You are here
Search results
(1 - 20 of 47)
Pages
- Title
- Using Eventual Consistency to Improve the Performance of Distributed Graph Computation In Key-Value Stores
- Creator
- Nguyen, Duong Ngoc
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Key-value stores have gained increasing popularity due to their fast performance and simple data model. A key-value store usually consists of multiple replicas located in different geographical regions to provide higher availability and fault tolerance. Consequently, a protocol is employed to ensure that data are consistent across the replicas.The CAP theorem states the impossibility of simultaneously achieving three desirable properties in a distributed system, namely consistency,...
Show moreKey-value stores have gained increasing popularity due to their fast performance and simple data model. A key-value store usually consists of multiple replicas located in different geographical regions to provide higher availability and fault tolerance. Consequently, a protocol is employed to ensure that data are consistent across the replicas.The CAP theorem states the impossibility of simultaneously achieving three desirable properties in a distributed system, namely consistency, availability, and network partition tolerance. Since failures are a norm in distributed systems and the capability to maintain the service at an acceptable level in the presence of failures is a critical dependability and business requirement of any system, the partition tolerance property is a necessity. Consequently, the trade-off between consistency and availability (performance) is inevitable. Strong consistency is attained at the cost of slow performance and fast performance is attained at the cost of weak consistency, resulting in a spectrum of consistency models suitable for different needs. Among the consistency models, sequential consistency and eventual consistency are two common ones. The former is easier to program with but suffers from poor performance whereas the latter suffers from potential data anomalies while providing higher performance.In this dissertation, we focus on the problem of what a designer should do if he/she is asked to solve a problem on a key-value store that provides eventual consistency. Specifically, we are interested in the approaches that allow the designer to run his/her applications on an eventually consistent key-value store and handle data anomalies if they occur during the computation. To that end, we investigate two options: (1) Using detect-rollback approach, and (2) Using stabilization approach. In the first option, the designer identifies a correctness predicate, say $\Phi$, and continues to run the application as if it was running on sequential consistency, as our system monitors $\Phi$. If $\Phi$ is violated (because the underlying key-value store provides eventual consistency), the system rolls back to a state where $\Phi$ holds and the computation is resumed from there. In the second option, the data anomalies are treated as state perturbations and handled by the convergence property of stabilizing algorithms.We choose LinkedIn's Voldemort key-value store as the example key-value store for our study. We run experiments with several graph-based applications on Amazon AWS platform to evaluate the benefits of the two approaches. From the experiment results, we observe that overall, both approaches provide benefits to the applications when compared to running the applications on sequential consistency. However, stabilization provides higher benefits, especially in the aggressive stabilization mode which trades more perturbations for no locking overhead.The results suggest that while there is some cost associated with making an algorithm stabilizing, there may be a substantial benefit in revising an existing algorithm for the problem at hand to make it stabilizing and reduce the overall runtime under eventual consistency.There are several directions of extension. For the detect-rollback approach, we are working to develop a more general rollback mechanism for the applications and improve the efficiency and accuracy of the monitors. For the stabilization approach, we are working to develop an analytical model for the benefits of eventual consistency in stabilizing programs. Our current work focuses on silent stabilization and we plan to extend our approach to other variations of stabilization.
Show less
- Title
- Towards a Robust Unconstrained Face Recognition Pipeline with Deep Neural Networks
- Creator
- Shi, Yichun
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Face recognition is a classic problem in the field of computer vision and pattern recognition due to its wide applications in real-world problems such as access control, identity verification, physical security, surveillance, etc. Recent progress in deep learning techniques and the access to large-scale face databases has lead to a significant improvement of face recognition accuracy under constrained and semi-constrained scenarios. Deep neural networks are shown to surpass human performance...
Show moreFace recognition is a classic problem in the field of computer vision and pattern recognition due to its wide applications in real-world problems such as access control, identity verification, physical security, surveillance, etc. Recent progress in deep learning techniques and the access to large-scale face databases has lead to a significant improvement of face recognition accuracy under constrained and semi-constrained scenarios. Deep neural networks are shown to surpass human performance on Labeled Face in the Wild (LFW), which consists of celebrity photos captured in the wild. However, in many applications, e.g. surveillance videos, where we cannot assume that the presented face is under controlled variations, the performance of current DNN-based methods drop significantly. The main challenges in such an unconstrained face recognition problem include, but are not limited to: lack of labeled data, robust face normalization, discriminative representation learning and the ambiguity of facial features caused by information loss.In this thesis, we propose a set of methods that attempt to address the above challenges in unconstrained face recognition systems. Starting from a classic deep face recognition pipeline, we review how each step in this pipeline could fail on low-quality uncontrolled input faces, what kind of solutions have been studied before, and then introduce our proposed methods. The various methods proposed in this thesis are independent but compatible with each other. Experiment on several challenging benchmarks, e.g. IJB-C and IJB-S show that the proposed methods are able to improve the robustness and reliability of deep unconstrained face recognition systems. Our solution achieves state-of-the-art performance, i.e. 95.0\% TAR@FAR=0.001\% on IJB-C dataset and 61.98\% Rank1 retrieval rate on the surveillance-to-booking protocol of IJB-S dataset.
Show less
- Title
- Towards Robust and Secure Face Recognition : Defense Against Physical and Digital Attacks
- Creator
- Deb, Debayan
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
The accuracy, usability, and touchless acquisition of state-of-the-art automated face recognition systems (AFR) have led to their ubiquitous adoption in a plethora of domains, including mobile phone unlock, access control systems, and payment services. Despite impressive recognition performance, prevailing AFR systems remain vulnerable to the growing threat of face attacks which can be launched in both physical and digital domains. Face attacks can be broadly classified into three attack...
Show moreThe accuracy, usability, and touchless acquisition of state-of-the-art automated face recognition systems (AFR) have led to their ubiquitous adoption in a plethora of domains, including mobile phone unlock, access control systems, and payment services. Despite impressive recognition performance, prevailing AFR systems remain vulnerable to the growing threat of face attacks which can be launched in both physical and digital domains. Face attacks can be broadly classified into three attack categories: (i) Spoof attacks: artifacts in the physical domain (e.g., 3D masks, eye glasses, replaying videos), (ii) Adversarial attacks: imperceptible noises added to probes for evading AFR systems, and (iii) Digital manipulation attacks: entirely or partially modified photo-realistic faces using generative models. Each of these categories is composed of different attack types. For example, each spoof medium, e.g., 3D mask and makeup, constitutes one attack type. Likewise, in adversarial and digital manipulation attacks, each attack model, designed by unique objectives and losses, may be considered as one attack type. Thus, the attack categories and types form a 2-layer tree structure encompassing the diverse attacks. Such a tree will inevitably grow in the future. Given the growing dissemination of ``fake news” and "deepfakes", the research community and social media platforms alike are pushing towards generalizable defense against continuously evolving and sophisticated face attacks. In this dissertation, we first propose a set of defense methods that achieve state-of-the-art performance in detecting attack types within individual attack categories, both physical (e.g., face spoofs) and digital (e.g., adversarial faces and digital manipulation), then introduce a method for simultaneously safeguarding against each attack.First, in an effort to impart generalizability and interpretability to face spoof detection systems, we propose a new face anti-spoofing framework specifically designed to detect unknown spoof types, namely, Self-Supervised Regional Fully Convolutional Network (SSR-FCN), that is trained to learn local discriminative cues from a face image in a self-supervised manner. The proposed framework improves generalizability while maintaining the computational efficiency of holistic face anti-spoofing approaches (< 4 ms on a Nvidia GTX 1080Ti GPU). The proposed method is also interpretable since it localizes which parts of the face are labeled as spoofs. Experimental results show that SSR-FCN can achieve True Detection Rate (TDR) = 65% @ 2.0% False Detection Rate (FDR) when evaluated on a dataset comprising of 13 different spoof types under unknown attacks while achieving competitive performances under standard benchmark face anti-spoofing datasets (Oulu-NPU, CASIA-MFSD, and Replay-Attack).Next, we address the problem of defending against adversarial attacks. We first propose, AdvFaces, an automated adversarial face synthesis method that learns to generate minimal perturbations in the salient facial regions. Once AdvFaces is trained, it can automatically evade state-of-the-art face matchers with attack success rates as high as 97.22% and 24.30% at 0.1% FAR for obfuscation and impersonation attacks, respectively. We then propose a new self-supervised adversarial defense framework, namely FaceGuard, that can automatically detect, localize, and purify a wide variety of adversarial faces without utilizing pre-computed adversarial training samples. FaceGuard automatically synthesizes diverse adversarial faces, enabling a classifier to learn to distinguish them from bona fide faces. Concurrently, a purifier attempts to remove the adversarial perturbations in the image space. FaceGuard can achieve 99.81%, 98.73%, and 99.35% detection accuracies on LFW, CelebA, and FFHQ, respectively, on six unseen adversarial attack types.Finally, we take the first steps towards safeguarding AFR systems against face attacks in both physical and digital domains. We propose a new unified face attack detection framework, namely UniFAD, which automatically clusters similar attacks and employs a multi-task learning framework to learn salient features to distinguish between bona fides and coherent attack types. The proposed UniFAD can detect face attacks from 25 attack types across all 3 attack categories with TDR = 94.73% @ 0.2% FDR on a large fake face dataset, namely GrandFake. Further, UniFAD can identify whether attacks are adversarial, digitally manipulated, or contain spoof artifacts, with 97.37% classification accuracy.
Show less
- Title
- The Evolutionary Origins of Cognition : Understanding the early evolution of biological control systems and general intelligence
- Creator
- Carvalho Pontes, Anselmo
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
In the last century, we have made great strides towards understanding natural cognition and recreating it artificially. However, most cognitive research is still guided by an inadequate theoretical framework that equates cognition to a computer system executing a data processing task. Cognition, whether natural or artificial, is not a data processing system; it is a control system.At cognition's core is a value system that allows it to evaluate current conditions and decide among two or more...
Show moreIn the last century, we have made great strides towards understanding natural cognition and recreating it artificially. However, most cognitive research is still guided by an inadequate theoretical framework that equates cognition to a computer system executing a data processing task. Cognition, whether natural or artificial, is not a data processing system; it is a control system.At cognition's core is a value system that allows it to evaluate current conditions and decide among two or more courses of action. Memory, learning, planning, and deliberation, rather than being essential cognitive abilities, are features that evolved over time to support the primary task of deciding “what to do next”. I used digital evolution to recreate the early stages in the evolution of natural cognition, including the ability to learn. Interestingly, I found cognition evolves in a predictable manner, with more complex abilities evolving in stages, by building upon previous simpler ones. I initially investigated the evolution of dynamic foraging behaviors among the first animals known to have a central nervous system, Ediacaran microbial mat miners. I then followed this up by evolving more complex forms of learning. I soon encountered practical limitations of the current methods, including exponential demand of computational resources and genetic representations that were not conducive to further scaling. This type of complexity barrier has been a recurrent issue in digital evolution. Nature, however, is not limited in the same ways; through evolution, it has created a language to express robust, modular, and flexible control systems of arbitrary complexity and apparently open-ended evolvability. The essential features of this language can be captured in a digital evolution platform. As an early demonstration of this, I evolved biologically plausible regulatory systems for virtual cyanobacteria. These systems regulate the cells' growth, photosynthesis and replication given the daily light cycle, the cell's energy reserves, and levels of stress. Although simple, this experimental system displays dynamics and decision-making mechanisms akin to biology, with promising potential for open-ended evolution of cognition towards general intelligence.
Show less
- Title
- The Evolution of Fundamental Neural Circuits for Cognition in Silico
- Creator
- Tehrani-Saleh, Ali
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Despite decades of research on intelligence and fundamental components of cognition, we still know very little about the structure and functionality of nervous systems. Questions in cognition and intelligent behavior are addressed by scientists in the fields of behavioral biology, neuroscience, psychology, and computer science. Yet it is difficult to reverse engineer observed sophisticated intelligent behaviors in animals and even more difficult to understand their underlying mechanisms.In...
Show moreDespite decades of research on intelligence and fundamental components of cognition, we still know very little about the structure and functionality of nervous systems. Questions in cognition and intelligent behavior are addressed by scientists in the fields of behavioral biology, neuroscience, psychology, and computer science. Yet it is difficult to reverse engineer observed sophisticated intelligent behaviors in animals and even more difficult to understand their underlying mechanisms.In this dissertation, I use a recently-developed neuroevolution platform -called Markov brain networks- in which Darwinian selection is used to evolve both structure and functionality of digital brains. I use this platform to study some of the most fundamental cognitive neural circuits: 1) visual motion detection, 2) collision-avoidance based on visual motion cues, 3) sound localization, and 4) time perception. In particular, I investigate both the selective pressures and environmental conditions in the evolution of these cognitive components, as well as the circuitry and computations behind them. This dissertation lays the groundwork for an evolutionary agent-based method to study the neural circuits for cognition in silico.
Show less
- Title
- TEACHERS IN SOCIAL MEDIA : A DATA SCIENCE PERSPECTIVE
- Creator
- Karimi, Hamid
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Social media has become an integral part of human life in the 21st century. The number of social media users was estimated to be around 3.6 billion individuals in 2020. Social media platforms (e.g., Facebook) have facilitated interpersonal communication, diffusion of information, the creation of groups and communities, to name a few. As far as education systems are concerned, online social media has transformed and connected traditional social networks within the schoolhouse to a broader and...
Show moreSocial media has become an integral part of human life in the 21st century. The number of social media users was estimated to be around 3.6 billion individuals in 2020. Social media platforms (e.g., Facebook) have facilitated interpersonal communication, diffusion of information, the creation of groups and communities, to name a few. As far as education systems are concerned, online social media has transformed and connected traditional social networks within the schoolhouse to a broader and expanded world outside. In such an expanded virtual space, teachers engage in various activities within their communities, e.g., exchanging instructional resources, seeking new teaching methods, engaging in online discussions. Therefore, given the importance of teachers in social media and its tremendous impact on PK-12 education, in this dissertation, we investigate teachers in social media from a data science perspective. Our investigation in this direction is essentially an interdisciplinary endeavor bridging modern data science and education. In particular, we have made three contributions, as briefly discussed in the following. Current teachers in social media studies suffice to a small number of surveyed teachers while thousands of other teachers are on social media. This hinders us from conducting large-scale data-driven studies pertinent to teachers in social media. Aiming to overcome this challenge and further facilitate data-driven studies related to teachers in social media, we propose a novel method that automatically identifies teachers on Pinterest, an image-based social media popular among teachers. In this framework, we formulate the teacher identification problem as a positive unlabelled (PU) learning where positive samples are surveyed teachers, and unlabelled samples are their online friends. Using our framework, we build the largest dataset of teachers on Pinterest. With this dataset at our disposal, we perform an exploratory analysis of teachers on Pinterest while considering their genders. Our analysis incorporates two crucial aspects of teachers in social media. First, we investigate various online activities of male and female teachers, e.g., topics and sources of their curated resources, the professional language employed to describe their resources. Second, we investigate male and female teachers in the context of the social network (the graph) they belong to, e.g., structural centrality, gender homophily. Our analysis and findings in this part of the dissertation can serve as a valuable reference for many entities concerned with teachers' gender, e.g., principals, state, and federal governments.Finally, in the third part of the dissertation, we shed light on the diffusion of teacher-curated resources on Pinterest. First, we introduce three measures to characterize the diffusion process. Then, we investigate these three measures while considering two crucial characteristics of a resource, e.g., the topic and the source. Ultimately, we investigate how teacher attributes (e.g., the number of friends) affect the diffusion of their resources. The conducted diffusion analysis is the first of its kind and offers a deeper understating of the complex mechanism driving the diffusion of resources curated by teachers on Pinterest.
Show less
- Title
- Some contributions to semi-supervised learning
- Creator
- Mallapragada, Paven Kumar
- Date
- 2010
- Collection
- Electronic Theses & Dissertations
- Title
- Sequence learning with side information : modeling and applications
- Creator
- Wang, Zhiwei
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Sequential data is ubiquitous and modeling sequential data has been one of the most long-standing computer science problems. The goal of sequence modeling is to represent a sequence with a low-dimensional dense vector that incorporates as much information as possible. A fundamental type of information contained in sequences is the sequential dependency and a large body of research has been devoted to designing effective ways to capture it. Recently, sequence learning models such as recurrent...
Show moreSequential data is ubiquitous and modeling sequential data has been one of the most long-standing computer science problems. The goal of sequence modeling is to represent a sequence with a low-dimensional dense vector that incorporates as much information as possible. A fundamental type of information contained in sequences is the sequential dependency and a large body of research has been devoted to designing effective ways to capture it. Recently, sequence learning models such as recurrent neural networks (RNNs), temporal convolutional networks, and Transformer have gained tremendous popularity in modeling sequential data. Equipped with effective structures such as gating mechanisms, large receptive fields, and attention mechanisms, these models have achieved great success in many applications of a wide range of fields.However, besides the sequential dependency, sequences also exhibit side information that remains under-explored. Thus, in the thesis, we study the problem of sequence learning with side information. Specifically, we present our efforts devoted to building sequence learning models to effectively and efficiently capture side information that is commonly seen in sequential data. In addition, we show that side information can play an important role in sequence learning tasks as it can provide rich information that is complementary to the sequential dependency. More importantly, we apply our proposed models in various real-world applications and have achieved promising results.
Show less
- Title
- Semi=supervised learning with side information : graph-based approaches
- Creator
- Liu, Yi
- Date
- 2007
- Collection
- Electronic Theses & Dissertations
- Title
- Semi-Adversarial Networks for Imparting Demographic Privacy to Face Images
- Creator
- Mirjalili, Vahid
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
Face recognition systems are being widely used in a number of applications ranging from user authentication in hand-held devices to identifying people of interest from surveillance videos. In several such applications, face images are stored in a central database. In such cases, it is necessary to ensure that the stored face images are used for the stated purpose and not for any other purposes. For example, advanced machine learning methods can be used to automatically extract age, gender,...
Show moreFace recognition systems are being widely used in a number of applications ranging from user authentication in hand-held devices to identifying people of interest from surveillance videos. In several such applications, face images are stored in a central database. In such cases, it is necessary to ensure that the stored face images are used for the stated purpose and not for any other purposes. For example, advanced machine learning methods can be used to automatically extract age, gender, race and so on from the stored face images. These cues are often referred to as demographic attributes. When such attributes are extracted without the consent of individuals, it can lead to potential violation of privacy. Indeed, the European Union's General Data Protection and Regulation (GDPR) requires the primary purpose of data collection to be declared to individuals prior to data collection. GDPR strictly prohibits the use of this data for any purpose beyond what was stated. In this thesis, we consider this type of regulation and develop methods for enhancing the privacy accorded to face images with respect to the automatic extraction of demogrpahic attributes. In particular, we design algorithms that modify input face images such that certain specified demogrpahic attributes cannot be reliably extracted from them. At the same time, the biometric utility of the images is retained, i.e., the modified face images can still be used for matching purposes. The primary objective of this research is not necessarily to fool human observers, but rather to prevent machine learning methods from automatically extracting such information. The following are the contributions of this thesis. First, we design a convolutional autoencoder known as a semi-adversarial neural network, or SAN, that perturbs input face images such that they are adversarial with respect to an attribute classifier (e.g., gender classifier) while still retaining their utility with respect to a face matcher. Second, we develop techniques to ensure that the adversarial outputs produced by the SAN are generalizable across multiple attribute classifiers, including those that may not have been used during the training phase. Third, we extend the SAN architecture and develop a neural network known as PrivacyNet, that can be used for imparting multi-attribute privacy to face images. Fourth, we conduct extensive experimental analysis using several face image datasets to evaluate the performance of the proposed methods as well as visualize the perturbations induced by the methods. Results suggest the benefits of using semi-adversarial networks to impart privacy to face images while still retaining the biometric utility of the ensuing face images.
Show less
- Title
- SIGN LANGUAGE RECOGNIZER FRAMEWORK BASED ON DEEP LEARNING ALGORITHMS
- Creator
- Akandeh, Atra
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
According to the World Health Organization (WHO, 2017), 5% of the world’s population have hearing loss. Most people with hearing disabilities communicate via sign language, which hearing people find extremely difficult to understand. To facilitate communication of deaf and hard of hearing people, developing an efficient communication system is a necessity. There are many challenges associated with the Sign Language Recognition (SLR) task, namely, lighting conditions, complex background,...
Show moreAccording to the World Health Organization (WHO, 2017), 5% of the world’s population have hearing loss. Most people with hearing disabilities communicate via sign language, which hearing people find extremely difficult to understand. To facilitate communication of deaf and hard of hearing people, developing an efficient communication system is a necessity. There are many challenges associated with the Sign Language Recognition (SLR) task, namely, lighting conditions, complex background, signee body postures, camera position, occlusion, complexity and large variations in hand posture, no word alignment, coarticulation, etc.Sign Language Recognition has been an active domain of research since the early 90s. However, due to computational resources and sensing technology constraints, limited advancement has been achieved over the years. Existing sign language translation systems mostly can translate a single sign at a time, which makes them less effective in daily-life interaction. This work develops a novel sign language recognition framework using deep neural networks, which directly maps videos of sign language sentences to sequences of gloss labels by emphasizing critical characteristics of the signs and injecting domain-specific expert knowledge into the system. The proposed model also allows for combining data from variant sources and hence combating limited data resources in the SLR field.
Show less
- Title
- Replaying Life's Virtual Tape : Examining the Role of History in Experiments with Digital Organisms
- Creator
- Bundy, Jason Nyerere
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Evolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not...
Show moreEvolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not everyone was convinced. Some believed that chance was the primary driver of evolutionary change, while others insisted that natural selection was the most powerful influence. Since then, “replaying life’s tape” has become a core method in experimental evolution for measuring the relative contributions of adaptation, chance, and history. In this dissertation, I focus on the effects associated with history in evolving populations of digital organisms—computer programs that self-replicate, mutate, compete, and evolve in virtual environments. In Chapter 1, I discuss the philosophical significance of Gould’s thought experiment and its influence on experimental methods. I argue that his thought experiment was a challenge to anthropocentric reasoning about natural history that is still popular, particularly outside of the scientific community. In this regard, it was his way of advocating for a “radical” view of evolution. In Chapter 2—Richard Lenski, Charles Ofria, and I describe a two-phase, virtual, “long-term” evolution experiment with digital organisms using the Avida software. In Phase I, we evolved 10 replicate populations, in parallel, from a single genotype for around 65,000 generations. This part of the experiment is similar to the design of Lenski’s E. coli Long-term Evolution Experiment (LTEE). We isolated the dominant genotype from each population around 3,000 generations (shallow history) into Phase I and then again at the end of Phase I (deep history). In Phase II, we evolved 10 populations from each of the genotypes we isolated from Phase I in two new environments, one similar and one dissimilar to the old environment used for Phase I. Following Phase II, we estimated the contributions of adaptation, chance, and history to the evolution of fitness and genome length in each new environment. This unique experimental design allowed us to see how the contributions of adaptation, chance, and history changed as we extended the depth of history from Phase I. We were also able to determine whether the results depended on the extent of environmental change (similar or dissimilar new environment). In Chapter 3, we report an extended analysis of the experiment from the previous chapter to further examine how extensive adaptation to the Phase I environment shaped the evolution of replicates during Phase II. We show how the form of pleiotropy (antagonistic or synergistic) between the old (Phase I) and new (Phase II) habitats was influenced by the depth of history from Phase I (shallow or deep) and the extent of environmental change (similar or dissimilar new environment). In the final chapter Zachary Blount, Richard Lenski, and I describe an exercise we developed using the educational version of Avida (Avida-ED). The exercise features a two-phase, “replaying life’s tape” activity. Students are able to explore how the unique history of founders that we pre-evolved during Phase I influences the acquisition of new functions by descendent populations during Phase II, which the students perform during the activity.
Show less
- Title
- Quantitative methods for calibrated spatial measurements of laryngeal phonatory mechanisms
- Creator
- Ghasemzadeh, Hamzeh
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
The ability to perform measurements is an important cornerstone and the prerequisite of any quantitative research. Measurements allow us to quantify inputs and outputs of a system, and then to express their relationships using concise mathematical expressions and models. Those models would then enable us to understand how a target system works and to predict its output for changes in the system parameters. Conversely, models would enable us to determine the proper parameters of a system for...
Show moreThe ability to perform measurements is an important cornerstone and the prerequisite of any quantitative research. Measurements allow us to quantify inputs and outputs of a system, and then to express their relationships using concise mathematical expressions and models. Those models would then enable us to understand how a target system works and to predict its output for changes in the system parameters. Conversely, models would enable us to determine the proper parameters of a system for achieving a certain output. Putting these in the context of voice science research, variations in the parameters of the phonatory system could be attributed to individual differences. Thus, accurate models would enable us to account for individual differences during the diagnosis and to make reliable predictions about the likely outcome of different treatment options. Analysis of vibration of the vocal folds using high-speed videoendoscopy (HSV) could be an ideal candidate for constructing computational models. However, conventional images are not spatially calibrated and cannot be used for absolute spatial measurements. This dissertation is focused on developing the required methodologies for calibrated spatial measurements from in-vivo HSV recordings. Specifically, two different approaches for calibrated horizontal measurements of HSV images are presented. The first approach is called the indirect approach, and it is based on the registration of a specific attribute of a common object (e.g. size of a lesion) from a calibrated intraoperative still image to its corresponding non-calibrated in-vivo HSV recording. This approach does not require specialized instruments and can be implemented in many clinical settings. However, its validity depends on a couple of assumptions. Violation of those assumptions could lead to significant measurement errors. The second approach is called the direct approach, and it is based on a laser-projection flexible fiberoptic endoscope. This approach would enable us to make accurate calibrated spatial measurements. This dissertation evaluates the accuracy of the first approach indirectly, and by studying its underlying fundamental assumptions. However, the accuracy of the second approach is evaluated directly, and using benchtop experiments with different surfaces, different working distances, and different imaging angles. The main significances and contributions of this dissertation are the following: (1) a formal treatment of indirect horizontal calibration is presented, and the assumptions governing its validity and reliability are discussed. A battery of tests is presented that can indirectly assess the validity of those assumptions in laryngeal imaging applications; (2) recordings from pre- and post-surgery from patients with vocal fold mass lesions are used as a testbench for the developed indirect calibration approach. In that regard, a full solution is developed for measuring the calibrated velocity of the vocal folds. The developed solution is then used to investigate post-surgery changes in the closing velocity of the vocal folds from patients with vocal fold mass lesions; (3) the method for calibrated vertical measurement from a laser-projection fiberoptic flexible endoscope is developed. The developed method is evaluated at different working distances, different imaging angles, and on a 3D surface; (4) a detailed analysis and investigation of non-linear image distortion of a fiberoptic flexible endoscope is presented. The effect of imaging angle and spatial location of an object on the magnitude of that distortion is studied and quantified; (5) the method for calibrated horizontal measurement from a laser-projection fiberoptic flexible endoscope is developed. The developed method is evaluated at different working distances, different imaging angles, and on a 3D surface.
Show less
- Title
- Optimal Learning of Deployment and Search Strategies for Robotic Teams
- Creator
- Wei, Lai
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
In the problem of optimal learning, the dilemma of exploration and exploitation stems from the fact that gathering information and exploiting it are, in many cases, two mutually exclusive activities. The key to optimal learning is to strike a balance between exploration and exploitation. The Multi-Armed Bandit (MAB) problem is a prototypical example of such an explore-exploit tradeoff, in which a decision-maker sequentially allocates a single resource by repeatedly choosing one among a set of...
Show moreIn the problem of optimal learning, the dilemma of exploration and exploitation stems from the fact that gathering information and exploiting it are, in many cases, two mutually exclusive activities. The key to optimal learning is to strike a balance between exploration and exploitation. The Multi-Armed Bandit (MAB) problem is a prototypical example of such an explore-exploit tradeoff, in which a decision-maker sequentially allocates a single resource by repeatedly choosing one among a set of options that provide stochastic rewards. The MAB setup has been applied in many robotics problems such as foraging, surveillance, and target search, wherein the task of robots can be modeled as collecting stochastic rewards. The theoretical work of this dissertation is based on the MAB setup and three problem variations, namely heavy-tailed bandits, nonstationary bandits, and multi-player bandits, are studied. The first two variations capture two key features of stochastic feedback in complex and uncertain environments: heavy-tailed distributions and nonstationarity; while the last one addresses the problem of achieving coordination in uncertain environments. We design several algorithms that are robust to heavy-tailed distributions and nonstationary environments. Besides, two distributed policies that require no communication among agents are designed for the multi-player stochastic bandits in a piece-wise stationary environment.The MAB problems provide a natural framework to study robotic search problems. The above variations of the MAB problems directly map to robotic search tasks in which a robot team searches for a target from a fixed set of view-points (arms). We further focus on the class of search problems involving the search of an unknown number of targets in a large or continuous space. We view the multi-target search problem as a hot-spots identification problem in which, instead of the global maximum of the field, all locations with a value greater than a threshold need to be identified. We consider a robot moving in 3D space with a downward-facing camera sensor. We model the robot's sensing output using a multi-fidelity Gaussian Process (GP) that systematically describes the sensing information available at different altitudes from the floor. Based on the sensing model, we design a novel algorithm that (i) addresses the coverage-accuracy tradeoff: sampling at a location farther from the floor provides a wider field of view but less accurate measurements, (ii) computes an occupancy map of the floor within a prescribed accuracy and quickly eliminates unoccupied regions from the search space, and (iii) travels efficiently to collect the required samples for target detection. We rigorously analyze the algorithm and establish formal guarantees on the target detection accuracy and the detection time.An approach to extend the single robot search policy to multiple robots is to partition the environment into multiple regions such that workload is equitably distributed among all regions and then assign a robot to each region. The coverage control focuses on such equitable partitioning and the workload is equivalent to the so-called service demands in the coverage control literature. In particular, we study the adaptive coverage control problem, in which the demands of robotic service within the environment are modeled as a GP. To optimize the coverage of service demands in the environment, the team of robots aims to partition the environment and achieve a configuration that minimizes the coverage cost, which is a measure of the average distance of a service demand from the nearest robot. The robots need to address the explore-exploit tradeoff: to minimize coverage cost, they need to gather information about demands within the environment, whereas information gathering deviates them from maintaining a good coverage configuration. We propose an algorithm that schedules learning and coverage epochs such that its emphasis gradually shifts from exploration to exploitation while never fully ceasing to learn. Using a novel definition of coverage regret, we analyze the algorithm and characterizes its coverage performance over a finite time horizon.
Show less
- Title
- Online Learning Algorithms for Mining Trajectory data and their Applications
- Creator
- Wang, Ding
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Trajectories are spatio-temporal data that represent traces of moving objects, such as humans, migrating animals, vehicles, and tropical cyclones. In addition to the geo-location information, a trajectory data often contain other (non-spatial) features describing the states of the moving objects. The time-varying geo-location and state information would collectively characterize a trajectory dataset, which can be harnessed to understand the dynamics of the moving objects. This thesis focuses...
Show moreTrajectories are spatio-temporal data that represent traces of moving objects, such as humans, migrating animals, vehicles, and tropical cyclones. In addition to the geo-location information, a trajectory data often contain other (non-spatial) features describing the states of the moving objects. The time-varying geo-location and state information would collectively characterize a trajectory dataset, which can be harnessed to understand the dynamics of the moving objects. This thesis focuses on the development of efficient and accurate machine learning algorithms for forecasting the future trajectory path and state of a moving object. Although many methods have been developed in recent years, there are still numerous challenges that have not been sufficiently addressed by existing methods, which hamper their effectiveness when applied to critical applications such as hurricane prediction. These challenges include their difficulties in terms of handling concept drifts, error propagation in long-term forecasts, missing values, and nonlinearities in the data. In this thesis, I present a family of online learning algorithms to address these challenges. Online learning is an effective approach as it can efficiently fit new observations while adapting to concept drifts present in the data. First, I proposed an online learning framework called OMuLeT for long-term forecasting of the trajectory paths of moving objects. OMuLeT employs an online learning with restart strategy to incrementally update the weights of its predictive model as new observation data become available. It can also handle missing values in the data using a novel weight renormalization strategy.Second, I introduced the OOR framework to predict the future state of the moving object. Since the state can be represented by ordinal values, OOR employs a novel ordinal loss function to train its model. In addition, the framework was extended to OOQR to accommodate a quantile loss function to improve its prediction accuracy for larger values on the ordinal scale. Furthermore, I also developed the OOR-ε and OOQR-ε frameworks to generate real-valued state predictions using the ε insensitivity loss function.Third, I developed an online learning framework called JOHAN, that simultaneously predicts the location and state of the moving object. JOHAN generates its predictions by leveraging the relationship between the state and location information. JOHAN utilizes a quantile loss function to bias the algorithm towards predicting more accurately large categorical values in terms of the state of the moving object, say, for a high intensity hurricane.Finally, I present a deep learning framework to capture non-linear relationships in trajectory data. The proposed DTP framework employs a TDM approach for imputing missing values, coupled with an LSTM architecture for dynamic path prediction. In addition, the framework was extended to ODTP, which applied an online learning setting to address concept drifts present in the trajectory data.As proof of concept, the proposed algorithms were applied to the hurricane prediction task. Both OMuLeT and ODTP were used to predict the future trajectory path of a hurricane up to 48 hours lead time. Experimental results showed that OMuLeT and ODTP outperformed various baseline methods, including the official forecasts produced by the U.S. National Hurricane Center. OOR was applied to predict the intensity of a hurricane up to 48 hours in advance. Experimental results showed that OOR outperformed various state-of-the-art online learning methods and can generate predictions close to the NHC official forecasts. Since hurricane intensity prediction is a notoriously hard problem, JOHAN was applied to improve its prediction accuracy by leveraging the trajectory information, particularly for high intensity hurricanes that are near landfall.
Show less
- Title
- Object Detection from 2D to 3D
- Creator
- Brazil, Garrick
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Monocular camera-based object detection plays a critical role in widespread applications including robotics, security, self-driving cars, augmented reality and many more. Increased relevancy is often given to the detection and tracking of safety-critical objects like pedestrians, cyclists, and cars which are often in motion and in close association to people. Compared to other generic objects such as animals, tools, food — safety-critical objects in urban scenes tend to have unique challenges...
Show moreMonocular camera-based object detection plays a critical role in widespread applications including robotics, security, self-driving cars, augmented reality and many more. Increased relevancy is often given to the detection and tracking of safety-critical objects like pedestrians, cyclists, and cars which are often in motion and in close association to people. Compared to other generic objects such as animals, tools, food — safety-critical objects in urban scenes tend to have unique challenges. Firstly, such objects usually have a wide range of detection scales such that they may appear anywhere from 5-50+ meters from the camera. Safety-critical objects also tend to have a high variety of textures and shapes, exemplified by the clothing of people and variability of vehicle models. Moreover, the high-density of objects in urban scenes leads to increased levels of self-occlusion compared to general objects in the wild. Off-the-shelf object detectors do not always work effectively due to these traits, and hence special attention is needed for accurate detection. Moreover, even successful detection of safety-critical is not inherently practical for applications designed to function in the real 3D world, without integration of expensive depth sensors. To remedy this, in this thesis we aim to improve the performance of 2D object detection and extend boxes into 3D, while using only monocular camera-based sensors. We first explore how pedestrian detection can be augmented using an efficient simultaneous detection and segmentation technique, while notably requiring no additional data or annotations. We then propose a multi-phased autoregressive network which progressively improves pedestrian detection precision for difficult samples, while critically maintaining an efficient runtime. We additionally propose a single-stage region proposal networks for 3D object detection in urban scenes, which is both more efficient and up to 3x more accurate than comparable state-of-the-art methods. We stabilize our 3D object detector using a highly tailored 3D Kalman filter, which both improves localization accuracy and provides useful byproducts such as ego-motion and per-object velocity. Lastly, we utilize differentiable rendering to discover the underlying 3D structure of objects beyond the cuboids used in detection, and without relying on expensive sensors or 3D supervision. For each method, we provide comprehensive experiments to demonstrate effectiveness, impact and runtime efficiency.
Show less
- Title
- OPTIMIZATION OF LARGE SCALE ITERATIVE EIGENSOLVERS
- Creator
- Afibuzzaman, Md
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Sparse matrix computations, in the form of solvers for systems of linear equations, eigenvalue problem or matrix factorizations constitute the main kernel in problems from fields as diverse as computational fluid dynamics, quantum many body problems, machine learning and graph analytics. Iterative eigensolvers have been preferred over the regular method because the regular method not being feasible with industrial sized matrices. Although dense linear algebra libraries like BLAS, LAPACK,...
Show moreSparse matrix computations, in the form of solvers for systems of linear equations, eigenvalue problem or matrix factorizations constitute the main kernel in problems from fields as diverse as computational fluid dynamics, quantum many body problems, machine learning and graph analytics. Iterative eigensolvers have been preferred over the regular method because the regular method not being feasible with industrial sized matrices. Although dense linear algebra libraries like BLAS, LAPACK, SCALAPACK are well established and some vendor optimized implementation like mkl from Intel or Cray Libsci exist, it is not the same case for sparse linear algebra which is lagging far behind. The main reason behind slow progress in the standardization of sparse linear algebra or library development is the different forms and properties depending on the application area. It is worsened for deep memory hierarchies of modern architectures due to low arithmetic intensities and memory bound computations. Minimization of data movement and fast access to the matrix are critical in this case. Since the current technology is driven by deep memory architectures where we get the increased capacity at the expense of increased latency and decreased bandwidth when we go further from the processors. The key to achieve high performance in sparse matrix computations in deep memory hierarchy is to minimize data movement across layers of the memory and overlap data movement with computations. My thesis work contributes towards addressing the algorithmic challenges and developing a computational infrastructure to achieve high performance in scientific applications for both shared memory and distributed memory architectures. For this purpose, I started working on optimizing a blocked eigensolver and optimized specific computational kernels which uses a new storage format. Using this optimization as a building block, we introduce a shared memory task parallel framework focusing on optimizing the entire solvers rather than a specific kernel. Before extending this shared memory implementation to a distributed memory architecture, I simulated the communication pattern and overheads of a large scale distributed memory application and then I introduce the communication tasks in the framework to overlap communication and computation. Additionally, I also tried to find a custom scheduler for the tasks using a graph partitioner. To get acquainted with high performance computing and parallel libraries, I started my PhD journey with optimizing a DFT code named Sky3D where I used dense matrix libraries. Despite there might not be any single solution for this problem, I tried to find an optimized solution. Though the large distributed memory application MFDn is kind of the driver project of the thesis, but the framework we developed is not confined to MFDn only, rather it can be used for other scientific applications too. The output of this thesis is the task parallel HPC infrastructure that we envisioned for both shared and distributed memory architectures.
Show less
- Title
- Non-coding RNA identification in large-scale genomic data
- Creator
- Yuan, Cheng
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
Noncoding RNAs (ncRNAs), which function directly as RNAs without translating into proteins, play diverse and important biological functions. ncRNAs function not only through their primary structures, but also secondary structures, which are defined by interactions between Watson-Crick and wobble base pairs. Common types of ncRNA include microRNA, rRNA, snoRNA, tRNA. Functions of ncRNAs vary among different types. Recent studies suggest the existence of large number of ncRNA genes....
Show moreNoncoding RNAs (ncRNAs), which function directly as RNAs without translating into proteins, play diverse and important biological functions. ncRNAs function not only through their primary structures, but also secondary structures, which are defined by interactions between Watson-Crick and wobble base pairs. Common types of ncRNA include microRNA, rRNA, snoRNA, tRNA. Functions of ncRNAs vary among different types. Recent studies suggest the existence of large number of ncRNA genes. Identification of novel and known ncRNAs becomes increasingly important in order to understand their functionalities and the underlying communities.Next-generation sequencing (NGS) technology sheds lights on more comprehensive and sensitive ncRNA annotation. Lowly transcribed ncRNAs or ncRNAs from rare species with low abundance may be identified via deep sequencing. However, there exist several challenges in ncRNA identification in large-scale genomic data. First, the massive volume of datasets could lead to very long computation time, making existing algorithms infeasible. Second, NGS has relatively high error rate, which could further complicate the problem. Third, high sequence similarity among related ncRNAs could make them difficult to identify, resulting in incorrect output. Fourth, while secondary structures should be adopted for accurate ncRNA identification, they usually incur high computational complexity. In particular, some ncRNAs contain pseudoknot structures, which cannot be effectively modeled by the state-of-the-art approach. As a result, ncRNAs containing pseudoknots are hard to annotate.In my PhD work, I aimed to tackle the above challenges in ncRNA identification. First, I designed a progressive search pipeline to identify ncRNAs containing pseudoknot structures. The algorithms are more efficient than the state-of-the-art approaches and can be used for large-scale data. Second, I designed a ncRNA classification tool for short reads in NGS data lacking quality reference genomes. The initial homology search phase significantly reduces size of the original input, making the tool feasible for large-scale data. Last, I focused on identifying 16S ribosomal RNAs from NGS data. 16S ribosomal RNAs are very important type of ncRNAs, which can be used for phylogenic study. A set of graph based assembly algorithms were applied to form longer or full-length 16S rRNA contigs. I utilized paired-end information in NGS data, so lowly abundant 16S genes can also be identified. To reduce the complexity of problem and make the tool practical for large-scale data, I designed a list of error correction and graph reduction techniques for graph simplification.
Show less
- Title
- Network analysis with negative links
- Creator
- Derr, Tyler Scott
- Date
- 2020
- Collection
- Electronic Theses & Dissertations
- Description
-
As we rapidly continue into the information age, the rate at which data is produced has created an unprecedented demand for novel methods to effectively extract insightful patterns. We can then seek to understand the past, make predictions about the future, and ultimately take actionable steps towards improving our society. Thus, due to the fact that much of today's big data can be represented as graphs, emphasis is being taken to harness the natural structure of data through network analysis...
Show moreAs we rapidly continue into the information age, the rate at which data is produced has created an unprecedented demand for novel methods to effectively extract insightful patterns. We can then seek to understand the past, make predictions about the future, and ultimately take actionable steps towards improving our society. Thus, due to the fact that much of today's big data can be represented as graphs, emphasis is being taken to harness the natural structure of data through network analysis. Traditionally, network analysis has focused on networks having only positive links, or unsigned networks. However, in many real-world systems, relations between nodes in a graph can be both positive and negative, or signed networks. For example, in online social media, users not only have positive links such as friends, followers, and those they trust, but also can establish negative links to those they distrust, towards their foes, or block and unfriend users.Thus, although signed networks are ubiquitous due to their ability to represent negative links in addition to positive links, they have been significantly under explored. In addition, due to the rise in popularity of today's social media and increased polarization online, this has led to both an increased attention and demand for advanced methods to perform the typical network analysis tasks when also taking into consideration negative links. More specifically, there is a need for methods that can measure, model, mine, and apply signed networks that harness both these positive and negative relations. However, this raises novel challenges, as the properties and principles of negative links are not necessarily the same as positive links, and furthermore the social theories that have been used in unsigned networks might not apply with the inclusion of negative links.The chief objective of this dissertation is to first analyze the distinct properties negative links have as compared to positive links and towards improving network analysis with negative links by researching the utility and how to harness social theories that have been established in a holistic view of networks containing both positive and negative links. We discover that simply extending unsigned network analysis is typically not sufficient and that although the existence of negative links introduces numerous challenges, they also provide unprecedented opportunities for advancing the frontier of the network analysis domain. In particular, we develop advanced methods in signed networks for measuring node relevance and centrality (i.e., signed network measuring), present the first generative signed network model and extend/analyze balance theory to signed bipartite networks (i.e., signed network modeling), construct the first signed graph convolutional network which learns node representations that can achieve state-of-the-art prediction performance and then furthermore introduce the novel idea of transformation-based network embedding (i.e., signed network mining), and apply signed networks by creating a framework that can infer both link and interaction polarity levels in online social media and constructing an advanced comprehensive congressional vote prediction framework built around harnessing signed networks.
Show less
- Title
- Multiple kernel and multi-label learning for image categorization
- Creator
- Bucak, Serhat Selçuk
- Date
- 2014
- Collection
- Electronic Theses & Dissertations
- Description
-
"One crucial step towards the goal of converting large image collections to useful information sources is image categorization. The goal of image categorization is to find the relevant labels for a given an image from a closed set of labels. Despite the huge interest and significant contributions by the research community, there remains much room for improvement in the image categorization task. In this dissertation, we develop efficient multiple kernel learning and multi-label learning...
Show more"One crucial step towards the goal of converting large image collections to useful information sources is image categorization. The goal of image categorization is to find the relevant labels for a given an image from a closed set of labels. Despite the huge interest and significant contributions by the research community, there remains much room for improvement in the image categorization task. In this dissertation, we develop efficient multiple kernel learning and multi-label learning algorithms with high prediction performance for image categorization... " -- Abstract.
Show less