You are here
Search results
(61 - 80 of 81)
Pages
- Title
- Object Detection from 2D to 3D
- Creator
- Brazil, Garrick
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Monocular camera-based object detection plays a critical role in widespread applications including robotics, security, self-driving cars, augmented reality and many more. Increased relevancy is often given to the detection and tracking of safety-critical objects like pedestrians, cyclists, and cars which are often in motion and in close association to people. Compared to other generic objects such as animals, tools, food — safety-critical objects in urban scenes tend to have unique challenges...
Show moreMonocular camera-based object detection plays a critical role in widespread applications including robotics, security, self-driving cars, augmented reality and many more. Increased relevancy is often given to the detection and tracking of safety-critical objects like pedestrians, cyclists, and cars which are often in motion and in close association to people. Compared to other generic objects such as animals, tools, food — safety-critical objects in urban scenes tend to have unique challenges. Firstly, such objects usually have a wide range of detection scales such that they may appear anywhere from 5-50+ meters from the camera. Safety-critical objects also tend to have a high variety of textures and shapes, exemplified by the clothing of people and variability of vehicle models. Moreover, the high-density of objects in urban scenes leads to increased levels of self-occlusion compared to general objects in the wild. Off-the-shelf object detectors do not always work effectively due to these traits, and hence special attention is needed for accurate detection. Moreover, even successful detection of safety-critical is not inherently practical for applications designed to function in the real 3D world, without integration of expensive depth sensors. To remedy this, in this thesis we aim to improve the performance of 2D object detection and extend boxes into 3D, while using only monocular camera-based sensors. We first explore how pedestrian detection can be augmented using an efficient simultaneous detection and segmentation technique, while notably requiring no additional data or annotations. We then propose a multi-phased autoregressive network which progressively improves pedestrian detection precision for difficult samples, while critically maintaining an efficient runtime. We additionally propose a single-stage region proposal networks for 3D object detection in urban scenes, which is both more efficient and up to 3x more accurate than comparable state-of-the-art methods. We stabilize our 3D object detector using a highly tailored 3D Kalman filter, which both improves localization accuracy and provides useful byproducts such as ego-motion and per-object velocity. Lastly, we utilize differentiable rendering to discover the underlying 3D structure of objects beyond the cuboids used in detection, and without relying on expensive sensors or 3D supervision. For each method, we provide comprehensive experiments to demonstrate effectiveness, impact and runtime efficiency.
Show less
- Title
- Contributions to Fingerprint Recognition
- Creator
- Engelsma, Joshua James
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
From the early days of the mid to late nineteenth century when scientific research first began to focus on fingerprints, to the present day fingerprint recognition systems we find deployed on our day to day devices, the science of fingerprint recognition has come a long way. In spite of this progress, there remains challenging problems to be solved. This thesis highlights a few of these problems, and proposes solutions to address them. One area of further research that must be conducted on...
Show moreFrom the early days of the mid to late nineteenth century when scientific research first began to focus on fingerprints, to the present day fingerprint recognition systems we find deployed on our day to day devices, the science of fingerprint recognition has come a long way. In spite of this progress, there remains challenging problems to be solved. This thesis highlights a few of these problems, and proposes solutions to address them. One area of further research that must be conducted on fingerprint recognition systems is that of robust, operational evaluations. In chapter two of this thesis, we show how the current practices of using calibration patterns to evaluate fingerprint readers are limited. We then propose a realistic fake finger called the Universal Target. The Universal Target is a realistic, 3D, fake finger (or phantom) which can be imaged by all major types of fingerprint sensing technologies. We show the entire manufacturing (molding and casting) process for fabricating the Universal Targets. Then, we show a series of evaluations which demonstrate how the Universal Targets can be used to operationally evaluate current commercial fingerprint readers. Our Universal Target is a significant step forward in enabling more realistic, standardized evaluations of fingerprint readers. In our third chapter, we shift gears from improving the evaluation standards of fingerprint readers to instead focus on the security of fingerprint readers. In particular, we turn our attention towards detecting fake fingerprint (spoof) attacks. To do so, we open source a fingerprint reader (built from low-cost ubiquitous components), called RaspiReader. RaspiReader is a high-resolution fingerprint reader customized with both direct-view imaging and FTIR imaging in order to better detect fingerprint spoofs. We show through a number of experiments that RaspiReader enables state-of-the-art fingerprint spoof detection accuracy. We also demonstrate that RaspiReader enables better generalization to what are known as "unseen attacks" (those attacks which were not seen during training of the spoof detector). Finally, we show that fingerprints captured by RaspiReader are completely compatible with images captured by legacy fingerprint readers for matching.In chapter four, we move on to propose a major improvement to the fingerprint feature extraction and matching sub-modules of fingerprint recognition systems. In particular, we propose a deep network, called DeepPrint, to extract a 200 byte fixed-length fingerprint representation. While prevailing fingerprint matchers primarily utilize minutiae points and expensive graph matching algorithms for comparison, two DeepPrint representations can be compared with only 192 multiplications and 191 additions. This is extremely useful for large scale search where potentially billions of pairwise fingerprint comparisons must be made. The DeepPrint representation also enables practical encrypted matching using a fully homomorphic encryption scheme. This enables better protection of the fingerprint templates which are stored in the database. While discriminative fixed-length representations are available for both face and iris recognition, such a representation has eluded fingerprint recognition. This chapter aims to fill that void.Finally, we conclude our thesis by working to extend fingerprint recognition to all ages. While current fingerprint recognition systems are being used by billions of teenagers and adults around the world, the youngest people among us remain disenfranchised. In particular, modern day fingerprint recognition systems do not work well on infants and young children. In this penultimate chapter, we aim to rectify this major shortcoming. To that end, we prototype a high-resolution (1900 ppi) infant fingerprint reader. Then, we track and fingerprint 315 infants (under the age of 3 months at enrollment) at the Dayalbagh Children's Hospital in Agra India over the course of 1 year (4 different sessions). To match the infant fingerprints, we develop our own high-resolution infant fingerprint matcher. Our experimental results demonstrate significant promise for the extension of fingerprint recognition to all ages. This work has the potential for major global good as all young infants and children could be given a verifiable digital identity for better vaccination tracking as a child and for government benefits and assistance as an adult. In summary, this thesis makes major contributions to the entire end-to-end fingerprint recognition system and extends its use case to all ages.
Show less
- Title
- Towards Robust and Secure Face Recognition : Defense Against Physical and Digital Attacks
- Creator
- Deb, Debayan
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
The accuracy, usability, and touchless acquisition of state-of-the-art automated face recognition systems (AFR) have led to their ubiquitous adoption in a plethora of domains, including mobile phone unlock, access control systems, and payment services. Despite impressive recognition performance, prevailing AFR systems remain vulnerable to the growing threat of face attacks which can be launched in both physical and digital domains. Face attacks can be broadly classified into three attack...
Show moreThe accuracy, usability, and touchless acquisition of state-of-the-art automated face recognition systems (AFR) have led to their ubiquitous adoption in a plethora of domains, including mobile phone unlock, access control systems, and payment services. Despite impressive recognition performance, prevailing AFR systems remain vulnerable to the growing threat of face attacks which can be launched in both physical and digital domains. Face attacks can be broadly classified into three attack categories: (i) Spoof attacks: artifacts in the physical domain (e.g., 3D masks, eye glasses, replaying videos), (ii) Adversarial attacks: imperceptible noises added to probes for evading AFR systems, and (iii) Digital manipulation attacks: entirely or partially modified photo-realistic faces using generative models. Each of these categories is composed of different attack types. For example, each spoof medium, e.g., 3D mask and makeup, constitutes one attack type. Likewise, in adversarial and digital manipulation attacks, each attack model, designed by unique objectives and losses, may be considered as one attack type. Thus, the attack categories and types form a 2-layer tree structure encompassing the diverse attacks. Such a tree will inevitably grow in the future. Given the growing dissemination of ``fake news” and "deepfakes", the research community and social media platforms alike are pushing towards generalizable defense against continuously evolving and sophisticated face attacks. In this dissertation, we first propose a set of defense methods that achieve state-of-the-art performance in detecting attack types within individual attack categories, both physical (e.g., face spoofs) and digital (e.g., adversarial faces and digital manipulation), then introduce a method for simultaneously safeguarding against each attack.First, in an effort to impart generalizability and interpretability to face spoof detection systems, we propose a new face anti-spoofing framework specifically designed to detect unknown spoof types, namely, Self-Supervised Regional Fully Convolutional Network (SSR-FCN), that is trained to learn local discriminative cues from a face image in a self-supervised manner. The proposed framework improves generalizability while maintaining the computational efficiency of holistic face anti-spoofing approaches (< 4 ms on a Nvidia GTX 1080Ti GPU). The proposed method is also interpretable since it localizes which parts of the face are labeled as spoofs. Experimental results show that SSR-FCN can achieve True Detection Rate (TDR) = 65% @ 2.0% False Detection Rate (FDR) when evaluated on a dataset comprising of 13 different spoof types under unknown attacks while achieving competitive performances under standard benchmark face anti-spoofing datasets (Oulu-NPU, CASIA-MFSD, and Replay-Attack).Next, we address the problem of defending against adversarial attacks. We first propose, AdvFaces, an automated adversarial face synthesis method that learns to generate minimal perturbations in the salient facial regions. Once AdvFaces is trained, it can automatically evade state-of-the-art face matchers with attack success rates as high as 97.22% and 24.30% at 0.1% FAR for obfuscation and impersonation attacks, respectively. We then propose a new self-supervised adversarial defense framework, namely FaceGuard, that can automatically detect, localize, and purify a wide variety of adversarial faces without utilizing pre-computed adversarial training samples. FaceGuard automatically synthesizes diverse adversarial faces, enabling a classifier to learn to distinguish them from bona fide faces. Concurrently, a purifier attempts to remove the adversarial perturbations in the image space. FaceGuard can achieve 99.81%, 98.73%, and 99.35% detection accuracies on LFW, CelebA, and FFHQ, respectively, on six unseen adversarial attack types.Finally, we take the first steps towards safeguarding AFR systems against face attacks in both physical and digital domains. We propose a new unified face attack detection framework, namely UniFAD, which automatically clusters similar attacks and employs a multi-task learning framework to learn salient features to distinguish between bona fides and coherent attack types. The proposed UniFAD can detect face attacks from 25 attack types across all 3 attack categories with TDR = 94.73% @ 0.2% FDR on a large fake face dataset, namely GrandFake. Further, UniFAD can identify whether attacks are adversarial, digitally manipulated, or contain spoof artifacts, with 97.37% classification accuracy.
Show less
- Title
- Semi-Adversarial Networks for Imparting Demographic Privacy to Face Images
- Creator
- Mirjalili, Vahid
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Face recognition systems are being widely used in a number of applications ranging from user authentication in hand-held devices to identifying people of interest from surveillance videos. In several such applications, face images are stored in a central database. In such cases, it is necessary to ensure that the stored face images are used for the stated purpose and not for any other purposes. For example, advanced machine learning methods can be used to automatically extract age, gender,...
Show moreFace recognition systems are being widely used in a number of applications ranging from user authentication in hand-held devices to identifying people of interest from surveillance videos. In several such applications, face images are stored in a central database. In such cases, it is necessary to ensure that the stored face images are used for the stated purpose and not for any other purposes. For example, advanced machine learning methods can be used to automatically extract age, gender, race and so on from the stored face images. These cues are often referred to as demographic attributes. When such attributes are extracted without the consent of individuals, it can lead to potential violation of privacy. Indeed, the European Union's General Data Protection and Regulation (GDPR) requires the primary purpose of data collection to be declared to individuals prior to data collection. GDPR strictly prohibits the use of this data for any purpose beyond what was stated. In this thesis, we consider this type of regulation and develop methods for enhancing the privacy accorded to face images with respect to the automatic extraction of demogrpahic attributes. In particular, we design algorithms that modify input face images such that certain specified demogrpahic attributes cannot be reliably extracted from them. At the same time, the biometric utility of the images is retained, i.e., the modified face images can still be used for matching purposes. The primary objective of this research is not necessarily to fool human observers, but rather to prevent machine learning methods from automatically extracting such information. The following are the contributions of this thesis. First, we design a convolutional autoencoder known as a semi-adversarial neural network, or SAN, that perturbs input face images such that they are adversarial with respect to an attribute classifier (e.g., gender classifier) while still retaining their utility with respect to a face matcher. Second, we develop techniques to ensure that the adversarial outputs produced by the SAN are generalizable across multiple attribute classifiers, including those that may not have been used during the training phase. Third, we extend the SAN architecture and develop a neural network known as PrivacyNet, that can be used for imparting multi-attribute privacy to face images. Fourth, we conduct extensive experimental analysis using several face image datasets to evaluate the performance of the proposed methods as well as visualize the perturbations induced by the methods. Results suggest the benefits of using semi-adversarial networks to impart privacy to face images while still retaining the biometric utility of the ensuing face images.
Show less
- Title
- Sequence learning with side information : modeling and applications
- Creator
- Wang, Zhiwei
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Sequential data is ubiquitous and modeling sequential data has been one of the most long-standing computer science problems. The goal of sequence modeling is to represent a sequence with a low-dimensional dense vector that incorporates as much information as possible. A fundamental type of information contained in sequences is the sequential dependency and a large body of research has been devoted to designing effective ways to capture it. Recently, sequence learning models such as recurrent...
Show moreSequential data is ubiquitous and modeling sequential data has been one of the most long-standing computer science problems. The goal of sequence modeling is to represent a sequence with a low-dimensional dense vector that incorporates as much information as possible. A fundamental type of information contained in sequences is the sequential dependency and a large body of research has been devoted to designing effective ways to capture it. Recently, sequence learning models such as recurrent neural networks (RNNs), temporal convolutional networks, and Transformer have gained tremendous popularity in modeling sequential data. Equipped with effective structures such as gating mechanisms, large receptive fields, and attention mechanisms, these models have achieved great success in many applications of a wide range of fields.However, besides the sequential dependency, sequences also exhibit side information that remains under-explored. Thus, in the thesis, we study the problem of sequence learning with side information. Specifically, we present our efforts devoted to building sequence learning models to effectively and efficiently capture side information that is commonly seen in sequential data. In addition, we show that side information can play an important role in sequence learning tasks as it can provide rich information that is complementary to the sequential dependency. More importantly, we apply our proposed models in various real-world applications and have achieved promising results.
Show less
- Title
- Online Learning Algorithms for Mining Trajectory data and their Applications
- Creator
- Wang, Ding
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Trajectories are spatio-temporal data that represent traces of moving objects, such as humans, migrating animals, vehicles, and tropical cyclones. In addition to the geo-location information, a trajectory data often contain other (non-spatial) features describing the states of the moving objects. The time-varying geo-location and state information would collectively characterize a trajectory dataset, which can be harnessed to understand the dynamics of the moving objects. This thesis focuses...
Show moreTrajectories are spatio-temporal data that represent traces of moving objects, such as humans, migrating animals, vehicles, and tropical cyclones. In addition to the geo-location information, a trajectory data often contain other (non-spatial) features describing the states of the moving objects. The time-varying geo-location and state information would collectively characterize a trajectory dataset, which can be harnessed to understand the dynamics of the moving objects. This thesis focuses on the development of efficient and accurate machine learning algorithms for forecasting the future trajectory path and state of a moving object. Although many methods have been developed in recent years, there are still numerous challenges that have not been sufficiently addressed by existing methods, which hamper their effectiveness when applied to critical applications such as hurricane prediction. These challenges include their difficulties in terms of handling concept drifts, error propagation in long-term forecasts, missing values, and nonlinearities in the data. In this thesis, I present a family of online learning algorithms to address these challenges. Online learning is an effective approach as it can efficiently fit new observations while adapting to concept drifts present in the data. First, I proposed an online learning framework called OMuLeT for long-term forecasting of the trajectory paths of moving objects. OMuLeT employs an online learning with restart strategy to incrementally update the weights of its predictive model as new observation data become available. It can also handle missing values in the data using a novel weight renormalization strategy.Second, I introduced the OOR framework to predict the future state of the moving object. Since the state can be represented by ordinal values, OOR employs a novel ordinal loss function to train its model. In addition, the framework was extended to OOQR to accommodate a quantile loss function to improve its prediction accuracy for larger values on the ordinal scale. Furthermore, I also developed the OOR-ε and OOQR-ε frameworks to generate real-valued state predictions using the ε insensitivity loss function.Third, I developed an online learning framework called JOHAN, that simultaneously predicts the location and state of the moving object. JOHAN generates its predictions by leveraging the relationship between the state and location information. JOHAN utilizes a quantile loss function to bias the algorithm towards predicting more accurately large categorical values in terms of the state of the moving object, say, for a high intensity hurricane.Finally, I present a deep learning framework to capture non-linear relationships in trajectory data. The proposed DTP framework employs a TDM approach for imputing missing values, coupled with an LSTM architecture for dynamic path prediction. In addition, the framework was extended to ODTP, which applied an online learning setting to address concept drifts present in the trajectory data.As proof of concept, the proposed algorithms were applied to the hurricane prediction task. Both OMuLeT and ODTP were used to predict the future trajectory path of a hurricane up to 48 hours lead time. Experimental results showed that OMuLeT and ODTP outperformed various baseline methods, including the official forecasts produced by the U.S. National Hurricane Center. OOR was applied to predict the intensity of a hurricane up to 48 hours in advance. Experimental results showed that OOR outperformed various state-of-the-art online learning methods and can generate predictions close to the NHC official forecasts. Since hurricane intensity prediction is a notoriously hard problem, JOHAN was applied to improve its prediction accuracy by leveraging the trajectory information, particularly for high intensity hurricanes that are near landfall.
Show less
- Title
- Replaying Life's Virtual Tape : Examining the Role of History in Experiments with Digital Organisms
- Creator
- Bundy, Jason Nyerere
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Evolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not...
Show moreEvolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not everyone was convinced. Some believed that chance was the primary driver of evolutionary change, while others insisted that natural selection was the most powerful influence. Since then, “replaying life’s tape” has become a core method in experimental evolution for measuring the relative contributions of adaptation, chance, and history. In this dissertation, I focus on the effects associated with history in evolving populations of digital organisms—computer programs that self-replicate, mutate, compete, and evolve in virtual environments. In Chapter 1, I discuss the philosophical significance of Gould’s thought experiment and its influence on experimental methods. I argue that his thought experiment was a challenge to anthropocentric reasoning about natural history that is still popular, particularly outside of the scientific community. In this regard, it was his way of advocating for a “radical” view of evolution. In Chapter 2—Richard Lenski, Charles Ofria, and I describe a two-phase, virtual, “long-term” evolution experiment with digital organisms using the Avida software. In Phase I, we evolved 10 replicate populations, in parallel, from a single genotype for around 65,000 generations. This part of the experiment is similar to the design of Lenski’s E. coli Long-term Evolution Experiment (LTEE). We isolated the dominant genotype from each population around 3,000 generations (shallow history) into Phase I and then again at the end of Phase I (deep history). In Phase II, we evolved 10 populations from each of the genotypes we isolated from Phase I in two new environments, one similar and one dissimilar to the old environment used for Phase I. Following Phase II, we estimated the contributions of adaptation, chance, and history to the evolution of fitness and genome length in each new environment. This unique experimental design allowed us to see how the contributions of adaptation, chance, and history changed as we extended the depth of history from Phase I. We were also able to determine whether the results depended on the extent of environmental change (similar or dissimilar new environment). In Chapter 3, we report an extended analysis of the experiment from the previous chapter to further examine how extensive adaptation to the Phase I environment shaped the evolution of replicates during Phase II. We show how the form of pleiotropy (antagonistic or synergistic) between the old (Phase I) and new (Phase II) habitats was influenced by the depth of history from Phase I (shallow or deep) and the extent of environmental change (similar or dissimilar new environment). In the final chapter Zachary Blount, Richard Lenski, and I describe an exercise we developed using the educational version of Avida (Avida-ED). The exercise features a two-phase, “replaying life’s tape” activity. Students are able to explore how the unique history of founders that we pre-evolved during Phase I influences the acquisition of new functions by descendent populations during Phase II, which the students perform during the activity.
Show less
- Title
- COMBINING FACE AND IRIS FOR PRIVACY PRESERVATION
- Creator
- Ledala, Achsah Junia
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
With the extensive use of biometrics for authenticating users, the need to ensure privacy of biometric data is greater than ever before. Biometric authentication systems are vulnerable to attacks and the loss of biometric data will lead to loss of privacy of an individual. Multibiometrics refers to the use of multiple biometric modalities simultaneously in order to perform matching. In this work, we introduce a multibiometric fusion technique which can be used to ensure that the original raw...
Show moreWith the extensive use of biometrics for authenticating users, the need to ensure privacy of biometric data is greater than ever before. Biometric authentication systems are vulnerable to attacks and the loss of biometric data will lead to loss of privacy of an individual. Multibiometrics refers to the use of multiple biometric modalities simultaneously in order to perform matching. In this work, we introduce a multibiometric fusion technique which can be used to ensure that the original raw biometric data are unlikely to be compromised and, at the same time, recognition can be performed. The face and the iris biometric modalities are fused at the feature-level to produce discriminative embeddings that can be used for recognition. The original face or the iris cannot be retrieved from the combined representation, thus preserving the privacy of the individual. We present the results of this approach, provide analysis, discuss the challenges, and list possible future directions.
Show less
- Title
- Memory-efficient emulation of physical tabular data using quadtree decomposition
- Creator
- Carlson, Jared
- Date
- 2022
- Collection
- Electronic Theses & Dissertations
- Description
-
Computationally expensive functions are sometimes replaced in simulations with an emulator that approximates the true function (e.g., equations of state, wavelength-dependent opacity, or composition-dependent materials properties). For functions that have a constrained domain of interest, this can be done by discretizing the domain and performing a local interpolation on the tabulated function values of each local domain. For these so-called tabular data methods, the method of discretizing...
Show moreComputationally expensive functions are sometimes replaced in simulations with an emulator that approximates the true function (e.g., equations of state, wavelength-dependent opacity, or composition-dependent materials properties). For functions that have a constrained domain of interest, this can be done by discretizing the domain and performing a local interpolation on the tabulated function values of each local domain. For these so-called tabular data methods, the method of discretizing the domain and mapping the input space to each subdomain can drastically influence the memory and computational costs of the emulator. This is especially true for functions that vary drastically in different regions. We present a method for domain discretization and mapping that utilizes quadtrees, which results in significant reductions in the size of the emulator with minimal increases to computational costs or loss of global accuracy. We apply our method to the electron-positron Helmholtz free energy equation of state and show over an order of magnitude reduction in memory costs for reasonable levels of numerical accuracy.
Show less
- Title
- EMERGENT COORDINATION : ADAPTATION, OPEN-ENDEDNESS, AND COLLECTIVE INTELLIGENCE
- Creator
- Bao, Honglin
- Date
- 2022
- Collection
- Electronic Theses & Dissertations
- Description
-
Agent-based modeling is a widely used computational method for studying the micro-macro bridge issue by simulating the microscopic interactions and observing the macroscopic emergence. This thesis begins with the fundamental methodology of agent-based models: how agents are represented, how agents interact, and how the agent population is structured. Two vital topics, the evolution of cooperation and opinion dynamics are used to illustrate methodological innovation. For the first topic, we...
Show moreAgent-based modeling is a widely used computational method for studying the micro-macro bridge issue by simulating the microscopic interactions and observing the macroscopic emergence. This thesis begins with the fundamental methodology of agent-based models: how agents are represented, how agents interact, and how the agent population is structured. Two vital topics, the evolution of cooperation and opinion dynamics are used to illustrate methodological innovation. For the first topic, we study the equilibrium selection in a coordination game in multi-agent systems. In particular, we focus on the characteristics of agents (supervisors and subordinates versus representative agents), the interactions of agents (reinforcement learning in the games with fixed versus adaptive learning rates according to the supervision and time-varying versus supervision-guided exploration rates), the network of agents (single-layer versus multi-layer networks), and their impact on the emergent behaviors. Regarding the second topic, we examine how opinions evolve and spread in a cognitively heterogeneous agent population with sparse interactions and how the opinion dynamics co-evolve with the open-ended society's structural change. We then discuss the rich insights into collective intelligence in the two proposed models viewed from the interaction-based adaptation and open-ended network structure. We finally link collective emergent intelligence to diverse applications in the realm of computing and other scientific fields in a cross-multidisciplinary manner.
Show less
- Title
- Efficient Transfer Learning for Heterogeneous Machine Learning Domains
- Creator
- Zhu, Zhuangdi
- Date
- 2022
- Collection
- Electronic Theses & Dissertations
- Description
-
Recent advances in deep machine learning hinge on a large amount of labeled data. Such heavy dependence on supervision data impedes the broader application of deep learning in more practical scenarios, where data annotation and labeling can be expensive (e.g. high-frequency trading) or even dangerous (e.g. training autonomous-driving models.) Transfer Learning (TL), equivalently referred to as knowledge transfer, is an effective strategy to confront such challenges. TL, by its definition,...
Show moreRecent advances in deep machine learning hinge on a large amount of labeled data. Such heavy dependence on supervision data impedes the broader application of deep learning in more practical scenarios, where data annotation and labeling can be expensive (e.g. high-frequency trading) or even dangerous (e.g. training autonomous-driving models.) Transfer Learning (TL), equivalently referred to as knowledge transfer, is an effective strategy to confront such challenges. TL, by its definition, distills the external knowledge from relevant domains into the target learning domain, hence requiring fewer supervision resources than learning-from-scratch. TL is beneficial for learning tasks for which the supervision data is limited or even unavailable. It is also an essential property to realize Generalized Artificial Intelligence. In this thesis, we propose sample-efficient TL approaches using limited, sometimes unreliable resources. We take a deep look into the setting of Reinforcement Learning (RL) and Supervised Learning, and derive solutions for the two domains respectively. Especially, for RL, we focus on a problem setting called imitation learning, where the supervision from the environment is either non-available or scarcely provided, and the learning agent must transfer knowledge from exterior resources, such as demonstration examples of a previously trained expert, to learn a good policy. For supervised learning, we consider a distributed machine learning scheme called Federated Learning (FL), which is a more challenging scenario than traditional machine learning, since the training data is distributed and non-sharable during the learning process. Under this distributed setting, it is imperative to enable TL among distributed learning clients to reach a satisfiable generalization performance. We prove by both theoretical support and extensive experiments that our proposed algorithms can facilitate the machine learning process with knowledge transfer to achieve higher asymptotic performance, in a principled and more efficient manner than the prior arts.
Show less
- Title
- Solving Computationally Expensive Problems Using Surrogate-Assisted Optimization : Methods and Applications
- Creator
- Blank, Julian
- Date
- 2022
- Collection
- Electronic Theses & Dissertations
- Description
-
Optimization is omnipresent in many research areas and has become a critical component across industries. However, while researchers often focus on a theoretical analysis or convergence proof of an optimization algorithm, practitioners face various other challenges in real-world applications. This thesis focuses on one of the biggest challenges when applying optimization in practice: computational expense, often caused by the necessity of calling a third-party software package. To address the...
Show moreOptimization is omnipresent in many research areas and has become a critical component across industries. However, while researchers often focus on a theoretical analysis or convergence proof of an optimization algorithm, practitioners face various other challenges in real-world applications. This thesis focuses on one of the biggest challenges when applying optimization in practice: computational expense, often caused by the necessity of calling a third-party software package. To address the time-consuming evaluation, we propose a generalizable probabilistic surrogate-assisted framework that dynamically incorporates predictions of approximation models. Besides the framework's capability of handling multiple objectives and constraints simultaneously, the novelty is its applicability to all kinds of metaheuristics. Moreover, often multiple disciplines are involved in optimization, resulting in different types of software packages utilized for performance assessment. Therefore, the resulting optimization problem typically consists of multiple independently evaluable objectives and constraints with varying computational expenses. Besides providing a taxonomy describing different ways of independent evaluation calls, this thesis also proposes a methodology to handle inexpensive constraints with expensive objective functions and a more generic concept for any type of heterogeneously expensive optimization problem. Furthermore, two case studies of real-world optimization problems from the automobile industry are discussed, a blueprint for solving optimization problems in practice is provided, and a widely-used optimization framework focusing on multi-objective optimization (founded and maintained by the author of this thesis) is presented. Altogether, this thesis shall pave the way to solve (computationally expensive) real-world optimization more efficiently and bridge the gap between theory and practice.
Show less
- Title
- High-precision and Personalized Wearable Sensing Systems for Healthcare Applications
- Creator
- Tu, Linlin
- Date
- 2022
- Collection
- Electronic Theses & Dissertations
- Description
-
The cyber-physical system (CPS) has been discussed and studied extensively since 2010. It provides various solutions for monitoring the user's physical and psychological health states, enhancing the user's experience, and improving the lifestyle. A variety of mobile internet devices with built-in sensors, such as accelerators, cameras, PPG sensors, pressure sensors, and the microphone, can be leveraged to build mobile cyber-physical applications that collected sensing data from the real world...
Show moreThe cyber-physical system (CPS) has been discussed and studied extensively since 2010. It provides various solutions for monitoring the user's physical and psychological health states, enhancing the user's experience, and improving the lifestyle. A variety of mobile internet devices with built-in sensors, such as accelerators, cameras, PPG sensors, pressure sensors, and the microphone, can be leveraged to build mobile cyber-physical applications that collected sensing data from the real world, had data processed, communicated to the internet services and transformed into behavioral and physiological models. The detected results can be used as feedback to help the user understand his/her behavior, improve the lifestyle, or avoid danger. They can also be delivered to therapists to facilitate their diagnose. Designing CPS for health monitoring is challenging due to multiple factors. First of all, high estimation accuracy is necessary for health monitoring. However, some systems suffer irregular noise. For example, PPG sensors for cardiac health state monitoring are extremely vulnerable to motion noise. Second, to include human in the loop, health monitoring systems are required to be user-friendly. However, some systems involve cumbersome equipment for a long time of data collection, which is not feasible for daily monitoring. Most importantly, large-scale high-level health-related monitoring systems, such as the systems for human activity recognition, require high accuracy and communication efficiency. However, with users' raw data uploading to the server, centralized learning fails to protect users' private information and is communication-inefficient. The research introduced in this dissertation addressed the above three significant challenges in developing health-related monitoring systems. We build a lightweight system for accurate heart rate measurement during exercise, design a smart in-home breathing training system with bio-Feedback via virtual reality (VR) game, and propose federated learning via dynamic layer sharing for human activity recognition.
Show less
- Title
- AN EVOLUTIONARY MULTI-OBJECTIVE APPROACH TO SUSTAINABLE AGRICULTURAL WATER AND NUTRIENT OPTIMIZATION
- Creator
- Kropp, Ian Meyer
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
One of the main problems that society is facing in the 21st century is that agricultural production must keep pace with a rapidly increasing global population in an environmentally sustainable manner. One of the solutions to this global problem is a system approach through the application of optimization techniques to manage farm operations. However, unlike existing agricultural optimization research, this work seeks to optimize multiple agricultural objectives at once via multi-objective...
Show moreOne of the main problems that society is facing in the 21st century is that agricultural production must keep pace with a rapidly increasing global population in an environmentally sustainable manner. One of the solutions to this global problem is a system approach through the application of optimization techniques to manage farm operations. However, unlike existing agricultural optimization research, this work seeks to optimize multiple agricultural objectives at once via multi-objective optimization techniques. Specifically, the algorithm Unified Non-dominated Sorting Genetic Algorithm-III (U-NSGA-III) searched for irrigation and nutrient management practices that minimized combinations of environmental objectives (e.g., total irrigation applied, total nitrogen leached) while maximizing crop yield for maize. During optimization, the crop model named the Decision Support System for Agrotechnology Transfer (DSSAT) calculated the yield and nitrogen leaching for each given management practices. This study also developed a novel bi-level optimization framework to improve the performance of the optimization algorithm, employing U-NSGA-III on the upper level and Monte Carlo optimization on the lower level. The multi-objective optimization framework resulted in groups of equally optimal solutions that each offered a unique trade-off among the objectives. As a result, producers can choose the one that best addresses their needs among these groups of solutions, known as Pareto fronts. In addition, the bi-level optimization framework further improved the number, performance, and diversity of solutions within the Pareto fronts.
Show less
- Title
- Example-Based Parameterization of Linear Blend Skinning for Skinning Decomposition (EP-LBS
- Creator
- Hopkins, Kayra M.
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
This thesis presents Example-based Parameterization of Linear Blend Skinning for Skinning Decomposition (EP-LBS), a unified and robust method for using example data to simplify and improve the development and parameterization of high quality 3D models for animation. Animation and three-dimensional (3D) computer graphics have quickly become a popular medium for education, entertainment and scientific simulation. In addition to film, gaming and research applications, recent advancements in...
Show moreThis thesis presents Example-based Parameterization of Linear Blend Skinning for Skinning Decomposition (EP-LBS), a unified and robust method for using example data to simplify and improve the development and parameterization of high quality 3D models for animation. Animation and three-dimensional (3D) computer graphics have quickly become a popular medium for education, entertainment and scientific simulation. In addition to film, gaming and research applications, recent advancements in augmented reality (AR) and virtual reality (VR) are driving additional demand for 3D content. However, the success of graphics in these arenas depends greatly on the efficiency of model creation and the realism of the animation or 3D image.A common method for figure animation is skeletal animation using linear blend skinning (LBS). In this method, vertices are deformed based on a weighted sum of displacements due to an embedded skeleton. This research addresses the problem that LBS animation parameter computation, including determining the rig (the skeletal structure), identifying influence bones (which bones influence which vertices), and assigning skinning weights (amounts of influence a bone has on a vertex), is a tedious process that is difficult to get right. Even the most skilled animators must work tirelessly to design an effective character model and often find themselves repeatedly correcting flaws in the parameterization. Significant research, including the use of example-data, has focused on simplifying and automating individual components of the LBS deformation process and increasing the quality of resulting animations. However, constraints on LBS animation parameters makes automated analytic computation of the values equally as challenging as traditional 3D animation methods. Skinning decomposition is one such method of computing LBS animation LBS parameters from example data. Skinning decomposition challenges include constraint adherence and computationally efficient determination of LBS parameters.The EP-LBS method presented in this thesis utilizes example data as input to a least-squares non-linear optimization process. Given a model as a set of example poses captured from scan data or manually created, EP-LBS institutes a single optimization equation that allows for simultaneous computation of all animation parameters for the model. An iterative clustering methodology is used to construct an initial parameterization estimate for this model, which is then subjected to non-linear optimization to improve the fitting to the example data. Simultaneous optimization of weights and joint transformations is complicated by a wide range of differing constraints and parameter interdependencies. To address interdependent and conflicting constraints, parameter mapping solutions are presented that map the constraints to an alternative domain more suitable for nonlinear minimization. The presented research is a comprehensive, data-driven solution for automatically determining skeletal structure, influence bones and skinning weights from a set of example data. Results are presented for a range of models that demonstrate the effectiveness of the method.
Show less
- Title
- Gender-related effects of advanced placement computer science courses on self-efficacy, belongingness, and persistence
- Creator
- Good, Jonathon Andrew
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
The underrepresentation of women in computer science has been a concern of educators for multiple decades. The low representation of women in the computer science is a pattern from K-12 schools through the university level and profession. One of the purposes of the introduction of the Advanced Placement Computer Science Principles (APCS-P) course in 2016 was to help broaden participation in computer science at the high school level. The design of APCS-P allowed teachers to present computer...
Show moreThe underrepresentation of women in computer science has been a concern of educators for multiple decades. The low representation of women in the computer science is a pattern from K-12 schools through the university level and profession. One of the purposes of the introduction of the Advanced Placement Computer Science Principles (APCS-P) course in 2016 was to help broaden participation in computer science at the high school level. The design of APCS-P allowed teachers to present computer science from a broad perspective, allowing students to pursue problems of personal significance, and allowing for computing projects to take a variety of forms. The nationwide enrollment statistics for Advanced Placement Computer Science Principles in 2017 had a higher proportion of female students (30.7%) than Advanced Placement Computer Science A (23.6%) courses. However, it is unknown to what degree enrollment in these courses was related to students’ plans to enroll in future computer science courses. This correlational study examined how students’ enrollment in Advanced Placement Computer Science courses, along with student gender, predicted students’ sense of computing self-efficacy, belongingness, and expected persistence in computer science. A nationwide sample of 263 students from 10 APCS-P and 10 APCS-A courses participated in the study. Students completed pre and post surveys at the beginning and end of their Fall 2017 semester regarding their computing self-efficacy, belongingness, and plans to continue in computer science studies. Using hierarchical linear modeling analysis due to the nested nature of the data within class sections, the researcher found that the APCS course type was not predictive of self-efficacy, belongingness, or expectations to persist in computer science. The results suggested that female students’ self-efficacy declined over the course of the study. However, gender was not predictive of belongingness or expectations to persist in computer science. Students were found to have entered into both courses with high a sense of self-efficacy, belongingness, and expectation to persist in computer science.The results from this suggests that students enrolled in both Advanced Placement Computer Science courses are already likely to pursue computer science. I also found that the type of APCS course in which students enroll does not relate to students’ interest in computer science. This suggests that educators should look beyond AP courses as a method of exposing students to computer science, possibly through efforts such as computational thinking and cross-curricular uses of computer science concepts and practices. Educators and administrators should also continue to examine whether there are structural biases in how students are directed to computer science courses. As for the drop in self-efficacy related to gender, this in alignment with previous research suggesting that educators should carefully scaffold students’ initial experiences in the course to not negatively influence their self-efficacy. Further research should examine how specific pedagogical practices could influence students’ persistence, as the designation and curriculum of APCS-A or APCS-P alone may not capture the myriad of ways in which teachers may be addressing gender inequity in their classrooms. Research can also examine how student interest in computer science is affected at an earlier age, as the APCS courses may be reaching students after they have already formed their opinions about computer science as a field.
Show less
- Title
- Energy Conservation in Heterogeneous Smartphone Ad Hoc Networks
- Creator
- Mariani, James
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
In recent years mobile computing has been rapidly expanding to the point that there are now more devices than there are people. While once it was common for every household to have one PC, it is now common for every person to have a mobile device. With the increased use of smartphone devices, there has also been an increase in the need for mobile ad hoc networks, in which phones connect directly to each other without the need for an intermediate router. Most modern smart phones are equipped...
Show moreIn recent years mobile computing has been rapidly expanding to the point that there are now more devices than there are people. While once it was common for every household to have one PC, it is now common for every person to have a mobile device. With the increased use of smartphone devices, there has also been an increase in the need for mobile ad hoc networks, in which phones connect directly to each other without the need for an intermediate router. Most modern smart phones are equipped with both Bluetooth and Wifi Direct, where Wifi Direct has a better transmission range and rate and Bluetooth is more energy efficient. However only one or the other is used in a smartphone ad hoc network. We propose a Heterogeneous Smartphone Ad Hoc Network, HSNet, a framework to enable the automatic switching between Wifi Direct and Bluetooth to emphasize minimizing energy consumption while still maintaining an efficient network. We develop an application to evaluate the HSNet framework which shows significant energy savings when utilizing our switching algorithm to send messages by a less energy intensive technology in situations where energy conservation is desired. We discuss additional features of HSNet such as load balancing to help increase the lifetime of the network by more evenly distributing slave nodes among connected master nodes. Finally, we show that the throughput of our system is not affected due to technology switching for most scenarios. Future work of this project includes exploring energy efficient routing as well as simulation/scale testing for larger and more diverse smartphone ad hoc networks.
Show less
- Title
- Multiple kernel and multi-label learning for image categorization
- Creator
- Bucak, Serhat Selçuk
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
"One crucial step towards the goal of converting large image collections to useful information sources is image categorization. The goal of image categorization is to find the relevant labels for a given an image from a closed set of labels. Despite the huge interest and significant contributions by the research community, there remains much room for improvement in the image categorization task. In this dissertation, we develop efficient multiple kernel learning and multi-label learning...
Show more"One crucial step towards the goal of converting large image collections to useful information sources is image categorization. The goal of image categorization is to find the relevant labels for a given an image from a closed set of labels. Despite the huge interest and significant contributions by the research community, there remains much room for improvement in the image categorization task. In this dissertation, we develop efficient multiple kernel learning and multi-label learning algorithms with high prediction performance for image categorization... " -- Abstract.
Show less
- Title
- Evolution of distributed behavior
- Creator
- Knoester, David B.
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
In this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of...
Show moreIn this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of distributed behavior that require communication: data-driven behaviors, where semantically meaningful data is transmitted between individuals; temporal behaviors, which are based on the relative timing of individuals' actions; and structural behaviors, which are responsible for maintaining the underlying communication network connecting individuals. Our results demonstrate that evolutionary algorithms can discover groups of individuals that exhibit each of these different classes of distributed behavior, and that these behaviors can be discovered both in isolation (e.g., evolving a purely data-driven algorithm) and in concert (e.g., evolving an algorithm that includes both data-driven and structural behaviors). As part of this research, we show that evolutionary algorithms can discover novel heuristics for distributed computing, and hint at a new class of distributed algorithm enabled by such studies.The majority of this research was conducted with the Avida platform for digital evolution, a system that has been proven to aid researchers in understanding the biological process of evolution by natural selection. For this reason, the results presented in this dissertation provide the foundation for future studies that examine how distributed behaviors evolved in nature. The close relationship between evolutionary biology and evolutionary algorithms thus aids our study of evolving algorithms for the next generation of distributed computing systems.
Show less
- Title
- Algorithms for deep packet inspection
- Creator
- Patel, Jignesh
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
The core operation in network intrusion detection and prevention systems is Deep Packet Inspection (DPI), in which each security threat is represented as a signature, and the payload of each data packet is matched against the set of current security threat signatures. DPI is also used for other networking applications like advanced QoS mechanisms, protocol identification etc.. In the past, attack signatures were specified as strings, and a great deal of research has been done in string...
Show moreThe core operation in network intrusion detection and prevention systems is Deep Packet Inspection (DPI), in which each security threat is represented as a signature, and the payload of each data packet is matched against the set of current security threat signatures. DPI is also used for other networking applications like advanced QoS mechanisms, protocol identification etc.. In the past, attack signatures were specified as strings, and a great deal of research has been done in string matching for network applications. Today most DPI systems use Regular Expression (RE) to represent signatures. RE matching is more diffcult than string matching, and current string matching solutions don't work well for REs. RE matching for networking applications is diffcult for several reasons. First, the DPI application is usually implemented in network devices, which have limited computing resources. Second, as new threats are discovered, size of the signature set grows over time. Last, the matching needs to be done at network speeds, the growth of which out paces improvements in computing speed; so there is a need for novel solutions that can deliver higher throughput. So RE matching for DPI is a very important and active research area.In our research, we investigate the existing methods proposed for RE matching, identify their limitations, and propose new methods to overcome these limitations. RE matching remains a fundamentally challenging problem due to the diffculty in compactly encoding DFA. While the DFA for any one RE is typically small, the DFA that corresponds to the entire set of REs is usually too large to be constructed or deployed. To address this issue, many alternative automata implementations that compress the size of the final automaton have been proposed. However, previously proposed automata construction algorithms employ a “Union then Minimize” framework where the automata for each RE are first joined before minimization occurs. This leads to expensive minimization on a large automata, and a large intermediate memory footprint. We propose a “Minimize then Union” framework for constructing compact alternative automata, which minimizes smaller automata first before combining them. This approach required much less time and memory, allowing us to handle a much larger RE set. Prior hardware based RE matching algorithms typically use FPGA. The drawback of FPGA is that resynthesizing and updating FPGA circuitry to handle RE updates is slow and diffcult. We propose the first hardware-based RE matching approach that uses Ternary Content Addressable Memory (TCAM). TCAMs have already been widely used in modern networking devices for tasks such as packet classification, so our solutions can be easily deployed. Our methods support easy RE updates, and we show that we can achieve very high throughput. The main reason combined DFAs for multiple REs grow exponentially in size is because of replication of states. We developed a new overlay automata model which exploit this replication to compress the size of the DFA. The idea is to group together the replicated DFA structures instead of repeating them multiple times. The result is that we get a final automata size that is close to that of a NFA (which is linear in the size of the RE set), and simultaneously achieve fast deterministic matching speed of a DFA.
Show less