Search results
(1 - 20 of 25)
Pages
- Title
- Understanding the role of standing genetic variation in functional genetics and compensatory evolution
- Creator
- Chari, Sudarshan R.
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Conventionally the phenotypic outcome of a mutation is considered to be due to a specific DNA lesion. But it has long been known that mutational effects can be conditional on environment (GxE) and genetic background (GxG). Thus it is standard practice to perform experiments by controlling for rearing environment and using co-isogenic strains. Though such a controlled approach has been very successful in enabling many discoveries, by not considering conditional effects our understanding of...
Show moreConventionally the phenotypic outcome of a mutation is considered to be due to a specific DNA lesion. But it has long been known that mutational effects can be conditional on environment (GxE) and genetic background (GxG). Thus it is standard practice to perform experiments by controlling for rearing environment and using co-isogenic strains. Though such a controlled approach has been very successful in enabling many discoveries, by not considering conditional effects our understanding of biological systems is incomplete. My research utilized conditionality in terms of genetic background and standing genetic variation therein to understand whether mutational interactions can themselves be background dependent. I demonstrated that a majority of mutational interactions identified via a dominant modifier screen are background dependent. Extending this idea of contingency in terms of standing genetic variation to the phenomenon of compensatory evolution in the presence of deleterious mutations, I demonstrated that natural populations of Drosophila melanogaster possess standing genetic variation for compensatory alleles to ameliorate even severe phenotypic defects. I further demonstrated that, despite considerable standing variation to ameliorate the focal phenotype perturbed by the mutation, natural selection exploits alternative evolutionary trajectories to recover fitness. Additionally this model system also allowed me to understand that loss of sexual signaling can be compensated by modulating behavioural and life history traits.
Show less
- Title
- The evolutionary origins of memory use in navigation
- Creator
- Grabowski, Laura M.
- Date
- 2009
- Collection
- Electronic Theses & Dissertations
- Title
- The Evolutionary Origins of Cognition : Understanding the early evolution of biological control systems and general intelligence
- Creator
- Carvalho Pontes, Anselmo
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
In the last century, we have made great strides towards understanding natural cognition and recreating it artificially. However, most cognitive research is still guided by an inadequate theoretical framework that equates cognition to a computer system executing a data processing task. Cognition, whether natural or artificial, is not a data processing system; it is a control system.At cognition's core is a value system that allows it to evaluate current conditions and decide among two or more...
Show moreIn the last century, we have made great strides towards understanding natural cognition and recreating it artificially. However, most cognitive research is still guided by an inadequate theoretical framework that equates cognition to a computer system executing a data processing task. Cognition, whether natural or artificial, is not a data processing system; it is a control system.At cognition's core is a value system that allows it to evaluate current conditions and decide among two or more courses of action. Memory, learning, planning, and deliberation, rather than being essential cognitive abilities, are features that evolved over time to support the primary task of deciding “what to do next”. I used digital evolution to recreate the early stages in the evolution of natural cognition, including the ability to learn. Interestingly, I found cognition evolves in a predictable manner, with more complex abilities evolving in stages, by building upon previous simpler ones. I initially investigated the evolution of dynamic foraging behaviors among the first animals known to have a central nervous system, Ediacaran microbial mat miners. I then followed this up by evolving more complex forms of learning. I soon encountered practical limitations of the current methods, including exponential demand of computational resources and genetic representations that were not conducive to further scaling. This type of complexity barrier has been a recurrent issue in digital evolution. Nature, however, is not limited in the same ways; through evolution, it has created a language to express robust, modular, and flexible control systems of arbitrary complexity and apparently open-ended evolvability. The essential features of this language can be captured in a digital evolution platform. As an early demonstration of this, I evolved biologically plausible regulatory systems for virtual cyanobacteria. These systems regulate the cells' growth, photosynthesis and replication given the daily light cycle, the cell's energy reserves, and levels of stress. Although simple, this experimental system displays dynamics and decision-making mechanisms akin to biology, with promising potential for open-ended evolution of cognition towards general intelligence.
Show less
- Title
- Teaching and learning with digital evolution : factors influencing implementation and student outcomes
- Creator
- Lark, Amy M.
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Science literacy for all Americans has been the rallying cry of science education in the United States for decades. Regardless, Americans continue to fall short when it comes to keeping pace with other developed nations on international science education assessments. To combat this problem, recent national reforms have reinvigorated the discussion of what and how we should teach science, advocating for the integration of disciplinary core ideas, crosscutting concepts, and science practices....
Show moreScience literacy for all Americans has been the rallying cry of science education in the United States for decades. Regardless, Americans continue to fall short when it comes to keeping pace with other developed nations on international science education assessments. To combat this problem, recent national reforms have reinvigorated the discussion of what and how we should teach science, advocating for the integration of disciplinary core ideas, crosscutting concepts, and science practices. In the biological sciences, teaching the core idea of evolution in ways consistent with reforms is fraught with challenges. Not only is it difficult to observe biological evolution in action, it is nearly impossible to engage students in authentic science practices in the context of evolution. One way to overcome these challenges is through the use of evolving populations of digital organisms.Avida-ED is digital evolution software for education that allows for the integration of science practice and content related to evolution. The purpose of this study was to investigate the effects of Avida-ED on teaching and learning evolution and the nature of science. To accomplish this I conducted a nationwide, multiple-case study, documenting how instructors at various institutions were using Avida-ED in their classrooms, factors influencing implementation decisions, and effects on student outcomes. I found that all of the participating instructors held views on teaching and learning that were well aligned with reform-based pedagogy, and although instructors used Avida-ED in a variety of ways, all adopted learner-centered pedagogical strategies that focused on the use of inquiry. After implementation, all of the instructors indicated that Avida-ED had allowed them to teach evolution and the nature of science in ways consistent with their personal teaching philosophies. In terms of assessment outcomes, students in lower-division courses significantly improved both their understanding and acceptance of evolution after using Avida-ED, and learning of content was positively associated with increased acceptance. Although student learning outcomes and instructor familiarity with Avida-ED were not associated with student affective response to the program, instructor familiarity was highly influential with regard to both how Avida-ED was implemented and student affective response, particularly student interest, enjoyment, and self-efficacy. The results of this dissertation provide strong evidence suggesting that Avida-ED is a promising tool for teaching and learning about evolution in reform-based ways, and suggest that improving instructor pedagogical content knowledge with regard to research-based tools like Avida-ED may be implicated in generating student interest in STEM.
Show less
- Title
- Species pluralism
- Creator
- Holmes, John Alan
- Date
- 2000
- Collection
- Electronic Theses & Dissertations
- Title
- Social Modulation of Individual Decision-Making in Foraging Bumblebees : Mechanisms and Evolution
- Creator
- Incorvaia, Darren
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
How and why animals choose to do what they do at any given moment is one of the fundamental questions in animal behavior. For social animals, influences on decision-making can come from both personal and social sources, and in eusocial insects like ants, bees, and wasps, the reliance on social information is taken to the extreme. Foraging bumblebees offer the perfect model in which to examine the social influences on individual decision-making because they are presented with extensive...
Show moreHow and why animals choose to do what they do at any given moment is one of the fundamental questions in animal behavior. For social animals, influences on decision-making can come from both personal and social sources, and in eusocial insects like ants, bees, and wasps, the reliance on social information is taken to the extreme. Foraging bumblebees offer the perfect model in which to examine the social influences on individual decision-making because they are presented with extensive personal and social information, and when foraging they are solely focused on the task at hand. Chapter 1 reviews information use by foraging bumblebees, setting the stage for the subsequent data chapters. Chapter 2 examines how the motivation for bumblebees to feed from a known feeder is modified by the nutritive state of the colony, such that individuals in colonies with full food stores show lower motivation to feed. In addition to this behavioral result, a biochemical analysis reveals that lipid levels may be involved in the mechanism underlying this social effect. Eusocial insects are famous for collective behaviors, such as the swarming behavior of honeybees, the foraging trails of termites, and the bridge-building of ants. While the collective foraging strategy of other eusocial insects has been well-studied, it has not received attention in bumblebees. In Chapter 3 I use a behavioral experiment to reveal that bumblebees use a strategy of informed individual initiative to collectively ensure they are foraging from the best resources in the environment. In this strategy, individual bees adjust their reward expectations based on the quality of nectar stored in the nest. I followed up this experiment with a computational model to reveal that this strategy is adaptive, as it results in higher fitness than does individual search alone. This strategy is markedly different from the spatial communication of the dance language used by honeybees, who are close relatives of bumblebees. This prompted me to extend the computational model to examine the selective pressures that shape foraging strategies in social insects, including the honeybee dance language and bumblebee strategy of informed individual initiative. In Chapter 4, I present the results of simulations of this extended model, demonstrating that, although resource density influences fitness for both the dance language and informed individual initiative, colony size only matters for the dance language. This suggests that the large colony sizes of honeybees may have been important for the dance language to evolve, whereas a similar spatial communication system would not be adaptive in bumblebees, which have smaller colony sizes. Taken all together, the results in this dissertation explore how individual decision-making is shaped by the social environment in bumblebees, and the potential selective pressures that led to these behavioral strategies over evolutionary time. Bumblebees are important pollinators in both agricultural and natural ecosystems, but many species are facing declines; a more thorough understanding of their behavior is imperative to help us conserve them as the planet continues to change due to climate change and other anthropogenic influences.
Show less
- Title
- Replaying Life's Virtual Tape : Examining the Role of History in Experiments with Digital Organisms
- Creator
- Bundy, Jason Nyerere
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Evolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not...
Show moreEvolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not everyone was convinced. Some believed that chance was the primary driver of evolutionary change, while others insisted that natural selection was the most powerful influence. Since then, “replaying life’s tape” has become a core method in experimental evolution for measuring the relative contributions of adaptation, chance, and history. In this dissertation, I focus on the effects associated with history in evolving populations of digital organisms—computer programs that self-replicate, mutate, compete, and evolve in virtual environments. In Chapter 1, I discuss the philosophical significance of Gould’s thought experiment and its influence on experimental methods. I argue that his thought experiment was a challenge to anthropocentric reasoning about natural history that is still popular, particularly outside of the scientific community. In this regard, it was his way of advocating for a “radical” view of evolution. In Chapter 2—Richard Lenski, Charles Ofria, and I describe a two-phase, virtual, “long-term” evolution experiment with digital organisms using the Avida software. In Phase I, we evolved 10 replicate populations, in parallel, from a single genotype for around 65,000 generations. This part of the experiment is similar to the design of Lenski’s E. coli Long-term Evolution Experiment (LTEE). We isolated the dominant genotype from each population around 3,000 generations (shallow history) into Phase I and then again at the end of Phase I (deep history). In Phase II, we evolved 10 populations from each of the genotypes we isolated from Phase I in two new environments, one similar and one dissimilar to the old environment used for Phase I. Following Phase II, we estimated the contributions of adaptation, chance, and history to the evolution of fitness and genome length in each new environment. This unique experimental design allowed us to see how the contributions of adaptation, chance, and history changed as we extended the depth of history from Phase I. We were also able to determine whether the results depended on the extent of environmental change (similar or dissimilar new environment). In Chapter 3, we report an extended analysis of the experiment from the previous chapter to further examine how extensive adaptation to the Phase I environment shaped the evolution of replicates during Phase II. We show how the form of pleiotropy (antagonistic or synergistic) between the old (Phase I) and new (Phase II) habitats was influenced by the depth of history from Phase I (shallow or deep) and the extent of environmental change (similar or dissimilar new environment). In the final chapter Zachary Blount, Richard Lenski, and I describe an exercise we developed using the educational version of Avida (Avida-ED). The exercise features a two-phase, “replaying life’s tape” activity. Students are able to explore how the unique history of founders that we pre-evolved during Phase I influences the acquisition of new functions by descendent populations during Phase II, which the students perform during the activity.
Show less
- Title
- Microbial diversity and metabolic potential of the serpentinite subsurface environment
- Creator
- Twing, Katrina Irene
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
Serpentinization is the hydrous alteration of mafic rocks to form serpentine minerals and magnetite. The reactions of this alteration result in elevated pH of the surrounding fluids, abiotic generation of H2, CH4 (and other organic molecules), and depletion of dissolved inorganic carbon. Thus, serpentinization has implications for the origin of life on Earth and possibly Mars and other planetary bodies with water. The microbial diversity of continental serpentinite systems consistently shows...
Show moreSerpentinization is the hydrous alteration of mafic rocks to form serpentine minerals and magnetite. The reactions of this alteration result in elevated pH of the surrounding fluids, abiotic generation of H2, CH4 (and other organic molecules), and depletion of dissolved inorganic carbon. Thus, serpentinization has implications for the origin of life on Earth and possibly Mars and other planetary bodies with water. The microbial diversity of continental serpentinite systems consistently shows communities that are dominated by two major taxa – microaerophilic Betaproteobacteria and anaerobic Clostridia. Previous studies relied on few samples collected from natural springs or seeps, meaning that the flow path of fluids from the subsurface process of serpentinization was unknown. The Coast Range Ophiolite Microbial Observatory (CROMO), a set of wells drilled into the actively serpentinizing subsurface environment in northern California, was established in northern California to gain a better understanding of the habitability and microbial functions within the serpentinite subsurface environment. This dissertation represents a culmination of microbiological investigations into the serpentinite subsurface environment at CROMO to identify the microbial inhabitants of subsurface fluids, rocks, and in situ colonization experiments using molecular methods and high-throughput sequencing. The CROMO wells represent a broad range of geochemical gradients and pH and the concentrations of carbon monoxide and methane have the strongest correlation with microbial community composition. The most extremely high pH wells were inhabited exclusively by a single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia, while more moderate pH wells exhibited greater diversity. Genes involved in the metabolism of hydrogen, carbon monoxide, and carbon fixation were abundant in the extreme pH fluids, while genes for metabolizing methane were exclusively in the moderate pH wells. The subsurface environment is an amalgamation of fluids and rocks, and as such, studying fluids alone only gives half the story. CROMO represents the first drill campaign into the continental serpentinite environment and the microbial diversity of serpentinite cores to a depth of 45 meters below surface suggests that specific geological features harbor different microbial communities. Archaea, previously undetected at CROMO, dominated cores containing magnetite-bearing serpentine, while bacteria were more abundant in layers containing clay particles. Additionally, organisms involved in the cycling of nitrogen and methane were found associated with core materials, indicating core-associated communities may have strong biogeochemical roles within the serpentinite subsurface environment. Given that microbial communities appear to vary with geological composition and that serpentinite fluids are a challenging habitat for life, depleted in inorganic carbon and electron acceptors, microbe-mineral interactions within the serpentinite subsurface environment through the use of in situ colonization devices to see if communities were able to utilize inorganic carbon in calcite or ferric iron as a terminal electron acceptor from magnetite. In the highest pH well, calcite led to an increased abundance of Clostridia and Deinococcus, while magnetite led to an increase in diversity, including Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria, suggesting further that mineralogical composition of solids within the subsurface impact community composition. The data discussed here further our understanding of life associated with serpentinite fluids and minerals within the subsurface environment.
Show less
- Title
- MECHANISMS UNDERLYING DESICCATION RESISTANCE IN DROSOPHILA SPECIES
- Creator
- Wang, Zinan
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Adaptation to various and extreme environments is key to long-term species persistence. Reducing water loss is important for organisms adapting to different terrestrial environments. In Drosophila fruit flies and other terrestrial insects, their small body size and large surface areas to volume ratios make them vulnerable to desiccation stress. Their ability to prevent water loss is crucial for their survival. Previous studies have suggested that cuticular water loss accounts for the majority...
Show moreAdaptation to various and extreme environments is key to long-term species persistence. Reducing water loss is important for organisms adapting to different terrestrial environments. In Drosophila fruit flies and other terrestrial insects, their small body size and large surface areas to volume ratios make them vulnerable to desiccation stress. Their ability to prevent water loss is crucial for their survival. Previous studies have suggested that cuticular water loss accounts for the majority of water loss in insects and hypothesized that differences in cuticular hydrocarbon (CHC) content accounted for differences in desiccation resistance between mesic and desert species. However, the specific association between different CHC components and desiccation has not been established, and the genetic mechanisms underlying the evolution of these CHC components that confer high desiccation resistance have not been elucidated. This dissertation investigated how the evolution of CHCs in insects affected desiccation resistance and elucidates the genetic mechanisms underlying their evolution. With a comprehensive association study of desiccation resistance and CHCs in 46 Drosophila species and 4 species in closely-related genera, the analyses showed that mbCHC chain lengths were important predictors of desiccation resistance and longer mbCHCs contributed to higher desiccation resistance. This dissertation further investigated the genetic and molecular mechanisms underlying longer chain mbCHCs and higher desiccation resistance in a desert Drosophila species, Drosophila mojavensis. A fatty acyl-CoA elongase gene, mElo (methyl-branched CHC Elongase), was identified in Drosophila species for the elongation of mbCHCs. Overexpression experiments in D. melanogaster demonstrated that coding changes in mElo from D. mojavensis lead to longer mbCHCs and higher desiccation resistance. Further experiments using CRISPR-Cas9 to knock out mElo from D. mojavensis showed that knockout of this gene decreased the production of the longest mbCHCs and significantly reduced desiccation resistance at their ecological-relevant temperature. Results from this dissertation elucidate the molecular and evolutionary mechanisms that enable species to reduce water loss and maintain water balance as our planet gets warmer and more arid in the next few decades.
Show less
- Title
- IDENTIFICATION OF LTR RETROTRANSPOSONS, EVALUATION OF GENOME ASSEMBLY, AND MODELING RICE DOMESTICATION
- Creator
- Ou, Shujun
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
The majority of fundamental theories in genetics and evolution were proposed prior to the discovery of DNA as the genetic material in 1952. Those include Darwin’s theory of evolution (1859), Mendelian genetics (1865), Wright and Fisher’s population genetics (1918), and McClintock’s transposition of genetic elements (1951). Nevertheless, the underlining mechanisms of those theories were not fully elucidated till the appearance of DNA sequencing technology. At present, technological advances...
Show moreThe majority of fundamental theories in genetics and evolution were proposed prior to the discovery of DNA as the genetic material in 1952. Those include Darwin’s theory of evolution (1859), Mendelian genetics (1865), Wright and Fisher’s population genetics (1918), and McClintock’s transposition of genetic elements (1951). Nevertheless, the underlining mechanisms of those theories were not fully elucidated till the appearance of DNA sequencing technology. At present, technological advances have minimized the cost for sequencing genomes. The real bottleneck to establish genomic resources is the annotation of genomic sequences. Long Terminal Repeat (LTR) retrotransposon is a major type of transposable genetic elements and dominating plant genomes. We developed a new method called LTR_retriever for accurate annotation of LTR retrotransposons. Further, we studied genome dynamics, genome size variation, and polyploidy origin using LTR retrotransposons. The presence of LTR retrotransposons challenges current sequencing and assembly techniques due to their size and repetitiveness. We proposed an unbiased metric called LTR Assembly Index (LAI) which utilizes the assembled LTR retrotransposons to evaluate continuity of genome assembly. We revealed the massive gain of continuity for assembly sequenced based on long-read techniques over short-read methods, and further proposed a standardized classification system for genome quality based on LAI. With high-quality genomes, we can extend our knowledge about microevolution events using a population of genomes. The domestication history of rice is still unresolved due to its complicated demographic history. We collected, re-mapped, and re-analyzed 3,485 cultivated and wild rice resequencing accessions. With data imputation, a total of 17.7 million high-quality single-nucleotide polymorphisms (SNPs) were identified. Our dataset is highly accurate as verified by cross-platform Affymetrix Microarray data, with a pairwise concordance rate of 99%. Combining phylogeny, PCA, and ADMIXTURE analyses, we present profound diversification among rice ecotypes.
Show less
- Title
- Factors influencing morphological evolution of the limbs in fossorial mammals (sciuridae and soricidae)
- Creator
- Swiderski, Donald L.
- Date
- 1990
- Collection
- Electronic Theses & Dissertations
- Title
- FITNESS EFFECTS OF KINSHIP DEPEND ON ECOLOGICAL CONTEXT IN THE AMERICAN TOAD (ANAXYRUS AMERICANUS)
- Creator
- Garnett, Sara Christine
- Date
- 2018
- Collection
- Electronic Theses & Dissertations
- Description
-
Studies of cooperation often ask how variation in kinship impacts the inclusive fitness payoffs of altruism. Hamilton’s rule defines this as a function of cooperation's costs and benefits, which in principle can vary widely across ecological contexts. In this dissertation, I address how kinship influences fitness, how selection balances fitness costs and benefits, and how the effects of kinship modulate the effects of other aspects of an organism’s environment using the American toad system....
Show moreStudies of cooperation often ask how variation in kinship impacts the inclusive fitness payoffs of altruism. Hamilton’s rule defines this as a function of cooperation's costs and benefits, which in principle can vary widely across ecological contexts. In this dissertation, I address how kinship influences fitness, how selection balances fitness costs and benefits, and how the effects of kinship modulate the effects of other aspects of an organism’s environment using the American toad system. I first asked whether tadpoles use chemical cues to perceive differences in relatedness and whether this variation affects the response of several fitness proxies to environmental cues. I found that tadpole growth rates differed in response to cues of resource and kinship environment. In another experiment, growth rate differed based on cues of relative size, with larger tadpoles outperforming smaller partners. This was affected by kinship, at least for smaller tadpoles, who grew more rapidly with a sibling. This indicates that chemical cues communicate information necessary for tadpoles to perceive aspects of their environment, which interact with relatedness to affect fitness.I then investigated whether relatedness influences growth and development in experimental groups of tadpoles, and whether other factors – such as density and nutrient availability – impact the fitness benefits of grouping with kin. In our experiments, groups composed of full-sib kin reached metamorphosis faster and at a larger size than mixtures of different sib groups. The benefits of these fitness components were significant in more competitive, resource-scarce environments, but negligible in less-competitive, resource-abundant environments. Kinship and resource abundance have an interactive effect on the fitness components we measured. Finally, I assessed tadpole aggregation preferences for kin compared to non-kin in the presence and absence of predator cues. In the presence of predator cues, tadpoles may be more likely to choose kin over non-kin. While increased body mass might result in a tadpole being more likely to avoid conspecifics in the presence of predator cues, we saw that larger tadpoles potentially increased the probability of choosing kin over non-kin. While these results were not significant, indicating that predator avoidance is likely not the primary driver of kin aggregation behavior in this species, they are suggestive of a kin-selected benefit to grouping.Taken together, these results help us understand the contexts in which we might expect relatedness to affect fitness, which could further contribute to our understanding of the evolution of social behavior. This emphasizes that the fitness benefits of kin-directed behavior are not identical in all circumstances, and that the ratio of costs to benefits may drive the evolution of different strategies depending on the environment.
Show less
- Title
- Evolving Phenotypically Plastic Digital Organisms
- Creator
- Lalejini, Alexander
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
The ability to dynamically respond to cues from the environment is a fundamental feature of most adaptive systems. In biological systems, changes to an organism based on environmental cues is called phenotypic plasticity. Indeed, phenotypic plasticity underlies many of the adaptive traits and developmental patterns found in nature and serves as a key mechanism for responding to spatially or temporally variable environments. Most computer programs require phenotypic plasticity, as they must...
Show moreThe ability to dynamically respond to cues from the environment is a fundamental feature of most adaptive systems. In biological systems, changes to an organism based on environmental cues is called phenotypic plasticity. Indeed, phenotypic plasticity underlies many of the adaptive traits and developmental patterns found in nature and serves as a key mechanism for responding to spatially or temporally variable environments. Most computer programs require phenotypic plasticity, as they must respond dynamically to stimuli such as user input, sensor data, et cetera. As such, phenotypic plasticity also has practical applications in genetic programming, wherein we apply the natural principles of evolution to automatically synthesize computer programs rather than writing them by hand. In this dissertation, I achieve two synergistic aims: (1) I use populations of self-replicating computer programs (digital organisms) to empirically study the conditions under which adaptive phenotypic plasticity evolves and how its evolution shapes subsequent evolutionary outcomes; and (2) I transfer insights from biology to develop novel genetic programming techniques in order to evolve more responsive (i.e., phenotypically plastic) computer programs. First, I illustrate the importance of mutation rate, environmental change, and partially-plastic building blocks for the evolution of adaptive plasticity. Next, I show that adaptive phenotypic plasticity stabilizes populations against environmental change, allowing them to more easily retain novel adaptive traits. Finally, I improve our ability to evolve phenotypically plastic computer programs with three novel genetic programming techniques: (1) SignalGP, which provides mechanisms to control code expression based on environmental cues, (2) tag-based genetic regulation to adjust code expression based on current context, and (3) tag-accessed memory to provide more dynamic mechanisms for storing data.
Show less
- Title
- Evolutionarily adaptive mechanisms to biliary atresia in the sea lamprey
- Creator
- Yeh, Chu-Yin
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Lamprey species appeared over 500 million years and are therefore important evolutionary models for research interests ranging from neuronal signaling, genetics, to organ development. Among this group of jawless vertebrates, the sea lamprey is the largest and most widely distributed. It experiences a drastic life history, which includes a complete metamorphosis. During sea lamprey metamorphosis, the biliary tree and the gallbladder degenerate, in a process referred as biliary atresia. Atresia...
Show moreLamprey species appeared over 500 million years and are therefore important evolutionary models for research interests ranging from neuronal signaling, genetics, to organ development. Among this group of jawless vertebrates, the sea lamprey is the largest and most widely distributed. It experiences a drastic life history, which includes a complete metamorphosis. During sea lamprey metamorphosis, the biliary tree and the gallbladder degenerate, in a process referred as biliary atresia. Atresia of the biliary system occurs as a rare disease in human while it is a programmed developmental event in the sea lamprey. The sea lamprey can be used as a model to study the etiology and the adaptive mechanisms of biliary atresia, and the compensatory and adaptive mechanisms in cholestasis based on its various life events including biliary atresia. In this dissertation, I hypothesized that the sea lamprey had evolved unique mechanisms in both liver and intestine in adaption to biliary atresia. To test this hypothesis, I examined sea lamprey liver throughout metamorphic stages at the levels of morphology, histology, mRNA transcripts, and bile salt composition. My results indicate that the sea lamprey has evolved several possible adaptive mechanisms in coping with its developmental biliary atresia. As expected, the enterohepatic circulation is conserved in this basal vertebrate before its metamorphosis. However, the intestine synthesizes and secretes bile salts during and after metamorphosis, or biliary atresia. It is further elucidated that the metamorphic sea lamprey reversed enterohepatic circulation by in vivo perfusion and ex vivo intestine transport assays. It may be an adaptation to the lack of biliary system. Another adaptive mechanism in coping with the aductular life appeared to be dramatic changes in bile salt composition. Also, the down-regulation of cyp7a1, which encodes the rate limiting enzyme of bile acid synthesis, in liver during lamprey biliary atresia resembles the compensatory mechanism in many cholestatic animal models. All of the findings show that the sea lamprey has evolved to cope with biliary atresia and cholestasis. Understanding these mechanisms can shed light on developing treatment and management for patients suffering from biliary atresia and cholestasis.
Show less
- Title
- Evolution of laboratory and natural populations of Escherichia coli
- Creator
- Maddamsetti, Rohan
- Date
- 2016
- Collection
- Electronic Theses & Dissertations
- Description
-
My dissertation spans two dichotomies: evolution in the laboratory versus evolution in nature, and asexual versus sexual evolutionary dynamics. In Chapter 1 I describe asexual evolutionary dynamics in one population of Lenski’s long-term evolution experiment with Escherichia coli. I describe cohorts of mutations that sweep to fixation together as characteristic of clonal interference dynamics. I also describe an ecological interaction that evolved and then went extinct after thousands of...
Show moreMy dissertation spans two dichotomies: evolution in the laboratory versus evolution in nature, and asexual versus sexual evolutionary dynamics. In Chapter 1 I describe asexual evolutionary dynamics in one population of Lenski’s long-term evolution experiment with Escherichia coli. I describe cohorts of mutations that sweep to fixation together as characteristic of clonal interference dynamics. I also describe an ecological interaction that evolved and then went extinct after thousands of generations, and discuss how such interactions affect cohorts of mutations. In Chapter 2 I report that conserved core genes tend to be targets of selection in the long-term experiment. In Chapter 3, I investigate the surprising observation that synonymous genetic diversity is not uniform across the genomes of natural E. coli isolates. This observation is surprising because in clonal organisms with a constant point mutation rate, synonymous diversity should be constant across the genome. I use patterns of synonymous mutations in the long-term experiment to argue that genome-wide variation in the mutation rate does not adequately explain patterns of synonymous genetic diversity. In Chapter 4, I propose that recombination and gene flow could account for genome-wide variation in synonymous genetic diversity. In Chapter 5, I analyze E. coli genomes isolated from an evolution experiment with recombination in which E. coli K-12 with known growth defects could donate genetic material to recipient populations founded by long-term experiment clones. The degree of recombination varied dramatically across sequenced clones. The strongest predictor of successful transfer was proximity to the oriT origin of transfer in the K-12 donors. Donor alleles close to oriT replaced their recipient counterparts at a high rate, and in many of those cases, known beneficial mutations in the recipients were replaced by donor alleles.
Show less
- Title
- Evolution of distributed behavior
- Creator
- Knoester, David B.
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
In this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of...
Show moreIn this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of distributed behavior that require communication: data-driven behaviors, where semantically meaningful data is transmitted between individuals; temporal behaviors, which are based on the relative timing of individuals' actions; and structural behaviors, which are responsible for maintaining the underlying communication network connecting individuals. Our results demonstrate that evolutionary algorithms can discover groups of individuals that exhibit each of these different classes of distributed behavior, and that these behaviors can be discovered both in isolation (e.g., evolving a purely data-driven algorithm) and in concert (e.g., evolving an algorithm that includes both data-driven and structural behaviors). As part of this research, we show that evolutionary algorithms can discover novel heuristics for distributed computing, and hint at a new class of distributed algorithm enabled by such studies.The majority of this research was conducted with the Avida platform for digital evolution, a system that has been proven to aid researchers in understanding the biological process of evolution by natural selection. For this reason, the results presented in this dissertation provide the foundation for future studies that examine how distributed behaviors evolved in nature. The close relationship between evolutionary biology and evolutionary algorithms thus aids our study of evolving algorithms for the next generation of distributed computing systems.
Show less
- Title
- Evolution of cooperation in the light of information theory
- Creator
- Mirmomeni, Masoud
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
Cooperation is ubiquitous in different biological levels and is necessary for evolution to shape the life and create new forms of organization. Genes cooperate in controlling cells; cells efficiently collaborate together to produce cohesive multi-cellular organisms; members of insect colonies and animal clans cooperate in protecting the colony and providing food. Cooperation means that members of a group bear a cost, c, for another individuals to earn a benefit, b. While cooperators of the...
Show moreCooperation is ubiquitous in different biological levels and is necessary for evolution to shape the life and create new forms of organization. Genes cooperate in controlling cells; cells efficiently collaborate together to produce cohesive multi-cellular organisms; members of insect colonies and animal clans cooperate in protecting the colony and providing food. Cooperation means that members of a group bear a cost, c, for another individuals to earn a benefit, b. While cooperators of the group help others by paying a cost, defectors receive the benefits of this altruistic behavior without providing any service in return to the group. To address this dilemma, here we use a game theoretic approach to model and study evolutionary dynamics that can lead to unselfish behavior. Evolutionary game theory is an approach to study frequency-dependent systems. In evolutionary games the fitness of individuals depends on the relative abundance of the various types in the population. We explore different strategies and different games such as iterated games between players with conditional strategies, multi player games, and iterated games between fully stochastic strategies in noisy environments to find the necessity conditions that lead to cooperation. Interestingly, we see that in all of these games communication is the key factor for maintaining cooperation among selfish individuals. We show that communication and information exchange is necessary for the emergence of costly altruism, and to maintain cooperation in the group there should be minimum rate of communication between individuals. We quantify this minimum amount of information exchange, which is necessary for individuals to exhibit cooperative behavior, by defining a noisy communication channel between them in iterated stochastic games and measuring the communication rate (in bits) during the break down of cooperation.
Show less
- Title
- Evolution and evolvability in changing environments
- Creator
- Canino-Koning, Rosangela
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
"The specific meaning of the term 'evolvability' is heavily debated, but most definitions can be summarized as: the potential of populations and genomes to produce adaptive variation and complex structures in response to mutation and selection. Changing environments are thought to play a significant role in shaping and promoting evolvability through alternating selective pressures. In this dissertation, I will discuss my recent research on the interplay between changing environments,...
Show more"The specific meaning of the term 'evolvability' is heavily debated, but most definitions can be summarized as: the potential of populations and genomes to produce adaptive variation and complex structures in response to mutation and selection. Changing environments are thought to play a significant role in shaping and promoting evolvability through alternating selective pressures. In this dissertation, I will discuss my recent research on the interplay between changing environments, evolvability, genetic architecture, and the evolution of horizontal gene transfer (HGT), an information-rich mutagenic function that is ubiquitous in nature. Before delving into my own research, however, I begin in the first chapter by providing a survey of current literature on each of these topics, with emphases on how they are believed to arise, how they affect subsequent evolution, and how they relate to each other. Genetic architecture and population dynamics clearly have a complex interplay in ongoing evolutionary dynamics. Evolutionary history, population diversity, modularity, and task size all play a role in determining the location and characteristics of populations in genotype space, and alter the genotype to phenotype map that permits neutral genetic variation. All of these features contribute to evolvability. In Chapter 2, I demonstrate how changing environments provided a sufficient selective pressure to produce quasi-modular genetic architectures that allow for rapid adaptation to the meta-environment of environmental change. Horizontal gene transfer is a highly regulated, ubiquitous, and ancient mechanism for exchanging genetic material between unrelated organisms. In the third chapter, I explore conditions which may have led to the evolution of horizontal gene transfer through transformation, and identify mechanisms that might support its continued performance. In Chapter 4, I compare the fitness and phenotypic effects of the HGT process against other types of increasingly less information rich mutational operators. I demonstrate that not only is HGT selected for in harsh changing environments, but that other mutagenic instructions that contain less information, or provide lesser fitness benefits are not similarly selected for. In the fifth chapter, I explore the long-term evolutionary potential of populations evolved in changing environments by evolving two different populations, one evolved in a minimal changing environment, and the other in a rich changing environment, and exposing them to a brand new environment. I demonstrate that while populations adapted to harsh changing environments are indeed able to adapt quickly to previously seen environmental changes, that these populations do not fare as well in brand new environments. Rather, benign changing environments perform best in measures of task discovery and exploration. In the final chapter, I conclude with a synthesis of my results, along with implications for the field, as well as identification of some new directions for pursuing my research into changing environments."--Pages ii-iii.
Show less
- Title
- Digital Evolution in Experimental Phylogenetics and Evolution Education
- Creator
- Kohn, Cory
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
The creation and evaluation of known evolutionary histories and the implementation of student investigatory experiences on evolution are difficult endeavors that have only recently been feasible. The research presented in this dissertation is related in their shared use of digital evolution with Avidians as a model study system, both to conduct science research in experimental phylogenetics and to conduct education research in curricular intervention to aid student understanding.I first...
Show moreThe creation and evaluation of known evolutionary histories and the implementation of student investigatory experiences on evolution are difficult endeavors that have only recently been feasible. The research presented in this dissertation is related in their shared use of digital evolution with Avidians as a model study system, both to conduct science research in experimental phylogenetics and to conduct education research in curricular intervention to aid student understanding.I first present background discussions on the Avidian digital evolution study system—as implemented in Avida and Avida-ED—and its favorable use in experimental phylogenetics and biology education owing to its greater biological realism than computational simulations, and greater utility and generality than biological systems. Prior work on conducting experimental evolution for use in phylogenetics and work on developing undergraduate lab curricula using experimental evolution are also reviewed. I establish digital evolution as an effective method for phylogenetic inference validation by demonstrating that results from a known Avidian evolutionary history are concordant, under similar conditions, to established biological experimental phylogenetics work. I then further demonstrate the greater utility and generality of digital evolution over biological systems by experimentally testing how phylogenetic accuracy may be reduced by complex evolutionary processes operating singly or in combination, including absolute and relative degrees of evolutionary change between lineages (i.e., inferred branch lengths), recombination, and natural selection. These results include that directional selection aids phylogenetic inference, while stabilizing selection impedes it. By evaluating clade accuracy and clade resolvability across treatments, I evaluate measures of tree support and its presentation in the form of consensus topologies and I offer several general recommendations for systematists. Using a larger and more biologically realistic experimental design, I systematically examine a few of the complex processes that are hypothesized to affect phylogenetic accuracy—natural selection, recombination, and deviations from the model of evolution. By analyzing the substitutions that occurred and calculating selection coefficients for derived alleles throughout their evolutionary trajectories to fixation, I show that molecular evolution in these experiments is complex and proceeding largely as would be expected for biological populations. Using these data to construct empirical substitution models, I demonstrate that phylogenetic inference is incredibly robust to significant molecular evolution model deviations. I show that neutral evolution in the presence of always-occurring population processes, such as clonal or Hill-Robertson interference and lineage sorting, result in reduced clade support, and that selection and especially recombination, including their joint occurrence, restore this otherwise-reduced phylogenetic accuracy. Finally, this work demonstrates that inferred branch lengths are often quite inaccurate despite clade support being accurate. While phylogenetic inference methods performed relatively well in both theoretically facile and challenging molecular evolution scenarios, their accuracy in clade support might be a remarkable case of being right for misguided reasons, since branch length inference were largely inaccurate, and drastically different models of evolution made little difference. This work highlights the need for further research that evaluates phylogenetic methods under experimental conditions and suggests that digital evolution has a role here. Finally, I examine student understanding of the importance of biological variation in the context of a course featuring a digital evolution lab. I first describe the Avida-ED lab curriculum and its fulfillment of calls for reform in education. Then I describe the specific education context and other course features that aim to address student conceptualization of variation. I present a modified published assessment on transformational and variational understanding and findings regarding student understanding of variation within an evolution education progression. Finally, I offer suggestions on incorporating course material to engage student understanding of variation.
Show less
- Title
- Contextual influences on undergraduate biology students' reasoning and representations of evolutionary concepts
- Creator
- de Lima, Joelyn
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Context is the background or the settings of an event or idea. It is only when events or ideas are considered within the context in which they occur that they can be fully understood. In education, the application of knowledge communicated in one context to a different one is a central feature of learning. However, knowledge transfer can be affected by multiple factors including contexts used. Context plays a vital role in both shaping students’ learning and in eliciting their knowledge....
Show moreContext is the background or the settings of an event or idea. It is only when events or ideas are considered within the context in which they occur that they can be fully understood. In education, the application of knowledge communicated in one context to a different one is a central feature of learning. However, knowledge transfer can be affected by multiple factors including contexts used. Context plays a vital role in both shaping students’ learning and in eliciting their knowledge. Therefore, understanding how context can help or hinder learning and how context impacts knowledge assessment is important for improving science learning outcomes.For my dissertation, I studied contextual influences on the ways students reason and represent their knowledge. My studies explored two types of contexts: surface features of prompts provided to students (e.g., organism used) and the mode of response requested (e.g., written narratives vs constructed models). I analysed the effect of prompt surface features on the content of students’ written responses and on the architecture of models they constructed to explain evolution by natural selection. I also analysed the effect of mode on the content and level of scientific plausibility of students’ responses. In addition, I explored the association between instruction and prior achievement and susceptibility to contextual influences.My results indicate that prompt contextual features and mode of response are eliciting differences in the content of students’ representations. Contextual susceptibility decreased with instruction and higher prior academic achievement. This could indicate that they are novice learners and have a fragile understanding of either the subject matter (evolution), the alternative representation that was required (constructing models), or of both the subject matter and the representation. Incorporating multiple contexts and modes of assessment has potential to generate a more holistic view of students’ understanding and may promote greater transfer by requiring students to think and reason across contexts.
Show less