You are here
Search results
(1 - 2 of 2)
- Title
- Faster algorithms for machine learning problems in high dimension
- Creator
- Ye, Mingquan
- Date
- 2019
- Collection
- Electronic Theses & Dissertations
- Description
-
"When dealing with datasets with high dimension, the existing machine learning algorithms often do not work in practice. Actually, most of the real-world data has the nature of low intrinsic dimension. For example, data often lies on a low-dimensional manifold or has a low doubling dimension. Inspired by this phenomenon, this thesis tries to improve the time complexities of two fundamental problems in machine learning using some techniques in computational geometry. In Chapter two, we propose...
Show more"When dealing with datasets with high dimension, the existing machine learning algorithms often do not work in practice. Actually, most of the real-world data has the nature of low intrinsic dimension. For example, data often lies on a low-dimensional manifold or has a low doubling dimension. Inspired by this phenomenon, this thesis tries to improve the time complexities of two fundamental problems in machine learning using some techniques in computational geometry. In Chapter two, we propose a bi-criteria approximation algorithm for minimum enclosing ball with outliers and extend it to the outlier recognition problem. By virtue of the "core-set" idea and the Random Gradient Descent Tree, we propose an efficient algorithm which is linear in the number of points n and the dimensionality d, and provides a probability bound. In experiments, compared with some existing outlier recognition algorithms, our method is proven to be efficient and robust to the outlier ratios. In Chapter three, we adopt the "doubling dimension" to characterize the intrinsic dimension of a point set. By the property of doubling dimension, we can approximate the geometric alignment between two point sets by executing the existing alignment algorithms on their subsets, which achieves a much smaller time complexity. More importantly, the proposed approximate method has a theoretical upper bound and can serve as the preprocessing step of any alignment algorithm."--Page ii.
Show less
- Title
- A study of Bluetooth Frequency Hopping sequence : modeling and a practical attack
- Creator
- Albazrqaoe, Wahhab
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
The Bluetooth is a wireless interface that enables electronic devices to establish short-range, ad-hoc wireless connections. This kind of short-range wireless networking is known as Wireless Personal Area Networks (WPAN). Because of its attractive features of small size, low cost, and low power, Bluetooth gains a world wide usage. It is embedded in many portable computing devices and considered as a good replacement for local wire connections. Since wireless data is inherently exposed to...
Show moreThe Bluetooth is a wireless interface that enables electronic devices to establish short-range, ad-hoc wireless connections. This kind of short-range wireless networking is known as Wireless Personal Area Networks (WPAN). Because of its attractive features of small size, low cost, and low power, Bluetooth gains a world wide usage. It is embedded in many portable computing devices and considered as a good replacement for local wire connections. Since wireless data is inherently exposed to eavesdropping, the security and confidentiality is a central issue for wireless standard as well as Bluetooth. To maintain security and confidentiality of wireless packets, the Bluetooth system mainly relies on the Frequency Hopping mechanism to equivocate an adversary. By this technique, a wireless channel is accessed for transmitting a packet. For each wireless packet, a single channel is selected in a pseudo random way. This kind of randomness in channel selection makes it difficult for an eavesdropped to predict the next channel to be accessed. Hence, capturing Bluetooth wireless packets is a challenge. In this work, we investigate the Frequency Hopping sequence and specifically the hop selection kernel. We analyze the operation of the kernel hardware by partitioning it into three parts. Based on this modeling, we propose an attacking method for the hop selection kernel. The proposed method shows how to expose the clock value hidden in the kernel. This helps to predict Bluetooth hopping sequence and, hence, capturing Bluetooth wireless packet is possible.
Show less