You are here
Search results
(1 - 5 of 5)
- Title
- Evolution of distributed behavior
- Creator
- Knoester, David B.
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
In this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of...
Show moreIn this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of distributed behavior that require communication: data-driven behaviors, where semantically meaningful data is transmitted between individuals; temporal behaviors, which are based on the relative timing of individuals' actions; and structural behaviors, which are responsible for maintaining the underlying communication network connecting individuals. Our results demonstrate that evolutionary algorithms can discover groups of individuals that exhibit each of these different classes of distributed behavior, and that these behaviors can be discovered both in isolation (e.g., evolving a purely data-driven algorithm) and in concert (e.g., evolving an algorithm that includes both data-driven and structural behaviors). As part of this research, we show that evolutionary algorithms can discover novel heuristics for distributed computing, and hint at a new class of distributed algorithm enabled by such studies.The majority of this research was conducted with the Avida platform for digital evolution, a system that has been proven to aid researchers in understanding the biological process of evolution by natural selection. For this reason, the results presented in this dissertation provide the foundation for future studies that examine how distributed behaviors evolved in nature. The close relationship between evolutionary biology and evolutionary algorithms thus aids our study of evolving algorithms for the next generation of distributed computing systems.
Show less
- Title
- Balancing convergence and diversity in evolutionary single, multi and many objectives
- Creator
- Seada, Haitham
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"Single objective optimization targets only one solution, that is usually the global optimum. On the other hand, the goal of multiobjective optimization is to represent the whole set of trade-off Pareto-optimal solutions to a problem. For over thirty years, researchers have been developing Evolutionary Multiobjective Optimization (EMO) algorithms for solving multiobjective optimization problems. Unfortunately, each of these algorithms were found to work well on a specific range of objective...
Show more"Single objective optimization targets only one solution, that is usually the global optimum. On the other hand, the goal of multiobjective optimization is to represent the whole set of trade-off Pareto-optimal solutions to a problem. For over thirty years, researchers have been developing Evolutionary Multiobjective Optimization (EMO) algorithms for solving multiobjective optimization problems. Unfortunately, each of these algorithms were found to work well on a specific range of objective dimensionality, i.e. number of objectives. Most researchers overlooked the idea of creating a cross-dimensional algorithm that can adapt its operation from one level of objective dimensionality to the other. One important aspect of creating such algorithm is achieving a careful balance between convergence and diversity. Researchers proposed several techniques aiming at dividing computational resources uniformly between these two goals. However, in many situations, only either of them is difficult to attain. Also for a new problem, it is difficult to tell beforehand if it will be challenging in terms of convergence, diversity or both. In this study, we propose several extensions to a state-of-the-art evolutionary many-objective optimization algorithm - NSGA-III. Our extensions collectively aim at (i) creating a unified optimization algorithm that dynamically adapts itself to single, multi- and many objectives, and (ii) enabling this algorithm to automatically focus on either convergence, diversity or both, according to the problem being considered. Our approach augments the already existing algorithm with a niching-based selection operator. It also utilizes the recently proposed Karush Kuhn Tucker Proximity Measure to identify ill-converged solutions, and finally, uses several combinations of point-to-point single objective local search procedures to remedy these solutions and enhance both convergence and diversity. Our extensions are shown to produce better results than state-of-the-art algorithms over a set of single, multi- and many-objective problems."--Pages ii-iii.
Show less
- Title
- A differential evolution approach to feature selection in genomic prediction
- Creator
- Whalen, Ian
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
The use of genetic markers has become widespread for prediction of genetic merit in agricultural applications and is a beginning to show promise for estimating propensity to disease in human medicine. This process is known as genomic prediction and attempts to model the mapping between an organism's genotype and phenotype. In practice, this process presents a challenging problem. Sequencing and recording phenotypic traits are often expensive and time consuming. This leads to datasets often...
Show moreThe use of genetic markers has become widespread for prediction of genetic merit in agricultural applications and is a beginning to show promise for estimating propensity to disease in human medicine. This process is known as genomic prediction and attempts to model the mapping between an organism's genotype and phenotype. In practice, this process presents a challenging problem. Sequencing and recording phenotypic traits are often expensive and time consuming. This leads to datasets often having many more features than samples. Common models for genomic prediction often fall victim to overfitting due to the curse of dimensionality. In this domain, only a fraction of the markers that are present significantly affect a particular trait. Models that fit to non-informative markers are in effect fitting to statistical noise, leading to a decrease in predictive performance. Therefore, feature selection is desirable to remove markers that do not appear to have a significant effect on the trait being predicted. The method presented here uses differential evolution based search for feature selection. This study will characterize differential evolution's efficacy in feature selection for genomic prediction and present several extensions to the base search algorithm in an attempt to apply domain knowledge to guide the search toward better solutions.
Show less
- Title
- Digital Evolution in Experimental Phylogenetics and Evolution Education
- Creator
- Kohn, Cory
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
The creation and evaluation of known evolutionary histories and the implementation of student investigatory experiences on evolution are difficult endeavors that have only recently been feasible. The research presented in this dissertation is related in their shared use of digital evolution with Avidians as a model study system, both to conduct science research in experimental phylogenetics and to conduct education research in curricular intervention to aid student understanding.I first...
Show moreThe creation and evaluation of known evolutionary histories and the implementation of student investigatory experiences on evolution are difficult endeavors that have only recently been feasible. The research presented in this dissertation is related in their shared use of digital evolution with Avidians as a model study system, both to conduct science research in experimental phylogenetics and to conduct education research in curricular intervention to aid student understanding.I first present background discussions on the Avidian digital evolution study system—as implemented in Avida and Avida-ED—and its favorable use in experimental phylogenetics and biology education owing to its greater biological realism than computational simulations, and greater utility and generality than biological systems. Prior work on conducting experimental evolution for use in phylogenetics and work on developing undergraduate lab curricula using experimental evolution are also reviewed. I establish digital evolution as an effective method for phylogenetic inference validation by demonstrating that results from a known Avidian evolutionary history are concordant, under similar conditions, to established biological experimental phylogenetics work. I then further demonstrate the greater utility and generality of digital evolution over biological systems by experimentally testing how phylogenetic accuracy may be reduced by complex evolutionary processes operating singly or in combination, including absolute and relative degrees of evolutionary change between lineages (i.e., inferred branch lengths), recombination, and natural selection. These results include that directional selection aids phylogenetic inference, while stabilizing selection impedes it. By evaluating clade accuracy and clade resolvability across treatments, I evaluate measures of tree support and its presentation in the form of consensus topologies and I offer several general recommendations for systematists. Using a larger and more biologically realistic experimental design, I systematically examine a few of the complex processes that are hypothesized to affect phylogenetic accuracy—natural selection, recombination, and deviations from the model of evolution. By analyzing the substitutions that occurred and calculating selection coefficients for derived alleles throughout their evolutionary trajectories to fixation, I show that molecular evolution in these experiments is complex and proceeding largely as would be expected for biological populations. Using these data to construct empirical substitution models, I demonstrate that phylogenetic inference is incredibly robust to significant molecular evolution model deviations. I show that neutral evolution in the presence of always-occurring population processes, such as clonal or Hill-Robertson interference and lineage sorting, result in reduced clade support, and that selection and especially recombination, including their joint occurrence, restore this otherwise-reduced phylogenetic accuracy. Finally, this work demonstrates that inferred branch lengths are often quite inaccurate despite clade support being accurate. While phylogenetic inference methods performed relatively well in both theoretically facile and challenging molecular evolution scenarios, their accuracy in clade support might be a remarkable case of being right for misguided reasons, since branch length inference were largely inaccurate, and drastically different models of evolution made little difference. This work highlights the need for further research that evaluates phylogenetic methods under experimental conditions and suggests that digital evolution has a role here. Finally, I examine student understanding of the importance of biological variation in the context of a course featuring a digital evolution lab. I first describe the Avida-ED lab curriculum and its fulfillment of calls for reform in education. Then I describe the specific education context and other course features that aim to address student conceptualization of variation. I present a modified published assessment on transformational and variational understanding and findings regarding student understanding of variation within an evolution education progression. Finally, I offer suggestions on incorporating course material to engage student understanding of variation.
Show less
- Title
- Replaying Life's Virtual Tape : Examining the Role of History in Experiments with Digital Organisms
- Creator
- Bundy, Jason Nyerere
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Evolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not...
Show moreEvolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not everyone was convinced. Some believed that chance was the primary driver of evolutionary change, while others insisted that natural selection was the most powerful influence. Since then, “replaying life’s tape” has become a core method in experimental evolution for measuring the relative contributions of adaptation, chance, and history. In this dissertation, I focus on the effects associated with history in evolving populations of digital organisms—computer programs that self-replicate, mutate, compete, and evolve in virtual environments. In Chapter 1, I discuss the philosophical significance of Gould’s thought experiment and its influence on experimental methods. I argue that his thought experiment was a challenge to anthropocentric reasoning about natural history that is still popular, particularly outside of the scientific community. In this regard, it was his way of advocating for a “radical” view of evolution. In Chapter 2—Richard Lenski, Charles Ofria, and I describe a two-phase, virtual, “long-term” evolution experiment with digital organisms using the Avida software. In Phase I, we evolved 10 replicate populations, in parallel, from a single genotype for around 65,000 generations. This part of the experiment is similar to the design of Lenski’s E. coli Long-term Evolution Experiment (LTEE). We isolated the dominant genotype from each population around 3,000 generations (shallow history) into Phase I and then again at the end of Phase I (deep history). In Phase II, we evolved 10 populations from each of the genotypes we isolated from Phase I in two new environments, one similar and one dissimilar to the old environment used for Phase I. Following Phase II, we estimated the contributions of adaptation, chance, and history to the evolution of fitness and genome length in each new environment. This unique experimental design allowed us to see how the contributions of adaptation, chance, and history changed as we extended the depth of history from Phase I. We were also able to determine whether the results depended on the extent of environmental change (similar or dissimilar new environment). In Chapter 3, we report an extended analysis of the experiment from the previous chapter to further examine how extensive adaptation to the Phase I environment shaped the evolution of replicates during Phase II. We show how the form of pleiotropy (antagonistic or synergistic) between the old (Phase I) and new (Phase II) habitats was influenced by the depth of history from Phase I (shallow or deep) and the extent of environmental change (similar or dissimilar new environment). In the final chapter Zachary Blount, Richard Lenski, and I describe an exercise we developed using the educational version of Avida (Avida-ED). The exercise features a two-phase, “replaying life’s tape” activity. Students are able to explore how the unique history of founders that we pre-evolved during Phase I influences the acquisition of new functions by descendent populations during Phase II, which the students perform during the activity.
Show less