You are here
Search results
(1 - 2 of 2)
- Title
- Evolution of distributed behavior
- Creator
- Knoester, David B.
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
In this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of...
Show moreIn this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of distributed behavior that require communication: data-driven behaviors, where semantically meaningful data is transmitted between individuals; temporal behaviors, which are based on the relative timing of individuals' actions; and structural behaviors, which are responsible for maintaining the underlying communication network connecting individuals. Our results demonstrate that evolutionary algorithms can discover groups of individuals that exhibit each of these different classes of distributed behavior, and that these behaviors can be discovered both in isolation (e.g., evolving a purely data-driven algorithm) and in concert (e.g., evolving an algorithm that includes both data-driven and structural behaviors). As part of this research, we show that evolutionary algorithms can discover novel heuristics for distributed computing, and hint at a new class of distributed algorithm enabled by such studies.The majority of this research was conducted with the Avida platform for digital evolution, a system that has been proven to aid researchers in understanding the biological process of evolution by natural selection. For this reason, the results presented in this dissertation provide the foundation for future studies that examine how distributed behaviors evolved in nature. The close relationship between evolutionary biology and evolutionary algorithms thus aids our study of evolving algorithms for the next generation of distributed computing systems.
Show less
- Title
- Elucidating the evolutionary origins of collective animal behavior
- Creator
- Olson, Randal S.
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
Despite over a century of research, the evolutionary origins of collective animal behavior remain unclear. Dozens of hypotheses explaining the evolution of collective behavior have risen and fallen in the past century, but until recently it has been difficult to perform controlled behavioral evolution experiments to isolate these various hypotheses and test their individual effects. In this dissertation, I outline a relatively new method using digital models of evolution to perform controlled...
Show moreDespite over a century of research, the evolutionary origins of collective animal behavior remain unclear. Dozens of hypotheses explaining the evolution of collective behavior have risen and fallen in the past century, but until recently it has been difficult to perform controlled behavioral evolution experiments to isolate these various hypotheses and test their individual effects. In this dissertation, I outline a relatively new method using digital models of evolution to perform controlled behavioral evolution experiments. In particular, I use these models to directly explore the evolutionary consequence of the selfish herd, predator confusion, and the many eyes hypotheses, and demonstrate how the models can lend key insights useful to behavioral biologists, computer scientists, and robotics researchers. This dissertation lays the groundwork for the experimental study of the hypotheses surrounding the evolution of collective animal behavior, and establishes a path for future experiments to explore and disentangle how the various hypothesized benefits of collective behavior interact over evolutionary time.
Show less