Search results
(1 - 20 of 29)
Pages
- Title
- A multivariate time-frequency based phase synchrony measure and applications to dynamic brain network analysis
- Creator
- Mutlu, Ali Yener
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
Irregular, non-stationary, and noisy multichannel data are abound in many fields of research. Observations of multichannel data in nature include changes in weather, the dynamics of satellites in the solar system, the time evolution of the magnetic field of celestial bodies, population growth in ecology and the dynamics of the action potentials in neurons.One particular application of interest is the functional integration of neuronal networks in the human brain. Human brain is known to be...
Show moreIrregular, non-stationary, and noisy multichannel data are abound in many fields of research. Observations of multichannel data in nature include changes in weather, the dynamics of satellites in the solar system, the time evolution of the magnetic field of celestial bodies, population growth in ecology and the dynamics of the action potentials in neurons.One particular application of interest is the functional integration of neuronal networks in the human brain. Human brain is known to be one of the most complex biological systems and quantifying functional neural coordination in the brain is a fundamental problem. It has been recently proposed that networks of highly nonlinear and non-stationary reciprocal interactions are the key features of functional integration. Among many linear and nonlinear measures of dependency, time-varying phase synchrony has been proposed as a promising measure of connectivity. Current state-of-the-art in time-varying phase estimation uses either the Hilbert transform or the complex wavelet transform of the signals. Both of these methods have some major drawbacks such as the assumption that the signals are narrowband for the Hilbert transform and the non-uniform time-frequency resolution inherent to the wavelet analysis. Furthermore, the current phase synchrony measures are limited to quantifying bivariate relationships and do not reveal any information about multivariate synchronization patterns which are important for understanding the underlying oscillatory networks.In this dissertation, a new phase estimation method based on the Rihaczek distribution and Reduced Interference Rihaczek distribution belonging to Cohen's class is proposed. These distributions offer phase estimates with uniformly high time-frequency resolution which can be used for defining time and frequency dependent phase synchrony within the same frequency band as well as across different frequency bands. Properties of the phase estimator and the corresponding phase synchrony measure are evaluated both analytically and through simulations showing the effectiveness of the new measures compared to existing ones. The proposed distribution is then extended to quantify the cross-frequency phase synchronization between two signals across different frequencies. In addition, a cross frequency-spectral lag distribution is introducedto quantify the amount of amplitude modulation between signals. Furthermore, the notion of bivariate synchrony is extended to multivariate synchronization to quantify the relationships within and across groups of signals. Measures of multiple correlation and complexity are used as well as a more direct multivariate synchronization measure, `Hyperspherical Phase Synchrony', is proposed. This new measure is based on computing pairwise phase differences to create a multidimensional phase difference vector and mapping this vector to a high dimensional space. Hyperspherical phase synchrony offers lower computational complexity and is more robust to noise compared to the existing measures.Finally, a subspace analysis framework is proposed for studying time-varying evolution of functional brain connectivity. The proposed approach identifies event intervals accounting for the underlying neurophysiological events and extracts key graphs for describing the particular intervals with minimal redundancy. Results from the application to EEG data indicate the effectiveness of the proposed framework in determining the event intervals and summarizing brain activity with a few number of representative graphs.
Show less
- Title
- ASSESSMENT OF CROSS-FREQUENCY PHASE-AMPLITUDE COUPLING IN NEURONAL OSCILLATIONS
- Creator
- Munia, Tamanna Tabassum Khan
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Oscillatory activity in the brain has been associated with a wide variety of cognitive processes including decision making, feedback processing, and working memory control. The high temporal resolution provided by electroencephalography (EEG) enables the study of variation of oscillatory power and coupling across time. Various forms of neural synchrony across frequency bands have been suggested as the mechanism underlying neural binding. Recently, a considerable amount of work has focused on...
Show moreOscillatory activity in the brain has been associated with a wide variety of cognitive processes including decision making, feedback processing, and working memory control. The high temporal resolution provided by electroencephalography (EEG) enables the study of variation of oscillatory power and coupling across time. Various forms of neural synchrony across frequency bands have been suggested as the mechanism underlying neural binding. Recently, a considerable amount of work has focused on phase-amplitude coupling (PAC)– a form of cross-frequency coupling where the amplitude of a high-frequency signal is modulated by the phase of low-frequency oscillations.The existing methods for assessing PAC have certain limitations which can influence the final PAC estimates and the subsequent neuroscientific findings. These limitations include low frequency resolution, narrowband assumption, and inherent requirement of bandpass filtering. These methods are also limited to quantifying univariate PAC and cannot capture inter-areal cross frequency coupling between different brain regions. Given the availability of multi-channel recordings, a multivariate analysis of phase-amplitude coupling is needed to accurately quantify the coupling across multiple frequencies and brain regions. Moreover, the existing PAC measures are usually stationary in nature, focusing on phase-amplitude modulations within a particular time window or over arbitrary sliding short time windows. Therefore, there is a need for computationally efficient measures that can quantify PAC with a high-frequency resolution, track the variation of PAC with time, both in bivariate and multivariate settings and provide a better insight into the spatially distributed dynamic brain networks across different frequency bands.In this thesis, we introduce a PAC computation technique that aims to overcome some of these drawbacks and extend it to multi-channel settings for quantifying dynamic cross-frequency coupling in the brain. The main contributions of the thesis are threefold. First, we present a novel time frequency based PAC (t-f PAC) measure based on a high-resolution complex time-frequency distribution, known as the Reduced Interference Distribution (RID)-Rihaczek. This t-f PAC measure overcomes the drawbacks associated with filtering by extracting instantaneous phase and amplitude components directly from the t-f distribution and thus provides high resolution PAC estimates. Following the introduction of a complex time-frequency-based high resolution PAC measure, we extend this measure to multi-channel settings to quantify the inter-areal PAC across multiple frequency bands and brain regions. We propose a tensor-based representation of multi-channel PAC based on Higher Order Robust PCA (HoRPCA). The proposed method can identify the significantly coupled brain regions along with the frequency bands that are involved in the observed couplings while accurately discarding the non-significant or spurious couplings. Finally, we introduce a matching pursuit based dynamic PAC (MP-dPAC) measure that allows us to compute PAC from time and frequency localized atoms that best describe the signal and thus capture the temporal variation of PAC using a data-driven approach. We evaluate the performance of the proposed methods on both synthesized and real EEG data collected during a cognitive control-related error processing study. Based on our results, we posit that the proposed multivariate and dynamic PAC measures provide a better insight into understanding the spatial, spectral, and temporal dynamics of cross-frequency phase-amplitude coupling in the brain.
Show less
- Title
- Adaptive independent component analysis : theoretical formulations and application to CDMA communication system with electronics implementation
- Creator
- Albataineh, Zaid
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Blind Source Separation (BSS) is a vital unsupervised stochastic area that seeks to estimate the underlying source signals from their mixtures with minimal assumptions about the source signals and/or the mixing environment. BSS has been an active area of research and in recent years has been applied to numerous domains including biomedical engineering, image processing, wireless communications, speech enhancement, remote sensing, etc. Most recently, Independent Component Analysis (ICA) has...
Show moreBlind Source Separation (BSS) is a vital unsupervised stochastic area that seeks to estimate the underlying source signals from their mixtures with minimal assumptions about the source signals and/or the mixing environment. BSS has been an active area of research and in recent years has been applied to numerous domains including biomedical engineering, image processing, wireless communications, speech enhancement, remote sensing, etc. Most recently, Independent Component Analysis (ICA) has become a vital analytical approach in BSS. In spite of active research in BSS, however, many foundational issues still remain in regards to convergence speed, performance quality and robustness in realistic or adverse environments. Furthermore, some of the developed BSS methods are computationally expensive, sensitive to additive and background noise, and not suitable for a real4time or real world implementation. In this thesis, we first formulate new effective ICA4based measures and their corresponding robust adaptive algorithms for the BSS in dynamic "convolutive mixture" environments. We demonstrate their superior performance to present competing algorithms. Then we tailor their application within wireless (CDMA) communication systems and Acoustic Separation Systems. We finally explore a system realization of one of the developed algorithms among ASIC or FPGA platforms in terms of real time speed, effectiveness, cost, and economics of scale. Firstly, we propose a new class of divergence measures for Independent Component Analysis (ICA) for estimating sources from mixtures. The Convex Cauchy4Schwarz Divergence (CCS4DIV) is formed by integrating convex functions into the Cauchy4Schwarz inequality. The new measure is symmetric and convex with respect to the joint probability, where the degree of convexity can be tuned by a (convexity) parameter. A non4parametric (ICA) algorithm generated from the proposed divergence is developed exploiting convexity parameters and employing the Parzen window4based distribution estimates. The new contrast function results in effective parametric and non4parametric ICA4based computational algorithms. Moreover, two pairwise iterative schemes are proposed to tackle the high dimensionality of sources. Secondly, a new blind detection algorithm, based on fourth order cumulant matrices, is presented and applied to the multi4user symbol estimation problem in Direct Sequence Code Division Multiple Access (DS4CDMA) systems. In addition, we propose three new blind receiver schemes, which are based on the state space structures. These so4called blind state4space receivers (BSSR) do not require knowledge of the propagation parameters or spreading code sequences of the users but relies on the statistical independence assumption among the source signals. Lastly, system realization of one of the developed algorithms has been explored among ASIC or FPGA platforms in terms of cost, effectiveness, and economics of scale. Based on our findings of current stat4of4the4art electronics, programmable FPGA designs are deemed to be the most effective technology to be used for ICA hardware implementation at this time.In this thesis, we first formulate new effective ICA-based measures and their corresponding robust adaptive algorithms for the BSS in dynamic "convolutive mixture" environments. We demonstrate their superior performance to present competing algorithms. Then we tailor their application within wireless (CDMA) communication systems and Acoustic Separation Systems. We finally explore a system realization of one of the developed algorithms among ASIC or FPGA platforms in terms of real time speed, effectiveness, cost, and economics of scale.We firstly investigate several measures which are more suitable for extracting different source types from different mixing environments in the learning system. ICA for instantaneous mixtures has been studied here as an introduction to the more realistic convolutive mixture environments. Convolutive mixtures have been investigated in the time/frequency domains and we demonstrate that our approaches succeed in resolving the standing problem of scaling and permutation ambiguities in present research. We propose a new class of divergence measures for Independent Component Analysis (ICA) for estimating sources from mixtures. The Convex Cauchy-Schwarz Divergence (CCS-DIV) is formed by integrating convex functions into the Cauchy-Schwarz inequality. The new measure is symmetric and convex with respect to the joint probability, where the degree of convexity can be tuned by a (convexity) parameter. A non-parametric (ICA) algorithm generated from the proposed divergence is developed exploiting convexity parameters and employing the Parzen window-based distribution estimates. The new contrast function results in effective parametric and non-parametric ICA-based computational algorithms. Moreover, two pairwise iterative schemes are proposed to tackle the high dimensionality of sources. These wo pairwise non-parametric ICA algorithms are based on the new high-performance Convex Cauchy-Schwarz Divergence (CCS-DIV). These two schemes enable fast and efficient de-mixing of sources in real-world applications where the dimensionality of the sources is higher than two.Secondly, the more challenging problem in communication signal processing is to estimate the source signals and their channels in the presence of other co-channel signals and noise without the use of a training set. Blind techniques are promising to integrate and optimize the wireless communication designs i.e. equalizers/ filters/ combiners through its potential in suppressing the inter-symbol interference (ISI), adjacent channel interference, co-channel and the multi access interference MAI. Therefore, a new blind detection algorithm, based on fourth order cumulant matrices, is presented and applied to the multi-user symbol estimation problem in Direct Sequence Code Division Multiple Access (DS-CDMA) systems. The blind detection is to estimate multiple symbol sequences in the downlink of a DS-CDMA communication system using only the received wireless data and without any knowledge of the user spreading codes. The proposed algorithm takes advantage of higher cumulant matrix properties to reduce the computational load and enhance performance. In addition, we address the problem of blind multiuser equalization in the wideband CDMA system, in the noisy multipath propagation environment. Herein, we propose three new blind receiver schemes, which are based on the state space structures. These so-called blind state-space receivers (BSSR) do not require knowledge of the propagation parameters or spreading code sequences of the users but relies on the statistical independence assumption among the source signals. We then develop and derive three update-laws in order to enhance the performance of the blind detector. Also, we upgrade three semi-blind adaptive detectors based on the incorporation of the RAKE receiver and the stochastic gradient algorithms which are used in several blind adaptive signal processing algorithms, namely FastICA, RobustICA, and principle component analysis PCA. Through simulation evidence, we verify the significant bit error rate (BER) and computational speed improvements achieved by these algorithms in comparison to other leading algorithms.Lastly, system realization of one of the developed algorithms has been explored among ASIC or FPGA platforms in terms of cost, effectiveness, and economics of scale. Based on our findings of current stat-of-the-art electronics, programmable FPGA designs are deemed to be the most effective technology to be used for ICA hardware implementation at this time.
Show less
- Title
- Assessment of functional connectivity in the human brain : multivariate and graph signal processing methods
- Creator
- Villafañe-Delgado, Marisel
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"Advances in neurophysiological recording have provided a noninvasive way of inferring cognitive processes. Recent studies have shown that cognition relies on the functional integration or connectivity of segregated specialized regions in the brain. Functional connectivity quantifies the statistical relationships among different regions in the brain. However, current functional connectivity measures have certain limitations in the quantification of global integration and characterization of...
Show more"Advances in neurophysiological recording have provided a noninvasive way of inferring cognitive processes. Recent studies have shown that cognition relies on the functional integration or connectivity of segregated specialized regions in the brain. Functional connectivity quantifies the statistical relationships among different regions in the brain. However, current functional connectivity measures have certain limitations in the quantification of global integration and characterization of network structure. These limitations include the bivariate nature of most functional connectivity measures, the computational complexity of multivariate measures, and graph theoretic measures that are not robust to network size and degree distribution. Therefore, there is a need of computationally efficient and novel measures that can quantify the functional integration across brain regions and characterize the structure of these networks. This thesis makes contributions in three different areas for the assessment of multivariate functional connectivity. First, we present a novel multivariate phase synchrony measure for quantifying the common functional connectivity within different brain regions. This measure overcomes the drawbacks of bivariate functional connectivity measures and provides insights into the mechanisms of cognitive control not accountable by bivariate measures. Following the assessment of functional connectivity from a graph theoretic perspective, we propose a graph to signal transformation for both binary and weighted networks. This provides the means for characterizing the network structure and quantifying information in the graph by overcoming some drawbacks of traditional graph based measures. Finally, we introduce a new approach to studying dynamic functional connectivity networks through signals defined over networks. In this area, we define a dynamic graph Fourier transform in which a common subspace is found from the networks over time based on the tensor decomposition of the graph Laplacian over time."--Pages ii-iii.
Show less
- Title
- Biometric template security
- Creator
- Nagar, Abhishek
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
"This dissertation provides a thorough analysis of the vulnerabilities of a biometric recognition system with emphasis on the vulnerabilities related to the information stored in biometric systems in the form of biometric templates."--From abstract.
- Title
- Convolutional neural networks for automated cell detection in magnetic resonance imaging data
- Creator
- Afridi, Muhammad Jamal
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
Cell-based therapy (CBT) is emerging as a promising solution for a large number of serious health issues such as brain injuries and cancer. Recent advances in CBT, has heightened interest in the non-invasive monitoring of transplanted cells in in vivo MRI (Magnetic Resonance Imaging) data. These cells appear as dark spots in MRI scans. However, to date, these spots are manually labeled by experts, which is an extremely tedious and a time consuming process. This limits the ability to conduct...
Show moreCell-based therapy (CBT) is emerging as a promising solution for a large number of serious health issues such as brain injuries and cancer. Recent advances in CBT, has heightened interest in the non-invasive monitoring of transplanted cells in in vivo MRI (Magnetic Resonance Imaging) data. These cells appear as dark spots in MRI scans. However, to date, these spots are manually labeled by experts, which is an extremely tedious and a time consuming process. This limits the ability to conduct large scale spot analysis that is necessary for the long term success of CBT. To address this gap, we develop methods to automate the spot detection task. In this regard we (a) assemble an annotated MRI database for spot detection in MRI; (b) present a superpixel based strategy to extract regions of interest from MRI; (c) design a convolutional neural network (CNN) architecture for automatically characterizing and classifying spots in MRI; (d) propose a transfer learning approach to circumvent the issue of limited training data, and (e) propose a new CNN framework that exploits labeling behavior of the expert in the learning process. Extensive experiments convey the benefits of the proposed methods.
Show less
- Title
- Directed information for complex network analysis from multivariate time series
- Creator
- Liu, Ying
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
Complex networks, ranging from gene regulatory networks in biology to social networks in sociology, havereceived growing attention from the scientific community. The analysis of complex networks employs techniquesfrom graph theory, machine learning and signal processing. In recent years, complex network analysis tools havebeen applied to neuroscience and neuroimaging studies to have a better understanding of the human brain. In thisthesis, we focus on inferring and analyzing the complex...
Show moreComplex networks, ranging from gene regulatory networks in biology to social networks in sociology, havereceived growing attention from the scientific community. The analysis of complex networks employs techniquesfrom graph theory, machine learning and signal processing. In recent years, complex network analysis tools havebeen applied to neuroscience and neuroimaging studies to have a better understanding of the human brain. In thisthesis, we focus on inferring and analyzing the complex functional brain networks underlying multichannelelectroencephalogram (EEG) recordings. Understanding this complex network requires the development of a measureto quantify the relationship between multivariate time series, algorithms to reconstruct the network based on thepairwise relationships, and identification of functional modules within the network.Functional and effective connectivity are two widely studiedapproaches to quantify the connectivity between two recordings.Unlike functional connectivity which only quantifies the statisticaldependencies between two processes by measures such as crosscorrelation, phase synchrony, and mutual information (MI), effectiveconnectivity quantifies the influence one node exerts on anothernode. Directed information (DI) measure is one of the approachesthat has been recently proposed to capture the causal relationshipsbetween two time series. Two major challenges remain with theapplication of DI to multivariate data, which include thecomputational complexity of computing DI with increasing signallength and the accuracy of estimation from limited realizations ofthe data. Expressions that can simplify the computation of theoriginal definition of DI while still quantifying the causalityrelationship are needed. In addition, the advantage of DI overconventionally causality measures such as Granger causality has notbeen fully investigated. In this thesis, we propose time-laggeddirected information and modified directed information to addressthe issue of computational complexity, and compare the performanceof this model free measure with model based measures (e.g. Grangercausality) for different realistic signal models.Once the pairwise DI between two random processes is computed,another problem is to infer the underlying structure of the complexnetwork with minimal false positive detection. We propose to useconditional directed information (CDI) proposed by Kramer to addressthis issue, and introduce the time-lagged conditional directedinformation and modified conditional directed information to lowerthe computational complexity of CDI. Three network inferencealgorithms are presented to infer directed acyclic networks whichcan quantify the causality and also detect the indirect couplingssimultaneously from multivariate data.One last challenge in the study of complex networks, specifically in neuroscience applications, is to identifythe functional modules from multichannel, multiple subject recordings. Most research on community detection inthis area so far has focused on finding the association matrix based on functional connectivity, instead ofeffective connectivity, thus not capturing the causality in the network. In addition, in order to find a modularstructure that best describes all of the subjects in a group, a group analysis strategy is needed. In thisthesis, we propose a multi-subject hierarchical community detection algorithm suitable for a group of weightedand asymmetric (directed) networks representing effective connectivity, and apply the algorithm to multichannelelectroencephalogram (EEG) data.
Show less
- Title
- Exploiting node mobility for energy optimization in wireless sensor networks
- Creator
- El-Moukaddem, Fatme Mohammad
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g....
Show moreWireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network.In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework.We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.
Show less
- Title
- Graph-based methods for inferring neuronal connectivity from spike train ensembles
- Creator
- El-dawlatly, Seif El-din
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
Understanding the brain's inner workings requires studying the underlying complex networks that bind its basic computational elements, the neurons. Advances in extracellular neural recording techniques have enabled simultaneous recording of spike trains from multiple single neurons in awake, behaving subjects. Yet, devising methods to infer connectivity among these neurons has been significantly lacking. We introduce a connectivity inference framework based on graphical models. We first infer...
Show moreUnderstanding the brain's inner workings requires studying the underlying complex networks that bind its basic computational elements, the neurons. Advances in extracellular neural recording techniques have enabled simultaneous recording of spike trains from multiple single neurons in awake, behaving subjects. Yet, devising methods to infer connectivity among these neurons has been significantly lacking. We introduce a connectivity inference framework based on graphical models. We first infer the functional connectivity between neurons by searching for clusters of statistically dependent spike trains. We then infer the effective connectivity between neurons within each cluster by building Dynamic Bayesian Network (DBN) model fit to the spike train data. Using probabilistic models of neuronal firing, we demonstrate the utility of this framework to infer neuronal connectivity in moderate and large scale networks with a substantial gain in performance compared to classical methods. We further use this framework to examine the role of spike timing correlation in infragranular layer V of the primary somatosensory cortex (S1) of the rat during unilateral whisker stimulation in vivo. Stable, whisker-specific networks provided more information about the stimulus than individual neurons' response. We finally demonstrate how this framework enables tracking and quantifying plastic changes in connectivity in biologically-plausible models of spike-timing-dependent-plasticity as well as changes in S1 response maps following sensory deprivation in the awake, behaving rat.
Show less
- Title
- Hardware algorithms for high-speed packet processing
- Creator
- Norige, Eric
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
The networking industry is facing enormous challenges of scaling devices to support theexponential growth of internet traffic as well as increasing number of features being implemented inside the network. Algorithmic hardware improvements to networking componentshave largely been neglected due to the ease of leveraging increased clock frequency and compute power and the risks of implementing complex hardware designs. As clock frequencyslows its growth, algorithmic solutions become important...
Show moreThe networking industry is facing enormous challenges of scaling devices to support theexponential growth of internet traffic as well as increasing number of features being implemented inside the network. Algorithmic hardware improvements to networking componentshave largely been neglected due to the ease of leveraging increased clock frequency and compute power and the risks of implementing complex hardware designs. As clock frequencyslows its growth, algorithmic solutions become important to fill the gap between currentgeneration capability and next generation requirements. This paper presents algorithmicsolutions to networking problems in three domains: Deep Packet Inspection(DPI), firewall(and other) ruleset compression and non-cryptographic hashing. The improvements in DPIare two-pronged: first in the area of application-level protocol field extraction, which allowssecurity devices to precisely identify packet fields for targeted validity checks. By usingcounting automata, we achieve precise parsing of non-regular protocols with small, constantper-flow memory requirements, extracting at rates of up to 30gbps on real traffic in softwarewhile using only 112 bytes of state per flow. The second DPI improvement is on the longstanding regular expression matching problem, where we complete the HFA solution to theDFA state explosion problem with efficient construction algorithms and optimized memorylayout for hardware or software implementation. These methods construct automata toocomplex to be constructed by previous methods in seconds, while being capable of 29gbpsthroughput with an ASIC implementation. Firewall ruleset compression enables more firewall entries to be stored in a fixed capacity pattern matching engine, and can also be usedto reorganize a firewall specification for higher performance software matching. A novelrecursive structure called TUF is given to unify the best known solutions to this problemand suggest future avenues of attack. These algorithms, with little tuning, achieve a 13.7%improvement in compression on large, real-life classifiers, and can achieve the same results asexisting algorithms while running 20 times faster. Finally, non-cryptographic hash functionscan be used for anything from hash tables to track network flows to packet sampling fortraffic characterization. We give a novel approach to generating hardware hash functionsin between the extremes of expensive cryptographic hash functions and low quality linearhash functions. To evaluate these mid-range hash functions properly, we develop new evaluation methods to better distinguish non-cryptographic hash function quality. The hashfunctions described in this paper achieve low-latency, wide hashing with good avalanche anduniversality properties at a much lower cost than existing solutions.
Show less
- Title
- Harnessing low-pass filter defects for improving wireless link performance : measurements and applications
- Creator
- Renani, Alireza Ameli
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
"The design trade-offs of transceiver hardware are crucial to the performance of wireless systems. The effect of such trade-offs on individual analog and digital components are vigorously studied, but their systemic impacts beyond component-level remain largely unexplored. In this dissertation, we present an in-depth study to characterize the surprisingly notable systemic impacts of low-pass filter design, which is a small yet indispensable component used for shaping spectrum and rejecting...
Show more"The design trade-offs of transceiver hardware are crucial to the performance of wireless systems. The effect of such trade-offs on individual analog and digital components are vigorously studied, but their systemic impacts beyond component-level remain largely unexplored. In this dissertation, we present an in-depth study to characterize the surprisingly notable systemic impacts of low-pass filter design, which is a small yet indispensable component used for shaping spectrum and rejecting interference. Using a bottom-up approach, we examine how signal-level distortions caused by the trade-offs of low-pass filter design propagate to the upper-layers of wireless communication, reshaping bit error patterns and degrading link performance of today's 802.11 systems. Moreover, we propose a novel unequal error protection algorithm that harnesses low-pass filter defects for improving wireless LAN throughput, particularly to be used in forward error correction, channel coding, and applications such as video streaming. Lastly, we conduct experiments to evaluate the unequal error protection algorithm in video streaming, and we present substantial enhancements of video quality in mobile environments."--Page ii.
Show less
- Title
- High-dimensional learning from random projections of data through regularization and diversification
- Creator
- Aghagolzadeh, Mohammad
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
Random signal measurement, in the form of random projections of signal vectors, extends the traditional point-wise and periodic schemes for signal sampling. In particular, the well-known problem of sensing sparse signals from linear measurements, also known as Compressed Sensing (CS), has promoted the utility of random projections. Meanwhile, many signal processing and learning problems that involve parametric estimation do not consist of sparsity constraints in their original forms. With the...
Show moreRandom signal measurement, in the form of random projections of signal vectors, extends the traditional point-wise and periodic schemes for signal sampling. In particular, the well-known problem of sensing sparse signals from linear measurements, also known as Compressed Sensing (CS), has promoted the utility of random projections. Meanwhile, many signal processing and learning problems that involve parametric estimation do not consist of sparsity constraints in their original forms. With the increasing popularity of random measurements, it is crucial to study the generic estimation performance under the random measurement model. In this thesis, we consider two specific learning problems (named below) and present the following two generic approaches for improving the estimation accuracy: 1) by adding relevant constraints to the parameter vectors and 2) by diversification of the random measurements to achieve fast decaying tail bounds for the empirical risk function.The first problem we consider is Dictionary Learning (DL). Dictionaries are extensions of vector bases that are specifically tailored for sparse signal representation. DL has become increasingly popular for sparse modeling of natural images as well as sound and biological signals, just to name a few. Empirical studies have shown that typical DL algorithms for imaging applications are relatively robust with respect to missing pixels in the training data. However, DL from random projections of data corresponds to an ill-posed problem and is not well-studied. Existing efforts are limited to learning structured dictionaries or dictionaries for structured sparse representations to make the problem tractable. The main motivation for considering this problem is to generate an adaptive framework for CS of signals that are not sparse in the signal domain. In fact, this problem has been referred to as 'blind CS' since the optimal basis is subject to estimation during CS recovery. Our initial approach, similar to some of the existing efforts, involves adding structural constraints on the dictionary to incorporate sparse and autoregressive models. More importantly, our results and analysis reveal that DL from random projections of data, in its unconstrained form, can still be accurate given that measurements satisfy the diversity constraints defined later.The second problem that we consider is high-dimensional signal classification. Prior efforts have shown that projecting high-dimensional and redundant signal vectors onto random low-dimensional subspaces presents an efficient alternative to traditional feature extraction tools such as the principle component analysis. Hence, aside from the CS application, random measurements present an efficient sampling method for learning classifiers, eliminating the need for recording and processing high-dimensional signals while most of the recorded data is discarded during feature extraction. We work with the Support Vector Machine (SVM) classifiers that are learned in the high-dimensional ambient signal space using random projections of the training data. Our results indicate that the classifier accuracy can be significantly improved by diversification of the random measurements.
Show less
- Title
- Higher-order data reduction through clustering, subspace analysis and compression for applications in functional connectivity brain networks
- Creator
- Ozdemir, Alp
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"With the recent advances in information technology, collection and storage of higher-order datasets such as multidimensional data across multiple modalities or variables have become much easier and cheaper than ever before. Tensors, also known as multiway arrays, provide natural representations for higher-order datasets and provide a way to analyze them by preserving the multilinear relations in these large datasets. These higher-order datasets usually contain large amount of redundant...
Show more"With the recent advances in information technology, collection and storage of higher-order datasets such as multidimensional data across multiple modalities or variables have become much easier and cheaper than ever before. Tensors, also known as multiway arrays, provide natural representations for higher-order datasets and provide a way to analyze them by preserving the multilinear relations in these large datasets. These higher-order datasets usually contain large amount of redundant information and summarizing them in a succinct manner is essential for better inference. However, existing data reduction approaches are limited to vector-type data and cannot be applied directly to tensors without vectorizing. Developing more advanced approaches to analyze tensors effectively without corrupting their intrinsic structure is an important challenge facing Big Data applications. This thesis addresses the issue of data reduction for tensors with a particular focus on providing a better understanding of dynamic functional connectivity networks (dFCNs) of the brain. Functional connectivity describes the relationship between spatially separated neuronal groups and analysis of dFCNs plays a key role for interpreting complex brain dynamics in different cognitive and emotional processes. Recently, graph theoretic methods have been used to characterize the brain functionality where bivariate relationships between neuronal populations are represented as graphs or networks. In this thesis, the changes in these networks across time and subjects will be studied through tensor representations. In Chapter 2, we address a multi-graph clustering problem which can be thought as a tensor partitioning problem. We introduce a hierarchical consensus spectral clustering approach to identify the community structure underlying the functional connectivity brain networks across subjects. New information-theoretic criteria are introduced for selecting the optimal community structure. Effectiveness of the proposed algorithms are evaluated through a set of simulations comparing with the existing methods as well as on FCNs across subjects. In Chapter 3, we address the online tensor data reduction problem through a subspace tracking perspective. We introduce a robust low-rank+sparse structure learning algorithm for tensors to separate the low-rank community structure of connectivity networks from sparse outliers. The proposed framework is used to both identify change points, where the low-rank community structure changes significantly, and summarize this community structure within each time interval. Finally, in Chapter 4, we introduce a new multi-scale tensor decomposition technique to efficiently encode nonlinearities due to rotation or translation in tensor type data. In particular, we develop a multi-scale higher-order singular value decomposition (MS-HoSVD) approach where a given tensor is first permuted and then partitioned into several sub-tensors each of which can be represented as a low-rank tensor increasing the efficiency of the representation. We derive a theoretical error bound for the proposed approach as well as provide analysis of memory cost and computational complexity. Performance of the proposed approach is evaluated on both data reduction and classification of various higher-order datasets."--Pages ii-iii.
Show less
- Title
- Implantable VLSI systems for compression and communication in wireless biosensor recording arrays
- Creator
- Kamboh, Awais Mehmood
- Date
- 2010
- Collection
- Electronic Theses & Dissertations
- Description
-
Successful use of microelectrode arrays to record neural activity in the cortex has opened new opportunities for scientists to decode the intricate functionality of the human brain and the behavior of neurons that enable its complex operation. The resulting brain-machine interface devices play a critical role in enabling patients with neural disorders to achieve a better lifestyle. Such interfaces provide a direct interface to the brain and show great promise in many biomedical applications...
Show moreSuccessful use of microelectrode arrays to record neural activity in the cortex has opened new opportunities for scientists to decode the intricate functionality of the human brain and the behavior of neurons that enable its complex operation. The resulting brain-machine interface devices play a critical role in enabling patients with neural disorders to achieve a better lifestyle. Such interfaces provide a direct interface to the brain and show great promise in many biomedical applications.This thesis explores some of the major obstacles impeding the advance of wireless neural implants and addresses them through development of highly efficient algorithms and implantable hardware. An overwhelming amount of data is generated by the microelectrode arrays, resulting in a data bandwidth bottleneck. To overcome this problem, an implantable system has been devised to enable control over the amount of data that must be transmitted without compromising the information contained in the array of neural signals. Furthermore, the nature of the wireless communication channel across the skin tissue is not well characterized. In this thesis, solutions have been developed to maximize that data throughput and enable unfailing yet low-power communication of bidirectional data between the implanted device and the external world. Finally, a unified energy-efficient, implantable CMOS integrated circuit was developed to address these two critical problems. The resulting integrated solution ensures seamless multi-modal operation, and thus establishes a pathway to the design of next-generation neuroprosthetics devices. Although the motivation for this thesis comes from the field of neuroprosthetics, the solutions devised are pertinent to a wide range of implantable applications.
Show less
- Title
- Kernel methods for biosensing applications
- Creator
- Khan, Hassan Aqeel
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
This thesis examines the design noise robust information retrieval techniques basedon kernel methods. Algorithms are presented for two biosensing applications: (1)High throughput protein arrays and (2) Non-invasive respiratory signal estimation.Our primary objective in protein array design is to maximize the throughput byenabling detection of an extremely large number of protein targets while using aminimal number of receptor spots. This is accomplished by viewing the proteinarray as a...
Show moreThis thesis examines the design noise robust information retrieval techniques basedon kernel methods. Algorithms are presented for two biosensing applications: (1)High throughput protein arrays and (2) Non-invasive respiratory signal estimation.Our primary objective in protein array design is to maximize the throughput byenabling detection of an extremely large number of protein targets while using aminimal number of receptor spots. This is accomplished by viewing the proteinarray as a communication channel and evaluating its information transmission capacity as a function of its receptor probes. In this framework, the channel capacitycan be used as a tool to optimize probe design; the optimal probes being the onesthat maximize capacity. The information capacity is first evaluated for a small scaleprotein array, with only a few protein targets. We believe this is the first effort toevaluate the capacity of a protein array channel. For this purpose models of theproteomic channel's noise characteristics and receptor non-idealities, based on experimental prototypes, are constructed. Kernel methods are employed to extend thecapacity evaluation to larger sized protein arrays that can potentially have thousandsof distinct protein targets. A specially designed kernel which we call the ProteomicKernel is also proposed. This kernel incorporates knowledge about the biophysicsof target and receptor interactions into the cost function employed for evaluation of channel capacity.For respiratory estimation this thesis investigates estimation of breathing-rateand lung-volume using multiple non-invasive sensors under motion artifact and highnoise conditions. A spirometer signal is used as the gold standard for evaluation oferrors. A novel algorithm called the segregated envelope and carrier (SEC) estimation is proposed. This algorithm approximates the spirometer signal by an amplitudemodulated signal and segregates the estimation of the frequency and amplitude in-formation. Results demonstrate that this approach enables effective estimation ofboth breathing rate and lung volume. An adaptive algorithm based on a combination of Gini kernel machines and wavelet filltering is also proposed. This algorithm is titledthe wavelet-adaptive Gini (or WAGini) algorithm, it employs a novel wavelet trans-form based feature extraction frontend to classify the subject's underlying respiratorystate. This information is then employed to select the parameters of the adaptive kernel machine based on the subject's respiratory state. Results demonstrate significantimprovement in breathing rate estimation when compared to traditional respiratoryestimation techniques.
Show less
- Title
- LIDAR AND CAMERA CALIBRATION USING A MOUNTED SPHERE
- Creator
- Li, Jiajia
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Extrinsic calibration between lidar and camera sensors is needed for multi-modal sensor data fusion. However, obtaining precise extrinsic calibration can be tedious, computationally expensive, or involve elaborate apparatus. This thesis proposes a simple, fast, and robust method performing extrinsic calibration between a camera and lidar. The only required calibration target is a hand-held colored sphere mounted on a whiteboard. The convolutional neural networks are developed to automatically...
Show moreExtrinsic calibration between lidar and camera sensors is needed for multi-modal sensor data fusion. However, obtaining precise extrinsic calibration can be tedious, computationally expensive, or involve elaborate apparatus. This thesis proposes a simple, fast, and robust method performing extrinsic calibration between a camera and lidar. The only required calibration target is a hand-held colored sphere mounted on a whiteboard. The convolutional neural networks are developed to automatically localize the sphere relative to the camera and the lidar. Then using the localization covariance models, the relative pose between the camera and lidar is derived. To evaluate the accuracy of our method, we record image and lidar data of a sphere at a set of known grid positions by using two rails mounted on a wall. The accurate calibration results are demonstrated by projecting the grid centers into the camera image plane and finding the error between these points and the hand-labeled sphere centers.
Show less
- Title
- MEASURING AND MODELING THE EFFECTS OF SEA LEVEL RISE ON NEAR-COASTAL RIVERINE REGIONS : A GEOSPATIAL COMPARISON OF THE SHATT AL-ARAB RIVER IN SOUTHERN IRAQ WITH THE MISSISSIPPI RIVER DELTA IN SOUTHERN LOUISIANA, USA.
- Creator
- Kadhim, Ameen Awad
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
There is a growing debate among scientists on how sea level rise (SLR) will impact coastal environments, particularly in countries where economic activities are sustained along these coasts. An important factor in this debate is how best to characterize coastal environmental impacts over time. This study investigates the measurement and modeling of SLR and effects on near-coastal riverine regions. The study uses a variety of data sources, including satellite imagery from 1975 to 2017, digital...
Show moreThere is a growing debate among scientists on how sea level rise (SLR) will impact coastal environments, particularly in countries where economic activities are sustained along these coasts. An important factor in this debate is how best to characterize coastal environmental impacts over time. This study investigates the measurement and modeling of SLR and effects on near-coastal riverine regions. The study uses a variety of data sources, including satellite imagery from 1975 to 2017, digital elevation data and previous studies. This research is focusing on two of these important regions: southern Iraq along the Shatt Al-Arab River (SAR) and the southern United States in Louisiana along the Mississippi River Delta (MRD). These sites are important for both their extensive low-lying land and for their significant coastal economic activities. The dissertation consists of six chapters. Chapter one introduces the topic. Chapter two compares and contrasts bothregions and evaluates escalating SLR risk. Chapter three develops a coupled human and natural system (CHANS) perspective for SARR to reveal multiple sources of environmental degradation in this region. Alfa century ago SARR was an important and productive region in Iraq that produced fruits like dates, crops, vegetables, and fish. By 1975 the environment of this region began to deteriorate, and since then, it is well-documented that SARR has suffered under human and natural problems. In this chapter, I use the CHANS perspective to identify the problems, and which ones (human or natural systems) are especially responsible for environmental degradation in SARR. I use several measures of ecological, economic, and social systems to outline the problems identified through the CHANS framework. SARR has experienced extreme weather changes from 1975 to 2017 resulting in lower precipitation (-17mm) and humidity (-5.6%), higher temperatures (1.6 C), and sea level rise, which are affecting the salinity of groundwater and Shatt Al Arab river water. At the same time, human systems in SARR experienced many problems including eight years of war between Iraq and Iran, the first Gulf War, UN Security Council imposed sanctions against Iraq, and the second Gulf War. I modeled and analyzed the regions land cover between 1975 and 2017 to understand how the environment has been affected, and found that climate change is responsible for what happened in this region based on other factors. Chapter four constructs and applies an error propagation model to elevation data in the Mississippi River Delta region (MRDR). This modeling both reduces and accounts for the effects of digital elevation model (DEM) error on a bathtub inundation model used to predict the SLR risk in the region. Digital elevation data is essential to estimate coastal vulnerability to flooding due to sea level rise. Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global is considered the best free global digital elevation data available. However, inundation estimates from SRTM are subject to uncertainty due to inaccuracies in the elevation data. Small systematic errors in low, flat areas can generate large errors in inundation models, and SRTM is subject to positive bias in the presence of vegetation canopy, such as along channels and within marshes. In this study, I conduct an error assessment and develop statistical error modeling for SRTM to improve the quality of elevation data in these at-risk regions. Chapter five applies MRDR-based model from chapter four to enhance the SRTM 1 Arc-Second Global DEM data in SARR. As such, it is the first study to account for data uncertainty in the evaluation of SLR risk in this sensitive region. This study transfers an error propagation model from MRDR to the Shatt al-Arab river region to understand the impact of DEM error on an inundation model in this sensitive region. The error propagation model involves three stages. First, a multiple regression model, parameterized from MRDR, is used to generate an expected DEM error surface for SARR. This surface is subtracted from the SRTM DEM for SARR to adjust it. Second, residuals from this model are simulated for SARR: these are mean-zero and spatially autocorrelated with a Gaussian covariance model matching that observed in MRDR by convolution filtering of random noise. More than 50 realizations of error were simulated to make sure a stable result was realized. These realizations were subtracted from the adjusted SRTM to produce DEM realizations capturing potential variation. Third, the DEM realizations are each used in bathtub modeling to estimate flooding area in the region with 1 m of sea level rise. The distribution of flooding estimates shows the impact of DEM error on uncertainty in inundation likelihood, and on the magnitude of total flooding. Using the adjusted DEM realizations 47 ± 2 percent of the region is predicted to flood, while using the raw SRTM DEM only 28% of the region is predicted to flood.
Show less
- Title
- Nanoengineered tissue scaffolds for regenerative medicine in neural cell systems
- Creator
- Tiryaki, Volkan Mujdat
- Date
- 2013
- Collection
- Electronic Theses & Dissertations
- Description
-
Central nervous system (CNS) injuries present one of the most challenging problems. Regeneration in the mammal CNS is often limited because the injured axons cannot regenerate beyond the lesion. Implantation of a scaffolding material is one of the possible approaches to this problem. Recent implantations by our collaborative research group using electrospun polyamide nanofibrillar scaffolds have shown promising results in vitro and in vivo. The physical properties of the tissue scaffolds have...
Show moreCentral nervous system (CNS) injuries present one of the most challenging problems. Regeneration in the mammal CNS is often limited because the injured axons cannot regenerate beyond the lesion. Implantation of a scaffolding material is one of the possible approaches to this problem. Recent implantations by our collaborative research group using electrospun polyamide nanofibrillar scaffolds have shown promising results in vitro and in vivo. The physical properties of the tissue scaffolds have been neglected for many years, and it has only recently been recognized that significant aspects include nanophysical properties such as nanopatterning, surface roughness, local elasticity, surface polarity, surface charge, and growth factor presentation as well as the better-known biochemical cues.The properties of: surface polarity, surface roughness, local elasticity and local work of adhesion were investigated in this thesis. The physical and nanophysical properties of the cell culture environments were evaluated using contact angle and atomic force microscopy (AFM) measurements. A new capability, scanning probe recognition microscopy (SPRM), was also used to characterize the surface roughness of nanofibrillar scaffolds. The corresponding morphological and protein expression responses of rat model cerebral cortical astrocytes to the polyamide nanofibrillar scaffolds versus comparative culture surfaces were investigated by AFM and immunocytochemistry. Astrocyte morphological responses were imaged using AFM and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. The results supported the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. Astrocytes have a special role in the formation of the glial scar in response to traumatic injury. The glial scar biomechanically and biochemically blocks axon regeneration, resulting in paralysis. Astrocytes involved in glial scar formation become reactive, with development of specific morphologies and inhibitory protein expressions. Dibutyryl cyclic adenosine monophosphate (dBcAMP) was used to induce astrocyte reactivity. The directive importance of nanophysical properties for the morphological and protein expression responses of dBcAMP-stimulated cerebral cortical astrocytes was investigated by immunocytochemistry, Western blotting, and AFM. Nanofibrillar scaffold properties were shown to reduce immunoreactivity responses, while PLL Aclar properties were shown to induce responses reminiscent of glial scar formation. Comparison of the responses for dBcAMP-treated reactive-like and untreated astrocytes indicated that the most influential directive nanophysical cues may differ in wound-healing versus untreated situations.Finally, a new cell shape index (CSI) analysis system was developed using volumetric AFM height images of cells cultured on different substrates. The new CSI revealed quantitative cell spreading information not included in the conventional CSI. The system includes a floating feature selection algorithm for cell segmentation that uses a total of 28 different textural features derived from two models: the gray level co-occurance matrix and local statistics texture features. The quantitative morphometry of untreated and dBcAMP-treated cerebral cortical astrocytes was investigated using the new and conventional CSI, and the results showed that quantitative astrocyte spreading and stellation behavior was induced by variations in nanophysical properties.
Show less
- Title
- Privacy and integrity preserving computation in distributed systems
- Creator
- Chen, Fei
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
Preserving privacy and integrity of private data has become core requirements for many distributed systems across different parties. In these systems, one party may try to compute or aggregate useful information from the private data of other parties. However, this party is not be fully trusted by other parties. Therefore, it is important to design security protocols for preserving such private data. Furthermore, one party may want to query the useful information computed from such private...
Show morePreserving privacy and integrity of private data has become core requirements for many distributed systems across different parties. In these systems, one party may try to compute or aggregate useful information from the private data of other parties. However, this party is not be fully trusted by other parties. Therefore, it is important to design security protocols for preserving such private data. Furthermore, one party may want to query the useful information computed from such private data. However, query results may be modified by a malicious party. Thus, it is important to design query protocols such that query result integrity can be verified.In this dissertation, we study four important privacy and integrity preserving problems for different distributed systems. For two-tiered sensor networks, where storage nodes serve as an intermediate tier between sensors and a sink for storing data and processing queries, we proposed SafeQ, a protocol that prevents compromised storage nodes from gaining information from both sensor collected data and sink issued queries, while it still allows storage nodes to process queries over encrypted data and the sink to detect compromised storage nodes when they misbehave. For cloud computing, where a cloud provider hosts the data of an organization and replies query results to the customers of the organization, we propose novel privacy and integrity preserving schemes for multi-dimensional range queries such that the cloud provider can process encoded queries over encoded data without knowing the actual values, and customers can verify the integrity of query results with high probability. For distributed firewall policies, we proposed the first privacy-preserving protocol for cross-domain firewall policy optimization. For any two adjacent firewalls belonging to two different administrative domains, our protocol can identify in each firewall the rules that can be removed because of the other firewall. For network reachability, one of the key factors for capturing end-to-end network behavior and detecting the violation of security policies, we proposed the first cross-domain privacy-preserving protocol for quantifying network reachability.
Show less
- Title
- Robust signal processing methods for miniature acoustic sensing, separation, and recognition
- Creator
- Fazel, Amin
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
One of several emerging areas where micro-scale integration promises significant breakthroughs is in the field of acoustic sensing. However, separation, localization, and recognition of acoustic sources using micro-scale microphone arrays poses a significant challenge due to fundamental limitations imposed by the physics of sound propagation. The smaller the distance between the recording elements, the more difficult it is to measure localization and separation cues and hence it is more...
Show moreOne of several emerging areas where micro-scale integration promises significant breakthroughs is in the field of acoustic sensing. However, separation, localization, and recognition of acoustic sources using micro-scale microphone arrays poses a significant challenge due to fundamental limitations imposed by the physics of sound propagation. The smaller the distance between the recording elements, the more difficult it is to measure localization and separation cues and hence it is more difficult to recognize the acoustic sources of interest. The objective of this research is to investigate signal processing and machine learning techniques that can be used for noise-robust acoustic target recognition using miniature microphone arrays.The first part of this research focuses on designing "smart" analog-to-digital conversion (ADC) algorithms that can enhance acoustic cues in sub-wavelength microphone arrays. Many source separation algorithms fail to deliver robust performance when applied to signals recorded using high-density sensor arrays where the distance between sensor elements is much less than the wavelength of the signals. This can be attributed to limited dynamic range (determined by analog-to-digital conversion) of the sensor which is insufficientto overcome the artifacts due to large cross-channel redundancy, non-homogeneous mixing and high-dimensionality of the signal space. We propose a novel framework that overcomes these limitations by integrating statistical learning directly with the signal measurement (analog-to-digital) process which enables high fidelity separation of linear instantaneous mixture. At the core of the proposed ADC approach is a min-max optimization of a regularized objective function that yields a sequence of quantized parameters which asymptotically tracks the statistics of the input signal. Experiments with synthetic and real recordings demonstrate consistent performance improvements when the proposed approach is used as the analog-to-digital front-end to conventional source separation algorithms.The second part of this research focuses on investigating a novel speech feature extraction algorithm that can recognize auditory targets (keywords and speakers) using noisy recordings. The features known as Sparse Auditory Reproducing Kernel (SPARK) coefficients are extracted under the hypothesis that the noise-robust information in speech signal is embedded in a subspace spanned by sparse, regularized, over-complete, non-linear, and phase-shifted gammatone basis functions. The feature extraction algorithm involves computing kernel functions between the speech data and pre-computed set of phased-shifted gammatone functions, followed by a simple pooling technique ("MAX" operation). In this work, we present experimental results for a hidden Markov model (HMM) based speech recognition system whose performance has been evaluated on a standard AURORA 2 dataset. The results demonstrate that the SPARK features deliver significant and consistent improvements in recognition accuracy over the standard ETSI STQ WI007 DSR benchmark features. We have also verified the noise-robustness of the SPARK features for the task of speaker verification. Experimental results based on the NIST SRE 2003 dataset show significant improvements when compared to a standard Mel-frequency cepstral coefficients (MFCCs) based benchmark.
Show less