You are here
Search results
(1 - 9 of 9)
- Title
- Neural mechanisms of female zebra finch mate choice : the role of the auditory perception sites, the social behavior network, and the reward system
- Creator
- Svec, Lace Ann
- Date
- 2009
- Collection
- Electronic Theses & Dissertations
- Title
- Early Axonal Tau Pathology in the Human Hippocampus and the Molecular Consequences of AT8 Tau Phosphorylation
- Creator
- Christensen, Kyle Robert
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
Tau is a microtubule-associated protein that is classically thought to play a role in stabilizing microtubules and the pathological accumulation of tau protein is a hallmark of several diseases collectively known as tauopathies, including Alzheimer’s disease (AD). Despite the clear implications for tau playing a critical role in tauopathies, many questions regarding its deposition in disease and mechanisms of toxicity remain unanswered. This dissertation was aimed at addressing two key...
Show moreTau is a microtubule-associated protein that is classically thought to play a role in stabilizing microtubules and the pathological accumulation of tau protein is a hallmark of several diseases collectively known as tauopathies, including Alzheimer’s disease (AD). Despite the clear implications for tau playing a critical role in tauopathies, many questions regarding its deposition in disease and mechanisms of toxicity remain unanswered. This dissertation was aimed at addressing two key questions in the field. 1) Does tau deposition occur first in the axons of affected neurons before proceeding to the somatodendritic compartment? 2) Does pathological modification of tau cause abnormalities in the ability of tau to modulate protein phosphatase 1 (PP1)? A long-held hypothesis on the progressive deposition of tau pathology in AD is that pathological tau accumulates first in axons of neurons and then progresses back into the cell bodies to form neurofibrillary tangles, however, studies have not directly analyzed this relationship in human tissue. In the early phases of tau deposition, both AT8 phosphorylation and exposure of the amino terminus of tau occur in tauopathies, and these modifications are linked to mechanisms of synaptic and axonal dysfunction. Here, the hippocampus of 44 well-characterized human samples from cases ranging between non-demented and mild cognitively impaired were examined for AT8 phosphorylation, amino terminus exposure, and amyloid- (Aβ) pathology in the axons and neuronal cell bodies within strata containing the CA3-Schaffer collateral and dentate granule-mossy fiber pathways. We show that tau pathology first appears in the axonal compartment of affected neurons in the absence of observable tau pathology in the corresponding cell bodies and independent of the presence of Aβ pathologies. Using the axonal marker, SMI-312, we confirmed that the majority of tau pathology-positive neuropil threads were axonal in origin. These results support the hypothesis that AT8 phosphorylation and PAD exposure are early pathological events and that the deposition of tau pathology occurs first in the axonal compartment prior to observable pathology in the cell bodies of affected neuronal pathways. The functional implications of AT8 and PAD-exposed tau deposition early in the axons of affected neurons is important because of a recently identified mechanism where these pathogenic forms of tau activate a PP1-dependent signaling pathway and lead to disruption of axonal functions. However, the connection between tau and PP1 was not defined. Here, we performed detailed studies on the interaction between tau and PP1 and subsequent effects on PP1 activity. Wild-type tau interacts with and activates PP1α and γ, but shows little to no interaction with PP1β, and this effect depends primarily on the microtubule binding repeats in tau. Additionally, AT8 tau increased the interactions with and activity of PP1γ, while deletion of PAD in the presence of AT8 reduced this interaction. These results suggest that tau’s function likely extends beyond stabilizing microtubules to include regulation of PP1 signaling cascades, and disease-associated tau phosphorylation may alter this function. Collectively, this work suggests forms of pathological tau, such as AT8 phospho-tau, that alter PP1 signaling and disrupt axonal function deposit in the axons of affected hippocampal neurons early during disease pathogenesis and prior to their appearance in the somatodendritic compartment of neurons.
Show less
- Title
- MIND-BODY STATE LITERACY : A PEDAGOGICAL APPROACH THAT USES MINDFULNESS AND BRAIN LITERACY TO SUPPORT LEARNING AND RELATIONAL NARRATIVE WORK
- Creator
- Schaefer, Erin Elizabeth
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Mind-Body State Literacy: A Pedagogical Approach that uses Mindfulness and Neuroscience to Support Learning and Relational Narrative Work describes the literacies necessary to develop the habits of minds presented in the Framework for Success in Postsecondary Writing: “curiosity, openness, engagement, creativity, persistence, responsibility, flexibility and metacognition” (WPA, NCTE, & NWP, 2011, par. 2). Such habits, because they deal with students’ openness in the learning process, are key...
Show moreMind-Body State Literacy: A Pedagogical Approach that uses Mindfulness and Neuroscience to Support Learning and Relational Narrative Work describes the literacies necessary to develop the habits of minds presented in the Framework for Success in Postsecondary Writing: “curiosity, openness, engagement, creativity, persistence, responsibility, flexibility and metacognition” (WPA, NCTE, & NWP, 2011, par. 2). Such habits, because they deal with students’ openness in the learning process, are key to students’ ability to receive a liberal education. I suggest that before instructors or students can develop these habits, they need to learn to develop an open mind-body state, defined as the ability to let one’s narrative incorporate other narratives/perspectives through listening. The Mind-Body State model is comprised of three facets: brainwaves, narratives, and emotions. The Mind-Body State Literacy (MBSL) approach suggests that students develop literacies related to these three facets, drawing primarily from mindfulness practices and philosophies the center the body and compassion. I anchor my presentation of the MBSL by suggesting why it might be especially relevant as students engage in personal narrative writing in the Rhetoric and Writing classroom.
Show less
- Title
- Masking : the acute effects of light on the brain and behavior
- Creator
- Shuboni, Dorela Doris
- Date
- 2013
- Collection
- Electronic Theses & Dissertations
- Description
-
Masking of behavior by external stimuli works with the circadian system to ensure that animals are active during the correct time-of-day. Light for diurnal and nocturnal species produces different masking responses, enhancing activity for diurnal species and suppressing activity for nocturnal species. Few studies have examined the neural mechanisms of masking; none these experiments use animals active during the day. The first experiment of this dissertation uses the protein of the immediate...
Show moreMasking of behavior by external stimuli works with the circadian system to ensure that animals are active during the correct time-of-day. Light for diurnal and nocturnal species produces different masking responses, enhancing activity for diurnal species and suppressing activity for nocturnal species. Few studies have examined the neural mechanisms of masking; none these experiments use animals active during the day. The first experiment of this dissertation uses the protein of the immediate-early gene cFOS to compare activation of brain regions to light between nocturnal mice and diurnal grass rats during a time-point where they showed a distinct behavioral dichotomy in response. Grass rats showed a consistent increase in activation in areas that receive retinal innervation or were related to sleep/arousal, while mice showed either no difference or a decrease in activation with the exception of the SCN. This study demonstrates the differences in behavioral and neurological responses to masking pulse of light between a nocturnal and diurnal rodent species.We next examined the functional role of the ventral subparaventricular zone (vSPZ) on masking to light in the grass rat. The vSPZ uniquely responded to light in diurnal grass rats, receives direct retinal innervation from the eye and after ablation showed a possible alteration in masking. Schwartz et al. (2009)showed that grass rats with damage to the vSPZ had bouts of arrhythmia in LD conditions, indicating that the masking system may be altered. In Chapter 3, we tested the functional for of the region by bilateral lesioning the vSPZ and directly testing the effects of light on masking. Animals with complete ablations still increased activity in response to light in two different masking protocols. In Chapter 4, we examined another brain structure that could have played a role in masking, the pineal gland. Melatonin is a hormone produced by the pineal gland that plays a role in circadian rhythms and seasonality. The expression of melatonin is sensitive to light exposure, additionally, the presence of the hormone also feedbacks and influences the effects of light on the brain. Additionally, pinealectomy in rats alters the behavior profile of activity in LD conditions. Removal of the pineal gland in the grass rats did not influence the ability of animals to mask to light or the animal's circadian rhythm of activity.In summary, the work presented in this dissertation demonstrates the immediately impact of light on behavior and the possible brain regions that may play a functional role in the masking response. We established that two neural structures when ablated or removed do not impact the grass rat's ability to respond to light with an increase in activity. Here we broaden the scope of research into the neural mechanisms of masking to include a diurnal species, beginning the journey toward understanding the neural changes needed for a species to transition between temporal niches.
Show less
- Title
- The role of parkin in the recovery of central dopamine neurons from acute neurotoxicant exposure
- Creator
- Benskey, Matthew John
- Date
- 2013
- Collection
- Electronic Theses & Dissertations
- Description
-
Parkinson Disease (PD) pathology is associated with the selective degeneration of nigrostriatal dopamine (NSDA) neurons, while the tuberoinfundibular DA (TIDA) neurons of the hypothalamus remain intact. The same pattern of selective degeneration has been observed following exposure to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyradine (MPTP), a mitochondrial complex I inhibitor which recapitulates many of the molecular pathologies associated with PD. The purpose of this dissertation is to...
Show moreParkinson Disease (PD) pathology is associated with the selective degeneration of nigrostriatal dopamine (NSDA) neurons, while the tuberoinfundibular DA (TIDA) neurons of the hypothalamus remain intact. The same pattern of selective degeneration has been observed following exposure to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyradine (MPTP), a mitochondrial complex I inhibitor which recapitulates many of the molecular pathologies associated with PD. The purpose of this dissertation is to identify early molecular events that underlie TIDA neuron recovery from toxicant exposure and adapt these mechanisms in an attempt to rescue NSDA neurons from toxicity. NSDA neurons show loss of axon terminal DA concentrations following acute (20mg/kg; s.c.) and chronic (10 x 20mg/kg; s.c. over 35 days) MPTP administration and exhibit cell death following chronic MPTP administration. In contrast, TIDA neurons show no loss of axon terminal DA concentrations or cell death following acute or chronic MPTP exposure. The recovery of TIDA neurons is independent of extrinsic factors such as decreased toxicant exposure or hormonal activation. TIDA neuron recovery is associated with an increase in the PD-associated proteins, parkin and ubiquitin carboxy-terminal hydrolase L-1 (UCHL-1) within the arcuate nucleus (ARC) 24 h following MPTP. Additionally, parkin protein concentrations remain elevated in the ARC for up to 22 days following chronic MPTP administration. In contrast, the susceptibility of NSDA neurons is associated with decreased expression of both parkin and UCH-L1. The high correlation between the presence of the parkin protein and the recovery of DA neurons from MPTP toxicity is consistent with a role of parkin in DA neuron survival. In order to determine if parkin is necessary and sufficient in the recovery of TIDA neurons following MPTP, recombinant adeno-associated viral (rAAV) vectors containing parkin shRNA or a scrambled shRNA were created. Mice received stereotaxic ARC injections of rAAV containing either parkin shRNA or scrambled shRNA (250nl/side; 3.5x1013vg/ml), or remained naïve to surgery, and were administered a single injection of MPTP (20mg/kg; s.c.) 30 days following rAAV surgery. Twenty-four h post-MPTP, TIDA neurons were able to recover axon terminal DA concentrations following MPTP in control and scrambled shRNA treated animals. However, axon terminal DA was significantly reduced 24 hr following MPTP exposure following knockdown of parkin in TIDA neurons. To determine if parkin overexpression would protect NSDA neurons from MPTP toxicity, mice received unilateral stereotaxic injection of rAAV containing parkin into the substantia nigra (SN) (500nl; 3.4x1013vg/ml) and were administered a single injection of MPTP (20mg/kg; s.c.) 30 days following rAAV surgery. Twenty-four hours post-MPTP, parkin overexpression was unable to rescue MPTP-induced loss of DA in the striatum (ST), but did rescue MPTP-induced loss of tyrosine hydroxylase (TH) in the SN and ST. These findings are consistent with the following conclusions: 1) TIDA neuronal recovery from acute MPTP exposure is independent of extrinsic factors and is mediated by an intrinsic ability to increase expression of neuroprotective proteins, 2) The ability of TIDA neurons to up-regulate parkin is at least partially responsible for recovery of axon terminal DA following MPTP, 3) toxicant-induced loss of parkin contributes to MPTP toxicity within NSDA neurons.
Show less
- Title
- Directed information for complex network analysis from multivariate time series
- Creator
- Liu, Ying
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
Complex networks, ranging from gene regulatory networks in biology to social networks in sociology, havereceived growing attention from the scientific community. The analysis of complex networks employs techniquesfrom graph theory, machine learning and signal processing. In recent years, complex network analysis tools havebeen applied to neuroscience and neuroimaging studies to have a better understanding of the human brain. In thisthesis, we focus on inferring and analyzing the complex...
Show moreComplex networks, ranging from gene regulatory networks in biology to social networks in sociology, havereceived growing attention from the scientific community. The analysis of complex networks employs techniquesfrom graph theory, machine learning and signal processing. In recent years, complex network analysis tools havebeen applied to neuroscience and neuroimaging studies to have a better understanding of the human brain. In thisthesis, we focus on inferring and analyzing the complex functional brain networks underlying multichannelelectroencephalogram (EEG) recordings. Understanding this complex network requires the development of a measureto quantify the relationship between multivariate time series, algorithms to reconstruct the network based on thepairwise relationships, and identification of functional modules within the network.Functional and effective connectivity are two widely studiedapproaches to quantify the connectivity between two recordings.Unlike functional connectivity which only quantifies the statisticaldependencies between two processes by measures such as crosscorrelation, phase synchrony, and mutual information (MI), effectiveconnectivity quantifies the influence one node exerts on anothernode. Directed information (DI) measure is one of the approachesthat has been recently proposed to capture the causal relationshipsbetween two time series. Two major challenges remain with theapplication of DI to multivariate data, which include thecomputational complexity of computing DI with increasing signallength and the accuracy of estimation from limited realizations ofthe data. Expressions that can simplify the computation of theoriginal definition of DI while still quantifying the causalityrelationship are needed. In addition, the advantage of DI overconventionally causality measures such as Granger causality has notbeen fully investigated. In this thesis, we propose time-laggeddirected information and modified directed information to addressthe issue of computational complexity, and compare the performanceof this model free measure with model based measures (e.g. Grangercausality) for different realistic signal models.Once the pairwise DI between two random processes is computed,another problem is to infer the underlying structure of the complexnetwork with minimal false positive detection. We propose to useconditional directed information (CDI) proposed by Kramer to addressthis issue, and introduce the time-lagged conditional directedinformation and modified conditional directed information to lowerthe computational complexity of CDI. Three network inferencealgorithms are presented to infer directed acyclic networks whichcan quantify the causality and also detect the indirect couplingssimultaneously from multivariate data.One last challenge in the study of complex networks, specifically in neuroscience applications, is to identifythe functional modules from multichannel, multiple subject recordings. Most research on community detection inthis area so far has focused on finding the association matrix based on functional connectivity, instead ofeffective connectivity, thus not capturing the causality in the network. In addition, in order to find a modularstructure that best describes all of the subjects in a group, a group analysis strategy is needed. In thisthesis, we propose a multi-subject hierarchical community detection algorithm suitable for a group of weightedand asymmetric (directed) networks representing effective connectivity, and apply the algorithm to multichannelelectroencephalogram (EEG) data.
Show less
- Title
- Pathology at the neuromuscular junction in mouse models of spinal bulbar muscular atrophy
- Creator
- Poort, Jessica Erin
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Spinal bulbar muscular atrophy (SBMA) is a progressive, late onset neuromuscular disease that results in muscle weakness and atrophy, as well as motoneuron death in men. While pathology at the neuromuscular junction (NMJ) is noted in numerous neurodegenerative diseases, disease-related changes at the NMJ in SBMA have not been explored. Characterizing such changes is not only important for determining whether the NMJ has any role in the functional changes underlying motor dysfunction, but also...
Show moreSpinal bulbar muscular atrophy (SBMA) is a progressive, late onset neuromuscular disease that results in muscle weakness and atrophy, as well as motoneuron death in men. While pathology at the neuromuscular junction (NMJ) is noted in numerous neurodegenerative diseases, disease-related changes at the NMJ in SBMA have not been explored. Characterizing such changes is not only important for determining whether the NMJ has any role in the functional changes underlying motor dysfunction, but also in determining how such potential pathology at the NMJ develops as disease progresses. If for example, pathology emerges first at the NMJ followed by motoneuron death, then the NMJ offers future promise as a therapeutic target for preventing or reversing symptoms of SBMA before motoneurons are lost. We evaluated three different mouse models of SBMA, one overexpressing a wildtype androgen receptor (AR) exclusively in muscle fibers (so called "myogenic" model), a second which expressed the endogenous AR gene with the first exon of the human mutant AR gene "knocked in" (the so called "knock-in" model), and a final model that broadly expresses a full length human AR transgene harboring the SBMA mutation (the so called "97Q" model). Using both confocal microscopy and electron microscopy, I found that all three mouse models show a pathological fragmentation of the NMJ suggestive of functionally weakened synapses. Other changes at the neuromuscular synapse suggesting decreases in synaptic strength that were found in some but not all models include a decline in the number of docked vesicles ready for release in nerve terminals, a widening of synaptic clefts, simplified postsynaptic folds, and an abnormal accumulation of synaptic vesicle and neurofilament proteins. Retrograde axonal transport of endosomes was also characterized in the 97Q model using live imaging confocal microscopy. Despite previously published data, I found no evidence for a disease-related defect in retrograde transport in the 97Q model. The strikingly abnormal morphology of NMJs in all three models raises the possibility that synaptic function is impaired. Such synaptic dysfunction may contribute to or underlie the impairments in motor function associated with SBMA.
Show less
- Title
- Altered Metabotropic Glutamate Receptor Function in the Neocortex of a Fragile X Mouse
- Creator
- Fenn, Jacqueline Ann
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
Fragile X Syndrome (FXS) is the leading cause of inherited intellectual disability. It is characterized by a wide array of symptoms, including cognitive impairments, attention deficit and hyperactivity disorder (ADHD), hypersensitivity to sensory stimuli, autistic features, mood lability, and seizures. Since the creation of the Fmr1 KO mouse more than 20 years ago, a wealth of studies have uncovered a role for group I metabotropic glutamate receptors (mGluRs) in mediating many FXS phenotypes,...
Show moreFragile X Syndrome (FXS) is the leading cause of inherited intellectual disability. It is characterized by a wide array of symptoms, including cognitive impairments, attention deficit and hyperactivity disorder (ADHD), hypersensitivity to sensory stimuli, autistic features, mood lability, and seizures. Since the creation of the Fmr1 KO mouse more than 20 years ago, a wealth of studies have uncovered a role for group I metabotropic glutamate receptors (mGluRs) in mediating many FXS phenotypes, leading to development of "The mGluR Theory of Fragile X". However, studies supporting this theory have focused on impairments in the hippocampus, amygdala, and other structures of the allocortex. The isocortex remains largely uninvestigated, despite its major role in sensory integration, attentional processes, and executive function. MgluRs are also highly expressed in the neocortex, where they can modulate neuronal excitability and synaptic transmission. Using electrophysiological methods, I investigated the role of group I and group II mGluRs in modulating neocortical circuits in primary visual cortex. Humans with FXS show severe visual-motor deficits, and perform poorly on global motion tasks. Autopsy studies also reveal abnormal dendritic spine morphologies in layer 5/6 of the visual neocortex, and this is substantiated in the Fmr1 KO mouse. Using whole cell patch clamp recordings of different neuron subtypes in layer 5/6 of primary visual cortex, I found that Fmr1 KO layer 5/6 somatostatin expressing neurons (SST+) have a significant decrease in input resistance compared to wild type (WT), indicating that they are less intrinsically excitable than WT SST+ neurons. Further, I show that activation of group II mGluRs leads to disinhibition of excitatory pyramidal neurons. I also discover that suppression of GABAergic transmission by group II mGluRs is normal in the Fmr1 KO, leading to my hypothesis that increased disinhibition of pyramidal neurons by group II mGluRs is due to their altered modulation of fast glutamatergic transmission onto layer 5/6 interneurons in the Fmr1 KO mouse. Using recordings from fluorescently labeled interneurons in layer 5/6 visual neocortex, I discover that group II mGluR-mediated suppression of fast excitatory glutamatergic transmission onto inhibitory neurons is exaggerated in the Fmr1 KO mouse. I show that this effect is cell specific, as it only occurs in SST+ interneurons and not parvalbumin expressing interneurons. Finally, I show that this deficit in excitatory drive onto SST+ interneurons is mediated by presynaptic mGluRs, and that these defects are specific to layer 5/6 visual neocortex. Both the decreased excitability of SST+ interneurons and exaggerated group II-mGluR mediated suppression of excitatory drive onto these cells would lead to neocortical circuit hyperexcitability in the Fmr1 KO mouse. A hyperexcitable neocortical circuit would be anticipated to negatively impact sensory integration, a requirement for both stimulus encoding and attentional processes. Lastly, a hyperexcitable neocortical network could give rise to epileptiform activity. The results of these studies are fascinating, as group II mGluRs have not previously been implicated in studies of the neocortical pathogenesis in the Fmr1 KO mouse. This investigation also showed that group I mGluR-mediated modulation of membrane excitability and fast synaptic transmission is unaltered in the Fmr1 KO mouse, suggesting that "The mGluR theory of Fragile X" may in fact be more or less valid contingent on the brain region under investigation. It is my hope that these circuit studies will inform scientific investigations on autism spectrum disorders and epilepsy syndromes, as both show high comorbidity in individuals with FXS.
Show less
- Title
- Sexual dimorphisms and androgen influence in medial posterodorsal amygdala astrocytes
- Creator
- Johnson, Ryan T.
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
The amygdala is a highly interconnected brain region involved in fear, anxiety, social and reproductive behaviors. In humans and laboratory species the amygdala exhibits sexual dimorphisms in neuroanatomy and function both in juveniles and adults. In rodents, the medial posterodorsal amygdala (MePD) is particularly sexually dimorphic and gonadal hormone sensitive, and while neurons have been examined in this region, few reports have examined the potential influence of gonadal hormones on...
Show moreThe amygdala is a highly interconnected brain region involved in fear, anxiety, social and reproductive behaviors. In humans and laboratory species the amygdala exhibits sexual dimorphisms in neuroanatomy and function both in juveniles and adults. In rodents, the medial posterodorsal amygdala (MePD) is particularly sexually dimorphic and gonadal hormone sensitive, and while neurons have been examined in this region, few reports have examined the potential influence of gonadal hormones on other cellular components of the MePD. Astrocytes are a subtype of glia involved in synapse formation and known to be plastic and dynamic cells sensitive to gonadal hormone influence in several brain regions. My dissertation reveals sexual dimorphisms in the number of astrocytes in the juvenile rat MePD and that this sexual dimorphism remains present in adult animals. I also found sex differences in the arbor complexity of astrocytes in adults that are not present prior to puberty. Astrocytes also respond to changes in circulating hormone levels in adulthood. Furthermore, while the sex difference in astrocyte numbers in juvenile animals is androgen receptor-independent, the sex differences found in adult astrocyte numbers and arbor complexity are both androgen receptor-dependent. Finally, I provide evidence that astrocytes in the MePD contain androgen receptors, suggesting that androgens may act directly on these cells. The influence of gonadal hormones on astrocytes in the MePD is likely an important part of pubertal development and has implications for our understanding of the cellular organization of the amygdala and its function.
Show less