You are here
Search results
(1 - 2 of 2)
- Title
- Applying evolutionary computation techniques to address environmental uncertainty in dynamically adaptive systems
- Creator
- Ramirez, Andres J.
- Date
- 2013
- Collection
- Electronic Theses & Dissertations
- Description
-
A dynamically adaptive system (DAS) observes itself and its execution environment at run time to detect conditions that warrant adaptation. If an adaptation is necessary, then a DAS changes its structure and/or behavior to continuously satisfy its requirements, even as its environment changes. It is challenging, however, to systematically and rigorously develop a DAS due to environmental uncertainty. In particular, it is often infeasible for a human to identify all possible combinations of...
Show moreA dynamically adaptive system (DAS) observes itself and its execution environment at run time to detect conditions that warrant adaptation. If an adaptation is necessary, then a DAS changes its structure and/or behavior to continuously satisfy its requirements, even as its environment changes. It is challenging, however, to systematically and rigorously develop a DAS due to environmental uncertainty. In particular, it is often infeasible for a human to identify all possible combinations of system and environmental conditions that a DAS might encounter throughout its lifetime. Nevertheless, a DAS must continuously satisfy its requirements despite the threat that this uncertainty poses to its adaptation capabilities. This dissertation proposes a model-based framework that supports the specification, monitoring, and dynamic reconfiguration of a DAS to explicitly address uncertainty. The proposed framework uses goal-oriented requirements models and evolutionary computation techniques to derive and fine-tune utility functions for requirements monitoring in a DAS, identify combinations of system and environmental conditions that adversely affect the behavior of a DAS, and generate adaptations on-demand to transition the DAS to a target system configuration while preserving system consistency. We demonstrate the capabilities of our model-based framework by applying it to an industrial case study involving a remote data mirroring network that efficiently distributes data even as network links fail and messages are dropped, corrupted, and delayed.
Show less
- Title
- The Evolution of Fundamental Neural Circuits for Cognition in Silico
- Creator
- Tehrani-Saleh, Ali
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Despite decades of research on intelligence and fundamental components of cognition, we still know very little about the structure and functionality of nervous systems. Questions in cognition and intelligent behavior are addressed by scientists in the fields of behavioral biology, neuroscience, psychology, and computer science. Yet it is difficult to reverse engineer observed sophisticated intelligent behaviors in animals and even more difficult to understand their underlying mechanisms.In...
Show moreDespite decades of research on intelligence and fundamental components of cognition, we still know very little about the structure and functionality of nervous systems. Questions in cognition and intelligent behavior are addressed by scientists in the fields of behavioral biology, neuroscience, psychology, and computer science. Yet it is difficult to reverse engineer observed sophisticated intelligent behaviors in animals and even more difficult to understand their underlying mechanisms.In this dissertation, I use a recently-developed neuroevolution platform -called Markov brain networks- in which Darwinian selection is used to evolve both structure and functionality of digital brains. I use this platform to study some of the most fundamental cognitive neural circuits: 1) visual motion detection, 2) collision-avoidance based on visual motion cues, 3) sound localization, and 4) time perception. In particular, I investigate both the selective pressures and environmental conditions in the evolution of these cognitive components, as well as the circuitry and computations behind them. This dissertation lays the groundwork for an evolutionary agent-based method to study the neural circuits for cognition in silico.
Show less