplingssimultaneously from multivariate data.One last challenge in the study of complex networks, specifically in neuroscience applications, is to identifythe functional modules from multichannel, multiple subject recordings. Most research on community detection inthis area so far has focused on finding the association matrix based on functional connectivity, instead ofeffective connectivity, thus not capturing the causality in the network. In addition, in order to find a modularstructure that best describes all of the subjects in a group, a group analysis strategy is needed. In thisthesis, we propose a multi-subject hierarchical community detection algorithm suitable for a group of weightedand asymmetric (directed) networks representing effective connectivity, and apply the algorithm to multichannelelectroencephalogram (EEG) data.
Show less
- Title
- Robust signal processing methods for miniature acoustic sensing, separation, and recognition
- Creator
- Fazel, Amin
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
One of several emerging areas where micro-scale integration promises significant breakthroughs is in the field of acoustic sensing. However, separation, localization, and recognition of acoustic sources using micro-scale microphone arrays poses a significant challenge due to fundamental limitations imposed by the physics of sound propagation. The smaller the distance between the recording elements, the more difficult it is to measure localization and separation cues and hence it is more...
Show moreOne of several emerging areas where micro-scale integration promises significant breakthroughs is in the field of acoustic sensing. However, separation, localization, and recognition of acoustic sources using micro-scale microphone arrays poses a significant challenge due to fundamental limitations imposed by the physics of sound propagation. The smaller the distance between the recording elements, the more difficult it is to measure localization and separation cues and hence it is more difficult to recognize the acoustic sources of interest. The objective of this research is to investigate signal processing and machine learning techniques that can be used for noise-robust acoustic target recognition using miniature microphone arrays.The first part of this research focuses on designing "smart" analog-to-digital conversion (ADC) algorithms that can enhance acoustic cues in sub-wavelength microphone arrays. Many source separation algorithms fail to deliver robust performance when applied to signals recorded using high-density sensor arrays where the distance between sensor elements is much less than the wavelength of the signals. This can be attributed to limited dynamic range (determined by analog-to-digital conversion) of the sensor which is insufficientto overcome the artifacts due to large cross-channel redundancy, non-homogeneous mixing and high-dimensionality of the signal space. We propose a novel framework that overcomes these limitations by integrating statistical learning directly with the signal measurement (analog-to-digital) process which enables high fidelity separation of linear instantaneous mixture. At the core of the proposed ADC approach is a min-max optimization of a regularized objective function that yields a sequence of quantized parameters which asymptotically tracks the statistics of the input signal. Experiments with synthetic and real recordings demonstrate consistent performance improvements when the proposed approach is used as the analog-to-digital front-end to conventional source separation algorithms.The second part of this research focuses on investigating a novel speech feature extraction algorithm that can recognize auditory targets (keywords and speakers) using noisy recordings. The features known as Sparse Auditory Reproducing Kernel (SPARK) coefficients are extracted under the hypothesis that the noise-robust information in speech signal is embedded in a subspace spanned by sparse, regularized, over-complete, non-linear, and phase-shifted gammatone basis functions. The feature extraction algorithm involves computing kernel functions between the speech data and pre-computed set of phased-shifted gammatone functions, followed by a simple pooling technique ("MAX" operation). In this work, we present experimental results for a hidden Markov model (HMM) based speech recognition system whose performance has been evaluated on a standard AURORA 2 dataset. The results demonstrate that the SPARK features deliver significant and consistent improvements in recognition accuracy over the standard ETSI STQ WI007 DSR benchmark features. We have also verified the noise-robustness of the SPARK features for the task of speaker verification. Experimental results based on the NIST SRE 2003 dataset show significant improvements when compared to a standard Mel-frequency cepstral coefficients (MFCCs) based benchmark.
Show less
- Title
- Biometric template security
- Creator
- Nagar, Abhishek
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
"This dissertation provides a thorough analysis of the vulnerabilities of a biometric recognition system with emphasis on the vulnerabilities related to the information stored in biometric systems in the form of biometric templates."--From abstract.
- Title
- MEASURING AND MODELING THE EFFECTS OF SEA LEVEL RISE ON NEAR-COASTAL RIVERINE REGIONS : A GEOSPATIAL COMPARISON OF THE SHATT AL-ARAB RIVER IN SOUTHERN IRAQ WITH THE MISSISSIPPI RIVER DELTA IN SOUTHERN LOUISIANA, USA.
- Creator
- Kadhim, Ameen Awad
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
There is a growing debate among scientists on how sea level rise (SLR) will impact coastal environments, particularly in countries where economic activities are sustained along these coasts. An important factor in this debate is how best to characterize coastal environmental impacts over time. This study investigates the measurement and modeling of SLR and effects on near-coastal riverine regions. The study uses a variety of data sources, including satellite imagery from 1975 to 2017, digital...
Show moreThere is a growing debate among scientists on how sea level rise (SLR) will impact coastal environments, particularly in countries where economic activities are sustained along these coasts. An important factor in this debate is how best to characterize coastal environmental impacts over time. This study investigates the measurement and modeling of SLR and effects on near-coastal riverine regions. The study uses a variety of data sources, including satellite imagery from 1975 to 2017, digital elevation data and previous studies. This research is focusing on two of these important regions: southern Iraq along the Shatt Al-Arab River (SAR) and the southern United States in Louisiana along the Mississippi River Delta (MRD). These sites are important for both their extensive low-lying land and for their significant coastal economic activities. The dissertation consists of six chapters. Chapter one introduces the topic. Chapter two compares and contrasts bothregions and evaluates escalating SLR risk. Chapter three develops a coupled human and natural system (CHANS) perspective for SARR to reveal multiple sources of environmental degradation in this region. Alfa century ago SARR was an important and productive region in Iraq that produced fruits like dates, crops, vegetables, and fish. By 1975 the environment of this region began to deteriorate, and since then, it is well-documented that SARR has suffered under human and natural problems. In this chapter, I use the CHANS perspective to identify the problems, and which ones (human or natural systems) are especially responsible for environmental degradation in SARR. I use several measures of ecological, economic, and social systems to outline the problems identified through the CHANS framework. SARR has experienced extreme weather changes from 1975 to 2017 resulting in lower precipitation (-17mm) and humidity (-5.6%), higher temperatures (1.6 C), and sea level rise, which are affecting the salinity of groundwater and Shatt Al Arab river water. At the same time, human systems in SARR experienced many problems including eight years of war between Iraq and Iran, the first Gulf War, UN Security Council imposed sanctions against Iraq, and the second Gulf War. I modeled and analyzed the regions land cover between 1975 and 2017 to understand how the environment has been affected, and found that climate change is responsible for what happened in this region based on other factors. Chapter four constructs and applies an error propagation model to elevation data in the Mississippi River Delta region (MRDR). This modeling both reduces and accounts for the effects of digital elevation model (DEM) error on a bathtub inundation model used to predict the SLR risk in the region. Digital elevation data is essential to estimate coastal vulnerability to flooding due to sea level rise. Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global is considered the best free global digital elevation data available. However, inundation estimates from SRTM are subject to uncertainty due to inaccuracies in the elevation data. Small systematic errors in low, flat areas can generate large errors in inundation models, and SRTM is subject to positive bias in the presence of vegetation canopy, such as along channels and within marshes. In this study, I conduct an error assessment and develop statistical error modeling for SRTM to improve the quality of elevation data in these at-risk regions. Chapter five applies MRDR-based model from chapter four to enhance the SRTM 1 Arc-Second Global DEM data in SARR. As such, it is the first study to account for data uncertainty in the evaluation of SLR risk in this sensitive region. This study transfers an error propagation model from MRDR to the Shatt al-Arab river region to understand the impact of DEM error on an inundation model in this sensitive region. The error propagation model involves three stages. First, a multiple regression model, parameterized from MRDR, is used to generate an expected DEM error surface for SARR. This surface is subtracted from the SRTM DEM for SARR to adjust it. Second, residuals from this model are simulated for SARR: these are mean-zero and spatially autocorrelated with a Gaussian covariance model matching that observed in MRDR by convolution filtering of random noise. More than 50 realizations of error were simulated to make sure a stable result was realized. These realizations were subtracted from the adjusted SRTM to produce DEM realizations capturing potential variation. Third, the DEM realizations are each used in bathtub modeling to estimate flooding area in the region with 1 m of sea level rise. The distribution of flooding estimates shows the impact of DEM error on uncertainty in inundation likelihood, and on the magnitude of total flooding. Using the adjusted DEM realizations 47 ± 2 percent of the region is predicted to flood, while using the raw SRTM DEM only 28% of the region is predicted to flood.
Show less
- Title
- Privacy and integrity preserving computation in distributed systems
- Creator
- Chen, Fei
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
Preserving privacy and integrity of private data has become core requirements for many distributed systems across different parties. In these systems, one party may try to compute or aggregate useful information from the private data of other parties. However, this party is not be fully trusted by other parties. Therefore, it is important to design security protocols for preserving such private data. Furthermore, one party may want to query the useful information computed from such private...
Show morePreserving privacy and integrity of private data has become core requirements for many distributed systems across different parties. In these systems, one party may try to compute or aggregate useful information from the private data of other parties. However, this party is not be fully trusted by other parties. Therefore, it is important to design security protocols for preserving such private data. Furthermore, one party may want to query the useful information computed from such private data. However, query results may be modified by a malicious party. Thus, it is important to design query protocols such that query result integrity can be verified.In this dissertation, we study four important privacy and integrity preserving problems for different distributed systems. For two-tiered sensor networks, where storage nodes serve as an intermediate tier between sensors and a sink for storing data and processing queries, we proposed SafeQ, a protocol that prevents compromised storage nodes from gaining information from both sensor collected data and sink issued queries, while it still allows storage nodes to process queries over encrypted data and the sink to detect compromised storage nodes when they misbehave. For cloud computing, where a cloud provider hosts the data of an organization and replies query results to the customers of the organization, we propose novel privacy and integrity preserving schemes for multi-dimensional range queries such that the cloud provider can process encoded queries over encoded data without knowing the actual values, and customers can verify the integrity of query results with high probability. For distributed firewall policies, we proposed the first privacy-preserving protocol for cross-domain firewall policy optimization. For any two adjacent firewalls belonging to two different administrative domains, our protocol can identify in each firewall the rules that can be removed because of the other firewall. For network reachability, one of the key factors for capturing end-to-end network behavior and detecting the violation of security policies, we proposed the first cross-domain privacy-preserving protocol for quantifying network reachability.
Show less