You are here
Search results
(1 - 2 of 2)
- Title
- Reducing the number of ultrasound array elements with the matrix pencil method
- Creator
- Sales, Kirk L.
- Date
- 2012
- Collection
- Electronic Theses & Dissertations
- Description
-
Phased arrays are diversely applied with some specific areas including biomedical imaging and therapy, non-destructive testing, radar and sonar. In this thesis, the matrix pencil method is employed to reduce the number of elements in a linear ultrasound phased array. The non-iterative, linear method begins with a specified pressure beam pattern, reduces the dimensionality of the problem, then calculates the element locations and apodization of a reduced array. Computer simulations demonstrate...
Show morePhased arrays are diversely applied with some specific areas including biomedical imaging and therapy, non-destructive testing, radar and sonar. In this thesis, the matrix pencil method is employed to reduce the number of elements in a linear ultrasound phased array. The non-iterative, linear method begins with a specified pressure beam pattern, reduces the dimensionality of the problem, then calculates the element locations and apodization of a reduced array. Computer simulations demonstrate a close comparison between the initial array beam pattern and the reduced array beam pattern for four different linear arrays. The number of elements in a broadside-steered linear array is shown to decrease by approximately 50% with the reduced array beam pattern closely approximating the initial array beam pattern in the far-field. While the method returns a slightly tapered spacing between elements, for the arrays considered, replacing the tapered spacing with a suitably-selected uniform spacing provides very little change in the main beam and low-angle side lobes.
Show less
- Title
- LIDAR AND CAMERA CALIBRATION USING A MOUNTED SPHERE
- Creator
- Li, Jiajia
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Extrinsic calibration between lidar and camera sensors is needed for multi-modal sensor data fusion. However, obtaining precise extrinsic calibration can be tedious, computationally expensive, or involve elaborate apparatus. This thesis proposes a simple, fast, and robust method performing extrinsic calibration between a camera and lidar. The only required calibration target is a hand-held colored sphere mounted on a whiteboard. The convolutional neural networks are developed to automatically...
Show moreExtrinsic calibration between lidar and camera sensors is needed for multi-modal sensor data fusion. However, obtaining precise extrinsic calibration can be tedious, computationally expensive, or involve elaborate apparatus. This thesis proposes a simple, fast, and robust method performing extrinsic calibration between a camera and lidar. The only required calibration target is a hand-held colored sphere mounted on a whiteboard. The convolutional neural networks are developed to automatically localize the sphere relative to the camera and the lidar. Then using the localization covariance models, the relative pose between the camera and lidar is derived. To evaluate the accuracy of our method, we record image and lidar data of a sphere at a set of known grid positions by using two rails mounted on a wall. The accurate calibration results are demonstrated by projecting the grid centers into the camera image plane and finding the error between these points and the hand-labeled sphere centers.
Show less